Contents

Preface 11

Networking Library Functions 17
- accept(3SOCKET) 18
- accept(3XNET) 20
- ber_decode(3LDAP) 22
- ber_encode(3LDAP) 27
- bind(3SOCKET) 31
- bind(3XNET) 33
- byteorder(3SOCKET) 35
- cldap_close(3LDAP) 36
- cldap_open(3LDAP) 37
- cldap_search_s(3LDAP) 38
- cldap_setretryinfo(3LDAP) 40
- connect(3SOCKET) 41
- connect(3XNET) 43
- dial(3NSL) 46
- doconfig(3NSL) 48
- endhostent(3XNET) 50
- endnetent(3XNET) 52
- endprotoent(3XNET) 54
- endservent(3XNET) 56
- ethers(3SOCKET) 58
- fn_attr_bind(3XFN) 60
- fn_attr_create_subcontext(3XFN) 61
- fn_attr_ext_search(3XFN) 62
fn_attr_get(3XFN) 69
fn_attr_get_ids(3XFN) 70
fn_attr_get_values(3XFN) 71
FN_attribute_t(3XFN) 73
fn_attr_modify(3XFN) 75
FN_attrmodlist_t(3XFN) 77
fn_attr_multi_get(3XFN) 80
fn_attr_multi_modify(3XFN) 84
fn_attr_search(3XFN) 86
FN_attrset_t(3XFN) 91
FN_attrvalue_t(3XFN) 93
FN_composite_name_t(3XFN) 94
FN_compound_name_t(3XFN) 99
fn_ctx_bind(3XFN) 104
fn_ctx_create_subcontext(3XFN) 106
fn_ctx_destroy_subcontext(3XFN) 107
fn_ctx_equivalent_name(3XFN) 108
fn_ctx_get_ref(3XFN) 110
fn_ctx_get_syntax_attrs(3XFN) 111
fn_ctx_handle_destroy(3XFN) 113
fn_ctx_handle_from_initial(3XFN) 114
fn_ctx_handle_from_ref(3XFN) 116
fn_ctx_list_bindings(3XFN) 118
fn_ctx_list_names(3XFN) 119
fn_ctx_lookup(3XFN) 122
fn_ctx_lookup_link(3XFN) 123
fn_ctx_rename(3XFN) 124
FN_ctx_t(3XFN) 126
fn_ctx_unbind(3XFN) 129
FN_identifier_t(3XFN) 130
FN_ref_addr_t(3XFN) 131
FN_ref_t(3XFN) 133
FN_search_control_t(3XFN) 136
FN_search_filter_t(3XFN) 139
FN_status_t(3XFN) 146
FN_string_t(3XFN) 151
getaddrinfo(3SOCKET) 155
gethostbyname(3NSL) 159
gss_inquire_names_for_mech(3GSS) 254
 gss_oid_to_str(3GSS) 255
 gss_process_context_token(3GSS) 257
 gss_release_buffer(3GSS) 259
 gss_release_cred(3GSS) 260
 gss_release_name(3GSS) 261
 gss_release_oid(3GSS) 262
 gss_release_oid_set(3GSS) 263
 gss_str_to_oid(3GSS) 264
 gss_test_oid_set_member(3GSS) 266
 gss_unwrap(3GSS) 267
 gss_verify_mic(3GSS) 269
 gss_wrap(3GSS) 271
 gss_wrap_size_limit(3GSS) 273
 htonl(3XNET) 275
 if_nametoindex(3NSL) 276
 if_nametoindex(3XNET) 278
 inet(3SOCKET) 280
 inet_addr(3XNET) 284
 ldap(3LDAP) 286
 ldap_abandon(3LDAP) 297
 ldap_add(3LDAP) 298
 ldap_ber_free(3LDAP) 300
 ldap_bind(3LDAP) 301
 ldap_charset(3LDAP) 304
 ldap_compare(3LDAP) 306
 ldap_control_free(3LDAP) 308
 ldap_delete(3LDAP) 309
 ldap_disptmpl(3LDAP) 310
 ldap_entry2text(3LDAP) 316
 ldap_error(3LDAP) 319
 ldap_first_attribute(3LDAP) 323
 ldap_first_entry(3LDAP) 324
 ldap_first_message(3LDAP) 326
 ldap_friendly(3LDAP) 327
 ldap_get_dn(3LDAP) 328
 ldap_get_entry_controls(3LDAP) 330
 ldap_get_filter(3LDAP) 331
Contents
SLPDelAttrs(3SLP) 549
SLPDereg(3SLP) 551
SLPEscape(3SLP) 553
SLPFindAttrs(3SLP) 555
SLPFindScopes(3SLP) 557
SLPFindSrvs(3SLP) 559
SLPFindSrvTypes(3SLP) 561
SLPFree(3SLP) 563
SLPGetProperty(3SLP) 564
SLPGetRefreshInterval(3SLP) 565
SLPOpen(3SLP) 566
SLPParseSrvURL(3SLP) 568
SLPReg(3SLP) 570
SLPSetProperty(3SLP) 572
slp_strerror(3SLP) 573
SLPUnescape(3SLP) 574
socket(3SOCKET) 576
socket(3XNET) 579
socketpair(3SOCKET) 581
socketpair(3XNET) 582
spray(3SOCKET) 584
t_accept(3NSL) 586
t_alloc(3NSL) 590
t_bind(3NSL) 593
t_close(3NSL) 597
t_connect(3NSL) 599
t_errno(3NSL) 603
t_error(3NSL) 605
t_free(3NSL) 607
t_getinfo(3NSL) 609
t_getprotaddr(3NSL) 613
t_getstate(3NSL) 615
t_listen(3NSL) 617
t_look(3NSL) 620
t_open(3NSL) 622
t_optmgmt(3NSL) 626
t_rcv(3NSL) 634
t_rcvconnect(3NSL) 637
Preface

Both novice users and those familiar with the SunOS operating system can use online man pages to obtain information about the system and its features. A man page is intended to answer concisely the question “What does it do?” The man pages in general comprise a reference manual. They are not intended to be a tutorial.

Overview

The following contains a brief description of each man page section and the information it references:

- Section 1 describes, in alphabetical order, commands available with the operating system.
- Section 1M describes, in alphabetical order, commands that are used chiefly for system maintenance and administration purposes.
- Section 2 describes all of the system calls. Most of these calls have one or more error returns. An error condition is indicated by an otherwise impossible returned value.
- Section 3 describes functions found in various libraries, other than those functions that directly invoke UNIX system primitives, which are described in Section 2.
- Section 4 outlines the formats of various files. The C structure declarations for the file formats are given where applicable.
- Section 5 contains miscellaneous documentation such as character-set tables.
- Section 6 contains available games and demos.
- Section 7 describes various special files that refer to specific hardware peripherals and device drivers. STREAMS software drivers, modules and the STREAMS-generic set of system calls are also described.
- Section 9 provides reference information needed to write device drivers in the kernel environment. It describes two device driver interface specifications: the Device Driver Interface (DDI) and the Driver/Kernel Interface (DKI).
- Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a developer can include in a device driver.
- Section 9F describes the kernel functions available for use by device drivers.
- Section 9S describes the data structures used by drivers to share information between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section generally follow this order, but include only needed headings. For example, if there are no bugs to report, there is no BUGS section. See the intro pages for more information and detail about each section, and man(1) for more information about man pages in general.

NAME

This section gives the names of the commands or functions documented, followed by a brief description of what they do.

SYNOPSIS

This section shows the syntax of commands or functions. When a command or file does not exist in the standard path, its full path name is shown. Options and arguments are alphabetized, with single letter arguments first, and options with arguments next, unless a different argument order is required.

The following special characters are used in this section:

[] Brackets. The option or argument enclosed in these brackets is optional. If the brackets are omitted, the argument must be specified.

... Ellipses. Several values can be provided for the previous argument, or the previous argument can be specified multiple times, for example, "filename ...".

| Separator. Only one of the arguments separated by this character can be specified at a time.

{ } Braces. The options and/or arguments enclosed within braces are interdependent, such that everything enclosed must be treated as a unit.
PROTOCOL This section occurs only in subsection 3R to indicate the protocol description file.

DESCRIPTION This section defines the functionality and behavior of the service. Thus it describes concisely what the command does. It does not discuss OPTIONS or cite EXAMPLES. Interactive commands, subcommands, requests, macros, and functions are described under USAGE.

IOCTL This section appears on pages in Section 7 only. Only the device class that supplies appropriate parameters to the ioctl(2) system call is called ioctl and generates its own heading. ioctl calls for a specific device are listed alphabetically (on the man page for that specific device). ioctl calls are used for a particular class of devices all of which have an io ending, such as mtio(7I).

OPTIONS This section lists the command options with a concise summary of what each option does. The options are listed literally and in the order they appear in the SYNOPSIS section. Possible arguments to options are discussed under the option, and where appropriate, default values are supplied.

OPERANDS This section lists the command operands and describes how they affect the actions of the command.

OUTPUT This section describes the output – standard output, standard error, or output files – generated by the command.

RETURN VALUES If the man page documents functions that return values, this section lists these values and describes the conditions under which they are returned. If a function can return only constant values, such as 0 or –1, these values are listed in tagged paragraphs. Otherwise, a single paragraph describes the return values of each function. Functions declared void do not return values, so they are not discussed in RETURN VALUES.

ERRORS On failure, most functions place an error code in the global variable errno indicating why they failed. This section lists alphabetically all error codes a function can generate and describes the conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE
This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES
This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
equations illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES
This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS
This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

FILES
This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES
This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(5) for more information.

SEE ALSO
This section lists references to other man pages,
in-house documentation, and outside publications.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAGNOSTICS</td>
<td>This section lists diagnostic messages with a brief explanation of the condition causing the error.</td>
</tr>
<tr>
<td>WARNINGS</td>
<td>This section lists warnings about special conditions which could seriously affect your working conditions. This is not a list of diagnostics.</td>
</tr>
<tr>
<td>NOTES</td>
<td>This section lists additional information that does not belong anywhere else on the page. It takes the form of an aside to the user, covering points of special interest. Critical information is never covered here.</td>
</tr>
<tr>
<td>BUGS</td>
<td>This section describes known bugs and, wherever possible, suggests workarounds.</td>
</tr>
</tbody>
</table>
Networking Library Functions
accept(3SOCKET)

NAME
accept – accept a connection on a socket

SYNOPSIS
cc [flag ...] file ... -lsocket -lns1 [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

DESCRIPTION
The argument s is a socket that has been created with socket(3SOCKET) and bound
to an address with bind(3SOCKET), and that is listening for connections after a call to
listen(3SOCKET). The accept() function extracts the first connection on the queue
of pending connections, creates a new socket with the properties of s, and allocates a
new file descriptor, ns, for the socket. If no pending connections are present on the
queue and the socket is not marked as non-blocking, accept() blocks the caller until
a connection is present. If the socket is marked as non-blocking and no pending
connections are present on the queue, accept() returns an error as described below.
The accept() function uses the netconfig(4) file to determine the STREAMS
device file name associated with s. This is the device on which the connect indication
will be accepted. The accepted socket, ns, is used to read and write data to and from
the socket that connected to ns. It is not used to accept more connections. The original
socket (s) remains open for accepting further connections.

The argument addr is a result parameter that is filled in with the address of the
connecting entity as it is known to the communications layer. The exact format of the
addr parameter is determined by the domain in which the communication occurs.

The argument addrlen is a value-result parameter. Initially, it contains the amount of
space pointed to by addr; on return it contains the length in bytes of the address
returned.

The accept() function is used with connection-based socket types, currently with
SOCK_STREAM.

It is possible to select(3C) or poll(2) a socket for the purpose of an accept() by
selecting or polling it for a read. However, this will only indicate when a connect
indication is pending; it is still necessary to call accept().

RETURN VALUES
The accept() function returns −1 on error. If it succeeds, it returns a non-negative
integer that is a descriptor for the accepted socket.

ERRORS
accept() will fail if:

EBADF The descriptor is invalid.
ECONNABORTED The remote side aborted the connection before the
accept() operation completed.
EFAULT The addr parameter or the addrlen parameter is invalid.
EINVAL The accept() attempt was interrupted by the
delivery of a signal.
EMFILE The per-process descriptor table is full.
accept(3SOCKET)

ENODEV
The protocol family and type corresponding to s could not be found in the netconfig file.

ENOMEM
There was insufficient user memory available to complete the operation.

ENOSR
There were insufficient STREAMS resources available to complete the operation.

ENOTSOCK
The descriptor does not reference a socket.

EOPNOTSUPP
The referenced socket is not of type SOCK_STREAM.

EPROTO
A protocol error has occurred; for example, the STREAMS protocol stack has not been initialized or the connection has already been released.

EWOULDBLOCK
The socket is marked as non-blocking and no connections are present to be accepted.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
poll(2), bind(3SOCKET), connect(3SOCKET), listen(3SOCKET), select(3C), socket(3HEAD), socket(3SOCKET), netconfig(4), attributes(5)
Accept (3XNET)

NAME
accept – accept a new connection on a socket

SYNOPSIS
#include <sys/socket.h>

int accept(int socket, struct sockaddr *address, socklen_t *address_len);

DESCRIPTION
The accept() function extracts the first connection on the queue of pending
connections, creates a new socket with the same socket type protocol and address
family as the specified socket, and allocates a new file descriptor for that socket.

The function takes the following arguments:
socket Specifies a socket that was created with socket(3XNET), has been
bound to an address with bind(3XNET), and has issued a
successful call to listen(3XNET).
address Either a null pointer, or a pointer to a sockaddr structure where
the address of the connecting socket will be returned.
address_len Points to a socklen_t which on input specifies the length of the
supplied sockaddr structure, and on output specifies the length
of the stored address.

If address is not a null pointer, the address of the peer for the accepted connection is
stored in the sockaddr structure pointed to by address, and the length of this address
is stored in the object pointed to by address_len.

If the actual length of the address is greater than the length of the supplied sockaddr structure, the stored address will be truncated.

If the protocol permits connections by unbound clients, and the peer is not bound,
then the value stored in the object pointed to by address is unspecified.

If the listen queue is empty of connection requests and O_NONBLOCK is not set on
the file descriptor for the socket, accept() will block until a connection is present. If
the listen(3XNET) queue is empty of connection requests and O_NONBLOCK is set
on the file descriptor for the socket, accept() will fail and set errno to EAGAIN or
EWOULDBLOCK.

The accepted socket cannot itself accept more connections. The original socket remains
open and can accept more connections.

USAGE
When a connection is available, select(3C) will indicate that the file descriptor for
the socket is ready for reading.

RETURN VALUES
Upon successful completion, accept() returns the nonnegative file descriptor of the
accepted socket. Otherwise, −1 is returned and errno is set to indicate the error.

ERRORS
The accept() function will fail if:
accept(3XNET)

EAGAIN
EWOULDBLOCK
O_NONBLOCK is set for the socket file descriptor and no connections are present to be accepted.

EBADF
The socket argument is not a valid file descriptor.

ECONNABORTED
A connection has been aborted.

EFAULT
The address or address_len parameter can not be accessed or written.

EINTR
The accept() function was interrupted by a signal that was caught before a valid connection arrived.

EINVAL
The socket is not accepting connections.

EMFILE
OPEN_MAX file descriptors are currently open in the calling process.

ENFILE
The maximum number of file descriptors in the system are already open.

ENOTSOCK
The socket argument does not refer to a socket.

EOPNOTSUPP
The socket type of the specified socket does not support accepting connections.

The accept() function may fail if:

ENOBUFFS
No buffer space is available.

ENOMEM
There was insufficient memory available to complete the operation.

ENOSR
There was insufficient STREAMS resources available to complete the operation.

EPROTO
A protocol error has occurred; for example, the STREAMS protocol stack has not been initialized.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO bind(3XNET), connect(3XNET), listen(3XNET), socket(3XNET), attributes(5)
These functions provide a subfunction interface to a simplified implementation of the Basic Encoding Rules of ASN.1. The version of BER these functions support is the one defined for the LDAP protocol. The encoding rules are the same as BER, except that only definite form lengths are used, and bitstrings and octet strings are always encoded in primitive form. In addition, these lightweight BER functions restrict tags and class to fit in a single octet (this means the actual tag must be less than 31). When
a "tag" is specified in the descriptions below, it refers to the tag, class, and primitive or constructed bit in the first octet of the encoding. This man page describes the decoding functions in the lber library. See ber_encode(3LDAP) for details on the corresponding encoding functions.

Normally, the only functions that need be called by an application are ber_get_next() to get the next BER element and ber_scanf() to do the actual decoding. In some cases, ber_peek_tag() may also need to be called in normal usage. The other functions are provided for those applications that need more control than ber_scanf() provides. In general, these functions return the tag of the element decoded, or −1 if an error occurred.

The ber_get_next() function is used to read the next BER element from the given Sockbuf, sb. A Sockbuf consists of the descriptor (usually socket, but a file descriptor works just as well) from which to read, and a BerElement structure used to maintain a buffer. On the first call, the sb_ber struct should be zeroed. It strips off and returns the leading tag byte, strips off and returns the length of the entire element in len, and sets up ber for subsequent calls to ber_scanf(), and all to decode the element.

The ber_scanf() function is used to decode a BER element in much the same way that scanf(3C) works. It reads from ber, a pointer to a BerElement such as returned by ber_get_next(), interprets the bytes according to the format string fmt, and stores the results in its additional arguments. The format string contains conversion specifications which are used to direct the interpretation of the BER element. The format string can contain the following characters.

- a Octet string. A char ** should be supplied. Memory is allocated, filled with the contents of the octet string, null-terminated, and returned in the parameter.
- s Octet string. A char * buffer should be supplied, followed by a pointer to an integer initialized to the size of the buffer. Upon return, the null-terminated octet string is put into the buffer, and the integer is set to the actual size of the octet string.
- o Octet string. A struct ber_val ** should be supplied, which upon return points to a memory allocated struct berval containing the octet string and its length. ber_bvfree() can be called to free the allocated memory.
- b Boolean. A pointer to an integer should be supplied.
- i Integer. A pointer to an integer should be supplied.
- B Bitstring. A char ** should be supplied which will point to the memory allocated bits, followed by an unsigned long *, which will point to the length (in bits) of the bitstring returned.
- n Null. No parameter is required. The element is simply skipped if it is recognized.
ber_decode(3LDAP)

- **v**
 Sequence of octet strings. A char *** should be supplied, which upon return points to a memory allocated null-terminated array of char *'s containing the octet strings. NULL is returned if the sequence is empty.

- **v**
 Sequence of octet strings with lengths. A struct berval *** should be supplied, which upon return points to a memory allocated, null-terminated array of struct berval *'s containing the octet strings and their lengths. NULL is returned if the sequence is empty. ber_bvecfree() can be called to free the allocated memory.

- **x**
 Skip element. The next element is skipped.

- **{**
 Begin sequence. No parameter is required. The initial sequence tag and length are skipped.

- **}**
 End sequence. No parameter is required and no action is taken.

- **[** &
 Begin set. No parameter is required. The initial set tag and length are skipped.

- **]}**
 End set. No parameter is required and no action is taken.

The ber_get_int() function tries to interpret the next element as an integer, returning the result in num. The tag of whatever it finds is returned on success, -1 on failure.

The ber_get_stringb() function is used to read an octet string into a preallocated buffer. The len parameter should be initialized to the size of the buffer, and will contain the length of the octet string read upon return. The buffer should be big enough to take the octet string value plus a terminating NULL byte.

The ber_get_stringa() function is used to allocate memory space into which an octet string is read.

The ber_get_stringal() function is used to allocate memory space into which an octet string and its length are read. It takes a struct berval **, and returns the result in this parameter.

The ber_get_null() function is used to read a NULL element. It returns the tag of the element it skips over.

The ber_get_boolean() function is used to read a boolean value. It is called the same way that ber_get_int() is called.

The ber_get_bitstringa() function is used to read a bitstring value. It takes a char ** which will hold the allocated memory bits, followed by an unsigned long *, which will point to the length (in bits) of the bitstring returned.
The `ber_first_element()` function is used to return the tag and length of the first element in a set or sequence. It also returns in `cookie` a magic cookie parameter that should be passed to subsequent calls to `ber_next_element()`, which returns similar information.

`ber_alloc_t()` constructs and returns `BerElement`. A null pointer is returned on error. The options field contains a bitwise-or of options which are to be used when generating the encoding of this `BerElement`. One option is defined and must always be supplied:

```c
#define LBER_USE_DER 0x01
```
When this option is present, lengths will always be encoded in the minimum number of octets. Note that this option does not cause values of sets and sequences to be rearranged in tag and byte order, so these functions are not suitable for generating DER output as defined in X.509 and X.680.

The `ber_init` function constructs a `BerElement` and returns a new `BerElement` containing a copy of the data in the `bv` argument. `ber_init` returns the null pointer on error.

`ber_free()` frees a `BerElement` which is returned from the API calls `ber_alloc_t()` or `ber_init()`. Each `BerElement` must be freed by the caller. The second argument `freebuf` should always be set to 1 to ensure that the internal buffer used by the BER functions is freed as well as the `BerElement` container itself.

`ber_bvdup()` returns a copy of a `berval`. The `bv_val` field in the returned `berval` points to a different area of memory as the `bv_val` field in the argument `berval`. The null pointer is returned on error (that is, is out of memory).

The `ber_flatten` routine allocates a struct `berval` whose contents are BER encoding taken from the `ber` argument. The `bvPtr` pointer points to the returned `berval`, which must be freed using `ber_bvfree()`. This routine returns 0 on success and -1 on error.

EXAMPLE Assume the variable `ber` contains a lightweight BER encoding of the following ASN.1 object:

```c
AlmostASearchRequest ::= SEQUENCE {
  baseObject  DistinguishedName,
  scope       ENUMERATED {
    baseObject  (0),
    singleLevel (1),
    wholeSubtree (2)
  },
  derefAliases ENUMERATED {
    neverDerefAliases (0),
    derefInSearching (1),
    derefFindingBaseObj (2),
    alwaysDerefAliases (3N)
  },
  sizelimit   INTEGER (0 .. 65535),
  timelimit   INTEGER (0 .. 65535),
```
EXAMPLE 1 Assume the variable `ber` contains a lightweight BER encoding of the following ASN.1 object:

```plaintext
attrsOnly BOOLEAN,
attributes SEQUENCE OF AttributeType
```

EXAMPLE 2 The element can be decoded using `ber_scanf()` as follows.

```c
int scope, ali, size, time, attrsonly;
char *dn, **attrs;
if ( ber_scanf( ber, "{aiiiib{v}}", &dn, &scope, &ali,
              &size, &time, &attrsonly, &attrs ) == -1 )
    /* error */
else
    /* success */
```

ERRORS If an error occurs during decoding, generally these functions return -1.

NOTES The return values for all of these functions are declared in the `<ber.h>` header file. Some functions may allocate memory which must be freed by the calling application.

ATTRIBUTES See `attributes(5)` for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcs1 (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcs1x (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO `ber_encode(3LDAP)`

NAME
ber_encode, ber_alloc, ber_printf, ber_put_int, ber_put_ostring, ber_put_string,
ber_put_null, ber_put_boolean, ber_put_bitstring, ber_start_seq, ber_start_set,
ber_put_seq, ber_put_set - simplified Basic Encoding Rules library encoding functions

SYNOPSIS
ccl flag... 1 file... -lldap[library...]

#include <lber.h>

BerElement *ber_alloc();
ber_printf(BerElement *ber, char **fmt[, arg...]);
ber_put_int(BerElement *ber, long num, char tag);
ber_put_ostring(BerElement *ber, char **str, unsigned long len, char tag);
ber_put_string(BerElement *ber, char **str, char tag);
ber_put_null(BerElement *ber, char tag);
ber_put_boolean(BerElement *ber, int bool, char tag);
ber_put_bitstring(BerElement *ber, char *str, int blen, char tag);
ber_start_seq(BerElement *ber, char tag);
ber_start_set(BerElement *ber, char tag);
ber_put_seq(BerElement *ber);
ber_put_set(BerElement *ber);

DESCRIPTION
These functions provide a subfunction interface to a simplified implementation of the Basic Encoding Rules of ASN.1. The version of BER these functions support is the one defined for the LDAP protocol. The encoding rules are the same as BER, except that only definite form lengths are used, and bitstrings and octet strings are always encoded in primitive form. In addition, these lightweight BER functions restrict tags and class to fit in a single octet (this means the actual tag must be less than 31). When a "tag" is specified in the descriptions below, it refers to the tag, class, and primitive or constructed bit in the first octet of the encoding. This man page describes the encoding functions in the lber library. See ber_decode(3LDAP) for details on the corresponding decoding functions.

Normally, the only functions that need be called by an application are ber_alloc(), to allocate a BER element, and ber_printf() to do the actual encoding. The other functions are provided for those applications that need more control than ber_printf() provides. In general, these functions return the length of the element encoded, or -1 if an error occurred.

The ber_alloc() function is used to allocate a new BER element.

The ber_printf() function is used to encode a BER element in much the same way that sprintf(3S) works. One important difference, though, is that some state information is kept with the ber parameter so that multiple calls can be made to
ber_printf() to append things to the end of the BER element. Ber_printf() writes to ber, a pointer to a BerElement such as returned by ber_alloc(). It interprets and formats its arguments according to the format string fmt. The format string can contain the following characters:

- **b**
 Boolean. An integer parameter should be supplied. A boolean element is output.

- **i**
 Integer. An integer parameter should be supplied. An integer element is output.

- **B**
 Bitstring. A char * pointer to the start of the bitstring is supplied, followed by the number of bits in the bitstring. A bitstring element is output.

- **n**
 Null. No parameter is required. A null element is output.

- **o**
 Octet string. A char * is supplied, followed by the length of the string pointed to. An octet string element is output.

- **s**
 Octet string. A null-terminated string is supplied. An octet string element is output, not including the trailing NULL octet.

- **t**
 Tag. An int specifying the tag to give the next element is provided. This works across calls.

- **v**
 Several octet strings. A null-terminated array of char *'s is supplied. Note that a construct like '{v}' is required to get an actual SEQUENCE OF octet strings.

- **{**
 Begin sequence. No parameter is required.

- **}**
 End sequence. No parameter is required.

- **[**
 Begin set. No parameter is required.

- **]**
 End set. No parameter is required.

The ber_put_int() function writes the integer element num to the BER element ber.

The ber_put_boolean() function writes the boolean value given by bool to the BER element.

The ber_put_bitstring() function writes blen bits starting at str as a bitstring value to the given BER element. Note that blen is the length in bits of the bitstring.

The ber_put_ostring() function writes len bytes starting at str to the BER element as an octet string.

The ber_put_string() function writes the null-terminated string (minus the terminating '') to the BER element as an octet string.

The ber_put_null() function writes a NULL element to the BER element.
The `ber_start_seq()` function is used to start a sequence in the BER element. The `ber_start_set()` function works similarly. The end of the sequence or set is marked by the nearest matching call to `ber_put_seq()` or `ber_put_set()`, respectively.

The `ber_first_element()` function is used to return the tag and length of the first element in a set or sequence. It also returns in `cookie` a magic cookie parameter that should be passed to subsequent calls to `ber_next_element()`, which returns similar information.

EXAMPLE 1 Assuming the following variable declarations, and that the variables have been assigned appropriately, an BER encoding of the following ASN.1 object:

```plaintext
AlmostASearchRequest := SEQUENCE {
    baseObject             DistinguishedName,
    scope                  ENUMERATED {
        baseObject (0),
        singleLevel (1),
        wholeSubtree (2)
    },
    derefAliases           ENUMERATED {
        neverDerefAliases (0),
        derefInSearching (1),
        derefFindingBaseObj (2),
        alwaysDerefAliases (3N)
    },
    sizelimit              INTEGER (0 .. 65535),
    timelimit              INTEGER (0 .. 65535),
    attrsOnly              BOOLEAN,
    attributes             SEQUENCE OF AttributeType
}
```

can be achieved like so:

```plaintext
int scope, ali, size, time, attrsonly;
char *dn, **attrs;
/* ... fill in values ... */
if ( (ber = ber_alloc( )) == NULLBER )
    /* error */
if ( ber_printf( ber, "{siiivb{v}}", dn, scope, ali,
    size, time, attrsonly, attrs ) == -1 )
    /* error */
else
    /* success */
```

RETURN VALUES If an error occurs during encoding, `ber_alloc()` returns `NULL`; other functions generally return `-1`.

ATTRIBUTES See `attributes(5)` for a description of the following attributes:
ber_encode(3LDAP)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

attributes(5), ber_decode(3LDAP)

NOTES

The return values for all of these functions are declared in the <ber.h> header file.
bind(3SOCKET)

NAME
bind – bind a name to a socket

SYNOPSIS
cc [flag ...] file ... -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int bind(int s, const struct sockaddr *name, int namelen);

DESCRIPTION
bind() assigns a name to an unnamed socket. When a socket is created with
socket(3SOCKET), it exists in a name space (address family) but has no name
assigned. bind() requests that the name pointed to by name be assigned to the socket.

RETURN VALUES
If the bind is successful, 0 is returned. A return value of −1 indicates an error, which is
further specified in the global errno.

ERRORS
The bind() call will fail if:

EACCES The requested address is protected and the current user
 has inadequate permission to access it.
EADDRINUSE The specified address is already in use.
EADDRNOTAVAIL The specified address is not available on the local
 machine.
EBADF s is not a valid descriptor.
EINVAL namelen is not the size of a valid address for the
 specified address family.
EINVAL The socket is already bound to an address.
ENOSR There were insufficient STREAMS resources for the
 operation to complete.
ENOTSOCK s is a descriptor for a file, not a socket.

The following errors are specific to binding names in the UNIX domain:

EACCES Search permission is denied for a component of the
 path prefix of the pathname in name.
EIO An I/O error occurred while making the directory
 entry or allocating the inode.
EISDIR A null pathname was specified.
ELOOP Too many symbolic links were encountered in
 translating the pathname in name.
ENOENT A component of the path prefix of the pathname in
 name does not exist.
ENOTDIR A component of the path prefix of the pathname in
 name is not a directory.
bind(3SOCKET)

EROFS

The inode would reside on a read-only file system.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

unlink(2), socket(3SOCKET), attributes(5), socket(3HEAD)

NOTES

Binding a name in the UNIX domain creates a socket in the file system that must be deleted by the caller when it is no longer needed (using unlink(2)).

The rules used in name binding vary between communication domains.
NAME
bind – bind a name to a socket

SYNOPSIS
```c
#include <sys/socket.h>

int bind(int socket, const struct sockaddr *address, socklen_t address_len);
```

DESCRIPTION
The `bind()` function assigns an address to an unnamed socket. Sockets created with `socket(3XNET)` function are initially unnamed; they are identified only by their address family.

The function takes the following arguments:
- `socket`: Specifies the file descriptor of the socket to be bound.
- `address`: Points to a `sockaddr` structure containing the address to be bound to the socket. The length and format of the address depend on the address family of the socket.
- `address_len`: Specifies the length of the `sockaddr` structure pointed to by the `address` argument.

The socket in use may require the process to have appropriate privileges to use the `bind()` function.

USAGE
An application program can retrieve the assigned socket name with the `getsockname(3XNET)` function.

RETURN VALUES
Upon successful completion, `bind()` returns 0. Otherwise, -1 is returned and `errno` is set to indicate the error.

ERRORS
The `bind()` function will fail if:
- `EADDRINUSE`: The specified address is already in use.
- `EADDRNOTAVAIL`: The specified address is not available from the local machine.
- `EAFNOSUPPORT`: The specified address is not a valid address for the address family of the specified socket.
- `EBADF`: The `socket` argument is not a valid file descriptor.
- `EFAULT`: The `address` argument can not be accessed.
- `EINVAL`: The socket is already bound to an address, and the protocol does not support binding to a new address; or the socket has been shut down.
- `ENOTSOCK`: The `socket` argument does not refer to a socket.
- `EOPNOTSUPP`: The socket type of the specified socket does not support binding to an address.
If the address family of the socket is AF_UNIX, then bind() will fail if:

- **EACCES**: A component of the path prefix denies search permission, or the requested name requires writing in a directory with a mode that denies write permission.
- **EDESTADDRREQ**: The address argument is a null pointer.
- **EISDIR**: The address argument is a null pointer.
- **EIO**: An I/O error occurred.
- **ELOOP**: Too many symbolic links were encountered in translating the pathname in address.
- **ENAMETOOLONG**: A component of a pathname exceeded NAME_MAX characters, or an entire pathname exceeded PATH_MAX characters.
- **ENOENT**: A component of the pathname does not name an existing file or the pathname is an empty string.
- **ENOTDIR**: A component of the path prefix of the pathname in address is not a directory.
- **EROFS**: The name would reside on a read-only filesystem.

The bind() function may fail if:

- **EACCES**: The specified address is protected and the current user does not have permission to bind to it.
- **EINVAL**: The address_len argument is not a valid length for the address family.
- **EISCONN**: The socket is already connected.
- **ENAMETOOLONG**: Pathname resolution of a symbolic link produced an intermediate result whose length exceeds PATH_MAX.
- **ENOBUFFS**: Insufficient resources were available to complete the call.
- **ENOSR**: There were insufficient STREAMS resources for the operation to complete.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

connect(3XNET), getsockname(3XNET), listen(3XNET), socket(3XNET), attributes(5)
byteorder(3SOCKET)

NAME
byteorder, htonl, htons, ntohl, ntohs – convert values between host and network byte order

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>
#include <inttypes.h>

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order and host byte order. On some architectures these routines are defined as NULL macros in the include file <netinet/in.h>. On other architectures, if their host byte order is different from network byte order, these routines are functional.

These routines are most often used in conjunction with Internet addresses and ports as returned by gethostent() and getservent(). See gethostbyname(3NSL) and getservbyname(3SOCKET).

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
gethostbyname(3NSL), getservbyname(3SOCKET), attributes(5), inet(3HEAD)
cldap_close(3LDAP)

NAME
cldap_close – dispose of connectionless LDAP pointer

SYNOPSIS
cc [flag...] file... -lldap [library...]

#include <lber.h>
#include <ldap.h>

void cldap_close(LDAP *ld);

DESCRIPTION
The cldap_close() function disposes of memory allocated by
cldap_open(3LDAP). It should be called when all CLDAP communication is
complete.

PARAMETERS
id The LDAP pointer returned by a previous call to
cldap_open(3LDAP).

ATTRIBUTES
See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
ldap(3LDAP), cldap_open(3LDAP), cldap_search_s(3LDAP),
cldap_setretryinfo(3LDAP)
cldap_open – LDAP connectionless communication preparation

SYNOPSIS

cflagn... file... -lldap[library...]

#include <ber.h>
#include <ldap.h>

LDAP *cldap_open(char *host, int port);

PARAMETERS

host The name of the host on which the LDAP server is running.

port The port number to connect.

DESCRIPTION

The cldap_open() function is called to prepare for connectionless LDAP communication (over udp(7P)). It allocates an LDAP structure which is passed to future search requests.

If the default IANA-assigned port of 389 is desired, LDAP_PORT should be specified for port. host can contain a space-separated list of hosts or addresses to try.

cldap_open() returns a pointer to an LDAP structure, which should be passed to subsequent calls to cldap_search_s(3LDAP), cldap_setretryinfo(3LDAP), and cldap_close(3LDAP). Certain fields in the LDAP structure can be set to indicate size limit, time limit, and how aliases are handled during operations. See ldap_open(3LDAP) and <ldap.h> for more details.

ERRORS

If an error occurs, cldap_open() will return NULL and errno will be set appropriately.

ATTRIBUTES

See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

ldap(3LDAP) cldap_search_s(3LDAP), cldap_setretryinfo(3LDAP), cldap_close(3LDAP), attributes(5), udp(7P)
The cldap_search_s() function performs an LDAP search using the Connectionless LDAP (CLDAP) protocol. cldap_search_s() has parameters and behavior identical to that of ldap_search_s(3LDAP), except for the addition of the logdn parameter. logdn should contain a distinguished name to be used only for logging purposes by the LDAP server. It should be in the text format described by RFC 1779, A String Representation of Distinguished Names.

cldap_search_s() operates using the CLDAP protocol over udp(7P). Since UDP is a non-reliable protocol, a retry mechanism is used to increase reliability. The cldap_setretryinfo(3LDAP) function can be used to set two retry parameters: tries, a count of the number of times to send a search request and timeout, an initial timeout that determines how long to wait for a response before re-trying. timeout is specified seconds. These values are stored in the ld_cldaptries and ld_cldaptimeout members of the ld LDAP structure, and the default values set in ldap_open(3LDAP) are 4 and 3 respectively. The retransmission algorithm used is:

Step 1. Set the current timeout to ld_cldaptimeout seconds, and the current LDAP server address to the first LDAP server found during the ldap_open(3LDAP) call.

Step 2: Send the search request to the current LDAP server address.

Step 3: Set the wait timeout to the current timeout divided by the number of server addresses found during ldap_open(3LDAP) or to one second, whichever is larger. Wait at most that long for a response; if a response is received, STOP. Note that the wait timeout is always rounded down to the next lowest second.

Step 5: Repeat steps 2 and 3 for each LDAP server address.

Step 6: Set the current timeout to twice its previous value and repeat Steps 2 through 6 a maximum of tries times.

Assume that the default values for tries and timeout of 4 tries and 3 seconds are used. Further, assume that a space-separated list of two hosts, each with one address, was passed to cldap_open(3LDAP). The pattern of requests sent will be (stopping as soon as a response is received):

<table>
<thead>
<tr>
<th>Time</th>
<th>Search Request Sent To:</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0</td>
<td>Host A try 1</td>
</tr>
<tr>
<td>+1</td>
<td>Host B try 1 (0+3/2)</td>
</tr>
</tbody>
</table>
ERRORS

`cldap_search_s()` returns `LDAP_SUCCESS` if a search was successful and the appropriate LDAP error code otherwise. See `ldap_error(3LDAP)` for more information.

ATTRIBUTES

See `attributes(5)` for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

`ldap(3LDAP), ldap_error(3LDAP), ldap_search_s(3LDAP),
cldap_open(3LDAP), cldap_setretryinfo(3LDAP), cldap_close(3LDAP),
attributes(5), udp(7P)`
NAME cldap_setretryinfo – set connectionless LDAP request retransmission parameters

SYNOPSIS
```
cc [ flag... ] file... -lldap [ library... ]

#include <lber.h>
#include <ldap.h>

void cldap_setretryinfo(LDAP *ld, int tries, int timeout);
```

PARAMETERS
- `ld` LDAP pointer returned from a previous call to cldap_open(3LDAP).
- `tries` Maximum number of times to send a request.
- `timeout` Initial time, in seconds, to wait before re-sending a request.

DESCRIPTION
The cldap_setretryinfo() function is used to set the CLDAP request retransmission behavior for future cldap_search_s(3LDAP) calls. The default values (set by cldap_open(3LDAP)) are 4 tries and 3 seconds between tries. See cldap_search_s(3LDAP) for a complete description of the retransmission algorithm used.

ATTRIBUTES
See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
ldap(3LDAP), cldap_open(3LDAP), cldap_search_s(3LDAP), cldap_close(3LDAP), attributes(5)
connect (3SOCKET)

NAME
connect – initiate a connection on a socket

SYNOPSIS
cc [flag ...] file ... -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int connect(int s, const struct sockaddr *name, int namelen);

DESCRIPTION
The parameter s is a socket. If it is of type SOCK_DGRAM, connect () specifies the peer
with which the socket is to be associated; this address is the address to which
datagrams are to be sent if a receiver is not explicitly designated; it is the only address
from which datagrams are to be received. If the socket s is of type SOCK_STREAM,
connect () attempts to make a connection to another socket. The other socket is
specified by name. name is an address in the communication space of the socket. Each
communication space interprets the name parameter in its own way. If s is not bound,
then it will be bound to an address selected by the underlying transport provider.
Generally, stream sockets may successfully connect () only once; datagram sockets
may use connect () multiple times to change their association. Datagram sockets
may dissolve the association by connecting to a null address.

RETURN VALUES
If the connection or binding succeeds, 0 is returned. Otherwise, −1 is returned and sets
errno to indicate the error.

ERRORS
The call fails if:

EACCES Search permission is denied for a component of the
path prefix of the pathname in name.

EADDRINUSE The address is already in use.

EADDRNOTAVAIL The specified address is not available on the remote
machine.

EAFNOSUPPORT Addresses in the specified address family cannot be
used with this socket.

EALREADY The socket is non-blocking and a previous connection
attempt has not yet been completed.

EBADF s is not a valid descriptor.

ECONNREFUSED The attempt to connect was forcefully rejected. The
calling program should close(2) the socket descriptor,
and issue another socket(3SOCKET) call to obtain a
new descriptor before attempting another connect ()
call.

EINPROGRESS The socket is non-blocking and the connection cannot
be completed immediately. It is possible to select(3C)
for completion by selecting the socket for writing.

EINTR The connection attempt was interrupted before any
data arrived by the delivery of a signal.
connect(3SOCKET)

EINVAL namelen is not the size of a valid address for the specified address family.
EIO An I/O error occurred while reading from or writing to the file system.
EISCONN The socket is already connected.
ELOOP Too many symbolic links were encountered in translating the pathname in name.
ENETUNREACH The network is not reachable from this host.
ENOENT A component of the path prefix of the pathname in name does not exist.
ENOENT The socket referred to by the pathname in name does not exist.
ENOSR There were insufficient STREAMS resources available to complete the operation.
ENXIO The server exited before the connection was complete.
ETIMEDOUT Connection establishment timed out without establishing a connection.
EWOULDBLOCK The socket is marked as non-blocking, and the requested operation would block.

The following errors are specific to connecting names in the UNIX domain. These errors may not apply in future versions of the UNIX IPC domain.

ENOTDIR A component of the path prefix of the pathname in name is not a directory.
ENOTSOCK s is not a socket.
ENOTSOCK name is not a socket.
EPROTOTYPE The file referred to by name is a socket of a type other than type s (for example, s is a SOCK_DGRAM socket, while name refers to a SOCK_STREAM socket).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO close(2), accept(3SOCKET), getsockname(3SOCKET), select(3C), socket(3SOCKET), socket(3HEAD), attributes(5)
connect (3XNET)

NAME
connect – connect a socket

SYNOPSIS
cc [flag ...] file ... -lxnet [library ...]
#include <sys/socket.h>

int connect(int socket, const struct sockaddr *address, socklen_t
 address_len);

DESCRIPTION
The connect() function requests a connection to be made on a socket. The function takes the following arguments:

socket Specifies the file descriptor associated with the socket.
address Points to a sockaddr structure containing the peer address. The length and format of the address depend on the address family of the socket.
address_len Specifies the length of the sockaddr structure pointed to by the address argument.

If the socket has not already been bound to a local address, connect() will bind it to an address which, unless the socket’s address family is AF_UNIX, is an unused local address.

If the initiating socket is not connection-mode, then connect() sets the socket’s peer address, but no connection is made. For SOCK_DGRAM sockets, the peer address identifies where all datagrams are sent on subsequent send(3XNET) calls, and limits the remote sender for subsequent recv(3XNET) calls. If address is a null address for the protocol, the socket’s peer address will be reset.

If the initiating socket is connection-mode, then connect() attempts to establish a connection to the address specified by the address argument.

If the connection cannot be established immediately and O_NONBLOCK is not set for the file descriptor for the socket, connect() will block for up to an unspecified timeout interval until the connection is established. If the timeout interval expires before the connection is established, connect() will fail and the connection attempt will be aborted. If connect() is interrupted by a signal that is caught while blocked waiting to establish a connection, connect() will fail and set errno to EINTR, but the connection request will not be aborted, and the connection will be established asynchronously.

If the connection cannot be established immediately and O_NONBLOCK is set for the file descriptor for the socket, connect() will fail and set errno to EINPROGRESS, but the connection request will not be aborted, and the connection will be established asynchronously. Subsequent calls to connect() for the same socket, before the connection is established, will fail and set errno to EALREADY.

When the connection has been established asynchronously, select(3C) and poll(2) will indicate that the file descriptor for the socket is ready for writing.
The socket in use may require the process to have appropriate privileges to use the
`connect()` function.

USAGE

If `connect()` fails, the state of the socket is unspecified. Portable applications should
close the file descriptor and create a new socket before attempting to reconnect.

RETURN VALUES

Upon successful completion, `connect()` returns 0. Otherwise, –1 is returned and
`errno` is set to indicate the error.

ERRORS

The `connect()` function will fail if:

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EADDRNOTAVAIL</td>
<td>The specified address is not available from the local machine.</td>
</tr>
<tr>
<td>EAFNOSUPPORT</td>
<td>The specified address is not a valid address for the address family of the specified socket.</td>
</tr>
<tr>
<td>EALREADY</td>
<td>A connection request is already in progress for the specified socket.</td>
</tr>
<tr>
<td>EBADF</td>
<td>The socket argument is not a valid file descriptor.</td>
</tr>
<tr>
<td>ECONNREFUSED</td>
<td>The target address was not listening for connections or refused the connection request.</td>
</tr>
<tr>
<td>EFAULT</td>
<td>The address parameter can not be accessed.</td>
</tr>
<tr>
<td>EINPROGRESS</td>
<td>O_NONBLOCK is set for the file descriptor for the socket and the connection cannot be immediately established; the connection will be established asynchronously.</td>
</tr>
<tr>
<td>EINTR</td>
<td>The attempt to establish a connection was interrupted by delivery of a signal that was caught; the connection will be established asynchronously.</td>
</tr>
<tr>
<td>EISCONN</td>
<td>The specified socket is connection-mode and is already connected.</td>
</tr>
<tr>
<td>ENETUNREACH</td>
<td>No route to the network is present.</td>
</tr>
<tr>
<td>ENOTSOCK</td>
<td>The socket argument does not refer to a socket.</td>
</tr>
<tr>
<td>EPROTOTYPE</td>
<td>The specified address has a different type than the socket bound to the specified peer address.</td>
</tr>
<tr>
<td>ETIMEDOUT</td>
<td>The attempt to connect timed out before a connection was made.</td>
</tr>
<tr>
<td>EIO</td>
<td>An I/O error occurred while reading from or writing to the file system.</td>
</tr>
</tbody>
</table>

If the address family of the socket is AF_UNIX, then `connect()` will fail if:

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIO</td>
<td>An I/O error occurred while reading from or writing to the file system.</td>
</tr>
</tbody>
</table>
connect(3XNET)

ELOOP: Too many symbolic links were encountered in translating the pathname in address.

ENAMETOOLONG: A component of a pathname exceeded NAME_MAX characters, or an entire pathname exceeded PATH_MAX characters.

ENOENT: A component of the pathname does not name an existing file or the pathname is an empty string.

ENOTDIR: A component of the path prefix of the pathname in address is not a directory.

The connect() function may fail if:

EACCES: Search permission is denied for a component of the path prefix; or write access to the named socket is denied.

EADDRINUSE: Attempt to establish a connection that uses addresses that are already in use.

ECONNRESET: Remote host reset the connection request.

EHOSTUNREACH: The destination host cannot be reached (probably because the host is down or a remote router cannot reach it).

EINVAL: The address_len argument is not a valid length for the address family; or invalid address family in sockaddr structure.

ENAMETOOLONG: Pathname resolution of a symbolic link produced an intermediate result whose length exceeds PATH_MAX.

ENETDOWN: The local interface used to reach the destination is down.

ENOBUFS: No buffer space is available.

ENOSR: There were insufficient STREAMS resources available to complete the operation.

EOPNOTSUPP: The socket is listening and can not be connected.

ATTRIBUTES: See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO: close(2), poll(2), accept(3XNET), bind(3XNET), getsockname(3XNET), select(3C), send(3XNET), shutdown(3XNET), socket(3XNET), attributes(5)
dial(3NSL)

NAME
dial – establish an outgoing terminal line connection

SYNOPSIS
c [flag ...] file ... -lnsl [library ...]
#include <dial.h>

int dial(CALL call);
void undial(int fd);

DESCRIPTION
dial() returns a file-descriptor for a terminal line open for read/write. The argument
to dial() is a CALL structure (defined in the header <dial.h>).

When finished with the terminal line, the calling program must invoke undial() to
release the semaphore that has been set during the allocation of the terminal device.

CALL is defined in the header <dial.h> and has the following members:

struct termio *attr; /* pointer to termio attribute struct */
int baud; /* transmission data rate */
int speed; /* 212A modem: low=300, high=1200 */
char *line; /* device name for out-going line */
char *telno; /* pointer to tel-no digits string */
int modem; /* specify modem control for direct lines */
char *device; /* unused */
int dev_len; /* unused */

The CALL element speed is intended only for use with an outgoing dialed call, in
which case its value should be the desired transmission baud rate. The CALL element
baud is no longer used.

If the desired terminal line is a direct line, a string pointer to its device-name should
be placed in the line element in the CALL structure. Legal values for such terminal
device names are kept in the Devices file. In this case, the value of the baud element
should be set to -1. This value will cause dial to determine the correct value from the
<Devices> file.

The telno element is for a pointer to a character string representing the telephone
number to be dialed. Such numbers may consist only of these characters:

0-9 dial 0-9
* dial *
dial
= wait for secondary dial tone
- delay for approximately 4 seconds

The CALL element modem is used to specify modem control for direct lines. This
element should be non-zero if modem control is required. The CALL element attr is a
pointer to a termio structure, as defined in the header <termio.h>. A NULL value
for this pointer element may be passed to the dial function, but if such a structure is included, the elements specified in it will be set for the outgoing terminal line before the connection is established. This setting is often important for certain attributes such as parity and baud-rate.

The CALL elements device and dev_len are no longer used. They are retained in the CALL structure for compatibility reasons.

RETURN VALUES

On failure, a negative value indicating the reason for the failure will be returned. Mnemonics for these negative indices as listed here are defined in the header <dial.h>.

```
INTRPT  -1  /* interrupt occurred */
D_HUNG  -2  /* dialer hung (no return from write) */
NO_ANS  -3  /* no answer within 10 seconds */
ILL_BD  -4  /* illegal baud-rate */
A_PROB  -5  /* acu problem (open() failure) */
L_PROB  -6  /* line problem (open() failure) */
NO_Dev  -7  /* can't open Devices file */
DV_NT_A  -8  /* requested device not available */
DV_NT_K  -9  /* requested device not known */
NO_BD_A  -10  /* no device available at requested baud */
NO_BD_K  -11  /* no device known at requested baud */
DV_NT_E  -12  /* requested speed does not match */
BAD_SYS  -13  /* system not in Systems file */
```

FILES

```
/etc/uucp/Devices
/etc/uucp/Systems
/var/spool/uucp/LCK..tty-device
```

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

SEE ALSO

uucp(1C), alarm(2), read(2), write(2), attributes(5), termio(7I)

NOTES

Including the header <dial.h> automatically includes the header <termio.h>. An alarm(2) system call for 3600 seconds is made (and caught) within the dial module for the purpose of “touching” the LCK.. file and constitutes the device allocation semaphore for the terminal device. Otherwise, uucp(1C) may simply delete the LCK.. entry on its 90-minute clean-up rounds. The alarm may go off while the user program is in a read(2) or write(2) function, causing an apparent error return. If the user program expects to be around for an hour or more, error returns from read()s should be checked for (errno==EINTR), and the read() possibly reissued.

This interface is unsafe in multithreaded applications. Unsafe interfaces should be called only from the main thread.
doconfig(3NSL)

NAME
doconfig – execute a configuration script

SYNOPSIS
cf [flag ...] file ... -insl [library ...]

DESCRiPTION
doconfig() is a Service Access Facility library function that interprets the configuration scripts contained in the files

/etc/saf/pmtag/_config>,
</etc/saf/_sysconfig>, and
</etc/saf/pmtag/svctag>, where pmtag specifies the tag associated with the port monitor, and svctag specifies the service tag associated with a given service. See pmadm(1M) and saadm(1M).

script is the name of the configuration script; fildes is a file descriptor that designates the stream to which stream manipulation operations are to be applied; rflag is a bitmask that indicates the mode in which script is to be interpreted. If rflag is zero, all commands in the configuration script are eligible to be interpreted. If rflag has the NOASSIGN bit set, the assign command is considered illegal and will generate an error return. If rflag has the NORUN bit set, the run and runwait commands are considered illegal and will generate error returns.

The configuration language in which script is written consists of a sequence of commands, each of which is interpreted separately. The following reserved keywords are defined: assign, push, pop, runwait, and run. The comment character is #; when a # occurs on a line, everything from that point to the end of the line is ignored. Blank lines are not significant. No line in a command script may exceed 1024 characters.

assign variable=value

Used to define environment variables. variable is the name of the environment variable and value is the value to be assigned to it. The value assigned must be a string constant; no form of parameter substitution is available. value may be quoted. The quoting rules are those used by the shell for defining environment variables. assign will fail if space cannot be allocated for the new variable or if any part of the specification is invalid.

push module1[, module2, module3, ...]

Used to push STREAMS modules onto the stream designated by fildes. module1 is the name of the first module to be pushed, module2 is the name of the second module to be pushed, etc. The command will fail if any of the named modules cannot be pushed. If a module cannot be pushed, the subsequent modules on the same command line will be ignored and modules that have already been pushed will be popped.

pop [module]

Used to pop STREAMS modules off the designated stream. If pop is invoked with no arguments, the top module on the stream is popped. If an argument is given, modules will be popped one at a time until the named module is at the top of the stream. If the named module is not on the designated stream, the stream is left as it
was and the command fails. If \texttt{module} is the special keyword \texttt{ALL}, then all modules on the stream will be popped. Note that only modules above the topmost driver are affected.

runwait command

The \texttt{runwait} command runs a command and waits for it to complete. \texttt{command} is the pathname of the command to be run. The command is run with \texttt{/usr/bin/sh -c} prepended to it; shell scripts may thus be executed from configuration scripts. The \texttt{runwait} command will fail if \texttt{command} cannot be found or cannot be executed, or if \texttt{command} exits with a non-zero status.

run command

The \texttt{run} command is identical to \texttt{runwait} except that it does not wait for \texttt{command} to complete. \texttt{command} is the pathname of the command to be run. \texttt{run} will not fail unless it is unable to create a child process to execute the command.

Although they are syntactically indistinguishable, some of the commands available to \texttt{run} and \texttt{runwait} are interpreter built-in commands. Interpreter built-ins are used when it is necessary to alter the state of a process within the context of that process. The \texttt{doconfig()} interpreter built-in commands are similar to the shell special commands and, like these, they do not spawn another process for execution. See \texttt{sh(1)}. The built-in commands are:

\begin{verbatim}
 cd
 ulimit
 umask
\end{verbatim}

RETURN VALUES

\texttt{doconfig()} returns 0 if the script was interpreted successfully. If a command in the script fails, the interpretation of the script ceases at that point and a positive number is returned; this number indicates which line in the script failed. If a system error occurs, a value of −1 is returned. When a script fails, the process whose environment was being established should not be started.

ATTRIBUTES

See \texttt{attributes(5)} for descriptions of the following attributes:

\begin{center}
\begin{tabular}{|l|l|}
\hline
\textbf{ATTRIBUTE TYPE} & \textbf{ATTRIBUTE VALUE} \\
\hline
MT-Level & Unsafe \\
\hline
\end{tabular}
\end{center}

SEE ALSO

\texttt{sh(1), pmadm(1M), sacadm(1M), attributes(5)}

NOTES

This interface is unsafe in multithreaded applications. Unsafe interfaces should be called only from the main thread.
The `gethostent()` function reads the next entry of the database, opening a connection to the database if necessary.

The `gethostbyaddr()` function searches the database and finds an entry which matches the address family specified by the `type` argument and which matches the address pointed to by the `addr` argument, opening a connection to the database if necessary. The `addr` argument is a pointer to the binary-format (that is, not null-terminated) address in network byte order, whose length is specified by the `len` argument. The datatype of the address depends on the address family. For an address of type AF_INET, this is an `in_addr` structure, defined in `<netinet/in.h>`. For an address of type AF_INET6, there is an `in6_addr` structure defined in `<netinet/in.h>`. The `gethostbyaddr()` function returns a pointer to a `hostent` structure, the members of which contain the fields of an entry in the network host database.

The `gethostbyname()` function searches the database and finds an entry which matches the host name specified by the `name` argument, opening a connection to the database if necessary. If `name` is an alias for a valid host name, the function returns information about the host name to which the alias refers, and `name` is included in the list of aliases returned.

The `sethostent()` function opens a connection to the network host database, and sets the position of the next entry to the first entry. If the `stayopen` argument is non-zero, the connection to the host database will not be closed after each call to `gethostent()` (either directly, or indirectly through one of the other `gethost*()` functions).

The `endhostent()` function closes the connection to the database.

The `gethostent()`, `gethostbyaddr()`, and `gethostbyname()` functions may return pointers to static data, which may be overwritten by subsequent calls to any of these functions.
These functions are generally used with the Internet address family.

RETURN VALUES

On successful completion, `gethostbyaddr()`, `gethostbyname()` and `gethostent()` return a pointer to a `hostent` structure if the requested entry was found, and a null pointer if the end of the database was reached or the requested entry was not found. Otherwise, a null pointer is returned.

On unsuccessful completion, `gethostbyaddr()` and `gethostbyname()` functions set `h_errno` to indicate the error.

ERRORS

No errors are defined for `endhostent()`, `gethostent()` and `sethostent()`.

The `gethostbyaddr()` and `gethostbyname()` functions will fail in the following cases, setting `h_errno` to the value shown in the list below. Any changes to `errno` are unspecified.

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOST_NOT_FOUND</td>
<td>No such host is known.</td>
</tr>
<tr>
<td>NO_DATA</td>
<td>The server recognised the request and the name but no address is available. Another type of request to the name server for the domain might return an answer.</td>
</tr>
<tr>
<td>NO_RECOVERY</td>
<td>An unexpected server failure occurred which cannot be recovered.</td>
</tr>
<tr>
<td>TRY_AGAIN</td>
<td>A temporary and possibly transient error occurred, such as a failure of a server to respond.</td>
</tr>
</tbody>
</table>

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

SEE ALSO

`endservent(3XNET)`, `htonl(3XNET)`, `inet_addr(3XNET)`, `attributes(5)`
endnetent(3XNET)

NAME
dendnet, getnetbyaddr, getnetbyname, getnetent, setnetent – network database functions

SYNOPSIS
cc [-fl file ... -lxnet [library ...]]
#include <netdb.h>

 void endnetent(void);
 struct netent *getnetbyaddr(in_addr_t net, int type);
 struct netent *getnetbyname(const char *name);
 struct netent *getnetent(void);
 void setnetent(int stayopen);

DESCRIPTION
The getnetbyaddr(), getnetbyname() and getnetent(), functions each return
a pointer to a netent structure, the members of which contain the fields of an entry in
the network database.

The getnetent() function reads the next entry of the database, opening a
connection to the database if necessary.

The getnetbyaddr() function searches the database from the beginning, and finds
the first entry for which the address family specified by type matches the
n_addrtype member and the network number net matches the n_net member,
opening a connection to the database if necessary. The net argument is the network
number in host byte order.

The getnetbyname() function searches the database from the beginning and finds
the first entry for which the network name specified by name matches the n_name
member, opening a connection to the database if necessary.

The setnetent() function opens and rewinds the database. If the stayopen argument
is non-zero, the connection to the net database will not be closed after each call to
getnetent() (either directly, or indirectly through one of the other getnet*()
funtions).

The endnetent() function closes the database.

USAGE
The getnetbyaddr(), getnetbyname() and getnetent(), functions may return
pointers to static data, which may be overwritten by subsequent calls to any of these
functions.

These functions are generally used with the Internet address family.

RETURN VALUES
On successful completion, getnetbyaddr(), getnetbyname() and getnetent(),
return a pointer to a netent structure if the requested entry was found, and a null
pointer if the end of the database was reached or the requested entry was not found.
Otherwise, a null pointer is returned.

ERRORS
No errors are defined.
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

SEE ALSO attributes(5)
endprotoent(3XNET)

NAME
endprotoent, getprotobynumber, getprotobyname, getprotoent, setprotoent – network protocol database functions

SYNOPSIS
cc [flag ...] file ... -lxnet [library ...]
#include <netdb.h>

void endprotoent(void);
struct protoent *getprotobyname(const char *name);
struct protoent *getprotobynumber(int proto);
struct protoent *getprotoent(void);
void setprotoent(int stayopen);

DESCRIPTION
The getprotobyname(), getprotobynumber() and getprotoent() functions each return a pointer to a protoent structure, the members of which contain the fields of an entry in the network protocol database.

The getprotoent() function reads the next entry of the database, opening a connection to the database if necessary.

The getprotobyname() function searches the database from the beginning and finds the first entry for which the protocol name specified by name matches the p_name member, opening a connection to the database if necessary.

The getprotobynumber() function searches the database from the beginning and finds the first entry for which the protocol number specified by number matches the p_proto member, opening a connection to the database if necessary.

The setprotoent() function opens a connection to the database, and sets the next entry to the first entry. If the stayopen argument is non-zero, the connection to the network protocol database will not be closed after each call to getprotoent() (either directly, or indirectly through one of the other getproto*() functions).

The endprotoent() function closes the connection to the database.

USAGE
The getprotobyname(), getprotobynumber() and getprotoent() functions may return pointers to static data, which may be overwritten by subsequent calls to any of these functions.

These functions are generally used with the Internet address family.

RETURN VALUES
On successful completion, getprotobyname(), getprotobynumber() and getprotoent() functions return a pointer to a protoent structure if the requested entry was found, and a null pointer if the end of the database was reached or the requested entry was not found. Otherwise, a null pointer is returned.

ERRORS
No errors are defined.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:
endprotoent(3XNET)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

SEE ALSO
attributes(5)
NAME
endservent, getservbyport, getservbyname, getservent, setservent – network services
database functions

SYNOPSIS
c [flag ...] file ... -lxnet [library ...]
#include <netdb.h>

void endservent(void);
struct servent *getservbyname(const char *name, const char *proto);
struct servent *getservbyport(int port, const char *proto);
struct servent *getservent(void);
void setservent(int stayopen);

DESCRIPTION
The getservbyname(), getservbyport() and getservent() functions each return a pointer to a servent structure, the members of which contain the fields of an entry in the network services database.

The getservent() function reads the next entry of the database, opening a
collection to the database if necessary.

The getservbyname() function searches the database from the beginning and finds
the first entry for which the service name specified by name matches the s_name
member and the protocol name specified by proto matches the s_proto member,
opening a connection to the database if necessary. If proto is a null pointer, any value of
the s_proto member will be matched.

The getservbyport() function searches the database from the beginning and finds
the first entry for which the port specified by port matches the s_port member and
the protocol name specified by proto matches the s_proto member, opening a
connection to the database if necessary. If proto is a null pointer, any value of the
s_proto member will be matched. The port argument must be in network byte order.

The setservent() function opens a connection to the database, and sets the next
collection to the first entry. If the stayopen argument is non-zero, the net database will not
be closed after each call to the getservent() function (either directly, or indirectly
through one of the other getserv*() functions).

The endservent() function closes the database.

USAGE
The port argument of getservbyport() need not be compatible with the port values
of all address families.

The getservent(), getservbyname() and getservbyport() functions may
return pointers to static data, which may be overwritten by subsequent calls to any of
these functions.

These functions are generally used with the Internet address family.
On successful completion, `getservbyname()`, `getservbyport()` and `getservent()` return a pointer to a `servent` structure if the requested entry was found, and a null pointer if the end of the database was reached or the requested entry was not found. Otherwise, a null pointer is returned.

ERRORS

No errors are defined.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

SEE ALSO

`endhostent(3XNET)`, `endprotoent(3XNET)`, `htonl(3XNET)`, `inet_addr(3XNET)`, `attributes(5)`
These routines are useful for mapping 48 bit Ethernet numbers to their ASCII representations or their corresponding host names, and vice versa.

The function `ether_ntoa()` converts a 48 bit Ethernet number pointed to by `e` to its standard ASCII representation; it returns a pointer to the ASCII string. The representation is of the form `x:x:x:x:x:x` where `x` is a hexadecimal number between 0 and ff. The function `ether_aton()` converts an ASCII string in the standard representation back to a 48 bit Ethernet number; the function returns `NULL` if the string cannot be scanned successfully.

The function `ether_ntohost()` maps an Ethernet number (pointed to by `e`) to its associated hostname. The string pointed to by hostname must be long enough to hold the hostname and a `NULL` character. The function returns zero upon success and non-zero upon failure. Inversely, the function `ether_hostton()` maps a hostname string to its corresponding Ethernet number; the function modifies the Ethernet number pointed to by `e`. The function also returns zero upon success and non-zero upon failure. In order to do the mapping, both these functions may lookup one or more of the following sources: the ethers file, the NIS maps “ethers.byname” and “ethers.byaddr” and the NIS+ table “ethers”. The sources and their lookup order are specified in the `/etc/nsswitch.conf` file (see `nsswitch.conf(4)` for details).

The function `ether_line()` scans a line (pointed to by `l`) and sets the hostname and the Ethernet number (pointed to by `e`). The string pointed to by hostname must be long enough to hold the hostname and a `NULL` character. The function returns zero upon success and non-zero upon failure. The format of the scanned line is described by `ethers(4)`.
FILES
/etc/ethers
/etc/nsswitch.conf

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO ethers(4), nsswitch.conf(4), attributes(5)

BUGS
Programs that call ether_hostton() or ether_ntohost() routines cannot be linked statically since the implementation of these routines requires dynamic linker functionality to access shared objects at run time.
fn_attr_bind(3XFN)

NAME
fn_attr_bind – bind a reference to a name and associate attributes with named object

SYNOPSIS
#include <xfn/xfn.h>

int fn_attr_bind(FN_ctx_t *ctx, const FN_composite_name_t *name,
 const FN_ref_t *ref, const FN_attrset_t *attrs, unsigned int
 exclusive, FN_status_t *status);

DESCRIPTION
This operation binds the supplied reference ref to the supplied composite name name
relative to ctx, and associates the attributes specified in attrs with the named object.
The binding is made in the target context, that is, that context named by all but the
terminal atomic part of name. The operation binds the terminal atomic name to the
supplied reference in the target context. The target context must already exist.

The value of exclusive determines what happens if the terminal atomic part of the
name is already bound in the target context. If exclusive is nonzero and name is already
bound, the operation fails. If exclusive is 0, the new binding replaces any existing
binding, and, if attrs is not NULL, attrs replaces any existing attributes associated with
the named object. If attrs is NULL and exclusive is 0, any existing attributes associated
with the named object are left unchanged.

RETURN VALUES
fn_attr_bind() returns 1 upon success, 0 upon failure.

ERRORS
fn_attr_bind() sets status as described in FN_status_t(3XFN) and
xfn_status_codes(3XFN). Of special relevance for this operation is the following
status code:

FN_E_NAME_IN_USE The supplied name is already in use.

USAGE
The value of ref cannot be NULL. If the intent is to reserve a name using
fn_attr_bind(), a reference containing no address should be supplied. This
reference may be name service-specific or it may be the conventional NULL reference.

If multiple sources are updating a reference or attributes associated with a named
object, they must synchronize amongst each other when adding, modifying, or
removing from the address list of a bound reference, or manipulating attributes
associated with the named object.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
FN_composite_name_t(3XFN), FN_ctx_t(3XFN), FN_ref_t(3XFN),
FN_status_t(3XFN), fn_ctx_bind(3XFN), fn_ctx_lookup(3XFN),
fn_ctx_unbind(3XFN), xfn_attributes(3XFN), xfn_status_codes(3XFN),
attributes(5)
fn_attr_create_subcontext

NAME

fn_attr_create_subcontext – create a subcontext in a context and associate attributes with newly created context

SYNOPSIS

#include <xfn/xfn.h>

FN_ref_t *
fn_attr_create_subcontext
(FN_ctx_t *ctx, const
FN_composite_name_t *name, const FN_attrset_t *attrs,
FN_status_t *status);

DESCRIPTION

This operation creates a new XFN context of the same type as the target context, that is, that context named by all but the terminal atomic component of name, and binds it to the supplied composite name. In addition, attributes given in attrs are associated with the newly created context.

The target context must already exist. The new context is created and bound in the target context using the terminal atomic name in name. The operation returns a reference to the newly created context.

RETURN VALUES

fn_attr_create_subcontext() returns a reference to the newly created context; if the operation fails, it returns a NULL pointer.

ERRORS

fn_attr_create_subcontext() sets status as described in FN_status_t(3XFN) and xfn_status_codes(3XFN). Of special relevance for this operation is the following status code:

FN_E_NAME_IN_USE The terminal atomic name already exists in the target context.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

FN_composite_name_t(3XFN), FN_ctx_t(3XFN), FN_ref_t(3XFN), FN_status_t(3XFN), fn_attr_bind(3XFN), fn_ctx_bind(3XFN), fn_ctx_create_subcontext(3XFN), fn_ctx_destroy_subcontext(3XFN), fn_ctx_lookup(3XFN), xfn_attributes(3XFN), xfn_status_codes(3XFN), attributes(5)
fn_attr_ext_search(3XFN)

NAME
fn_attr_ext_search, FN_ext_searchlist_t, fn_ext_searchlist_next,
fn_ext_searchlist_destroy – search for names in the specified context(s) whose
attributes satisfy the filter

SYNOPSIS
#include <xfn/xfn.h>
FN_ext_searchlist_t *
fn_attr_ext_search(FN_ctx_t *ctx,
const FN_composite_name_t *name,
const FN_search_control_t *control,
const FN_search_filter_t *filter,
FN_status_t *status);
FN_composite_name_t *
fn_ext_searchlist_next(FN_ext_searchlist_t *
esl,
FN_ref_t **returned_ref,
FN_attrset_t **returned_attrs,
FN_status_t *status);
void fn_ext_searchlist_destroy(FN_ext_searchlist_t *esl);

DESCRIPTION
This set of operations is used to list names of objects whose attributes satisfy the filter
expression. The references to which these names are bound and specified attributes
and their values may also be returned.

control encapsulates the option settings for the search. These options are:
• the scope of the search
• whether XFN links are followed
• a limit on the number of names returned
• whether references and specific attributes associated with the named objects that
 satisfy the filter are returned

The scope of the search is one of:
• the object named name relative to the context ctx
• the context named name relative to the context ctx
• the context named name relative to the context ctx,
 and its subcontexts
 or
• the context named name relative to the context ctx, and a context
 implementation-defined set of subcontexts

If the value of control is 0, default control option settings are used. The default settings
are:
• scope is search named context
• links are not followed
• all names of objects that satisfy the filter are returned
• references and attributes are not returned

The FN_search_control_t type is described in FN_search_control_t(3XFN).
The filter expression \(\text{filter} \) in \text{fn_attr_ext_search}() is evaluated against the attributes of the objects bound in the scope of the search. The filter evaluates to either \text{TRUE} or \text{FALSE}. The names and, optionally, the references and attributes of objects whose attributes satisfy the filter are enumerated. If the value of \(\text{filter} \) is 0, all names within the search scope are enumerated. The FN_search_filter_t type is described in FN_search_filter_t(3XFN).

The call to \text{fn_attr_ext_search}() initiates the search process. It returns a handle to an FN_ext_searchlist_t object that is used to enumerate the names of the objects that satisfy the filter.

The operation \text{fn_ext_searchlist_next}() returns the next name in the enumeration identified by \(\text{esl} \); it also updates \(\text{esl} \) to indicate the state of the enumeration. If the reference to which the name is bound was requested, it is returned in \(\text{returned_ref} \). Requested attributes associated with the name are returned in \(\text{returned_attrs} \); each attribute consists of an attribute identifier, syntax, and value(s). Successive calls to \text{fn_ext_searchlist_next}() using \(\text{esl} \) return successive names and, optionally, their references and attributes, in the enumeration; these calls further update the state of the enumeration.

The names that are returned are composite names, to be resolved relative to the starting context for the search. This starting context is the context named \(\text{name} \) relative to \(\text{ctx} \) unless the scope of the search is only the named object. If the scope of the search is only the named object, the terminal atomic name in \(\text{name} \) is returned.

\text{fn_ext_searchlist_destroy}() releases resources used during the enumeration. This may be invoked at any time to terminate the enumeration.

RETURN VALUES

\text{fn_attr_ext_search}() returns a pointer to an FN_ext_searchlist_t object if the search is successfully initiated; it returns a NULL pointer if the search cannot be initiated or if no named object with attributes whose values satisfy the filter expression is found.

\text{fn_ext_searchlist_next}() returns a pointer to an FN_composite_name_t object (see FN_composite_name_t(3XFN)) that is the next name in the enumeration; it returns a NULL pointer if no more names can be returned. If \(\text{returned_attrs} \) is a NULL pointer, no attributes are returned; otherwise, \(\text{returned_attrs} \) contains the attributes associated with the named object, as specified in the control parameter to \text{fn_attr_ext_search}(). If \(\text{returned_ref} \) is a NULL pointer, no reference is returned; otherwise, if \(\text{control} \) specified the return of the reference of the named object, that reference is returned in \(\text{returned_ref} \).

In the case of a failure, these operations return in the \text{status} argument a code indicating the nature of the failure.

ERRORS

If successful, \text{fn_attr_ext_search}() returns a pointer to an FN_ext_searchlist_t object and sets \text{status} to FN_SUCCESS.

\text{fn_attr_ext_search}() returns a NULL pointer when no more names can be returned. \text{status} is set in the following way:
fn_attr_ext_search(3XFN)

<table>
<thead>
<tr>
<th>Status Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FN_SUCCESS</td>
<td>A named object could not be found whose attributes satisfied the filter expression.</td>
</tr>
<tr>
<td>FN_E_NOT_A_CONTEXT</td>
<td>The object named for the start of the search was not a context and the search scope was the given context or the given context and its subcontexts.</td>
</tr>
<tr>
<td>FN_E_SEARCH_INVALID_FILTER</td>
<td>The filter could not be evaluated TRUE or FALSE, or there was some other problem with the filter.</td>
</tr>
<tr>
<td>FN_E_SEARCH_INVALID_OPTION</td>
<td>A supplied search control option could not be supported.</td>
</tr>
<tr>
<td>FN_E_SEARCH_INVALID_OP</td>
<td>An operator in the filter expression is not supported or, if the operator is an extended operator, the number of types of arguments supplied does not match the signature of the operation.</td>
</tr>
<tr>
<td>FN_E_ATTR_NO_PERMISSION</td>
<td>The caller did not have permission to read one or more of the attributes specified in the filter.</td>
</tr>
<tr>
<td>FN_E_INVALID_ATTR_VALUE</td>
<td>A value type in the filter did not match the syntax of the attribute against which it was being evaluated.</td>
</tr>
</tbody>
</table>

Other status codes are possible as described in FN_status_t(3XFN) and xfn_status_codes(3XFN).

Each successful call to fn_ext_searchlist_next() returns a name and, optionally, its reference in returned_ref and requested attributes in returned_attrs. status is set in the following way:

<table>
<thead>
<tr>
<th>Status Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FN_SUCCESS</td>
<td>All requested attributes were returned successfully with the name.</td>
</tr>
<tr>
<td>FN_E_ATTR_NO_PERMISSION</td>
<td>The caller did not have permission to read one or more of the requested attributes.</td>
</tr>
<tr>
<td>FN_E_INVALID_ATTR_IDENTIFIER</td>
<td>A requested attribute identifier was not in a format acceptable to the naming system, or its contents were not valid for the format specified.</td>
</tr>
<tr>
<td>FN_E_NO_SUCH_ATTRIBUTE</td>
<td>The named object did not have one of the requested attributes.</td>
</tr>
<tr>
<td>FN_E_INSUFFICIENT_RESOURCES</td>
<td>Insufficient resources are available to return all the requested attributes and their values.</td>
</tr>
</tbody>
</table>
These indicate that some of the requested attributes may have been returned in `returned_attrs` but one or more of them could not be returned. Use `fn_attr_get(3XFN)` or `fn_attr_multi_get(3XFN)` to discover why these attributes could not be returned.

If `fn_ext_searchlist_next()` returns a name, it can be called again to get the next name in the enumeration. `fn_ext_searchlist_next()` returns a NULL pointer if no more names can be returned. `status` is set in the following way:

- **FN_SUCCESS** The search has completed successfully.
- **FN_E_PARTIAL_RESULT** The enumeration is not yet complete but cannot be continued.
- **FN_E_ATTR_NO_PERMISSION** The caller did not have permission to read one or more of the attributes specified in the filter.
- **FN_E_INVALID_ENUM_HANDLE** The supplied enumeration handle was not valid. Possible reasons could be that the handle was from another enumeration, or the context being enumerated no longer accepts the handle (due to such events as handle expiration or updates to the context).

Other status codes are possible as described in `FN_status_t(3XFN)` and `xfn_status_codes(3XFN)`.

USAGE

The search performed by `fn_attr_ext_search()` is not ordered in any way, including the traversal of subcontexts. The names enumerated using `fn_ext_searchlist_next()` are not ordered in any way. Furthermore, there is no guarantee that any two series of enumerations with the same arguments to `fn_attr_ext_search()` will return the names in the same order.

XFN links encountered during the resolution of `name` are followed, regardless of the follow links control setting, and the search starts at the final named object or context.

If `control` specifies that the search should follow links, XFN link names encountered during the search are followed and the terminal named object is searched. If the terminal named object is bound to a context and the scope of the search includes subcontexts, that context and its subcontexts are also searched. For example, if `aname`
is bound to an XFN link, \textit{lname}, in a context within the scope of the search, and \textit{aname}
is returned by \textit{fn_ext_searchlist_next()}, this means that the object identified
by \textit{lname} satisfied the filter expression. \textit{aname} is returned instead of \textit{lname} because
\textit{aname} can always be named relative to the starting context for the search.

If \textit{control} specifies that the search should not follow links, the attributes associated
with the names of XFN links are searched. For example, if \textit{aname} is bound to an XFN
link, \textit{lname}, in a context within the scope of the search, and \textit{aname} is returned by
\textit{fn_ext_searchlist_next()}, this means that the object identified by \textit{aname}
satisfied the filter expression.

When following XFN links, \textit{fn_attr_ext_search()} may search contexts outside of
\textit{scope}. In addition, if the link name's terminal atomic name is bound in a context within
\textit{scope}, the operation may return the same object more than once.

XFN does not specify how \textit{control} affects the following of native naming system links
during the search.

\textbf{EXAMPLE 1} A sample program of displaying how the \textit{fn_attr_ext_search()} operation
may be used.

The following code fragment illustrates how the \textit{fn_attr_ext_search()} operation
may be used. The code consists of three parts: preparing the arguments for the search,
performing the search, and cleaning up.

The first part involves getting the name of the context to start the search and
constructing the search filter that named objects in the context must satisfy. This is
done in the declarations part of the code and by the routine \textit{get_search_query}. See
\textit{FN_search_filter_t(3XFN)} for the description of \textit{sf_filter} and the filter creation
operation.

The next part involves doing the search and enumerating the results of the search.
This is done by first getting a context handle to the Initial Context, and then passing
that handle along with the name of the target context and search filter to
\textit{fn_attr_ext_search()}. This particular call to \textit{fn_attr_ext_search()} uses the
default search control options (by passing in 0 as the \textit{control} argument). This means
that the search will be performed in the context named by \textit{target_name} and that no
reference or attributes will be returned. In addition, any XFN links encountered will
not be followed and all named objects that satisfy the search filter will be returned
(that is, no limit). If successful, \textit{fn_attr_ext_search()} returns \textit{esl}, a handle for enumerating the results of the search. The results of the search are enumerated using
calls to \textit{fn_ext_searchlist_next()}, which returns the name of the object. (The
arguments \textit{returned_ref} and \textit{returned_attrs} to \textit{fn_ext_searchlist_next()} are 0
because the default search control used in \textit{fn_attr_ext_search()} did not request
them to be returned.)
EXAMPLE 1 A sample program of displaying how the fn_attr_ext_search() operation may be used. (Continued)

The last part of the code involves cleaning up the resources used during the search and enumeration. The call to fn_ext_searchlist_destroy() releases resources reserved for this enumeration. The other calls release the context handle, name, filter, and status objects created earlier.

```c
/* Declarations */
FN_ctx_t *ctx;
FN_ext_searchlist_t *esl;
FN_composite_name_t *name;
FN_status_t *status = fn_status_create();
FN_composite_name_t *target_name = get_name_from_user_input();
FN_search_filter_t *sfilter = get_search_query();
/* Get context handle to Initial Context */
ctx = fn_ctx_handle_from_initial(status);
/* error checking on 'status' */
/* Initiate search */
if ((esl=fn_attr_ext_search(ctx, target_name,
    /* default controls */ 0, sfilter, status)) == 0) {
    /* report 'status', cleanup, and exit */
}
/* Enumerate names requested */
while (name=fn_ext_searchlist_next(esl, 0, 0, status)) {
    /* do something with 'name' */
    fn_composite_destroy(name);
}
/* check 'status' for reason for end of enumeration */
/* Clean up */
fn_ext_searchlist_destroy(esl);
fn_search_filter_destroy(sfilter);
fn_ctx_handle_destroy(ctx);
fn_composite_name_destroy(target_name);
fn_status_destroy(status);
/* Procedure for constructing the filter object for search:
 *   * 'age' attribute is greater than or equal to 17 AND
 *     less than or equal to 25
 *     AND the 'student' attribute is present.
 */
FN_search_filter_t *
get_search_query()
{
    extern FN_attribute_t *attr_age;
    extern FN_attribute_t *attr_student;
    FN_search_filter_t *sfilter;
    unsigned int filter_status;
    sfilter = fn_search_filter_create(
        &filter_status,
        "((%a >= 17) and (%a <= 25) and %a",
        attr_age, attr_age, attr_student);
    /* error checking on 'filter_status' */
    return (sfilter);
}
```
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

FN_attrset_t(3XFN), FN_composite_name_t(3XFN), FN_ctx_t(3XFN), FN_ref_t(3XFN), FN_search_control_t(3XFN), FN_search_filter_t(3XFN), FN_status_t(3XFN), fn_attr_get(3XFN), fn_attr_multi_get(3XFN), xfn_status_codes(3XFN), attributes(5)
fn_attr_get(3XFN)

NAME
fn_attr_get – return specified attribute associated with name

SYNOPSIS
cc [flag ...] file ... -lxfn [library ...]
#include <xfn/xfn.h>
FN_attribute_t *fn_attr_get(FN_ctx_t *ctx, const
 FN_composite_name_t *name, const FN_identifier_t *attribute_id,
 unsigned int follow_link, FN_status_t *status);

DESCRIPTION
This operation returns the identifier, syntax and values of a specified attribute for the
object named name relative to ctx. If name is empty, the attribute associated with ctx is
returned.

The value of follow_link determines what happens when the terminal atomic part of
name is bound to an XFN link. If follow_link is non-zero, such a link is followed, and
the values of the attribute associated with the final named object are returned; if
follow_link is zero, such a link is not followed. Any XFN links encountered before the
terminal atomic name are always followed.

RETURN VALUES
fn_attr_get returns a pointer to an FN_attribute_t object if the operation
succeeds; it returns a NULL pointer (0) if the operation fails.

ERRORS
fn_attr_get() sets status as described in FN_status_t(3XFN) and
xfn_status_codes(3XFN).

USAGE
fn_attr_get_values() and its related operations are used for getting individual
values of an attribute. They should be used if the combined size of all the values are
expected to be too large to be returned in a single invocation of fn_attr_get().

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
FN_attribute_t(3XFN), FN_composite_name_t(3XFN), FN_ctx_t(3XFN),
FN_identifier_t(3XFN), FN_status_t(3XFN), fn_attr_get_values(3XFN),
xfn(3XFN), xfn_attributes(3XFN), xfn_status_codes(3XFN), attributes(5)

NOTES
The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.
This operation returns a list of the attribute identifiers of all attributes associated with the object named by name relative to the context ctx. If name is empty, the attribute identifiers associated with ctx are returned.

The value of follow_link determines what happens when the terminal atomic part of name is bound to an XFN link. If follow_link is non-zero, such a link is followed, and the values of the attribute associated with the final named object are returned; if follow_link is zero, such a link is not followed. Any XFN links encountered before the terminal atomic name are always followed.

This operation returns a pointer to an object of type FN_attrset_t; if the operation fails, a NULL pointer (0) is returned.

This operation sets status as described in FN_status_t(3XFN) and xfn_status_codes(3XFN).

The attributes in the returned set do not contain the syntax or values of the attributes, only their identifiers.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
This set of operations is used to obtain the values of a single attribute, identified by `attribute_id`, associated with the object named `name`, resolved in the context `ctx`. If `name` is empty, the attribute values associated with `ctx` are obtained.

The value of `follow_link` determines what happens when the terminal atomic part of `name` is bound to an XFN link. If `follow_link` is non-zero, such a link is followed, and the values of the attribute associated with the final named object are returned; if `follow_link` is zero, such a link is not followed. Any XFN links encountered before the terminal atomic name are always followed.

The operation `fn_attr_get_values()` initiates the enumeration process. It returns a handle to an `FN_valuelist_t` object that can be used to enumerate the values of the specified attribute.

The operation `fn_valuelist_next()` returns a new `FN_attrvalue_t` object containing the next value in the attribute and may be called multiple times until all values are retrieved. The syntax of the attribute is returned in `attr_syntax`.

The operation `fn_valuelist_destroy()` is used to release the resources used during the enumeration. This may be invoked before the enumeration has completed to terminate the enumeration.

These operations work in a fashion similar to the `fn_ctx_list_names()` operations.

RETURN VALUES
- `fn_attr_get_values()` returns a pointer to an `FN_valuelist_t` object if the enumeration process is successfully initiated; it returns a NULL pointer if the process failed.
- `fn_valuelist_next()` returns a NULL pointer if no more attribute values can be returned.

In the case of a failure, these operations set `status` to indicate the nature of the failure.

ERRORS
- Each successful call to `fn_valuelist_next()` returns an attribute value. `status` is set to `FN_SUCCESS`.

Networking Library Functions 71
When `fn_valuelist_next()` returns a NULL pointer, it indicates that no more values can be returned. `status` is set in the following way:

- **FN_SUCCESS**
 - The enumeration has completed successfully.

- **FN_E_INVALID_ENUM_HANDLE**
 - The given enumeration handle is not valid. Possible reasons could be that the handle was from another enumeration, or the context being enumerated no longer accepts the handle (due to such events as handle expiration or updates to the context).

- **FN_E_PARTIAL_RESULT**
 - The enumeration is not yet complete but cannot be continued.

In addition to these status codes, other status codes are also possible in calls to these operations. In such cases, `status` is set as described in `FN_status_t(3XFN)` and `xfn_status_codes(3XFN)`.

USAGE

This interface should be used instead of `fn_attr_get()` if the combined size of all the values is expected to be too large to be returned by `fn_attr_get()`.

There may be a relationship between the `ctx` argument supplied to `fn_attr_get_values()` and the `FN_valuelist_t` object it returns. For example, some implementations may store the context handle `ctx` within the `FN_valuelist_t` object for subsequent `fn_valuelist_next()` calls. In general, an `fn_ctx_handle_destroy(3XFN)` should not be invoked on `ctx` until the enumeration has terminated.

ATTRIBUTES

See attributes (5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>MT-Level</code></td>
<td><code>MT-Safe</code></td>
</tr>
</tbody>
</table>

SEE ALSO

`FN_attribute_t(3XFN), FN_attrvalue_t(3XFN), FN_composite_name_t(3XFN), FN_ctx_t(3XFN), FN_identifier_t(3XFN), FN_status_t(3XFN), fn_attr_get(3XFN), fn_ctx_handle_destroy(3XFN), fn_ctx_list_names(3XFN), xfn(3XFN), xfn_attributes(3XFN), xfn_status_codes(3XFN), attributes(5)`

NOTES

The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
NAME | FN_attribute_t, fn_attribute_create, fn_attribute_destroy, fn_attribute_copy,
| fn_attribute_assign, fn_attribute_identifier, fn_attribute_syntax,
| fn_attribute_valuecount, fn_attribute_first, fn_attribute_next, fn_attribute_add,
| fn_attribute_remove – an XFN attribute

SYNOPSIS | cc [flag ...] file ... -lxfn [library ...]
| #include <xfn/xfn.h>
| FN_attribute_t *fn_attribute_create(constFN_identifier_t
| *attribute_id, const FN_identifier_t *attribute_syntax);
| void fn_attribute_destroy(FN_attribute_t *attr);
| FN_attribute_t *fn_attribute_copy(constFN_attribute_t *attr);
| FN_attribute_t *fn_attribute_assign(FN_attribute_t *dst, const
| FN_attribute_t *src);
| const FN_identifier_t
| *fn_attribute_identifier(constFN_attribute_t *attr);
| const FN_identifier_t *fn_attribute_syntax(constFN_attribute_t
| *attr);
| unsigned int fn_attribute_valuecount(constFN_attribute_t *attr);
| const FN_attrvalue_t *fn_attribute_first(constFN_attribute_t
| *attr, void **iter_pos);
| const FN_attrvalue_t *fn_attribute_next(constFN_attribute_t
| *attr, void **iter_pos);
| int fn_attribute_add(FN_attribute_t *attr, const FN_attrvalue_t
| *attribute_value, unsigned int exclusive);
| int fn_attribute_remove(FN_attribute_t *attr, const FN_attrvalue_t
| *attribute_value);

DESCRIPTION | An attribute has an attribute identifier, a syntax, and a set of distinct values. Each
| value is a sequence of octets. The operations associated with objects of type
| FN_attribute_t allow the construction, destruction, and manipulation of an
| attribute and its value set.

The attribute identifier and its syntax are specified using an FN_identifier_t.
fn_attribute_create() creates a new attribute object with the given identifier
and syntax, and an empty set of values. fn_attribute_destroy() releases the
storage associated with attr. fn_attribute_copy() returns a copy of the object
pointed to by attr. fn_attribute_assign() makes a copy of the attribute object
pointed to by src and assigns it to dst, releasing any old contents of dst. A pointer to the
same object as dst is returned.

fn_attribute_identifier() returns the attribute identifier of attr.
fn_attribute_syntax() returns the attribute syntax of attr.
fn_attribute_valuecount() returns the number of attribute values in attr.
FN_attribute_t(3XFN)

fn_attribute_first() and fn_attribute_next() are used to enumerate the values of an attribute. Enumeration of the values of an attribute may return the values in any order. fn_attribute_first() returns an attribute value from attr and sets the iteration marker iter_pos. Subsequent calls to fn_attribute_next() returns the next attribute value identified by iter_pos and advances iter_pos. Adding or removing values from an attribute invalidates any iteration markers that the caller holds.

fn_attribute_add() adds a new value attribute_value to attr. The operation succeeds (but no change is made) if attribute_value is already in attr and exclusive is 0; the operation fails if attribute_value is already in attr and exclusive is non-zero.

fn_attribute_remove() removes attribute_value from attr. The operation succeeds even if attribute_value is not amongst attr's values.

RETURN VALUES
fn_attribute_first() returns 0 if the attribute contains no values.
fn_attribute_next() returns 0 if there are no more values to be returned in the attribute (as identified by the iteration marker) or if the iteration marker is invalid.

fn_attribute_add() and fn_attribute_remove() return 1 if the operation succeeds, 0 if it fails.

USAGE Manipulation of attributes using the operations described in this manual page does not affect their representation in the underlying naming system. Changes to attributes in the underlying naming system can only be effected through the use of the interfaces described in xfn_attributes(3XFN).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO FN_attrset_t(3XFN), FN_attrvalue_t(3XFN), FN_identifier_t(3XFN), fn_attr_get(3XFN), fn_attr_modify(3XFN), xfn(3XFN), xfn_attributes(3XFN), attributes(5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
fn_attr_modify(3XFN)

NAME
fn_attr_modify – modify specified attribute associated with name

SYNOPSIS
ce [flag ...] file ... -lxfn [library ...]
#include <xfn/xfn.h>

int fn_attr_modify(FN_ctx_t *ctx, const FN_composite_name_t *name,
unsigned int mod_op, const FN_attribute_t *attr, unsigned int
follow_link, FN_status_t *status);

DESCRIPTION
This operation modifies according to mod_op the attribute attr associated with the
object named name relative to ctx. If name is empty, the attribute associated with ctx is
modified.

The value of follow_link determines what happens when the terminal atomic part of
name is bound to an XFN link. If follow_link is non-zero, such a link is followed, and
the values of the attribute associated with the final named object are returned; if
follow_link is zero, such a link is not followed. Any XFN links encountered before the
terminal atomic name are always followed.

The modification is made on the attribute identified by the attribute identifier of attr.
The syntax and values of attr are used according to the modification operation.

The modification operations are as follows:

| FN_ATTR_OP_ADD | Add an attribute with given attribute identifier and set of values. If an attribute
| | with this identifier already exists, replace the set of values with those in the given set.
The set of values may be empty if the target naming system permits.

| FN_ATTR_OP_ADD_EXCLUSIVE | Add an attribute with the given attribute identifier and set of values. The operation
| | fails if an attribute with this identifier already exists. The set of values may be
| | empty if the target naming system permits.

| FN_ATTR_OP_REMOVE | Remove the attribute with the given attribute identifier and all of its values. The operation
| | succeeds even if the attribute does not exist. The values of the attribute supplied with this operation are ignored.

| FN_ATTR_OP_ADD_VALUES | Add the given values to those of the given attribute (resulting in the attribute having
| | the union of its prior value set with the set given). Create the attribute if it does not
| | exist already. The set of values may be empty if the target naming system permits.

| FN_ATTR_OP_REMOVE_VALUES | Remove the given values from those of the given attribute (resulting in the attribute
having the set difference of its prior value set and the set given). This succeeds even if some of the given values are not in the set of values that the attribute has. In naming systems that require an attribute to have at least one value, removing the last value will remove the attribute as well.

RETURN VALUES

1 Successful operation.
0 Operation failed.

ERRORS

fn_attr_modify() sets status as described in FN_status_t(3XFN) and xfn_status_codes(3XFN).

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

FN_attribute_t(3XFN), FN_composite_name_t(3XFN), FN_ctx_t(3XFN), FN_status_t(3XFN), fn_attr_multi_modify(3XFN), xfn(3XFN), xfn_attributes(3XFN), xfn_status_codes(3XFN), attributes(5)

NOTES

The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
FN_attrmodlist_t(3XFN)

NAME
FN_attrmodlist_t, fn_attrmodlist_create, fn_attrmodlist_destroy, fn_attrmodlist_copy,
fn_attrmodlist_assign, fn_attrmodlist_count, fn_attrmodlist_first, fn_attrmodlist_next,
fn_attrmodlist_add – a list of attribute modifications

SYNOPSIS
cc [flag ...] file ... -lxfn [library ...]
#include <xfn/xfn.h>

FN_attrmodlist_t *fn_attrmodlist_create(void);
void fn_attrmodlist_destroy(FN_attrmodlist_t *modlist);
FN_attrmodlist_t *fn_attrmodlist_copy(const FN_attrmodlist_t *modlist);
FN_attrmodlist_t *fn_attrmodlist_assign(FN_attrmodlist_t *dst,
const FN_attrmodlist_t *src);
unsigned int fn_attrmodlist_count(const FN_attrmodlist_t *modlist);
const FN_attribute_t *fn_attrmodlist_first(const
FN_attrmodlist_t *modlist, void ***iter_pos, unsigned int
*first_mod_op);
const FN_attribute_t *fn_attrmodlist_next(const FN_attrmodlist_t
*modlist, void ***iter_pos, unsigned int *mod_op);
int fn_attrmodlist_add(FN_attrmodlist_t *modlist, unsigned int
mod_op, const FN_attribute_t *attr);

DESCRIPTION
An attribute modification list allows for multiple modification operations to be made
on the attributes associated with a single named object. It is used in the
fn_attr_multi_modify(3XFN) operation.

An attribute modification list is a list of attribute modification specifiers. An attribute
modification specifier consists of an attribute object and an operation specifier. The
attribute’s identifier indicates the attribute that is to be operated upon. The attribute’s
values are used in a manner depending on the operation. The operation specifier is an
unsigned int that must have one of the values:

FN_ATTR_OP_ADD
FN_ATTR_OP_ADD_EXCLUSIVE
FN_ATTR_OP_REMOVE
FN_ATTR_OP_ADD_VALUES

or

FN_ATTR_OP_REMOVE_VALUES

(See fn_attr_modify(3XFN) for detailed descriptions of these specifiers.) The
operations are to be performed in the order in which they appear in the modification
list.

Networking Library Functions 77
FN_attrmodlist_t(3XFN)

fn_attrmodlist_create() creates an empty attribute modification list.
fn_attrmodlist_destroy() releases the storage associated with modlist.
fn_attrmodlist_copy() returns a copy of the attribute modification list modlist.
fn_attrmodlist_assign() makes a copy of src and assigns it to dst, releasing any
old contents of dst. It returns a pointer to the same object as dst.

fn_attrmodlist_count() returns the number attribute modification items in the
attribute modification list.

The iterators fn_attrmodlist_first() and fn_attrmodlist_next() return a
handle to the attribute part of the modification and return the operation specifier part
through an unsigned int * parameter. fn_attrmodlist_first() returns the
attribute of the first modification item from modlist and sets mod_op to be the code of
the modification operation of that item; iter_pos is set after the first modification item.

fn_attrmodlist_next() returns the attribute of the next modification item from
modlist after iter_pos and advances iter_pos; mod_op is set to the code of the
modification operation of that item. The order of the items returned during an
enumeration is the same as the order by which the items were added to the
modification list.

fn_attrmodlist_add() adds a new item consisting of the given modification
operation code mod_op and attribute attr to the end of the modification list modlist.
attr’s identifier indicates the attribute that is to be operated upon. attr’s values are used
in a manner depending on the operation.

RETURN VALUES
fn_attrmodlist_first() returns 0 if the modification list is empty.
fn_attrmodlist_next() returns 0 if there are no more items on the modification
list to be enumerated or if the iteration marker is invalid.

fn_attrmodlist_add() returns 1 if the operation succeeds, 0 if the operation fails.

USAGE
Manipulation of attributes using the operations described in this manual page does
not affect their representation in the underlying naming system. Changes to attributes
in the underlying naming system can only be effected through the use of the interfaces
described in xfn_attributes(3XFN).

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
FN_attribute_t(3XFN), FN_attrset_t(3XFN), FN_identifier_t(3XFN),
fn_attr_modify(3XFN), fn_attr_multi_modify(3XFN), xfn(3XFN),
xfn_attributes(3XFN), attributes(5)
The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
fn_attr_multi_get(3XFN)

NAME
fn_attr_multi_get, FN_multigetlist_t, fn_multigetlist_next, fn_multigetlist_destroy — return multiple attributes associated with named object

SYNOPSIS
cc [flag ...] file ... -lxfn [library ...]
#include <xfn/xfn.h>

FN_multigetlist_t *fn_attr_multi_get(FN_ctx_t *ctx, const FN_composite_name_t *name, const FN_attrset_t *attr_ids, unsigned int follow_link, FN_status_t *status);

FN_attribute_t *fn_multigetlist_next(FN_multigetlist_t *ml, FN_status_t *status);

void fn_multigetlist_destroy(FN_multigetlist_t *ml, FN_status_t *status);

DESCRIPTION
This set of operations returns one or more attributes associated with the object named by name relative to the context ctx. If name is empty, the attributes associated with ctx are returned.

The value of follow_link determines what happens when the terminal atomic part of name is bound to an XFN link. If follow_link is non-zero, such a link is followed, and the values of the attribute associated with the final named object are returned; if follow_link is zero, such a link is not followed. Any XFN links encountered before the terminal atomic name are always followed.

The attributes returned are those specified in attr_ids. If the value of attr_ids is 0, all attributes associated with the named object are returned. Any attribute values in attr_ids provided by the caller are ignored; only the attribute identifiers are relevant for this operation. Each attribute (identifier, syntax, values) is returned one at a time using an enumeration scheme similar to that for listing a context.

fn_attr_multi_get() initiates the enumeration process. It returns a handle to an FN_multigetlist_t object that can be used for the enumeration.

The operation fn_multigetlist_next() returns a new FN_attribute_t object containing the next attribute (identifiers, syntaxes, and values) requested and updates ml to indicate the state of the enumeration.

The operation fn_multigetlist_destroy() releases the resources used during the enumeration. It may be invoked before the enumeration has completed to terminate the enumeration.

RETURN VALUES
fn_attr_multi_get() returns a pointer to an FN_multigetlist_t object if the enumeration has been initiated successfully; a NULL pointer (0) is returned if it failed.

fn_multigetlist_next() returns a pointer to an FN_attribute_t object if an attribute was returned, a NULL pointer (0) if no attribute was returned.

In the case of a failure, these operations set status to indicate the nature of the failure.

ERRORS
Each call to fn_multigetlist_next() sets status as follows:
If an attribute was returned, there are more attributes to be enumerated. If no attribute was returned, the enumeration has completed successfully.

The caller did not have permission to read this attribute.

Insufficient resources are available to return the attribute’s values.

This attribute identifier was not in a format acceptable to the naming system, or its contents was not valid for the format specified for the identifier.

(No attribute should be returned with this status code). The given enumeration handle is not valid. Possible reasons could be that the handle was from another enumeration, or the object being processed no longer accepts the handle (due to such events as handle expiration or updates to the object’s attribute set).

The object did not have an attribute with the given identifier.

(No attribute should be returned with this status code). The enumeration is not yet complete but cannot be continued.

For FN_E_ATTR_NO_PERMISSION, FN_E_INVALID_ATTR_IDENTIFIER, FN_E_INSUFFICIENT_RESOURCES, or FN_E_NO_SUCH_ATTRIBUTE, the returned attribute contains only the attribute identifier (no value or syntax). For these four status codes and FN_SUCCESS (when an attribute was returned), fn_multigetlist_next() can be called again to return another attribute. All other status codes indicate that no more attributes can be returned by fn_multigetlist_next().

Other status codes, such as FN_E_COMMUNICATION_FAILURE, are also possible, in which case, no attribute is returned. In such cases, status is set as described in FN_status_t(3XFN) and xfn_status_codes(3XFN).

Implementations are not required to return all attributes requested by attr_ids. Some may choose to return only the attributes found successfully, followed by a status of FN_E_PARTIAL_RESULT; such implementations may not necessarily return attributes identifying those that could not be read. Implementations are not required to return the attributes in any order.

fn_attr_multi_get(3XFN)

Networking Library Functions 81
fn_attr_multi_get(3XFN)

There may be a relationship between the ctx argument supplied to fn_attr_multi_get() and the FN_multigetlist_t object it returns. For example, some implementations may store the context handle ctx within the FN_multigetlist_t object for subsequent fn_multigetlist_next() calls. In general, a fn_ctx_handle_destroy() should not be invoked on ctx until the enumeration has terminated.

EXAMPLES

EXAMPLE 1 A sample program displaying how to use fn_attr_multi_get() function.

The following code fragment illustrates to obtain all attributes associated with a given name using the fn_attr_multi_get() operations.

```c
/* list all attributes associated with given name */
extern FN_string_t *input_string;
FN_ctx_t *ctx;
FN_composite_name_t *target_name = fn_composite_name_from_string(input_string);
FN_multigetlist_t *ml;
FN_status_t *status = fn_status_create();
FN_attribute_t *attr;
int done = 0;
ctx = fn_ctx_handle_from_initial(status);
/* error checking on 'status' */
/* attr_ids == 0 indicates all attributes are to be returned */
if ((ml=fn_attr_multi_get(ctx, target_name, 0, status)) == 0) {
  /* report 'status' and exit */
}
while ((attr=fn_multigetlist_next(ml, status)) && !done) {
  switch (fn_status_code(status)) {
    case FN_SUCCESS:
      /* do something with 'attr' */
      break;
    case FN_E_ATTR_NO_PERMISSION:
    case FN_E_ATTR_INVALID_ATTR_IDENTIFIER:
    case FN_E_NO_SUCH_ATTRIBUTE:
      /* report error using identifier in 'attr' */
      break;
    default:
      /* other error handling */
      done = 1;
  }
  if (attr)
    fn_attribute_destroy(attr);
}
/* check 'status' for reason for end of enumeration and report if necessary */
/* clean up */
fn_multigetlist_destroy(ml, status);
/* report 'status' */
```

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:
SEE ALSO

fn_attr_multi_get(3XFN), FN_attribute_t(3XFN), FN_attrset_t(3XFN), FN_composite_name_t(3XFN), FN_ctx_t(3XFN), FN_identifier_t(3XFN), FN_status_t(3XFN), fn_attr_get(3XFN), fn_ctx_handle_destroy(3XFN), fn_ctx_list_names(3XFN), xfn(3XFN), xfn_attributes(3XFN), xfn_status_codes(3XFN), attributes(5)

NOTES

The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
fn_attr_multi_modify(3XFN)

NAME fn_attr_multi_modify – modify multiple attributes associated with named object

SYNOPSIS

e [flag ...] file ... -lxfn [library ...]

#include <xfn/xfn.h>

int fn_attr_multi_modify (FN_ctx_t *ctx, const FN_composite_name_t *name, const FN_attrmodlist_t *mods, unsigned int follow_link, FN_attrmodlist_t **unexecuted_mods, FN_status_t *status);

DESCRIPTION

This operation modifies the attributes associated with the object named name relative to ctx. If name is empty, the attributes associated with ctx are modified. The value of follow_link determines what happens when the terminal atomic part of name is bound to an XFN link. If follow_link is non-zero, such a link is followed, and the values of the attribute associated with the final named object are returned; if follow_link is zero, such a link is not followed. Any XFN links encountered before the terminal

In the mods parameter, the caller specifies a sequence of modifications that are to be done in order on the attributes. Each modification in the sequence specifies a modification operation code (see fn_attr_modify(3XFN)) and an attribute on which to operate.

The FN_attrmodlist_t type is described in FN_attrmodlist_t(3XFN).

RETURN VALUES

fn_attr_multi_modify() returns 1 if all the modification operations were performed successfully. The function returns 0 if it any error occurs. If the operation fails, status and unexecuted_mods are set as described below.

ERRORS

If an error is encountered while performing the list of modifications, status indicates the type of error and unexecuted_mods is set to a list of unexecuted modifications. The contents of unexecuted_mods do not share any state with mods; items in unexecuted_mods are copies of items in mods and appear in the same order in which they were originally supplied in mods. The first operation in unexecuted_mods is the first one that failed and the code in status applies to this modification operation in particular. If status indicates failure and a NULL pointer (0) is returned in unexecuted_mods, that indicates no modifications were executed.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

FN_attrmodlist_t(3XFN), FN_composite_name_t(3XFN), FN_ctx_t(3XFN), FN_status_t(3XFN), fn_attr_modify(3XFN), xfn(3XFN), xfn_attributes(3XFN), xfn_status_codes(3XFN), attributes(5)
The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
fn_attr_search(3XFN)

NAME fn_attr_search, FN_searchlist_t, fn_searchlist_next, fn_searchlist_destroy – search for the atomic name of objects with the specified attributes in a single context

SYNOPSIS #include <xfn/xfn.h>

 FN_searchlist_t *fn_attr_search(FN_ctx_t *ctx, const
 FN_composite_name_t *name, const FN_attrset_t *match_attrs,
 unsigned int return_ref, const FN_attrset_t *return_attr_ids,
 FN_status_t *status);

 FN_string_t *fn_searchlist_next(FN_searchlist_t *sl, FN_ref_t **returned_ref,
 FN_attrset_t **returned_attrs, FN_status_t *status);

 void fn_searchlist_destroy(FN_searchlist_t *sl);

DESCRIPTION This set of operations is used to enumerate names of objects bound in the target context named name relative to the context ctx with attributes whose values match all those specified by match_attrs.

The attributes specified by match_attrs form a conjunctive AND expression against which the attributes of each named object in the target context are evaluated. For multi-valued attributes, the list order of values is ignored and attribute values not specified in match_attrs are ignored. If no value is specified for an attribute in match_attrs, the presence of the attribute is tested. If the value of match_attrs is 0, all names in the target context are enumerated.

If a non-zero value of return_ref is passed to fn_attr_search(), the reference bound to the name is returned in the returned_ref argument to fn_searchlist_next().

Attribute identifiers and values associated with named objects that satisfy match_attrs may be returned by fn_searchlist_next(). The attributes returned are those listed in the return_attr_ids argument to fn_attr_search(). If the value of return_attr_ids is 0, all attributes are returned. If return_attr_ids is an empty FN_attrset_t(3XFN) object, no attributes are returned. Any attribute values in return_attr_ids are ignored; only the attribute identifiers are relevant for return_attr_ids.

The call to fn_attr_search() initiates the enumeration process. It returns a handle to an FN_searchlist_t object that is used to enumerate the names of the objects whose attributes match the attributes specified by match_attrs.

The operation fn_searchlist_next() returns the next name in the enumeration identified by the sl. The reference of the name is returned in returned_ref if return_ref was set in the call to fn_attr_search(). The attributes specified by return_attr_ids are returned in returned_attrs. Fn_searchlist_next() also updates sl to indicate the state of the enumeration. Successive calls to fn_searchlist_next() using sl return successive names, and optionally, references and attributes, in the enumeration; these calls further update the state of the enumeration.

Fn_searchlist_destroy() releases resources used during the enumeration. This can be invoked at any time to terminate the enumeration.
fn_attr_search() does not follow XFN links that are bound in the target context.

RETURN VALUES

fn_attr_search() returns a pointer to an FN_searchlist_t object if the enumeration is successfully initiated; it returns a NULL pointer if the enumeration cannot be initiated or if no named object with attributes whose values match those specified in match_attrs is found.

fn_searchlist_next() returns a pointer to an FN_string_t object; it returns a NULL pointer if no more names can be returned in the enumeration. If returned_ref is a NULL pointer, or if the return_ref parameter to fn_attr_search was 0, no reference is returned; otherwise, returned_ref contains the reference bound to the name. If returned_attr is a NULL pointer, no attributes are returned; otherwise, returned_attr contains the attributes associated with the named object, as specified by the return_attr_ids parameter to fn_attr_search().

In the case of a failure, these operations return in the status argument a code indicating the nature of the failure.

ERRORS

fn_attr_search() returns a NULL pointer if the enumeration could not be initiated. The status argument is set in the following way:

- **FN_SUCCESS**
 A named object could not be found whose attributes satisfied the implied filter of equality and conjunction.

- **FN_E_ATTR_NO_PERMISSION**
 The caller did not have permission to read one or more of the specified attributes.

- **FN_E_INVALID_ATTR_VALUE**
 A value type in the specified attributes did not match the syntax of the attribute against which it was being evaluated.

Other status codes are possible as described in FN_status_t(3XFN) and xfn_status_codes(3XFN).

Each successful call to fn_searchlist_next() returns a name and, optionally, the reference and requested attributes. status is set in the following way:

- **FN_SUCCESS**
 All requested attributes were returned successfully with the name.

- **FN_E_ATTR_NO_PERMISSION**
 The caller did not have permission to read one or more of the requested attributes.

- **FN_E_INVALID_ATTR_IDENTIFIER**
 A requested attribute identifier was not in a format acceptable to the naming system, or its contents was not valid for the format specified.

- **FN_E_NO_SUCH_ATTRIBUTE**
 The named object did not have one of the requested attributes.
fn_attr_search(3XFN)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FN_E_INSUFFICIENT_RESOURCES</td>
<td>Insufficient resources are available to return all the requested attributes and their values.</td>
</tr>
<tr>
<td>FN_E_ATTR_NO_PERMISSION</td>
<td>These indicate that some of the requested attributes may have been returned in returned_attrs but one or more of them could not be returned. Use fn_attr_get(3XFN) or fn_attr_multi_get(3XFN) to discover why these attributes could not be returned.</td>
</tr>
<tr>
<td>FN_E_INVALID_ATTR_IDENTIFIER</td>
<td></td>
</tr>
<tr>
<td>FN_E_NO_SUCH_ATTRIBUTE</td>
<td></td>
</tr>
<tr>
<td>FN_E_INSUFFICIENT_RESOURCES</td>
<td></td>
</tr>
</tbody>
</table>

fn_searchlist_next() returns a NULL pointer if no more names can be returned.

The status argument is set in the following way:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FN_SUCCESS</td>
<td>The search has completed successfully.</td>
</tr>
<tr>
<td>FN_E_PARTIAL_RESULT</td>
<td>The enumeration is not yet complete but cannot be continued.</td>
</tr>
<tr>
<td>FN_E_ATTR_NO_PERMISSION</td>
<td>The caller did not have permission to read one or more of the specified attributes.</td>
</tr>
<tr>
<td>FN_E_INVALID_ENUM_HANDLE</td>
<td>The supplied enumeration handle was not valid. Possible reasons could be that the handle was from another enumeration, or the context being enumerated no longer accepts the handle (due to such events as handle expiration or updates to the context).</td>
</tr>
</tbody>
</table>

Other status codes are possible as described in FN_status_t(3XFN) and xfn_status_codes(3XFN).

USAGE
The names enumerated using fn_searchlist_next() are not ordered in any way. Furthermore, there is no guarantee that any two series of enumerations on the same context with identical match_attrs will return the names in the same order.

EXAMPLES

EXAMPLE 1 A sample program of displaying how to use fn_attr_search() function.

The following code fragment illustrates how the fn_attr_search() operation may be used. The code consists of three parts: preparing the arguments for the search, performing the search, and cleaning up.

The first part involves getting the name of the context to start the search and constructing the set of attributes that named objects in the context must satisfy. This is done in the declarations part of the code and by the routine get_search_query.
EX M P L E 1 A sample program of displaying how to use fn_attr_search() function.

(Continued)

The next part involves doing the search and enumerating the results of the search.
This is done by first getting a context handle to the Initial Context, and then passing
that handle along with the name of the target context and matching attributes to
fn_attr_search(). This particular call to fn_attr_search() is requesting that
no reference be returned (by passing in 0 for return_ref), and that all attributes
associated with the named object be returned (by passing in 0 as the return_attr_ids
argument). If successful, fn_attr_search() returns sl, a handle for enumerating the
results of the search. The results of the search are enumerated using calls to
fn_searchlist_next(), which returns the name of the object and the attributes
associated with the named object in returned_attrs.

The last part of the code involves cleaning up the resources used during the search
and enumeration. The call to fn_searchlist_destroy() releases resources
reserved for this enumeration. The other calls release the context handle, name,
attribute set, and status objects created earlier.

/* Declarations */
FN_ctx_t *ctx;
FN_searchlist_t *sl;
FN_string_t *name;
FN_attrset_t *returned_attrs;
FN_status_t *status = fn_status_create();
FN_composite_name_t *target_name = get_name_from_user_input();
FN_attrset_t *match_attrs = get_search_query();
/* Get context handle to Initial Context */
ctx = fn_ctx_handle_from_initial(status);
/* error checking on 'status' */
/* Initiate search */
if ((sl=fn_attr_search(ctx, target_name, match_attrs,
 /* no reference */ 0, /* return all attrs */ 0, status)) == 0) {
 /* report 'status', cleanup, and exit */
}
/* Enumerate names and attributes requested */
while (name=fn_searchlist_next(sl, 0, &returned_attrs, status)) {
 /* do something with 'name' and 'returned_attrs'*/
 fn_string_destroy(name);
 fn_attrset_destroy(returned_attrs);
}
/* check 'status' for reason for end of enumeration */
/* Clean up */
fn_searchlist_destroy(sl); /* Free resources of 'sl' */
fn_status_destroy(status);
fn_attrset_destroy(match_attrs);
fn_ctx_handle_destroy(ctx);
fn_composite_name_destroy(target_name);
/*
 * Procedure for constructing attribute set containing
 * attributes to be matched:
 * "zip_code" attribute value is "02158"
 * AND "employed" attribute is present.
 */
EXAMPLE 1 A sample program of displaying how to use `fn_attr_search()` function.

(Continued)

```c
FN_attrset_t * get_search_query()
{
    /* Zip code and employed attribute identifier, syntax */
    extern FN_attribute_t *attr_zip_code;
    extern FN_attribute_t *attr_employed;
    FN_attribute_t *zip_code = fn_attribute_copy(attr_zip_code);
    FN_attr_value_t zc_value = {5, "02158"};
    FN_attrset_t *match_attrs = fn_attrset_create();
    fn_attribute_add(zip_code, &zc_value, 0);
    fn_attrset_add(match_attrs, zip_code, 0);
    fn_attrset_add(match_attrs, attr_employed, 0);
    return (match_attrs);
}
```

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

FN_attribute_t(3XFN), FN_attrset_t(3XFN), FN_attrvalue_t(3XFN),
FN_composite_name_t(3XFN), FN_ctx_t(3XFN), FN_status_t(3XFN),
FN_string_t(3XFN), fn_attr_ext_search(3XFN), fn_attr_get(3XFN),
fn_attr_multi_get(3XFN), fn_ctx_list_names(3XFN),
xfn_status_codes(3XFN), attributes(5)
NAME

FN_attrset_t, fn_attrset_create, fn_attrset_destroy, fn_attrset_copy, fn_attrset_assign,
fn_attrset_get, fn_attrset_count, fn_attrset_first, fn_attrset_next, fn_attrset_add,
fn_attrset_remove – a set of XFN attributes

SYNOPSIS

```c
cc [ flag ... ] file ... -lxfn [ library ... ]

#include <xfn/xfn.h>

FN_attrset_t *fn_attrset_create(void);

void fn_attrset_destroy(FN_attrset_t *aset);

FN_attrset_t *fn_attrset_copy(const FN_attrset_t *aset);

FN_attrset_t *fn_attrset_assign(FN_attrset_t *dst, const FN_attrset_t *src);

const FN_attribute_t *fn_attrset_get(const FN_attrset_t *aset, const FN_identifier_t *attr_id);

unsigned int fn_attrset_count(const FN_attrset_t *aset);

const FN_attribute_t *fn_attrset_first(const FN_attrset_t *aset, void **iter_pos);

const FN_attribute_t *fn_attrset_next(const FN_attrset_t *aset, void **iter_pos);

int fn_attrset_add(FN_attrset_t *aset, const FN_attribute_t *attr, unsigned int exclusive);

int fn_attrset_remove(FN_attrset_t *aset, const FN_identifier_t *attr_id);
```

DESCRIPTION

An attribute set is a set of attribute objects with distinct identifiers. The `fn_attr_multi_get(3XFN)` operation takes an attribute set as parameter and returns an attribute set. The `fn_attr_get_ids(3XFN)` operation returns an attribute set containing the identifiers of the attributes.

Attribute sets are represented by the type `FN_attrset_t`. The following operations are defined for manipulating attribute sets.

- `fn_attrset_create()` creates an empty attribute set. `fn_attrset_destroy()` releases the storage associated with the attribute set `aset`. `fn_attrset_copy()` returns a copy of the attribute set `aset`. `fn_attrset_assign()` makes a copy of the attribute set `src` and assigns it to `dst`, releasing any old contents of `dst`. A pointer to the same object as `dst` is returned.

- `fn_attrset_get()` returns the attribute with the given identifier `attr_id` from `aset`. `fn_attrset_count()` returns the number attributes found in the attribute set `aset`.

- `fn_attrset_first()` and `fn_attrset_next()` are functions that can be used to return an enumeration of all the attributes in an attribute set. The attributes are not ordered in any way. There is no guaranteed relation between the order in which items are added to an attribute set and the order of the enumeration. The specification does
guarantee that any two enumerations will return the members in the same order, provided that no fn_attrset_add() or fn_attrset_remove() operation was performed on the object in between or during the two enumerations.

fn_attrset_first() returns the first attribute from the set and sets iter_pos after the first attribute. fn_attrset_next() returns the attribute following iter_pos and advances iter_pos.

fn_attrset_add() adds the attribute attr to the attribute set aset, replacing the attribute's values if the identifier of attr is not distinct in aset and exclusive is 0. If exclusive is non-zero and the identifier of attr is not distinct in aset, the operation fails.

fn_attrset_remove() removes the attribute with the identifier attr_id from aset. The operation succeeds even if no such attribute occurs in aset.

RETURN VALUES

fn_attrset_first() returns 0 if the attribute set is empty. fn_attrset_next() returns 0 if there are no more attributes in the set.

fn_attrset_add() and fn_attrset_remove() return 1 if the operation succeeds, and 0 if the operation fails.

USAGE

Manipulation of attributes using the operations described in this manual page does not affect their representation in the underlying naming system. Changes to attributes in the underlying naming system can only be effected through the use of the interfaces described in xfn_attributes(3XFN).

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

FN_attribute_t(3XFN), FN_attrvalue_t(3XFN), FN_identifier_t(3XFN), fn_attr_get_ids(3XFN), fn_attr_multi_get(3XFN), xfn(3XFN), xfn_attributes(3XFN), attributes(5)

NOTES

The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
FN_attrvalue_t(3XFN)

NAME
FN_attrvalue_t – an XFN attribute value

SYNOPSIS
cc [flag ...] file ... -lxfn [library ...]
#include <xfn/xfn.h>

DESCRIPTION
The type FN_attrvalue_t is used to represent the contents of a single attribute value, within an attribute of type FN_attribute_t.

The representation of this structure is defined by XFN as follows:

typedef struct { size_t length;
void *contents; } FN_attrvalue_t;

SEE ALSO
FN_attribute_t(3XFN), fn_attr_get_values(3XFN), xfn(3XFN)
FN_composite_name_t(3XFN)

NAME FN_composite_name_t, fn_composite_name_create, fn_composite_name_destroy, fn_composite_name_from_str, fn_composite_name_from_string, fn_string_from_composite_name, fn_composite_name_copy, fn_composite_name_assign, fn_composite_name_is_empty, fn_composite_name_count, fn_composite_name_first, fn_composite_name_next, fn_composite_name_prev, fn_composite_name_last, fn_composite_name_prefix, fn_composite_name_suffix, fn_composite_name_is_equal, fn_composite_name_is_prefix, fn_composite_name_is_suffix, fn_composite_name_prepend_comp, fn_composite_name_append_comp, fn_composite_name_insert_comp, fn_composite_name_delete_comp, fn_composite_name_prepend_name, fn_composite_name_append_name, fn_composite_name_insert_name – a sequence of component names spanning multiple naming systems

SYNOPSIS ce [flag ...] file ... -lxfn [library ...]
#include <xfn/xfn.h>
FN_composite_name_t *fn_composite_name_create(void);
void fn_composite_name_destroy(FN_composite_name_t *name);
FN_composite_name_t *fn_composite_name_from_str(const unsigned char *cstr);
FN_composite_name_t *fn_composite_name_from_string(const FN_string_t *str);
FN_string_t *fn_string_from_composite_name(const FN_composite_name_t *name, unsigned int *status);
FN_composite_name_t *fn_composite_name_copy(const FN_composite_name_t *name);
FN_composite_name_t *fn_composite_name_assign(FN_composite_name_t *dst, const FN_composite_name_t *src);
int fn_composite_name_is_empty(const FN_composite_name_t *name);
unsigned int fn_composite_name_count(const FN_composite_name_t *name);
const FN_string_t *fn_composite_name_first(const FN_composite_name_t *name, void **iter_pos);
const FN_string_t *fn_composite_name_next(const FN_composite_name_t *name, void **iter_pos);
const FN_string_t *fn_composite_name_prev(const FN_composite_name_t *name, void **iter_pos);
const FN_string_t *fn_composite_name_last(const FN_composite_name_t *name, void **iter_pos);
FN_composite_name_t *fn_composite_name_prefix(const FN_composite_name_t *name, const void *iter_pos);
FN_composite_name_t *fn_composite_name_suffix(const FN_composite_name_t *name, const void *iter_pos);

int fn_composite_name_is_equal(const FN_composite_name_t *name, const FN_composite_name_t *name2, unsigned int *status);

int fn_composite_name_is_prefix(const FN_composite_name_t *name, const FN_composite_name_t *prefix, void **iter_pos, unsigned int *status);

int fn_composite_name_is_suffix(const FN_composite_name_t *name, const FN_composite_name_t *suffix, void **iter_pos, unsigned int *status);

int fn_composite_name_prepend_comp(FN_composite_name_t *name, const FN_string_t *newcomp);

int fn_composite_name_append_comp(FN_composite_name_t *name, const FN_string_t *newcomp);

int fn_composite_name_insert_comp(FN_composite_name_t *name, void **iter_pos, const FN_string_t *newcomp);

int fn_composite_name_delete_comp(FN_composite_name_t *name, void **iter_pos);

int fn_composite_name_prepend_name(FN_composite_name_t *name, const FN_composite_name_t *newcomps);

int fn_composite_name_append_name(FN_composite_name_t *name, const FN_composite_name_t *newcomps);

int fn_composite_name_insert_name(FN_composite_name_t *name, void **iter_pos, const FN_composite_name_t *newcomps);

A composite name is represented by an object of type FN_composite_name_t. Each component is a string name, of type FN_string_t, from the namespace of a single naming system. It may be an atomic name or a compound name in that namespace.

fn_composite_name_create creates an FN_composite_name_t object with zero components. Components may be subsequently added to the composite name using the modify operations described below. fn_composite_name_destroy releases any storage associated with the given FN_composite_name_t handle.

fn_composite_name_from_str() creates an FN_composite_name_t from the given null-terminated string based on the code set of the current locale setting, using the XFN composite name syntax. fn_composite_name_from_string() creates an FN_composite_name_t from the string str using the XFN composite name syntax.

fn_string_from_composite_name() returns the standard string form of the given composite name, by concatenating the components of the composite name in a left to right order, each separated by the XFN component separator.
fn_composite_name_t(3XFN)

fn_composite_name_copy() returns a copy of the given composite name object.

fn_composite_name_assign() makes a copy of the composite name object
pointed to by src and assigns it to dst, releasing any old contents of dst. A pointer to the
same object as dst is returned.

fn_composite_name_is_empty() returns 1 if the given composite name is an
empty composite name (that is, it consists of a single, empty component name);
otherwise, it returns 0. fn_composite_name_count() returns the number of
components in the given composite name.

The iteration scheme is based on the exchange of an opaque void * argument,
iter_pos, that serves to record the position of the iteration in the sequence.
Conceptually, iter_pos records a position between two successive components (or at
one of the extreme ends of the sequence).

The function fn_composite_name_first() returns a handle to the FN_string_t
that is the first component in the name, and sets iter_pos to indicate the position
immediately following the first component. It returns 0 if the name has no
components. Thereafter, successive calls of the fn_composite_name_next() function return pointers to the component following the iteration marker, and advance
the iteration marker. If the iteration marker is at the end of the sequence,
fn_composite_name_next() returns 0. Similarly, fn_composite_name_prev() returns the component preceding the iteration pointer and moves the marker back one
component. If the marker is already at the beginning of the sequence,
fn_composite_name_prev() returns 0. The function
fn_composite_name_last() returns a pointer to the last component of the name
and sets the iteration marker immediately preceding this component (so that
subsequent calls to fn_composite_name_prev() can be used to step through
leading components of the name).

The fn_composite_name_suffix() function returns a composite name consisting
of a copy of those components following the supplied iteration marker. The method
fn_composite_name_prefix() returns a composite name consisting of those
components that precede the iteration marker. Using these functions with an iteration
marker that was not initialized using fn_composite_name_first(),
fn_composite_name_last(), fn_composite_name_is_prefix(), or
fn_composite_name_is_suffix() yields undefined and generally undesirable
behavior.

The functions fn_composite_name_is_equal(),
fn_composite_name_is_prefix(), and fn_composite_name_is_suffix() test for equality between composite names or between parts of composite names. For
these functions, equality is defined as exact string equality, not name equivalence. A
name’s syntactic property, such as case-insensitivity, is not taken into account by these
functions.

The function fn_composite_name_is_prefix() tests if one composite name is a
prefix of another. If so, it returns 1 and sets the iteration marker immediately
following the prefix. (For example, a subsequent call to
fn_composite_name_suffix() will return the remainder of the name. Otherwise, it returns 0 and the value of the iteration marker is undefined. The function fn_composite_name_is_suffix() is similar. It tests if one composite name is a suffix of another. If so, it returns 1 and sets the iteration marker immediately preceding the suffix.

The functions fn_composite_name_prepend_comp() and fn_composite_name_append_comp() prepend and append a single component to the given composite name, respectively. These operations invalidate any iteration marker the client holds for that object. fn_composite_name_insert_comp() inserts a single component before iter_pos to the given composite name and sets iter_pos to be immediately after the component just inserted. fn_composite_name_delete_comp() deletes the component located before iter_pos from the given composite name and sets iter_pos back one component.

The functions fn_composite_name_prepend_name(), fn_composite_name_append_name(), and fn_composite_name_insert_name() perform the same update functions as their _comp counterparts, respectively, except that multiple components are being added, rather than single components. For example, fn_composite_name_insert_name() sets iter_pos to be immediately after the name just added.

/**
 * FN_composite_name_t(3XFN)
 */

<table>
<thead>
<tr>
<th>fn_composite_name_suffix() will return the remainder of the name. Otherwise, it returns 0 and the value of the iteration marker is undefined. The function fn_composite_name_is_suffix() is similar. It tests if one composite name is a suffix of another. If so, it returns 1 and sets the iteration marker immediately preceding the suffix.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The functions fn_composite_name_prepend_comp() and fn_composite_name_append_comp() prepend and append a single component to the given composite name, respectively. These operations invalidate any iteration marker the client holds for that object. fn_composite_name_insert_comp() inserts a single component before iter_pos to the given composite name and sets iter_pos to be immediately after the component just inserted. fn_composite_name_delete_comp() deletes the component located before iter_pos from the given composite name and sets iter_pos back one component.</td>
</tr>
</tbody>
</table>

RETURN VALUES

The functions fn_composite_name_is_empty(), fn_composite_name_is_equal(), fn_composite_name_is_suffix(), and fn_composite_name_is_prefix() return 1 if the test indicated is true; 0 otherwise.

The update functions fn_composite_name_prepend_comp(), fn_composite_name_append_comp(), fn_composite_name_insert_comp(), fn_composite_name_delete_comp(), and their name counterparts return 1 if the update was successful; 0 otherwise.

If a function is expected to return a pointer to an object, a NULL pointer (0) is returned if the function fails.

ERRORS

Code set mismatches that occur during the composition of the string form or during comparisons of composite names are resolved in an implementation-dependent way. fn_string_from_composite_name(), fn_composite_name_is_equal(), fn_composite_name_is_suffix(), and fn_composite_name_is_prefix() set status to FN_E_INCOMPATIBLE_CODE_SETS for composite names whose components have code sets that are determined by the implementation to be incompatible.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

FN_string_t(3XFN), xfn(3XFN), attributes(5)

NOTES

The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
FN_compound_name_t(3XFN)

NAME
FN_compound_name_t, fn_compound_name_from_syntax_attrs,
fn_compound_name_get_syntax_attrs, fn_compound_name_destroy,
fn_string_from_compound_name, fn_compound_name_copy,
fn_compound_name_assign, fn_compound_name_count, fn_compound_name_first,
fn_compound_name_next, fn_compound_name_prev, fn_compound_name_last,
fn_compound_name_prefix, fn_compound_name_suffix,
fn_compound_name_is_empty, fn_compound_name_is_equal,
fn_compound_name_is_prefix, fn_compound_name_is_suffix,
fn_compound_name_prepend_comp, fn_compound_name_append_comp,
fn_compound_name_insert_comp, fn_compound_name_delete_comp,
fn_compound_name_delete_all – an XFN compound name

SYNOPSIS
cc [flag ...] file ... -lxfn [library ...]
#include <xfn/xfn.h>

FN_compound_name_t *fn_compound_name_from_syntax_attrs(const
FN_attrset_t *aset, const FN_string_t *name, FN_status_t
*status);

FN_attrset_t *fn_compound_name_get_syntax_attrs(const
FN_compound_name_t *name);

void fn_compound_name_destroy(FN_compound_name_t *name);

FN_string_t *fn_string_from_compound_name(const
FN_compound_name_t *name);

FN_compound_name_t *fn_compound_name_copy(const
FN_compound_name_t *name);

FN_compound_name_t *fn_compound_name_assign(FN_compound_name_t
*dst, const FN_compound_name_t *src);

unsigned int fn_compound_name_count(const FN_compound_name_t
*name);

const FN_string_t *fn_compound_name_first(const
FN_compound_name_t *name, void **iter_pos);

const FN_string_t *fn_compound_name_next(const
FN_compound_name_t *name, void **iter_pos);

const FN_string_t *fn_compound_name_prev(const
FN_compound_name_t *name, void **iter_pos);

const FN_string_t *fn_compound_name_last(const
FN_compound_name_t *name, void **iter_pos);

FN_compound_name_t *fn_compound_name_prefix(const
FN_compound_name_t *name, const void *iter_pos);

FN_compound_name_t *fn_compound_name_suffix(const
FN_compound_name_t *name, const void *iter_pos);

int fn_compound_name_is_empty(const FN_compound_name_t *name);
Most applications treat names as opaque data. Hence, the majority of clients of the XFN interface will not need to parse names. Some applications, however, such as browsers, need to parse names. For these applications, XFN provides support in the form of the FN_compound_name_t object.

Each naming system in an XFN federation potentially has its own naming conventions. The FN_compound_name_t object has associated operations for applications to process compound names that conform to the XFN model of expressing compound name syntax. The XFN syntax model for compound names covers a large number of specific name syntaxes and is expressed in terms of syntax properties of the naming convention. See xfn_compound_names(3XFN).

An FN_compound_name_t object is constructed by the operation fn_compound_name_from_syntax_attrs, using a string name and an attribute set containing the "fn_syntax_type" (with identifier format FN_ID_STRING) attribute identifying the namespace syntax of the string name. The value "standard" (with identifier format FN_ID_STRING) in the "fn_syntax_type" specifies a syntax model that is by default supported by the FN_compound_name_t object. An implementation may support other syntax types instead of the XFN standard syntax model, in which case the value of the "fn_syntax_type" attribute would be set to an implementation-specific string. fn_compound_name_get_syntax_attrs() returns an attribute set containing the syntax attributes that describes the given compound name. fn_compound_name_destroy() releases the storage associated with the given compound name. fn_string_from_compound_name() returns the string form of the given compound name. fn_compound_name_copy() returns a copy of the given compound name. fn_compound_name_assign() makes a copy of the...
FN_compound_name_t(3XFN)

compound name src and assigns it to dst, releasing any old contents of dst. A pointer to the object pointed to by dst is returned. fn_compound_name_count() returns the number of atomic components in the given compound name.

The function fn_compound_name_first() returns a handle to the FN_string_t that is the first atomic component in the compound name, and sets iter_pos to indicate the position immediately following the first component. It returns 0 if the name has no components. Thereafter, successive calls of the fn_compound_name_next() function return pointers to the component following the iteration marker, and advance the iteration marker. If the iteration marker is at the end of the sequence, fn_compound_name_next() returns 0. Similarly, fn_compound_name_prev() returns the component preceding the iteration pointer and moves the marker back one component. If the marker is already at the beginning of the sequence, fn_compound_name_prev() returns 0. The function fn_compound_name_last() returns a pointer to the last component of the name and sets the iteration marker immediately preceding this component (so that subsequent calls to fn_compound_name_prev() can be used to step through trailing components of the name).

The fn_compound_name_suffix() function returns a compound name consisting of a copy of those components following the supplied iteration marker. The function fn_compound_name_prefix() returns a compound name consisting of those components that precede the iteration marker. Using these functions with an iteration marker that was not initialized with the use of fn_compound_name_first(), fn_compound_name_last(), fn_compound_name_is_prefix(), or fn_compound_name_is_suffix() yields undefined and generally undesirable behavior.

The functions fn_compound_name_is_equal(), fn_compound_name_is_prefix(), and fn_compound_name_is_suffix() test for equality between compound names or between parts of compound names. For these functions, equality is defined as name equivalence. A name’s syntactic property, such as case-insensitivity, is taken into account by these functions.

The function fn_compound_name_is_prefix() tests if one compound name is a prefix of another. If so, it returns 1 and sets the iteration marker immediately following the prefix. (For example, a subsequent call to fn_compound_name_suffix() will return the remainder of the name.) Otherwise, it returns 0 and value of the iteration marker is undefined. The function fn_compound_name_is_suffix() is similar. It tests if one compound name is a suffix of another. If so, it returns 1 and sets the iteration marker immediately preceding the suffix.

The functions fn_compound_name_prepend_comp() and fn_compound_name_append_comp() prepend and append a single atomic component to the given compound name, respectively. These operations invalidate any iteration marker the client holds for that object. fn_compound_name_insert_comp() inserts an atomic component before iter_pos to the given compound name and sets iter_pos to be immediately after the component

Networking Library Functions 101
just inserted. `fn_compound_name_delete_comp()` deletes the atomic component located before `iter_pos` from the given compound name and sets `iter_pos` back one component. `fn_compound_name_delete_all()` deletes all the atomic components from `name`.

RETURN VALUES
The following test functions return 1 if the test indicated is true; otherwise, they return 0:

```c
fn_compound_name_is_empty()
fn_compound_name_is_equal()
fn_compound_name_is_suffix()
fn_compound_name_is_prefix()
```

The following update functions return 1 if the update was successful; otherwise, they return 0:

```c
fn_compound_name_prepend_comp()
fn_compound_name_append_comp()
fn_compound_name_insert_comp()
fn_compound_name_delete_comp()
fn_compound_name_delete_all()
```

If a function is expected to return a pointer to an object, a NULL pointer (0) is returned if the function fails.

ERRORS
When the function `fn_compound_name_from_syntax_attrs()` fails, it returns a status code in `status`. The possible status codes are:

- **FN_E_ILLEGAL_NAME**: The name supplied to the operation was not a well-formed XFN compound name, or one of the component names was not well-formed according to the syntax of the naming system(s) involved in its resolution.

- **FN_E_INCOMPATIBLE_CODE_SETS**: The code set of the given string is incompatible with that supported by the compound name.

- **FN_E_INVALID_SYNTAX_ATTRS**: The syntax attributes supplied are invalid or insufficient to fully specify the syntax.

- **FN_E_SYNTAX_NOT_SUPPORTED**: The syntax type specified is not supported.

The following functions may return in `status` the status code `FN_E_INCOMPATIBLE_CODE_SETS` when the code set of the given string is incompatible with that of the compound name:

```c
fn_compound_name_is_equal()
fn_compound_name_is_suffix()
fn_compound_name_is_prefix()
fn_compound_name_prepend_comp()
fn_compound_name_append_comp()
```
FN_compound_name_t(3XFN)

fn_compound_name_insert_comp()

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

FN_attribute_t(3XFN), FN_atrset_t(3XFN), FN_composite_name_t(3XFN),
FN_status_t(3XFN), FN_string_t(3XFN), fn_ctx_get_syntax_attrs (3XFN),
xfn(3XFN), xfn_compound_names(3XFN), attributes(5)

NOTES

The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
fn_ctx_bind(3XFN)

NAME fn_ctx_bind – bind a reference to a name

SYNOPSIS

cc [-flag ...] file ... -lxfn [library ...]
#include <xfn/xfn.h>

int fn_ctx_bind(FN_ctx_t *ctx, const FN_composite_name_t *name,
 const FN_ref_t *ref, unsigned int exclusive, FN_status_t *status);

DESCRIPTION

This operation binds the supplied reference ref to the supplied composite name name
relative to ctx. The binding is made in the target context, that is, the context named by
all but the terminal atomic part of name. The operation binds the terminal atomic name
to the supplied reference in the target context. The target context must already exist.

The value of exclusive determines what happens if the terminal atomic part of
the name is already bound in the target context. If exclusive is nonzero and name is already
bound, the operation fails. If exclusive is 0, the new binding replaces any existing
binding.

RETURN VALUES

When the bind operation is successful it returns 1; on error it returns 0.

ERRORS

fn_ctx_bind sets status as described in FN_status_t(3XFN) and
xfn_status_codes. Of special relevance for this operation is the status code
FN_E_NAME_IN_USE, which indicates that the supplied name is already in use.

USAGE

The value of ref cannot be NULL. If the intent is to reserve a name using
fn_ctx_bind(), a reference containing no address should be supplied. This
reference may be name service-specific or it may be the conventional NULL reference
defined in the X/Open registry (see fns_references(5)).

If multiple sources are updating a reference, they must synchronize amongst each
other when adding, modifying, or removing from the address list of a bound
reference.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

FN_composite_name_t(3XFN), FN_ctx_t(3XFN), FN_ref_t(3XFN),
FN_status_t(3XFN), fn_ctx_lookup(3XFN), fn_ctx_unbind(3XFN),
xfn(3XFN), xfn_status_codes(3XFN), attributes(5), fns_references(5)

NOTES

The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
fn_ctx_create_subcontext(3XFN)

NAME
fn_ctx_create_subcontext – create a subcontext in a context

SYNOPSIS
```
#include <xfn/xfn.h>

FN_ref_t *fn_ctx_create_subcontext(FN_ctx_t *ctx, const FN_composite_name_t *name, FN_status_t *status);
```

DESCRIPTION
This operation creates a new XFN context of the same type as the target context — that named by all but the terminal atomic component of `name` — and binds it to the supplied composite name.

As with `fn_ctx_bind()`, the target context must already exist. The new context is created and bound in the target context using the terminal atomic name in `name`. The operation returns a reference to the newly created context.

RETURN VALUE
`fn_ctx_create_subcontext()` returns a reference to the newly created context; if the operation fails, it returns a `NULL` pointer (0).

ERRORS
`fn_ctx_create_subcontext()` sets `status` as described in `FN_status_t(3XFN)` and `xfn_status_codes(3XFN)`. Of special relevance for this operation is the following status code:

```
FN_E_NAME_IN_USE
```

The terminal atomic name already exists in the target context.

APPLICATION USAGE
The new subcontext is an XFN context and is created in the same naming system as the target context. The new subcontext also inherits the same syntax attributes as the target context. XFN does not specify any further properties of the new subcontext. The target context and its naming system determine these.

ATTRIBUTES
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe.</td>
</tr>
</tbody>
</table>

SEE ALSO
`FN_composite_name_t(3XFN), FN_ctx_t(3XFN), FN_ref_t(3XFN), FN_status_t(3XFN), fn_ctx_bind(3XFN), fn_ctx_lookup(3XFN), fn_ctx_destroy_subcontext(3XFN), xfn_status_codes(3XFN), xfn(3XFN), attributes(5)`
fn_ctx_destroy_subcontext(3XFN)

NAME
fn_ctx_destroy_subcontext – destroy the named context and remove its binding from the parent context

SYNOPSIS
cc [flag ...] file ... -lxfn [library ...]
#include <xfn/xfn.h>

int fn_ctx_destroy_subcontext(FN_ctx_t *ctx, const FN_composite_name_t *name, FN_status_t *status);

DESCRIPTION
This operation destroys the subcontext named by name relative to ctx, and unbinds the name.

As with fn_ctx_unbind(), this operation succeeds even if the terminal atomic name is not bound in the target context — the context named by all but the terminal atomic name in name.

RETURN VALUE
fn_ctx_destroy_subcontext() returns 1 on success and 0 on failure.

ERRORS
fn_ctx_destroy_subcontext() sets status as described in FN_status_t(3XFN) and xfn_status_codes(3XFN). Of special relevance for fn_ctx_destroy_subcontext() are the following status codes:

FN_E_CTX_NOT_A_CONTEXT name does not name a context.
FN_E_CTX_NOT_EMPTY The naming system being asked to do the destroy does not support removal of a context that still contains bindings.

APPLICATION USAGE
Some aspects of this operation are not specified by XFN, but are determined by the target context and its naming system. For example, XFN does not specify what happens if the named subcontext is non-empty when the operation is invoked.

In naming systems that support attributes, and store the attributes along with names or contexts, this operation removes the name, the context, and its associated attributes.

Normal resolution always follows links. In a fn_ctx_destroy_subcontext() operation, resolution of name continues to the target context; the terminal atomic name is not resolved. If the terminal atomic name is bound to a link, the link is not followed and the operation fails with FN_E_CTX_NOT_A_CONTEXT because the name is not bound to a context.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe.</td>
</tr>
</tbody>
</table>

SEE ALSO
FN_ctx_t(3XFN), FN_composite_name_t(3XFN), FN_status_t(3XFN), fn_ctx_create_subcontext(3XFN), fn_ctx_unbind(3XFN), xfn(3XFN), xfn_status_codes(3XFN), attributes(5)
fn_ctx_equivalent_name(3XFN)

NAME fn_ctx_equivalent_name – construct an equivalent name in same context

SYNOPSIS

```
#include <xfn/xfn.h>
FN_composite_name_t *fn_ctx_equivalent_name(FN_ctx_t *ctx, const FN_composite_name_t *name, const FN_string_t *leading_name,
                       FN_status_t *status);
```

DESCRIPTION

Given the name of an object name relative to the context ctx, this operation returns an equivalent name for that object, relative to the same context ctx, that has leading_name as its initial atomic name. Two names are said to be equivalent if they have prefixes that resolve to the same context, and the parts of the names immediately following the prefixes are identical.

The existence of a binding for leading_name in ctx does not guarantee that a name equivalent to name can be constructed. The failure may be because such equivalence is not meaningful, or due to the inability of the system to construct a name with the equivalence. For example, supplying _thishost as leading_name when name starts with _myself to fn_ctx_equivalent_name() in the Initial Context would not be meaningful; this results in the return of the error code FN_E_NO_EQUIVALENT_NAME.

RETURN VALUES

If an equivalent name cannot be constructed, the value 0 is returned and status is set appropriately.

ERRORS

fn_ctx_equivalent_name() sets status as described in FN_status_t(3XFN) and xfn_status_codes(3XFN). The following status code is especially relevant for this operation:

```
FN_E_NO_EQUIVALENT_NAME
```

No equivalent name can be constructed, either because there is no meaningful equivalence between name and leading_name, or the system does not support constructing the requested equivalent name, for implementation-specific reasons.

EXAMPLES

EXAMPLE 1 Naming Files

In the Initial Context supporting XFN enterprise policies, a user jsmith is able to name one of her files relative to this context in several ways.

```
_myself/_fs/map.ps
_user/jsmith/_fs/map.ps
_orgunit/finance/_user/jsmith/_fs/map.ps
```

The first of these may be appealing to the user jsmith in her day-to-day operations. This name is not, however, appropriate for her to use when referring the file in an electronic mail message sent to a colleague. The second of these names would be appropriate if the colleague were in the same organizational unit, and the third appropriate for anyone in the same enterprise.
EXAMPLE 1 Naming Files (Continued)

When the following sequence of instructions is executed by the user jsmith in the organizational unit finance, enterprise_wide_name would contain the composite name _orgunit/finance/_user/jsmith/_fs/map.ps:

```c
FN_string_t* namestr =
    fn_string_from_str((const unsigned char*)"_myself/_fs/map.ps");
FN_composite_name_t* name = fn_composite_name_from_string(namestr);
FN_string_t* org_lead =
    fn_string_from_str((const unsigned char*)"_orgunit");
FN_status_t* status = fn_status_create();
FN_composite_name_t* enterprise_wide_name;
FN_ctx_t* init_ctx = fn_ctx_handle_from_initial(status);
/* check status of from_initial() */
enterprise_wide_name = fn_ctx_equivalent_name(init_ctx, name, org_lead, status);
```

When the following sequence of instructions is executed by the user jsmith in the organizational unit finance, shortest_name would contain the composite name _myself/_fs/map.ps:

```c
FN_string_t* namestr =
    fn_string_from_str((const unsigned char*)"_orgunit/finance/_user/jsmith/_fs/map.ps");
FN_composite_name_t* name = fn_composite_name_from_string(namestr);
FN_string_t* mylead = fn_string_from_str((const unsigned char*)"_myself");
FN_status_t* status = fn_status_create();
FN_composite_name_t* shortest_name;
FN_ctx_t* init_ctx = fn_ctx_handle_from_initial(status);
/* check status of from_initial() */
shortest_name = fn_ctx_equivalent_name(init_ctx, name, mylead, status);
```

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO FN_composite_name_t(3XFN), FN_ctx_t(3XFN), FN_status_t(3XFN), FN_string_t(3XFN), xfn_status_codes(3XFN), attributes(5)
fn_ctx_get_ref(3XFN)

NAME
fn_ctx_get_ref — return a context’s reference

SYNOPSIS
cc [flag ...] file ... -lxfn [library ...]
#include <xfn/xfn.h>
FN_ref_t *fn_ctx_get_ref(const FN_ctx_t *ctx, FN_status_t *status);

DESCRIPTION
This operation returns a reference to the supplied context object.

RETURN VALUE
fn_ctx_get_ref() returns a pointer to an FN_ref_t object if the operation
succeeds, it returns 0 if the operation fails.

ERRORS
fn_ctx_get_ref() sets status as described in FN_status_t(3XFN) and
xfn_status_codes(3XFN). The following status code is of particular relevance to
this operation:
FN_E_OPERATION_NOT_SUPPORTED Using the fn_ctx_get_ref() operation
on the Initial Context returns this status code.

APPLICATION USAGE
fn_ctx_get_ref() cannot be used on the Initial Context. fn_ctx_get_ref() can
be used on contexts bound in the Initial Context (in other words, the bindings in the
Initial Context have references).

If the context handle was created earlier using the fn_ctx_handle_from_ref() operation, the reference returned by the fn_ctx_get_ref() operation may not
necessarily be exactly the same in content as that originally supplied. For example,
fn_ctx_handle_from_ref() may construct the context handle from one address
from the list of addresses. The context implementation may return with a call to
fn_ctx_get_ref() only that address, or a more complete list of addresses than
what was supplied in fn_ctx_handle_from_ref().

ATTRIBUTES
See attributes (5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe.</td>
</tr>
</tbody>
</table>

SEE ALSO
FN_ctx_t(3XFN), FN_ref_t(3XFN), FN_status_t(3XFN),
fn_ctx_handle_from_initial(3XFN), fn_ctx_handle_from_ref(3XFN),
xfn_status_codes (3XFN), xfn(3XFN), attributes(5)
fn_ctx_get_syntax_attrs(3XFN)

NAME
fn_ctx_get_syntax_attrs – return syntax attributes associated with named context

SYNOPSIS
cc [flag ...] file ... -lxfn [library ...]
#include <xfn/xfn.h>

FN_attrset_t *fn_ctx_get_syntax_attrs(FN_ctx_t *ctx, const FN_composite_name_t *name, FN_status_t *status);

DESCRIPTION
Each context has an associated set of syntax-related attributes. This operation returns
the syntax attributes associated with the context named by name relative to the context
ctx.

The attributes must contain the attribute fn_syntax_type (FN_ID_STRING format). If
the context supports a syntax that conforms to the XFN standard syntax model,
fn_syntax_type is set to "standard" (ASCII attribute syntax) and the attribute set
contains the rest of the relevant syntax attributes described in
xfn_compound_names(3XFN).

This operation is different from other XFN attribute operations in that these syntax
attributes could be obtained directly from the context. Attributes obtained through
other XFN attribute operations may not necessarily be associated with the context;
they may be associated with the reference of context, rather than the context itself (see
xfn_attributes(3XFN)).

RETURN VALUE
fn_ctx_get_syntax_attrs() returns an attribute set if successful; it returns a
NULL pointer (0) if the operation fails.

ERRORS
fn_ctx_get_syntax_attrs() sets status as described in FN_status_t(3XFN)
and xfn_status_codes(3XFN).

APPLICATION USAGE
Implementations may choose to support other syntax types in addition to, or in place
of, the XFN standard syntax model, in which case, the value of the fn_syntax_type
attribute would be set to an implementation-specific string, and different or additional
syntax attributes will be in the set.

Syntax attributes of a context may be generated automatically by a context, in
response to fn_ctx_get_syntax_attrs(), or they may be created and updated
using the base attribute operations. This is implementation-dependent.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe.</td>
</tr>
</tbody>
</table>
fn_ctx_get_syntax_attrs(3XFN)

SEE ALSO
FN_attrset_t(3XFN), FN_composite_name_t(3XFN),
FN_compound_name_t(3XFN), FN_ctx_t(3XFN), FN_status_t(3XFN),
fn_attr_get(3XFN), fn_attr_multi_get(3XFN),
xfn_compound_names(3XFN), xfn_attributes(3XFN),
xfn_status_codes(3XFN), xfn(3XFN), attributes(5)
NAME fn_ctx_handle_destroy – release storage associated with context handle

SYNOPSIS
```
#include <xfn/xfn.h>

void fn_ctx_handle_destroy(FN_ctx_t *ctx);
```

DESCRIPTION
This operation destroys the context handle `ctx` and allows the implementation to free
resources associated with the context handle. This operation does not affect the state of
the context itself.

ATTRIBUTES
See attributes (5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe.</td>
</tr>
</tbody>
</table>

SEE ALSO FN_ctx_t(3XFN), fn_ctx_handle_from_initial(3XFN),
fn_ctx_handle_from_ref(3XFN), xfn(3XFN), attributes(5)
fn_ctx_handle_from_initial(3XFN)

NAME
fn_ctx_handle_from_initial – return a handle to the Initial Context

SYNOPSIS
ec [flag ...] file ... -lxfn [library ...]
#include <xfn/xfn.h>

FN_ctx_t *fn_ctx_handle_from_initial(unsigned int authoritative,
 FN_status_t *status);

DESCRIPTION
This operation returns a handle to the caller’s Initial Context. On successful return, the
handle points to a context which meets the specification of the XFN Initial Context (see
fns_initial_context(5)).

authoritative specifies whether the handle to the context returned should be
authoritative with respect to information the context obtains from the naming service.
When the flag is non-zero, subsequent operations on the context will access the most
authoritative information. When authoritative is 0, the handle to the context returned
need not be authoritative.

RETURN VALUES
fn_ctx_handle_from_initial() returns a pointer to an FN_ctx_t object if the
operation succeeds; it returns a NULL pointer (0) otherwise.

ERRORS
fn_ctx_handle_from_initial() sets only the status code portion of the status
object status.

USAGE
Authoritiveness is determined by specific naming services. For example, in a naming
service that supports replication using a master/slave model, the source of
authoritative information would come from the master server. In some naming
systems, bypassing the naming service cache may reach servers which provide the
most authoritative information. The availability of an authoritative context might be
lower due to the lower number of servers offering this service. For the same reason, it
might also provide poorer performance than contexts that need not be authoritative.

Applications set authoritative to 0 for typical day-to-day operations. Applications only
set authoritative to a non-zero value when they require access to the most authoritative
information, possibly at the expense of lower availability and/or poorer performance.

It is implementation-dependent whether authoritiveness is transferred from one
context to the next as composite name resolution proceeds. Getting an authoritative
context handle to the Initial Context means that operations on bindings in the Initial
Context are processed using the most authoritative information. Contexts referenced
implicitly through an authoritative Initial Context (for example, through the use of
composite names) may not necessarily themselves be authoritative.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>
The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
fn_ctx_handle_from_ref(3XFN)

NAME
fn_ctx_handle_from_ref -- construct a handle to a context object using the given reference

SYNOPSIS
#include <xfn/xfn.h>

FN_ctx_t *fn_ctx_handle_from_ref(const FN_ref_t *ref, unsigned int authoritative, FN_status_t *status);

DESCRIPTION
This operation creates a handle to an FN_ctx_t object using an FN_ref_t object for that context.

authoritative specifies whether the handle to the context returned should be authoritative with respect to information the context obtains from the naming service. When the flag is non-zero, subsequent operations on the context will access the most authoritative information. When authoritative is 0, the handle to the context returned need not be authoritative.

RETURN VALUES
This operation returns a pointer to an FN_ctx_t object if the operation succeeds; otherwise, it returns a NULL pointer (0).

ERRORS
fn_ctx_handle_from_ref() sets status as described in FN_status_t(3XFN) and xfn_status_codes(3XFN). The following status code is of particular relevance to this operation:

| FN_E_NO_SUPPORTED_ADDRESS | A context object could not be constructed from a particular reference. The reference contained no address type over which the context interface was supported. |

USAGE
Authoritativeness is determined by specific naming services. For example, in a naming service that supports replication using a master/slave model, the source of authoritative information would come from the master server. In some naming systems, bypassing the naming service cache may reach servers which provide the most authoritative information. The availability of an authoritative context might be lower due to the lower number of servers offering this service. For the same reason, it might also provide poorer performance than contexts that need not be authoritative.

Applications set authoritative to 0 for typical day-to-day operations. Applications only set authoritative to a non-zero value when they require access to the most authoritative information, possibly at the expense of lower availability and/or poorer performance.

To control the authoritativeness of the target context, the application first resolves explicitly to the target context using fn_ctx_lookup(3XFN). It then uses fn_ctx_handle_from_ref() with the appropriate authoritative argument to obtain a handle to the context. This returns a handle to a context with the specified authoritativeness. The application then uses the XFN operations, such as lookup and list, with this context handle.
It is implementation-dependent whether authoritativeness is transferred from one context to the next as composite name resolution proceeds. The application should use the approach recommended above to achieve the desired level of authoritativeness on a per context basis.

ATTRIBUTES

See attributes (5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

FN_ctx_t(3XFN), FN_ref_t(3XFN), FN_status_t(3XFN), fn_ctx_get_ref(3XFN), fn_ctx_handle_destroy(3XFN), fn_ctx_lookup(3XFN), xfn(3XFN), xfn_status_codes(3XFN), attributes(5), fns_references(5)

NOTES

The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
fn_ctx_list_bindings(3XFN)

NAME

fn_ctx_list_bindings, FN_bindinglist_t, fn_bindinglist_next, fn_bindinglist_destroy – list the atomic names and references bound in a context

SYNOPSIS

cc [flag ...] file ... -lxfn [library ...]
#include <xfn/xfn.h>

FN_bindinglist_t *fn_ctx_list_bindings(FN_ctx_t *ctx,
 const FN_composite_name_t *name,
 FN_status_t *status);

FN_string_t *fn_bindinglist_next(FN_bindinglist_t *bl,
 FN_ref_t **ref,
 FN_status_t *status);

void fn_bindinglist_destroy(FN_bindinglist_t *bl,
 FN_status_t *status);

DESCRIPTION

This set of operations is used to list the names and bindings in the context named by name relative to the context ctx. Note that name must name a context. If the intent is to list the contents of ctx, name should be an empty composite name.

The semantics of these operations are similar to those for listing names (see fn_ctx_list_names(3XFN)). In addition to a name string being returned, fn_bindinglist_next() also returns the reference of the binding for each member of the enumeration.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

FN_composite_name_t(3XFN), FN_ctx_t(3XFN), FN_ref_t(3XFN),
FN_status_t(3XFN), FN_string_t(3XFN), fn_ctx_list_names(3XFN),
xfn(3XFN), xfn_status_codes(3XFN), attributes(5)

NOTES

The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
fn_ctx_list_names, FN_namelist_t, fn_namelist_next, fn_namelist_destroy – list the atomic names bound in a context

SYNOPSIS

cc [flag ...] file ... -lxfn [library ...]
#include <xfn/xfn.h>

FN_namelist_t *fn_ctx_list_names(FN_ctx_t *ctx, const FN_composite_name_t *name, FN_status_t *status);
FN_string_t *fn_namelist_next(FN_namelist_t *nl, FN_status_t *status);
void fn_namelist_destroy(FN_namelist_t *nl, FN_status_t *status);

DESCRIPTION

This set of operations is used to list the names bound in the target context named name relative to the context ctx. Note that name must name a context. If the intent is to list the contents of ctx, name should be an empty composite name.

The call to fn_ctx_list_names() initiates the enumeration process. It returns a handle to an FN_namelist_t object that can be used to enumerate the names in the target context.

The operation fn_namelist_next() returns the next name in the enumeration identified by nl and updates nl to indicate the state of the enumeration. Successive calls to fn_namelist_next() using nl return successive names in the enumeration and further update the state of the enumeration. fn_namelist_next() returns a NULL pointer (0) when the enumeration has been completed.

fn_namelist_destroy() is used to release resources used during the enumeration. This may be invoked at any time to terminate the enumeration.

RETURN VALUES

fn_ctx_list_names() returns a pointer to an FN_namelist_t object if the enumeration is successfully initiated; otherwise it returns a NULL pointer (0).

fn_namelist_next() returns a NULL pointer (0) if no more names can be returned in the enumeration.

In the case of a failure, these operations return in status a code indicating the nature of the failure.

ERRORS

Each successful call to fn_namelist_next() returns a name and sets status to FN_SUCCESS.

When fn_namelist_next() returns a NULL pointer (0), it indicates that no more names can be returned. status is set in the following way:

FN_SUCCESS The enumeration has completed successfully.

FN_E_INVALID_ENUM_HANDLE The supplied enumeration handle is not valid. Possible reasons could be that the handle was from another enumeration, or the context being enumerated no longer

Networking Library Functions 119
fn_ctx_list_names(3XFN) accepts the handle (due to such events as handle expiration or updates to the context).

FN_E_PARTIAL_RESULT The enumeration is not yet complete but cannot be continued.

Other status codes, such as FN_E_COMMUNICATION_FAILURE, are also possible in calls to fn_ctx_list_names(), fn_namelist_next(), and fn_namelist_destroy(). These functions set status for these other status codes as described in FN_status_t(3XFN) and xfn_status_codes(3XFN).

The names enumerated using fn_namelist_next() are not ordered in any way. There is no guaranteed relation between the order in which names are added to a context and the order of names obtained by enumeration. The specification does not guarantee that any two series of enumerations will return the names in the same order.

When a name is added to or removed from a context, this may or may not invalidate the enumeration handle that the client holds for that context. If the enumeration handle becomes invalid, the status code FN_E_INVALID_ENUM_HANDLE is returned in status. If the enumeration handle remains valid, the update may or may not be visible to the client.

In addition, there may be a relationship between the ctx argument supplied to fn_ctx_list_names() and the FN_namelist_t object it returns. For example, some implementations may store the context handle ctx within the FN_namelist_t object for subsequent fn_namelist_next() calls. In general, a fn_ctx_handle_destroy(3XFN) should not be invoked on ctx until the enumeration has terminated.

EXAMPLE 1 A sample program.

The following code fragment illustrates how the list names operations may be used:

```
extern FN_string_t *user_input;
FN_ctx_t *ctx;
FN_composite_name_t *target_name = fn_composite_name_from_string(user_input);
FN_status_t *status = fn_status_create();
FN_string_t *name;
FN_namelist_t *nl;
ctx = fn_ctx_handle_from_initial(status);
/* error checking on 'status' */
if ((nl=fn_ctx_list_names(ctx, target_name, status)) == 0) {
    /* report 'status' and exit */
}
while (name=fn_namelist_next(nl, status)) {
    /* do something with 'name' */
    fn_string_destroy(name);
}
/* check 'status' for reason for end of enumeration and report if necessary */
/* clean up */
```
EXAMPLE 1 A sample program.

fn_namelist_destroy(nl, status);
/* report 'status' */

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

FN_composite_name_t(3XFN), FN_ctx_t(3XFN), FN_status_t(3XFN),
FN_string_t(3XFN), fn_ctx_handle_destroy(3XFN), xfn(3XFN),
xfn_status_codes(3XFN), attributes(5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
fn_ctx_lookup(3XFN)

NAME fn_ctx_lookup – look up name in context

SYNOPSIS

```
#include <xfn/xfn.h>

FN_ref_t *fn_ctx_lookup(FN_ctx_t *ctx, const FN_composite_name_t *name, FN_status_t *status);
```

DESCRIPTION

This operation returns the reference bound to name relative to the context ctx.

RETURN VALUE

If the operation succeeds, the fn_ctx_lookup() function returns a handle to the reference bound to name. Otherwise, 0 is returned and status is set appropriately.

ERRORS

fn_ctx_lookup() sets status as described FN_status_t(3XFN) and xfn_status_codes(3XFN).

APPLICATION USAGE

Some naming services may not always have reference information for all names in their contexts; for such names, such naming services may return a special reference whose type indicates that the name is not bound to any address. This reference may be name service specific or it may be the conventional NULL reference defined in the X/Open registry. See fns_references(5).

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

```
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe.</td>
</tr>
</tbody>
</table>
```

SEE ALSO

FN_composite_name_t(3XFN), FN_ctx_t(3XFN), FN_ref_t(3XFN), FN_status_t(3XFN), fns_references(5), xfn_status_codes(3XFN), xfn(3XFN), attributes(5)
fn_ctx_lookup_link(3XFN)

NAME
fn_ctx_lookup_link – look up the link reference bound to a name

SYNOPSIS
cc [flag ...] file ... -lxfn [library ...]
#include <xfn/xfn.h>

FN_ref_t *fn_ctx_lookup_link(FN_ctx_t *ctx, const FN_composite_name_t *name, FN_status_t *status);

DESCRIPTION
This operation returns the XFN link bound to name. The terminal atomic part of name must be bound to an XFN link.

The normal fn_ctx_lookup(3XFN) operation follows all links encountered, including any bound to the terminal atomic part of name. This operation differs from the normal lookup in that when the terminal atomic part of name is an XFN link, this link is not followed, and the operation returns the link.

RETURN VALUES
If fn_ctx_lookup_link() fails, a NULL pointer (0) is returned.

ERRORS
fn_ctx_lookup_link() sets status as described in FN_status_t(3XFN) and xfn_status_codes(3XFN). Of special relevance for fn_ctx_lookup_link() is the following status code:

FN_E_MALFORMED_LINK name resolved to a reference that was not a link.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
FN_composite_name_t(3XFN), FN_ctx_t(3XFN), FN_ref_t(3XFN), FN_status_t(3XFN), fn_ctx_lookup(3XFN), xfn(3XFN), xfn_links(3XFN), xfn_status_codes(3XFN), attributes(5)

NOTES
The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
fn_ctx_rename(3XFN)

NAME
fn_ctx_rename — rename the name of a binding

SYNOPSIS

```c
#include <xfn/xfn.h>

int fn_ctx_rename(FN_ctx_t *ctx, const FN_composite_name_t *oldname, const FN_composite_name_t *newname, unsigned int exclusive, FN_status_t *status);
```

DESCRIPTION

The fn_ctx_rename() operation binds the reference currently bound to `oldname` relative to `ctx`, to the name `newname`, and unbinds `oldname`. `newname` is resolved relative to the target context (that named by all but the terminal atomic part of `oldname`).

If `exclusive` is 0, the operation overwrites any old binding of `newname`. If `exclusive` is nonzero, the operation fails if `newname` is already bound.

RETURN VALUES

`fn_ctx_rename()` returns 1 if the operation is successful, 0 otherwise.

ERRORS

`fn_ctx_rename()` sets `status` as described `FN_status_t(3XFN)` and `xfn_status_codes(3XFN)`.

USAGE

The only restriction that XFN places on `newname` is that it be resolved relative to the target context. XFN does not specify further restrictions on `newname`. For example, in some implementations, `newname` might be restricted to be a name in the same naming system as the terminal component of `oldname`. In another implementation, `newname` might be restricted to be an atomic name.

Normal resolution always follows links. In an `fn_ctx_rename()` operation, resolution of `oldname` continues to the target context; the terminal atomic name is not resolved. If the terminal atomic name is bound to a link, the link is not followed and the operation binds `newname` to the link and unbinds the terminal atomic name of `oldname`.

In naming systems that support attributes and store the attributes along with the names, the unbind of the terminal atomic name of `oldname` also removes its associated attributes. It is implementation-dependent whether these attributes become associated with `newname`.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

`FN_composite_name_t(3XFN), FN_ctx_t(3XFN), FN_ref_t(3XFN), FN_status_t(3XFN), fn_ctx_bind(3XFN), fn_ctx_unbind(3XFN), xfn(3XFN), xfn_status_codes(3XFN), attributes(5)`
The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
FN_ctx_t(3XFN)

NAME

FN_ctx_t – an XFN context

SYNOPSIS

c< [flag ...] file ... -lxfn [library ...]
#include <xfn/xfn.h>

FN_ctx_t *fn_ctx_handle_from_initial(unsigned int authoritative,
 FN_status_t *status);

FN_ctx_t *fn_ctx_handle_from_ref(const FN_ref_t *ref, unsigned int
 authoritative, FN_status_t *status);

FN_ref_t *fn_ctx_get_ref(const FN_ctx_t *ctx, FN_status_t *status);

void fn_ctx_handle_destroy(FN_ctx_t *ctx);

FN_ref_t *fn_ctx_lookup(FN_ctx_t *ctx, const FN_composite_name_t
 *name, FN_status_t *status);

FN_namelist_t *fn_ctx_list_names(FN_ctx_t *ctx, const
 FN_composite_name_t *name, FN_status_t *status);

FN_string_t *fn_namelist_next(FN_namelist_t *nl, FN_status_t
 *status);

void fn_namelist_destroy(FN_namelist_t *nl, FN_status_t *status);

FN_bindinglist_t *fn_ctx_list_bindings(FN_ctx_t *ctx, const
 FN_composite_name_t *name, FN_status_t *status);

FN_string_t *fn_bindinglist_next(FN_bindinglist_t *iter, FN_ref_t
 **ref, FN_status_t *status);

void fn_bindinglist_destroy(FN_bindinglist_t *iter_pos, FN_status_t
 *status);

int fn_ctx_bind(FN_ctx_t *ctx, const FN_composite_name_t *name,
 const FN_ref_t *ref, unsigned int exclusive, FN_status_t *status);

int fn_ctx_unbind(FN_ctx_t *ctx, const FN_composite_name_t *name,
 FN_status_t *status);

int fn_ctx_rename(FN_ctx_t *ctx, const FN_composite_name_t
 *oldname, const FN_composite_name_t *newname, unsigned int
 exclusive, FN_status_t *status);

FN_ref_t *fn_ctx_create_subcontext(FN_ctx_t *ctx, const
 FN_composite_name_t *name, FN_status_t *status);

int fn_ctx_destroy_subcontext(FN_ctx_t *ctx, const
 FN_composite_name_t *name, FN_status_t *status);

FN_ref_t *fn_ctx_lookup_link(FN_ctx_t *ctx, const
 FN_composite_name_t *name, FN_status_t *status);

FN_attrset_t *fn_ctx_get_syntax_attrs(FN_ctx_t *ctx, const
 FN_composite_name_t *name, FN_status_t *status);
An XFN context consists of a set of name to reference bindings. An XFN context is represented by the type `FN_ctx_t` in the client interface. The operations for manipulating an `FN_ctx_t` object are described in detail in separate reference manual pages.

The following contains a brief summary of these operations:

- `fn_ctx_handle_from_initial()` returns a pointer to an Initial Context that provides a starting point for resolution of composite names.
- `fn_ctx_handle_from_ref()` returns a handle to an `FN_ctx_t` object using the given reference `ref`. `fn_ctx_get_ref()` returns the reference of the context `ctx`.
- `fn_ctx_handle_destroy()` releases the resources associated with the `FN_ctx_t` object `ctx`; it does not affect the state of the context itself.
- `fn_ctx_lookup()` returns the reference bound to `name` resolved relative to `ctx`.
- `fn_ctx_list_names()` is used to enumerate the atomic names bound in the context named by `name` resolved relative to `ctx`. `fn_ctx_list_bindings()` is used to enumerate the atomic names and their references in the context named by `name` resolved relative to `ctx`.
- `fn_ctx_bind()` binds the composite name `name` to a reference `ref` resolved relative to `ctx`. `fn_ctx_unbind()` unbinds `name` resolved relative to `ctx`. `fn_ctx_rename()` binds `newname` to the reference bound to `oldname` and unbinds `oldname`. `oldname` is resolved relative to `ctx`; `newname` is resolved relative to the target context.
- `fn_ctx_create_subcontext()` creates a new context with the given composite name `name` resolved relative to `ctx`. `fn_ctx_destroy_subcontext()` destroys the context named by `name` resolved relative to `ctx`.

Normal resolution always follows links. `fn_ctx_lookup_link()` looks up `name` relative to `ctx`, following links except for the last atomic part of `name`, which must be bound to an XFN link.

`fn_ctx_get_syntax_attrs()` returns an attribute set containing attributes that describe a context’s syntax. `name` must name a context.

In each context operation, the caller supplies an `FN_status_t` object as a parameter. The called function sets this status object as described in `FN_status_t(3XFN)` and `xfn_status_codes(3XFN)`.

In most of the operations of the base context interface, the caller supplies a context and a composite name. The supplied name is always interpreted relative to the supplied context.

The operation may eventually be effected on a different context called the operation’s target context. Each operation has an initial resolution phase that conveys the operation to its target context, and the operation is then applied. The effect (but not necessarily the implementation) is that of doing a lookup on that portion of the name that represents the target context, and then invoking the operation on the target context.

The contexts involved only in the resolution phase are called intermediate contexts.
Normal resolution of names in context operations always follows XFN links.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

FN_attrset_t(3XFN), FN_composite_name_t(3XFN), FN_ref_t(3XFN),
FN_status_t(3XFN), fn_ctx_bind(3XFN),
fn_ctx_create_subcontext(3XFN), fn_ctx_destroy_subcontext(3XFN),
fn_ctx_get_ref(3XFN), fn_ctx_get_syntax_attrs(3XFN),
fn_ctx_handle_destroy(3XFN), fn_ctx_handle_from_initial(3XFN),
fn_ctx_handle_from_ref(3XFN), fn_ctx_list_bindings(3XFN),
fn_ctx_list_names(3XFN), fn_ctx_lookup(3XFN),
fn_ctx_lookup_link(3XFN), fn_ctx_rename(3XFN), fn_ctx_unbind(3XFN),
xfn(3XFN), xfn_links(3XFN), xfn_status_codes(3XFN), attributes(5)

NOTES

The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
fn_ctx_unbind – unbind a name from a context

SYNOPSIS

```
#include <xfn/xfn.h>

int fn_ctx_unbind(FN_ctx_t *ctx, const FN_composite_name_t *name, 
                  FN_status_t *status);
```

DESCRIPTION

This operation removes the terminal atomic name in `name` from the target context — that named by all but the terminal atomic part of `name`.

This operation is successful even if the terminal atomic name was not bound in the target context, but fails if any of the intermediate names are not bound. `fn_ctx_unbind()` is idempotent.

RETURN VALUE

The operation returns 1 if successful, and 0 otherwise.

ERRORS

`fn_ctx_unbind()` sets `status` as described in `FN_status_t` and `xfn_status_codes(3XFN)`.

Certain naming systems may disallow unbinding a name if the name is bound to an existing context in order to avoid orphan contexts that cannot be reached via any name. In such situations, the status code `FN_E_OPERATION_NOT_SUPPORTED` is returned.

APPLICATION USAGE

In naming systems that support attributes, and store the attributes along with the names, the `unbind` operation removes the name and its associated attributes.

Normal resolution always follows links. In an `fn_ctx_unbind()` operation, resolution of `name` continues to the target context; the terminal atomic name is not resolved. If the terminal atomic name is bound to a link, the link is not followed and the link itself is unbound from the terminal atomic name.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe.</td>
</tr>
</tbody>
</table>

SEE ALSO

`FN_composite_name_t(3XFN), FN_ctx_t(3XFN), FN_ref_t(3XFN),
FN_status_t(3XFN), fn_ctx_bind(3XFN), fn_ctx_lookup(3XFN),
xfn_status_codes(3XFN), xfn(3XFN), attributes(5)`
FN_identifier_t(3XFN)

NAME
FN_identifier_t – an XFN identifier

DESCRIPTION
Identifiers are used to identify reference types and address types in an XFN reference, and to identify attributes and their syntax in the attribute operations.

An XFN identifier consists of an unsigned int, which determines the format of identifier, and the actual identifier, which is expressed as a sequence of octets.

The representation of this structure is defined by XFN as follows:

typedef struct {
 unsigned int format;
 size_t length;
 void *contents;
} FN_identifier_t;

XFN defines a small number of standard forms for identifiers:

FN_ID_STRING The identifier is an ASCII string (ISO 646).

FN_ID_DCE_UUID The identifier is an OSF DCE UUID in string representation. (See the X/Open DCE RPC.)

FN_ID_ISO_OID_STRING The identifier is an ISO OID in ASN.1 dot-separated integer list string format. (See the ISO ASN.1.)

FN_ID_ISO_OID_BER The identifier is an ISO OID in ASN.1 Basic Encoding Rules (BER) format. (See the ISO BER.)

FILES
#include <xfn/xfn.h>

SEE ALSO
FN_attribute_t(3XFN), FN_ref_addr_t(3XFN), FN_ref_t(3XFN), xfn(3XFN)

NOTES
The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
FN_ref_addr_t(3XFN)

NAME
FN_ref_addr_t, fn_ref_addr_create, fn_ref_addr_destroy, fn_ref_addr_copy,
fn_ref_addr_assign, fn_ref_addr_type, fn_ref_addr_length, fn_ref_addr_data,
fn_ref_addr_description – an address in an XFN reference

SYNOPSIS
cc [flg ...] file ... -lxfn [library ...]
#include <xfn/xfn.h>
FN_ref_addr_t *fn_ref_addr_create(constFN_identifier_t *type,
 size_t length, const void *data);
void fn_ref_addr_destroy(FN_ref_addr_t *addr);
FN_ref_addr_t *fn_ref_addr_copy(constFN_ref_addr_t *addr);
FN_ref_addr_t *fn_ref_addr_assign(FN_ref_addr_t *dst, const
 FN_ref_addr_t *src);
const FN_identifier_t *fn_ref_addr_type(constFN_ref_addr_t
 *addr);
size_t fn_ref_addr_length(const FN_ref_addr_t *addr);
const void* fn_ref_addr_data(const FN_ref_addr_t *addr);
FN_string_t *fn_ref_addr_description(constFN_ref_addr_t *addr,
 unsigned int detail, unsigned int *more_detail);

DESCRIPTION
An XFN reference is represented by the type FN_ref_t. An object of this type
contains a reference type and a list of addresses. Each address in the list is represented
by an object of type FN_ref_addr_t. An address consists of an opaque data buffer
and a type field, of type FN_identifier_t.

fn_ref_addr_create() creates and returns an address with the given type and
data. length indicates the size of the data. fn_ref_addr_destroy() releases the
storage associated with the given address. fn_ref_addr_copy() returns a copy of
the given address object. fn_ref_addr_assign() makes a copy of the address
pointed to by src and assigns it to dst, releasing any old contents of dst. A pointer to the
same object as dst is returned.

fn_ref_addr_type() returns the type of the given address.
fn_ref_addr_length() returns the size of the address in bytes.
fn_ref_addr_data() returns the contents of the address.

fn_ref_addr_description() returns the implementation-defined textual
description of the address. It takes as arguments a number, detail, and a pointer to a
number, more_detail. detail specifies the level of detail for which the description should
be generated; the higher the number, the more detail is to be provided. If more_detail is
0, it is ignored. If more_detail is non-zero, it is set by the description operation to
indicate the next level of detail available, beyond that specified by detail. If no higher
level of detail is available, more_detail is set to detail.

Networking Library Functions 131
The address type of an `FN_ref_addr_t` object is intended to identify the mechanism that should be used to reach the object using that address. The client must interpret the contents of the opaque data buffer of the address based on the type of the address, and on the type of the reference that the address is in. However, this interpretation is intended to occur below the application layer. Most applications developers should not have to manipulate the contents of either address or reference objects themselves. These interfaces would generally be used within service libraries.

Multiple addresses in a single reference are intended to identify multiple communication endpoints for the same conceptual object. Multiple addresses may arise for various reasons, such as the object offering interfaces over more than one communication mechanism.

Manipulation of addresses using the operations described in this manual page does not affect their representation in the underlying naming system. Changes to addresses in the underlying naming system can only be effected through the use of the interfaces described in `FN_ctx_t(3XFN)`.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

`FN_ctx_t(3XFN), FN_identifier_t(3XFN), FN_ref_t(3XFN), FN_string_t(3XFN), xfn(3XFN), attributes(5)`

NOTES

The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
An XFN reference is represented by the type `FN_ref_t`. An object of this type contains a reference type and a list of addresses. The ordering in this list at the time of binding might not be preserved when the reference is returned upon lookup.

The reference type is represented by an object of type `FN_identifier_t`. The reference type is intended to identify the class of object referenced. XFN does not dictate the precise use of this.

Each address is represented by an object of type `FN_ref_addr_t`.
fn_ref_create() creates a reference with no address, using ref_type as its reference type. Addresses can be added later to the reference using the functions described below. fn_ref_destroy() releases the storage associated with ref. fn_ref_copy() creates a copy of ref and returns it. fn_ref_assign() creates a copy of src and assigns it to dst, releasing any old contents of dst. A pointer to the same object as dst is returned.

fn_ref_addresscount() returns the number of addresses in the reference ref.

fn_ref_first() returns the first address in ref and sets iter_pos to be after the address. It returns 0 if there is no address in the list. fn_ref_next() returns the address following iter_pos in ref and sets iter_pos to be after the address. If the iteration marker iter_pos is at the end of the sequence, fn_ref_next() returns 0.

fn_ref_prepend_addr() adds addr to the front of the list of addresses in ref.
fn_ref_append_addr() adds addr to the end of the list of addresses in ref.
fn_ref_insert_addr() adds addr to ref before iter_pos and sets iter_pos to be immediately after the new reference added. fn_ref_delete_addr() deletes the address located before iter_pos in the list of addresses in ref and sets iter_pos back one address. fn_ref_delete_all() deletes all addresses in ref.

fn_ref_create_link() creates a reference using the given composite name link_name as an address. fn_ref_is_link() tests if ref is a link. It returns 1 if it is; 0 if it is not. fn_ref_link_name() returns the composite name stored in a link reference. It returns 0 if link_ref is not a link.

fn_ref_description() returns a string description of the given reference. It takes as argument an integer, detail, and a pointer to an integer, more_detail. detail specifies the level of detail for which the description should be generated; the higher the number, the more detail is to be provided. If more_detail is 0, it is ignored. If more_detail is non-zero, it is set by the description operation to indicate the next level of detail available, beyond that specified by detail. If no higher level of detail is available, more_detail is set to detail.

RETURN VALUES
The following operations return 1 if the operation succeeds, 0 if the operation fails:

fn_ref_prepend_addr()
fn_ref_append_addr()
fn_ref_insert_addr()
fn_ref_delete_addr()
fn_ref_delete_all()

USAGE
The reference type is intended to identify the class of object referenced. XFN does not dictate the precise use of this.

Multiple addresses in a single reference are intended to identify multiple communication endpoints for the same conceptual object. Multiple addresses may arise for various reasons, such as the object offering interfaces over more than one communication mechanism.
The client must interpret the contents of a reference based on the type of the addresses and the type of the reference. However, this interpretation is intended to occur below the application layer. Most applications developers should not have to manipulate the contents of either address or reference objects themselves. These interfaces would generally be used within service libraries.

Manipulation of references using the operations described in this manual page does not affect their representation in the underlying naming system. Changes to references in the underlying naming system can only be effected through the use of the interfaces described in `FN_ctx_t(3XFN)`.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

`FN_composite_name_t(3XFN)`, `FN_ctx_t(3XFN)`, `FN_identifier_t(3XFN)`, `FN_ref_addr_t(3XFN)`, `FN_string_t(3XFN)`, `fn_ctx_lookup(3XFN)`, `fn_ctx_lookup_link(3XFN)`, `xfn(3XFN)`, `xfn_links(3XFN)`, attributes(5)

NOTES

The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
FN_search_control_t(3XFN)

NAME
FN_search_control_t, fn_search_control_create, fn_search_control_destroy,
fn_search_control_copy, fn_search_control_assign, fn_search_control_scope,
fn_search_control_follow_links, fn_search_control_max_names,
fn_search_control_return_ref, fn_search_control_return_attr_ids – options for attribute
search

SYNOPSIS
#include <xfn/xfn.h>

FN_search_control_t *fn_search_control_create(unsigned int scope,
 unsigned int follow_links, unsigned int max_names,
 unsigned int return_ref, const FN_attrset_t *return_attr_ids,
 unsigned int *status);

void fn_search_control_destroy(FN_search_control_t *scontrol);

FN_search_control_t *fn_search_control_copy(const FN_search_control_t *scontrol);

FN_search_control_t *fn_search_control_assign(FN_search_control_t *dst, const FN_search_control_t *src);

unsigned int fn_search_control_scope(const FN_search_control_t *scontrol);

unsigned int fn_search_control_follow_links(const FN_search_control_t *scontrol);

unsigned int fn_search_control_max_names(const FN_search_control_t *scontrol);

unsigned int fn_search_control_return_ref(const FN_search_control_t *scontrol);

const FN_attrset_t *fn_search_control_return_attr_ids(const FN_search_control_t *scontrol);

DESCRIPTION
The FN_search_control_t object is used to specify options for the attribute search
operation fn_attr_ext_search(3XFN).

fn_search_control_create() creates an FN_search_control_t object using
information in scope, follow_links, max_names, return_ref, and return_attr_ids to set the
search options. If the operation succeeds, fn_search_control_create() returns a
pointer to an FN_search_control_t object; otherwise, it returns a NULL pointer.

The scope of the search, scope, is either the named object, the named context, the
named context and its subcontexts, or the named context and a context
implementation defined set of subcontexts. The values for scope are:

<table>
<thead>
<tr>
<th>FN_SEARCH_NAMED_OBJECT</th>
<th>Search just the given named object.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FN_SEARCH_ONE_CONTEXT</td>
<td>Search just the given context.</td>
</tr>
<tr>
<td>FN_SEARCH_SUBTREE</td>
<td>Search given context and all its subcontexts.</td>
</tr>
</tbody>
</table>
Search given context and its subcontexts as constrained by the context-specific policy in place at the named context.

follow_links further defines the scope and nature of the search. If *follow_links* is nonzero, the search follows XFN links. If *follow_links* is 0, XFN links are not followed. See `fn_attr_ext_search(3XFN)` for more detail about how XFN links are treated.

max_names specifies the maximum number of names to return in an `FN_ext_searchlist_t(3XFN)` enumeration (see `fn_attr_ext_search(3XFN)`). The names of all objects whose attributes satisfy the filter are returned when *max_names* is 0.

If *return_ref* is non-zero, the reference bound to the named object is returned with the object’s name by `fn_ext_searchlist_next(3XFN)` (see `fn_attr_ext_search(3XFN)`). If *return_ref* is 0, the reference is not returned.

Attribute identifiers and values associated with named objects that satisfy the filter may be returned by `fn_ext_searchlist_next(3XFN)`. The attributes returned are those listed in *return_attr_ids*. If the value of *return_attr_ids* is 0, all attributes are returned. If *return_attr_ids* is an empty `FN_attrset_t` object (see `FN_attrset_t(3XFN)`), no attributes are returned. Any attribute values in *return_attr_ids* are ignored; only the attribute identifiers are relevant for this operation.

`fn_attr_ext_search(3XFN)` interprets a value of 0 for the search control argument as a default search control which has the following option settings:

- `scope`: `FN_SEARCH_ONE_CONTEXT`
- `follow_links`: 0 (do not follow links)
- `max_names`: 0 (return all named objects that match filter)
- `return_ref`: 0 (do not return the reference of the named object)
- `return_attr_ids`: an empty `FN_attrset_t` object (do not return any attributes of the named object)

`fn_search_control_destroy()` releases the storage associated with `scontrol`.

`fn_search_control_copy()` returns a copy of the search control `scontrol`.

`fn_search_control_assign()` makes a copy of the search control `src` and assigns it to `dst`, releasing the old contents of `dst`. A pointer to the same object as `dst` is returned.

`fn_search_control_scope()` returns the scope for the search.

`fn_search_control_follow_links()` returns non-zero if links are followed; 0 if not.

`fn_search_control_max_names()` returns the maximum number of names.
FN_search_control_t(3XFN)

fn_search_control_return_ref() returns nonzero if the reference is returned; 0 if not.

fn_search_control_return_attr_ids() returns a pointer to the list of attributes; a NULL pointer indicates that all attributes and values are returned.

ERRORS

fn_search_control_create() returns a NULL pointer if the operation fails and sets status as follows:

FN_E_SEARCH_INVALID_OPTION A supplied search option was invalid or inconsistent.

Other status codes are possible (see xfn_status_codes(3XFN)).

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

FN_attrset_t(3XFN), fn_attr_ext_search(3XFN), xfn_status_codes(3XFN), attributes(5)
FN_search_filter_t(3XFN)

NAME
FN_search_filter_t, fn_search_filter_create, fn_search_filter_destroy, fn_search_filter_copy, fn_search_filter_assign, fn_search_filter_expression, fn_search_filter_arguments – filter expression for attribute search

SYNOPSIS
#include <xfn/xfn.h>

FN_search_filter_t *fn_search_filter_create(unsigned int *status,
 const unsigned char *estr,
);

void fn_search_filter_destroy(FN_search_filter_t *sfilter);

FN_search_filter_t *fn_search_filter_copy(const
 FN_search_filter_t *sfilter);

FN_search_filter_t *fn_search_filter_assign(FN_search_filter_t *dst,
 const FN_search_filter_t *src);

const char *fn_search_filter_expression(const FN_search_filter_t *
 sfilter);

const void **fn_search_filter_arguments(const FN_search_filter_t *
 sfilter, size_t *number_of_arguments);

DESCRIPTION
The FN_search_filter_t type is an expression that is evaluated against the attributes of named objects bound in the scope of the search operation fn_attr_ext_search(3XFN). The filter evaluates to TRUE or FALSE. If the filter is empty, it evaluates to TRUE. Names of objects whose attribute values satisfy the filter expression are returned by the search operation.

If the identifier in any subexpression of the filter does not exist as an attribute of an object, then the innermost logical expression containing that identifier is FALSE. A subexpression that is only an attribute tests for the presence of the attribute; the subexpression evaluates to TRUE if the attribute has been defined for the object and FALSE otherwise.

fn_search_filter_create() creates a search filter from the expression string estr and the remaining arguments.

fn_search_filter_destroy() releases the storage associated with the search filter sfilter.

fn_search_filter_copy() returns a copy of the search filter sfilter.

fn_search_filter_assign() makes a copy of the search filter src and assigns it to dst, releasing the old contents of dst. A pointer to the same object as dst is returned.

fn_search_filter_expression() returns the filter expression of sfilter.

fn_search_filter_arguments() returns an array of pointers to arguments supplied to the filter constructor. number_of_arguments is set to the size of this array. The types of the arguments are determined by the substitution tokens in the expression in sfilter.
The arguments to `fn_search_filter_create()` are a return status, an expression string, and a list of arguments. The string contains the filter expression with substitution tokens for the attributes, attribute values, strings, and identifiers that are part of the expression. The remaining list of arguments contains the attributes and values in the order of appearance of their corresponding substitution tokens in the expression. The arguments are of types `FN_attribute_t*`, `FN_attrvalue_t*`, `FN_string_t*`, or `FN_identifier_t*`. Any attribute values in an `FN_attribute_t*` type of argument are ignored; only the attribute identifier and attribute syntax are relevant. The argument type expected by each substitution token are listed in the following table.

<table>
<thead>
<tr>
<th>Token</th>
<th>Argument Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>%a</td>
<td>FN_attribute_t*</td>
</tr>
<tr>
<td>%v</td>
<td>FN_attrvalue_t*</td>
</tr>
<tr>
<td>%s</td>
<td>FN_string_t*</td>
</tr>
<tr>
<td>%i</td>
<td>FN_identifier_t*</td>
</tr>
</tbody>
</table>

The following precedence relations hold in the absence of parentheses, in the order of lowest to highest:

or

and
not relational operators

These boolean and relational operators are left associative.

Comparisons and ordering are specific to the syntax and/or rules of the supplied attribute.

Locale (code set, language, or territory) mismatches that occur during string comparisons and ordering operations are resolved in an implementation-dependent way. Relational operations that have ordering semantics may be used for strings of code sets in which ordering is meaningful, but is not of general use in internationalized environments.

An attribute that occurs in the absence of any relational operator tests for the presence of the attribute.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>==</td>
<td>The sub-expression is TRUE if at least one value of the specified attribute is equal to the supplied value.</td>
</tr>
<tr>
<td>!=</td>
<td>The sub-expression is TRUE if no values of the specified attribute equal the supplied value.</td>
</tr>
<tr>
<td>>=</td>
<td>The sub-expression is TRUE if at least one value of the attribute is greater than or equal to the supplied value.</td>
</tr>
<tr>
<td>></td>
<td>The sub-expression is TRUE if at least one value of the attribute is greater than the supplied value.</td>
</tr>
<tr>
<td>< =</td>
<td>The sub-expression is TRUE if at least one value of the attribute is less than or equal to the supplied value.</td>
</tr>
<tr>
<td><</td>
<td>The sub-expression is TRUE if at least one value of the attribute is less than the supplied value.</td>
</tr>
<tr>
<td>≈ =</td>
<td>The sub-expression is TRUE if at least one value of the specified attribute matches the supplied value according to some context-specific approximate matching criterion. This criterion must subsume strict equality.</td>
</tr>
</tbody>
</table>

Wildcarded Strings

A wildcarded string consists of a sequence of alternating wildcard specifiers and strings. The sequence can start with either a wildcard specifier or a string, and end with either a wildcard specifier or a string.

The wildcard specifier is denoted by the asterisk character (‘*’) and means zero or more occurrences of any character.

Wildcarded strings can be used to specify substring matches. The following are examples of wildcarded strings and what they mean:
Wildcarded String Meaning

<table>
<thead>
<tr>
<th>Wildcarded String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Any string</td>
</tr>
<tr>
<td>*’ing’</td>
<td>Any string ending with ing</td>
</tr>
<tr>
<td>Any string starting with jo, and containing the substring ph, and which contains the substring ne in the portion of the string following ph, and which ends with er T}</td>
<td>Any string starting with the supplied string</td>
</tr>
<tr>
<td>%s*</td>
<td></td>
</tr>
</tbody>
</table>

String matches involving strings of different locales (code set, language, or territory) are resolved in an implementation-dependent way.

In addition to the relational operators, extended operators can be specified. All extended operators return either TRUE or FALSE. A filter expression can contain both relational and extended operations.

Extended operators are specified using an identifier (see `FN_identifier_t(3XFN)`) or a string. If the operator is specified using a string, the string is used to construct an identifier of format `FN_ID_STRING`. Identifiers of extended operators and signatures of the corresponding extended operations, as well as their suggested semantics, are registered with X/Open Company Ltd.

The following three extended operations are currently defined:

- `'name'(<Wildcarded String>)`
 The identifier for this operation is `'name' (FN_ID_STRING)`. The argument to this operation is a wildcard string. The operation returns TRUE if the name of the object matches the supplied wildcard string.

- `'reftype'(%i)`
 The identifier for this operation is `'reftype' (FN_ID_STRING)`. The argument to this operation is an identifier.
The operation returns TRUE if the reference type of the object is equal to the supplied identifier.

`'addrtype'(%i)` The identifier for this operation is `'addrtype' (LM FN_ID_STRING)`. The argument to the operation is an identifier. The operation returns TRUE if any of the address types in the reference of the object is equal to the supplied identifier.

Support and exact semantics of extended operations are context-specific. If a context does not support an extended operation, or if the filter expression supplies the extended operation with either an incorrect number or type of arguments, the error `FN_E_SEARCH_INVALID_OP` is returned. (Note: `FN_E_OPERATION_NOT_SUPPORTED` is returned when `fn_attr_ext_search(3XFN)` is not supported.)

The following are examples of filter expressions that contain extended operations:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluates to TRUE if the name of the object starts with bill. <code>T</code></td>
<td>Evaluates to result of applying the specified operation to the supplied arguments. <code>%i(%a, %v)</code></td>
</tr>
<tr>
<td><code>(%a == %v)</code> and <code>'name'('joe'*</code></td>
<td>Evaluates to TRUE if the specified attribute has the given value and if the name of the object starts with joe.</td>
</tr>
</tbody>
</table>

RETURN VALUES

`fn_search_filter_create()` returns a pointer to an `FN_search_filter_t` object if the operation succeeds; otherwise it returns a NULL pointer.

ERRORS

`fn_search_filter_create()` returns a NULL pointer if the operation fails and sets `status` in the following way:

- `FN_E_SEARCH_INVALID_FILTER` The filter expression had a syntax error or some other problem.
- `FN_E_SEARCH_INVALID_OP` An operator in the filter expression is not supported or, if the operator is an extended
operator, the number of types of arguments supplied does not match the signature of the operation.

FN_E_INVALID_ATTR_IDENTIFIER The left hand side of an operator expression was not an attribute.

FN_E_INVALID_ATTR_VALUE The right hand side of an operator expression was not an integer, attribute value, or (wildcarded) string.

Other status codes are possible as described in the reference manual pages for `FN_status_t(3XFN)` and `xfn_status_codes(3XFN)`.

EXAMPLES

EXAMPLE 1 Creating Different Filters

The following examples illustrate how to create three different filters.

The first example shows how to construct a filter involving substitution tokens and literals in the same filter expression. This example creates a filter for named objects whose `color` attribute contains a string value of `red`, `blue`, or `white`. The first two values are specified using substitution tokens; the last value, `white`, is specified as a literal in the expression.

```c
unsigned int status;
extern FN_attribute_t *attr_color;
FN_string_t *red = fn_string_from_str((unsigned char *)"red");
FN_string_t *blue = fn_string_from_str((unsigned char *)"blue");
FN_search_filter_t *sfilter;
sfilter = fn_search_filter_create(&status, "(%a == %s) or (%a == %s) or (%a == 'white')", attr_color, red, attr_color, blue, attr_color);
```

The second example illustrates how to construct a filter involving a wildcarded string. This example creates a filter for searching for named objects whose `last_name` attribute has a value that begins with the character `m`.

```c
unsigned int status;
extern FN_attribute_t *attr_last_name;
FN_search_filter_t *sfilter;
sfilter = fn_search_filter_create(&status, "%a == 'm'*", attr_last_name);
```

The third example illustrates how to construct a filter involving extended operations. This example creates a filter for finding all named objects whose name ends with `ton`.

```c
unsigned int status;
FN_search_filter_t *sfilter;
sfilter = fn_search_filter_create(&status, "'name'(*'ton')");
```

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:
FN_search_filter_t(3XFN)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

FN_attribute_t(3XFN), FN_attrvalue_t(3XFN), FN_identifier_t(3XFN), FN_status_t(3XFN), FN_string_t(3XFN), fn_attr_ext_search(3XFN), xfn_status_codes(3XFN), attributes(5)
FN_status_t(3XFN)

NAME FN_status_t, fn_status_create, fn_status_destroy, fn_status_copy, fn_status_assign,
fn_status_code, fn_status_remaining_name, fn_status_resolved_name,
fn_status_resolved_ref, fn_status_diagnostic_message, fn_status_link_code,
fn_status_link_remaining_name, fn_status_link_resolved_name,
fn_status_link_resolved_ref, fn_status_link_diagnostic_message, fn_status_is_success,
fn_status_set_success, fn_status_set, fn_status_set_code,
fn_status_set_remaining_name, fn_status_set_resolved_name,
fn_status_set_resolved_ref, fn_status_set_diagnostic_message,
fn_status_set_link, fn_status_set_link_remaining_name,
fn_status_set_link_resolved_name, fn_status_set_link_resolved_ref,
fn_status_set_link_diagnostic_message, fn_status_append_resolved_name,
fn_status_append_remaining_name, fn_status_advance_by_name,
fn_status_description -- an XFN status object

SYNOPSIS cc [flg ...] file ... -lxfn [library ...]
#include <xfn/xfn.h>

FN_status_t *fn_status_create(void);
void fn_status_destroy(FN_status_t *stat);
FN_status_t *fn_status_copy(const FN_status_t *stat);
FN_status_t *fn_status_assign(FN_status_t *dst, const FN_status_t *src);
unsigned int fn_status_code(const FN_status_t *stat);
const FN_composite_name_t *fn_status_remaining_name(const FN_status_t *stat);
const FN_composite_name_t *fn_status_resolved_name(const FN_status_t *stat);
const FN_ref_t *fn_status_resolved_ref(const FN_status_t *stat);
const FN_string_t *fn_status_diagnostic_message(const FN_status_t *stat);
unsigned int fn_status_link_code(const FN_status_t *stat);
const FN_composite_name_t *fn_status_link_remaining_name(const FN_status_t *stat);
const FN_composite_name_t *fn_status_link_resolved_name(const FN_status_t *stat);
const FN_ref_t *fn_status_link_resolved_ref(const FN_status_t *stat);
const FN_string_t *fn_status_link_diagnostic_message(const FN_status_t *stat);
int fn_status_is_success(const FN_status_t *stat);
int fn_status_set_success(FN_status_t *stat);
The result status of operations in the context interface and the attribute interface is encapsulated in an FN_status_t object. This object contains information about how the operation completed: whether an error occurred in performing the operation, the nature of the error, and information that helps locate where the error occurred. In the case that the error occurred while resolving an XFN link, the status object contains additional information about that error.

The context status object consists of several items of information:

- **primary status code**: An unsigned int code describing the disposition of the operation.

FN_status_t(3XFN)

```c
int fn_status_set(FN_status_t *stat, unsigned int code, const FN_ref_t *resolved_ref, const FN_composite_name_t *resolved_name, const FN_composite_name_t *remaining_name);

int fn_status_set_code(FN_status_t *stat, unsigned int code);

int fn_status_set_remaining_name(FN_status_t *stat, const FN_composite_name_t *name);

int fn_status_set_resolved_name(FN_status_t *stat, const FN_composite_name_t *name);

int fn_status_set_resolved_ref(FN_status_t *stat, const FN_ref_t *ref);

int fn_status_set_diagnostic_message(FN_status_t *stat, const FN_string_t *msg);

int fn_status_set_link_code(FN_status_t *stat, unsigned int code);

int fn_status_set_link_remaining_name(FN_status_t *stat, const FN_composite_name_t *name);

int fn_status_set_link_resolved_name(FN_status_t *stat, const FN_composite_name_t *name);

int fn_status_set_link_resolved_ref(FN_status_t *stat, const FN_ref_t *ref);

int fn_status_set_link_diagnostic_message(FN_status_t *stat, const FN_string_t *msg);

int fn_status_append_resolved_name(FN_status_t *stat, const FN_composite_name_t *name);

int fn_status_append_remaining_name(FN_status_t *stat, const FN_composite_name_t *name);

int fn_status_advance_by_name(FN_status_t *stat, const FN_composite_name_t *prefix, const FN_ref_t *resolved_ref);

FN_string_t *fn_status_description(const FN_status_t *stat, unsigned int detail, unsigned int *more_detail);
```
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resolved name</td>
<td>In the case of a failure during the resolution phase of the operation, this is the leading portion of the name that was resolved successfully. Resolution may have been successful beyond this point, but the error might not be pinpointed further.</td>
</tr>
<tr>
<td>resolved reference</td>
<td>The reference to which resolution was successful (in other words, the reference to which the resolved name is bound).</td>
</tr>
<tr>
<td>remaining name</td>
<td>The remaining unresolved portion of the name.</td>
</tr>
<tr>
<td>diagnostic message</td>
<td>This contains any diagnostic message returned by the context implementation. This message provides the context implementation a way of notifying the end-user or administrator of any implementation-specific information related to the returned error status. The diagnostic message could then be used by the end-user or administrator to take appropriate out-of-band action to rectify the problem.</td>
</tr>
<tr>
<td>link status code</td>
<td>In the case that an error occurred while resolving an XFN link, the primary status code has the value FN_E_LINK_ERROR and the link status code describes the error that occurred while resolving the XFN link.</td>
</tr>
<tr>
<td>resolved link name</td>
<td>In the case of a link error, this contains the resolved portion of the name in the XFN link.</td>
</tr>
<tr>
<td>resolved link reference</td>
<td>In the case of a link error, this contains the reference to which the resolved link name is bound.</td>
</tr>
<tr>
<td>remaining link name</td>
<td>In the case of a link error, this contains the remaining unresolved portion of the name in the XFN link.</td>
</tr>
<tr>
<td>link diagnostic message</td>
<td>In the case of a link error, this contains any diagnostic message related to the resolution of the link.</td>
</tr>
</tbody>
</table>

Both the primary status code and the link status code are values of type unsigned int that are drawn from the same set of meaningful values. XFN reserves the values 0 through 127 for standard meanings. The values and interpretations for the codes are determined by XFN. See xfn_status_codes(3XFN).

- `fn_status_create()` creates a status object with status FN_SUCCESS.
- `fn_status_destroy()` releases the storage associated with `stat`.
- `fn_status_copy()` returns a copy of the status object `stat`. `fn_status Assign()` makes a copy of the status object `src` and assigns it to `dst`, releasing any old contents of `dst`. A pointer to the same object as `dst` is returned.
fn_status_code() returns the status code. fn_status_remaining_name() returns the remaining part of name to be resolved. fn_status_resolved_name() returns the part of the composite name that has been resolved. fn_status_resolved_ref() returns the reference to which resolution was successful. fn_status_diagnostic_message returns any diagnostic message set by the context implementation.

fn_status_link_code() returns the link status code. fn_status_link_remaining_name() returns the remaining part of the link name that has not been resolved. fn_status_link_resolved_name() returns the part of the link name that has been resolved. fn_status_link_resolved_ref() returns the reference to which resolution of the link was successful. fn_status_link_diagnostic_message() returns any diagnostic message set by the context implementation during resolution of the link.

fn_status_is_success() returns 1 if the status indicates success, 0 otherwise.

fn_status_set_success() sets the status code to FN_SUCCESS and clears all other parts of stat. fn_status_set() sets the non-link contents of the status object stat. fn_status_set_code() sets the primary status code field of the status object stat. fn_status_set_remaining_name() sets the remaining name part of the status object stat to name. fn_status_set_resolved_name() sets the resolved name part of the status object stat to name. fn_status_set_resolved_ref() sets the resolved reference part of the status object stat to ref. fn_status_set_diagnostic_message() sets the diagnostic message part of the status object to msg.

fn_status_set_link_code() sets the link status code field of the status object stat to indicate why resolution of the link failed. fn_status_set_link_remaining_name() sets the remaining link name part of the status object stat to name. fn_status_set_link_resolved_name() sets the resolved link name part of the status object stat to name. fn_status_set_link_resolved_ref() sets the resolved link reference part of the status object stat to ref. fn_status_set_link_diagnostic_message() sets the link diagnostic message part of the status object to msg.

fn_status_append_resolved_name() appends as additional components name to the resolved name part of the status object stat. fn_status_append_remaining_name() appends as additional components name to the remaining name part of the status object stat. fn_status_advance_by_name() removes prefix from the remaining name, and appends it to the resolved name. The resolved reference part is set to resolved_ref. This operation returns 1 on success, 0 if the prefix is not a prefix of the remaining name.

RETURN VALUES

The fn_status_set_*() operations return 1 if the operation succeeds, 0 if the operation fails.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:
FN_status_t(3XFN)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

FNComposite name_t(3XFN), FN_ref_t(3XFN), FN_string_t(3XFN), xfn(3XFN), xfn_status_codes(3XFN), attributes(5)

NOTES

The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
FN_string_t(3XFN)

NAME

FN_string_t, fn_string_create, fn_string_destroy, fn_string_from_str,
fn_string_from_str_n, fn_string_str, fn_string_from_contents, fn_string_code_set,
fn_string_charcount, fn_string_bytecount, fn_string_contents, fn_string_copy,
fn_string_assign, fn_string_from_strings, fn_string_from_substring,
fn_string_is_empty, fn_string_compare, fn_string_compare_substring,
fn_string_next_substring, fn_string_prev_substring – a character string

SYNOPSIS

cc [flag ...] file ... -lxfn [library ...]
#include <xfn/xfn.h>
FN_string_t *fn_string_create(void);
void fn_string_destroy(FN_string_t *str);
FN_string_t *fn_string_from_str(const unsigned char *cstr);
FN_string_t *fn_string_from_str_n(const unsigned char *cstr,
size_t n);
const unsigned char *fn_string_str(const FN_string_t *str,
unsigned int *status);
FN_string_t *fn_string_from_contents(unsigned long code_set,
const void *locale_info, size_t locale_info_len, size_t charcount,
size_t bytecount, const void *contents, unsigned int *status);
unsigned long fn_string_code_set(const FN_string_t *str,
const void **locale_info, size_t *locale_info_len);
size_t fn_string_charcount(const FN_string_t *str);
size_t fn_string_bytecount(const FN_string_t *str);
const void *fn_string_contents(const FN_string_t *str);
FN_string_t *fn_string_copy(const FN_string_t *str);
FN_string_t *fn_string_assign(FN_string_t *dst, const FN_string_t *src);
FN_string_t *fn_string_from_strings(unsigned int *status,
const FN_string_t *s1, const FN_string_t *s2, ...);
FN_string_t *fn_string_from_substring(const FN_string_t *str,
int first, int last);
int fn_string_is_empty(const FN_string_t *str);
int fn_string_compare(const FN_string_t *str1, const FN_string_t *str2,
unsigned int string_case, unsigned int *status);
int fn_string_compare_substring(const FN_string_t *str1, int first,
int last, const FN_string_t *str2, unsigned int string_case,
unsigned int *status);
int fn_string_next_substring(const FN_string_t *str, const FN_string_t *sub, int index, unsigned int string_case, unsigned int *status);

int fn_string_prev_substring(const FN_string_t *str, const FN_string_t *sub, int index, unsigned int string_case, unsigned int *status);

DESCRIPTION
The FN_string_t type is used to represent character strings in the XFN interface. It provides insulation from specific string representations.

The FN_string_t supports multiple code sets. It provides creation functions for character strings of the code set of the current locale setting and a generic creation function for arbitrary code sets. The degree of support for the functions that manipulate FN_string_t for arbitrary code sets is implementation-dependent. An XFN implementation is required to support the ISO646 code set; all other code sets are optional.

fn_string_destroy() releases the storage associated with the given string.

fn_string_create() creates an empty string.

fn_string_from_str() creates an FN_string_t object from the given null terminated string based on the code set of the current locale setting. The number of characters in the string is determined by the code set of the current locale setting.

fn_string_from_str_n() is like fn_string_from_str() except only n characters from the given string are used.

fn_string_str() returns the contents of the given string str in the form of a null terminated string in the code set and current locale setting.

fn_string_from_contents() creates an FN_string_t object using the specified code set code_set, locale information locale_info, and data in the given buffer contents. bytecount specifies the number of bytes in contents and charcount specifies the number of characters represented by contents.

fn_string_code_set() returns the code set associated with the given string object and, if present, the locale information in locale_info. fn_string_charcount() returns the number of characters in the given string object.

fn_string_bytecount() returns the number of bytes used to represent the given string object. fn_string_contents() returns a pointer to the contents of the given string object.

fn_string_copy() returns a copy of the given string object.

fn_string_assign() makes a copy of the string object src and assigns it to dst, releasing any old contents of dst. A pointer to the same object as dst is returned.

fn_string_from_strings() is a function that takes a variable number of arguments (minimum of 2), the last of which must be NULL (0); it returns a new string object composed of the left to right concatenation of the given strings, in the given order. The support for strings with different code sets and/or locales as arguments to a single invocation of fn_string_from_strings() is implementation-dependent.
fn_string_from_substring() returns a new string object consisting of the characters located between *first* and *last* inclusive from *str*. Indexing begins with 0. If *last* is FN_STRING_INDEX_LAST or exceeds the length of the string, the index of the last character of the string is used.

fn_string_is_empty() returns whether *str* is an empty string.

Comparison of two strings must take into account code set and locale information. If strings are in the same code set and same locale, case sensitivity is applied according to the case sensitivity rules applicable for the code set and locale; case sensitivity may not necessarily be relevant for all string encodings. If *string_case* is non-zero, case is significant and equality for strings of the same code set is defined as equality between byte-wise encoded values of the strings. If *string_case* is zero, case is ignored and equality for strings of the same code set is defined using the definition of case-insensitive equality for the specific code set. Support for comparison between strings of different code sets, or lack thereof, is implementation-dependent.

fn_string_compare() compares strings *str1* and *str2* and returns 0 if they are equal, non-zero if they are not equal. If two strings are not equal, **fn_string_compare()** returns a positive value if the difference of *str2* precedes that of *str1* in terms of byte-wise encoded value (with case-sensitivity taken into account when *string_case* is non-zero), and a negative value if the difference of *str1* precedes that of *str2*, in terms of byte-wise encoded value (with case-sensitivity taken into account when *string_case* is non-zero). Such information (positive versus negative return value) may be used by applications that use strings of code sets in which ordering is meaningful; this information is not of general use in internationalized environments. **fn_string_compare_substring()** is similar to **fn_string_compare()** except that **fn_string_compare_substring()** compares characters between *first* and *last* inclusive of *str2* with *str1*. Comparison of strings with incompatible code sets returns a negative or positive value (never 0) depending on the implementation.

fn_string_next_substring() returns the index of the next occurrence of *sub* at or after *index* in the string *str*. FN_STRING_INDEX_NONE is returned if *sub* does not occur. **fn_string_prev_substring()** returns the index of the previous occurrence of *sub* at or before *index* in the string *str*. FN_STRING_INDEX_NONE is returned if *sub* does not occur. In both of these functions, *string_case* specifies whether the search should take case-sensitivity into account.

ERRORS
fn_string_str() returns 0 and sets *status* to FN_E_INCOMPATIBLE_CODE_SETS if the given string’s representation cannot be converted into the code set of the current locale setting. It is implementation-dependent which code sets can be converted into the code set of the current locale.

Code set mismatches that occur during concatenation, searches, or comparisons are resolved in an implementation-dependent way. When an implementation discovers that arguments to substring searches and comparison operations have incompatible
code sets, it sets status to FN_E_INCOMPATIBLE_CODE_SETS. In such cases,
fn_string_from_strings() returns 0. The returned value for comparison
operations when there is code set or locale incompatibility is either negative or
positive (greater than 0); it is never 0.

fn_string_from_contents() returns 0 and status is set to
FN_E_INCOMPATIBLE_CODE_SETS if the supplied code set and/or locale
information are not supported by the XFN implementation.

ATTRIBUTES
See attributes (5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
xfn(3XFN), attributes(5)

NOTES
The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.
getaddrinfo(3SOCKET)

NAME
getaddrinfo, getnameinfo, freeaddrinfo, gai_strerror – translate between node name and address

SYNOPSIS
cc [flag ...] file ... -lsocket -lnsl [library ...]
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *nodename, const char *servname, const struct addrinfo *hints, struct addrinfo **res);

int getnameinfo(const struct sockaddr *sa, socklen_t salen, char *host, size_t hostlen, char *serv, size_t servlen, int flags);

void freeaddrinfo(struct addrinfo *ai);

char *gai_strerror(int errcode);

DESCRIPTION
These functions perform translations from node name to address and from address to node name in a protocol-independent manner.

The getaddrinfo() function performs the node name to address translation. The nodename and servname arguments are pointers to null-terminated strings or NULL. One or both of these arguments must be a non-null pointer. In the normal client scenario, both the nodename and servname are specified. In the normal server scenario, only the servname is specified. A non-null nodename string can be either a node name or a numeric host address string (a dotted-decimal IPv4 address or an IPv6 hex address). A non-null servname string can be either a service name or a decimal port number.

The caller can optionally pass an addrinfo structure, pointed to by the third argument, to provide hints concerning the type of socket that the caller supports.

The addrinfo structure is defined as:

```
struct addrinfo {
    int    ai_flags;    /* AI_PASSIVE, AI_CANONNAME, AI_NUMERICHOST */
    int    ai_family;   /* PF_xxx */
    int    ai_socktype; /* SOCK_xxx */
    int    ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
    size_t ai_addrlen;  /* length of ai_addr */
    char  *ai_canonname; /* canonical name for nodename */
    struct sockaddr *ai_addr; /* binary address */
    struct addrinfo *ai_next; /* next structure in linked list */
};
```

In this hints structure, all members other than ai_flags, ai_family, ai_socktype, and ai_protocol must be 0 or a null pointer. A value of PF_UNSPEC for ai_family indicates that the caller will accept any protocol family. A value of 0 for ai_socktype indicates that the caller will accept any socket type. A value of 0 for ai_protocol indicates that the caller will accept any protocol. For example, if the caller handles only TCP and not UDP, then the ai_socktype member of the hints structure should be set to SOCK_STREAM when getaddrinfo() is called. If the caller handles only
IPv4 and not IPv6, then the ai_family member of the hints structure should be set to PF_INET when getaddrinfo() is called. If the third argument to getaddrinfo() is a null pointer, it is as if the caller had filled in an addrinfo structure initialized to 0 with ai_family set to PF_UNSPEC.

Upon success, a pointer to a linked list of one or more addrinfo structures is returned through the final argument. The caller can process each addrinfo structure in this list by following the ai_next pointer, until a null pointer is encountered. In each returned addrinfo structure the three members ai_family, ai_socktype, and ai_protocol are the corresponding arguments for a call to the socket(3SOCKET) function. In each addrinfo structure the ai_addr member points to a filled-in socket address structure whose length is specified by the ai_addrlen member.

If the AI_PASSIVE bit is set in the ai_flags member of the hints structure, the caller plans to use the returned socket address structure in a call to bind(3SOCKET). In this case, if the nodename argument is a null pointer, the IP address portion of the socket address structure will be set to INADDR_ANY for an IPv4 address or IN6ADDR_ANY_INIT for an IPv6 address.

If the AI_PASSIVE bit is not set in the ai_flags member of the hints structure, then the returned socket address structure will be ready for a call to connect(3SOCKET) (for a connection-oriented protocol) or either connect(3SOCKET), sendto(3SOCKET), or sendmsg(3SOCKET) (for a connectionless protocol). If the nodename argument is a null pointer, the IP address portion of the socket address structure will be set to the loopback address.

If the AI_CANONNAME bit is set in the ai_flags member of the hints structure, then upon successful return the ai_canonname member of the first addrinfo structure in the linked list will point to a null-terminated string containing the canonical name of the specified nodename.

If the AI_NUMERICHOST bit is set in the ai_flags member of the hints structure, then a non-null nodename string must be a numeric host address string. Otherwise an error of EAI_NONAME is returned. This flag prevents any type of name resolution service (such as DNS) from being called.

All of the information returned by getaddrinfo() is dynamically allocated: the addrinfo structures as well as the socket address structures and canonical node name strings pointed to by the addrinfo structures. The freeaddrinfo() function is called to return this information to the system the function. For freeaddrinfo(), the addrinfo structure pointed to by the ai argument is freed, along with any dynamic storage pointed to by the structure. This operation is repeated until a null ai_next pointer is encountered.
To aid applications in printing error messages based on the EAI_* codes returned by getaddrinfo(), the gai_strerror() is defined. The argument is one of the EAI_* values defined below and the return value points to a string describing the error. If the argument is not one of the EAI_* values, the function still returns a pointer to a string whose contents indicate an unknown error.

The getnameinfo() function looks up an IP address and port number provided by the caller in the name service database and system-specific database, and returns text strings for both in buffers provided by the caller. The function indicates successful completion by a 0 return value; a non-zero return value indicates failure.

The first argument, sa, points to either a sockaddr_in structure (for IPv4) or a sockaddr_in6 structure (for IPv6) that holds the IP address and port number. The salen argument gives the length of the sockaddr_in or sockaddr_in6 structure.

The function returns the node name associated with the IP address in the buffer pointed to by the host argument. The caller provides the size of this buffer with the hostlen argument. The service name associated with the port number is returned in the buffer pointed to by serv, and the servlen argument gives the length of this buffer. The caller specifies not to return either string by providing a 0 value for the hostlen or servlen arguments. Otherwise, the caller must provide buffers large enough to hold the node name and the service name, including the terminating null characters.

To aid the application in allocating buffers for these two returned strings, the following constants are defined in <netdb.h>:

#define NI_MAXHOST 1025
#define NI_MAXSERV 32

The final argument is a flag that changes the default actions of this function. By default, the fully-qualified domain name (FQDN) for the host is looked up in the name service database and returned. If the flag bit NI_NOFQDN is set, only the node name portion of the FQDN is returned for local hosts.

If the flag bit NI_NUMERICHOST is set, or if the host’s name cannot be located in the name service, the numeric form of the host’s address is returned instead of its name, for example, by calling inet_ntop() (see inet(3SOCKET)) instead of getipnodebyname(3SOCKET). If the flag bit NI_NAMEREQD is set, an error is returned if the host’s name cannot be located in the name service database.

If the flag bit NI_NUMERICSERV is set, the numeric form of the service address is returned (for example, its port number) instead of its name. The two NI_NUMERIC* flags are required to support the "-n" flag that many commands provide.

A fifth flag bit, NI_DGRAM, specifies that the service is a datagram service, and causes getservbyport(3SOCKET) to be called with a second argument of "udp" instead of the default "tcp". This is required for the few ports (for example, 512-514) that have different services for UDP and TCP.
These NI_* flags are defined in <netdb.h> along with the AI_* flags already defined for getaddrinfo().

RETURN VALUES

For getaddrinfo(), if the query is successful, a pointer to a linked list of one or more addrinfo structures is returned by the fourth argument and the function returns 0. If the query fails, a non-zero error code will be returned. For getnameinfo(), if successful, the strings hostname and service are copied into host and serv, respectively. If unsuccessful, zero values for either hostlen or servlen will suppress the associated lookup; in this case no data is copied into the applicable buffer. If gai_strerror() is successful, a pointer to a string containing an error message appropriate for the EAI_* errors is returned. If errcode is not one of the EAI_* values, a pointer to a string indicating an unknown error is returned.

ERRORS

The following names are the error values returned by getaddrinfo() and are defined in <netdb.h>:

- EAI_ADDRFAMILY: address family for nodename not supported
- EAI_AGAIN: temporary failure in name resolution
- EAI_BADFLAGS: invalid value for ai_flags
- EAI_FAIL: non-recoverable failure in name resolution
- EAI_FAMILY: ai_family not supported
- EAI_MEMORY: memory allocation failure
- EAI_NODATA: no address associated with nodename
- EAI_NONAME: nodename nor servname provided, or not known
- EAI_SERVICE: servname not supported for ai_socktype
- EAI_SOCKTYPE: ai_socktype not supported
- EAI_SYSTEM: system error returned in errno

FILES

/etc/inet/hosts
/etc/inet/ipnodes
/etc/netconfig
/etc/nsswitch.conf

SEE ALSO

gethostbyname(3NL), getipnodebyname(3SOCKET), htonl(3SOCKET), inet(3SOCKET), netdb(3HEAD), socket(3SOCKET), hosts(4), ipnodes(4), nsswitch.conf(4)
gethostbyname(3NSL)

NAME
gethostbyname, gethostbyname_r, gethostbyaddr, gethostbyaddr_r, gethostent,
gethostent_r, sethostent, endhostent – get network host entry

SYNOPSIS
cc [flag ...] file ... -lnsl [library ...]
#include <netdb.h>

struct hostent *gethostbyname(const char *name);

struct hostent *gethostbyname_r(const char *name, struct hostent
 *result, char *buffer, int buflen, int *h_errno);

struct hostent *gethostbyaddr(const char *addr, int len, int type);

struct hostent *gethostbyaddr_r(const char *addr, int length, int
 type, struct hostent *result, char *buffer, int buflen, int
 *h_errno);

struct hostent *gethostent(void);

struct hostent *gethostent_r(struct hostent *result, char *buffer,
 int buflen, int *h_errno);

int sethostent(int stayopen);

int endhostent(void);

DESCRIPTION
These functions are used to obtain entries describing hosts. An entry may come from
any of the sources for hosts specified in the /etc/nsswitch.conf file. See
nsswitch.conf(4). Please take note that these functions have been superseded by
the newer functions, getipnodebyname(3SOCKET), getipnodebyaddr(3SOCKET),
and getaddrinfo(3SOCKET). The newer functions provide greater portability to
applications when multithreading is done or technologies such as IPv6 are used. For
example, the functions described below cannot be used with applications targeted to
work with IPv6.

gethostbyname() searches for information for a host with the hostname specified
by the character-string parameter name.

gethostbyaddr() searches for information for a host with a given host address. The
parameter type specifies the family of the address. This should be one of the address
families defined in <sys/socket.h>. See the NOTES section below for more
information. Also see the EXAMPLES section below on how to convert a “.” separated
Internet IP address notation into the addr parameter. The parameter len specifies the
length of the buffer indicated by addr.

All addresses are returned in network order. In order to interpret the addresses,
byteorder(3SOCKET) must be used for byte order conversion.

The functions sethostent(), gethostent(), and endhostent() are used to
enumerate host entries from the database.
sethostent() sets (or resets) the enumeration to the beginning of the set of host entries. This function should be called before the first call to gethostent(). Calls to gethostbyname() and gethostbyaddr() leave the enumeration position in an indeterminate state. If the stayopen flag is non-zero, the system may keep allocated resources such as open file descriptors until a subsequent call to endhostent().

Successive calls to gethostent() return either successive entries or NULL, indicating the end of the enumeration.

endhostent() may be called to indicate that the caller expects to do no further host entry retrieval operations; the system may then deallocate resources it was using. It is still allowed, but possibly less efficient, for the process to call more host retrieval functions after calling endhostent().

The functions gethostbyname(), gethostbyaddr(), and gethostent() use static storage that is reused in each call, making these functions unsafe for use in multi-threaded applications.

The functions gethostbyname_r(), gethostbyaddr_r(), and gethostent_r() provide reentrant interfaces for these operations.

Reentrant Interfaces

Each reentrant interface performs the same operation as its non-reentrant counterpart, named by removing the “_r” suffix. The reentrant interfaces, however, use buffers supplied by the caller to store returned results, and are safe for use in both single-threaded and multi-threaded applications.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as well as the following additional parameters. The parameter result must be a pointer to a struct hostent structure allocated by the caller. On successful completion, the function returns the host entry in this structure. The parameter buffer must be a pointer to a buffer supplied by the caller. This buffer is used as storage space for the host data. All of the pointers within the returned struct hostent result point to data stored within this buffer. See RETURN VALUES. The buffer must be large enough to hold all of the data associated with the host entry. The parameter buflen should give the size in bytes of the buffer indicated by buffer. The parameter h_errno should be a pointer to an integer. An integer error status value is stored there on certain error conditions. See ERRORS.

For enumeration in multi-threaded applications, the position within the enumeration is a process-wide property shared by all threads. sethostent() may be used in a multi-threaded application but resets the enumeration position for all threads. If multiple threads interleave calls to gethostent_r(), the threads will enumerate disjoint subsets of the host database.

Like their non-reentrant counterparts, gethostbyname_r() and gethostbyaddr_r() leave the enumeration position in an indeterminate state.

RETURN VALUES

Host entries are represented by the struct hostent structure defined in

<netdb.h>:
struct hostent {
 char *h_name; /* canonical name of host */
 char **h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char **h_addr_list; /* list of addresses */
};

See the EXAMPLES section below for information about how to retrieve a “.” separated Internet IP address string from the h_addr_list field of struct hostent.

The functions gethostbyname(), gethostbyname_r(), gethostbyaddr(), and gethostbyaddr_r() each return a pointer to a struct hostent if they successfully locate the requested entry; otherwise they return NULL.

The functions gethostent() and gethostent_r() each return a pointer to a struct hostent if they successfully enumerate an entry; otherwise they return NULL, indicating the end of the enumeration.

The functions gethostbyname(), gethostbyaddr(), and gethostent() use static storage, so returned data must be copied before a subsequent call to any of these functions if the data is to be saved.

When the pointer returned by the reentrant functions gethostbyname_r(), gethostbyaddr_r(), and gethostent_r() is not NULL, it is always equal to the result pointer that was supplied by the caller.

The functions sethostent() and endhostent() return 0 on success.

ERRORS

The reentrant functions gethostbyname_r(), gethostbyaddr_r(), and gethostent_r() will return NULL and set errno to ERANGE if the length of the buffer supplied by caller is not large enough to store the result. See Intro(2) for the proper usage and interpretation of errno in multithreaded applications.

The reentrant functions gethostbyname_r() and gethostbyaddr_r() set the integer pointed to by h_errno to one of these values in case of error.

On failures, the non-reentrant functions gethostbyname() and gethostbyaddr() set a global integer h_errno to indicate one of these error codes (defined in <netdb.h>): HOST_NOT_FOUND, TRY_AGAIN, NO_RECOVERY, NO_DATA, and NO_ADDRESS.

Note however that if a resolver is provided with a malformed address, or if any other error occurs before gethostbyname() is resolved, then gethostbyname() returns an internal error with a value of −1.

gethostbyname() will set h_errno to NETDB_INTERNAL when it returns a NULL value.
EXAMPLE 1 Using gethostbyname()

Here is a sample program that gets the canonical name, aliases, and "." separated Internet IP addresses for a given "." separated IP address:

```c
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
main(int argc, const char **argv)
{
    ulong_t addr;
    struct hostent *hp;
    char **p;
    if (argc != 2) {
        (void) printf("usage: %s IP-address\n", argv[0]);
        exit (1);
    }
    if ((int)(addr = inet_addr(argv[1])) == -1) {
        (void) printf("IP-address must be of the form a.b.c.d\n");
        exit (2);
    }
    hp = gethostbyaddr((char *)&addr, sizeof (addr), AF_INET);
    if (hp == NULL) {
        (void) printf("host information for %s not found\n", argv[1]);
        exit (3);
    }
    for (p = hp->h_addr_list; *p != 0; p++) {
        struct in_addr in;
        char **q;
        (void) memcpy(&in.s_addr, *p, sizeof (in.s_addr));
        (void) printf("%s	%s", inet_ntoa(in), hp->h_name);
        for (q = hp->h_aliases; *q != 0; q++)
            (void) printf(" %s", *q);
        (void) putchar(\n");
    }
    exit (0);
}
```

Note that the above sample program is unsafe for use in multithreaded applications.
ATTRIBUTES

See attributes (5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>See “Reentrant Interfaces” in DESCRIPTION.</td>
</tr>
</tbody>
</table>

SEE ALSO

Intro(2), Intro(3), byteorder(3SOCKET), inet(3SOCKET), netdir(3NSL), hosts(4), netconfig(4), nsswitch.conf(4), attributes(5), netdb(3HEAD)

WARNINGS

The reentrant interfaces gethostbyname_r(), gethostbyaddr_r(), and gethostent_r() are included in this release on an uncommitted basis only, and are subject to change or removal in future minor releases.

NOTES

Programs that use the interfaces described in this manual page cannot be linked statically since the implementations of these functions employ dynamic loading and linking of shared objects at run time.

In order to ensure that they all return consistent results, gethostbyname(), gethostbyname_r(), and netdir_getbyname() are implemented in terms of the same internal library function. This function obtains the system-wide source lookup policy based on the inet family entries in netconfig(4) and the hosts: entry in nsswitch.conf(4). Similarly, gethostbyaddr(), gethostbyaddr_r(), and netdir_getbyaddr() are implemented in terms of the same internal library function. If the inet family entries in netconfig(4) have a "" in the last column for nametoaddr libraries, then the entry for hosts in nsswitch.conf will be used; otherwise the nametoaddr libraries in that column will be used, and nsswitch.conf will not be consulted.

There is no analogue of gethostent() and gethostent_r() in the netdir functions, so these enumeration functions go straight to the hosts entry in nsswitch.conf. Thus enumeration may return results from a different source than that used by gethostbyname(), gethostbyname_r(), gethostbyaddr(), and gethostbyaddr_r().

All the functions that return a struct hostent must always return the canonical name in the h_name field. This name, by definition, is the well-known and official hostname shared between all aliases and all addresses. The underlying source that satisfies the request determines the mapping of the input name or address into the set of names and addresses in hostent. Different sources might do that in different ways. If there is more than one alias and more than one address in hostent, no pairing is implied between them.
The system will strive to put the addresses on the same subnet as that of the caller first.

When compiling multi-threaded applications, see Intro(3), Notes On Multithread Applications, for information about the use of the _REENTRANT flag.

Use of the enumeration interfaces gethostent() and gethostent_r() is discouraged; enumeration may not be supported for all database sources. The semantics of enumeration are discussed further in nsswitch.conf(4).

The current implementations of these functions only return or accept addresses for the Internet address family (type AF_INET).

The form for an address of type AF_INET is a struct in_addr defined in <netinet/in.h>. The functions described in inet(3SOCKET), and illustrated in the EXAMPLES section above, are helpful in constructing and manipulating addresses in this form.
NAME
gethostname – get name of current host

SYNOPSIS

```
cc [ flag ... ] file ... -lxnet [ library ... ]
#include <unistd.h>

int gethostname(char *name, size_t namelen);
```

DESCRIPTION

The gethostname() function returns the standard host name for the current machine. The namelen argument specifies the size of the array pointed to by the name argument. The returned name is null-terminated, except that if namelen is an insufficient length to hold the host name, then the returned name is truncated and it is unspecified whether the returned name is null-terminated.

Host names are limited to 255 bytes.

RETURN VALUES

On successful completion, 0 is returned. Otherwise, −1 is returned.

ERRORS

No errors are defined.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

```
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>
```

SEE ALSO

uname(1), gethostid(3C), attributes(5)
The `getipnodebyname()` function searches the ipnodes database from the beginning and finds the first entry for which the hostname specified by `name` matches the `h_name` member. It takes an `af` argument that specifies the address family, which can be either `AF_INET` for IPv4 addresses or `AF_INET6` for IPv6 addresses. The `flags` argument determines what results will be returned based on the value of `flags`. If the `flags` argument is set to 0 (zero), then the default operation of this function is specified as follows:

- If the `af` argument is `AF_INET`, then a query is made for an IPv4 address. If successful, IPv4 addresses are returned and the `h_length` member of the `hostent` structure will be 4. Otherwise, the function returns a null pointer.
- If the `af` argument is `AF_INET6`, then a query is made for an IPv6 address. If successful, IPv6 addresses are returned and the `h_length` member of the `hostent` structure will be 16. Otherwise, the function returns a null pointer.

The `flags` argument changes the default actions of the function. You can set the `flags` argument by logically ORing any of the following values together:

- `AI_V4MAPPED`
- `AI_ALL`
- `AI_ADDRCONFIG`

Note that a special `flags` value of `AI_DEFAULT`, as defined below, should handle most applications. In other words, porting simple applications to use IPv6 replaces the call

```c
hptr = gethostbyname(name);
```

with

```c
hptr = getipnodebyname(name, AF_INET6, AI_DEFAULT, &error_num);
```

A `flags` of 0 implies a strict interpretation of the `af` argument:

- If `flags` is 0 and `af` is `AF_INET`, then the caller wants only IPv4 addresses. A query is made for `A` records. If successful, the IPv4 addresses are returned and the `h_length` member of the `hostent` structure will be 4; otherwise, the function returns a null pointer.
If flags is 0, and if af is AF_INET6, then the caller wants only IPv6 addresses. A query is made for AAAA records. If successful, the IPv6 addresses are returned and the h_length member of the hostent structure will be 16; otherwise, the function returns a null pointer.

Other constants can be logically-ORed into the flags argument, to modify the behavior of the function:

- If the AI_V4MAPPED flag is specified along with an af of AF_INET6, then the caller can accept IPv4-mapped IPv6 addresses. That is, if no AAAA records are found, then a query is made for A records, and any found are returned as IPv4-mapped IPv6 addresses (h_length is 16). The AI_V4MAPPED flag is ignored unless af equals AF_INET6.

- The AI_ALL flag is used in conjunction with the AI_V4MAPPED flag, and is only used with the IPv6 address family. When AI_ALL is logically ORed with AI_V4MAPPED flag then the caller wants all addresses: IPv6 and IPv4-mapped IPv6. A query is first made for AAAA records and if successful, the IPv6 addresses are returned. Another query is then made for A records, and any found are returned as IPv4-mapped IPv6 addresses. h_length is 16. Only if both queries fail does the function return a null pointer. This flag is ignored unless af equals AF_INET6.

- The AI_ADDRCONFIG flag specifies that a query for AAAA records should occur only if the node has at least one IPv6 source address configured. A query for A records should occur only if the node has at least one IPv4 source address configured. For example, if the node has no IPv6 source addresses configured, and af equals AF_INET6, and the node name being looked up has both AAAA and A records, then:
 1. If only AI_ADDRCONFIG is specified, the function returns a null pointer.
 2. If AI_ADDRCONFIG or AI_V4MAPPED is specified, the A records are returned as IPv4-mapped IPv6 addresses.

The special flags value of AI_DEFAULT is defined as

```
#define AI_DEFAULT (AI_V4MAPPED | AI_ADDRCONFIG)
```

The getipnodebyname() function must allow the name argument to be either a node name or a literal address string, that is, a dotted-decimal IPv4 address or an IPv6 hex address. This saves applications from having to call inet_pton(3SOCKET) to handle literal address strings.

Four scenarios arise based on the type of literal address string and the value of the af argument. The two simple cases are when name is a dotted-decimal IPv4 address and af equals AF_INET, or when name is an IPv6 hex address and af equals AF_INET6. The members of the returned hostent structure are:

- h_name Points to a copy of the name argument
- h_aliases Is a null pointer.
getipnodebyname(3SOCKET)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_addrtype</td>
<td>Is a copy of the af argument.</td>
</tr>
<tr>
<td>h_length</td>
<td>Is either 4 (for AF_INET) or 16 (for AF_INET6).</td>
</tr>
<tr>
<td>h_addr_list[0]</td>
<td>Is a pointer to the 4-byte or 16-byte binary address.</td>
</tr>
<tr>
<td>h_addr_list[1]</td>
<td>Is a null pointer</td>
</tr>
</tbody>
</table>

PARAMETERS

- **af** Address family
- **flags** Various flags
- **name** Name of host
- **error_num** Error storage
- **src** Address for lookup
- **len** Length of address
- **ptr** Pointer to hostent structure

RETURN VALUES

Upon successful completion, getipnodebyname() and getipnodebyaddr() return a hostent structure. Otherwise they return NULL.

The hostent structure does not change from its existing definition when used with gethostbyname(3NSL). For example, host entries are represented by the struct hostent structure defined in `<netdb.h>`:

```c
struct hostent {
    char *h_name; /* canonical name of host */
    char **h_aliases; /* alias list */
    int h_addrtype; /* host address type */
    int h_length; /* length of address */
    char **h_addr_list; /* list of addresses */
};
```

An error occurs when name is an IPv6 hex address and af equals AF_INET. The function’s return value is a null pointer and error_num equals HOST_NOT_FOUND.

The getipnodebyaddr() function has the same arguments as the existing gethostbyaddr(3NSL) function, but adds an error number. As with getipnodebyname(), getipnodebyaddr() is thread safe. The error_num value is returned to the caller with the appropriate error code to support thread safe error code returns. The following error conditions can be returned for error_num:

- **HOST_NOT_FOUND** Host is unknown.
- **NO_DATA** No address is available for the name specified in the server request. This error is not a soft error. Another type of name server request might be successful.
- **NO_RECOVERY** An unexpected server failure occurred, which is a nonrecoverable error.
This error is a soft error that indicates that the local server did not receive a response from an authoritative server. A retry at some later time might be successful.

One possible source of confusion is the handling of IPv4-mapped IPv6 addresses and IPv4-compatible IPv6 addresses, but the following logic should apply:

1. If \(af \) is \(\text{AF_INET6} \), and if \(\text{len} \) equals 16, and if the IPv6 address is an IPv4-mapped IPv6 address or an IPv4-compatible IPv6 address, then skip over the first 12 bytes of the IPv6 address, set \(af \) to \(\text{AF_INET} \), and set \(\text{len} \) to 4.
2. If \(af \) is \(\text{AF_INET} \), lookup the name for the given IPv4 address.
3. If \(af \) is \(\text{AF_INET6} \), lookup the name for the given IPv6 address.
4. If the function is returning success, then the single address that is returned in the hostent structure is a copy of the first argument to the function with the same address family that was passed as an argument to this function.

All four steps listed are performed in order.

This structure, and the information pointed to by this structure, are dynamically allocated by getipnodebyname() and getipnodebyaddr(). The freehostent() function frees this memory.

EXAMPLE 1 Getting the Canonical Name, Aliases, and Internet IP Addresses for a Given Hostname

The following is a sample program that retrieves the canonical name, aliases, and all Internet IP addresses, both version 6 and version 4, for a given hostname.

```c
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

main(int argc, const char **argv)
{
    char abuf[INET6_ADDRSTRLEN];
    int error_num;
    struct hostent *hp;
    char **p;

    if (argc != 2) {
        (void) printf(“usage: %s hostname
”, argv[0]);
        (void) exit (1);
    }

    hp = getipnodebyname(argv[1], AF_INET6, AI_ALL | AI_ADDRCONFIG | AI_V4MAPPED, &error_num);

    /* argv[1] can be a pointer to a hostname or literal IP address */
    p = hostent_to_string(hp, 0);
    while (p)
    {
        printf(“%s
”, p);
        p = hostent_to_string(hp, 0);
    }
    free(p);
}
```
EXAMPLE 1 Getting the Canonical Name, Aliases, and Internet IP Addresses for a Given Hostname (Continued)

```c
if (hp == NULL) {
    if (error_num == TRY_AGAIN) {
        printf("%s: unknown host or invalid literal address "
               "(try again later)\n", argv[1]);
    } else {
        printf("%s: unknown host or invalid literal address\n", argv[1]);
    }
    exit (1);
}
for (p = hp->h_addr_list; *p != 0; p++) {
    struct in6_addr in6;
    char **q;
    bcopy(*p, (caddr_t)&in6, hp->h_length);
    (void) printf("%s	%s", inet_ntop(AF_INET6, (void *)&in6, abuf, sizeof(abuf)), hp->h_name);
    for (q = hp->h_aliases; *q != 0; q++)
        (void) printf(" %s", *q);
    (void) putchar('\n');
}
freehostent(hp);
exit (0);
```

FILES
/etc/inet/hosts
/etc/inet/ipnodes
/etc/netconfig
/etc/nsswitch.conf

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl, SUNWarc (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
getaddrinfo(3SOCKET), gethostbyname(3NSL), htonl(3SOCKET),
et(3SOCKET), netdb(3HEAD), hosts(4), ipnodes(4), nsswitch.conf(4),
attributes(5)
Programs that use the interfaces described in this manual page cannot be linked statically since the implementations of these functions employ dynamic loading and linking of shared objects at run time.

No enumeration functions are provided for IPv6. Existing enumeration functions, for example, `sethostent(3NSL)` does not work in combination with `getipnodebyname()` and `getipnodebyaddr()`.

All the functions that return a `struct hostent` must always return the canonical in the `h_name` field. This name, by definition, is the well-known and official hostname shared between all aliases and all addresses. The underlying source that satisfies the request determines the mapping of the input name or address into the set of names and addresses in `hostent`. Different sources might do that in different ways. If more than one alias and more than one address in `hostent` exist, no pairing is implied between them.

The current implementations of these functions only return or accept addresses for the Internet address family (type `AF_INET`) or the Internet address family Version 6 (type `AF_INET6`).

The form for an address of type `AF_INET` is a `struct in_addr` defined in `<netinet/in.h>`. The form for an address of type `AF_INET6` is a `struct in6_addr`, defined also in `<netinet/in.h>`. The functions described in `inet_ntop(3SOCKET)` and `inet_pton(3SOCKET)` that are illustrated in the EXAMPLES section are helpful in constructing and manipulating addresses in either of these forms.
These functions are used to obtain entries for networks. An entry may come from any of the sources for networks specified in the /etc/nsswitch.conf file. See nsswitch.conf(4).

getnetbyname() searches for a network entry with the network name specified by the character string parameter name.

getnetbyaddr() searches for a network entry with the network address specified by net. The parameter type specifies the family of the address. This should be one of the address families defined in <sys/socket.h>. See the NOTES section below for more information.

Network numbers and local address parts are returned as machine format integer values, that is, in host byte order. See also inet_network(3SOCKET).

The netent.n_net member in the netent structure pointed to by the return value of the above functions is calculated by inet_network(). The inet_network() function returns a value in host byte order that is aligned based upon the input string. For example:

<table>
<thead>
<tr>
<th>Text</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>"10"</td>
<td>0x0000000a</td>
</tr>
<tr>
<td>"10.0"</td>
<td>0x00000a00</td>
</tr>
<tr>
<td>"10.0.1"</td>
<td>0a000001</td>
</tr>
</tbody>
</table>
Commonly, the alignment of the returned value is used as a crude approximate of pre-CIDR (Classless Inter-Domain Routing) subnet mask. For example:

```c
in_addr_t addr, mask;
addr = inet_network(net_name);
mask = ~(in_addr_t)0;
if ((addr & IN_CLASSA_NET) == 0)
    addr <<= 8, mask <<= 8;
if ((addr & IN_CLASSA_NET) == 0)
    addr <<= 8, mask <<= 8;
if ((addr & IN_CLASSA_NET) == 0)
    addr <<= 8, mask <<= 8;
```


The functions `setnetent()`, `getnetent()`, and `endnetent()` are used to enumerate network entries from the database.

`setnetent()` sets (or resets) the enumeration to the beginning of the set of network entries. This function should be called before the first call to `getnetent()`. Calls to `getnetbyname()` and `getnetbyaddr()` leave the enumeration position in an indeterminate state. If the `stayopen` flag is non-zero, the system may keep allocated resources such as open file descriptors until a subsequent call to `endnetent()`.

Successive calls to `getnetent()` return either successive entries or `NULL`, indicating the end of the enumeration.

`endnetent()` may be called to indicate that the caller expects to do no further network entry retrieval operations; the system may then deallocate resources it was using. It is still allowed, but possibly less efficient, for the process to call more network entry retrieval functions after calling `endnetent()`.

The functions `getnetbyname()`, `getnetbyaddr()`, and `getnetent()` use static storage that is reused in each call, making these routines unsafe for use in multi-threaded applications.

The functions `getnetbyname_r()`, `getnetbyaddr_r()`, and `getnetent_r()` provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart, named by removing the “_r” suffix. The reentrant interfaces, however, use buffers supplied by the caller to store returned results, and are safe for use in both single-threaded and multi-threaded applications.
Each reentrant interface takes the same parameters as its non-reentrant counterpart, as well as the following additional parameters. The parameter `result` must be a pointer to a `struct netent` structure allocated by the caller. On successful completion, the function returns the network entry in this structure. The parameter `buffer` must be a pointer to a buffer supplied by the caller. This buffer is used as storage space for the network entry data. All of the pointers within the returned `struct netent result` point to data stored within this buffer. See **RETURN VALUES**. The buffer must be large enough to hold all of the data associated with the network entry. The parameter `buflen` should give the size in bytes of the buffer indicated by `buffer`.

For enumeration in multi-threaded applications, the position within the enumeration is a process-wide property shared by all threads. `setnetent()` may be used in a multi-threaded application but resets the enumeration position for all threads. If multiple threads interleave calls to `getnetent_r()`, the threads will enumerate disjointed subsets of the network database.

Like their non-reentrant counterparts, `getnetbyname_r()` and `getnetbyaddr_r()` leave the enumeration position in an indeterminate state.

RETURN VALUES

Network entries are represented by the `struct netent` structure defined in `<netdb.h>`.

The functions `getnetbyname()`, `getnetbyname_r()`, `getnetbyaddr()`, and `getnetbyaddr_r()` each return a pointer to a `struct netent` if they successfully locate the requested entry; otherwise they return `NULL`.

The functions `getnetent()` and `getnetent_r()` each return a pointer to a `struct netent` if they successfully enumerate an entry; otherwise they return `NULL`, indicating the end of the enumeration.

The functions `getnetbyname()`, `getnetbyaddr()`, and `getnetent()` use static storage, so returned data must be copied before a subsequent call to any of these functions if the data is to be saved.

When the pointer returned by the reentrant functions `getnetbyname_r()`, `getnetbyaddr_r()`, and `getnetent_r()` is non-`NULL`, it is always equal to the `result` pointer that was supplied by the caller.

The functions `setnetent()` and `endnetent()` return 0 on success.

ERRORS

The reentrant functions `getnetbyname_r()`, `getnetbyaddr_r()` and `getnetent_r()` will return `NULL` and set `errno` to `ERANGE` if the length of the buffer supplied by caller is not large enough to store the result. See `intro(2)` for the proper usage and interpretation of `errno` in multi-threaded applications.
ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

Intro(2), Intro(3), byteorder(3SOCKET), inet(3SOCKET), netdb(3HEAD), networks(4), nsswitch.conf (4), attributes(5)

WARNINGS

The reentrant interfaces getnetbyname_r(), getnetbyaddr_r(), and getnetent_r() are included in this release on an uncommitted basis only, and are subject to change or removal in future minor releases.

NOTES

The current implementation of these functions only return or accept network numbers for the Internet address family (type AF_INET). The functions described in inet(3SOCKET) may be helpful in constructing and manipulating addresses and network numbers in this form.

Programs that use the interfaces described in this manual page cannot be linked statically since the implementations of these functions employ dynamic loading and linking of shared objects at run time.

When compiling multi-threaded applications, see Intro(3), Notes On Multithread Applications, for information about the use of the _REENTRANT flag.

Use of the enumeration interfaces getnetent() and getnetent_r() is discouraged; enumeration may not be supported for all database sources. The semantics of enumeration are discussed further in nsswitch.conf(4).
The library routines described on this page are part of the Network Selection component. They provide the application access to the system network configuration database, /etc/netconfig. In addition to the routines for accessing the netconfig database, Network Selection includes the environment variable NETPATH (see environ(5)) and the NETPATH access routines described in getnetpath(3NSL).

getnetconfig() returns a pointer to the current entry in the netconfig database, formatted as a struct netconfig. Successive calls will return successive netconfig entries in the netconfig database. getnetconfig() can be used to search the entire netconfig file. getnetconfig() returns NULL at the end of the file. handlep is the handle obtained through setnetconfig().

A call to setnetconfig() has the effect of “binding” to or “rewinding” the netconfig database. setnetconfig() must be called before the first call to getnetconfig() and may be called at any other time. setnetconfig() need not be called before a call to getnetconfig(). setnetconfig() returns a unique handle to be used by getnetconfig().

endnetconfig() should be called when processing is complete to release resources for reuse. handlep is the handle obtained through setnetconfig(). Programmers should be aware, however, that the last call to endnetconfig() frees all memory allocated by getnetconfig() for the struct netconfig data structure. endnetconfig() may not be called before setnetconfig().

getnetconfigent() returns a pointer to the struct netconfig structure corresponding to netid. It returns NULL if netid is invalid (that is, does not name an entry in the netconfig database).

freenetconfigent() frees the netconfig structure pointed to by netconfigp (previously returned by getnetconfigent()).

nc_perror() prints a message to the standard error indicating why any of the above routines failed. The message is prepended with the string msg and a colon. A NEWLINE is appended at the end of the message.
nc_sperror() is similar to nc_perror() but instead of sending the message to the standard error, will return a pointer to a string that contains the error message.

nc_perror() and nc_sperror() can also be used with the NETPATH access routines defined in getnetpath(3NSL).

RETURN VALUES

setnetconfig() returns a unique handle to be used by getnetconfig(). In the case of an error, setnetconfig() returns NULL and nc_perror() or nc_sperror() can be used to print the reason for failure.

getnetconfig() returns a pointer to the current entry in the netconfig() database, formatted as a struct netconfig. getnetconfig() returns NULL at the end of the file, or upon failure.

dendnetconfig() returns 0 on success and −1 on failure (for example, if setnetconfig() was not called previously).

On success, getnetconfigent() returns a pointer to the struct netconfig structure corresponding to netid; otherwise it returns NULL.

nc_sperror() returns a pointer to a buffer which contains the error message string. This buffer is overwritten on each call. In multithreaded applications, this buffer is implemented as thread-specific data.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

getnetpath(3NSL), netconfig(4), attributes(5), environ(5)
NAME
getnetpath, setnetpath, endnetpath – get /etc/netconfig entry corresponding to
NETPATH component

SYNOPSIS
#include <netconfig.h>

struct netconfig *getnetpath(void *handlep);

void *setnetpath(void);

int endnetpath(void *handlep);

DESCRIPTION
The routines described on this page are part of the Network Selection component.
They provide the application access to the system network configuration database,
/etc/netconfig, as it is "filtered" by the NETPATH environment variable. See
environ(5). See getnetconfig(3NSL) for other routines that also access the
network configuration database directly. The NETPATH variable is a list of
colon-separated network identifiers.

getnetpath() returns a pointer to the netconfig database entry corresponding to
the first valid NETPATH component. The netconfig entry is formatted as a struct
netconfig. On each subsequent call, getnetpath() returns a pointer to the
netconfig entry that corresponds to the next valid NETPATH component.
getnetpath() can thus be used to search the netconfig database for all networks
included in the NETPATH variable. When NETPATH has been exhausted,
getnetpath() returns NULL.

A call to setnetpath() "binds" to or "rewinds" NETPATH. setnetpath() must be
called before the first call to getnetpath() and may be called at any other time. It
returns a handle that is used by getnetpath().

getnetpath() silently ignores invalid NETPATH components. A NETPATH
component is invalid if there is no corresponding entry in the netconfig database.

If the NETPATH variable is unset, getnetpath() behaves as if NETPATH were set to
the sequence of "default" or "visible" networks in the netconfig database, in the
order in which they are listed.

endnetpath() may be called to "unbind" from NETPATH when processing is
complete, releasing resources for reuse. Programmers should be aware, however, that
endnetpath() frees all memory allocated by getnetpath() for the struct
netconfig data structure. endnetpath() returns 0 on success and -1 on failure
(for example, if setnetpath() was not called previously).

RETURN VALUES
setnetpath() returns a handle that is used by getnetpath(). In case of an error,
setnetpath() returns NULL. nc_perror() or nc_sperror() can be used to
print out the reason for failure. See getnetconfig(3NSL).

When first called, getnetpath() returns a pointer to the netconfig database entry
corresponding to the first valid NETPATH component. When NETPATH has been
exhausted, getnetpath() returns NULL.
endnetpath() returns 0 on success and -1 on failure (for example, if setnetpath() was not called previously).

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
getnetconfig(3NSL), netconfig(4), attributes(5), environ(5)
getpeername(3SOCKET)

NAME
getpeername – get name of connected peer

SYNOPSIS
int getpeername(int s, struct sockaddr *name, socklen_t *namelen);

DESCRIPTION
getpeername() returns the name of the peer connected to socket s. The int pointed
to by the namelen parameter should be initialized to indicate the amount of space
pointed to by name. On return it contains the actual size of the name returned (in
bytes), prior to any truncation. The name is truncated if the buffer provided is too
small.

RETURN VALUES
If successful, getpeername() returns 0; otherwise it returns -1 and sets errno to
indicate the error.

ERRORS
The call succeeds unless:

EBADF The argument s is not a valid descriptor.
ENOMEM There was insufficient user memory for the operation to complete.
ENOSR There were insufficient STREAMS resources available for the operation to complete.
ENOTCONN The socket is not connected.
ENOTSOCK The argument s is not a socket.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
accept(3SOCKET), bind(3SOCKET), getsockname(3SOCKET),
socket(3SOCKET), attributes(5), socket(3HEAD)
NAME
getpeername – get the name of the peer socket

SYNOPSIS
```c
#include <sys/socket.h>

int getpeername(int socket, struct sockaddr *address, socklen_t *address_len);
```

DESCRIPTION
The `getpeername()` function retrieves the peer address of the specified socket, stores this address in the `sockaddr` structure pointed to by the `address` argument, and stores the length of this address in the object pointed to by the `address_len` argument.

If the actual length of the address is greater than the length of the supplied `sockaddr` structure, the stored address will be truncated.

If the protocol permits connections by unbound clients, and the peer is not bound, then the value stored in the object pointed to by `address` is unspecified.

RETURN VALUES
Upon successful completion, 0 is returned. Otherwise, −1 is returned and `errno` is set to indicate the error.

ERRORS
The `getpeername()` function will fail if:

- **EBADF** The `socket` argument is not a valid file descriptor.
- **EFAULT** The `address` or `address_len` parameter cannot be accessed or written.
- **EINVAL** The socket has been shut down.
- **ENOTCONN** The socket is not connected or otherwise has not had the peer prespecified.
- **ENOTSOCK** The `socket` argument does not refer to a socket.
- **EOPNOTSUPP** The operation is not supported for the socket protocol.

The `getpeername()` function may fail if:

- **ENOBUFS** Insufficient resources were available in the system to complete the call.
- **ENOSR** There were insufficient STREAMS resources available for the operation to complete.

ATTRIBUTES
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
`accept(3XNET), bind(3XNET), getsockname(3XNET), socket(3XNET), attributes(5)`
getprotobyname(3SOCKET)

NAME getprotobyname, getprotobyname_r, getprotobynumber, getprotobynumber_r, getprotoent, getprotoent_r, setprotoent, endprotoent – get protocol entry

SYNOPSIS
| cc [flag ...] file ... -lsocket -lnsl [library ...] |
| include <netdb.h> |
| struct protoent *getprotobyname(const char *name); |
| struct protoent *getprotobyname_r(const char *name, struct protoent *result, char *buffer, int buflen); |
| struct protoent *getprotobynumber(int proto); |
| struct protoent *getprotobynumber_r(int proto, struct protoent *result, char *buffer, int buflen); |
| struct protoent *getprotoent(void); |
| struct protoent *getprotoent_r(struct protoent *result, char *buffer, int buflen); |
| int setprotoent(int stayopen); |
| int endprotoent(void); |

DESCRIPTION These routines return a protocol entry. Two types of interfaces are supported: reentrant (getprotobyname_r(), getprotobynumber_r(), and getprotoent_r()) and non-reentrant (getprotobyname(), getprotobynumber(), and getprotoent()). The reentrant routines may be used in single-threaded applications and are safe for multi-threaded applications, making them the preferred interfaces.

The reentrant routines require additional parameters which are used to return results data. result is a pointer to a struct protoent structure and will be where the returned results will be stored. buffer is used as storage space for elements of the returned results. buflen is the size of buffer and should be large enough to contain all returned data. buflen must be at least 1024 bytes.

getprotobyname_r(), getprotobynumber_r(), and getprotoent_r() each return a protocol entry.

The entry may come from one of the following sources: the protocols file (see protocols(4)), the NIS maps “protocols.byname” and “protocols.bynumber”, and the NIS+ table “protocols”. The sources and their lookup order are specified in the /etc/nsswitch.conf file (see nsswitch.conf(4) for details). Some name services such as NIS will return only one name for a host, whereas others such as NIS+ or DNS will return all aliases.

getprotobyname_r() and getprotobynumber_r() sequentially search from the beginning of the file until a matching protocol name or protocol number is found, or until an EOF is encountered.
getprotobyname() and getprotobynumber() have the same functionality as getprotobyname_r() and getprotobynumber_r() except that a static buffer is used to store returned results. These routines are unsafe in a multi-threaded application.

getprotoent_r() enumerates protocol entries: successive calls to getprotoent_r() will return either successive protocol entries or NULL. Enumeration may not be supported by some sources. Note that if multiple threads call getprotoent_r(), each will retrieve a subset of the protocol database.

getprotent() has the same functionality as getprotoent_r() except that a static buffer is used to store returned results. This routine is unsafe in a multi-threaded application.

setprotoent() “rewinds” to the beginning of the enumeration of protocol entries. If the stayopen flag is non-zero, resources such as open file descriptors are not deallocated after each call to getprotobynumber_r() and getprotobyname_r(). Calls to getprotobyname_r(), getprotobynumber_r() and getprotobyname_r() may leave the enumeration in an indeterminate state, so setprotoent() should be called before the first getprotoent_r() or getprotent(). Note that setprotoent() has process-wide scope, and “rewinds” the protocol entries for all threads calling getprotoent_r() as well as main-thread calls to getprotoent().

endprotoent() may be called to indicate that protocol processing is complete; the system may then close any open protocols file, deallocate storage, and so forth. It is legitimate, but possibly less efficient, to call more protocol routines after endprotoent().

The internal representation of a protocol entry is a protoent structure defined in <netdb.h> with the following members:

```
cchar *p_name;
cchar **p_aliases;
int p_proto;
```

RETURN VALUES

getprotobyname_r(), getprotobynumber(), getprotobyname_r(), and getprotobynumber() return a pointer to a struct protoent if they successfully locate the requested entry; otherwise they return NULL.

getprotoent_r() and getprotoent() return a pointer to a struct protoent if they successfully enumerate an entry; otherwise they return NULL, indicating the end of the enumeration.

ERRORS

getprotobyname_r(), getprotobynumber_r(), and getprotoent_r() will fail if the following is true:

ERANGE length of the buffer supplied by caller is not large enough to store the result.
getprotobyname(3SOCKET)

FILES
/etc/protocols
/etc/nsswitch.conf

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>See NOTES below.</td>
</tr>
</tbody>
</table>

SEE ALSO
intro(3), nsswitch.conf(4), protocols(4), attributes(5), netdb(3HEAD)

NOTES
Although getprotobyname_r(), getprotobynumber_r(), and getprotoent_r() are not mentioned by POSIX 1003.1c, they were added to complete the functionality provided by similar thread-safe functions.

When compiling multithreaded applications, see intro(3), Notes On Multithread Applications, for information about the use of the _REENTRANT flag.

The routines getprotobyname_r(), getprotobynumber_r(), and getprotoent_r() are reentrant and multi-thread safe. The reentrant interfaces can be used in single-threaded as well as multi-threaded applications and are therefore the preferred interfaces.

The routines getprotobyname(), getprotobyaddr(), and getprotoent() use static storage, so returned data must be copied if it is to be saved. Because of their use of static storage for returned data, these routines are not safe for multi-threaded applications.

setprotoent() and endprotoent() have process-wide scope, and are therefore not safe in multi-threaded applications.

Use of getprotoent_r() and getprotoent() is discouraged; enumeration is well-defined for the protocols file and is supported (albeit inefficiently) for NIS and NIS+, but in general may not be well-defined. The semantics of enumeration are discussed in nsswitch.conf(4).

BUGS
Only the Internet protocols are currently understood.

Programs that call getprotobyname_r() or getprotobynumber_r() routines cannot be linked statically since the implementation of these routines requires dynamic linker functionality to access shared objects at run time.
getpublickey(3NSL)

NAME
getpublickey, getsecretkey, publickey – retrieve public or secret key

SYNOPSIS
#include <rpc/rpc.h>
#include <rpc/key_prot.h>

int getpublickey(const char *netname[MAXNETNAMELEN], char publickey[HEXKEYBYTES+1]);

int getsecretkey(const char *netname[MAXNETNAMELEN], char secretkey[HEXKEYBYTES+1], const char *passwd);

DESCRIPTION
getpublickey() and getsecretkey() get public and secret keys for netname. The key may come from one of the following sources:

- the /etc/publickey file. See publickey(4).
- the NIS map “publickeybyname” or the NIS+ table “cred.org_dir”. The sources and their lookup order are specified in the /etc/nsswitch.conf file. See nsswitch.conf(4).

getsecretkey() has an extra argument, passwd, which is used to decrypt the encrypted secret key stored in the database.

RETURN VALUES
Both routines return 1 if they are successful in finding the key. Otherwise, the routines return 0. The keys are returned as null-terminated, hexadecimal strings. If the password supplied to getsecretkey() fails to decrypt the secret key, the routine will return 1 but the secretkey[0] will be set to NULL.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
secure_rpc(3NSL), nsswitch.conf(4), publickey(4), attributes(5)

WARNINGS
If getpublickey() gets the public key from any source other than NIS+, all authenticated NIS+ operations may fail. To ensure that this does not happen, edit the nsswitch.conf(4) file to make sure that the public key is obtained from NIS+.

NOTES
NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
These functions are used to obtain entries for RPC (Remote Procedure Call) services. An entry may come from any of the sources for rpc specified in the /etc/nsswitch.conf file (see nsswitch.conf(4)).

getrpcbyname() searches for an entry with the RPC service name specified by the parameter name.

getrpcbynumber() searches for an entry with the RPC program number number.

The functions setrpcent(), getrpcent(), and endrpcent() are used to enumerate RPC entries from the database.

setrpcent() sets (or resets) the enumeration to the beginning of the set of RPC entries. This function should be called before the first call to getrpcent(). Calls to getrpcbyname() and getrpcbynumber() leave the enumeration position in an indeterminate state. If the stayopen flag is non-zero, the system may keep allocated resources such as open file descriptors until a subsequent call to endrpcent().

Successive calls to getrpcent() return either successive entries or NULL, indicating the end of the enumeration.

endrpcent() may be called to indicate that the caller expects to do no further RPC entry retrieval operations; the system may then deallocate resources it was using. It is still allowed, but possibly less efficient, for the process to call more RPC entry retrieval functions after calling endrpcent().

The functions getrpcbyname(), getrpcbynumber(), and getrpcent() use static storage that is re-used in each call, making these routines unsafe for use in multithreaded applications.
The functions `getrpcbyname_r()`, `getrpcbynumber_r()`, and `getrpcent_r()` provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart, named by removing the "_r" suffix. The reentrant interfaces, however, use buffers supplied by the caller to store returned results, and are safe for use in both single-threaded and multithreaded applications.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as well as the following additional parameters. The parameter `result` must be a pointer to a `struct rpcent` structure allocated by the caller. On successful completion, the function returns the RPC entry in this structure. The parameter `buffer` must be a pointer to a buffer supplied by the caller. This buffer is used as storage space for the RPC entry data. All of the pointers within the returned `struct rpcent` `result` point to data stored within this buffer (see RETURN VALUES). The buffer must be large enough to hold all of the data associated with the RPC entry. The parameter `buflen` should give the size in bytes of the buffer indicated by `buffer`.

For enumeration in multithreaded applications, the position within the enumeration is a process-wide property shared by all threads. `setrpcent()` may be used in a multithreaded application but resets the enumeration position for all threads. If multiple threads interleave calls to `getrpcent_r()`, the threads will enumerate disjoint subsets of the RPC entry database.

Like their non-reentrant counterparts, `getrpcbyname_r()` and `getrpcbynumber_r()` leave the enumeration position in an indeterminate state.

RETURN VALUES

RPC entries are represented by the `struct rpcent` structure defined in `<rpc/rpcent.h>`:

```
struct rpcent {
    char *r_name;  /* name of this rpc service */
    char **r_aliases; /* zero-terminated list of alternate names */
    int r_number;  /* rpc program number */
};
```

The functions `getrpcbyname()`, `getrpcbyname_r()`, `getrpcbynumber()`, and `getrpcbynumber_r()` each return a pointer to a `struct rpcent` if they successfully locate the requested entry; otherwise they return NULL.

The functions `getrpcent()` and `getrpcent_r()` each return a pointer to a `struct rpcent` if they successfully enumerate an entry; otherwise they return NULL, indicating the end of the enumeration.

The functions `getrpcbyname()`, `getrpcbynumber()`, and `getrpcent()` use static storage, so returned data must be copied before a subsequent call to any of these functions if the data is to be saved.
When the pointer returned by the reentrant functions `getrpcbyname_r()`, `getrpcbynumber_r()`, and `getrpcent_r()` is non-NULL, it is always equal to the result pointer that was supplied by the caller.

ERRORS
The reentrant functions `getrpcbyname_r()`, `getrpcbynumber_r()`, and `getrpcent_r()` will return NULL and set `errno` to `ERANGE` if the length of the buffer supplied by caller is not large enough to store the result. See `intro(2)` for the proper usage and interpretation of `errno` in multithreaded applications.

FILES
/etc/rpc
/etc/nsswitch.conf

ATTRIBUTES
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>See “Reentrant Interfaces” in DESCRIPTION.</td>
</tr>
</tbody>
</table>

SEE ALSO
`rpcinfo(1M), rpc(3NSL), nsswitch.conf(4), rpc(4), attributes(5)`

WARNINGS
The reentrant interfaces `getrpcbyname_r()`, `getrpcbynumber_r()`, and `getrpcent_r()` are included in this release on an uncommitted basis only, and are subject to change or removal in future minor releases.

NOTES
Programs that use the interfaces described in this manual page cannot be linked statically since the implementations of these functions employ dynamic loading and linking of shared objects at run time.

When compiling multithreaded applications, see `intro(3), Notes On Multithreaded Applications`, for information about the use of the `_REENTRANT` flag.

Use of the enumeration interfaces `getrpcent()` and `getrpcent_r()` is discouraged; enumeration may not be supported for all database sources. The semantics of enumeration are discussed further in `nsswitch.conf(4)`.
NAME
getservbyname, getservbyname_r, getservbyport, getservbyport_r, getservent,
getservent_r, setservent, endservent – get service entry

SYNOPSIS
c{ [flag ...] file ... -lsocket -lnsl [library ...]
#include <netdb.h>
struct servent *getservbyname(const char *name, const char *proto);
struct servent *getservbyname_r(const char *name, const char *proto,
 struct servent *result, char *buffer, int buflen);
struct servent *getservbyport(int port, const char *proto);
struct servent *getservbyport_r(int port, const char *proto, struct
 servent *result, char *buffer, int buflen);
struct servent *getservent(void);
struct servent *getservent_r(struct servent *result, char *buffer,
 int buflen);
int setservent(int stayopen);
int endservent(void);

DESCRIPTION
These functions are used to obtain entries for Internet services. An entry may come
from any of the sources for services specified in the /etc/nsswitch.conf file. See
nsswitch.conf(4).

gservbyname() and getservbyport() sequentially search from the beginning
of the file until a matching protocol name or port number is found, or until end-of-file
is encountered. If a protocol name is also supplied (non-NULL), searches must also
match the protocol.

gservbyname() searches for an entry with the Internet service name specified by
the parameter name.

gservbyport() searches for an entry with the Internet port number port.

All addresses are returned in network order. In order to interpret the addresses,
byterorder(3SOCKET)

must be used for byte order conversion. The string proto is used by both
gservbyname() and getservbyport() to restrict the search to entries with the
specified protocol. If proto is NULL, entries with any protocol may be returned.

The functions setservent(), getservent(), and endservent() are used to
enumerate entries from the services database.
setservent() sets (or resets) the enumeration to the beginning of the set of service entries. This function should be called before the first call to getservent(). Calls to the functions getservbyname() and getservbyport() leave the enumeration position in an indeterminate state. If the stayopen flag is non-zero, the system may keep allocated resources such as open file descriptors until a subsequent call to endservent().

getservent() reads the next line of the file, opening the file if necessary. getservent() opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not be closed after each call to getservent() (either directly, or indirectly through one of the other "getserv" calls).

Successive calls to getservent() return either successive entries or NULL, indicating the end of the enumeration.

endservent() closes the file. endservent() may be called to indicate that the caller expects to do no further service entry retrieval operations; the system may then deallocate resources it was using. It is still allowed, but possibly less efficient, for the process to call more service entry retrieval functions after calling endservent().

The functions getservbyname(), getservbyport(), and getservent() use static storage that is re-used in each call, making these functions unsafe for use in multithreaded applications.

The functions getservbyname_r(), getservbyport_r(), and getservent_r() provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart, named by removing the "_r" suffix. The reentrant interfaces, however, use buffers supplied by the caller to store returned results, and are safe for use in both single-threaded and multithreaded applications.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as well as the following additional parameters. The parameter result must be a pointer to a struct servent structure allocated by the caller. On successful completion, the function returns the service entry in this structure. The parameter buffer must be a pointer to a buffer supplied by the caller. This buffer is used as storage space for the service entry data. All of the pointers within the returned struct servent result point to data stored within this buffer. See the RETURN VALUES section of this man page. The buffer must be large enough to hold all of the data associated with the service entry. The parameter buflen should give the size in bytes of the buffer indicated by buffer.

For enumeration in multithreaded applications, the position within the enumeration is a process-wide property shared by all threads. setservent() may be used in a multithreaded application but resets the enumeration position for all threads. If multiple threads interleave calls to getservent_r(), the threads will enumerate disjoint subsets of the service database.
Like their non-reentrant counterparts, getservbyname_r() and
getservbyport_r() leave the enumeration position in an indeterminate state.

RETURN VALUES

Service entries are represented by the struct servent structure defined in
<netdb.h>:

```c
struct servent {
    char *s_name; /* official name of service */
    char **s_aliases; /* alias list */
    int s_port; /* port service resides at */
    char *s_proto; /* protocol to use */
};
```

The members of this structure are:

- **s_name** The official name of the service.
- **s_aliases** A zero terminated list of alternate names for the service.
- **s_port** The port number at which the service resides. Port numbers are returned in network byte order.
- **s_proto** The name of the protocol to use when contacting the service.

The functions getservbyname(), getservbyname_r(), getservbyport(),
and getservbyport_r() each return a pointer to a struct servent if they
successfully locate the requested entry; otherwise they return NULL.

The functions getservent() and getservent_r() each return a pointer to a
struct servent if they successfully enumerate an entry; otherwise they return
NULL, indicating the end of the enumeration.

The functions getservbyname(), getservbyport(), and getservent() use
static storage, so returned data must be copied before a subsequent call to any of these
functions if the data is to be saved.

When the pointer returned by the reentrant functions getservbyname_r(),
getservbyport_r(), and getservent_r() is non-null, it is always equal to the
result pointer that was supplied by the caller.

ERRORS
The reentrant functions getservbyname_r(), getservbyport_r() and
getservent_r() will return NULL and set errno to ERANGE if the length of the
buffer supplied by caller is not large enough to store the result. See intro(2) for the
proper usage and interpretation of errno in multithreaded applications.

FILES

- `/etc/services` Internet network services
- `/etc/netconfig` network configuration file
- `/etc/nsswitch.conf` configuration file for the name-service switch

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:
The reentrant interfaces `getservbyname_r()`, `getservbyport_r()`, and `getservent_r()` are included in this release on an uncommitted basis only, and are subject to change or removal in future minor releases.

The functions that return `struct servent` return the least significant 16-bits of the `s_port` field in network byte order. `getservbyport()` and `getservbyport_r()` also expect the input parameter `port` in the network byte order. See `htons(3SOCKET)` for more details on converting between host and network byte orders.

Programs that use the interfaces described in this manual page cannot be linked statically since the implementations of these functions employ dynamic loading and linking of shared objects at run time.

In order to ensure that they all return consistent results, `getservbyname()`, `getservbyname_r()`, and `netdir_getbyname()` are implemented in terms of the same internal library function. This function obtains the system-wide source lookup policy based on the `inet` family entries in `netconfig(4)` and the `services: entry` in `nsswitch.conf(4)`. Similarly, `getservbyport()`, `getservbyport_r()`, and `netdir_getbyaddr()` are implemented in terms of the same internal library function. If the `inet` family entries in `netconfig(4)` have a "" in the last column for nametoaddr libraries, then the entry for `services` in `nsswitch.conf` will be used; otherwise the nametoaddr libraries in that column will be used, and `nsswitch.conf` will not be consulted.

There is no analogue of `getservent()` and `getservent_r()` in the `netdir` functions, so these enumeration functions go straight to the `services` entry in `nsswitch.conf`. Thus enumeration may return results from a different source than that used by `getservbyname()`, `getservbyname_r()`, `getservbyport()`, and `getservbyport_r()`.

When compiling multithreaded applications, see `intro(3), Notes On Multithread Applications`, for information about the use of the `_REENTRANT` flag.

Use of the enumeration interfaces `getservent()` and `getservent_r()` is discouraged; enumeration may not be supported for all database sources. The semantics of enumeration are discussed further in `nsswitch.conf(4)`.
getsockname(3SOCKET)

NAME
getsockname – get socket name

SYNOPSIS
cce [flag ...] file ... -lssocket -lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int getsockname(int s, struct sockaddr *name, socklen_t *namelen);

DESCRIPTION
getsockname() returns the current name for socket s. The namelen parameter should
be initialized to indicate the amount of space pointed to by name. On return it contains
the actual size in bytes of the name returned.

RETURN VALUES
If successful, getsockname() returns 0; otherwise it returns −1 and sets errno to
indicate the error.

ERRORS
The call succeeds unless:

EBADF The argument s is not a valid file descriptor.
ENOMEM There was insufficient memory available for the operation to complete.
ENOSR There were insufficient STREAMS resources available for the operation to complete.
ENOTSOCK The argument s is not a socket.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO bind(3SOCKET), getpeername(3SOCKET), socket(3SOCKET), attributes(5)
The `getsockname()` function retrieves the locally-bound name of the specified socket, stores this address in the `sockaddr` structure pointed to by the `address` argument, and stores the length of this address in the object pointed to by the `address_len` argument.

If the actual length of the address is greater than the length of the supplied `sockaddr` structure, the stored address will be truncated.

If the socket has not been bound to a local name, the value stored in the object pointed to by `address` is unspecified.

Upon successful completion, 0 is returned, the `address` argument points to the address of the socket, and the `address_len` argument points to the length of the address. Otherwise, −1 is returned and `errno` is set to indicate the error.

The `getsockname()` function will fail:

- **EBADF** The `socket` argument is not a valid file descriptor.
- **EFAULT** The `address` or `address_len` parameter can not be accessed or written.
- **ENOTSOCK** The `socket` argument does not refer to a socket.
- **EOPNOTSUPP** The operation is not supported for this socket’s protocol.

The `getsockname()` function may fail if:

- **EINVAL** The socket has been shut down.
- **ENOBUFFS** Insufficient resources were available in the system to complete the call.
- **ENOSR** There were insufficient STREAMS resources available for the operation to complete.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

`accept(3XNET), bind(3XNET), getpeername(3XNET), socket(3XNET), attributes(5)`
NAME
getsockopt, setsockopt -- get and set options on sockets

SYNOPSIS
cc [flag ...] file ... -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int getsockopt(int s, int level, int optname, void *optval, int *optlen);
int setsockopt(int s, int level, int optname, const void *optval, int optlen);

DESCRIPTION
getsockopt() and setsockopt() manipulate options associated with a socket. Options may exist at
multiple protocol levels; they are always present at the uppermost “socket” level.

When manipulating socket options, the level at which the option resides and the name of the option
must be specified. To manipulate options at the “socket” level, level is specified as SOL_SOCKET. To
manipulate options at any other level, level is the protocol number of the protocol that controls the
option. For example, to indicate that an option is to be interpreted by the TCP protocol, level is set to
the TCP protocol number. See getprotobyname(3SOCKET).

The parameters optval and optlen are used to access option values for setsockopt(). For
getsockopt(), they identify a buffer in which the value(s) for the requested option(s) are to be returned.
For getsockopt(), optlen is a value-result parameter, initially containing the size of the buffer pointed
to by optval, and modified on return to indicate the actual size of the value returned. Use a 0 optval
if no option value is to be supplied or returned.

optname and any specified options are passed uninterpreted to the appropriate protocol module
for interpretation. The include file <sys/socket.h> contains definitions for the socket-level options
described below. Options at other protocol levels vary in format and name.

Most socket-level options take an int for optval. For setsockopt(), the optval parameter
should be non-zero to enable a boolean option, or zero if the option is to be disabled. SO_LINGER uses
a struct linger parameter that specifies the desired state of the option and the linger interval. struct linger is
defined in <sys/socket.h>. struct linger contains the following members:

l_onoff on = 1/off = 0
l_linger linger time, in seconds

The following options are recognized at the socket level. Except as noted, each may be
examined with getsockopt() and set with setsockopt().

SO_DEBUG enable/disable recording of debugging information
SO_REUSEADDR enable/disable local address reuse
SO_KEEPALIVE enable/disable keep connections alive

Networking Library Functions 195
getsockopt(3SOCKET)

SO_DONTROUTE	enable/disable routing bypass for outgoing messages
SO_LINGER	linger on close if data is present
SO_BROADCAST	enable/disable permission to transmit broadcast
	messages
SO_OOBINLINE	enable/disable reception of out-of-band data in band
SO_SNDBUF	set buffer size for output
SO_RCVBUF	set buffer size for input
SO_DGRAM_ERRIND	application wants delayed error
SO_TYPE	get the type of the socket (get only)
SO_ERROR	get and clear error on the socket (get only)

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR indicates that the rules used in validating addresses supplied in a bind(3SOCKET) call should allow reuse of local addresses. SO_KEEPALIVE enables the periodic transmission of messages on a connected socket. If the connected party fails to respond to these messages, the connection is considered broken and processes using the socket are notified using a SIGPIPE signal. SO_DONTROUTE indicates that outgoing messages should bypass the standard routing facilities. Instead, messages are directed to the appropriate network interface according to the network portion of the destination address.

SO_LINGER controls the action taken when unsent messages are queued on a socket and a close(2) is performed. If the socket promises reliable delivery of data and SO_LINGER is set, the system will block the process on the close() attempt until it is able to transmit the data or until it decides it is unable to deliver the information (a timeout period, termed the linger interval, is specified in the setsockopt() call when SO_LINGER is requested). If SO_LINGER is disabled and a close() is issued, the system will process the close() in a manner that allows the process to continue as quickly as possible.

The option SO_BROADCAST requests permission to send broadcast datagrams on the socket. With protocols that support out-of-band data, the SO_OOBINLINE option requests that out-of-band data be placed in the normal data input queue as received; it will then be accessible with recv() or read() calls without the MSG_OOB flag.

SO_SNDBUF and SO_RCVBUF are options that adjust the normal buffer sizes allocated for output and input buffers, respectively. The buffer size may be increased for high-volume connections or may be decreased to limit the possible backlog of incoming data. The maximum buffer size for UDP is determined by the value of the ndd variable udp_max_buf. The maximum buffer size for TCP is determined the value of the ndd variable tcp_max_buf. Use the ndd(1M) utility to determine the current default values. See the Solaris Tunable Parameters Reference Manual for information on setting the values of udp_max_buf and tcp_max_buf.
By default, delayed errors (such as ICMP port unreachable packets) are returned only for connected datagram sockets. SO_DGRAM_ERRIND makes it possible to receive errors for datagram sockets that are not connected. When this option is set, certain delayed errors received after completion of a sendto() or sendmsg() operation will cause a subsequent sendto() or sendmsg() operation using the same destination address (to parameter) to fail with the appropriate error. See send(3SOCKET).

Finally, SO_TYPE and SO_ERROR are options used only with getsockopt(). SO_TYPE returns the type of the socket, for example, SOCK_STREAM. It is useful for servers that inherit sockets on startup. SO_ERROR returns any pending error on the socket and clears the error status. It may be used to check for asynchronous errors on connected datagram sockets or for other asynchronous errors.

RETURN VALUES

If successful, getsockopt() and setsockopt() return 0; otherwise, the functions return −1 and set errno to indicate the error.

ERRORS

The getsockopt() and setsockopt() calls succeed unless:

- EBADF: The argument s is not a valid file descriptor.
- ENOMEM: There was insufficient memory available for the operation to complete.
- ENOPROTOOPT: The option is unknown at the level indicated.
- ENOSR: There were insufficient STREAMS resources available for the operation to complete.
- ENOTSOCK: The argument s is not a socket.
- ENOBUFS: SO_SNDBUF or SO_RCVBUF exceeds a system limit.
- EINVAL: Invalid length for IP_OPTIONS.
- EHOSTUNREACH: Invalid address for IP_MULTICAST_IF.
- EINVAL: Not a multicast address for IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP.
- EADDRNOTAVAIL: Bad interface address for IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP.
- EADDRINUSE: Address already joined for IP_ADD_MEMBERSHIP.
- ENOENT: Address not joined for IP_DROP_MEMBERSHIP.
- EPERM: No permissions.
- EINVAL: The specified option is invalid at the specified socket level, or the socket has been shut down.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:
getsockopt(3SOCKET)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

ndd(1M), close(2), ioctl(2), read(2), bind(3SOCKET),
getprotobynamel(3SOCKET), recv(3SOCKET), send(3SOCKET),
socket(3SOCKET), attributes(5)

Solaris Tunable Parameters Reference Manual
NAME

getssockopt – get the socket options

SYNOPSIS

```c
#include <sys/socket.h>

int getssockopt(int socket, int level, int option_name, void *option_value, socklen_t *option_len);
```

DESCRIPTION

The `getssockopt()` function retrieves the value for the option specified by the `option_name` argument for the socket specified by the `socket` argument. If the size of the option value is greater than `option_len`, the value stored in the object pointed to by the `option_value` argument will be silently truncated. Otherwise, the object pointed to by the `option_len` argument will be modified to indicate the actual length of the value.

The `level` argument specifies the protocol level at which the option resides. To retrieve options at the socket level, specify the `level` argument as `SOL_SOCKET`. To retrieve options at other levels, supply the appropriate protocol number for the protocol controlling the option. For example, to indicate that an option will be interpreted by the TCP (Transport Control Protocol), set `level` to the protocol number of TCP, as defined in the `<netinet/in.h>` header, or as determined by using `getprotobyname(3XNET)` function.

The socket in use may require the process to have appropriate privileges to use the `getssockopt()` function.

The `option_name` argument specifies a single option to be retrieved. It can be one of the following values defined in `<sys/socket.h>`:

- **SO_DEBUG** Reports whether debugging information is being recorded. This option stores an `int` value. This is a boolean option.
- **SO_ACCEPTCONN** Reports whether socket listening is enabled. This option stores an `int` value.
- **SO_BROADCAST** Reports whether transmission of broadcast messages is supported, if this is supported by the protocol. This option stores an `int` value. This is a boolean option.
- **SO_REUSEADDR** Reports whether the rules used in validating addresses supplied to `bind(3XNET)` should allow reuse of local addresses, if this is supported by the protocol. This option stores an `int` value. This is a boolean option.
- **SO_KEEPALIVE** Reports whether connections are kept active with periodic transmission of messages, if this is supported by the protocol.

If the connected socket fails to respond to these messages, the connection is broken and processes writing to that socket are notified with a `SIGPIPE` signal. This option stores an `int` value.
SO_LINGER
Reports whether the socket lingers on `close(2)` if data is present. If SO_LINGER is set, the system blocks the process during `close(2)` until it can transmit the data or until the end of the interval indicated by the `l linger` member, whichever comes first. If SO_LINGER is not specified, and `close(2)` is issued, the system handles the call in a way that allows the process to continue as quickly as possible. This option stores a linger structure.

SO_OOBINLINE
Reports whether the socket leaves received out-of-band data (data marked urgent) in line. This option stores an int value. This is a boolean option.

SO_SNDBUF
Reports send buffer size information. This option stores an int value. This is a boolean option.

SO_RCVBUF
Reports receive buffer size information. This option stores an int value.

SO_ERROR
Reports information about error status and clears it. This option stores an int value.

SO_TYPE
Reports the socket type. This option stores an int value.

SO_DONTROUTE
Reports whether outgoing messages bypass the standard routing facilities. The destination must be on a directly-connected network, and messages are directed to the appropriate network interface according to the destination address. The effect, if any, of this option depends on what protocol is in use. This option stores an int value. This is a boolean option.

For boolean options, a zero value indicates that the option is disabled and a non-zero value indicates that the option is enabled.

Options at other protocol levels vary in format and name.

The socket in use may require the process to have appropriate privileges to use the `getsockopt()` function.

RETURN VALUES
Upon successful completion, `getsockopt()` returns 0. Otherwise, -1 is returned and `errno` is set to indicate the error.

ERRORS
The `getsockopt()` function will fail if:

- **EBADF**
 The socket argument is not a valid file descriptor.
The `getsockopt()` function may fail if:

- **EFAULT**: The `option_value` or `option_len` parameter can not be accessed or written.
- **EINVAL**: The specified option is invalid at the specified socket level.
- **ENOPROTOOPT**: The option is not supported by the protocol.
- **ENOTSOCK**: The `socket` argument does not refer to a socket.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

`close(2), bind(3XNET), endprotoent(3XNET), setsockopt(3XNET), socket(3XNET), attributes`
gss_accept_sec_context(3GSS)

NAME gss_accept_sec_context – accept a security context initiated by a peer application

SYNOPSIS cc -flag ... file ...-lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_accept_sec_context(OM_uint32 *minor_status,
 gss_ctx_id_t *context_handle, const gss_cred_id_t acceptor_cred_handle,
 const gss_buffer_t input_token, const gss_channel_bindings_t *input_chan_bindings,
 const gss_name_t *src_name, gss_OID *mech_type,
 gss_buffer_t output_token, OM_uint32 *ret_flags,
 OM_uint32 *time_rec, gss_cred_id_t *delegated_cred_handle);

DESCRIPTION The gss_accept_sec_context() function allows a remotely initiated security context between the application and a remote peer to be established. The routine may return an output_token, which should be transferred to the peer application, where the peer application will present it to gss_init_sec_context(). See gss_init_sec_context(3GSS). If no token need be sent, gss_accept_sec_context() will indicate this by setting the length field of the output_token argument to zero. To complete the context establishment, one or more reply tokens may be required from the peer application; if so, gss_accept_sec_context() will return a status flag of GSS_S_CONTINUE_NEEDED, in which case it should be called again when the reply token is received from the peer application, passing the token to gss_accept_sec_context() by means of the input_token parameters.

Portable applications should be constructed to use the token length and return status to determine whether to send or to wait for a token.

Whenever gss_accept_sec_context() returns a major status that includes the value GSS_S_CONTINUE_NEEDED, the context is not fully established and the following restrictions apply to the output parameters:

- The value returned by means of the time_rec parameter is undefined.
- Unless the accompanying ret_flags parameter contains the bit GSS_C_PROT_READY_FLAG, which indicates that per-message services may be applied in advance of a successful completion status, the value returned by the mech_type parameter may be undefined until gss_accept_sec_context() returns a major status value of GSS_S_COMPLETE.

The values of the GSS_C_DELEG_FLAG, GSS_C_MUTUAL_FLAG,
GSS_C_REPLAY_FLAG, GSS_C_SEQUENCE_FLAG, GSS_C_CONF_FLAG,
GSS_C_INTEG_FLAG and GSS_C_ANON_FLAG bits returned by means of the ret_flags parameter are values that would be valid if context establishment were to succeed.

The values of the GSS_C_PROT_READY_FLAG and GSS_C_TRANS_FLAG bits within ret_flags indicate the actual state at the time gss_accept_sec_context() returns, whether or not the context is fully established. However, applications should not rely...
on this behavior, as GSS_C_PROT_READY_FLAG was not de

defined in Version 1 of the GSS-API. Instead, applications should be prepared to use per-message services after a successful context establishment, based upon the GSS_C_INTEG_FLAG and GSS_C_CONF_FLAG values.

All other bits within the ret_flags argument are set to zero.

While gss_accept_sec_context() returns GSS_S_CONTINUE_NEEDED, the values returned by means of the the ret_flags argument indicate the services available from the established context. If the initial call of gss_accept_sec_context() fails, no context object is created, and the value of the context_handle parameter is set to GSS_C_NO_CONTEXT. In the event of a failure on a subsequent call, the security context and the context_handle parameter are left untouched for the application to delete using gss_delete_sec_context(3GSS). During context establishment, the informational status bits GSS_S_OLD_TOKEN and GSS_S_DUPLICATE_TOKEN indicate fatal errors; GSS-API mechanisms always return them in association with a routine error of GSS_S_FAILURE. This pairing requirement did not exist in version 1 of the GSS-API specification, so applications that wish to run over version 1 implementations must special-case these codes.

PARAMETERS

The parameter descriptions for gss_accept_sec_context() follow:

- minor_status: The status code returned by the underlying mechanism.
- context_handle: The context handle to return to the initiator. This should be set to GSS_C_NO_CONTEXT before the loop begins.
- acceptor_cred_handle: The handle for the credentials acquired by the acceptor, typically through gss_acquire_cred(). It may be initialized to GSS_C_NO_CREDENTIAL to indicate a default credential to use. If no default credential is defined, the function returns GSS_C_NO_CRED.
- input_token_buffer: Token received from the context initiative.
- input_chan_bindings: Optional application-specified bindings. Allows application to securely bind channel identification information to the security context. Set to GSS_C_NO_CHANNEL_BINDINGS if you do not want to use channel bindings.
- src_name: The authenticated name of the context initiator. After use, this name should be deallocated by passing it to gss_release_name(). See gss_release_name(3GSS). If not required, specify NULL.
- mech_type: The security mechanism used. Set to NULL if it does not matter which mechanism is used.
- output_token: The token to send to the acceptor. Initialize it to GSS_C_NO_BUFFER before the function is called (or its length field set to zero). If the length is zero, no token need be sent.
Contains various independent flags, each of which indicates that the context supports a specific service option. If not needed, specify NULL. Test the returned bit-mask `ret_flags` value against its symbolic name to determine if the given option is supported by the context. `ret_flags` may contain one of the following values:

GSS_C_DELEG_FLAG

If true, delegated credentials are available by means of the `delegated_cred_handle` parameter. If false, no credentials were delegated.

GSS_C_MUTUAL_FLAG

If true, a remote peer asked for mutual authentication. If false, no remote peer asked for mutual authentication.

GSS_C_REPLY_FLAG

If true, replay of protected messages will be detected. If false, replayed messages will not be detected.

GSS_C_SEQUENCE_FLAG

If true, out of sequence protected messages will be detected. If false, they will not be detected.

GSS_C_CONF_FLAG

If true, confidentiality service may be invoked by calling the `gss_wrap()` routine. If false, no confidentiality service is available by means of `gss_wrap()`. `gss_wrap()` will provide message encapsulation, data-origin authentication and integrity services only.

GSS_C_INTEG_FLAG

If true, integrity service may be invoked by calling either the `gss_get_mic(3GSS)` or the `gss_wrap(3GSS)` routine. If false, per-message integrity service is not available.

GSS_C_ANON_FLAG

If true, the initiator does not wish to be authenticated. The `src_name` parameter, if requested, contains an anonymous internal name. If false, the initiator has been authenticated normally.

GSS_C_PROT_READY_FLAG

If true, the protection services specified by the states of `GSS_C_CONF_FLAG` and `GSS_C_INTEG_FLAG` are available if the accompanying major status return value is either `GSS_S_COMPLETE` or `GSS_S_CONTINUE_NEEDED`. If false, the protection services are available only if the accompanying major status return value is `GSS_S_COMPLETE`.

204 man pages section 3: Networking Library Functions • Last Revised 18 Apr 2000
gss_accept_sec_context(3GSS)

GSS_C_TRANS_FLAG
If true, the resultant security context may be transferred to
other processes by means of a call to
gss_export_sec_context(3GSS). If false, the security
context cannot be transferred.

time_rec
The number of sections for which the context will remain
value. Specify NULL if not required.

delegated_cred_handle
The credential value for credentials received from the
context’s initiator. It is valid only if the initiator has requested
that the acceptor act as a proxy: that is, if the *ret_flag*
argument resolves to GSS_C_DELEG_FLAG.

RETURN VALUES
gss_accept_sec_context() may return the following status codes:

GSS_S_COMPLETE
Successful completion.

GSS_S_CONTINUE_NEEDED
A token from the peer application is
required to complete the context, and that
gss_accept_sec_context() must be
called again with that token.

GSS_S_DEFECTIVE_TOKEN
Consistency checks performed on the
input_token failed.

GSS_S_DEFECTIVE_CREDENTIAL
Consistency checks performed on the
credential failed.

GSS_S_NO_CRED
The supplied credentials were not valid for
context acceptance, or the credential handle
did not reference any credentials.

GSS_S_CREDENTIALS_EXPIRED
The referenced credentials have expired.

GSS_S_BAD_BINDINGS
The *input_token* contains different channel
bindings than those specified by means of
the *input_chan_bindings* parameter.

GSS_S_NO_CONTEXT
The supplied context handle did not refer to
a valid context.

GSS_S_BAD_SIG
The *input_token* contains an invalid MIC.

GSS_S_OLD_TOKEN
The *input_token* was too old. This is a fatal
error while establishing context.

GSS_S_DUPLICATE_TOKEN
The *input_token* is valid, but it is duplicate
of a token already processed. This is a fatal
error while establishing context.

GSS_S_BAD_MECH
The token received specified a mechanism
that is not supported by the implementation
or the provided credential.
The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the \texttt{minor_status} parameter details the error condition.

\textbf{EXAMPLE 1} Invoking \texttt{gss_accept_sec_context()} Within a Loop

A typical portable caller should always invoke \texttt{gss_accept_sec_context()} within a loop:

\begin{verbatim}
gss_ctx_id_t context_hdl = GSS_C_NO_CONTEXT;
do {
 receive_token_from_peer(input_token);
 maj_stat = gss_accept_sec_context(&min_stat,
 &context_hdl,
 cred_hdl,
 input_token,
 input_bindings,
 &client_name,
 &mech_type,
 output_token,
 &ret_flags,
 &time_rec,
 &deleg_cred);
 if (GSS_ERROR(maj_stat)) {
 report_error(maj_stat, min_stat);
 break;
 }
 send_token_to_peer(output_token);
gss_release_buffer(&min_stat, output_token);
} while (maj_stat & GSS_S_CONTINUE_NEEDED);
\end{verbatim}

See \texttt{attributes(5)} for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>
SEE ALSO

| gss_delete_sec_context(3GSS), gss_export_sec_context(3GSS), gss_get_mic(3GSS), gss_init_sec_context(3GSS), gss_release_name(3GSS), gss_wrap(3GSS), attributes(5) |

GSS-API Programming Guide
gss_acquire_cred(3GSS)

NAME

gss_acquire_cred – acquire a handle for a pre-existing credential by name

SYNOPSIS

cc -flag ... file ... -lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_acquire_cred(OM_uint32 *minor_status, const gss_name_t *desired_name, OM_uint32 time_req, const gss_OID_set desired_mech, gss_cred_usage_t cred_usage, gss_cred_id_t *output_cred_handle, gss_OID_set *actual_mechs, OM_uint32 *time_rec);

DESCRIPTION

The gss_acquire_cred() function allows an application to acquire a handle for a pre-existing credential by name. This routine is not intended as a function to login to the network; a function for login to the network would involve creating new credentials rather than merely acquiring a handle to existing credentials.

If desired_name is GSS_C_NO_NAME, the call is interpreted as a request for a credential handle that will invoke default behavior when passed to gss_init_sec_context(3GSS) (if cred_usage is GSS_C_INITIATE or GSS_C_BOTH) or gss_accept_sec_context(3GSS) (if cred_usage is GSS_C_ACCEPT or GSS_C_BOTH).

Normally gss_acquire_cred() returns a credential that is valid only for the mechanisms requested by the desired_mechs argument. However, if multiple mechanisms can share a single credential element, the function returns all the mechanisms for which the credential is valid in the actual_mechs argument.

gss_acquire_cred() is intended to be used primarily by context acceptors, since the GSS-API routines obtain initiator credentials through the system login process. Accordingly, you may not acquire GSS_C_INITIATE or GSS_C_BOTH credentials by means of gss_acquire_cred() for any name other than GSS_C_NO_NAME.

Alternatively, you may acquire GSS_C_INITIATE or GSS_C_BOTH credentials for a name produced when gss_inquire_cred(3GSS) is applied to a valid credential, or when gss_inquire_context(3GSS) is applied to an active context.

If credential acquisition is time-consuming for a mechanism, the mechanism may choose to delay the actual acquisition until the credential is required, for example, by gss_init_sec_context(3GSS) or by gss_accept_sec_context(3GSS). Such mechanism-specific implementations are, however, invisible to the calling application; thus a call of gss_inquire_cred(3GSS) immediately following the call of gss_acquire_cred() will return valid credential data and incur the overhead of a deferred credential acquisition.

PARAMETERS

The parameter descriptions for gss_acquire_cred() follow:

desired_name The name of the principal for which a credential should be acquired.

time_req The number of seconds that credentials remain valid. Specify GSS_C_INDEFINITE to request that the credentials have the maximum permitted lifetime.
desired_mechs
The set of underlying security mechanisms that may be used. GSS_C_NO_OID_SET may be used to obtain a default.

cred_usage
A flag that indicates how this credential should be used. If the flag is GSS_C_ACCEPT, then credentials will be used only to accept security credentials. GSS_C_INITIATE indicates that credentials will be used only to initiate security credentials. If the flag is GSS_C_BOTH, then credentials may be used either to initiate or accept security contexts.

output_cred_handle
The returned credential handle. Resources associated with this credential handle must be released by the application after use with a call to gss_release_cred(3GSS).

actual_mechs
The set of mechanisms for which the credential is valid. Storage associated with the returned OID-set must be released by the application after use with a call to gss_release_oid_set(3GSS). Specify NULL if not required.

time_rec
Actual number of seconds for which the returned credentials will remain valid. Specify NULL if not required.

minor_status
Mechanism specific status code.

RETURN VALUES

gss_acquire_cred() may return the following status codes:

<table>
<thead>
<tr>
<th>Status Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSS_S_COMPLETE</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>GSS_S_BAD_MECH</td>
<td>An unavailable mechanism has been requested.</td>
</tr>
<tr>
<td>GSS_S_BAD_NAMETYPE</td>
<td>The type contained within the desired_name parameter is not supported.</td>
</tr>
<tr>
<td>GSS_S_BAD_NAME</td>
<td>The value supplied for desired_name parameter is ill formed.</td>
</tr>
<tr>
<td>GSS_S_CREDENTIALS_EXPIRED</td>
<td>The credentials could not be acquired because they have expired.</td>
</tr>
<tr>
<td>GSS_S_NO_CRED</td>
<td>No credentials were found for the specified name.</td>
</tr>
<tr>
<td>GSS_S_FAILURE</td>
<td>The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the minor_status parameter details the error condition.</td>
</tr>
</tbody>
</table>

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:
gss_acquire_cred(3GSS)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
gss_acquire_cred(3GSS), gss_init_sec_context(3GSS),
gss_inquire_context(3GSS), gss_inquire_cred(3GSS),
gss_release_cred(3GSS), gss_release_oid_set(3GSS), attributes(5)

GSS-API Programming Guide
The `gss_add_cred()` function adds a credential-element to a credential. The credential-element is identified by the name of the principal to which it refers. This routine is not intended as a function to login to the network; a function for login to the network would involve creating new mechanism-specific authentication data rather than merely acquiring a handle to existing data.

If the value of `desired_name` is `GSS_C_NO_NAME`, the call is interpreted as a request to add a credential element that will invoke default behavior when passed to `gss_init_sec_context(3GSS)` (if the value of `cred_usage` is `GSS_C_INITIATE` or `GSS_C_BOTH`) or `gss_accept_sec_context(3GSS)` (if the value of `cred_usage` is `GSS_C_ACCEPT` or `GSS_C_BOTH`).

The `gss_add_cred()` function is expected to be used primarily by context acceptors, since the GSS-API provides mechanism-specific ways to obtain GSS-API initiator credentials through the system login process. Consequently, the GSS-API therefore does not support acquiring `GSS_C_INITIATE` or `GSS_C_BOTH` credentials by means of `gss_acquire_cred(3GSS)` for any name other than `GSS_C_NO_NAME`, or from name produced by `gss_inquire_cred(3GSS)` applied to a valid credential or `gss_inquire_context(3GSS)` applied to an active context.

If credential acquisition is time-consuming for a mechanism, the mechanism may choose to delay the actual acquisition until the credential is required, for example, by `gss_init_sec_context(3GSS)` or by `gss_accept_sec_context(3GSS)`. Such mechanism-specific implementation decisions are, however, invisible to the calling application; thus a call to `gss_inquire_cred(3GSS)` immediately following the call of `gss_add_cred()` will return valid credential data as well as incur the overhead of deferred credential acquisition.

The `gss_add_cred()` routine can be used either to compose a new credential that contains all credential-elements of the original in addition to the newly-acquired credential-element, or to add the new credential-element to an existing credential. If the value of the `output_cred_handle` parameter argument is `NULL`, the new credential-element will be added to the credential identified by `input_cred_handle`; if a valid pointer is specified for the `output_cred_handle` parameter, a new credential handle will be created.
If the value of `input_cred_handle` is `GSS_C_NO_CREDENTIAL`, `gss_add_credential()` will compose a credential and set the `output_cred_handle` parameter based on the default behavior. That is, the call will have the same effect as if the application had first made a call to `gss_acquire_credential(3GSS)` specifying the same usage and passing `GSS_C_NO_NAME` as the `desired_name` parameter to obtain an explicit credential handle that incorporates the default behaviors, then passed this credential handle to `gss_add_credential()`, and finally called `gss_release_credential(3GSS)` on the first credential handle.

If the value of the `input_cred_handle` parameter is `GSS_C_NO_CREDENTIAL`, you must supply a non-NULL value for the `output_cred_handle` parameter.

PARAMETERS

The parameter descriptions for `gss_acquire_credential()` follow:

- **minor_status**

 A mechanism specific status code.

- **input_cred_handle**

 The credential to which the credential-element will be added. If `GSS_C_NO_CREDENTIAL` is specified, the routine will compose the new credential based on default behavior. While the credential-handle is not modified by `gss_add_credential()`, if `output_cred_handle` is NULL, the underlying credential will be modified.

- **desired_name**

 Name of principal for which a credential should be acquired.

- **desired_mech**

 If the value of `desired_mech` is `GSS_C_BOTH`, the credential may be used either to initiate or accept security contexts. If the value of `desired_mech` is `GSS_C_INITIATE`, the credential will only be used to initiate security contexts. The credential will only be used to accept security contexts, if the value of `desired_mech` is `GSS_C_ACCEPT`.

- **initiator_time_req**

 The number of seconds that the credential may remain valid for initiating security contexts. This argument is ignored if the composed credentials are of type `GSS_C_ACCEPT`. Specify `GSS_C_INDEFINITE` to request that the credentials have the maximum permitted initiator lifetime.

- **acceptor_time_req**

 Number of seconds that the credential may remain valid for accepting security contexts. This argument is ignored if the composed credentials are of type `GSS_C_INITIATE`. Specify `GSS_C_INDEFINITE` to request that the credentials have the maximum permitted initiator lifetime.

- **output_cred_handle**

 The returned credential handle that contains the new credential-element and all the credential-elements from `input_cred_handle`. If a valid pointer to a `gss_cred_id_t` is supplied for this parameter, `gss_add_credential()` creates a new credential handle containing all credential-elements from `input_cred_handle` and the newly acquired credential-element; if
NULL is specified for this parameter, the newly acquired credential-element will be added to the credential identified by
input_cred_handle.

The resources associated with any credential handle returned by means of this parameter must be released by the application after use by a call to gss_release_cred(3GSS).

actual_mechs The complete set of mechanisms for which the new credential is valid. Storage for the returned OID-set must be freed by the application after use by a call to gss_release_oid_set(3GSS). Specify NULL if this parameter is not required.

initiator_time_rec The actual number of seconds for which the returned credentials will remain valid for initiating contexts using the specified mechanism. If a mechanism does not support expiration of credentials, the value GSS_C_INDEFINITE will be returned. Specify NULL if this parameter is not required.

acceptor_time_rec The actual number of seconds for which the returned credentials will remain valid for accepting security contexts using the specified mechanism. If a mechanism does not support expiration of credentials, the value GSS_C_INDEFINITE will be returned. Specify NULL if this parameter is not required.

RETURN VALUES

Gss_acquire_cred() may return the following status codes:

- **GSS_S_COMPLETE** Successful completion.
- **GSS_S_BAD_MECH** An unavailable mechanism has been requested.
- **GSS_S_BAD_NAMETYPE** The type contained within the desired_name parameter is not supported.
- **GSS_S_BAD_NAME** The value supplied for desired_name parameter is ill formed.
- **GSS_S_DUPLICATE_ELEMENT** The credential already contains an element for the requested mechanism that has overlapping usage and validity period.
- **GSS_S_CREDENTIALS_EXPIRED** The credentials could not be added because they have expired.
- **GSS_S_NO_CRED** No credentials were found for the specified name.
- **GSS_S_FAILURE** The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the minor_status parameter details the error condition.
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

gss_accept_sec_context(3GSS), gss_acquire_cred(3GSS),
gss_init_sec_context(3GSS),
gss_inquire_context(3GSS), gss_inquire_cred(3GSS),
gss_release_cred(3GSS), gss_release_oid_set(3GSS), attributes(5)

GSS-API Programming Guide
gss_add_oid_set_member(3GSS)

NAME
gss_add_oid_set_member – add an object identifier to an object identifier set

SYNOPSIS
cc ... file ... -lgss [library ...]
#include <gssapi/gssapi.h>
OM_uint32 gss_add_oid_set_member(OM_uint32 *minor_status, const
gss_OID member_oid, gss_OID_set *oid_set);

DESCRIPTION
The gss_add_oid_set_member() function adds an object identifier to an object
identifier set. You should use this function in conjunction with

The GSS-API creates a copy of the member_oid and inserts this copy into the set,
expanding the storage allocated to the OID-set elements array, if necessary. The
function may add the new member OID anywhere within the elements array, and the
GSS-API verifies that the new member_oid is not already contained within the elements
array. If the member_oid is already present, the oid_set should remain unchanged.

PARAMETERS
The parameter descriptions for gss_add_oid_set_member() follow:

minor_status A mechanism specific status code.
member_oid Object identifier to be copied into the set.
oid_set Set in which the object identifier should be inserted.

RETURN VALUES
The gss_add_oid_set_member() function may return the following status codes:

GSS_S_COMPLETE Successful completion.
GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
gss_acquire_cred(3GSS), gss_create_empty_oid_set(3GSS), attributes(5)

GSS-API Programming Guide
gss_canonicalize_name(3GSS)

NAME gss_canonicalize_name – convert an internal name to a mechanism name

SYNOPSIS cc [flag...] file... -lgss [library...]
#include <gssapi/gssapi.h>

OM_uint32 gss_canonicalize_name(OM_uint32 *minor_status, const gss_name_t input_name, const gss_OID mech_type, gss_name_t *output_name);

DESCRIPTION The gss_canonicalize_name() function generates a canonical mechanism name from an arbitrary internal name. The mechanism name is the name that would be returned to a context acceptor on successful authentication of a context where the initiator used the input_name in a successful call to gss_acquire_cred(3GSS), specifying an OID set containing mech_type as its only member, followed by a call to gss_init_sec_context(3GSS), specifying mech_type as the authentication mechanism.

PARAMETERS The parameter descriptions for gss_canonicalize_name() follow:

- minor_status Mechanism-specific status code.
- input_name The name for which a canonical form is desired.
- mech_type The authentication mechanism for which the canonical form of the name is desired. The desired mechanism must be specified explicitly; no default is provided.
- output_name The resultant canonical name. Storage associated with this name must be freed by the application after use with a call to gss_release_name(3GSS).

RETURN VALUES The gss_canonicalize_name() function may return the status codes:

- GSS_S_COMPLETE Successful completion.
- GSS_S_BAD_MECH The identified mechanism is not supported.
- GSS_S_BAD_NAMETYPE The provided internal name contains no elements that could be processed by the specified mechanism.
- GSS_S_BAD_NAME The provided internal name was ill-formed.
- GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the minor_status parameter details the error condition.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
</tbody>
</table>
gss_canonicalize_name(3GSS)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUNWgssx (64-bit)</td>
<td></td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO gss_acquire_cred(3GSS), gss_init_sec_context(3GSS), gss_release_name(3GSS), attributes(5)

GSS-API Programming Guide
The `gss_compare_name()` function allows an application to compare two internal-form names to determine whether they refer to the same entity. If either name presented to `gss_compare_name()` denotes an anonymous principal, the routines indicate that the two names do not refer to the same identity.

The parameter descriptions for `gss_compare_name()` follow:

- `minor_status` Mechanism-specific status code.
- `name1` Internal-form name.
- `name2` Internal-form name.
- `name_equal` If non-zero, the names refer to same entity. If 0, the names refer to different entities. Strictly, the names are not known to refer to the same identity.

The `gss_compare_name()` function may return the following status codes:

- `GSS_S_COMPLETE` Successful completion.
- `GSS_S_BAD_NAMETYPE` The two names were of incomparable types.
- `GSS_S_BAD_NAME` One or both of `name1` or `name2` was ill-formed.
- `GSS_S_FAILURE` The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the `minor_status` parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

- **Availability**
 - SUNWgss (32-bit)
 - SUNWgssx (64-bit)
- **MT-Level** Safe

See also attributes(5)

GSS-API Programming Guide
NAME
gss_context_time – determine how long a context will remain valid

SYNOPSIS
cc -flag ... file ...-lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_context_time(OM_uint32 *minor_status, gss_ctx_id_t *context_handle, OM_uint32 *time_rec);

DESCRIPTION
The gss_context_time() function determines the number of seconds for which the specified context will remain valid.

PARAMETERS
The parameter descriptions for gss_context_time() are as follows:

- minor_status: A mechanism-specific status code.
- context_handle: A read-only value. Identifies the context to be interrogated.
- time_rec: Modifies the number of seconds that the context remains valid. If the context has already expired, returns zero.

RETURN VALUES
The gss_context_time() function returns one of the following status codes:

- GSS_S_COMPLETE: Successful completion.
- GSS_S_CONTEXT_EXPIRED: The context has already expired.
- GSS_S_NO_CONTEXT: The context_handle parameter did not identify a valid context.
- GSS_S_FAILURE: The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the minor_status parameter details the error condition.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

- gss_init_sec_context(3GSS), gss_accept_sec_context(3GSS),
- gss_delete_sec_context(3GSS), gss_process_context_token(3GSS),
- gss_inquire_context(3GSS), gss_wrap_size_limit(3GSS),
- gss_export_sec_context(3GSS), gss_import_sec_context(3GSS),
- attributes(5)

GSS-API Programming Guide
gss_create_empty_oid_set(3GSS)

NAME gss_create_empty_oid_set – create an object-identifier set containing no object identifiers

SYNOPSIS cc -flag ... file ...-lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_create_empty_oid_set(OM_uint32 *minor_status,
 gss_OID_set *oid_set);

DESCRIPTION The gss_create_empty_oid_set() function creates an object-identifier set containing no object identifiers to which members may be subsequently added using the gss_add_oid_set_member(3GSS) function. These functions can be used to construct sets of mechanism object identifiers for input to gss_acquire_cred(3GSS).

PARAMETERS The parameter descriptions for gss_create_empty_oid_set() follow:

 minor_statusMechanism-specific status code
 oid_setEmpty object identifier set. The function will allocate the
 gss_OID_set_desc object, which the application must free after
 use with a call to gss_release_oid_set(3GSS).

RETURN VALUES The gss_create_empty_oid_set() function may return the following status codes:

 GSS_S_COMPLETESuccessful completion
 GSS_S_FAILUREThe underlying mechanism detected an error for which no
 specific GSS status code is defined. The mechanism-specific
 status code reported by means of the minor_status parameter
 details the error condition.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO gss_acquire_cred(3GSS), gss_add_oid_set_member(3GSS), gss_release_oid_set(3GSS), attributes(5)

GSS-API Programming Guide
gss_delete_sec_context(3GSS)

NAME
gss_delete_sec_context – delete a GSS-API security context

SYNOPSIS
cc -flag ... file ... -lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_delete_sec_context(OM_uint32 *minor_status,
gss_ctx_id_t *context_handle, gss_buffer_t output_token);

DESCRIPTION
Use the gss_delete_sec_context() function to delete a security context. The
 gss_delete_sec_context() function will delete the local data structures
 associated with the specified security context. You may not obtain further security
 services that use the context specified by context_handle.

In addition to deleting established security contexts, gss_delete_sec_context() will delete any half-built security contexts that result from incomplete sequences of calls to gss_init_sec_context(3GSS) and gss_accept_sec_context(3GSS).

The Solaris implementation of the GSS-API retains the output_token parameter for compatibility with version 1 of the GSS-API. Both peer applications should invoke gss_delete_sec_context(), passing the value GSS_C_NO_BUFFER to the output_token parameter; this indicates that no token is required. If the application passes a valid buffer to gss_delete_sec_context(), it will return a zero-length token, indicating that no token should be transferred by the application.

PARAMETERS
The parameter descriptions for gss_delete_sec_context() follow:

minor_status A mechanism specific status code.
context_handle Context handle identifying specific context to delete. After deleting the context, the GSS-API will set context_handle to GSS_C_NO_CONTEXT.
output_token A token to be sent to remote applications that instructs them to delete the context.

RETURN VALUES
 gss_delete_sec_context() may return the following status codes:

GSS_S_COMPLETE Successful completion.
GSS_S_NO_CONTEXT No valid context was supplied.
GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the minor_status parameter details the error condition.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
</tbody>
</table>
SEE ALSO gss_accept_sec_context(3GSS), gss_init_sec_context(3GSS), attributes(5)

GSS-API Programming Guide
The `gss_display_name()` function allows an application to obtain a textual representation of an opaque internal-form name for display purposes.

If `input_name` denotes an anonymous principal, the GSS-API returns the `gss_OID` value `GSS_C_NT_ANONYMOUS` as the `output_name_type`, and a textual name that is syntactically distinct from all valid supported printable names in `output_name_buffer`.

If `input_name` was created by a call to `gss_import_name(3GSS)`, specifying `GSS_C_NO_OID` as the name-type, the GSS-API returns `GSS_C_NO_OID` by means of the `output_name_type` parameter.

PARAMETERS

- `minor_status` Mechanism-specific status code.
- `input_name` Name in internal form.
- `output_name_buffer` Buffer to receive textual name string. The application must free storage associated with this name after use with a call to `gss_release_buffer(3GSS)`.
- `output_name_type` The type of the returned name. The returned `gss_OID` will be a pointer into static storage and should be treated as read-only by the caller. In particular, the application should not attempt to free it. Specify NULL if this parameter is not required.

RETURN VALUES

The `gss_display_name()` function may return the following status codes:

- `GSS_S_COMPLETE` Successful completion.
- `GSS_S_BAD_NAME` The `input_name` was ill-formed.
- `GSS_S_FAILURE` The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the `minor_status` parameter details the error condition.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
</tbody>
</table>
gss_display_name(3GSS)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
- `gss_import_name(3GSS)`
- `gss_release_buffer(3GSS)`
- `attributes(5)`
- GSS-API Programming Guide

224 man pages section 3: Networking Library Functions • Last Revised 18 Apr 2000
NAME
`gss_display_status` – convert a GSS-API status code to text

SYNOPSIS
```
cc -flag ... file...-lgss [library ...]
#include <gssapi/gssapi.h>
OM_uint32 gss_display_status(OM_uint32 *minor_status, OM_uint32 status value, int status type, const gss_OID mech_type, OM_uint32 *message_context, gss_buffer_t status string);
```

DESCRIPTION
The `gss_display_status()` function enables an application to obtain a textual representation of a GSS-API status code for display to the user or for logging purposes. Because some status values may indicate multiple conditions, applications may need to call `gss_display_status()` multiple times, with each call generating a single text string.

The `message_context` parameter is used by `gss_acquire_cred()` to store state information on error messages that are extracted from a given `status_value`. The `message_context` parameter must be initialized to 0 by the application prior to the first call, and `gss_display_status()` will return a non-zero value in this parameter if there are further messages to extract.

The `message_context` parameter contains all state information required by `gss_display_status()` to extract further messages from the `status_value`. If a non-zero value is returned in this parameter, the application is not required to call `gss_display_status()` again unless subsequent messages are desired.

PARAMETERS
The parameter descriptions for `gss_display_status()` follow:

- `minor_status` Status code returned by the underlying mechanism.
- `status_value` Status value to be converted.
- `status_type` If the value is `GSS_C_GSS_CODE`, `status_value` is a GSS-API status code. If the value is `GSS_C_MECH_CODE`, then `status_value` is a mechanism status code.
- `mech_type` Underlying mechanism that is used to interpret a minor status value. Supply `GSS_C_NO_OID` to obtain the system default.
- `message_context` Should be initialized to zero prior to the first call. On return from `gss_display_status()`, a non-zero `status_value` parameter indicates that additional messages may be extracted from the status code by means of subsequent calls to `gss_display_status()`, passing the same `status_value`, `status_type`, `mech_type`, and `message_context` parameters.
- `status_string` Textual representation of the `status_value`. Storage associated with this parameter must be freed by the application after use with a call to `gss_release_buffer(3GSS)`.

RETURN VALUES
The `gss_display_status()` function may return the following status codes:

- `GSS_S_COMPLETE` Successful completion.
GSS_S_BAD_MECH Indicates that translation in accordance with an unsupported mechanism type was requested.

GSS_S_BAD_STATUS The status value was not recognized, or the status type was neither `GSS_C_GSS_CODE` nor `GSS_C_MECH_CODE`.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the `minor_status` parameter details the error condition.

ATTRIBUTES See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO `gss_acquire_cred(3GSS), gss_release_buffer(3GSS), attributes(5)`

GSS-API Programming Guide
NAME
gss_duplicate_name – create a copy of an internal name

SYNOPSIS
cce [flag ...] file... -lgss [library...]
#include <gssapi/gssapi.h>

OM_uint32 gss_duplicate_name(OM_uint32 *minor_status, const
gss_name_t src_name, gss_name_t *dest_name);

DESCRIPTION
The gss_duplicate_name() function creates an exact duplicate of the existing
internal name src_name. The new dest_name will be independent of the src_name. The
src_name and dest_name must both be released, and the release of one does not affect
the validity of the other.

PARAMETERS
The parameter descriptions for gss_duplicate_name() follow:

minor_status A mechanism-specific status code.

src_name Internal name to be duplicated.

dest_name The resultant copy of src_name. Storage associated with this name
must be freed by the application after use with a call to
gss_release_name(3GSS).

RETURN VALUES
The gss_duplicate_name() function may return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_BAD_NAME The src_name parameter was ill-formed.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

- gss_release_name(3GSS), attributes(5)
- GSS-API Programming Guide
gss_export_name(3GSS)

NAME gss_export_name – convert a mechanism name to export form

SYNOPSIS

```c
#include <gssapi/gssapi.h>

OM_uint32 gss_export_name(OM_uint32 *minor_status, const gss_name_t input_name, gss_buffer_t exported_name);
```

DESCRIPTION

The `gss_export_name()` function allows a GSS-API internal name to be converted into a mechanism-specific name. The function produces a canonical contiguous string representation of a mechanism name, suitable for direct comparison, with `memcmp(3C)`, or for use in authorization functions, matching entries in an access-control list. The `input_name` parameter must specify a valid mechanism name, that is, an internal name generated by `gss_accept_sec_context(3GSS)` or by `gss_canonicalize_name(3GSS)`.

PARAMETERS

The parameter descriptions for `gss_export_name()` follow:

- `minor_status`: A mechanism-specific status code.
- `input_name`: The mechanism name to be exported.
- `exported_name`: The canonical contiguous string form of `input_name`. Storage associated with this string must be freed by the application after use with `gss_release_buffer(3GSS)`.

RETURN VALUES

The `gss_export_name()` function may return the following status codes:

- `GSS_S_COMPLETE`: Successful completion.
- `GSS_S_NAME_NOT_MN`: The provided internal name was not a mechanism name.
- `GSS_S_FAILURE`: The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the `minor_status` parameter details the error condition.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

`gss_accept_sec_context(3GSS), gss_canonicalize_name(3GSS), gss_release_buffer(3GSS), memcpy(3C), attributes(5)`

`GSS-API Programming Guide`
NAME
gss_export_sec_context – transfer a security context to another process

SYNOPSIS
cc -flag ... file ...-lgss [library ...]
#include <gssapi/gssapi.h>
OM_uint32 gss_export_sec_context(OM_uint32 *minor_status,
 gss_ctx_id_t *context_handle, gss_buffer_t interprocess_token);

DESCRIPTION
The gss_export_sec_context() function generates an interprocess token for
transfer to another process within an end system. gss_export_sec_context() and

gss_import_sec_context() allow a security context to be transferred between

processes on a single machine.

The gss_export_sec_context() function supports the sharing of work between
multiple processes. This routine is typically used by the context-acceptor, in an
application where a single process receives incoming connection requests and accepts
security contexts over them, then passes the established context to one or more other
processes for message exchange. gss_export_sec_context() deactivates the

security context for the calling process and creates an interprocess token which, when
passed to gss_import_sec_context() in another process, reactivates the context

in the second process. Only a single instantiation of a given context can be active at
any one time; a subsequent attempt by a context exporter to access the exported

security context will fail.

The interprocess token may contain security-sensitive information, for example
cryptographic keys. While mechanisms are encouraged to either avoid placing such

sensitive information within interprocess tokens or to encrypt the token before
returning it to the application, in a typical object-library GSS-API implementation, this
might not be possible. Thus, the application must take care to protect the interprocess
token and ensure that any process to which the token is transferred is trustworthy. If
creation of the interprocess token is successful, the GSS-API deallocates all
process-wide resources associated with the security context and sets the
context_handle to GSS_C_NO_CONTEXT. In the event of an error that makes it
impossible to complete the export of the security context, the function does not return
an interprocess token and leaves the security context referenced by the context_handle
parameter untouched.

Sun’s implementation of gss_export_sec_context() does not encrypt the
interprocess token. The interprocess token is serialized before it is transferred to
another process.

PARAMETERS
The parameter descriptions for gss_export_sec_context() are as follows:

- **minor_status**
 A mechanism-specific status code.

- **context_handle**
 Context handle identifying the context to transfer.

- **interprocess_token**
 Token to be transferred to target process. Storage
 associated with this token must be freed by the
 application after use with a call to
 gss_release_buffer(3GSS).

Networking Library Functions 229
gss_export_sec_context(3GSS)

RETURN VALUES

- **GSS_S_COMPLETE**: Successful completion.
- **GSS_S_CONTEXT_EXPIRED**: The context has expired.
- **GSS_S_NO_CONTEXT**: The context was invalid.
- **GSS_S_UNAVAILABLE**: The operation is not supported.
- **GSS_S_FAILURE**: The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the `minor_status` parameter details the error condition.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

- `gss_accept_sec_context(3GSS)`, `gss_import_sec_context(3GSS)`, `gss_init_sec_context(3GSS)`, `gss_release_buffer(3GSS)`, attributes(5)

GSS-API Programming Guide
NAME

`gss_get_mic` – calculate a cryptographic message

SYNOPSIS

```c
#include <gssapi/gssapi.h>

OM_uint32 gss_get_mic(OM_uint32 *minor_status, const gss_ctx_id_t context_handle, gss_qop_t qop_req, const gss_buffer_t message_buffer, gss_buffer_t msg_token);
```

DESCRIPTION

The `gss_get_mic()` function generates a cryptographic MIC for the supplied message, and places the MIC in a token for transfer to the peer application. The `qop_req` parameter allows a choice between several cryptographic algorithms, if supported by the chosen mechanism.

Since some application-level protocols may wish to use tokens emitted by `gss_wrap(3GSS)` to provide secure framing, the GSS-API allows MICs to be derived from zero-length messages.

PARAMETERS

The parameter descriptions for `gss_get_mic()` follow:

- **minor_status**

 The status code returned by the underlying mechanism.

- **context_handle**

 Identifies the context on which the message will be sent.

- **qop_req**

 Specifies the requested quality of protection. Callers are encouraged, on portability grounds, to accept the default quality of protection offered by the chosen mechanism, which may be requested by specifying `GSS_C_QOP_DEFAULT` for this parameter. If an unsupported protection strength is requested, `gss_get_mic()` will return a `major_status` of `GSS_S_BAD_QOP`.

- **message_buffer**

 The message to be protected.

- **msg_token**

 The buffer to receive the token. Storage associated with this message must be freed by the application after use with a call to `gss_release_buffer(3GSS)`.

RETURN VALUES

`gss_get_mic()` may return the following status codes:

- **GSS_S_COMPLETE**

 Successful completion.

- **GSS_S_CONTEXT_EXPIRED**

 The context has already expired.

- **GSS_S_NO_CONTEXT**

 The `context_handle` parameter did not identify a valid context.

- **GSS_S_BAD_QOP**

 The specified QOP is not supported by the mechanism.

- **GSS_S_FAILURE**

 The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the `minor_status` parameter details the error condition.
attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
gss_release_buffer(3GSS), gss_wrap(3GSS), attributes(5)

GSS-API Programming Guide
NAME
gss_import_name – convert a contiguous string name to GSS_API internal format

SYNOPSIS
```c
#include <gssapi/gssapi.h>
OM_uint32 gss_import_name(OM_uint32 *minor_status, const gss_buffer_t input_name_buffer, const gss_OID input_name_type, gss_name_t *output_name);
```

DESCRIPTION
The `gss_import_name()` function converts a contiguous string name to internal form. In general, the internal name returned by means of the `output_name` parameter will not be a mechanism name; the exception to this is if the `input_name_type` indicates that the contiguous string provided by means of the `input_name_buffer` parameter is of type `GSS_C_NT_EXPORT_NAME`, in which case, the returned internal name will be a mechanism name for the mechanism that exported the name.

PARAMETERS
The parameter descriptions for `gss_import_name()` follow:

- `minor_status` Status code returned by the underlying mechanism.
- `input_name_buffer` The `gss_buffer_desc` structure containing the name to be imported. The application must allocate this explicitly. This argument must be deallocated with `gss_release_buffer(3GSS)` when the application is done with it.
- `input_name_type` A `gss_OID` that specifies the format that the `input_name_buffer` is in.
- `output_name` The `gss_name_t` structure to receive the name.

RETURN VALUES
The `gss_import_name()` function may return the following status codes:

- `GSS_S_COMPLETE` The `gss_import_name()` function completed successfully.
- `GSS_S_BAD_NAMETYPE` The `input_name_type` was unrecognized.
- `GSS_S_BAD_NAME` The `input_name` parameter could not be interpreted as a name of the specified type.
- `GSS_S_BAD_MECH` The `input_name_type` was `GSS_C_NT_EXPORT_NAME`, but the mechanism contained within the `input_name` is not supported.
- `GSS_S_FAILURE` The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the `minor_status` parameter details the error condition.

ATTRIBUTES
See `attributes(5)` for descriptions of the following attributes:
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

- `gss_release_buffer(3GSS)`, `attributes(5)`
- GSS-API Programming Guide
gss_import_sec_context(3GSS)

NAME
gss_import_sec_context – import security context established by another process

SYNOPSIS
cc -flag ... file ...-Igss [library ...]
#include <gssapi/gssapi.h>
OM_uint32 gss_import_sec_context(OM_uint32 *minor_status, const
 gss_buffer_t interprocess_token, gss_ctx_id_t *context_handle);

DESCRIPTION
The gss_import_sec_context() function allows a process to import a security context established by another process. A given interprocess token can be imported only once. See gss_export_sec_context(3GSS).

PARAMETERS
The parameter descriptions for gss_import_sec_context() are as follows:

 minor_status A mechanism-specific status code.
 interprocess_token Token received from exporting process.
 context_handle Context handle of newly reactivated context. Resources associated with this context handle must be released by the application after use with a call to gss_delete_sec_context(3GSS).

RETURN VALUES
gss_import_sec_context() returns one of the following status codes:

 GSS_S_COMPLETE Successful completion.
 GSS_S_NO_CONTEXT The token did not contain a valid context reference.
 GSS_S_DEFECTIVE_TOKEN The token was invalid.
 GSS_S_UNAVAILABLE The operation is unavailable.
 GSS_S_UNAUTHORIZED Local policy prevents the import of this context by the current process.
 GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the minor_status parameter details the error condition.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>
gss_import_sec_context(3GSS)

SEE ALSO

gss_accept_sec_context(3GSS), gss_context_time(3GSS),
gss_delete_sec_context(3GSS), gss_export_sec_content(3GSS),
gss_init_sec_context(3GSS), gss_inquire_context(3GSS),
gss_process_context_token(3GSS), gss_wrap_size_limit(3GSS),
attributes(5)

GSS-API Programming Guide
The `gss_indicate_mechs()` function enables an application to determine available underlying security mechanisms.

PARAMETERS

- **minor_status**
 A mechanism-specific status code.
- **mech_set**
 Set of supported mechanisms. The returned `gss_OID_set` value will be a dynamically-allocated OID set that should be released by the caller after use with a call to `gss_release_oid_set(3GSS)`.

RETURN VALUES

The `gss_indicate_mechs()` function may return the following status codes:

- **GSS_S_COMPLETE**
 Successful completion.
- **GSS_S_FAILURE**
 The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the `minor_status` parameter details the error condition.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

`gss_release_oid_set(3GSS)`, attributes(5)

GSS-API Programming Guide
The `gss_init_sec_context()` function initiates the establishment of a security context between an application and a remote peer. Initially, the `input_token` parameter should be specified either as `GSS_C_NO_BUFFER`, or as a pointer to a `gss_buffer_desc` object with a length field that contains a zero value. The routine may return a `output_token`, which should be transferred to the peer application, which will present it to `gss_accept_sec_context(3GSS)`. If no token need be sent, `gss_init_sec_context()` will indicate this by setting the length field of the `output_token` argument to zero. To complete context establishment, one or more reply tokens may be required from the peer application; if so, `gss_init_sec_context()` will return a status code that contains the supplementary information bit `GSS_S_CONTINUE_NEEDED`. In this case, make another call to `gss_init_sec_context()` when the reply token is received from the peer application and pass the reply token to `gss_init_sec_context()` by means of the `input_token` parameter.

Construct portable applications to use the token length and return status to determine whether to send or wait for a token.

Whenever the routine returns a major status that includes the value `GSS_S_CONTINUE_NEEDED`, the context is not fully established, and the following restrictions apply to the output parameters:

- The value returned by means of the `time_rec` parameter is undefined. Unless the accompanying `ret_flags` parameter contains the bit `GSS_C_PROT_READY_FLAG`, which indicates that per-message services may be applied in advance of a successful completion status, the value returned by means of the `actual_mech_type` parameter is undefined until the routine returns a major status value of `GSS_S_COMPLETE`.
- The values of the `GSS_C_DELEG_FLAG`, `GSS_C_MUTUAL_FLAG`, `GSS_C_REPLAY_FLAG`, `GSS_C_SEQUENCE_FLAG`, `GSS_C_CONF_FLAG`, `GSS_C_INTEG_FLAG` and `GSS_C_ANON_FLAG` bits returned by the `ret_flags` parameter contain values that will be valid if context establishment succeeds. For example, if the application requests a service such as delegation or anonymous authentication by means of the `req_flags` argument, and the service is unavailable from the underlying mechanism, `gss_init_sec_context()` generates a token that will not provide the service, and it indicate by means of the `ret_flags` argument that the service will not be supported. The application may choose to abort context
establishment by calling gss_delete_sec_context(3GSS) if it cannot continue without the service, or if the service was merely desired but not mandatory, it may transmit the token and continue context establishment.

- The values of the GSS_C_PROT_READY_FLAG and GSS_C_TRANS_FLAG bits within ret_flags indicate the actual state at the time gss_init_sec_context() returns, whether or not the context is fully established.
- The GSS-API sets the GSS_C_PROT_READY_FLAG in the final ret_flags returned to a caller, for example, when accompanied by a GSS_S_COMPLETE status code. However, applications should not rely on this behavior, as the flag was not defined in Version 1 of the GSS-API. Instead, applications should determine what per-message services are available after a successful context establishment according to the GSS_C_INTEG_FLAG and GSS_C_CONF_FLAG values.
- All other bits within the ret_flags argument are set to zero.

If the initial call of gss_init_sec_context() fails, the GSS-API does not create a context object; it leaves the value of the context_handle parameter set to GSS_C_NO_CONTEXT to indicate this. In the event of failure on a subsequent call, the GSS-API leaves the security context untouched for the application to delete using gss_delete_sec_context(3GSS).

During context establishment, the informational status bits GSS_S_OLD_TOKEN and GSS_S_DUPLICATE_TOKEN indicate fatal errors, and GSS-API mechanisms should always return them in association with a status code of GSS_S_FAILURE. This pairing requirement was not part of Version 1 of the GSS-API specification, so applications that wish to run on Version 1 implementations must special-case these codes.

PARAMETERS

The parameter descriptions for gss_init_sec_context() follow:

- **minor_status**
 A mechanism specific status code.

- **initiator_cred_handle**
 The handle for the credentials claimed. Supply GSS_C_NO_CREDENTIAL to act as a default initiator principal. If no default initiator is defined, the function returns GSS_S_NO_CRED.

- **context_handle**
 The context handle for a new context. Supply the value GSS_C_NO_CONTEXT for the first call, and use the value returned in any continuation calls. The resources associated with context_handle must be released by the application after use by a call to gss_delete_sec_context(3GSS).

- **target_name**
 The name of the target.

- **mech_type**
 The object ID of the desired mechanism. To obtain a specific default, supply the value GSS_C_NO_ID.

- **req_flags**
 Contains independent flags, each of which will request that the context support a specific service option. A symbolic name is provided for each flag. Logically-OR the symbolic name to
The corresponding required flag to form the bit-mask value. *req_flags* may contain one of the following values:

GSS_C_DELEG_FLAG
- If true, delegate credentials to a remote peer. Do not delegate the credentials if the value is false.

GSS_C_MUTUAL_FLAG
- If true, request that the peer authenticate itself. If false, authenticate to the remote peer only.

GSS_C_REPLAY_FLAG
- If true, enable replay detection for messages protected with `gss_wrap(3GSS)` or `gss_get_mic(3GSS)`. Do not attempt to detect replayed messages if false.

GSS_C_SEQUENCE_FLAG
- If true, enable detection of out-of-sequence protected messages. Do not attempt to detect out-of-sequence messages if false.

GSS_C_CONF_FLAG
- If true, request that confidential service be made available by means of `gss_wrap(3GSS)`. If false, no per-message confidential service is required.

GSS_C_INTEG_FLAG
- If true, request that integrity service be made available by means of `gss_wrap(3GSS)` or `gss_get_mic(3GSS)`. If false, no per-message integrity service is required.

GSS_C_ANON_FLAG
- If true, do not reveal the initiator’s identity to the acceptor. If false, authenticate normally.

time_req
- The number of seconds for which the context will remain valid. Supply a zero value to *time_req* to request a default validity period.

input_chan_bindings
- Optional application-specific bindings. Allows application to securely bind channel identification information to the security context. Set to `GSS_C_NO_CHANNEL_BINDINGS` if you do not want to use channel bindings.

input_token
- Token received from the peer application. On the initial call, supply `GSS_C_NO_BUFFER` or a pointer to a buffer containing the value `GSS_C_EMPTY_BUFFER`.

actual_mech_type
- The actual mechanism used. The OID returned by means of this parameter will be pointer to static storage that should be treated as read-only. The application should not attempt to free it. To obtain a specific default, supply the value `GSS_C_NO_ID`. Specify NULL if the parameter is not required.
output_token

The token to send to the peer application. If the length field of the returned buffer is zero, no token need be sent to the peer application. After use storage associated with this buffer must be freed by the application by a call to gss_release_buffer(3GSS).

ret_flags

Contains various independent flags, each of which indicates that the context supports a specific service option. If not needed, specify NULL. Test the returned bit-mask ret_flags value against its symbolic name to determine if the given option is supported by the context. ret_flags may contain one of the following values:

GSS_C_DELEG_FLAG
If true, credentials were delegated to the remote peer. If false, no credentials were delegated.

GSS_C_MUTUAL_FLAG
If true, the remote peer authenticated itself. If false, the remote peer did not authenticate itself.

GSS_C_REPLY_FLAG
If true, replay of protected messages will be detected. If false, replayed messages will not be detected.

GSS_C_SEQUENCE_FLAG
If true, out of sequence protected messages will be detected. If false, they will not be detected.

GSS_C_CONF_FLAG
If true, confidential service may be invoked by calling the gss_wrap() routine. If false, no confidentiality service is available by means of gss_wrap(3GSS). gss_wrap() will provide message encapsulation, data-origin authentication and integrity services only.

GSS_C_INTEG_FLAG
If true, integrity service may be invoked by calling either the gss_wrap(3GSS) or gss_get_mic(3GSS) routine. If false, per-message integrity service is not available.

GSS_C_ANON_FLAG
If true, the initiator’s identity has not been revealed; it will not be revealed if any emitted token is passed to the acceptor. If false, the initiator has been or will be authenticated normally.

GSS_C_PROT_READY_FLAG
If true, the protection services specified by the states of GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG are available if the accompanying major status return value is either GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED. If false,
the protection services are available only if the accompanying major status return value is GSS_S_COMPLETE.

GSS_C_TRANS_FLAG
If true, the resultant security context may be transferred to other processes by means of a call to gss_export_sec_context(3GSS). If false, the security context cannot be transferred.

time_rec
The number of seconds for which the context will remain valid. Specify NULL if the parameter is not required.

RETURN VALUES
gss_init_sec_context() may return the following status codes:

<table>
<thead>
<tr>
<th>Status Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSS_S_COMPLETE</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>GSS_S_CONTINUE_NEEDED</td>
<td>A token from the peer application is required to complete the context, and gss_init_sec_context() must be called again with that token.</td>
</tr>
<tr>
<td>GSS_S_DEFECTIVE_TOKEN</td>
<td>Consistency checks performed on the input_token failed.</td>
</tr>
<tr>
<td>GSS_S_DEFECTIVE_CREDENTIAL</td>
<td>Consistency checks performed on the credential failed.</td>
</tr>
<tr>
<td>GSS_S_NO_CRED</td>
<td>The supplied credentials are not valid for context acceptance, or the credential handle does not reference any credentials.</td>
</tr>
<tr>
<td>GSS_S_CREDENTIALS_EXPIRED</td>
<td>The referenced credentials have expired.</td>
</tr>
<tr>
<td>GSS_S_BAD_BINDINGS</td>
<td>The input_token contains different channel bindings than those specified by means of the input_chan_bindings parameter.</td>
</tr>
<tr>
<td>GSS_S_BAD_SIG</td>
<td>The input_token contains an invalid MIC or a MIC that cannot be verified.</td>
</tr>
<tr>
<td>GSS_S_OLD_TOKEN</td>
<td>The input_token is too old. This is a fatal error while establishing context.</td>
</tr>
<tr>
<td>GSS_S_DUPLICATE_TOKEN</td>
<td>The input_token is valid, but it is a duplicate of a token already processed. This is a fatal error while establishing context.</td>
</tr>
<tr>
<td>GSS_S_NO_CONTEXT</td>
<td>The supplied context handle does not refer to a valid context.</td>
</tr>
<tr>
<td>GSS_S_BAD_NAMETYPE</td>
<td>The provided target_name parameter contains an invalid or unsupported name type.</td>
</tr>
</tbody>
</table>
GSS_S_BAD_NAME
The supplied target_name parameter is ill-formed.

GSS_S_BAD_MECH
The token received specifies a mechanism that is not supported by the implementation or the provided credential.

GSS_S_FAILURE
The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the minor_status parameter details the error condition.

EXAMPLE 1 Invoking gss_init_sec_context() Within a Loop

A typical portable caller should always invoke gss_init_sec_context() within a loop:

```c
int context_established = 0;
gss_ctx_id_t context_hdl = GSS_C_NO_CONTEXT;
...
input_token->length = 0;
while (!context_established) {
    maj_stat = gss_init_sec_context(&min_stat, 
        cred_hdl, 
        &context_hdl, 
        target_name, 
        desired_mech, 
        desired_services, 
        desired_time, 
        input_bindings, 
        input_token, 
        &actual_mech, 
        output_token, 
        &actual_services, 
        &actual_time);

    if (GSS_ERROR(maj_stat)) {
        report_error(maj_stat, min_stat);
    };

    if (output_token->length != 0) {
        send_token_to_peer(output_token);
        gss_release_buffer(&min_stat, output_token)
    };
    if (GSS_ERROR(maj_stat)) {
        if (context_hdl != GSS_C_NO_CONTEXT)
            gss_delete_sec_context(&min_stat, 
                &context_hdl, 
                GSS_C_NO_BUFFER);
        break;
    };
    if (maj_stat & GSS_S_CONTINUE_NEEDED) {
        receive_token_from_peer(input_token);
    };
```

EXAMPLES
Networking Library Functions 243
EXAMPLE 1 Invoking gss_init_sec_context() Within a Loop (Continued)

} else {
 context_established = 1;
}.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO gss_delete_sec_context(3GSS), gss_export_sec_context(3GSS), gss_get_mic(3GSS), gss_wrap(3GSS), attributes(5)

GSS-API Programming Guide
gss_inquire_context(3GSS)

NAME
gss_inquire_context – obtain information about a security context

SYNOPSIS
cc -flag ... file...-lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_inquire_context(OM_uint32 *minor_status, const
gss_ctx_id_t context_handle, gss_name_t *src_name, gss_name_t
*targ_name, OM_uint32 *lifetime_rec, gss_OID *mech_type, OM_uint32
*ctx_flags, int *locally_initiated, int *open);

DESCRIPTION
The gss_inquire_context() function obtains information about a security
context. The caller must already have obtained a handle that refers to the context,
although the context need not be fully established.

PARAMETERS
The parameter descriptions for gss_inquire_context() are as follows:

minor_status A mechanism-specific status code.
context_handle A handle that refers to the security context.
src_name The name of the context initiator. If the context was established
using anonymous authentication, and if the application invoking
 gss_inquire_context() is the context acceptor, an anonymous
 name is returned. Storage associated with this name must be freed
 by the application after use with a call to gss_release_name().
 Specify NULL if the parameter is not required.

targ_name The name of the context acceptor. Storage associated with this
 name must be freed by the application after use with a call to
 gss_release_name(). If the context acceptor did not
 authenticate itself, and if the initiator did not specify a target name
 in its call to gss_init_sec_context(), the value
 GSS_C_NO_NAME is returned. Specify NULL if the parameter is not
 required.

lifetime_rec The number of seconds for which the context will remain valid. If
the context has expired, this parameter will be set to zero. Specify
NULL if the parameter is not required.

mech_type The security mechanism providing the context. The returned OID
is a pointer to static storage that should be treated as read-only by
the application; in particular, the application should not attempt to
free it. Specify NULL if the parameter is not required.

ctx_flags Contains various independent flags, each of which indicates that
the context supports (or is expected to support, if ctx_open is
false) a specific service option. If not needed, specify NULL.
Symbolic names are provided for each flag, and the symbolic
names corresponding to the required flags should be logically
ANDed with the ret_flags value to test whether a given option is
supported by the context. The flags are:
GSS_C_DELEG_FLAG
If true, credentials were delegated from the initiator to the acceptor. If false, no credentials were delegated.

GSS_C_MUTUAL_FLAG
If true, the acceptor was authenticated to the initiator. If false, the acceptor did not authenticate itself.

GSS_C_REPLAY_FLAG
If true, the replay of protected messages will be detected. If false, replayed messages will not be detected.

GSS_C_SEQUENCE_FLAG
If true, out-of-sequence protected messages will be detected. If false, out-of-sequence messages will not be detected.

GSS_C_CONF_FLAG
If true, confidential service may be invoked by calling the gss_wrap(3GSS) routine. If false, no confidential service is available through gss_wrap(). gss_wrap() provides message encapsulation, data-origin authentication, and integrity services only.

GSS_C_INTEG_FLAG
If true, integrity service can be invoked by calling either the gss_get_mic() or the gss_wrap() routine. If false, per-message integrity service is unavailable.

GSS_C_ANON_FLAG
If true, the initiator’s identity is not revealed to the acceptor. The src_name parameter, if requested, contains an anonymous internal name. If false, the initiator has been authenticated normally.

GSS_C_PROT_READY_FLAG
If true, the protection services, as specified by the states of the GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG, are available for use. If false, they are available only if the context is fully established, that is, if the open parameter is non-zero.

GSS_C_TRANS_FLAG
If true, resultant security context can be transferred to other processes through a call to gss_export_sec_context(). If false, the security context is not transferable.

locally_initiated
Non-zero if the invoking application is the context initiator. Specify NULL if the parameter is not required.

open
Non-zero if the context is fully established; zero if a context-establishment token is expected from the peer application. Specify NULL if the parameter is not required.

RETURN VALUES
gss_inquire_context() returns one of the following status codes:
Successful completion.
The referenced context could not be accessed.
The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the minor_status parameter details the error condition.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

gss_accept_sec_context(3GSS), gss_context_time(3GSS),
gss_delete_sec_context(3GSS), gss_export_sec_context(3GSS),
gss_import_sec_context(3GSS), gss_init_sec_context(3GSS),
gss_process_context_token(3GSS), gss_wrap(3GSS),
gss_wrap_size_limit(3GSS), attributes(5)

GSS-API Programming Guide
gss_inquire_cred(3GSS)

NAME gss_inquire_cred – obtain information about a credential

SYNOPSIS
cc -flag ... file ...-lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_inquire_cred(OM_uint32 *minor_status, const
gss_cred_id_t cred_handle, gss_name_t *name, OM_uint32 *lifetime,
gss_cred_usage_t *cred_usage, gss_OID_set *mechanisms);

DESCRIPTION Use the gss_inquire_cred() function to obtain information about a credential.

PARAMETERS
The parameter descriptions for gss_acquire_cred() follow:

 minor_status A mechanism specific status code.

 cred_handle A handle that refers to the target credential. Specify
 GSS_C_NO_CREDENTIAL to inquire about the default initiator
 principal.

 name The name whose identity the credential asserts. Any storage
 associated with this name should be freed by the application after
 use by a call to gss_release_name(3GSS).

 lifetime The number of seconds for which the credential will remain valid.
 If the credential has expired, this parameter will be set to zero.
 Specify NULL if this parameter is not required.

 cred_usage How the credential may be used. The cred_usage parameter may
 contain one of the following values: GSS_C_INITIATE,
 GSS_C_ACCEPT, or GSS_C_BOTH. Specify NULL if this parameter
 is not required.

 mechanisms The set of mechanisms which the credential supports. Storage for
 the returned OID-set must be freed by the application after use by
 a call to gss_release_oid_set(3GSS). Specify NULL if this
 parameter is not required.

RETURN VALUES gss_acquire_cred() may return the following status codes:

 GSS_S_COMPLETE Successful completion.

 GSS_S_NO_CRED The referenced credentials could not be accessed.

 GSS_S_DEFECTIVE_CREDENTIAL The referenced credentials were invalid.

 GSS_S_CREDENTIALS_EXPIRED The referenced credentials have expired. If the
 lifetime parameter was not passed as
 NULL, it will be set to 0.

 GSS_S_FAILURE The underlying mechanism detected an error for which no specific
 GSS status code is defined. The mechanism-specific status
 code reported by means of the minor_status
gss_inquire_credential(3GSS)

parameter details the error condition.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
gss_release_name(3GSS), gss_release_oid_set(3GSS), attributes(5)

GSS-API Programming Guide
gss_inquire_cred_by_mech(3GSS)

NAME gss_inquire_cred_by_mech – obtain per-mechanism information about a credential

SYNOPSIS cc -flag ... file ... -lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_inquire_cred_by_mech(OM_uint32 *minor_status, const gss_cred_id_t cred_handle, const gss_OID mech_type, gss_name_t *name, OM_uint32 *initiator_lifetime, OM_uint32 *acceptor_lifetime, gss_cred_usage_t *cred_usage);

DESCRIPTION The gss_inquire_cred_by_mech() obtains per-mechanism information about a credential.

PARAMETERS The parameter descriptions for gss_inquire_cred_by_mech() follow:

minor_status A mechanism specific status code.

cred_handle A handle that refers to the target credential. Specify GSS_C_NO_CREDENTIAL to inquire about the default initiator principal.

mech_type The mechanism for which the information should be returned.

name The name whose identity the credential asserts. Any storage associated with this name must be freed by the application after use by a call to gss_release_name(3GSS).

initiator_lifetime The number of seconds that the credential is capable of initiating security contexts under the specified mechanism. If the credential can no longer be used to initiate contexts, or if the credential usage for this mechanism is GSS_C_ACCEPT, this parameter will be set to 0. Specify NULL if this parameter is not required.

acceptor_lifetime The number of seconds that the credential is capable of accepting security contexts under the specified mechanism. If the credential can no longer be used to accept contexts, or if the credential usage for this mechanism is GSS_C_INITIATE, this parameter will be set to 0. Specify NULL if this parameter is not required.

cred_usage How the credential may be used with the specified mechanism. The cred_usage parameter may contain one of the following values: GSS_C_INITIATE, GSS_C_ACCEPT, or GSS_C_BOTH. Specify NULL if this parameter is not required.

RETURN VALUES gss_inquire_cred_by_mech() may return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_NO_CRED The referenced credentials cannot be accessed.

GSS_S_DEFECTIVE_CREDENTIAL The referenced credentials are invalid.
GSS_S_CREDENTIALS_EXPIRED
The credentials cannot be added because they have expired.

GSS_S_FAILURE
The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the minor_status parameter details the error condition.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
gss_release_name(3GSS), attributes(5)
GSS-API Programming Guide
gss_inquire_mechs_for_name(3GSS)

NAME
gss_inquire_mechs_for_name – list mechanisms that support the specified name-type

SYNOPSIS
cc [flag...] file... -lgss [library...]
#include <gssapi/gssapi.h>

OM_uint32 gss_inquire_mechs_for_name(OM_uint32 *minor_status, const
gss_name_t input_name, gss_OID_set *mech_types);

DESCRIPTION
The gss_inquire_mechs_for_name() function returns the set of mechanisms supported by the GSS-API that may be able to process the specified name. Each mechanism returned will recognize at least one element within the internal name.

Some implementations of the GSS-API may perform this test by checking nametype information contained within the passed name and registration information provided by individual mechanisms. This means that the mech_types set returned by the function may indicate that a particular mechanism will understand the name, when in fact the mechanism would refuse to accept the name as input to gss_canonicalize_name(3GSS), gss_init_sec_context(3GSS), gss_acquire_cred(3GSS), or gss_add_cred(3GSS), due to some property of the name itself rather than the name-type. Therefore, this function should be used only as a pre-filter for a call to a subsequent mechanism-specific function.

PARAMETERS
The parameter descriptions for gss_inquire_mechs_for_name() follow in alphabetical order:

minor_status
Mechanism-specific status code.

input_name
The name to which the inquiry relates.

mech_types
Set of mechanisms that may support the specified name. The returned OID set must be freed by the caller after use with a call to gss_release_oid_set(3GSS).

RETURN VALUES
The gss_inquire_mechs_for_name() function may return the following status codes:

GSS_S_COMPLETE
Successful completion.

GSS_S_BAD_NAME
The input_name parameter was ill-formed.

GSS_S_BAD_NAMETYPE
The input_name parameter contained an invalid or unsupported type of name.

GSS_S_FAILURE
The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the minor_status parameter details the error condition.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:
gss_inquire_mechs_for_name(3GSS)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
gss_acquire_cred(3GSS), gss_add_cred(3GSS),
gss_canonicalize_name(3GSS), gss_init_sec_context(3GSS),
gss_release_oid_set(3GSS), attributes(5)

GSS-API Programming Guide
NAME
gss_inquire_names_for_mech – list the name-types supported by the specified mechanism

SYNOPSIS
cce [flag...] file... -lgss [library...]
#include <gssapi/gssapi.h>

OM_uint32 gss_inquire_names_for_mech(OM_uint32 *minor_status, const gss_OID mechanism, gss_OID_set *name_types);

DESCRIPTION
The gss_inquire_names_for_mech() function returns the set of name-types supported by the specified mechanism.

PARAMETERS
The parameter descriptions for gss_inquire_names_for_mech() follow:

minor_status A mechanism-specific status code.
mechanism The mechanism to be interrogated.
name_types Set of name-types supported by the specified mechanism. The returned OID set must be freed by the application after use with a call to gss_release_oid_set(3GSS).

RETURN VALUES
The gss_inquire_names_for_mech() function may return the following values:

GSS_S_COMPLETE Successful completion.
GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the minor_status parameter details the error condition.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
gss_release_oid_set(3GSS), attributes(5)

GSS-API Programming Guide
gss_oid_to_str(3GSS)

NAME

gss_oid_to_str – convert an OID to a string

SYNOPSIS

```c
#include <gssapi/gssapi.h>
gss_oid_to_str(OM_uint32 *minor_status, const gss_OID *oid,
gss_buffer_t oid_str);
```

DESCRIPTION

The `gss_oid_to_str()` function converts a GSS-API OID structure to a string. You can use the function to convert the name of a mechanism from an OID to a simple string. This function is a convenience function, as is its complementary function, `gss_str_to_oid(3GSS)`.

If an OID must be created, use `gss_create_empty_oid_set(3GSS)` and `gss_add_oid_set_member(3GSS)` to create it. OIDs created in this way must be released with `gss_release_oid_set(3GSS)`. However, it is strongly suggested that applications use the default GSS-API mechanism instead of creating an OID for a specific mechanism.

PARAMETERS

The parameter descriptions for `gss_oid_to_str()` are as follows:

- `minor_status` Status code returned by underlying mechanism.
- `oid` GSS-API OID structure to convert.
- `oid_str` String to receive converted OID.

RETURN VALUES

`gss_oid_to_str()` returns one of the following status codes:

- `GSS_S_CALL_INACCESSIBLE_READ` A required input parameter could not be read.
- `GSS_S_CALL_INACCESSIBLE_WRITE` A required output parameter could not be written.
- `GSS_S_COMPLETE` Successful completion.
- `GSS_S_FAILURE` The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the `minor_status` parameter details the error condition.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>
gss_oid_to_str(3GSS)

SEE ALSO gss_add_oid_set_member(3GSS), gss_create_empty_oid_set(3GSS),
gss_release_oid_set(3GSS), gss_str_to_oid(3GSS), attributes(5)

GSS-API Programming Guide

WARNINGS This function is included for compatibility only with programs using earlier versions
of the GSS-API and should not be used for new programs. Other implementations of
the GSS-API might not support this function, so portable programs should not rely on
it. Sun might not continue to support this function.
gss_process_context_token(3GSS)

NAME
gss_process_context_token -- pass asynchronous token to security service

SYNOPSIS
cc -flag ... file ... -lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_process_context_token(OM_uint32 *minor_status, const
gss_ctx_id_t context_handle, const gss_buffer_t token_buffer);

DESCRIPTION
The gss_process_context_token() function provides a way to pass an
asynchronous token to the security service. Most context-level tokens are emitted and
processed synchronously by gss_init_sec_context() and
gss_accept_sec_context(), and the application is informed as to whether further
tokens are expected by the GSS_C_CONTINUE_NEEDED major status bit. Occasionally,
a mechanism might need to emit a context-level token at a point when the peer entity
is not expecting a token. For example, the initiator’s final call to
gss_init_sec_context() may emit a token and return a status of
GSS_S_COMPLETE, but the acceptor’s call to gss_accept_sec_context() might
fail. The acceptor’s mechanism might want to send a token containing an error
indication to the initiator, but the initiator is not expecting a token at this point,
believing that the context is fully established. gss_process_context_token() provides a way to pass such a token to the mechanism at any time.

This function is provided for compatibility with the GSS-API version 1. Because
gss_delete_sec_context() no longer returns a valid output_token to be sent to
gss_process_context_token(), applications using a newer version of the
GSS-API do not need to rely on this function.

PARAMETERS
The parameter descriptions for gss_process_context_token() are as follows:

minor_status A mechanism-specific status code.
context_handle Context handle of context on which token is to be processed.
token_buffer Token to process.

RETURN VALUES
The gss_process_context_token() returns one of the following status codes:

GSS_S_COMPLETE Successful completion.
GSS_S_DEFECTIVE_TOKEN Indicates that consistency checks performed
on the token failed.
GSS_S_NO_CONTEXT The context_handle did not refer to a valid
context.
GSS_S_FAILURE The underlying mechanism detected an
error for which no specific GSS status code
is defined. The mechanism-specific status
code reported by means of the minor_status
parameter details the error condition.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:
gss_process_context_token(3GSS)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

- `gss_accept_sec_context(3GSS)`, `gss_delete_sec_context(3GSS)`, `gss_init_sec_context(3GSS)`, `attributes(5)`

GSS-API Programming Guide
gss_release_buffer(3GSS)

NAME
gss_release_buffer – free buffer storage allocated by a GSS-API function

SYNOPSIS
cc -flag ... file ...-lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_release_buffer(OM_uint32 *minor_status,
 gss_buffer_t buffer);

DESCRIPTION
The gss_release_buffer() function frees buffer storage allocated by a GSS-API function. The gss_release_buffer() function also zeros the length field in the descriptor to which the buffer parameter refers, while the GSS-API function sets the pointer field in the descriptor to NULL. Any buffer object returned by a GSS-API function may be passed to gss_release_buffer(), even if no storage is associated with the buffer.

PARAMETERS
The parameter descriptions for gss_release_buffer() follow:

- **minor_status**: Mechanism-specific status code.
- **buffer**: The storage associated with the buffer will be deleted. The gss_buffer_desc() object will not be freed; however, its length field will be zeroed.

RETURN VALUES
The gss_release_buffer() function may return the following status codes:

- **GSS_S_COMPLETE**: Successful completion
- **GSS_S_FAILURE**: The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the minor_status parameter details the error condition.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
attributes(5)

GSS-API Programming Guide
The `gss_release_cred()` function informs the GSS-API that the specified credential handle is no longer required by the application and frees the associated resources. The `cred_handle` parameter is set to `GSS_C_NO_CREDENTIAL` when this call completes successfully.

The parameter descriptions for `gss_release_cred()` follow:

- **minor_status**: A mechanism specific status code.
- **cred_handle**: An opaque handle that identifies the credential to be released. If `GSS_C_NO_CREDENTIAL` is specified, the `gss_release_cred()` function will complete successfully, but it will do nothing.

`gss_release_cred()` may return the following status codes:

- **GSS_S_COMPLETE**: Successful completion.
- **GSS_S_NO_CRED**: The referenced credentials cannot be accessed.
- **GSS_S失效**: The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the `minor_status` parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

attributes(5)

GSS-API Programming Guide
NAME

gss_release_name – discard an internal-form name

SYNOPSIS

cc [flag ...] file... -lgss [library ...]
#include <gssapi/gssapi.h

OM_uint32 gss_release_name(OM_uint32 *minor_status, gss_name_t *name);

DESCRIPTION

The gss_release_name() function frees GSS-API-allocated storage associated with
an internal-form name. The name is set to GSS_C_NO_NAME on successful completion
of this call.

PARAMETERS

The parameter descriptions for gss_release_name() follow:

minor_status A mechanism-specific status code.

name The name to be deleted.

RETURN VALUES

The gss_release_name() function may return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_BAD_NAME The name parameter did not contain a valid name.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

attributes(5)

GSS-API Programming Guide

Networking Library Functions 261
gss_release_oid(3GSS)

NAME gss_release_oid – release an object identifier

SYNOPSIS cc -flag ... file ...-lgss [library ...]
#include <gssapi/gssapi.h>

 gss_release_oid(OM_uint32 *minor_status, const gss_OID *oid);

DESCRIPTION The gss_release_oid() function deletes an OID. Such an OID might have been
created with gss_str_to_oid().

Since creating and deleting individual OIDs is discouraged, it is preferable to use
gss_release_oid_set() if it is necessary to deallocate a set of OIDs.

PARAMETERS The parameter descriptions for gss_release_oid() are as follows:

 minor_status A mechanism-specific status code.
 oid The object identifier of the mechanism to be deleted.

RETURN VALUES gss_release_oid() returns one of the following status codes:

 GSS_S_COMPLETE Successful completion.
 GSS_S_FAILURE The underlying mechanism detected an error for which no
 specific GSS status code is defined. The mechanism-specific
 status code reported by means of the minor_status parameter
details the error condition.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO gss_release_oid_set(3GSS), gss_str_to_oid(3GSS), attributes(5)

GSS-API Programming Guide

WARNINGS This function is included for compatibility only with programs using earlier versions
of the GSS-API and should not be used for new programs. Other implementations of
the GSS-API might not support this function, so portable programs should not rely on
it. Sun might not continue to support this function.
gss_release_oid_set(3GSS)

NAME

`gss_release_oid_set` – free storage associated with a GSS-API-generated `gss_OID_set` object

SYNOPSIS

```c
cc -flag ... file ...-lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_release_oid_set(OM_uint32 *minor_status, gss_OID_set *set);
```

DESCRIPTION

The `gss_release_oid_set()` function frees storage associated with a GSS-API-generated `gss_OID_set` object. The `set` parameter must refer to an OID-set that was returned from a GSS-API function. The `gss_release_oid_set()` function will free the storage associated with each individual member OID, the OID set’s elements array, and `gss_OID_set_desc`.

`gss_OID_set` is set to `GSS_C_NO_OID_SET` on successful completion of this function.

PARAMETERS

The parameter descriptions for `gss_release_oid_set()` follow:

- `minor_status` A mechanism-specific status code
- `set` Storage associated with the `gss_OID_set` will be deleted

RETURN VALUES

The `gss_release_oid_set()` function may return the following status codes:

- `GSS_S_COMPLETE` Successful completion
- `GSS_S_FAILURE` The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the `minor_status` parameter details the error condition.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

- `attributes(5)`
- GSS-API Programming Guide
gss_str_to_oid(3GSS)

NAME gss_str_to_oid – convert a string to an OID

SYNOPSIS cc -flag ... fil...-lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_str_to_oid(OM_uint32 *minor_status, const gss_buffer_t
oid_str, gss_OID *oid);

DESCRIPTION The gss_str_to_oid() function converts a string to a GSS-API OID structure. You
 can use the function to convert a simple string to an OID to . This function is a
convenience function, as is its complementary function, gss_oid_to_str(3GSS).

OIDs created with gss_str_to_oid() must be deallocated through
 gss_release_oid(3GSS), if available. If an OID must be created, use
 gss_create_empty_oid_set(3GSS) and gss_add_oid_set_member()(3GSS) to
create it. OIDs created in this way must be released with
 gss_release_oid_set(3GSS). However, it is strongly suggested that applications
use the default GSS-API mechanism instead of creating an OID for a specific
mechanism.

PARAMETERS The parameter descriptions for gss_str_to_oid() are as follows:

 minor_status Status code returned by underlying mechanism.
 oid GSS-API OID structure to receive converted string.
 oid_str String to convert.

RETURN VALUES gss_str_to_oid() returns one of the following status codes:

 GSS_S_CALL_INACCESSIBLE_READ A required input parameter could not be
 read.
 GSS_S_CALL_INACCESSIBLE_WRITE A required output parameter could not be
 written.
 GSS_S_COMPLETE Successful completion.
 GSS_S_FAILURE The underlying mechanism detected an
 error for which no specific GSS status code
 is defined. The mechanism-specific status
 code reported by means of the minor_status
 parameter details the error condition.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>ATTRIBUTE TYPE</td>
<td>ATTRIBUTE VALUE</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
gss_add_oid_set_member() (3GSS), gss_create_empty_oid_set (3GSS), gss_oid_to_str (3GSS), gss_release_oid_set (3GSS), attributes (5)

GSS-API Programming Guide

WARNINGS
This function is included for compatibility only with programs using earlier versions of the GSS-API and should not be used for new programs. Other implementations of the GSS-API might not support this function, so portable programs should not rely on it. Sun might not continue to support this function.
gss_test_oid_set_member(3GSS)

NAME | gss_test_oid_set_member - interrogate an object identifier set

SYNOPSIS
| cc -flag ... file ...-lgss [library ...]
| #include <gssapi/gssapi.h>
| OM_uint32 gss_test_oid_set_member(OM_uint32 *minor_status, const gss_OID member, const gss_OID_set set, int *present);

DESCRIPTION
| The gss_test_oid_set_member() function interrogates an object identifier set to determine if a specified object identifier is a member. This function should be used with OID sets returned by gss_indicate_mechs(3GSS), gss_acquire_cred(3GSS), and gss_inquire_cred(3GSS), but it will also work with user-generated sets.

PARAMETERS
| The parameter descriptions for gss_test_oid_set_member() follow:
| minor_status | A mechanism-specific status code
| member | An object identifier whose presence is to be tested
| set | An object identifier set.
| present | The value of present is non-zero if the specified OID is a member of the set; if not, the value of present is zero.

RETURN VALUES
| The gss_test_oid_set_member() function may return the following status codes:
| GSS_S_COMPLETE | Successful completion
| GSS_S_FAILURE | The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the minor_status parameter details the error condition.

ATTRIBUTES
| See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
| gss_acquire_cred(3GSS), gss_indicate_mechs(3GSS), gss_inquire_cred(3GSS), attributes(5)
| GSS-API Programming Guide
gss_unwrap(3GSS)

NAME
gss_wrap – verify a message with attached cryptographic message

SYNOPSIS
cc -flag ... file ... -lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_unwrap(OM_uint32 *minor_status, const gss_ctx_id_t
context_handle, const gss_buffer_t input_message_buffer, gss_buffer_t
output_message_buffer, int *conf_state, gss_qop_t *qop_state);

DESCRIPTION
The gss_unwrap() function converts a message previously protected by

gss_wrap(3GSS) back to a usable form, verifying the embedded MIC. The conf_state
parameter indicates whether the message was encrypted; the qop_state parameter
indicates the strength of protection that was used to provide the confidentiality and
integrity services.

Since some application-level protocols may wish to use tokens emitted by
gss_wrap(3GSS) to provide secure framing, the GSS-API supports the wrapping and
unwrapping of zero-length messages.

PARAMETERS
The parameter descriptions for gss_unwrap() follow:

minor_status The status code returned by the underlying mechanism.
context_handle Identifies the context on which the message arrived.
input_message_buffer The message to be protected.
output_message_buffer The buffer to receive the unwrapped message. Storage
associated with this buffer must be freed by the application
after use with a call to gss_release_buffer(3GSS).
conf_state If the value of conf_state is non-zero, then confidentiality and
integrity protection were used. If the value is zero, only
integrity service was used. Specify NULL if this parameter is
not required.
qop_state Specifies the quality of protection provided. Specify NULL if
this parameter is not required.

RETURN VALUES

GSS_S_COMPLETE Successful completion.
GSS_S_DEFECTIVE_TOKEN The token failed consistency checks.
GSS_S_BAD_SIG The MIC was incorrect.
GSS_S_DUPLICATE_TOKEN The token was valid, and contained a
correct MIC for the message, but it had
already been processed.
GSS_S_OLD_TOKEN The token was valid, and contained a
correct MIC for the message, but it is too
old to check for duplication.
The token was valid, and contained a correct MIC for the message, but has been verified out of sequence; a later token has already been received.

The token was valid, and contained a correct MIC for the message, but has been verified out of sequence; an earlier expected token has not yet been received.

The context has already expired.

The context_handle parameter did not identify a valid context.

The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO gss_release_buffer(3GSS), gss_wrap(3GSS), attributes(5)

GSS-API Programming Guide
NAME
gss_verify_mic – verify integrity of a received message

SYNOPSIS
```c
#include <gssapi/gssapi.h>
OM_uint32 gss_verify_mic(OM_uint32 *minor_status, const gss_ctx_id_t context_handle, const gss_buffer_t message_buffer, const gss_buffer_t token_buffer, gss_qop_t *qop_state);
```

DESCRIPTION
The `gss_verify_mic()` function verifies that a cryptographic MIC, contained in the token parameter, fits the supplied message. The `qop_state` parameter allows a message recipient to determine the strength of protection that was applied to the message.

Since some application-level protocols may wish to use tokens emitted by `gss_wrap(3GSS)` to provide secure framing, the GSS-API supports the calculation and verification of MICs over zero-length messages.

PARAMETERS
The parameter descriptions for `gss_verify_mic()` follow:

- `minor_status` The status code returned by the underlying mechanism.
- `context_handle` Identifies the context on which the message arrived.
- `message_buffer` The message to be verified.
- `token_buffer` The token associated with the message.
- `qop_state` Specifies the quality of protection gained from the MIC. Specify `NULL` if this parameter is not required.

RETURN VALUES
`gss_verify_mic()` may return the following status codes:

<table>
<thead>
<tr>
<th>Status Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSS_S_COMPLETE</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>GSS_S_DEFECTIVE_TOKEN</td>
<td>The token failed consistency checks.</td>
</tr>
<tr>
<td>GSS_S_BAD_SIG</td>
<td>The MIC was incorrect.</td>
</tr>
<tr>
<td>GSS_S_DUPLICATE_TOKEN</td>
<td>The token was valid and contained a correct MIC for the message, but it had already been processed.</td>
</tr>
<tr>
<td>GSS_S_OLD_TOKEN</td>
<td>The token was valid and contained a correct MIC for the message, but it is too old to check for duplication.</td>
</tr>
<tr>
<td>GSS_S_UNSEQ_TOKEN</td>
<td>The token was valid and contained a correct MIC for the message, but it has been verified out of sequence; a later token has already been received.</td>
</tr>
<tr>
<td>GSS_S_GAP_TOKEN</td>
<td>The token was valid and contained a correct MIC for the message, but it has been verified out of sequence; an earlier expected token has not yet been received.</td>
</tr>
</tbody>
</table>
gss_verify_mic(3GSS)

GSS_S_CONTEXT_EXPIRED
The context has already expired.

GSS_S_NO_CONTEXT
The context_handle parameter did not identify a valid context.

GSS_S_FAILURE
The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the minor_status parameter details the error condition.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

gss_wrap(3GSS), attributes(5)

GSS-API Programming Guide
gss_wrap(3GSS)

NAME
gss_wrap – attach a cryptographic message

SYNOPSIS
c -flag ... file ...-lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_wrap(OM_uint32 *minor_status, const gss_ctx_id_t context_handle, int conf_req_flag, gss_qop_t qop_req, const gss_buffer_t input_message_buffer, int *conf_state, gss_buffer_t output_message_buffer);

DESCRIPTION
The gss_wrap() function attaches a cryptographic MIC and optionally encrypts the specified input_message. The output_message contains both the MIC and the message. The qop_req parameter allows a choice between several cryptographic algorithms, if supported by the chosen mechanism.

Since some application-level protocols may wish to use tokens emitted by gss_wrap() to provide secure framing, the GSS-API supports the wrapping of zero-length messages.

PARAMETERS
The parameter descriptions for gss_wrap() follow:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>minor_status</td>
<td>The status code returned by the underlying mechanism.</td>
</tr>
<tr>
<td>context_handle</td>
<td>Identifies the context on which the message will be sent.</td>
</tr>
<tr>
<td>conf_req_flag</td>
<td>If the value of conf_req_flag is non-zero, both confidentiality and integrity services are requested. If the value is zero, then only integrity service is requested.</td>
</tr>
<tr>
<td>qop_req</td>
<td>Specifies the required quality of protection. A mechanism-specific default may be requested by setting qop_req to GSS_C_QOP_DEFAULT. If an unsupported protection strength is requested, gss_wrap() will return a major_status of GSS_S_BAD_QOP.</td>
</tr>
<tr>
<td>input_message_buffer</td>
<td>The message to be protected.</td>
</tr>
<tr>
<td>conf_state</td>
<td>If the value of conf_state is non-zero, confidentiality, data origin authentication, and integrity services have been applied. If the value is zero, then integrity services have been applied. Specify NULL if this parameter is not required.</td>
</tr>
<tr>
<td>output_message_buffer</td>
<td>The buffer to receive the protected message. Storage associated with this message must be freed by the application after use with a call to gss_release_buffer(3GSS).</td>
</tr>
</tbody>
</table>

RETURN VALUES
gss_wrap() may return the following status codes:

<table>
<thead>
<tr>
<th>Status Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSS_S_COMPLETE</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>GSS_S_CONTEXT_EXPIRED</td>
<td>The context has already expired.</td>
</tr>
</tbody>
</table>

Networking Library Functions 271
gss_wrap(3GSS)

GSS_S_NO_CONTEXT The context_handle parameter did not identify a valid context.

GSS_S_BAD_QOP The specified QOP is not supported by the mechanism.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the minor_status parameter details the error condition.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO gss_release_buffer(3GSS), attributes(5)

GSS-API Programming Guide
NAME gss_wrap_size_limit – allow application to determine maximum message size with resulting output token of a specified maximum size

SYNOPSIS cc -flag ... file ... -lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_process_context_token(OM_uint32 *minor_status, const gss_ctx_id_t context_handle, int conf_req_flag, gss_qop_t qop_req, OM_uint32 req_output_size, OM_uint32 *max_input_size);

DESCRIPTION The gss_wrap_size_limit() function allows an application to determine the maximum message size that, if presented to gss_wrap() with the same conf_req_flag and qop_req parameters, results in an output token containing no more than req_output_size bytes. This call is intended for use by applications that communicate over protocols that impose a maximum message size. It enables the application to fragment messages prior to applying protection. The GSS-API detects invalid QOP values when gss_wrap_size_limit() is called. This routine guarantees only a maximum message size, not the availability of specific QOP values for message protection.

Successful completion of gss_wrap_size_limit() does not guarantee that gss_wrap() will be able to protect a message of length max_input_size bytes, since this ability might depend on the availability of system resources at the time that gss_wrap() is called.

PARAMETERS The parameter descriptions for gss_wrap_size_limit() are as follows:

- minor_status A mechanism-specific status code.
- context_handle A handle that refers to the security over which the messages will be sent.
- conf_req_flag Indicates whether gss_wrap() will be asked to apply confidential protection in addition to integrity protection. See gss_wrap(3GSS) for more details.
- qop_req Indicates the level of protection that gss_wrap() will be asked to provide. See gss_wrap(3GSS) for more details.
- req_output_size The desired maximum size for tokens emitted by gss_wrap().
- max_input_size The maximum input message size that can be presented to gss_wrap() to guarantee that the emitted token will be no larger than req_output_size bytes.

RETURN VALUES gss_wrap_size_limit() returns one of the following status codes:

- GSS_S_COMPLETE Successful completion.
- GSS_S_NO_CONTEXT The referenced context could not be accessed.
- GSS_S_CONTEXT_EXPIRED The context has expired.
The specified QOP is not supported by the mechanism.

The underlying mechanism detected an error for which no specific GSS status code is defined. The mechanism-specific status code reported by means of the minor_status parameter details the error condition.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWgss (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWgssx (64-bit)</td>
</tr>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

gss_wrap(3GSS), attributes(5)

GSS-API Programming Guide
htonl, htons, ntohl, ntohs – convert values between host and network byte order

#include <arpa/inet.h>

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

These functions convert 16-bit and 32-bit quantities between network byte order and host byte order.

The uint32_t and uint16_t types are made available by inclusion of <inttypes.h>.

These functions are most often used in conjunction with Internet addresses and ports as returned by gethostent(3XNET) and getservent(3XNET).

On some architectures these functions are defined as macros that expand to the value of their argument.

The htonl() and htons() functions return the argument value converted from host to network byte order.

The ntohl() and ntohs() functions return the argument value converted from network to host byte order.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

endhostent(3XNET), endservent(3XNET), attributes(5)
if_nametoindex(3NSL)

NAME
if_nametoindex, if_indextoname, if_nameindex, if_freenameindex – routines to map
Internet Protocol network interface names and interface indexes

SYNOPSIS
#include <net/if.h>

unsigned int if_nametoindex(const char *ifname);
char *if_indextoname(unsigned int ifindex, char *ifname);
struct if_nameindex *if_nameindex(void);
void if_freenameindex(struct if_nameindex *ptr);

DESCRIPTION
This API defines two functions that map between an Internet Protocol network
interface name and index, a third function that returns all the interface names and
indexes, and a fourth function to return the dynamic memory allocated by the
previous function.

Network interfaces are normally known by names such as "le0", "sl1", "ppp2", and the
like. The ifname argument must point to a buffer of at least IF_NAMESIZE bytes into
which the interface name corresponding to the specified index is returned.
IF_NAMESIZE is defined in <net/if.h> and its value includes a terminating null
byte at the end of the interface name.

if_nametoindex()
 The if_nametoindex() function returns the interface index corresponding to the
 interface name pointed to by the ifname pointer. If the specified interface name does
 not exist, the return value is 0, and errno is set to ENXIO. If there was a system
 error, such as running out of memory, the return value is 0 and errno is set to the
 proper value, for example, ENOMEM.

if_indextoname()
 The if_indextoname() function maps an interface index into its corresponding
 name. This pointer is also the return value of the function. If there is no interface
 corresponding to the specified index, NULL is returned, and errno is set to ENXIO,
 if there was a system error, such as running out of memory, if_indextoname() returns
 NULL and errno would be set to the proper value, for example, ENOMEM.

*if_nameindex()
 The if_nameindex() function returns an array of if_nameindex structures, one
 structure per interface. The if_nameindex structure holds the information about a
 single interface and is defined when the <net/if.h> header is included:

 struct if_nameindex
 unsigned int if_index; /* 1, 2, ... */
 char *if_name; /* null terminated name: "le0", ... */
);
The end of the array of structures is indicated by a structure with an `if_index` of 0 and an `if_name` of `NULL`. The function returns a null pointer upon an error and sets `errno` to the appropriate value. The memory used for this array of structures along with the interface names pointed to by the `if_name` members is obtained dynamically. This memory is freed by the `if_freenameindex()` function.

`if_freenameindex()`

The `if_freenameindex()` function frees the dynamic memory that was allocated by `if_nameindex()`. The argument to this function must be a pointer that was returned by `if_nameindex()`.

PARAMETERS

- `ifname` interface name.
- `ifindex` interface index.
- `ptr` pointer returned by `if_nameindex()`.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcs (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcsb (64-bit)</td>
</tr>
<tr>
<td>MT Level</td>
<td>MT Safe</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

`ifconfig(1M), attributes(5), if(7P)`
if_nametoindex(3XNET)

NAME

if_nametoindex, if_indextoname, if_nameindex, if_freenameindex – functions to map
Internet Protocol network interface names and interface indexes

SYNOPSIS

cc [flag ...] file ... -lxnet [library ...]
#include <net/if.h>
unsigned int if_nametoindex(const char *ifname);
char *if_indextoname(unsigned int ifindex, char *ifname);
struct if_nameindex *if_nameindex(void);
void if_freenameindex(struct if_nameindex *ptr);

DESCRIPTION

This API defines two functions that map between an Internet Protocol network
interface name and index, a third function that returns all the interface names and
indexes, and a fourth function to return the dynamic memory allocated by the
previous function.

Network interfaces are normally known by names such as "le0", "sl1", "ppp2", and the
like. The ifname argument must point to a buffer of at least IF_NAMESIZE bytes into
which the interface name corresponding to the specified index is returned.

IF_NAMESIZE is defined in <net/if.h> and its value includes a terminating null
byte at the end of the interface name.

if_nametoindex()

The if_nametoindex() function returns the interface index corresponding to the
interface name pointed to by the ifname pointer. If the specified interface name does
not exist, the return value is 0, and errno is set to ENXIO. If there was a system
error, such as running out of memory, the return value is 0 and errno is set to the
proper value, for example, ENOMEM.

if_indextoname()

The if_indextoname() function maps an interface index into its corresponding
name. This pointer is also the return value of the function. If there is no interface
corresponding to the specified index, NULL is returned, and errno is set to ENXIO,
if there was a system error, such as running out of memory, if_indextoname() returns
NULL and errno would be set to the proper value, for example, ENOMEM.

*if_nameindex()

The if_nameindex() function returns an array of if_nameindex structures, one
structure per interface. The if_nameindex structure holds the information about a
single interface and is defined when the <net/if.h> header is included:

struct if_nameindex {
 unsigned int if_index; /* 1, 2, ... */
 char *if_name; /* null terminated name: "le0", ... */
};
The end of the array of structures is indicated by a structure with an `if_index` of 0 and an `if_name` of NULL. The function returns a null pointer upon an error and sets `errno` to the appropriate value. The memory used for this array of structures along with the interface names pointed to by the `if_name` members is obtained dynamically. This memory is freed by the `if_freenamexindex()` function.

if_freenamexindex()

The `if_freenamexindex()` function frees the dynamic memory that was allocated by `if_nameindex()`. The argument to this function must be a pointer that was returned by `if_nameindex()`.

PARAMETERS

- `ifname` interface name.
- `ifindex` interface index.
- `ptr` pointer returned by `if_nameindex()`.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>MT Level</td>
<td>MT Safe</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
</tbody>
</table>

SEE ALSO

`ifconfig(1M), attributes(5), if(7P)`
The `inet_ntop()` and `inet_pton()` routines can manipulate both IPv4 and IPv6 addresses, whereas `inet_addr()`, `inet_network()`, `inet_makeaddr()`, `inet_lnaof()`, `inet_netof()`, and `inet_ntoa()` can only manipulate IPv4 addresses.

The `inet_ntop()` routine converts a numeric address into a string suitable for presentation. The `af` argument specifies the family of the address. This can be `AF_INET` or `AF_INET6`. The `addr` argument points to a buffer holding an IPv4 address if the `af` argument is `AF_INET`, or an IPv6 address if the `af` argument is `AF_INET6`; the address must be in network byte order. The `cp` argument points to a buffer where the routine will store the resulting string. The `size` argument specifies the size of this buffer. The application must specify a non-`NULL` `cp` argument. For IPv6 addresses, the buffer must be at least 46-octets. For IPv4 addresses, the buffer must be at least 16-octets. In order to allow applications to easily declare buffers of the proper size to store IPv4 and IPv6 addresses in string form, the following two constants are defined in `<netinet/in.h>`:

```c
#define INET_ADDRSTRLEN 16
#define INET6_ADDRSTRLEN 46
```

The `inet_pton()` routine converts an address in its standard text presentation form into its numeric binary form. The `af` argument specifies the family of the address. Currently the `AF_INET` and `AF_INET6` address families are supported. The `cp` argument points to the string being passed in. The `addr` argument points to a buffer into which the routine stores the numeric address. The calling application must ensure that the buffer referred to by `addr` is large enough to hold the numeric address, at least 4 bytes for `AF_INET` or 16 bytes for `AF_INET6`.

```c
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

const char *inet_ntop(int af, const void *addr, char *cp, size_t size);
int inet_pton(int af, const char *cp, void *addr);
in_addr_t inet_addr(const char *cp);
in_addr_t inet_network(const char *cp);
struct in_addr inet_makeaddr(const int net, const int lna);
int inet_lnaof(const struct in_addr in);
int inet_netof(const struct in_addr in);
char *inet_ntoa(const struct in_addr in);
```
The `inet_addr()` and `inet_network()` routines interpret character strings representing numbers expressed in the IPv4 standard `.\` notation, returning numbers suitable for use as IPv4 addresses and IPv4 network numbers, respectively. The routine `inet_makeaddr()` takes an IPv4 network number and a local network address and constructs an IPv4 address from it. The routines `inet_netof()` and `inet_lnaof()` break apart IPv4 host addresses, returning the network number and local network address part, respectively.

The `inet_ntoa()` routine returns a pointer to a string in the base 256 notation `d.d.d.d`. See INTERNET ADDRESSES.

Internet addresses are returned in network order, bytes ordered from left to right. Network numbers and local address parts are returned as machine format integer values.

IPv6 Addresses

There are three conventional forms for representing IPv6 addresses as strings:

1. The preferred form is `x:x:x:x:x:x:x:x`, where the ‘x’::s are the hexadecimal values of the eight 16-bit pieces of the address, for example,

 1080:0:0:0:8:800:200C:417A

 Note that it is not necessary to write the leading zeros in an individual field. However, there must be at least one numeral in every field, except as described below.

2. Due to some methods of allocating certain styles of IPv6 addresses, it will be common for addresses to contain long strings of zero bits. In order to make writing addresses containing zero bits easier, a special syntax is available to compress the zeros. The use of "::" indicates multiple groups of 16-bits of zeros. The "::" can only appear once in an address. The "::" can also be used to compress the leading and/or trailing zeros in an address. For example,

 1080::8:800:200C:417A

3. An alternative form that is sometimes more convenient when dealing with a mixed environment of IPv4 and IPv6 nodes is `x:x:x:x:x:x:d.d.d.d`, where the ‘x’::s are the hexadecimal values of the six high-order 16-bit pieces of the address, and the ‘d’::s are the decimal values of the four low-order 8-bit pieces of the standard IPv4 representation address, for example,

 ::FFFF:129.144.52.38

 ::129.144.52.38

 where "::FFFF:d.d.d.d" and "::d.d.d.d" are, respectively, the general forms of an IPv4-mapped IPv6 address and an IPv4-compatible IPv6 address. Note that the IPv4 portion must be in the “d.d.d.d” form. The following forms are invalid:

 ::FFFF:d.d

 ::FFFF:d.d

 ::d.d.d

 ::d.d

 The following form:
is valid, however it is an unconventional representation of the IPv4-compatible IPv6 address,
::255.255.0.d
while "::d" corresponds to the general IPv6 address "0:0:0:0:0:0:d".

IPv4 Addresses

Values specified using ‘.’ notation take one of the following forms:

d.d.d.d
d.d.d
d.d

dWhen four parts are specified, each is interpreted as a byte of data and assigned, from left to right, to the four bytes of an IPv4 address.

When a three part address is specified, the last part is interpreted as a 16-bit quantity and placed in the right most two bytes of the network address. This makes the three part address format convenient for specifying Class B network addresses as 128.net.host.

When a two part address is supplied, the last part is interpreted as a 24-bit quantity and placed in the right most three bytes of the network address. This makes the two part address format convenient for specifying Class A network addresses as net.host.

When only one part is given, the value is stored directly in the network address without any byte rearrangement.

With the exception of inet_ppton(), numbers supplied as parts in ‘.’ notation may be decimal, octal, or hexadecimal, as specified in the C language. For example, a leading 0x or 0X implies hexadecimal; otherwise, a leading 0 implies octal; otherwise, the number is interpreted as decimal.

For IPv4 addresses, inet_ppton() only accepts a string in the standard IPv4 dotted-decimal form:

d.d.d.d

where each number has one to three digits with a decimal value between 0 and 255.

RETURN VALUES

The inet_ntop() routine returns a pointer to the buffer containing a string if the conversion succeeds, and NULL otherwise. Upon failure, errno is set to EAFNOSUPPORT if the af argument is invalid or ENOSPC if the size of the result buffer is inadequate.

inet_ppton() returns 1 if the conversion succeeds, 0 if the input is not a valid IPv4 dotted-decimal string or a valid IPv6 address string, or -1 with errno set to EAFNOSUPPORT if the af argument is unknown.

The value -1 is returned by inet_addr() and inet_network() for malformed requests.
The routines `inet_netof()` and `inet_lnaof()` break apart IPv4 host addresses, returning the network number and local network address part, respectively.

The routine `inet_ntoa()` returns a pointer to a string in the base 256 notation `d.d.d.d` described in `INTERNET ADDRESSES`.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

`gethostbyname(3NSL), getipnodebyname(3SOCKET), getnetbyname(3SOCKET), inet(3HEAD), hosts(4), ipnodes(4), networks(4), attributes(5)`

NOTES

The return value from `inet_ntoa()` points to a buffer which is overwritten on each call. This buffer is implemented as thread-specific data in multithreaded applications.

BUGS

The problem of host byte ordering versus network byte ordering is confusing. A simple way to specify Class C network addresses in a manner similar to that for Class B and Class A is needed.
inet_addr(3XNET)

NAME
inet_addr, inet_network, inet_makeaddr, inet_lnaof, inet_netof, inet_ntoa – Internet address manipulation

SYNOPSIS
cc [flag ...] file ... -lxnet [library ...]

#include <arpa/inet.h>

in_addr_t inet_addr(const char *cp);
in_addr_t inet_lnaof(struct in_addr in);
struct in_addr inet_makeaddr(in_addr_t net, in_addr_t lna);
in_addr_t inet_netof(struct in_addr in);
in_addr_t inet_network(const char *cp);
char *inet_ntoa(struct in_addr in);

DESCRIPTION
The inet_addr() function converts the string pointed to by cp, in the Internet standard dot notation, to an integer value suitable for use as an Internet address.

The inet_lnaof() function takes an Internet host address specified by in and extracts the local network address part, in host byte order.

The inet_makeaddr() function takes the Internet network number specified by net and the local network address specified by lna, both in host byte order, and constructs an Internet address from them.

The inet_netof() function takes an Internet host address specified by in and extracts the network number part, in host byte order.

The inet_network() function converts the string pointed to by cp, in the Internet standard dot notation, to an integer value suitable for use as an Internet network number.

The inet_ntoa() function converts the Internet host address specified by in to a string in the Internet standard dot notation.

All Internet addresses are returned in network order (bytes ordered from left to right).

Values specified using dot notation take one of the following forms:

a.b.c.d When four parts are specified, each is interpreted as a byte of data and assigned, from left to right, to the four bytes of an Internet address.

a.b.c When a three-part address is specified, the last part is interpreted as a 16-bit quantity and placed in the rightmost two bytes of the network address. This makes the three-part address format convenient for specifying Class B network addresses as 128.net.host.

a.b When a two-part address is supplied, the last part is interpreted as a 24-bit quantity and placed in the rightmost three bytes of the
network address. This makes the two-part address format convenient for specifying Class A network addresses as net.host.

When only one part is given, the value is stored directly in the network address without any byte rearrangement.

All numbers supplied as parts in dot notation may be decimal, octal, or hexadecimal, that is, a leading 0x or 0X implies hexadecimal, as specified in the ISO C standard; otherwise, a leading 0 implies octal; otherwise, the number is interpreted as decimal.

USAGE
The return value of `inet_ntoa()` may point to static data that may be overwritten by subsequent calls to `inet_ntoa()`.

RETURN VALUES
Upon successful completion, `inet_addr()` returns the Internet address. Otherwise, it returns `(in_addr_t)(-1)`.

Upon successful completion, `inet_network()` returns the converted Internet network number. Otherwise, it returns `(in_addr_t)(-1)`.

The `inet_makeaddr()` function returns the constructed Internet address.

The `inet_lnaof()` function returns the local network address part.

The `inet_netof()` function returns the network number.

The `inet_ntoa()` function returns a pointer to the network address in Internet-standard dot notation.

ERRORS
No errors are defined.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
endhostent(3XNET), endnetent(3XNET), attributes(5)
The Lightweight Directory Access Protocol ("LDAP") package (SUNWlldap) includes various command line LDAP clients and a LDAP client library to provide programmatic access to the LDAP protocol. This man page gives an overview of the LDAP client library functions.

An application might use the LDAP client library functions as follows. The application would initialize a LDAP session with a LDAP server by calling `ldap_init(3LDAP)`. Next, it authenticates to the LDAP server by calling `ldap_sasl_bind(3LDAP)` and friends. It may perform some LDAP operations and obtain results by calling `ldap_search(3LDAP)` and friends. To parse the results returned from these functions, it calls `ldap_parse_result(3LDAP), ldap_next_entry(3LDAP), and ldap_first_entry(3LDAP)` and others. It closes the LDAP session by calling `ldap_unbind(3LDAP).

LDAP operations can be either synchronous or asynchronous. By convention, the names of the synchronous functions end with ".s." For example, a synchronous binding to the LDAP server can be performed by calling `ldap_sasl_bind(3LDAP). Complete an asynchronous binding with `ldap_sasl_bind_s(3LDAP). All synchronous functions return the actual outcome of the operation, either LDAP_SUCCESS or an error code. Asynchronous routines provide an invocation identifier which can be used to obtain the result of a specific operation by passing it to the `ldap_result(3LDAP)` function.

Initializing a LDAP session
Initializing a LDAP session involves calling the `ldap_init(3LDAP)` function. However, the call does not actually open a connection to the LDAP server. It merely initializes a LDAP structure that represents the session. The connection is opened when the first operation is attempted. Unlike `ldap_init()`, `ldap_open(3LDAP)` attempts to open a connection with the LDAP server. However, the use of `ldap_open()` is deprecated.

Authenticating to a LDAP server
The `ldap_sasl_bind(3LDAP)` and `ldap_sasl_bind_s(3LDAP)` functions provide general and extensible authentication for an LDAP client to a LDAP server. Both use the Simple Authentication Security Layer (SASL). Simplified routines `ldap_simple_bind(3LDAP)` and `ldap_simple_bind_s(3LDAP)` use cleartext passwords to bind to the LDAP server. Use of `ldap_bind(3LDAP)` and `ldap_bind_s(3LDAP)` is deprecated.

Searching a LDAP directory
Search for an entry in a LDAP directory by calling the `ldap_search_ext(3LDAP)` or the `ldap_search_ext_s(3LDAP)` functions. These functions support LDAPv3 server controls, client controls and variable size and time limits as arguments for each search operation. `ldap_search(3LDAP)` and `ldap_search_s(3LDAP)` are identical functions but do not support the controls and limits as arguments to the call.
Use `ldap_add_ext(3LDAP)` and `ldap_delete_ext(3LDAP)` to add or delete entries in a LDAP directory server. The synchronous counterparts to these functions are `ldap_add_ext_s(3LDAP)` and `ldap_delete_ext_s(3LDAP)`. The `ldap_add(3LDAP)`, `ldap_add_s(3LDAP)`, `ldap_delete(3LDAP)`, and `ldap_delete_s(3LDAP)` provide identical functionality to add and to delete entries, but they do not support LDAP v3 server and client controls.

Use `ldap_modify_ext(3LDAP)` and `ldap_modify_ext_s(3LDAP)` to modify an existing entry in a LDAP server that supports for LDAPv3 server and client controls. Similarly, use `ldap_rename(3LDAP)` and `ldap_rename_s(3LDAP)` to change the name of an LDAP entry. The `ldap_modrdn(3LDAP)`, `ldap_modrdn_s()`, `ldap_modrdn2(3LDAP)` and `ldap_modrdn2_s(3LDAP)` interfaces are deprecated.

Use `ldap_result(3LDAP)` to obtain the results of a previous asynchronous operation. For all LDAP operations other than search, only one message is returned. For the search operation, a list of result messages can be returned.

Use the `ldap_parse_result(3LDAP)`, `ldap_parse_sasl_bind_result(3LDAP)`, and the `ldap_parse_extended_result(3LDAP)` functions to extract required information from results and to handle the returned errors. To covert a numeric error code into a null-terminated character string message describing the error, use `ldap_err2string(3LDAP)`. The `ldap_result2error(3LDAP)` and `ldap_perror(3LDAP)` functions are deprecated. To step through the list of messages in a result returned by `ldap_result()`, use `ldap_first_message(3LDAP)` and `ldap_next_message(3LDAP)`.

Use the `ldap_get_lang_values(3LDAP)` and `ldap_get_lang_values_len(3LDAP)` to return an attribute’s values that matches a specified language subtype. The `ldap_get_lang_values()` function returns an array of an attribute’s string values that matches a specified language subtype. To retrieve the binary data from an attribute, call the `ldap_get_lang_values_len()` function instead.

Use the `ldap_url(3LDAP)` functions to test a URL to verify that it is an LDAP URL, to parse LDAP URLs into their component pieces, to initiate searches directly using an LDAP URL, and to retrieve the URL associated with a DNS domain name or a distinguished name.
The `ldap_ufn(3LDAP)` functions implement a user friendly naming scheme by means of LDAP. This scheme allows you to look up entries using fuzzy, untyped names like "mark smith, umich, us".

The `ldap_memcache(3LDAP)` functions provide an in-memory client side cache to store search requests. Caching improves performance and reduces network bandwidth when a client makes repeated requests.

There are also various utility functions. You can use the `ldap_sort(3LDAP)` functions to sort the entries and values returned by means of the ldap search functions. The `ldap_friendly(3LDAP)` functions will map from short two letter country codes or other strings to longer "friendlier" names. Use the `ldap_charset(3LDAP)` functions to translate to and from the T.61 character set that is used for many character strings in the LDAP protocol.

Make calls to `ldap_init_getfilter(3LDAP)` and `ldap_init_getfilter_buf()` to generate filters to be used in `ldap_search(3LDAP)` and `ldap_search_s(3LDAP)`. `ldap_init_getfilter()` reads `ldapfilter.conf(4)`, the LDAP configuration file, while `ldap_init_getfilter_buf()` reads the configuration information from `buf` of length `buflen`. `ldap_getfilter_free(3LDAP)` frees memory that has been allocated by means of `ldap_init_getfilter()`.

The LDAP package includes a set of lightweight Basic Encoding Rules ("BER") functions. The LDAP library functions use the BER functions to encode and decode LDAP protocol elements through the slightly simplified BER defined by LDAP. They are not normally used directly by an LDAP application program will not normally use the BER functions directly. Instead, these functions provide a `printf()` and `scanf()`-like interface, as well as lower-level access.

LIST OF INTERFACES

- **ldap_open(3LDAP)**
 - Deprecated. Use `ldap_init(3LDAP)`.

- **ldap_init(3LDAP)**
 - Initialize a session with a LDAP server without opening a connection to a server.

- **ldap_result(3LDAP)**
 - Obtain the result from a previous asynchronous operation.

- **ldap_abandon(3LDAP)**
 - Abandon or abort an asynchronous operation.

- **ldap_add(3LDAP)**
 - Asynchronously add an entry.

- **ldap_add_s(3LDAP)**
 - Synchronously add an entry.

- **ldap_add_ext(3LDAP)**
 - Asynchronously add an entry with support for LDAPv3 controls.

- **ldap_add_ext_s(3LDAP)**
 - Synchronously add an entry with support for LDAPv3 controls.
ldap(3LDAP)

Deprecated. Use ldap_sasl_bind(3LDAP) or ldap_simple_bind(3LDAP).

ldap_sasl_bind(3LDAP)
Asynchronously bind to the directory using SASL authentication

ldap_sasl_bind_s(3LDAP)
Synchronously bind to the directory using SASL authentication

ldap_bind_s(3LDAP)
Deprecated. Use ldap_sasl_bind_s(3LDAP) or ldap_simple_bind_s(3LDAP).

ldap_simple_bind(3LDAP)
Asynchronously bind to the directory using simple authentication.

ldap_simple_bind_s(3LDAP)
Synchronously bind to the directory using simple authentication.

ldap_unbind(3LDAP)
Synchronously unbind from the LDAP server, close the connection, and dispose the session handle.

ldap_unbind_ext(3LDAP)
Synchronously unbind from the LDAP server and close the connection.
ldap_unbind_ext() allows you to explicitly include both server and client controls in the unbind request.

ldap_set_rebind_proc(3LDAP)
Set callback function for obtaining credentials from a referral.

ldap_memcache_init(3LDAP)
Create the in-memory client side cache.

ldap_memcache_set(3LDAP)
Associate an in-memory cache that has been already created by calling the ldap_memcache_init(3LDAP) function with an LDAP connection handle.

ldap_memcache_get(3LDAP)
Get the cache associated with the specified LDAP structure.

ldap_memcache_flush(3LDAP)
Flushes search requests from the cache.

ldap_memcache_destroy(3LDAP)
Frees the specified LDAPMemCache structure pointed to by cache from memory.

ldap_memcache_update(3LDAP)
Checks the cache for items that have expired and removes them.

ldap_compare(3LDAP)
Asynchronous compare with a directory entry.

ldap_compare_s(3LDAP)
Synchronous compare with a directory entry.

Networking Library Functions 289
ldap(3LDAP)

ldap_compare_ext(3LDAP)
Asynchronous compare with a directory entry, with support for LDAPv3 controls.

ldap_compare_ext_s(3LDAP)
Synchronous compare with a directory entry, with support for LDAPv3 controls.

ldap_control_free(3LDAP)
Dispose of an LDAP control.

ldap_controls_free(3LDAP)
Dispose of an array of LDAP controls.

ldap_delete(3LDAP)
Asynchronously delete an entry.

ldap_delete_s(3LDAP)
Synchronously delete an entry.

ldap_delete_ext(3LDAP)
Asynchronously delete an entry, with support for LDAPv3 controls.

ldap_delete_ext_s(3LDAP)
Synchronously delete an entry, with support for LDAPv3 controls.

ldap_init_templates(3LDAP)
Read a sequence of templates from a LDAP template configuration file.

ldap_init_templates_buf(3LDAP)
Read a sequence of templates from a buffer.

ldap_free_templates(3LDAP)
Dispose of the templates allocated.

ldap_first_reference(3LDAP)
Step through a list of continuation references from a search result.

ldap_next_reference(3LDAP)
Step through a list of continuation references from a search result.

ldap_count_references(3LDAP)
Count the number of messages in a search result.

ldap_first_message(3LDAP)
Step through a list of messages in a search result.

ldap_count_messages(3LDAP)
Count the messages in a list of messages in a search result.

ldap_next_message(3LDAP)
Step through a list of messages in a search result.

ldap_msgtype(3LDAP)
Return the type of LDAP message.

ldap_first_disptmpl(3LDAP)
Get first display template in a list.
ldap_next_disptmpl(3LDAP)
 Get next display template in a list.

ldap_oc2template(3LDAP)
 Return template appropriate for the objectclass.

ldap_name2template(3LDAP)
 Return named template.

ldap_tmplattribs(3LDAP)
 Return attributes needed by the template.

ldap_first_tmplrow(3LDAP)
 Return first row of displayable items in a template.

ldap_next_tmplrow(3LDAP)
 Return next row of displayable items in a template.

ldap_first_tmplcol(3LDAP)
 Return first column of displayable items in a template.

ldap_next_tmplcol(3LDAP)
 Return next column of displayable items in a template.

ldap_entry2text(3LDAP)
 Display an entry as text by using a display template.

ldap_entry2text_search(3LDAP)
 Search for and display an entry as text by using a display template.

ldap_vals2text(3LDAP)
 Display values as text.

ldap_entry2html(3LDAP)
 Display an entry as HTML (HyperText Markup Language) by using a display template.

ldap_entry2html_search(3LDAP)
 Search for and display an entry as HTML by using a display template.

ldap_valst2html(3LDAP)
 Display values as HTML.

ldap_perror(3LDAP)
 Deprecated. Use ldap_parse_result(3LDAP).

ldap_result2error(3LDAP)
 Deprecated. Use ldap_parse_result(3LDAP).

ldap_err2string(3LDAP)
 Convert LDAP error indication to a string.

ldap_first_attribute(3LDAP)
 Return first attribute name in an entry.
ldap_next_attribute(3LDAP)
 Return next attribute name in an entry.

ldap_first_entry(3LDAP)
 Return first entry in a chain of search results.

ldap_next_entry(3LDAP)
 Return next entry in a chain of search results.

ldap_count_entries(3LDAP)
 Return number of entries in a search result.

ldap_friendly_name(3LDAP)
 Map from unfriendly to friendly names.

ldap_free_friendlymap(3LDAP)
 Free resources used by ldap_friendly(3LDAP).

ldap_get_dn(3LDAP)
 Extract the DN from an entry.

ldap_explode_dn(3LDAP)
 Convert a DN into its component parts.

ldap_explode_dns(3LDAP)
 Convert a DNS-style DN into its component parts (experimental).

ldap_is_dns_dn(3LDAP)
 Check to see if a DN is a DNS-style DN (experimental).

ldap_dns_to_dn(3LDAP)
 Convert a DNS domain name into an X.500 distinguished name.

ldap_dn2ufn(3LDAP)
 Convert a DN into user friendly form.

ldap_get_values(3LDAP)
 Return an attribute’s values.

ldap_get_values_len(3LDAP)
 Return an attribute’s values with lengths.

ldap_value_free(3LDAP)
 Free memory allocated by ldap_get_values(3LDAP).

ldap_value_free_len(3LDAP)
 Free memory allocated by ldap_get_values_len(3LDAP).

ldap_count_values(3LDAP)
 Return number of values.

ldap_count_values_len(3LDAP)
 Return number of values.

ldap_init_getfilter(3LDAP)
 Initialize getfilter functions from a file.
ldap_init_getfilter_buf(3LDAP)
Initialize getfilter functions from a buffer.

ldap_getfilter_free(3LDAP)
Free resources allocated by ldap_init_getfilter(3LDAP).

ldap_getfirstfilter(3LDAP)
Return first search filter.

ldap_getnextfilter(3LDAP)
Return next search filter.

ldap_build_filter(3LDAP)
Construct an LDAP search filter from a pattern.

ldap_setfilteraffixes(3LDAP)
Set prefix and suffix for search filters.

ldap_modify(3LDAP)
Asynchronously modify an entry.

ldap_modify_s(3LDAP)
Synchronously modify an entry.

ldap_modify_ext(3LDAP)
Asynchronously modify an entry, return value, and place message.

ldap_modify_ext_s(3LDAP)
Synchronously modify an entry, return value, and place message.

ldap_mods_free(3LDAP)
Free array of pointers to mod structures used by ldap_modify(3LDAP).

ldap_modrdn2(3LDAP)
Deprecated. Use ldap_rename(3LDAP) instead.

ldap_modrdn2_s(3LDAP)
Deprecated. Use ldap_rename_s(3LDAP) instead.

ldap_modrdn(3LDAP)
Deprecated. Use ldap_rename(3LDAP) instead.

ldap_modrdn_s(3LDAP)
Deprecated. Use ldap_rename_s(3LDAP) instead.

ldap_rename(3LDAP)
Asynchronously modify the name of an LDAP entry.

ldap_rename_s(3LDAP)
Synchronously modify the name of an LDAP entry.

ldap_msgfree(3LDAP)
Free result messages.

ldap_parse_result(3LDAP)
Search for a message to parse.
ldap(3LDAP)

ldap_parse_extended_result(3LDAP)
 Search for a message to parse.

ldap_parse_sasl_bind_result(3LDAP)
 Search for a message to parse.

ldap_search(3LDAP)
 Asynchronously search the directory.

ldap_search_s(3LDAP)
 Synchronously search the directory.

ldap_search_ext(3LDAP)
 Asynchronously search the directory with support for LDAPv3 controls.

ldap_search_ext_s(3LDAP)
 Synchronously search the directory with support for LDAPv3 controls.

ldap_search_st(3LDAP)
 Synchronously search the directory with support for a local timeout value.

ldap_ufn_search_s(3LDAP)
 User friendly search the directory.

ldap_ufn_search_c(3LDAP)
 User friendly search the directory with cancel.

ldap_ufn_search_ct(3LDAP)
 User friendly search the directory with cancel and timeout.

ldap_ufn_setfilter(3LDAP)
 Set filter file used by ldap_ufn(3LDAP) functions.

ldap_ufn_setprefix(3LDAP)
 Set prefix used by ldap_ufn(3LDAP) functions.

ldap_ufn_timeout(3LDAP)
 Set timeout used by ldap_ufn(3LDAP) functions.

ldap_is_ldap_url(3LDAP)
 Check a URL string to see if it is an LDAP URL.

ldap_url_parse(3LDAP)
 Break up an LDAP URL string into its components.

ldap_free_urldesc(3LDAP)
 Free an LDAP URL structure.

ldap_url_search(3LDAP)
 Asynchronously search by using an LDAP URL.

ldap_url_search_s(3LDAP)
 Synchronously search by using an LDAP URL.
ldap_url_search_st(3LDAP)
 Asynchronously search by using an LDAP URL, with support for a local timeout value.

ldap_dns_to_url(3LDAP)
 Locate the LDAP URL associated with a DNS domain name.

ldap_dn_to_url(3LDAP)
 Locate the LDAP URL associated with a distinguished name.

ldap_init_searchprefs(3LDAP)
 Initialize searchprefs functions from a file.

ldap_init_searchprefs_buf(3LDAP)
 Initialize searchprefs functions from a buffer.

ldap_free_searchprefs(3LDAP)
 Free memory allocated by searchprefs functions.

ldap_first_searchobj(3LDAP)
 Return first searchpref object.

ldap_next_searchobj(3LDAP)
 Return next searchpref object.

ldap_sort_entries(3LDAP)
 Sort a list of search results.

ldap_sort_values(3LDAP)
 Sort a list of attribute values.

ldap_sort_strcasecmp(3LDAP)
 Case insensitive string comparison.

ldap_set_string_translators(3LDAP)
 Set character set translation functions used by LDAP library.

ldap_translate_from_t61(3LDAP)
 Translate from the T.61 character set to another character set.

ldap_translate_to_t61(3LDAP)
 Translate to the T.61 character set from another character set.

ldap_enable_translation(3LDAP)
 Enable or disable character translation for an LDAP entry result.

ldap_version(3LDAP)
 Get version information about the LDAP SDK for C.

ldap_get_lang_values(3LDAP)
 Return an attribute’s value that matches a specified language subtype.

ldap_get_lang_values_len(3LDAP)
 Return an attribute’s value that matches a specified language subtype along with lengths.
ldap(3LDAP)

ldap_get_entry_controls(3LDAP)
Get the LDAP controls included with a directory entry in a set of search results.

ldap_get_option(3LDAP)
Get session preferences in an LDAP structure.

ldap_set_option(3LDAP)
Set session preferences in an LDAP structure.

ldap_memfree(3LDAP)
Free memory allocated by LDAP API functions.

ATTRIBUTES
See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Stability Level</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
attributes(5)
ldap_abandon(3LDAP)

NAME
ldap_abandon – abandon an LDAP operation in progress

SYNOPSIS
ccf flag... file... -lldap[library...]

#include <lber.h>
#include <ldap.h>

int ldap_abandon(LDAP *ld, int msgid);

DESCRIPTION
The ldap_abandon() function is used to abandon or cancel an LDAP operation in progress. The msgid passed should be the message id of an outstanding LDAP operation, as returned by ldap_search(3LDAP), ldap_modify(3LDAP), etc.

ldap_abandon() checks to see if the result of the operation has already come in. If it has, it deletes it from the queue of pending messages. If not, it sends an LDAP abandon operation to the LDAP server.

The caller can expect that the result of an abandoned operation will not be returned from a future call to ldap_result(3LDAP).

ERRORS
ldap_abandon() returns 0 if successful or -1 otherwise and setting ld_errno appropriately. See ldap_error(3LDAP) for details.

ATTRIBUTES
See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
ldap(3LDAP), ldap_result(3LDAP), ldap_error(3LDAP), attributes(5)
ldap_add(3LDAP)

NAME
ldap_add, ldap_add_s, ldap_add_ext, ldap_add_ext_s – perform an LDAP add operation

SYNOPSIS
```
c[ flag... ] file... -lldap[ library... ]
```
```
#include <lber.h>
#include <ldap.h>

int ldap_add(LDAP *ld, char *dn, LDAPMod *attrs[]);
int ldap_add_s(LDAP *ld, char *dn, LDAPMod *attrs[]);
int ldap_add_ext(LDAP *ld, char *dn, LDAPMod *attrs, LDAPControl **serverctrls, int *msgidp);
int ldap_add_ext_s(LDAP *ld, char *dn, LDAPMod *attrs, LDAPControl **serverctrls, LDAPControl **clientctrls);
```

DESCRIPTION
The `ldap_add_s()` function is used to perform an LDAP add operation. It takes `dn`, the DN of the entry to add, and `attrs`, a null-terminated array of the entry’s attributes. The LDAPMod structure is used to represent attributes, with the `mod_type` and `mod_values` fields being used as described under `ldap_modify(3LDAP)`, and the `ldap_op` field being used only if you need to specify the `LDAP_MOD_BVALUES` option. Otherwise, it should be set to zero.

Note that all entries except that specified by the last component in the given DN must already exist. `ldap_add_s()` returns an LDAP error code indicating success or failure of the operation. See `ldap_error(3LDAP)` for more details.

The `ldap_add()` function works just like `ldap_add_s()`, but it is asynchronous. It returns the message id of the request it initiated. The result of this operation can be obtained by calling `ldap_result(3LDAP)`.

The `ldap_add_ext()` function initiates an asynchronous add operation and returns `LDAP_SUCCESS` if the request was successfully sent to the server, or else it returns a LDAP error code if not (see `ldap_error(3LDAP)`). If successful, `ldap_add_ext()` places the message id of `msgidp`. A subsequent call to `ldap_result()`, can be used to obtain the result of the add request.

The `ldap_add_ext_s()` function initiates a synchronous add operation and returns the result of the operation itself.

ERRORS
`ldap_add()` returns −1 in case of error initiating the request, and will set the `ld_errno` field in the `ld` parameter to indicate the error. `ldap_add_s()` will return an LDAP error code directly.

ATTRIBUTES
See `attributes(5)` for a description of the following attributes:
ATTRIBUTE TYPE

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

ldap(3LDAP), ldap_error(3LDAP), ldap_modify(3LDAP), attributes(5)
ldap_ber_free(3LDAP)

NAME ldap_ber_free – free a BerElement structure from memory

SYNOPSIS cc -flag ... file ... ldap [-library ...]
#include <ldap.h>
void ldap_ber_free(BerElement *ber, int freebuf);

DESCRIPTION You can make a call to the ldap_ber_free() function to free BerElement
structures allocated by ldap_first_attribute() and by
ldap_next_attribute() function calls. When freeing structures allocated by these
functions, specify 0 for the freebuf argument. The ldap_first_attribute() and by
ldap_next_attribute() functions do not allocate the extra buffer in the
BerElement structure.

For example, to retrieve attributes from a search result entry, you need to call the
ldap_first_attribute() function. A call to this function allocates a
BerElement structure, which is used to help track the current attribute. When you are done
working with the attributes, this structure should be freed from memory, if it still
exists.

This function is deprecated. Use the ber_free() function instead.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcs1 (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcs1x (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Obsolete</td>
</tr>
</tbody>
</table>

SEE ALSO ber_free(3LDAP), ldap_first_attribute(3LDAP),
ldap_next_attribute(3LDAP), attributes(5)
These functions provide various interfaces to the LDAP bind operation. After a connection is made to an LDAP server using `ldap_open(3LDAP)`, an LDAP bind operation must be performed before other operations can be attempted over the connection. Both synchronous and asynchronous versions of each variant of the bind call are provided. There are three types of bind calls, simple authentication, kerberos authentication, and general functions. All LDAP bind functions take `ld` as their first parameter, which is returned from `ldap_open(3LDAP)`.

The simplest form of the bind call is `ldap_simple_bind_s()`. It takes the DN to bind as in `who`, and the user password associated with the entry in `passwd`. It returns an LDAP error code. See `ldap_error(3LDAP)`. The `ldap_simple_bind()` call is asynchronous. It takes the same parameters but only initiates the bind operation and returns the message id of the request it sent. You can obtain the result of the operation by a subsequent call to `ldap_result(3LDAP)`.

Use the `ldap_bind()` and `ldap_bind_s()` functions when the authentication method to use needs to be selected at runtime. Both functions take an extra `method` parameter that selects the authentication method to use. It should be set to `LDAP_AUTH_SIMPLE` to select simple authentication. `ldap_bind()` returns the message id of the request it initiates. `ldap_bind_s()` returns an LDAP error code.
The ldap_sasl_bind() and ldap_sasl_bind_s() functions are used for general and extensible authentication over LDAP through the use of the Simple Authentication Security Layer. The routines both take the dn to bind as the method to use. A dotted-string representation of an OID identifies the method, and a struct berval holds the credentials. The special constant value LDAP_SASL_SIMPLE ("") can be passed to request simple authentication, or the simplified routines ldap_simple_bind() or ldap_simple_bind_s() can be use.

Unbinding

The ldap_unbind() call is used to unbind from the directory, terminate the current association, and free the resources contained in the ld structure. Once it is called, the connection to the LDAP server is closed, and the ld structure is invalid. The ldap_unbind_s() call is just another name for ldap_unbind(). Both of these calls are synchronous in nature.

The ldap_unbind_ext() function unbinds from the directory, terminates the current association, and frees the resources contained in the LDAP structure. Unlike ldap_unbind() and ldap_unbind_s(), you can explicitly include both server and client controls with the with ldap_unbind_ext() request. Since there is no server reponse to an unbind request, you will not receive a response from a server control that is included with the unbind request.

Rebinding While Following Referral

The ldap_set_rebind_proc() call is used to set a function that will be called back to obtain bind credentials used when a new server is contacted following an LDAP referral. If ldap_set_rebind_proc() is never called, or if it is called with a NULL rebindproc parameter, an unauthenticated simple LDAP bind will always be done when chasing referrals.

rebindproc() should be a function that is declared like this:

```c
int rebindproc(LDAP *ld, char **whop, char **credp,
              int *methodp, int freeit);
```

The LDAP library will first call the rebindproc() to obtain the referral bind credentials, and the freeit parameter will be zero. The whop, credp, and methodp should be set as appropriate. If rebindproc() returns LDAP_SUCCESS, referral processing continues, and the rebindproc() will be called a second time with freeit non-zero to give your application a chance to free any memory allocated in the previous call.

If anything but LDAP_SUCCESS is returned by the first call to rebindproc(), then referral processing is stopped, and that error code is returned for the original LDAP operation.

RETURN VALUES

Make a call to ldap_result(3LDAP) to obtain the result of a bind operation.

ERRORS

Asynchronous functions will return −1 in case of error. See ldap_error(3LDAP) for more information on error codes returned. If no credentials are returned, the result parameter is set to NULL.

ATTRIBUTES

See attributes(5) for a description of the following attributes:
ldap_bind(3LDAP)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Stability Level</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
ldap(3LDAP), ldap_error(3LDAP), ldap_open(3LDAP), attributes(5)
These functions are used to enable translation of character strings used in the LDAP library to and from the T.61 character set used in the LDAP protocol. These functions are only available if the LDAP and LBER libraries are compiled with STR_TRANSLATION defined. It is also possible to turn on character translation by default so that all LDAP library callers will experience translation; see the LDAP Make-common source file for details.

`ldap_set_string_translators()` sets the translation functions that will be used by the LDAP library. They are not actually used until the `ld_lberoptions` field of the LDAP structure is set to include the `LBER_TRANSLATE_STRINGS` option.

`ldap_t61_to_8859()` and `ldap_8859_to_t61()` are translation functions for converting between T.61 characters and ISO-8859 characters. The specific 8859 character set used is determined at compile time.

`ldap_translate_from_t61()` is used to translate a string of characters from the T.61 character set to a different character set. The actual translation is done using the `decode_proc` that was passed to a previous call to `ldap_set_string_translators()`. On entry, `*bufp` should point to the start of the T.61 characters to be translated and `*lenp` should contain the number of bytes to translate. If `free_input` is non-zero, the input buffer will be freed if translation is a...
success. If the translation is a success, LDAP_SUCCESS will be returned, *bufp will point to a newly malloc’d buffer that contains the translated characters, and *lenp will contain the length of the result. If translation fails, an LDAP error code will be returned.

ldap_translate_to_t61() is used to translate a string of characters to the T.61 character set from a different character set. The actual translation is done using the encode_proc that was passed to a previous call to ldap_set_string_translators(). This function is called just like ldap_translate_from_t61().

ldap_enable_translation() is used to turn on or off string translation for the LDAP entry (typically obtained by calling ldap_first_entry() or ldap_next_entry() after a successful LDAP search operation). If enable is zero, translation is disabled; if non-zero, translation is enabled. This function is useful if you need to ensure that a particular attribute is not translated when it is extracted using ldap_get_values() or ldap_get_values_len(). For example, you would not want to translate a binary attributes such as jpegPhoto.

ATTRIBUTES
See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
ldap(3LDAP), attributes(5)
ldap_compare(3LDAP)

NAME
ldap_compare, ldap_compare_s, ldap_compare_ext, ldap_compare_ext_s – LDAP
compare operation

SYNOPSIS
cc [flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>

int ldap_compare(LDAP *ld, char *dn, char *attr, char *value);
int ldap_compare_s(LDAP *ld, char *dn, char *attr, char *value);
int ldap_compare_ext(LDAP *ld, char *dn, char *attr, struct berval *
 bvalue, LDAPControl **serverctrls, LDAPControl **clientctrls, int *
 msgidp);
int ldap_compare_ext_s(LDAP *ld, char *dn, char *attr, struct berval *
 bvalue, LDAPControl **serverctrls, LDAPControl **clientctrls);

DESCRIPTION
The ldap_compare_s() function is used to perform an LDAP compare operation
synchronously. It takes dn, the DN of the entry upon which to perform the compare,
and attr and value, the attribute type and value to compare to those found in the entry.
It returns an LDAP error code, which will be LDAP_COMPARE_TRUE if the entry
contains the attribute value and LDAP_COMPARE_FALSE if it does not. Otherwise,
some error code is returned.

The ldap_compare() function is used to perform an LDAP compare operation
asynchronously. It takes the same parameters as ldap_compare_s(), but returns the
message id of the request it initiated. The result of the compare can be obtained by a
subsequent call to ldap_result(3LDAP).

The ldap_compare_ext() function initiates an asynchronous compare operation
and returns LDAP_SUCCESS if the request was successfully sent to the server, or else it
returns a LDAP error code if not (see ldap_error(3LDAP). If successful,
ldap_compare_ext() places the message id of the request in *msgidp. A subsequent
call to ldap_result(), can be used to obtain the result of the add request.

The ldap_compare_ext_s() function initiates a synchronous compare operation
and as such returns the result of the operation itself.

ERRORS
ldap_compare_s() returns an LDAP error code which can be interpreted by calling
one of ldap_perror(3LDAP) and friends. ldap_compare() returns −1 if something
went wrong initiating the request. It returns the non-negative message id of the
request if it was successful.

ATTRIBUTES
See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcs1 (32-bit)</td>
</tr>
</tbody>
</table>
ATTRIBUTE TYPE

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUNWcslx (64-bit)</td>
<td></td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
ldap(3LDAP), ldap_error(3LDAP), attributes(5)

BUGS
There is no way to compare binary values using `ldap_compare()`.
ldap_control_free(3LDAP)

NAME ldap_control_free, ldap_controls_free – LDAP control disposal

SYNOPSIS cc[flag...] file... -lldap[library...]

 #include <lber.h>
 #include <ldap.h>

 void ldap_control_free(LDAPControl *ctrl);
 void ldap_controls_free(LDAPControl **ctrls);

DESCRIPTION ldap_controls_free() and ldap_control_free() are routines which can be used to dispose of a single control or an array of controls allocated by other LDAP APIs.

RETURN VALUES None.

ERRORS No errors are defined for these functions.

ATTRIBUTES See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcs1 (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO ldap_error(3LDAP), ldap_result(3LDAP), attributes(5)
ldap_delete(3LDAP)

NAME
ldap_delete, ldap_delete_s, ldap_delete_ext, ldap_delete_ext_s – LDAP delete operation

SYNOPSIS
cc [flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>

int ldap_delete(LDAP *ld, char *dn);
int ldap_delete_s(LDAP *ld, char *dn);
int ldap_delete_ext(LDAP *ld, char *dn, LDAPControl **serverctrls,
 LDAPControl **clientctrls, int *msgidp);
int ldap_delete_ext_s(LDAP *ld, char *dn, LDAPControl **serverctrls,
 LDAPControl **clientctrls);

DESCRIPTION
The ldap_delete_s() function is used to perform an LDAP delete operation synchronously. It takes dn, the DN of the entry to be deleted. It returns an LDAP error code, indicating the success or failure of the operation.

The ldap_delete() function is used to perform an LDAP delete operation asynchronously. It takes the same parameters as ldap_delete_s(), but returns the message id of the request it initiated. The result of the delete can be obtained by a subsequent call to ldap_result(3LDAP).

The ldap_delete_ext() function initiates an asynchronous delete operation and returns LDAP_SUCCESS if the request was successfully sent to the server, or else it returns a LDAP error code if not (see ldap_error(3LDAP)). If successful, ldap_delete_ext() places the message id of the request in *msgidp. A subsequent call to ldap_result(), can be used to obtain the result of the add request.

The ldap_delete_ext_s() function initiates a synchronous delete operation and as such returns the result of the operation itself.

ERRORS
ldap_delete_s() returns an LDAP error code which can be interpreted by calling one of ldap_perror(3LDAP) functions. ldap_delete() returns −1 if something went wrong initiating the request. It returns the non-negative message id of the request if things were successful.

ATTRIBUTES
See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
ldap(3LDAP), ldap_error(3LDAP), attributes(5)
ldap_disptmpl(3LDAP)

NAME
ldap_disptmpl, ldap_init_templates, ldap_init_templates_buf, ldap_free_templates,
ldap_first_disptmpl, ldap_next_disptmpl, ldap_oc2template, ldap_name2template,
ldap_tmplattrs, ldap_firsttmplrow, ldap_nexttmplrow, ldap_firsttmplcol,
ldap_nexttmplcol - LDAP display template functions

SYNOPSIS
cc [flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>

int ldap_init_templates(char *file, struct ldap_disptmpl **tmpllistp);
int ldap_init_templates_buf(char *buf, unsigned long len, struct
ldap_disptmpl **tmpllistp);
void ldap_free_templates(struct ldap_disptmpl *tmpllist);
struct ldap_disptmpl *ldap_first_disptmpl(struct ldap_disptmpl *tmpllist);
struct ldap_disptmpl *ldap_next_disptmpl(struct ldap_disptmpl
*tmpllist, struct ldap_disptmpl *tmpl);
struct ldap_disptmpl *ldap_oc2template(char **oclist, struct
ldap_disptmpl *tmpllist);
struct ldap_disptmpl *ldap_name2template(char *name, struct
ldap_disptmpl *tmpllist);
char **ldap_tmplattrs(struct ldap_disptmpl *tmpl, char **includeattrs,
 int exclude;, unsigned long syntaxmask);
struct ldap_tmplitem *ldap_firsttmplrow(struct ldap_disptmpl
*tmpl);
struct ldap_tmplitem *ldap_nexttmplrow(struct ldap_disptmpl
*tmpl, struct ldap_tmplitem *row);
struct ldap_tmplitem *ldap_firsttmplcol(struct ldap_disptmpl
*tmpl, struct ldap_tmplitem *row, struct ldap_tmplitem *col);
struct ldap_tmplitem *ldap_nexttmplcol(struct ldap_disptmpl
*tmpl, struct ldap_tmplitem *row, struct ldap_tmplitem *col);

DESCRIPTION
These functions provide a standard way to access LDAP entry display templates.
Entry display templates provide a standard way for LDAP applications to display
directory entries. The general idea is that it is possible to map the list of object class
values present in an entry to an appropriate display template. Display templates are
defined in a configuration file. See ldaptemplates.conf(4). Each display template
contains a pre-determined list of items, where each item generally corresponds to an
attribute to be displayed. The items contain information and flags that the caller can
use to display the attribute and values in a reasonable fashion. Each item has a
syntaxid, which are described in the SYNTAX IDS section below. The
ldap_entry2text(3LDAP) functions use the display template functions and
produce text output.
ldap_init_templates() reads a sequence of templates from a valid LDAP template configuration file (see ldaptemplates.conf(4)). Upon success, 0 is returned, and tmplistp is set to point to a list of templates. Each member of the list is an ldap_disptmpl structure (defined below in the DISPTMPL Structure Elements section).

ldap_init_templates_buf() reads a sequence of templates from buf (whose size is buflen). buf should point to the data in the format defined for an LDAP template configuration file (see ldaptemplates.conf(4)). Upon success, 0 is returned, and tmplistp is set to point to a list of templates.

The LDAP_SET_DISPTMPL_APPDATA() macro is used to set the value of the dt_appdata field in an ldap_disptmpl structure. This field is reserved for the calling application to use; it is not used internally.

The LDAP_GET_DISPTMPL_APPDATA() macro is used to retrieve the value in the dt_appdata field.

The LDAP_IS_DISPTMPL_OPTION_SET() macro is used to test a ldap_disptmpl structure for the existence of a template option. The options currently defined are:

- LDAP_DTMPL_OPT_ADDABLE (it is appropriate to allow entries of this type to be added),
- LDAP_DTMPL_OPT_ALLOWMODRDN (it is appropriate to offer the "modify rdn" operation),
- LDAP_DTMPL_OPT_ALTVIEW (this template is merely an alternate view of another template, typically used for templates pointed to be an LDAP_SYN_LINKACTION item).

ldap_free_templates() disposes of the templates allocated by ldap_init_templates().

ldap_first_disptmpl() returns the first template in the list tmplist. The tmplist is typically obtained by calling ldap_init_templates().

ldap_next_disptmpl() returns the template after tmpl in the template list tmplist. A NULL pointer is returned if tmpl is the last template in the list.

ldap_oc2template() searches tmplist for the best template to use to display an entry that has a specific set of objectClass values. oclist should be a null-terminated array of strings that contains the values of the objectClass attribute of the entry. A pointer to the first template where all of the object classes listed in one of the template's dt_oclist elements are contained in oclist is returned. A NULL pointer is returned if no appropriate template is found.

ldap_tmplattrs() returns a null-terminated array that contains the names of attributes that need to be retrieved if the template tmpl is to be used to display an entry. The attribute list should be freed using ldap_value_free(). The includeattrs parameter contains a null-terminated array of attributes that should always be included (it may be NULL if no extra attributes are required). If syntaxmask is non-zero, it is used to restrict the attribute set returned. If exclude is zero, only attributes where
ldap_disptmpl(3LDAP)

the logical AND of the template item syntax id and the syntaxmask is non-zero are included. If exclude is non-zero, attributes where the logical AND of the template item syntax id and the syntaxmask is non-zero are excluded.

ldap_first_tmplrow() returns a pointer to the first row of items in template tmpl.

ldap_next_tmplrow() returns a pointer to the row that follows row in template tmpl.

ldap_first_tmplcol() returns a pointer to the first item (in the first column) of row row within template tmpl. A pointer to an ldap_tmplitem structure (defined below in the TMPLITEM Structure Elements section) is returned.

The LDAP_SET_TMPLITEM_APPDATA() macro is used to set the value of the ti_appdata field in a ldap_tmplitem structure. This field is reserved for the calling application to use; it is not used internally.

The LDAP_GET_TMPLITEM_APPDATA() macro is used to retrieve the value of the ti_appdata field.

The LDAP_IS_TMPLITEM_OPTION_SET() macro is used to test a ldap_tmplitem structure for the existence of an item option. The options currently defined are:

- LDAP_DITEM_OPT_READONLY (this attribute should not be modified),
- LDAP_DITEM_OPT_SORTVALUES (it makes sense to sort the values),
- LDAP_DITEM_OPT_SINGLEVALUED (this attribute can only hold a single value),
- LDAP_DITEM_OPT_VALUEREQUIRED (this attribute must contain at least one value),
- LDAP_DITEM_OPT_HIDEIFEMPTY (do not show this item if there are no values), and
- LDAP_DITEM_OPT_HIDEIFFALSE (for boolean attributes only: hide this item if the value is FALSE).

ldap_next_tmplcol() returns a pointer to the item (column) that follows column col within row row of template tmpl.

The ldap_disptmpl structure is defined as:

```c
struct ldap_disptmpl {
    char *dt_name;
    char *dt_pluralname;
    char *dt_iconname;
    unsigned long dt_options;
    char *dt_authattrname;
    char *dt_defrdnattrname;
    struct ldap_oclist *dt_oclist;
    struct ldap_adddeflist *dt_adddeflist;
    struct ldap_tmplitem *dt_items;
    void *dt_appdata;
    struct ldap_disptmpl *dt_next;
};
```

DISPTMPL

Structure Elements

312 man pages section 3: Networking Library Functions • Last Revised 27 Jan 2002
The dt_name member is the singular name of the template. The dt_pluralname is the plural name. The dt_iconname member will contain the name of an icon or other graphical element that can be used to depict entries that correspond to this display template. The dt_options contains options which may be tested using the LDAP_IS_TMPLITEM_OPTION_SET() macro.

The dt_authattrname contains the name of the DN-syntax attribute whose value(s) should be used to authenticate to make changes to an entry. If dt_authattrname is NULL, then authenticating as the entry itself is appropriate. The dt_defrdnattrname is the name of the attribute that is normally used to name entries of this type, for example, "cn" for person entries. The dt_defaddlocation is the distinguished name of an entry below which new entries of this type are typically created (its value is site-dependent).

dt_oclist is a pointer to a linked list of object class arrays, defined as:

```c
struct ldap_oclist {
    char **oc_objclasses;
    struct ldap_oclist *oc_next;
};
```

These are used by the ldap_oc2template() function.

dt_adddeflist is a pointer to a linked list of rules for defaulting the values of attributes when new entries are created. The ldap_adddeflist structure is defined as:

```c
struct ldap_adddeflist {
    int ad_source;
    char *ad_attrname;
    char *ad_value;
    struct ldap_adddeflist *ad_next;
};
```

The ad_attrname member contains the name of the attribute whose value this rule sets. If ad_source is LDAP_ADSRC_CONSTANTVALUE then the ad_value member contains the (constant) value to use. If ad_source is LDAP_ADSRC_ADDERSDN then ad_value is ignored and the distinguished name of the person who is adding the new entry is used as the default value for ad_attrname.

The ldap_tmplitem structure is defined as:

```c
struct ldap_tmplitem {
    unsigned long ti_syntaxid;
    unsigned long ti_options;
    char *ti_attrname;
    char *ti_label;
    char ***ti_args;
    struct ldap_tmplitem *ti_next_in_row;
    struct ldap_tmplitem *ti_next_in_col;
    void *ti_appdata;
};
```
Syntax IDs are found in the `ldap_tmplitem` structure element `ti_syntaxid`, and they can be used to determine how to display the values for the attribute associated with an item. The `LDAP_GET_SYN_TYPE()` macro can be used to return a general type from a syntax id. The five general types currently defined are:

- `LDAP_SYN_TYPE_TEXT` (for attributes that are most appropriately shown as text),
- `LDAP_SYN_TYPE_IMAGE` (for JPEG or FAX format images),
- `LDAP_SYN_TYPE_BOOLEAN` (for boolean attributes),
- `LDAP_SYN_TYPE_BUTTON` (for attributes whose values are to be retrieved and display only upon request, for example, in response to the press of a button, a JPEG image is retrieved, decoded, and displayed), and
- `LDAP_SYN_TYPE_ACTION` (for special purpose actions such as "search for the entries where this entry is listed in the `seeAlso` attribute").

The `LDAP_GET_SYN_OPTIONS` macro can be used to retrieve an unsigned long bitmap that defines options. The only currently defined option is `LDAP_SYN_OPT_DEFER`, which (if set) implies that the values for the attribute should not be retrieved until requested.

There are sixteen distinct syntax ids currently defined. These generally correspond to one or more X.500 syntaxes.

- `LDAP_SYN_CASEIGNORESTR` is used for text attributes which are simple strings whose case is ignored for comparison purposes.
- `LDAP_SYN_MULTILINESTR` is used for text attributes which consist of multiple lines, for example, `postalAddress`, `homePostalAddress`, `multilineDescription`, or any attributes of syntax `caseIgnoreList`.
- `LDAP_SYN_RFC822ADDR` is used for case ignore string attributes that are RFC-822 conformant mail addresses, for example, `mail`.
- `LDAP_SYN_DN` is used for attributes with a Distinguished Name syntax, for example, `seeAlso`.
- `LDAP_SYN_BOOLEAN` is used for attributes with a boolean syntax.
- `LDAP_SYN_JPEGIMAGE` is used for attributes with a jpeg syntax, for example, `jpegPhoto`.
- `LDAP_SYN_JPEGBUTTON` is used to provide a button (or equivalent interface element) that can be used to retrieve, decode, and display an attribute of jpeg syntax.
- `LDAP_SYN_FAXIMAGE` is used for attributes with a photo syntax, for example, `Photo`. These are actually Group 3 Fax (T.4) format images.
- `LDAP_SYN_FAXBUTTON` is used to provide a button (or equivalent interface element) that can be used to retrieve, decode, and display an attribute of photo syntax.
- `LDAP_SYN_AUDIOBUTTON` is used to provide a button (or equivalent interface element) that can be used to retrieve and play an attribute of audio syntax. Audio values are in the "mu law" format, also known as "au" format.
LDAP_SYN_TIME is used for attributes with the UTCTime syntax, for example, lastModifiedTime. The value(s) should be displayed in complete date and time fashion.

LDAP_SYN_DATE is used for attributes with the UTCTime syntax, for example, lastModifiedTime. Only the date portion of the value(s) should be displayed.

LDAP_SYN_LABELEDURL is used for labeledURL attributes.

LDAP_SYN_SEARCHACTION is used to define a search that is used to retrieve related information. If `ti_attrname` is not NULL, it is assumed to be a boolean attribute which will cause no search to be performed if its value is FALSE. The `ti_args` structure member will have four strings in it: `ti_args[0]` should be the name of an attribute whose values are used to help construct a search filter or "-dn" is the distinguished name of the entry being displayed should be used, `ti_args[1]` should be a filter pattern where any occurrences of "%v" are replaced with the value derived from `ti_args[0], ti_args[2]` should be the name of an additional attribute to retrieve when performing the search, and `ti_args[3]` should be a human-consumable name for that attribute. The `ti_args[2]` attribute is typically displayed along with a list of distinguished names when multiple entries are returned by the search.

LDAP_SYN_LINKACTION is used to define a link to another template by name. `ti_args[0]` will contain the name of the display template to use. The `ldap_name2template()` function can be used to obtain a pointer to the correct `ldap_disptmpl` structure.

LDAP_SYN_ADDDNACTION and **LDAP_SYN_VERIFYDNACTION** are reserved as actions but currently undefined.

ERRORS The init template functions return **LDAP_TMPL_ERR_VERSION** if `buf` points to data that is newer than can be handled, **LDAP_TMPL_ERR_MEM** if there is a memory allocation problem, **LDAP_TMPL_ERR_SYNTAX** if there is a problem with the format of the templates buffer or file. **LDAP_TMPL_ERR_FILE** is returned by `ldap_init_templates` if the file cannot be read. Other functions generally return NULL upon error.

ATTRIBUTES See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO `ldap(3LDAP), ldap_entry2text(3LDAP), ldaptemplates.conf(4), attributes(5)`
These functions use the LDAP display template functions (see `ldap_disptmpl(3LDAP)` and `ldap_templates.conf(4)`) to produce a plain text or an HyperText Markup Language (HTML) display of an entry or a set of values. Typical plain text output produced for an entry might look like:

"Barbara J Jensen, Information Technology Division"
Also Known As:
Babs Jensen
Barbara Jensen
Barbara J Jensen
E-Mail Address:
bjensen@terminator.rs.itd.umich.edu
Work Address:

#define LDAP_DISP_OPT_AUTOLABELWIDTH 0x00000001
#define LDAP_DISP_OPT_HTMLBODYONLY 0x00000002
#define LDAP_DTMPL_BUFSIZ 2048
The exact output produced will depend on the display template configuration. HTML output is similar to the plain text output, but more richly formatted.

`ldap_entry2text()` produces a text representation of `entry` and writes the text by calling the `writeproc` function. All of the attributes values to be displayed must be present in `entry`; no interaction with the LDAP server will be performed within `ldap_entry2text`. `ld` is the LDAP pointer obtained by a previous call to `ldap_open`. `writeproc` should be declared as:

```c
int writeproc( writeparm, p, len )
  void *writeparm;
  char *p;
  int len;
```

where `p` is a pointer to text to be written and `len` is the length of the text. `p` is guaranteed to be zero-terminated. Lines of text are terminated with the string `\0`. `buf` is a pointer to a buffer of size `LDAP_DTMPL_BUFSIZE` or larger. If `buf` is `NULL` then a buffer is allocated and freed internally. `tmpl` is a pointer to the display template to be used (usually obtained by calling `ldap_oc2template`). If `tmpl` is `NULL`, no template is used and a generic display is produced. `defattrs` is a `NULL`-terminated array of LDAP attribute names which you wish to provide default values for (only used if `entry` contains no values for the attribute). An array of `NULL`-terminated arrays of default values corresponding to the attributes should be passed in `defvals`. The `rdncount` parameter is used to limit the number of Distinguished Name (DN) components that are actually displayed for DN attributes. If `rdncount` is zero, all components are shown.

`opts` is used to specify output options. The only values currently allowed are zero (default output), `LDAP_DISP_OPT_AUTOLABELWIDTH` which causes the width for labels to be determined based on the longest label in `tmpl`, and `LDAP_DISP_OPT_HTMLBODYONLY`. The `LDAP_DISP_OPT_HTMLBODYONLY` option instructs the library not to include `<HTML>`, `<HEAD>`, `<TITLE>`, and `<BODY>` tags. In other words, an HTML fragment is generated, and the caller is responsible for prepending and appending the appropriate HTML tags to construct a correct HTML document.

`ldap_entry2text_search()` is similar to `ldap_entry2text`, and all of the like-named parameters have the same meaning except as noted below. If `base` is not `NULL`, it is the search base to use when executing search actions. If it is `NULL`, search action template items are ignored. If `entry` is not `NULL`, it should contain the `objectClass` attribute values for the entry to be displayed. If `entry` is `NULL`, `dn` must not be `NULL`, and `ldap_entry2text_search` will retrieve the `objectClass` values itself by calling `ldap_search_s`. `ldap_entry2text_search` will determine the appropriate display template to use by calling `ldap_oc2template`, and will call `ldap_search_s` to retrieve any attribute values to be displayed. The `tmplist` parameter is a pointer to the entire list of templates available (usually obtained by
calling ldap_init_templates or ldap_init_templates_buf). If *tmpllist* is NULL, ldap_entry2text_search will attempt to read a load templates from the default template configuration file ETCDIR/ldaptemplates.conf.

ldap_vals2text produces a text representation of a single set of LDAP attribute values. The *ld*, *buf*, *writeproc*, *writeparm*, *eol*, and *rdncount* parameters are the same as the like-named parameters for ldap_entry2text. *vals* is a NULL-terminated list of values, usually obtained by a call to ldap_get_values. *label* is a string shown next to the values (usually a friendly form of an LDAP attribute name). *labelwidth* specifies the label margin, which is the number of blank spaces displayed to the left of the values. If zero is passed, a default label width is used. *syntaxid* is a display template attribute syntax identifier (see ldap_disptmpl(3LDAP) for a list of the pre-defined LDAP_SYN... values).

ldap_entry2html produces an HTML representation of *entry*. It behaves exactly like ldap_entry2text(3LDAP), except for the formatted output and the addition of two parameters. *urlprefix* is the starting text to use when constructing an LDAP URL. The default is the string ldap:// The second additional parameter, *base*, is the search base to use when executing search actions. If it is NULL, search action template items are ignored.

ldap_entry2html_search behaves exactly like ldap_entry2text_search(3LDAP), except HTML output is produced and one additional parameter is required. *urlprefix* is the starting text to use when constructing an LDAP URL. The default is the string ldap://

ldap_vals2html behaves exactly like ldap_vals2text, except HTML output is produced and one additional parameter is required. *urlprefix* is the starting text to use when constructing an LDAP URL. The default is the string ldap://

ERRORS

These functions all return an LDAP error code. LDAP_SUCCESS is returned if no error occurs. See ldap_error(3LDAP) for details. The ld_errno field of the *ld* parameter is also set to indicate the error.

FILES

ETCDIR/ldaptemplates.conf

ATTRIBUTES

See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

ldap(3LDAP), ldap_disptmpl(3LDAP), ldaptemplates.conf(4), attributes(5)
NAME

ldap_error, ldap_err2string, ldap_perror, ldap_result2error – LDAP protocol error handling functions

SYNOPSIS

c{ flag... | file... -llldap [library...]

#include <lber.h>
#include <ldap.h>

char *ldap_err2string(int err);
void ldap_perror(LDAP *ld, const char *s);
int ldap_result2error(LDAP *ld, LDAPMessage *res, int freeit);

DESCRIPTION

These functions interpret the error codes that are returned by the LDAP API routines. The ldap_perror() and ldap_result2error() functions are deprecated for all new development. Use ldap_err2string() instead.

You can also use ldap_parse_sasl_bind_result(3LDAP), ldap_parse_extended_result(3LDAP), and ldap_parse_result(3LDAP) to provide error handling and interpret error codes returned by LDAP API functions.

The ldap_err2string() function takes err, a numeric LDAP error code, returned either by ldap_parse_result(3LDAP) or another LDAP API call. It returns an informative, null-terminated, character string that describes the error.

The ldap_result2error() function takes res, a result produced by ldap_result(3LDAP) or other synchronous LDAP calls, and returns the corresponding error code. If the freeit parameter is non-zero, it indicates that the res parameter should be freed by a call to ldap_msgfree(3LDAP) after the error code has been extracted.

Similar to the way perror(3C) works, the ldap_perror() function can be called to print an indication of the error to standard error.

ERRORS

The possible values for an LDAP error code are:

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDAP_SUCCESS</td>
<td>The request was successful.</td>
</tr>
<tr>
<td>LDAP_OPERATIONS_ERROR</td>
<td>An operations error occurred.</td>
</tr>
<tr>
<td>LDAP_PROTOCOL_ERROR</td>
<td>A protocol violation was detected.</td>
</tr>
<tr>
<td>LDAP_TIMELIMIT EXCEEDED</td>
<td>An LDAP time limit was exceeded.</td>
</tr>
<tr>
<td>LDAP_SIZELIMIT EXCEEDED</td>
<td>An LDAP size limit was exceeded.</td>
</tr>
<tr>
<td>LDAP_COMPARE_FALSE</td>
<td>A compare operation returned false.</td>
</tr>
<tr>
<td>LDAP_COMPARE_TRUE</td>
<td>A compare operation returned true.</td>
</tr>
<tr>
<td>LDAP_STRONG_AUTH NOT_SUPPORTED</td>
<td>The LDAP server does not support strong authentication.</td>
</tr>
<tr>
<td>LDAP Error Code</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LDAP_STRONG_AUTH_REQUIRED</td>
<td>Strong authentication is required for the operation.</td>
</tr>
<tr>
<td>LDAP_PARTIAL_RESULTS</td>
<td>Only partial results are returned.</td>
</tr>
<tr>
<td>LDAP_NO_SUCH_ATTRIBUTE</td>
<td>The attribute type specified does not exist in the entry.</td>
</tr>
<tr>
<td>LDAP_UNDEFINED_TYPE</td>
<td>The attribute type specified is invalid.</td>
</tr>
<tr>
<td>LDAP_INAPPROPRIATE_MATCHING</td>
<td>The filter type is not supported for the specified attribute.</td>
</tr>
<tr>
<td>LDAP_CONSTRAINT_VIOLATION</td>
<td>An attribute value specified violates some constraint. For example, a postalAddress has too many lines, or a line that is too long.</td>
</tr>
<tr>
<td>LDAP_TYPE_OR_VALUE_EXISTS</td>
<td>An attribute type or attribute value specified already exists in the entry.</td>
</tr>
<tr>
<td>LDAP_INVALID_SYNTAX</td>
<td>An invalid attribute value was specified.</td>
</tr>
<tr>
<td>LDAP_NO_SUCH_OBJECT</td>
<td>The specified object does not exist in the directory.</td>
</tr>
<tr>
<td>LDAP_ALIAS_PROBLEM</td>
<td>An alias in the directory points to a nonexistent entry.</td>
</tr>
<tr>
<td>LDAP_INVALID_DN_SYNTAX</td>
<td>A syntactically invalid DN was specified.</td>
</tr>
<tr>
<td>LDAP_IS_LEAF</td>
<td>The object specified is a leaf.</td>
</tr>
<tr>
<td>LDAP_ALIAS_DEREF_PROBLEM</td>
<td>A problem was encountered when dereferencing an alias.</td>
</tr>
<tr>
<td>LDAP_INAPPROPRIATE_AUTH</td>
<td>Inappropriate authentication was specified. For example, LDAP_AUTH_SIMPLE was specified and the entry does not have a userPassword attribute.</td>
</tr>
<tr>
<td>LDAP_INVALID_CREDENTIALS</td>
<td>Invalid credentials were presented, for example, the wrong password.</td>
</tr>
<tr>
<td>LDAP_INSUFFICIENT_ACCESS</td>
<td>The user has insufficient access to perform the operation.</td>
</tr>
<tr>
<td>LDAP_BUSY</td>
<td>The DSA is busy.</td>
</tr>
<tr>
<td>LDAP_UNAVAILABLE</td>
<td>The DSA is unavailable.</td>
</tr>
<tr>
<td>LDAP_UNWILLING_TO_PERFORM</td>
<td>The DSA is unwilling to perform the operation.</td>
</tr>
<tr>
<td>LDAP_LOOP_DETECT</td>
<td>A loop was detected.</td>
</tr>
<tr>
<td>LDAP_NAMING_VIOLATION</td>
<td>A naming violation occurred.</td>
</tr>
<tr>
<td>Enum</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>LDAP_OBJECT_CLASS_VIOLATION</td>
<td>An object class violation occurred. For example, a must attribute was missing from the entry.</td>
</tr>
<tr>
<td>LDAP_NOT_ALLOWED_ON_NONLEAF</td>
<td>The operation is not allowed on a nonleaf object.</td>
</tr>
<tr>
<td>LDAP_NOT_ALLOWED_ON_RDN</td>
<td>The operation is not allowed on an RDN.</td>
</tr>
<tr>
<td>LDAP_ALREADY_EXISTS</td>
<td>The entry already exists.</td>
</tr>
<tr>
<td>LDAP_NO_OBJECT_CLASS_MODS</td>
<td>Object class modifications are not allowed.</td>
</tr>
<tr>
<td>LDAP_OTHER</td>
<td>An unknown error occurred.</td>
</tr>
<tr>
<td>LDAP_SERVER_DOWN</td>
<td>The LDAP library cannot contact the LDAP server.</td>
</tr>
<tr>
<td>LDAP_LOCAL_ERROR</td>
<td>Some local error occurred. This is usually a failed <code>malloc()</code>.</td>
</tr>
<tr>
<td>LDAP_ENCODING_ERROR</td>
<td>An error was encountered encoding parameters to send to the LDAP server.</td>
</tr>
<tr>
<td>LDAP_DECODING_ERROR</td>
<td>An error was encountered decoding a result from the LDAP server.</td>
</tr>
<tr>
<td>LDAP_TIMEOUT</td>
<td>A time limit was exceeded while waiting for a result.</td>
</tr>
<tr>
<td>LDAP_AUTH_UNKNOWN</td>
<td>The authentication method specified to <code>ldap_bind(3LDAP)</code> is not known.</td>
</tr>
<tr>
<td>LDAP_FILTER_ERROR</td>
<td>An invalid filter was supplied to <code>ldap_search(3LDAP)</code>, for example, unbalanced parentheses.</td>
</tr>
<tr>
<td>LDAP_PARAM_ERROR</td>
<td>An LDAP function was called with a bad parameter, for example, a <code>NULL</code> <code>ld</code> pointer, and the like.</td>
</tr>
<tr>
<td>LDAP_NO_MEMORY</td>
<td>A memory allocation call failed in an LDAP library function, for example, <code>malloc(3C)</code>.</td>
</tr>
<tr>
<td>LDAP_CONNECT_ERROR</td>
<td>The LDAP client has either lost its connection to an LDAP server or it cannot establish a connection.</td>
</tr>
<tr>
<td>LDAP_NOT_SUPPORTED</td>
<td>The requested functionality is not supported., for example, when an LDAPv2 client requests some LDAPv3 functionality.</td>
</tr>
<tr>
<td>LDAP_CONTROL_NOT_FOUND</td>
<td>An LDAP client requested a control not found in the list of supported controls sent by the server.</td>
</tr>
</tbody>
</table>
ldap_error(3LDAP)

LDAP_NO_RESULTS_RETURNED	The LDAP server sent no results.
LDAP_MORE_RESULTS_TO_RETURN	More results are chained in the message chain.
LDAP_CLIENT_LOOP	A loop has been detected, for example, when following referrals.
LDAP_REFERRAL_LIMIT_EXCEEDED	The referral exceeds the hop limit. The hop limit determines the number of servers that the client can hop through to retrieve data.

ATTRIBUTES

See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcs1 (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcs1x (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

ldap(3LDAP), ldap_bind(3LDAP), ldap_msgfree(3LDAP), ldap_parse_extended_result(3LDAP), ldap_parse_result(3LDAP), ldap_parse_sasl_bind_result(3LDAP), ldap_search(3LDAP), malloc(3C), perror(3C), attributes(5)
NAME
ldap_first_attribute, ldap_next_attribute – step through LDAP entry attributes

SYNOPSIS
cc [flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>

char *ldap_first_attribute(LDAP *ld, LDAPMessage *entry, BerElement **berptr);

char *ldap_next_attribute(LDAP *ld, LDAPMessage *entry, BerElement *ber);

DESCRIPTION
The ldap_first_attribute() and ldap_next_attribute() functions are used to step through the attributes in an LDAP entry. ldap_first_attribute() takes an entry as returned by ldap_first_entry(3LDAP) or ldap_next_entry(3LDAP) and returns a pointer to memory that must be freed with a call to ldap_memfree(3LDAP).

They also return, in berptr, a pointer to a BerElement it has allocated to keep track of its current position. This pointer should be passed to subsequent calls to ldap_next_attribute() and is used to effectively step through the entry’s attributes. This pointer is freed by ldap_next_attribute() when there are no more attributes, that is, when ldap_next_attribute() returns NULL. Otherwise, the caller is responsible for freeing the BerElement pointed to by berptr when it is no longer needed by calling ber_free(3LDAP). When calling ber_free(3LDAP) in this instance, be sure the second argument is ‘0’.

The attribute names returned are suitable for inclusion in a call to ldap_get_values(3LDAP) to retrieve the attribute’s values.

ERRORS
If an error occurs, NULL is returned and the ld_errno field in the ld parameter is set to indicate the error. See ldap_error(3LDAP) for a description of possible error codes.

ATTRIBUTES
See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
ldap(3LDAP), ldap_first_entry(3LDAP), ldap_get_values(3LDAP), ldap_error(3LDAP), attributes(5)

NOTES
The ldap_first_attribute() function allocates memory that might need to be freed by the caller by means of ber_free(3LDAP).
ldap_first_entry(3LDAP)

NAME
ldap_first_entry, ldap_next_entry, ldap_count_entries, ldap_count_reference,
ldap_first_reference, ldap_next_reference – LDAP entry parsing and counting
functions

SYNOPSIS
cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>

LDAPMessage *ldap_first_entry(LDAP *ld, LDAPMessage *result);
LDAPMessage *ldap_next_entry(LDAP *ld, LDAPMessage *entry);
ldap_count_entries(LDAP *ld, LDAPMessage *result);
LDAPMessage *ldap_first_reference(LDAP *ld, LDAPMessage *res);
LDAPMessage *ldap_next_reference(LDAP *ld, LDAPMessage *res);
int ldap_count_reference(LDAP *ld, LDAPMessage *res);

DESCRIPTION
These functions are used to parse results received from ldap_result(3LDAP) or the
synchronous LDAP search operation functions ldap_search_s(3LDAP) and
ldap_search_st(3LDAP).

The ldap_first_entry() function is used to retrieve the first entry in a chain of
search results. It takes the result as returned by a call to ldap_result(3LDAP) or
ldap_search_s(3LDAP) or ldap_search_st(3LDAP) and returns a pointer to the
first entry in the result.

This pointer should be supplied on a subsequent call to ldap_next_entry() to get
the next entry, the result of which should be supplied to the next call to
ldap_next_entry(), etc. ldap_next_entry() will return NULL when there are
no more entries. The entries returned from these calls are used in calls to the functions
described in ldap_get_dn(3LDAP), ldap_first_attribute(3LDAP),
ldap_get_values(3LDAP), etc.

A count of the number of entries in the search result can be obtained by calling
ldap_count_entries().

ldap_first_reference() and ldap_next_reference() are used to step
through and retrieve the list of continuation references from a search result chain.

The ldap_count_reference() function is used to count the number of references
that are contained in and remain in a search result chain.

ERRORS
If an error occurs in ldap_first_entry() or ldap_next_entry(), NULL is
returned and the ld_errno field in the ld parameter is set to indicate the error. If an
error occurs in ldap_count_entries(), -1 is returned, and ld_errno is set
appropriately. See ldap_error(3LDAP) for a description of possible error codes.

ATTRIBUTES
See attributes(5) for a description of the following attributes:
ldap_first_entry(3LDAP)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

ldap(3LDAP), ldap_result(3LDAP), ldap_search(3LDAP),
ldap_first_attribute(3LDAP), ldap_get_values(3LDAP),
ldap_get_dn(3LDAP), attributes(5)
ldap_first_message(3LDAP)

NAME
ldap_first_message, ldap_count_messages, ldap_next_message, ldap_msgtype – LDAP message processing functions

SYNOPSIS
cc [flag...] file... -lldap [library...]
#include <lber.h>
#include <ldap.h>

int ldap_count_messages(LDAP *ld, LDAPMessage *res);
LDAPMessage *ldap_first_message(LDAP *ld, LDAPMessage *res);
LDAPMessage *ldap_next_message(LDAP *ld, LDAPMessage *msg);
int ldap_msgtype(LDAPMessage *res);

DESCRIPTION
ldap_count_messages() is used to count the number of messages that remain in a chain of results if called with a message, entry, or reference returned by ldap_first_message(), ldap_next_message(), ldap_first_entry(), ldap_next_entry(), ldap_first_reference(), and ldap_next_reference()

ldap_first_message() and ldap_next_message() functions are used to step through the list of messages in a result chain returned by ldap_result().

ldap_msgtype() function returns the type of an LDAP message.

RETURN VALUES
ldap_first_message() and ldap_next_message() return LDAPMessage which can include referral messages, entry messages and result messages.

ldap_count_messages() returns the number of messages contained in a chain of results.

ERRORS
ldap_first_message() and ldap_next_message() return NULL when no more messages exist. NULL is also returned if an error occurs while stepping through the entries, in which case the error parameters in the session handle ld will be set to indicate the error.

ATTRIBUTES
See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
ldap_error(3LDAP), ldap_result(3LDAP), attributes(5)
ldap_friendly(3LDAP)

NAME
ldap_friendly, ldap_friendly_name, ldap_free_friendlymap – LDAP attribute remapping functions

SYNOPSIS
cc [flag ...] file ... -lldap [library ...]
#include <ber.h>
#include <ldap.h>

char *ldap_friendly_name(char *filename, char *name, FriendlyMap **map);

void ldap_free_friendlymap(FriendlyMap **map);

DESCRIPTION
This function is used to map one set of strings to another. Typically, this is done for country names, to map from the two-letter country codes to longer more readable names. The mechanism is general enough to be used with other things, though.

filename is the name of a file containing the unfriendly to friendly mapping, name is the unfriendly name to map to a friendly name, and map is a result-parameter that should be set to NULL on the first call. It is then used to hold the mapping in core so that the file need not be read on subsequent calls.

For example:

FriendlyMap *map = NULL;
printf("unfriendly %s => friendly %s\n", name,
ldap_friendly_name("ETCDIR/ldapfriendly", name, &map));

The mapping file should contain lines like this: unfriendlyname\tfriendlyname. Lines that begin with a ‘#’ character are comments and are ignored.

The ldap_free_friendlymap() call is used to free structures allocated by ldap_friendly_name() when no more calls to ldap_friendly_name() are to be made.

ERRORS
NULL is returned by ldap_friendly_name() if there is an error opening filename, or if the file has a bad format, or if the map parameter is NULL.

FILES
ETCDIR/ldapfriendly.conf

ATTRIBUTES
See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
ldap(3LDAP), attributes(5)
ldap_get_dn(3LDAP)

NAME
ldap_get_dn, ldap_explode_dn, ldap_dn2ufn, ldap_is_dns_dn, ldap_explode_dns,
ldap_dns_to_dn – LDAP DN handling functions

SYNOPSIS
cc [... flag...] file... -lldap [... library...]

#include <ber.h>
#include <ldap.h>

char *ldap_get_dn(LDAP *ld, LDAPMessage *entry);
char **ldap_explode_dn(char *dn, int notypes);
char *ldap_dn2ufn(char *dn);
int ldap_is_dns_dn(char *dn);
char **ldap_explode_dns(char *dn);
char *ldap_dns_to_dn(char *dns_name, int *nameparts);

DESCRIPTION

These functions allow LDAP entry names (Distinguished Names, or DNs) to be
obtained, parsed, converted to a user-friendly form, and tested. A DN has the form
described in RFC 1779 A String Representation of Distinguished Names, unless it is an
experimental DNS-style DN which takes the form of an RFC 822 mail address.

The ldap_get_dn() function takes an entry as returned by
ldap_first_entry(3LDAP) or ldap_next_entry(3LDAP) and returns a copy of
the entry’s DN. Space for the DN will have been obtained by means of malloc(3C),
and should be freed by the caller by a call to free(3C).

The ldap_explode_dn() function takes a DN as returned by ldap_get_dn() and
breaks it up into its component parts. Each part is known as a Relative Distinguished
Name, or RDN. ldap_explode_dn() returns a null-terminated array, each
component of which contains an RDN from the DN. The notypes parameter is used to
request that only the RDN values be returned, not their types. For example, the DN
"cn=Bob, c=US" would return as either { "cn=Bob", "c=US", NULL } or { "Bob", "US",
NULL }, depending on whether notypes was 0 or 1, respectively. The result can be
freed by calling ldap_value_free(3LDAP).

ldap_dn2ufn() is used to turn a DN as returned by ldap_get_dn() into a more
user-friendly form, stripping off type names. See RFC 1781 "Using the Directory to
Achieve User Friendly Naming" for more details on the UFN format. The space for the
UFN returned is obtained by a call to malloc(3C), and the user is responsible for
freeing it by means of a call to free(3C).

ldap_is_dns_dn() returns non-zero if the dn string is an experimental DNS-style
DN (generally in the form of an RFC 822 e-mail address). It returns zero if the dn
appears to be an RFC 1779 format DN.

ldap_explode_dns() takes a DNS-style DN and breaks it up into its component
parts. ldap_explode_dns() returns a null-terminated array. For example, the DN
"mcs.umich.edu" will return { "mcs", "umich", "edu", NULL }. The result can be freed
by calling ldap_value_free(3LDAP).
ldap_get_dn(3LDAP)

ldap_dns_to_dn() converts a DNS domain name into an X.500 distinguished name. A string distinguished name and the number of nameparts is returned.

ERRORS
If an error occurs in ldap_get_dn(), NULL is returned and the ld_errno field in the ld parameter is set to indicate the error. See ldap_error(3LDAP) for a description of possible error codes. ldap_explode_dn(), ldap_explode_dns() and ldap_dn2ufn() will return NULL with errno(3C) set appropriately in case of trouble.

If an error in ldap_dns_to_dn() is encountered zero is returned. The caller should free the returned string if it is non-zero.

ATTRIBUTES
See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
ldap(3LDAP), ldap_first_entry(3LDAP), ldap_error(3LDAP), ldap_value_free(3LDAP)

NOTES
These functions allocate memory that the caller must free.
ldap_get_entry_controls(3LDAP)

NAME
ldap_get_entry_controls – get the LDAP controls included with a directory entry in a set of search results

SYNOPSIS
cc -flag ... file ... -lldap [-library ...]
#include <ldap.h>

int ldap_get_entry_controls(LDAP *ld, LDAPMessage *entry,
LDAPControl ***serverctrlsp);

DESCRIPTION
The ldap_get_entry_controls() function retrieves the LDAP v3 controls included in a directory entry in a chain of search results. The LDAP controls are specified in an array of LDAPControl structures. Each LDAPControl structure represents an LDAP control. The function takes entry as a parameter, which points to an LDAPMessage structure that represents an entry in a chain of search results.

The entry notification controls that are used with persistent search controls are the only controls that are returned with individual entries. Other controls are returned with results sent from the server. You can call ldap_parse_result() to retrieve those controls.

ERRORS
ldap_get_entry_controls() returns the following error codes.

- LDAP_SUCCESS LDAP controls were successfully retrieved.
- LDAP_DECODING_ERROR An error occurred when decoding the BER-encoded message.
- LDAP_PARAM_ERROR An invalid parameter was passed to the function.
- LDAP_NO_MEMORY Memory cannot be allocated.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
ldap_error(3LDAP), ldap_parse_result(3LDAP), attributes(5)
These functions are used to generate filters to be used in ldap_search(3LDAP) or ldap_search_s(3LDAP). Either ldap_init_getfilter or ldap_init_getfilter_buf must be called prior to calling any of the other functions except ldap_build_filter.

ldap_init_getfilter() takes a file name as its only argument. The contents of the file must be a valid LDAP filter configuration file (see ldapfilter.conf(4)). If the file is successfully read, a pointer to an LDAPFiltDesc is returned. This is an opaque object that is passed in subsequent get filter calls.

ldap_init_getfilter_buf() reads from buf, whose length is buflen, the LDAP filter configuration information. buf must point to the contents of a valid LDAP filter configuration file. See ldapfilter.conf(4). If the filter configuration information is successfully read, a pointer to an LDAPFiltDesc is returned. This is an opaque object that is passed in subsequent get filter calls.

ldap_getfilter_free() deallocates the memory consumed by ldap_init_getfilter. Once it is called, the LDAPFiltDesc is no longer valid and cannot be used again.

ldap_getfirstfilter() retrieves the first filter that is appropriate for value. Only filter sets that have tags that match the regular expression tagpat are considered. ldap_getfirstfilter returns a pointer to an LDAPFiltInfo structure, which contains a filter with value inserted as appropriate in lfi_filter, a text match description in lfi_desc, lfi_scope set to indicate the search scope, and...
ldap_getfilter(3LDAP)

`lfi_isexact` set to indicate the type of filter. NULL is returned if no matching filters are found. `lfi_scope` will be one of `LDAP_SCOPE_BASE`, `LDAP_SCOPE_ONELEVEL`, or `LDAP_SCOPE_SUBTREE`. `lfi_isexact` will be zero if the filter has any `~` or `*` characters in it and non-zero otherwise.

`ldap_getnextfilter()` retrieves the next appropriate filter in the filter set that was determined when `ldap_getfirstfilter` was called. It returns NULL when the list has been exhausted.

`ldap_setfilteraffixes()` sets a `prefix` to be prepended and a `suffix` to be appended to all filters returned in the future.

`ldap_build_filter()` constructs an LDAP search filter in `buf`. `buflen` is the size, in bytes, of the largest filter `buf` can hold. A pattern for the desired filter is passed in `pattern`. Where the string `%a` appears in the pattern it is replaced with `attr`, `prefix` is prepended to the resulting filter, and `suffix` is appended. Either can be NULL, in which case they are not used. `value` and `valwords` are used when the string `%v` appears in `pattern`. See `ldapfilter.conf`(4) for a description of how `%v` is handled.

ERRORS

NULL is returned by `ldap_init_getfilter` if there is an error reading `file`. NULL is returned by `ldap_getfirstfilter` and `ldap_getnextfilter` when there are no more appropriate filters to return.

FILES

ETCDIR/ldapfilter.conf LDAP filtering routine configuration file.

ATTRIBUTES

See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

`ldap(3LDAP)`, `ldapfilter.conf(4)`, `attributes(5)`

NOTES

The return values for all of these functions are declared in the `<ldap.h>` header file. Some functions may allocate memory which must be freed by the calling application.
The `ldap_get_lang_values()` function returns an array of an attribute’s string values that matches a specified language subtype. To retrieve the binary data from an attribute, call the `ldap_get_lang_values_len()` function instead.

`ldap_get_lang_values()` should be called to retrieve a null-terminated array of an attribute’s string values that match a specified language subtype. The `entry` parameter is the entry retrieved from the directory. The `target` parameter should contain the attribute type the values that are required, including the optional language subtype. The `type` parameter points to a buffer that returns the attribute type retrieved by this function. Unlike the `ldap_get_values()` function, if a language subtype is specified, this function first attempts to find and return values that match that subtype, for example, `cn;lang-en`.

`ldap_get_lang_values_len()` returns a null-terminated array of pointers to `berval` structures, each containing the length and pointer to a binary value of an attribute for a given entry. The `entry` parameter is the result returned by `ldap_result()` or `ldap_search_s()` functions. The `target` parameter is the attribute returned by the call to `ldap_first_attribute()` or `ldap_next_attribute()`, or the attribute as a literal string, such as `jpegPhoto` or `audio`.

These functions are deprecated. Use `ldap_get_values()` or `ldap_get_values_len()` instead.

RETURN VALUES

If successful, `ldap_get_lang_values()` returns a null-terminated array of the attribute’s values. If the call is unsuccessful, or if no such attribute exists in the `entry`, it returns a `NULL` and sets the appropriate error code in the LDAP structure.

The `ldap_get_lang_values_len()` function returns a null-terminated array of pointers to `berval` structures, which in turn, if successful, contain pointers to the attribute’s binary values. If the call is unsuccessful, or if no such attribute exists in the `entry`, it returns a `NULL` and sets the appropriate error code in the LDAP structure.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:
ldap_get_lang_values(3LDAP)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Obsolete</td>
</tr>
</tbody>
</table>

SEE ALSO

ldap_first_attribute(3LDAP), ldap_next_attribute(3LDAP), ldap_get_values(3LDAP), ldap_result(3LDAP), ldap_search_s(3LDAP), attributes(5)
NAME

ldap_get_option, ldap_set_option – get/set session preferences in the LDAP structure.

SYNOPSIS

```c
#include <lber.h>
#include <ldap.h>

LDAP ldap_set_option(LDAP *ld, int option, void *optdata[]);
LDAP ldap_get_option(LDAP *ld, int option, void optdata[]);
```

DESCRIPTION

These functions provide access to session preferences to an LDAP structure. `ldap_get_option()` gets session preferences from the LDAP structure. `ldap_set_option()` sets session preferences in the LDAP structure.

ld is the connection handle, which is a pointer to an LDAP structure containing information about the connection to the LDAP server. *option* is the name of the option to be read or modified. *optdata* is a pointer to the value of the option that you want to set/get.

The *option* parameter can have one of the values listed in the following section.

PARAMETERS

The following are the values for the *option* parameter:

- **LDAP_OPT_API_INFO**
 - Used to retrieve some basic information about the LDAP API implementation at execution time. The data type for the *optdata* parameter is `LDAPAPIInfo *`). This option is READ-ONLY and cannot be set.

- **LDAP_OPT_DEREF**
 - Determines how aliases are handled during a search. The data type for the *optdata* parameter is `int *`). *optdata* can be one of the following values:

 - **LDAP_DEREF_NEVER**
 - Specifies that aliases are never dereferenced.

 - **LDAP_DEREF_SEARCHING**
 - Specifies that aliases are dereferenced when searching under the base object (but not when finding the base object).

 - **LDAP_DEREF_FINDING**
 - Specifies that aliases are dereferenced when finding the base object (but not when searching under the base object).

 - **LDAP_DEREF_ALWAYS**
 - Specifies that aliases are always dereferenced when finding the base object and searching under the base object.

- **LDAP_OPT_SIZELIMIT**
 - Maximum number of entries that should be returned by the server in search results. The data type for the *optdata* parameter is `int *`). Setting the *optdata* parameter to `LDAP_NO_LIMIT` removes any size limit enforced by the client.
ldap_get_option(3LDAP)

LDAP_OPT_TIMELIMIT
Maximum number of seconds that should be spent by the server when answering a search request. The data type for the optdata parameter is (int *). Setting the optdata parameter to LDAP_NO_LIMIT removes any time limit enforced by the client.

LDAP_OPT_REFERRALS
Determines whether or not the client should follow referrals. The data type for the optdata parameter is (int *). optdata can be one of the following values:

LDAP_OPT_ON Specifies that the client should follow referrals.
LDAP_OPT_OFF Specifies that the client should not follow referrals.

By default, the client follows referrals.

LDAP_OPT_RESTART
Determines whether LDAP I/O operations are automatically restarted if they abort prematurely. It may be set to one of the constants LDAP_OPT_ON or LDAP_OPT_OFF.

LDAP_OPT_PROTOCOL_VERSION
Version of the protocol supported by your client. The data type for the optdata parameter is (int *). You can specify either LDAP_VERSION2 or LDAP_VERSION3. If no version is set, the default is LDAP_VERSION2. In order to use LDAP v3 features, you need to set the protocol version to LDAP_VERSION3.

LDAP_OPT_SERVER_CONTROLS
Pointer to an array of LDAPControl structures representing the LDAP v3 server controls you want sent with every request by default. The data type for the optdata parameter for ldap_set_option() is (LDAPControl **) and for ldap_get_option() is (LDAPControl **).

LDAP_OPT_CLIENT_CONTROLS
Pointer to an array of LDAPControl structures representing the LDAP v3 client controls you want sent with every request by default. The data type for the optdata parameter for ldap_set_option() is (LDAPControl **) and for ldap_get_option() is (LDAPControl **).

LDAP_OPT_API_FEATURE_INFO
Used to retrieve version information about LDAP API extended features at execution time. The data type for the optdata parameter is (LDAPAPIFeatureInfo *). This option is READ-ONLY and cannot be set.

LDAP_OPT_HOST_NAME
This option sets the host name (or list of hosts) for the primary LDAP server. The data type for the optdata parameter for ldap_set_option() is (char *), and for ldap_get_option() is (char **).

LDAP_OPT_ERROR_NUMBER
The code of the most recent LDAP error that occurred for this session. The data type for the optdata parameter is (int *).
LDAP_OPT_ERROR_STRING
The message returned with the most recent LDAP error that occurred for this session. The data type for the optdata parameter for ldap_set_option() is (char *) and for ldap_get_option() is (char **).

LDAP_OPT_MATCHED_DN
The matched DN value returned with the most recent LDAP error that occurred for this session. The data type for the optdata parameter for ldap_set_option() is (char *) and for ldap_get_option() is (char **).

LDAP_OPT_REBIND_ARG
Lets you set the last argument passed to the routine specified by LDAP_OPT_REBIND_FN. You can also set this option by calling the ldap_set_rebind_proc() function. The data type for the optdata parameter is (void *).

LDAP_OPT_REBIND_FN
Lets you set the routine to be called when you need to authenticate a connection with another LDAP server (for example, during the course of a referral). You can also set this option by calling the ldap_set_rebind_proc() function. The data type for the optdata parameter is (LDAP_REBINDPROC_CALLBACK *).

RETURN VALUES
The ldap_set_option() and ldap_get_option() functions return:

LDAP_SUCCESS If successful
-1 If unsuccessful

ERRORS
Upon successful completion, both functions return LDAP_SUCCESS, otherwise -1 is returned.

ATTRIBUTES
See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
ldap_init(3LDAP), attributes(5)

NOTES
There are other elements in the LDAP structure that you should not change. You should not make any assumptions about the order of elements in the LDAP structure.
ldap_get_values(3LDAP)

NAME
ldap_get_values, ldap_get_values_len, ldap_count_values, ldap_count_values_len,
ldap_value_free, ldap_value_free_len – LDAP attribute value handling functions

SYNOPSIS
cc [flag...] file... -lldap [library...]

#include <lber.h>
#include <ldap.h>

char **ldap_get_values(LDAP *ld, LDAPMessage *entry, char *attr);
struct berval **ldap_get_values_len(LDAP *ld, LDAPMessage *entry,
char *attr);

ldap_count_values(char **vals);

ldap_count_values_len(struct berval **vals);

ldap_value_free(char **vals);

ldap_value_free_len(struct berval **vals);

DESCRIPTION
These functions are used to retrieve and manipulate attribute values from an LDAP
entry as returned by ldap_first_entry(3LDAP) or ldap_next_entry(3LDAP).

ldap_get_values() takes the entry and the attribute attr whose values are desired
and returns a null-terminated array of the attribute’s values. attr may be an attribute
type as returned from ldap_first_attribute(3LDAP) or
ldap_next_attribute(3LDAP), or if the attribute type is known it can simply be
given.

The number of values in the array can be counted by calling
ldap_count_values(). The array of values returned can be freed by calling
ldap_value_free().

If the attribute values are binary in nature, and thus not suitable to be returned as an
array of char ‘s, the ldap_get_values_len() function can be used instead. It takes
the same parameters as ldap_get_values(), but returns a null-terminated array of
pointers to berval structures, each containing the length of and a pointer to a value.

The number of values in the array can be counted by calling
ldap_count_values_len(). The array of values returned can be freed by calling
ldap_value_free_len().

ERRORS
If an error occurs in ldap_get_values() or ldap_get_values_len(), NULL
returned and the ld_errno field in the ld parameter is set to indicate the error. See
ldap_error(3LDAP) for a description of possible error codes.

ATTRIBUTES
See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
</tbody>
</table>
ldap_get_values(3LDAP)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUNWcslx (64-bit)</td>
<td></td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

ldap(3LDAP), ldap_first_entry(3LDAP), ldap_first_attribute(3LDAP), ldap_error(3LDAP), attributes(5)

NOTES

These functions allocates memory that the caller must free.
Use the `ldap_memcache` functions to maintain an in-memory client side cache to store search requests. Caching improves performance and reduces network bandwidth when a client makes repeated requests. The cache uses search criteria as the key to the cached items. When you send a search request, the cache checks the search criteria to determine if that request has been previously stored. If the request was stored, the search results are read from the cache.

Make a call to `ldap_memcache_init()` to create the in-memory client side cache. The function passes back a pointer to an LDAPMemCache structure, which represents the cache. Make a call to the `ldap_memcache_set()` function to associate this cache with an LDAP connection handle, an LDAP structure. `ttl` is the the maximum amount of time (in seconds) that an item can be cached. If a `ttl` value of 0 is passed, there is no limit to the amount of time that an item can be cached. `size` is the maximum amount of memory (in bytes) that the cache will consume. A zero value of `size` means the cache has no size limit. `baseDNs` is an array of the base DN strings representing the base DNs of the search requests you want cached. If `baseDNs` is not `NULL`, only the search requests with the specified base DNs will be cached. If `baseDNs` is `NULL`, all search requests are cached. The `thread_fns` parameter takes an `ldap_thread_fns` structure specifying the functions that you want used to ensure that the cache is thread-safe. You should specify this if you have multiple threads that are using the same connection handle and cache. If you are not using multiple threads, pass `NULL` for this parameter.

`ldap_memcache_set()` associates an in-memory cache that you have already created by calling the `ldap_memcache_init()` function with an LDAP connection handle. The `ld` parameter should be the result of a successful call to `ldap_open(3LDAP)`. The `cache` parameter should be the result of a `cache` created by the `ldap_memcache_init()` call. After you call this function, search requests made over the specified LDAP connection will use this cache. To disassociate the cache from the LDAP connection handle, make a call to the `ldap_unbind(3LDAP)` or `ldap_unbind_ext(3LDAP)` function. Make a call to `ldap_memcache_set()` if you
want to associate a cache with multiple LDAP connection handles. For example, call the `ldap_memcache_get()` function to get the cache associated with one connection, then you can call this function and associate the cache with another connection.

The `ldap_memcache_get()` function gets the cache associated with the specified connection handle (LDAP structure). This cache is used by all search requests made through that connection. When you call this function, the function sets the `cachep` parameter as a pointer to the `LDAPMemCache` structure that is associated with the connection handle.

`ldap_memcache_flush()` flushes search requests from the cache. If the base DN of a search request is within the scope specified by the `dn` and `scope` arguments, the search request is flushed from the cache. If no DN is specified, the entire cache is flushed. The `scope` parameter, along with the `dn` parameter, identifies the search requests that you want flushed from the cache. This argument can have one of the following values:

- `LDAP_SCOPE_BASE`
- `LDAP_SCOPE_ONELEVEL`
- `LDAP_SCOPE_SUBTREE`

`ldap_memcache_destroy()` frees the specified `LDAPMemCache` structure pointed to by `cache` from memory. Call this function after you are done working with a cache.

`ldap_memcache_update()` checks the cache for items that have expired and removes them. This check is typically done as part of the way the cache normally works. You do not need to call this function unless you want to update the cache at this point in time. This function is only useful in a multithreaded application, since it will not return until the cache is destroyed.

PARAMETERS

- `ttl` The maximum amount of time (in seconds) that an item can be cached.
- `size` The maximum amount of memory (in bytes) that the cache will consume.
- `baseDNs` An array of the base DN strings representing the base DNs of the search requests you want cached.
- `thread_fns` A pointer to the `ldap_thread_fns` structure.
- `cachep` A pointer to the `LDAPMemCache` structure.
- `cache` The result of a cache created by the `ldap_memcache_init()` call.
- `ld` The result of a successful call to `ldap_open(3LDAP)`.
- `dn` The search requests that you want flushed from the cache.
The search requests that you want flushed from the cache

ERRORS
The functions that have `int` return values return `LDAP_SUCCESS` if the operation was successful. Otherwise, they return another LDAP error code. See `ldap_error(3LDAP)` for a list of the LDAP error codes.

ATTRIBUTES
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcs1 (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
`ldap_error(3LDAP), ldap_open(3LDAP), ldap_search(3LDAP), attributes(5)`
The `ldap_memfree()` function frees the memory allocated by certain LDAP API functions that do not have corresponding functions to free memory. These functions include `ldap_get_dn(3LDAP)`, `ldap_first_attribute(3LDAP)`, and `ldap_next_attribute(3LDAP)`.

The `ldap_memfree()` function takes one parameter, \(p \), which is a pointer to the memory to be freed.

PARAMETERS
\(p \) A pointer to the memory to be freed.

RETURN VALUES
There are no return values for the `ldap_memfree()` function.

ERRORS
No errors are defined for the `ldap_memfree()` function.

ATTRIBUTES
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO
`ldap(3ldap), ldap_first_attribute(3LDAP), ldap_get_dn(3LDAP), ldap_next_attribute(3LDAP), attributes(5)`
ldap_modify(3LDAP)

NAME
ldap_modify, ldap_modify_s, ldap_mods_free, ldap_modify_ext, ldap_modify_ext_s – LDAP entry modification functions

SYNOPSIS
cc [-flag...] file... -lldap[library...]

```c
#include <lber.h>
#include <ldap.h>

int ldap_modify(LDAP *ld, char *dn, LDAPMod *mods[]);
int ldap_modify_s(LDAP *ld, char *dn, LDAPMod *mods[]);
void ldap_mods_free(LDAPMod **mods, int freemods);
int ldap_modify_ext(LDAP *ld, char *dn, LDAPMod **mods, LDAPControl **serverctrls, LDAPControl **clientctrls, int *msgidp);
int ldap_modify_ext_s(LDAP *ld, char *dn, LDAPMod **mods, LDAPControl **serverctrls, LDAPControl **clientctrls);
```

DESCRIPTION
The function `ldap_modify_s()` is used to perform an LDAP modify operation. `dn` is the DN of the entry to modify, and `mods` is a null-terminated array of modifications to make to the entry. Each element of the `mods` array is a pointer to an LDAPMod structure, which is defined below.

```c
typedef struct ldapmod {
    int mod_op;
    char *mod_type;
    union {
        char **modv_strvals;
        struct berval **modv_bvals;
    } mod_vals;
} LDAPMod;
#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals
```

The `mod_op` field is used to specify the type of modification to perform and should be one of LDAP_MOD_ADD, LDAP_MOD_DELETE, or LDAP_MOD_REPLACE. The `mod_type` and `mod_values` fields specify the attribute type to modify and a null-terminated array of values to add, delete, or replace respectively.

If you need to specify a non-string value (for example, to add a photo or audio attribute value), you should set `mod_op` to the logical OR of the operation as above (for example, LDAP_MOD_REPLACE) and the constant LDAP_MOD_BVALUES. In this case, `mod_bvalues` should be used instead of `mod_values`, and it should point to a null-terminated array of struct bervals, as defined in `<lber.h>`.

For LDAP_MOD_ADD modifications, the given values are added to the entry, creating the attribute if necessary. For LDAP_MOD_DELETE modifications, the given values are deleted from the entry, removing the attribute if no values remain. If the entire attribute is to be deleted, the `mod_values` field should be set to NULL. For LDAP_MOD_REPLACE modifications, the attribute will have the listed values after the modification, having been created if necessary. All modifications are performed in the order in which they are listed.
ldap_modify(3LDAP)

ldap_modify_s() returns the LDAP error code resulting from the modify operation.

The ldap_modify() operation works the same way as ldap_modify_s(), except that it is asynchronous, returning the message id of the request it initiates, or −1 on error. The result of the operation can be obtained by calling ldap_result(3LDAP).

ldap_mods_free() can be used to free each element of a null-terminated array of mod structures. If freemods is non-zero, the mods pointer itself is freed as well.

The ldap_modify_ext() function initiates an asynchronous modify operation and returns LDAP_SUCCESS if the request was successfully sent to the server, or else it returns a LDAP error code if not. See ldap_error(3LDAP). If successful, ldap_modify_ext() places the message id of the request in *msgidp. A subsequent call to ldap_result(3LDAP), can be used to obtain the result of the add request.

The ldap_modify_ext_s() function initiates a synchronous modify operation and returns the result of the operation itself.

ERRORS ldap_modify_s() returns an LDAP error code, either LDAP_SUCCESS or an error. See ldap_error(3LDAP).

ldap_modify() returns −1 in case of trouble, setting the error field of ld.

ATTRIBUTES See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO ldap(3LDAP), ldap_add(3LDAP), ldap_error(3LDAP), ldap_get_option(3LDAP), attributes(5)
ldap_modrdn(3LDAP)

NAME
ldap_modrdn, ldap_modrdn_s, ldap_modrdn2, ldap_modrdn2_s, ldap_rename,
ldap_rename_s – modify LDAP entry RDN

SYNOPSIS
cc [flags] file ... -l ldap [library ...]

#include <ber.h>
#include <ldap.h>

int ldap_modrdn(LDAP *ld, const char *dn, const char *newrdn);
int ldap_modrdn_s(LDAP *ld, const char *dn, const char *newrdn, int
deleteoldrdn);
int ldap_modrdn2(LDAP *ld, const char *dn, const char *newrdn, int
deleteoldrdn);
int ldap_modrdn2_s(LDAP *ld, const char *dn, const char *newrdn, int
deleteoldrdn);

int ldap_rename(LDAP *ld, const char *dn, const char *newrdn, const
char *newparent, int deleteoldrdn, LDAPControl **serverctrls,
LDAPControl **clientctrls, int *msgidp);
int ldap_rename_s(LDAP *ld, const char *dn, const char *newrdn,
const char *newparent, const int deleteoldrdn, LDAPControl
**serverctrls, LDAPControl **clientctrls);

DESCRIPTION
The ldap_modrdn() and ldap_modrdn_s() functions perform an LDAP modify
RDN (Relative Distinguished Name) operation. They both take dn, the DN
(Distinguished Name) of the entry whose RDN is to be changed, and newrdn, the new
RDN, to give the entry. The old RDN of the entry is never kept as an attribute of the
entry. ldap_modrdn() is asynchronous. It return the message id of the operation it
initiates. ldap_modrdn_s() is synchronous. It returns the LDAP error code that
indicates the success or failure of the operation.

The ldap_modrdn2() and ldap_modrdn2_s() functions also perform an LDAP
modify RDN operation. They take the same parameters as above. In addition, they
both take the deleteoldrdn parameter, which is used as a boolean value to indicate
whether or not the old RDN values should be deleted from the entry.

The ldap_rename(), ldap_rename_s() routines are used to change the name, that
is, the RDN of an entry. These routines deprecate the ldap_modrdn() and
ldap_modrdn_s() routines, as well as ldap_modrdn2() and ldap_modrdn2_s().

The ldap_rename() and ldap_rename_s() functions both support LDAPv3 server
controls and client controls.

ERRORS
The synchronous (_s) versions of these functions return an LDAP error code, either
LDAP_SUCCESS or an error. See ldap_error(3LDAP).

The asynchronous versions return -1 in the event of an error, setting the ld_errno
field of ld. See ldap_error(3LDAP) for more details. Use ldap_result(3LDAP) to
determine a particular unsuccessful result.
ATTRIBUTES
See attributes(5) for a description of the following attributes of the
ldap_modrdn(), ldap_modrdn_s(), ldap_modrdn2() and ldap_modrdn2_s() functions:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Obsolete</td>
</tr>
</tbody>
</table>

The ldap_rename() and ldap_rename_s() functions have the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO ldap(3LDAP), ldap_error(3LDAP), attributes(5)
ldap_open(3LDAP)

NAME
ldap_open, ldap_init – initialize an LDAP session

SYNOPSIS
cc [flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>

LDAP *ldap_open(const char *host, int port);
LDAP *ldap_init(const char *host, int port);

DESCRIPTION
ldap_open() initializes an LDAP session and additionally opens a connection to an
LDAP server before it returns to the caller. Unlike ldap_open(), ldap_init() does
not open a connection to the LDAP server until an operation is performed that
requires it, for example, a search request.

The ldap_open() function is deprecated and should no longer be used. Call
ldap_init() instead.

Either function takes a space-separated list of hostnames or strings in the dot-notation
form that represents the IP addresses of hosts running LDAP servers to which it can
connect. Each of these hostnames may include a port number, which is separated from
the hostname with a colon ("::") character. If the port number is specified as part of the
hostname, then this takes precedence over the port parameter. The functions will try
these hosts in the order listed, and return the first successful connection.

PARAMETERS
These functions support the following parameters.

host A space-separated list of hostnames or strings in the dot-notation
form that represents the IP addresses of hosts running LDAP
servers to which it can connect.

port The TCP port number to which to connect. Supply the constant
LDAP_PORT to obtain the default LDAP port of 389. If a host
includes a port number, then this parameter is ignored.

ERRORS
Either function returns a handle to an LDAP session that contains a pointer to an
opaque structure that must be passed to subsequent calls for that session. If these
sessions cannot be initialized, these functions will return NULL, and errno should be
set appropriately.

Various aspects of this opaque structure can be read or written to control the
session-wide parameters. Use ldap_set_option(3LDAP) to access the current value
of these options and ldap_set_option(3LDAP) to set the value of these options.

ATTRIBUTES
See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
</tbody>
</table>
ldap_open(3LDAP)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUNWcslx (64-bit)</td>
<td></td>
</tr>
<tr>
<td>Stability Level</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

errno(3C), ldap(3LDAP), ldap_bind(3LDAP), ldap_get_option(3LDAP), ldap_set_option(3LDAP), attributes(5)
ldap_parse_result(3LDAP)

NAME ldap_parse_result, ldap_parse_extended_result, ldap_parse_sasl_bind_result – LDAP
message result parser

SYNOPSIS cc [flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>

int ldap_parse_result(LDAP *ld, LDAPMessage *res, int *errcodep, char **matcheddn, char **errmsgp, char ***referralsp, LDAPControl ***serverctrlsp, int freeit);

int ldap_parse_sasl_bind_result(LDAP *ld, LDAPMessage *res, struct berval **servercredp, int freeit);

int ldap_parse_extended_result(LDAP *ld, LDAPMessage *res, char **resultoidp, struct berval **resultdata, int freeit);

DESCRIPTION The ldap_parse_extended_result(), ldap_parse_result() and
ldap_parse_sasl_bind_result() routines search for a message to parse. These
functions skip messages of type LDAP_RES_SEARCH_ENTRY and
LDAP_RES_SEARCH_REFERENCE.

RETURN VALUES They return LDAP_SUCCESS if the result was successfully parsed or an LDAP error
code if not (see ldap_error(3LDAP)).

ATTRIBUTES See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO ldap_error(3LDAP), ldap_result(3LDAP), attributes(5)
ldap_result(3LDAP)

NAME
ldap_result, ldap_msgfree – wait for and return LDAP operation result

SYNOPSIS
c{flag...} file... -lldap{library...}
#include <ber.h>
#include <ldap.h>

int ldap_result(LDAP *ld, intmsgid, int all, struct timeval *timeout,
 LDAPMessage **result);

int ldap_msgfree(LDAPMessage *msg);

DESCRIPTION
The ldap_result() function is used to wait for and return the result of an operation
previously initiated by one of the LDAP asynchronous operation functions, for
example, ldap_search(3LDAP), and ldap_modify(3LDAP). Those functions all
return -1 in case of error, and an invocation identifier upon successful initiation of the
operation. The invocation identifier is picked by the library and is guaranteed to be
unique across the LDAP session. It can be used to request the result of a specific
operation from ldap_result() through the msgid parameter.

The ldap_result() function will block or not, depending upon the setting of the
timeout parameter. If timeout is not a null pointer, it specifies a maximum interval to
wait for the selection to complete. If timeout is a null pointer, the select blocks
indefinitely. To effect a poll, the timeout argument should be a non-null pointer,
pointing to a zero-valued timeval structure. See select(1) for further details.

If the result of a specific operation is required, msgid should be set to the invocation
identifier returned when the operation was initiated, otherwise LDAP_RES_ANY
should be supplied. The all parameter only has meaning for search responses and is
used to select whether a single entry of the search response should be returned, or all
results of the search should be returned.

A search response is made up of zero or more search entries followed by a search
result. If all is set to -1, search entries will be returned one at a time as they come in, by
means of separate calls to ldap_result(). If it is set to -1, the search response will
only be returned in its entirety, that is, after all entries and the final search result have
been received.

Upon success, the type of the result received is returned and the result parameter will
contain the result of the operation. This result should be passed to the LDAP parsing
functions, (see ldap_first_entry(3LDAP)) for interpretation.

The possible result types returned are:

#define LDAP_RES_BIND 0x61L
#define LDAP_RES_SEARCH_ENTRY 0x64L
#define LDAP_RES_SEARCH_RESULT 0x65L
#define LDAP_RES_MODIFY 0x67L
#define LDAP_RES_ADD 0x69L
#define LDAP_RES_DELETE 0x6bL
#define LDAP_RES_MODRDN 0x6dL
#define LDAP_RES_COMPARE 0x6fL
ldap_result(3LDAP)

The ldap_msgfree() function is used to free the memory allocated for a result by ldap_result() or ldap_search_s(3LDAP) functions. It takes a pointer to the result to be freed and returns the type of the message it freed.

ERRORS

ldap_result() returns -1 if something bad happens, and zero if the timeout specified was exceeded.

ATTRIBUTES

See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

select(1), ldap(3LDAP), ldap_search(3LDAP), attributes(5)

NOTES

This function allocates memory for results that it receives. The memory can be freed by calling ldap_msgfree.
ldap_search(3LDAP)

NAME
ldap_search, ldap_search_s, ldap_search_ext, ldap_search_ext_s, ldap_search_st - LDAP search operations

SYNOPSIS
cc [flag...] file... -lldap [library...]

#include <sys/time.h> /* for struct timeval definition */
#include <lber.h>
#include <ldap.h>

int ldap_search(LDAP *ld, char *base, int scope, char *filter, char
 *attrs[], int attrsonly);

int ldap_search_s(LDAP *ld, char *base, int scope, char *filter, char
 *attrs[], int attrsonly, LDAPMessage **res);

int ldap_search_st(LDAP *ld, char *base, int scope, char *filter, char
 *attrs[], int attrsonly, struct timeval *timeout, LDAPMessage **res);

int ldap_search_ext(LDAP *ld, char *base, int scope, char *filter, char
 *attrs, int attrsonly, LDAPControl **serverctrls, LDAPControl
 **clientctrls, struct timeval *timeoutp, int sizelimit, int *msgidp);

int ldap_search_ext_s(LDAP *ld, char *base, int scope, char *filter,
 char *attrs, int attrsonly, LDAPControl **serverctrls, LDAPControl
 **clientctrls, struct timeval *timeoutp, int sizelimit);

DESCRIPTION
These functions are used to perform LDAP search operations. ldap_search_s() does the search synchronously (that is, not returning until the operation completes). ldap_search_st() does the same, but allows a timeout to be specified. ldap_search() is the asynchronous version, initiating the search and returning the message id of the operation it initiated.

Base is the DN of the entry at which to start the search. Scope is the scope of the search and should be one of LDAP_SCOPE_BASE, to search the object itself, LDAP_SCOPE_ONELEVEL, to search the object’s immediate children, or LDAP_SCOPE_SUBTREE, to search the object and all its descendents.

Filter is a string representation of the filter to apply in the search. Simple filters can be specified as attributetype=attributevalue. More complex filters are specified using a prefix notation according to the following BNF:

<filter> ::= '\(' <filtercomp> '\)'
<filtercomp> ::= <and> | <or> | <not> | <simple>
<and> ::= '\&' <filterlist>
<or> ::= '\|' <filterlist>
<not> ::= '\!' <filter>
<filterlist> ::= <filter> | <filter> <filterlist>
<simple> ::= <attributetype> <filtertype> <attributevalue>
<filtertype> ::= '=' | '~=' | '<' | '>'

The ‘~=' construct is used to specify approximate matching. The representation for <attributetype> and <attributevalue> are as described in RFC 1778. In addition, <attributevalue> can be a single * to achieve an attribute existence test, or can contain text and *’s interspersed to achieve substring matching.
For example, the filter "mail=*" will find any entries that have a mail attribute. The filter "mail=*@terminator.rs.itd.umich.edu" will find any entries that have a mail attribute ending in the specified string. To put parentheses in a filter, escape them with a backslash \ character. See RFC 1588 for a more complete description of allowable filters. See ldap_getfilter(3LDAP) for functions to help in constructing search filters automatically.

Attrs is a null-terminated array of attribute types to return from entries that match filter. If NULL is specified, all attributes will be returned. *Attrsonly* should be set to 1 if only attribute types are wanted. It should be set to 0 if both attributes types and attribute values are wanted.

The ldap_search_ext() function initiates an asynchronous search operation and returns LDAP_SUCCESS if the request was successfully sent to the server, or else it returns a LDAP error code (see ldap_error(3LDAP)). If successful, ldap_search_ext() places the message id of the request in *msgidp. A subsequent call to ldap_result(3LDAP), can be used to obtain the result of the add request.

The ldap_search_ext_s() function initiates a synchronous search operation and as such returns the result of the operation itself.

ERRORS

ldap_search_s() and ldap_search_st() will return the LDAP error code resulting from the search operation. See ldap_error(3LDAP) for details.

ldap_search() returns -1 when terminating unsuccessfully.

ATTRIBUTES

See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcscl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcsclx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

ldap(3LDAP), ldap_result(3LDAP), ldap_getfilter(3LDAP), ldap_error(3LDAP), attributes(5)

NOTES

Note that both read and list functionality are subsumed by these functions, by using a filter like "objectclass=*" and a scope of LDAP_SCOPE_BASE (to emulate read) or LDAP_SCOPE_ONELEVEL (to emulate list).

These functions may allocate memory which must be freed by the calling application. Return values are contained in <ldap.h>.
ldap_searchprefs(3LDAP)

NAME
ldap_searchprefs, ldap_init_searchprefs, ldap_init_searchprefs_buf,
ldap_free_searchprefs, ldap_first_searchobj, ldap_next_searchobj – LDAP search
preference configuration routines

SYNOPSIS
cc [flag...] file... -lldap [library...]

#include <lber.h>
#include <ldap.h>

int ldap_init_searchprefs(char **file, struct ldap_searchobj ***solist);

int ldap_init_searchprefs_buf(char **buf, unsigned long len, struct
ldap_searchobj **solist);

struct ldap_searchobj **ldap_free_searchprefs(struct
ldap_searchobj **solist);

struct ldap_searchobj **ldap_first_searchobj(struct
ldap_searchobj **solist);

struct ldap_searchobj **ldap_next_searchobj(struct ldap_searchobj
**solist, struct ldap_searchobj **so);

DESCRIPTION
These functions provide a standard way to access LDAP search preference
configuration data. LDAP search preference configurations are typically used by
LDAP client programs to specify which attributes a user may search by, labels for the
attributes, and LDAP filters and scopes associated with those searches. Client software
presents these choices to a user, who can then specify the type of search to be
performed.

ldap_init_searchprefs() reads a sequence of search preference configurations
from a valid LDAP searchpref configuration file. See ldapsearchprefs.conf(4).
Upon success, 0 is returned and solistp is set to point to a list of search preference data
structures.

ldap_init_searchprefs_buf() reads a sequence of search preference configurations from buf, whose size is buflen. buf should point to the data in the format
defined for an LDAP search preference configuration file. See
ldapsearchprefs.conf(4). Upon success, 0 is returned and solistp is set to point to
a list of search preference data structures.

ldap_free_searchprefs() disposes of the data structures allocated by
ldap_init_searchprefs().

ldap_first_searchpref() returns the first search preference data structure in the
list solist. The solist is typically obtained by calling ldap_init_searchprefs().

ldap_next_searchpref() returns the search preference after so in the template list
solist. A NULL pointer is returned if so is the last entry in the list.

ERRORS
ldap_init_search_prefs() and ldap_init_search_prefs_bufs() return:

Networking Library Functions 355
ldap_searchprefs(3LDAP)

LDAP_SEARCHPREF_ERR_VERSION **buf** points to data that is newer than can be handled.

LDAP_SEARCHPREF_ERR_MEM Memory allocation problem.

ATTRIBUTES See attributes(5) for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO ldap(3LDAP), ldapsearchprefs.conf(4), attributes(5)

NAME
ldap_sort, ldap_sort_entries, ldap_sort_values, ldap_sort_strcasecmp – LDAP entry sorting functions

SYNOPSIS
cc [flag ...] file ... -lldap [library ...]
#include <lber.h>
#include <ldap.h>

ldap_sort_entries (LDAP *ld, LDAPMessage **chain, char *attr, int (*cmp)());

ldap_sort_values (LDAP *ld, char **vals, int (*cmp)());

ldap_sort_strcasecmp (char *a, char *b);

DESCRIPTION
These functions are used to sort lists of entries and values retrieved from an LDAP server. ldap_sort_entries() is used to sort a chain of entries retrieved from an LDAP search call either by DN or by some arbitrary attribute in the entries. It takes ld, the LDAP structure, which is only used for error reporting, chain, the list of entries as returned by ldap_search_s(3LDAP) or ldap_result(3LDAP). attr is the attribute to use as a key in the sort or NULL to sort by DN, and cmp is the comparison function to use when comparing values (or individual DN components if sorting by DN). In this case, cmp should be a function taking two single values of the attr to sort by, and returning a value less than zero, equal to zero, or greater than zero, depending on whether the first argument is less than, equal to, or greater than the second argument. The convention is the same as used by qsort(3C), which is called to do the actual sorting.

ldap_sort_values() is used to sort an array of values from an entry, as returned by ldap_get_values(3LDAP). It takes the LDAP connection structure ld, the array of values to sort vals, and cmp, the comparison function to use during the sort. Note that cmp will be passed a pointer to each element in the vals array, so if you pass the normal char ** for this parameter, cmp should take two char **’s as arguments (that is, you cannot pass strcmp or its friends for cmp). You can, however, pass the function ldap_sort_strcasecmp() for this purpose.

For example:

LDAP *ld;
LDAPMessage *res;
/* ... call to ldap_search_s(), fill in res, retrieve sn attr ... */

/* now sort the entries on surname attribute */
if (ldap_sort_entries(ld, &res, "sn", ldap_sort_strcasecmp) != 0)
 ldap_perror(ld, "ldap_sort_entries");

ATTRIBUTES
See attributes(5) for a description of the following attributes:
The `ldap_sort_entries()` function applies the comparison function to each value of the attribute in the array as returned by a call to `ldap_get_values(3LDAP)`, until a mismatch is found. This works fine for single-valued attributes, but may produce unexpected results for multi-valued attributes. When sorting by DN, the comparison function is applied to an exploded version of the DN, without types. The return values for all of these functions are declared in the `<ldap.h>` header file. Some functions may allocate memory which must be freed by the calling application.

SEE ALSO

`ldap(3LDAP), ldap_search(3LDAP), ldap_result(3LDAP), qsort(3C), attributes(5)`

NOTES

The `ldap_sort_entries()` function applies the comparison function to each value of the attribute in the array as returned by a call to `ldap_get_values(3LDAP)`, until a mismatch is found. This works fine for single-valued attributes, but may produce unexpected results for multi-valued attributes. When sorting by DN, the comparison function is applied to an exploded version of the DN, without types. The return values for all of these functions are declared in the `<ldap.h>` header file. Some functions may allocate memory which must be freed by the calling application.
These functions are used to perform LDAP user friendly search operations.

ldap_ufn_search_s() is the simplest form. It does the search synchronously. It takes ld to identify the LDAP connection. The ufn parameter is the user friendly name for which to search. The attrs, attrsonly and res parameters are the same as for ldap_search(3LDAP).

The ldap_ufn_search_c() function functions the same as ldap_ufn_search_s(), except that it takes cancelproc, a function to call periodically during the search. It should be a function taking a single void * argument, given by cancelparm. If cancelproc returns a non-zero result, the search will be abandoned and no results returned. The purpose of this function is to provide a way for the search to be cancelled, for example, by a user or because some other condition occurs.

The ldap_ufn_search_ct() function is like ldap_ufn_search_c(), except that it takes three extra parameters. tag1 is passed to the ldap_init_getfilter(3LDAP) function when resolving the first component of the UFN. tag2 is used when resolving intermediate components. tag3 is used when resolving the last component. By default, the tags used by the other UFN search functions during these three phases of the search are "ufn first", "ufn intermediate", and "ufn last".

The ldap_ufn_setfilter() function is used to set the ldapfilter.conf(4) file for use with the ldap_init_getfilter(3LDAP) function to fname.
The `ldap_ufn_setprefix()` function is used to set the default prefix (actually, it's a suffix) appended to UFNs before searching. UFNs with fewer than three components have the prefix appended first, before searching. If that fails, the UFN is tried with progressively shorter versions of the prefix, stripping off components. If the UFN has three or more components, it is tried by itself first. If that fails, a similar process is applied with the prefix appended.

The `ldap_ufn_timeout()` function is used to set the timeout associated with `ldap_ufn_search_s()` searches. The `timeout` parameter should actually be a pointer to a struct `timeval`. This is so `ldap_ufn_timeout()` can be used as a cancelproc in the above functions.

ATTRIBUTES

See `attributes(5)` for a description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

`gettimeofday(3C), ldap(3LDAP), ldap_search(3LDAP), ldap_getfilter(3LDAP), ldapfilter.conf(4), ldap_error(3LDAP), attributes(5)`

NOTES

These functions may allocate memory. Return values are contained in `<ldap.h>`.
ldap_url(3LDAP)

NAME
ldap_url, ldap_is_ldap_url, ldap_url_parse, ldap_free_urldesc, ldap_url_search,
ldap_url_search_s, ldap_url_search_st, ldap_dns_to_url, ldap_dn_to_url – LDAP
Uniform Resource Locator functions

SYNOPSIS
cc [flag... 1 file... -lldap [library...]

#include <lber.h>
#include <ldap.h>

int ldap_is_ldap_url(char *url);
int ldap_url_parse(char *url, LDAPURLDesc **ludpp);
ldap_free_urldesc(LDAPURLDesc *ludp);
int ldap_url_search(LDAP *ld, char *url, int attrsonly);
int ldap_url_search_s(LDAP *ld, char *url, int attrsonly, LDAPMessage **res);
int ldap_url_search_st(LDAP *ld, char *url, int attrsonly, struct timeval *timeout, LDAPMessage **res);
char *ldap_dns_to_url(LDAP *ld, char *dns_name, char *attrs, char *scope, char *filter);
char *ldap_dn_to_url(LDAP *ld, char *dn, int nameparts);

DESCRIPTION
These functions support the use of LDAP URLs (Uniform Resource Locators). LDAP
URLs look like this:

ldap://hostport/dn [?attributes [?scope [?filter]]]

where:

hostport Host name with an optional ":portnumber".
dn Base DN to be used for an LDAP search operation.
attributes Comma separated list of attributes to be retrieved.
scope One of these three strings: base one sub (default=base).
filter LDAP search filter as used in a call to ldap_search(3LDAP).

Here is an example:

ldap://ldap.itd.umich.edu/c=US?o,description?one?o=umich

URLs that are wrapped in angle-brackets and/or preceded by "URL:" are also
tolerated.

ldap_is_ldap_url() returns a non-zero value if url looks like an LDAP URL (as
opposed to some other kind of URL). It can be used as a quick check for an LDAP
URL; the ldap_url_parse() function should be used if a more thorough check is
needed.
ldap_url(3LDAP)

ldap_url_parse() breaks down an LDAP URL passed in url into its component pieces. If successful, zero is returned, an LDAP URL description is allocated, filled in, and ludp is set to point to it. See RETURN VALUES for values returned upon error.

ldap_free_urldesc() should be called to free an LDAP URL description that was obtained from a call to ldap_url_parse().

ldap_url_search() initiates an asynchronous LDAP search based on the contents of the url string. This function acts just like ldap_search(3LDAP) except that many search parameters are pulled out of the URL.

ldap_url_search_s() performs a synchronous LDAP search based on the contents of the url string. This function acts just like ldap_search_s(3LDAP) except that many search parameters are pulled out of the URL.

ldap_url_search_st() performs a synchronous LDAP URL search with a specified timeout. This function acts just like ldap_search_st(3LDAP) except that many search parameters are pulled out of the URL.

ldap_dns_to_url() locates the LDAP URL associated with a DNS domain name. The supplied DNS domain name is converted into a distinguished name. The directory entry specified by that distinguished name is searched for a labeledURI attribute. If successful then the corresponding LDAP URL is returned. If unsuccessful then that entry’s parent is searched and so on until the target distinguished name is reduced to only two nameparts. If dns_name is NULL then the environment variable LOCALDOMAIN is used. If attrs is not NULL then it is appended to the URL’s attribute list. If scope is not NULL then it overrides the URL’s scope. If filter is not NULL then it is merged with the URL’s filter. If an error is encountered then zero is returned, otherwise a string URL is returned. The caller should free the returned string if it is non-zero.

ldap_dn_to_url() locates the LDAP URL associated with a distinguished name. The number of nameparts in the supplied distinguished name must be provided. The specified directory entry is searched for a labeledURI attribute. If successful then the LDAP URL is returned. If unsuccessful then that entry’s parent is searched and so on until the target distinguished name is reduced to only two nameparts. If an error is encountered then zero is returned, otherwise a string URL is returned. The caller should free the returned string if it is non-zero.

RETURN VALUES

Upon error, one of these values is returned for ldap_url_parse():

LDAP_URL_ERR_NOTLDAP URL doesn’t begin with "ldap://".

LDAP_URL_ERR_NODN URL has no DN (required).

LDAP_URL_ERR_BADSCOPE URL scope string is invalid.

LDAP_URL_ERR_MEM Can’t allocate memory space.

ATTRIBUTES

See attributes(5) for a description of the following attributes:
ldap_url(3LDAP)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcscl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
</tbody>
</table>

SEE ALSO

`ldap(3LDAP), ldap_search(3LDAP), attributes(5)`

An LDAP URL Format, Tim Howes and Mark Smith, December 1995. Internet Draft (work in progress). Currently available at this URL:

`ftp://ds.internic.net/internet-drafts/draft-ietf-asid-ldap-format-03.txt`
ldap_version(3LDAP)

NAME
ldap_version – get version information about the LDAP SDK for C

SYNOPSIS
cc -flag ... file ...-lldap [-library ...]
#include <ldap.h>

int ldap_version(LDAPVERSION *ver);

DESCRIPTION
A call to this function returns the version information for the LDAP SDK for C. This is
deprecated function. Use ldap_get_option(LDAP) instead. The version
information is returned in the LDAPVersion structure pointed to by ver. If NULL is
passed for ver, then only the SDK version will be returned.

RETURN VALUES
The ldap_version() function returns the version number of the LDAP SDK for C,
multiplied by 100. For example, for version 1.0 of the LDAP SDK for C, the function
returns 100.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcs1 (32-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td></td>
<td>Obsolete</td>
</tr>
</tbody>
</table>

SEE ALSO
ldap_get_option(LDAP), attributes(5)
listen(3SOCKET)

NAME
listen – listen for connections on a socket

SYNOPSIS
cc [flag ...] file ... -lsocket -linsi [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int listen(int s, int backlog);

DESCRIPTION
To accept connections, a socket is first created with socket(3SOCKET), a backlog for incoming connections is specified with listen() and then the connections are accepted with accept(3SOCKET). The listen() call applies only to sockets of type SOCK_STREAM or SOCK_SEQPACKET.

The backlog parameter defines the maximum length the queue of pending connections may grow to.

If a connection request arrives with the queue full, the client will receive an error with an indication of ECONNREFUSED for AF_UNIX sockets. If the underlying protocol supports retransmission, the connection request may be ignored so that retries may succeed. For AF_INET and AF_INET6 sockets, the TCP will retry the connection. If the backlog is not cleared by the time the tcp times out, the connect will fail with ETIMEDOUT.

RETURN VALUES
A 0 return value indicates success; −1 indicates an error.

ERRORS
The call fails if:
EBADF The argument s is not a valid file descriptor.
ENOTSOCK The argument s is not a socket.
EOPNOTSUPP The socket is not of a type that supports the operation listen().

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
accept(3SOCKET), connect(3SOCKET), socket(3SOCKET), attributes(5), socket(3HEAD)

NOTES
There is currently no backlog limit.
The `listen()` function marks a connection-mode socket, specified by the `socket` argument, as accepting connections, and limits the number of outstanding connections in the socket’s listen queue to the value specified by the `backlog` argument.

If `listen()` is called with a `backlog` argument value that is less than 0, the function sets the length of the socket’s listen queue to 0.

The implementation may include incomplete connections in the queue subject to the queue limit. The implementation may also increase the specified queue limit internally if it includes such incomplete connections in the queue subject to this limit.

Implementations may limit the length of the socket’s listen queue. If `backlog` exceeds the implementation-dependent maximum queue length, the length of the socket’s listen queue will be set to the maximum supported value.

The socket in use may require the process to have appropriate privileges to use the `listen()` function.

RETURN VALUES

Upon successful completions, `listen()` returns 0. Otherwise, -1 is returned and `errno` is set to indicate the error.

ERRORS

The `listen()` function will fail if:

- **EBADF**: The `socket` argument is not a valid file descriptor.
- **EDESTADDRREQ**: The socket is not bound to a local address, and the protocol does not support listening on an unbound socket.
- **EINVAL**: The `socket` is already connected.
- **ENOTSOCK**: The `socket` argument does not refer to a socket.
- **EOPNOTSUPP**: The socket protocol does not support `listen()`.

The `listen()` function may fail if:

- **EACCES**: The calling process does not have the appropriate privileges.
- **EINVAL**: The `socket` has been shut down.
- **ENOBUFS**: Insufficient resources are available in the system to complete the call.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:
listen(3XNET)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO accept(3XNET), connect(3XNET), socket(3XNET), attributes(5)
The `netdir` routines provide a generic interface for name-to-address mapping that will work with all transport protocols. This interface provides a generic way for programs to convert transport specific addresses into common structures and back again. The `netconfig` structure, described on the `netconfig(4)` manual page, identifies the transport.

The `netdir_getbyname()` routine maps the machine name and service name in the `nd_hostserv` structure to a collection of addresses of the type understood by the transport identified in the `netconfig` structure. This routine returns all addresses that are valid for that transport in the `nd_addrlist` structure. The `nd_hostserv` structure contains the following members:

- `char /* host name */ *h_serv; /* service name */`

The `nd_addrlist` structure contains the following members:

- `int n_cnt; /* number of addresses */`
- `struct netbuf *n_addrs;`

`netdir_getbyname()` accepts some special-case host names. The host names are defined in `<netdir.h>`. The currently defined host names are:

- **HOST_SELF**

 Represents the address to which local programs will bind their endpoints. **HOST_SELF** differs from the host name provided by `gethostname(3C)`, which represents the address to which remote programs will bind their endpoints.
HOST_ANY
Represents any host accessible by this transport provider. **HOST_ANY** allows applications to specify a required service without specifying a particular host name.

HOST_SELF_CONNECT
Represents the host address that can be used to connect to the local host.

HOST_BROADCAST
Represents the address for all hosts accessible by this transport provider. Network requests to this address are received by all machines.

All fields of the `nd_hostserv` structure must be initialized.

To find the address of a given host and service on all available transports, call the `netdir_getbyname()` routine with each `struct netconfig` structure returned by `getnetconfig(3NSL)`.

The `netdir_getbyaddr()` routine maps addresses to service names. This routine returns `service`, a list of host and service pairs that would yield this address. If more than one tuple of host and service name is returned, then the first tuple contains the preferred host and service names:

```c
struct nd_hostservlist {
    int *h_cnt; /* number of hostservs found */
    struct hostserv *h_hostservs;
}
```

The `netdir_free()` structure is used to free the structures allocated by the name to address translation routines. `ptr` points to the structure that has to be freed. The `struct_type` identifies the structure:

```c
struct netbuf    ND_ADDR
struct nd_addrlist ND_ADDRLIST
struct hostserv  ND_HOSTSERV
struct nd_hostservlist ND_HOSTSERVLIST
```

Free the universal address returned by `taddr2uaddr()` by using `free()`.

The `netdir_options()` routine is used to do all transport-specific setups and option management. `fdles` is the associated file descriptor. `option`, `fdles`, and `pointer_to_args` are passed to the `netdir_options()` routine for the transport specified in `config`. Currently four values are defined for `option`:

```
ND_SET_BROADCAST
ND_SET_RESERVEDPORT
ND_CHECK_RESERVEDPORT
ND_MERGEADDR
```
The `taddr2uaddr()` and `uaddr2taddr()` routines support translation between universal addresses and TLI type `netbufs`. The `taddr2uaddr()` routine takes a `struct netbuf` data structure and returns a pointer to a string that contains the universal address. It returns `NULL` if the conversion is not possible. This is not a fatal condition as some transports do not support a universal address form.

`uaddr2taddr()` is the reverse of `taddr2uaddr()`. It returns the `struct netbuf` data structure for the given universal address.

If a transport provider does not support an option, `netdir_options` returns `-1` and the error message can be printed through `netdir_perror()` or `netdir_sperror()`.

The specific actions of each option follow.

ND_SET_BROADCAST
Sets the transport provider up to allow broadcast, if the transport supports broadcast. `filedes` is a file descriptor into the transport, that is, the result of a `t_open` of `/dev/udp`. `pointer_to_args` is not used. If this completes, broadcast operations can be performed on file descriptor `filedes`.

ND_SET_RESERVEDPORT
Allows the application to bind to a reserved port, if that concept exists for the transport provider. `filedes` is an unbound file descriptor into the transport. If `pointer_to_args` is `NULL`, `filedes` is bound to a reserved port. If `pointer_to_args` is a pointer to a `netbuf` structure, an attempt is made to bind to any reserved port on the specified address.

ND_CHECK_RESERVEDPORT
Used to verify that the address corresponds to a reserved port, if that concept exists for the transport provider. `filedes` is not used. `pointer_to_args` is a pointer to a `netbuf` structure that contains the address. This option returns `0` only if the address specified in `pointer_to_args` is reserved.

ND_MERGEADDR
Used to take a "local address" (like the `0.0.0.0` address that TCP uses) and return a "real address" that client machines can connect to. `filedes` is not used. `pointer_to_args` is a pointer to a `struct nd_mergearg`, which has the following members:

- `char s_uaddr; /* server’s universal address */`
- `char c_uaddr; /* client’s universal address */`
- `char m_uaddr; /* the result */`

If `s_uaddr` is something like `0.0.0.0.1.12`, and, if the call is successful, `m_uaddr` is set to something like `192.11.109.89.1.12`. For most transports, `m_uaddr` is exactly what `s_uaddr` is.

RETURN VALUES
The `netdir_perror()` routine prints an error message on the standard output stating why one of the name-to-address mapping routines failed. The error message is preceded by the string given as an argument.
The `netdir_sperror()` routine returns a string containing an error message stating why one of the name-to-address mapping routines failed.

`netdir_sperror()` returns a pointer to a buffer which contains the error message string. This buffer is overwritten on each call. In multithreaded applications, this buffer is implemented as thread-specific data.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

`gethostname(3C), getnetconfig(3NSL), getnetpath(3NSL), netconfig(4), attributes(5)`
nis_error(3NSL)

NAME
nis_error, nis_sperrno, nis_perror, nis_lerror, nis_sperror, nis_sperror_r – display NIS+ error messages

SYNOPSIS
cc [flag ...] file ... -lnsl [library ...]
#include <rpcsvc/nis.h>

char *nis_sperrno(nis_error status);
void nis_perror(nis_error status, char *label);
void nis_lerror(nis_error status, char *label);

char *nis_sperror_r(nis_error status, char *label, char *buf, int length);
char *nis_sperror(nis_error status, char *label);

DESCRIPTION
These functions convert NIS+ status values into text strings.

nis_sperrno() simply returns a pointer to a string constant which is the error string.

nis_perror() prints the error message corresponding to status as "label: error message" on standard error.

nis_lerror() sends the error text to syslog(3C) at level LOG_ERR.

The function nis_sperror_r(), returns a pointer to a string that can be used or copied using the strdup() function (See string(3C)). The caller must supply a string buffer, buf, large enough to hold the error string (a buffer size of 128 bytes is guaranteed to be sufficiently large). status and label are the same as for nis_perror(). The pointer returned by nis_sperror_r() is the same as buf, that is, the pointer returned by the function is a pointer to buf. length specifies the number of characters to copy from the error string to buf.

The last function, nis_sperror(), is similar to nis_sperror_r() except that the string is returned as a pointer to a buffer that is reused on each call. nis_sperror_r() is the preferred interface, since it is suitable for single-threaded and multi-threaded programs.

When compiling multithreaded applications, see Intro(3), Notes On Multithread Applications, for information about the use of the _REENTRANT flag.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
niserror(1), string(3C), syslog(3C), attributes(5)
NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nis_groups(3NSL)

NAME nis_groups, nis_ismember, nis_addmember, nis_removemember, nis_creategroup, nis_destroygroup, nis_verifygroup, nis_print_group_entry – NIS+ group manipulation functions

SYNOPSIS cc [flag ...] file ... -lnsl [library ...]
#include <rpcsvc/nis.h>

bool_t nis_ismember(nis_name principal, nis_name group);
nis_error nis_addmember(nis_name member, nis_name group);
nis_error nis_removemember(nis_name member, nis_name group);
nis_error nis_creategroup(nis_name group, uint_t flags);
nis_error nis_destroygroup(nis_name group);
void nis_print_group_entry(nis_name group);
nis_error nis_verifygroup(nis_name group);

DESCRIPTION These functions manipulate NIS+ groups. They are used by NIS+ clients and servers, and are the interfaces to the group authorization object.

The names of NIS+ groups are syntactically similar to names of NIS+ objects but they occupy a separate namespace. A group named "a.b.c.d." is represented by a NIS+ group object named "a.groups_dir.b.c.d."; the functions described here all expect the name of the group, not the name of the corresponding group object.

There are three types of group members:
• An explicit member is just a NIS+ principal-name, for example "wickedwitch.west.oz."
• An implicit ("domain") member, written "*.west.oz.", means that all principals in the given domain belong to this member. No other forms of wildcarding are allowed: "wickedwitch.*.oz." is invalid, as is "wickedwitch.west.*.". Note that principals in subdomains of the given domain are not included.
• A recursive ("group") member, written "@cowards.oz.", refers to another group. All principals that belong to that group are considered to belong here.

Any member may be made negative by prefixing it with a minus sign (‘−’). A group may thus contain explicit, implicit, recursive, negative explicit, negative implicit, and negative recursive members.

A principal is considered to belong to a group if it belongs to at least one non-negative group member of the group and belongs to no negative group members.

The nis_ismember() function returns TRUE if it can establish that principal belongs to group; otherwise it returns FALSE.

The nis_addmember() and nis_removemember() functions add or remove a member. They do not check whether the member is valid. The user must have read and modify rights for the group in question.
The `nis_creategroup()` and `nis_destroygroup()` functions create and destroy group objects. The user must have create or destroy rights, respectively, for the `groups_dir` directory in the appropriate domain. The parameter `flags` to `nis_creategroup()` is currently unused and should be set to zero.

The `nis_print_group_entry()` function lists a group's members on the standard output.

The `nis_verifygroup()` function returns `NIS_SUCCESS` if the given group exists, otherwise it returns an error code.

These functions only accept fully-qualified NIS+ names.

A group is represented by a NIS+ object with a variant part that is defined in the `group_obj` structure. See `nis_objects(3NSL)`. It contains the following fields:

```c
uint_t gr_flags; /* Interpretation Flags
(currently unused) */
struct {
    uint_t gr_members_len;
    nis_name *gr_members_val;
} gr_members; /* Array of members */
```

NIS+ servers and clients maintain a local cache of expanded groups to enhance their performance when checking for group membership. Should the membership of a group change, servers and clients with that group cached will not see the change until either the group cache has expired or it is explicitly flushed. A server's cache may be flushed programmatically by calling the `nis_servstate()` function with tag `TAG_GCACHE` and a value of 1.

There are currently no known methods for `nis_ismember()`, `nis_print_group_entry()`, and `nis_verifygroup()` to get their answers from only the master server.

EXAMPLE 1 Simple Memberships

Given a group `sadsouls.oz.` with members `tinman.oz.`, `lion.oz.`, and `scarecrow.oz.`, the function call

```c
bool_var = nis_ismember("lion.oz.", "sadsouls.oz.");
```

will return 1 (TRUE) and the function call

```c
bool_var = nis_ismember("toto.oz.", "sadsouls.oz.");
```

will return 0 (FALSE).

EXAMPLE 2 Implicit Memberships

Given a group `baddies.oz.` with members `wickedwitch.west.oz.` and `*.monkeys.west.oz.`, the function call

```c
bool_var = nis_ismember("hogan.monkeys.west.oz.", "baddies.oz.");
```

will return 1 (TRUE) because any principal from the `monkeys.west.oz.` domain belongs to the implicit group `*.monkeys.west.oz.`, but the function call

```c
nis_groups(3NSL)"
EXAMPLE 2 Implicit Memberships

(Continued)

bool_var = nis_ismember("hogan.big.monkeys.west.oz.", "baddies.oz.");
will return 0 (FALSE).

EXAMPLE 3 Recursive Memberships

Given a group goodandbad.oz., with members toto.kansas,@sadsouls.oz.,
and @baddies.oz., and the groups sadsouls.oz. and baddies.oz. defined
above, the function call

bool_var = nis_ismember("wickedwitch.west.oz.", "goodandbad.oz.");

will return 1 (TRUE), because wickedwitch.west.oz. is a member of the
baddies.oz. group which is recursively included in the goodandbad.oz. group.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

nisgrpadm(1), nis_objects(3NSL), attributes(5)

NOTES

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
These functions return several default NIS+ names associated with the current process.

nis_local_directory() returns the name of the NIS+ domain for this machine. This is currently the same as the Secure RPC domain returned by the sysinfo(2) system call.

nis_local_host() returns the NIS+ name of the current machine. This is the fully qualified name for the host and is either the value returned by the gethostname(3C) function or, if the host name is only partially qualified, the concatenation of that value and the name of the NIS+ directory. Note that if a machine’s name and address cannot be found in the local NIS+ directory, its hostname must be fully qualified.

nis_local_group() returns the name of the current NIS+ group name. This is currently set by setting the environment variable NIS_GROUP to the groupname.

nis_local_principal() returns the NIS+ principal name for the user associated with the effective UID of the calling process. This function maps the effective uid into a principal name by looking for a LOCAL type credential in the table named cred.org_dir in the default domain. See nisaddcred(1M).

The result returned by these routines is a pointer to a data structure with the NIS+ library, and should be considered a “read-only” result and should not be modified.

This variable contains the name of the local NIS+ group. If the name is not fully qualified, the value returned by nis_local_directory() will be concatenated to it.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

nisdefaults(1), nisaddcred(1M), sysinfo(2), gethostname(3C), nis_names(3NSL), nis_objects(3NSL), attributes(5)
NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
The NIS+ namespace functions are used to locate and manipulate all NIS+ objects except the NIS+ entry objects. See nis_objects(3NSL). To look up the NIS+ entry objects within a NIS+ table, refer to nis_subr(3NSL).

nis_lookup() resolves a NIS+ name and returns a copy of that object from a NIS+ server. nis_add() and nis_remove() add and remove objects to the NIS+ namespace, respectively. nis_modify() can change specific attributes of an object that already exists in the namespace.

These functions should be used only with names that refer to an NIS+ Directory, NIS+ Table, NIS+ Group, or NIS+ Private object. If a name refers to an NIS+ entry object, the functions listed in nis_subr(3NSL) should be used.

nis_freeresult() frees all memory associated with a nis_result structure. This function must be called to free the memory associated with a NIS+ result.
nis_lookup(), nis_add(), nis_remove(), and nis_modify() all return a pointer to a nis_result() structure which must be freed by calling nis_freeresult() when you have finished using it. If one or more of the objects returned in the structure need to be retained, they can be copied with nis_clone_object(3NSL). See nis_subr(3NSL).

nis_lookup() takes two parameters, the name of the object to be resolved in name, and a flags parameter, flags, which is defined below. The object name is expected to correspond to the syntax of a non-indexed NIS+ name. See nis_tables(3NSL). The nis_lookup() function is the only function from this group that can use a non-fully qualified name. If the parameter name is not a fully qualified name, then the flag EXPAND_NAME must be specified in the call. If this flag is not specified, the function will fail with the error NIS_BADNAME.

The flags parameter is constructed by logically ORing zero or more flags from the following list.

**FOLLOW_LINKS** When specified, the client library will “follow” links by issuing another NIS+ lookup call for the object named by the link. If the linked object is itself a link, then this
process will iterate until the either a object is found that is not a LINK type object, or the library has followed 16 links.

**HARD_LOOKUP**

When specified, the client library will retry the lookup until it is answered by a server. Using this flag will cause the library to block until at least one NIS+ server is available. If the network connectivity is impaired, this can be a relatively long time.

**NO_CACHE**

When specified, the client library will bypass any object caches and will get the object from either the master NIS+ server or one of its replicas.

**MASTER_ONLY**

When specified, the client library will bypass any object caches and any domain replicas and fetch the object from the NIS+ master server for the object’s domain. This insures that the object returned is up to date at the cost of a possible performance degradation and failure if the master server is unavailable or physically distant.

**EXPAND_NAME**

When specified, the client library will attempt to expand a partially qualified name by calling the function nis_getnames(), which uses the environment variable NIS_PATH. See nis_subr(3NSL).

The status value may be translated to ASCII text using the function nis_sperrno(). See nis_error(3NSL).

On return, the objects array in the result will contain one and possibly several objects that were resolved by the request. If the FOLLOW_LINKS flag was present, on success the function could return several entry objects if the link in question pointed within a table. If an error occurred when following a link, the objects array will contain a copy of the link object itself.

The function nis_add() will take the object obj and add it to the NIS+ namespace with the name name. This operation will fail if the client making the request does not have the create access right for the domain in which this object will be added. The parameter name must contain a fully qualified NIS+ name. The object members zo_name and zo_domain will be constructed from this name. This operation will fail if the object already exists. This feature prevents the accidental addition of objects over another object that has been added by another process.

The function nis_remove() will remove the object with name name from the NIS+ namespace. The client making this request must have the destroy access right for the domain in which this object resides. If the named object is a link, the link is removed and not the object that it points to. If the parameter obj is not NULL, it is assumed to point to a copy of the object being removed. In this case, if the object on the server
does not have the same object identifier as the object being passed, the operation will fail with the NIS_NOTSAMEOBJ error. This feature allows the client to insure that it is removing the desired object. The parameter name must contain a fully qualified NIS+ name.

The function nis_modify() will modify the object named by name to the field values in the object pointed to by obj. This object should contain a copy of the object from the name space that is being modified. This operation will fail with the error NIS_NOTSAMEOBJ if the object identifier of the passed object does not match that of the object being modified in the namespace.

Normally the contents of the member zo_name in the nis_object structure would be constructed from the name passed in the name parameter. However, if it is non-null the client library will use the name in the zo_name member to perform a rename operation on the object. This name must not contain any unquoted '.' (dot) characters. If these conditions are not met the operation will fail and return the NIS_BADNAME error code.

You cannot modify the name of an object if that modification would cause the object to reside in a different domain.

You cannot modify the schema of a table object.

Results

These functions return a pointer to a structure of type nis_result:

```c
struct nis_result {
 nis_error status;
 struct {
 uint_t objects_len;
 nis_object *objects_val;
 } objects;
 netobj cookie;
 uint32_t zticks;
 uint32_t dticks;
 uint32_t aticks;
 uint32_t cticks;
};
```

The status member contains the error status of the the operation. A text message that describes the error can be obtained by calling the function nis_sperrno(). See nis_error(3NSL).

The objects structure contains two members. objects_val is an array of nis_object structures; objects_len is the number of cells in the array. These objects will be freed by the call to nis_freeresult(). If you need to keep a copy of one or more objects, they can be copied with the function nis_clone_object() and freed with the function nis_destroy_object(). See nis_server(3NSL). Refer to nis_objects(3NSL) for a description of the nis_object structure.
The various ticks contain details of where the time was taken during a request. They can be used to tune one’s data organization for faster access and to compare different database implementations.

zticks  The time spent in the NIS+ service itself. This count starts when the server receives the request and stops when it sends the reply.

dticks  The time spent in the database backend. This time is measured from the time a database call starts, until the result is returned. If the request results in multiple calls to the database, this is the sum of all the time spent in those calls.

aticks  The time spent in any "accelerators" or caches. This includes the time required to locate the server needed to resolve the request.

cticks  The total time spent in the request. This clock starts when you enter the client library and stops when a result is returned. By subtracting the sum of the other ticks values from this value, you can obtain the local overhead of generating a NIS+ request.

Subtracting the value in dticks from the value in zticks will yield the time spent in the service code itself. Subtracting the sum of the values in zticks and aticks from the value in cticks will yield the time spent in the client library itself. Note: all of the tick times are measured in microseconds.

RETURN VALUES  The client library can return a variety of error returns and diagnostics. The more salient ones are documented below.

NIS_SUCCESS  The request was successful.

NIS_S_SUCCESS  The request was successful, however the object returned came from an object cache and not directly from the server. If you do not wish to see objects from object caches you must specify the flag NO_CACHE when you call the lookup function.

NIS_NOTFOUND  The named object does not exist in the namespace.

NIS_CACHEEXPIRED  The object returned came from an object cache that has expired. The time to live value has gone to zero and the object may have changed. If the flag NO_CACHE was passed to the lookup function then the lookup function will retry the operation to get an unexpired copy of the object.

NIS_NAMEUNREACHABLE  A server for the directory of the named object could not be reached. This can occur
when there is a network partition or all
servers have crashed. See the
HARD_LOOKUP flag.

NIS_UNKNOWNOBJ
The object returned is of an unknown type.

NIS_TRYAGAIN
The server connected to was too busy to
tackle your request. For the add, remove,
and modify operations this is returned when
either the master server for a directory is
unavailable, or it is in the process of
checkpointing its database. It can also be
returned when the server is updating its
internal state. In the case of nis_list(),
NIS_TRYAGAIN is returned if the client
specifies a callback and the server does not
have enough resources to handle the
callback.

NIS_SYSTEMERROR
A generic system error occurred while
attempting the request. Most commonly the
server has crashed or the database has
become corrupted. Check the syslog record
for error messages from the server.

NIS_NOT_ME
A request was made to a server that does
not serve the name in question. Normally
this will not occur, however if you are not
using the built in location mechanism for
servers you may see this if your mechanism
is broken.

NIS_NOMEMORY
Generally a fatal result. It means that the
service ran out of heap space.

NIS_NAMEEXISTS
An attempt was made to add a name that
already exists. To add the name, first
remove the existing name and then add the
new object or modify the existing named
object.

NIS_NOTMASTER
An attempt was made to update the
database on a replica server.

NIS_INVALIDOBJ
The object pointed to by obj is not a valid
NIS+ object.

NIS_BADNAME
The name passed to the function is not a
legal NIS+ name.
nis_names(3NSL)

NIS_LINKNAMEERROR The name passed resolved to a LINK type object and the contents of the link pointed to an invalid name.

NIS_NOTSAMEOBJ An attempt to remove an object from the namespace was aborted because the object that would have been removed was not the same object that was passed in the request.

NIS_NOSUCHNAME This hard error indicates that the named directory of the table object does not exist. This occurs when the server that should be the parent of the server that serves the table, does not know about the directory in which the table resides.

NIS_NOSUCHTABLE The named table does not exist.

NIS_MODFAIL The attempted modification failed.

NIS_FOREIGNNS The name could not be completely resolved. When the name passed to the function would resolve in a namespace that is outside the NIS+ name tree, this error is returned with a NIS+ object of type DIRECTORY, which contains the type of namespace and contact information for a server within that namespace.

NIS_RPCERROR This fatal error indicates the RPC subsystem failed in some way. Generally there will be a syslog(3C) message indicating why the RPC request failed.

ENVIRONMENT VARIABLES NIS_PATH If the flag EXPAND_NAME is set, this variable is the search path used by nis_lookup().

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO nis_error(3NSL), nis_objects(3NSL), nis_server(3NSL), nis_subr(3NSL), nis_tables(3NSL), attributes(5)

NOTES NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.

384 man pages section 3: Networking Library Functions • Last Revised 18 Dec 2001
The NIS+ service uses a variant record structure to hold the contents of the objects that are used by the NIS+ service. These objects all share a common structure that defines a set of attributes that all objects possess. The nis_object structure contains the following members:

```c
typedef char *nis_name;
struct nis_object {
 nis_oid zo_oid;
 nis_name zo_name;
 nis_name zo_owner;
 nis_name zo_group;
 nis_name zo_domain;
 uint_t zo_access;
 uint32_t zo_ttl;
 objdata zo_data;
};
```

In this structure, the first member zo_oid, is a 64 bit number that uniquely identifies this instance of the object on this server. This member is filled in by the server when the object is created and changed by the server when the object is modified. When used in conjunction with the object’s name and domain it uniquely identifies the object in the entire NIS+ namespace.

The second member, zo_name, contains the leaf name of the object. This name is never terminated with a '.' (dot). When an object is created or added to the namespace, the client library will automatically fill in this field and the domain name from the name that was passed to the function.

zo_domain contains the name of the NIS+ domain to which this object belongs. This information is useful when tracking the parentage of an object from a cache. When used in conjunction with the members zo_name and zo_oid it uniquely identifies an object. This makes it possible to always reconstruct the name of an object by using the code fragment

```c
sprintf(buf, "%s.%s", obj->zo_name, obj->zo_domain);
```

The zo_owner and zo_group members contain the NIS+ names of the object’s principal owner and group owner, respectively. Both names must be NIS+ fully qualified names. However, neither name can be used directly to identify the object they represent. This stems from the condition that NIS+ uses itself to store information that it exports.

The zo_owner member contains a fully qualified NIS+ name of the form principal.domain. This name is called a NIS+ principal name and is used to identify authentication information in a credential table. When the server constructs a search query of the form

```
[cname=principal],cred.org_dir.domain.
```
The query will return to the server credential information about principal for all flavors of RPC authentication that are in use by that principal. When an RPC request is made to the server, the authentication flavor is extracted from the request and is used to find out the NIS+ principal name of the client. For example, if the client is using the AUTH_DES authentication flavor, it will include in the authentication credentials the network name or netname of the user making the request. This netname will be of the form 

unix.UID@domain

The NIS+ server will then construct a query on the credential database of the form 

[auth_name=netname, auth_type=AUTH_DES], cred.org_dir.domain.

This query will return an entry which contains a principal name in the first column. This NIS+ principal name is used to control access to NIS+ objects.

The group owner for the object is treated differently. The group owner member is optional (it should be the null string if not present) but must be fully qualified if present. A group name takes the form 

group.domain.

which the server then maps into a name of the form 

group.groups_dir.domain.

The purpose of this mapping is to prevent NIS+ group names from conflicting with user specified domain or table names. For example, if a domain was called engineering.foo.com., then without the mapping a NIS+ group of the same name to represent members of engineering would not be possible. The contents of groups are lists of NIS+ principal names which are used exactly like the zo_owner name in the object. See nis_groups(3NSL) for more details.

The zo_access member contains the bitmask of access rights assigned to this object. There are four access rights defined, and four are reserved for future use and must be zero. This group of 8 access rights can be granted to four categories of client. These categories are the object’s owner, the object’s group owner, all authenticated clients (world), and all unauthenticated clients (nobody). Note that access granted to “nobody” is really access granted to everyone, authenticated and unauthenticated clients.

The zo_ttl member contains the number of seconds that the object can “live” in a cache before it is expired. This value is called the time to live for this object. This number is particularly important on group and directory (domain) objects. When an object is cached, the current time is added to the value in zo_ttl. Then each time the cached object is used, the time in zo_ttl is compared with the current time. If the current time is later than the time in zo_ttl the object is said to have expired and the cached copy should not be used.
Setting the TTL is somewhat of an art. You can think of it as the “half life” of the object, or half the amount of time you believe will pass before the object changes. The benefit of setting the ttl to a large number is that the object will stay in a cache for long periods of time. The problem with setting it to a large value is that when the object changes it will take a long time for the caches to flush out old copies of that object. The problems and benefits are reversed for setting the time to a small value. Generally setting the value to 43200 (12 hrs) is reasonable for things that change day to day, and 3024000 is good for things that change week to week. Setting the value to 0 will prevent the object from ever being cached since it would expire immediately.

The zo_data member is a discriminated union with the following members:

```c
zotypes zo_type;
 union {
 struct directory_obj di_data;
 struct group_obj gr_data;
 struct table_obj ta_data;
 struct entry_obj en_data;
 struct link_obj li_data;
 struct {
 uint_t po_data_len;
 char *po_data_val;
 } po_data;
 } objdata_u;
```

The union is discriminated based on the type value contained in zo_type. There six types of objects currently defined in the NIS+ service. These types are the directory, link, group, table, entry, and private types.

```c
enum zotypes {
 BOGUS_OBJ = 0,
 NO_OBJ = 1,
 DIRECTORY_OBJ = 2,
 GROUP_OBJ = 3,
 TABLE_OBJ = 4,
 ENTRY_OBJ = 5,
 LINK_OBJ = 6,
 PRIVATE_OBJ = 7
};
typedef enum zotypes zotypes;
```

All object types define a structure that contains data specific to that type of object. The simplest are private objects which are defined to contain a variable length array of octets. Only the owner of the object is expected to understand the contents of a private object. The following section describe the other five object types in more significant detail.

**Directory Objects**

The first type of object is the directory object. This object’s variant part is defined as follows:

```c
enum nstype {
 UNKNOWN = 0,
 NIS = 1,
 SUNYP = 2,
```
The main structure contains five primary members: do_name, do_type, do_servers, do_ttl, and do_armask. The information in the do_servers structure is sufficient for the client library to create a network connection with the named server for the directory.

The do_name member contains the name of the directory or domain represented in a format that is understandable by the type of nameservice serving that domain. In the case of NIS+ domains, this is the same as the name that can be composed using the zo_name and zo_domain members. For other name services, this name will be a name that they understand. For example, if this were a directory object describing an X.500 namespace that is “under” the NIS+ directory eng.sun.com, this name might contain “/C=US, /O=Sun Microsystems, /OU=Engineering/”. The type of nameservice that is being described is determined by the value of the member do_type.
The do_servers structure contains two members. do_servers_val is an array of nis_server structures; do_servers_len is the number of cells in the array. The nis_server structure is designed to contain enough information such that machines on the network providing name services can be contacted without having to use a name service. In the case of NIS+ servers, this information is the name of the machine in name, its public key for authentication in pkey, and a variable length array of endpoints, each of which describes the network endpoint for the rpcbind daemon on the named machine. The client library uses the addresses to contact the server using a transport that both the client and server can communicate on and then queries the rpcbind daemon to get the actual transport address that the server is using.

Note that the first server in the do_servers list is always the master server for the directory.

The key_type field describes the type of key stored in the pkey netobj (see /usr/include/rpc/xdr.h for a definition of the network object structure). Currently supported types are NIS_PK_NONE for no public key, NIS_PK_DH for a Diffie-Hellman type public key, and NIS_PK_DHEXT for an extended Diffie-Hellman public key.

The do_ttl member contains a copy of the zo_ttl member from the common attributes. This is the duplicated because the cache manager only caches the variant part of the directory object.

The do_armask structure contains two members. do_armask_val is an array of oar_mask structures; do_armask_len is the number of cells in the array. The oar_mask structure contains two members: oa_rights specifies the access rights allowed for objects of type oa_otype. These access rights are used for objects of the given type in the directory when they are present in this array.

The granting of access rights for objects contained within a directory is actually two-tiered. If the directory object itself grants a given access right (using the zo_access member in the nis_object structure representing the directory), then all objects within the directory are allowed that access. Otherwise, the do_armask structure is examined to see if the access is allowed specifically for that type of structure. This allows the administrator of a namespace to set separate policies for different object types, for example, one policy for the creation of tables and another policy for the creation of other directories. See nis+(1) for more details.

### Link Objects

Link objects provide a means of providing aliases or symbolic links within the namespace. Their variant part is defined as follows.

```
struct link_obj {
 zotypes li_rtype;
 struct {
 uint_t li_attrs_len;
 nis_attr *li_attrs_val;
 } li_attrs;
 nis_name li_name;
}
```
The \texttt{li\_rtype} member contains the object type of the object pointed to by the link. This is only a hint, since the object which the link points to may have changed or been removed. The fully qualified name of the object (table or otherwise) is specified in the member \texttt{li\_name}.

NIS+ links can point to either other objects within the NIS+ namespace, or to entries within a NIS+ table. If the object pointed to by the link is a table and the member \texttt{li\_attrs} has a nonzero number of attributes (index name/value pairs) specified, the table is searched when this link is followed. All entries which match the specified search pattern are returned. Note, that unless the flag \texttt{FOLLOW\_LINKS} is specified, the \texttt{nis\_lookup(3NSL)} function will always return non-entry objects.

\textbf{Group Objects}

Group objects contain a membership list of NIS+ principals. The group objects' variant part is defined as follows.

\begin{verbatim}
struct group_obj {
    uint_t gr_flags;
    struct {
        uint_t gr_members_len;
        nis_name *gr_members_val;
    } gr_members;
}
\end{verbatim}

The \texttt{gr\_flags} member contains flags that are currently unused. The \texttt{gr\_members} structure contains the list of principals. For a complete description of how group objects are manipulated see \texttt{nis\_groups(3NSL)}.

\textbf{Table Objects}

The NIS+ table object is analogous to a YP map. The differences stem from the access controls, and the variable schemas that NIS+ allows. The table objects data structure is defined as follows:

\begin{verbatim}
#define TA_BINARY 1
#define TA_CRYPT 2
#define TA_XDR 4
#define TA_SEARCHABLE 8
#define TA_CASE 16
#define TA_MODIFIED 32
struct table_col {
    char *tc_name;
    uint_t tc_flags;
    uint_t tc_rights;
}
typedef struct table_col table_col;
struct table_obj {
    char *ta_type;
    uint_t ta_maxcol;
    uchar_t ta_sep;
    struct {
        uint_t ta_cols_len;
        table_col *ta_cols_val;
    } ta_cols;
    char *ta_path;
}
\end{verbatim}
The \texttt{ta_type} member contains a string that identifies the type of entries in this table. NIS+ does not enforce any policies as to the contents of this string. However, when entries are added to the table, the NIS+ service will check to see that they have the same "type" as the table as specified by this member.

The structure \texttt{ta_cols} contains two members. \texttt{ta_cols_val} is an array of \texttt{table_col} structures. The length of the array depends on the number of columns in the table; it is defined when the table is created and is stored in \texttt{ta_cols_len}. \texttt{ta_maxcol} also contains the number of columns in the table and always has the same value as \texttt{ta_cols_len}. Once the table is created, this length field cannot be changed.

The \texttt{ta_sep} character is used by client applications that wish to print out an entry from the table. Typically this is either space (" ") or colon (":").

The \texttt{ta_path} string defines a concatenation path for tables. This string contains an ordered list of fully qualified table names, separated by colons, that are to be searched if a search on this table fails to match any entries. This path is only used with the flag \texttt{FOLLOW\_PATH} with a \texttt{nis\_list()} call. See \texttt{nis\_tables(3NSL)} for information on these flags.

In addition to checking the type, the service will check that the number of columns in an entry is the same as those in the table before allowing that entry to be added.

Each column has associated with it a name in \texttt{tc_name}, a set of flags in \texttt{tc\_flags}, and a set of access rights in \texttt{tc\_rights}. The name should be indicative of the contents of that column.

The \texttt{TA\_BINARY} flag indicates that data in the column is binary (rather than text). Columns that are searchable cannot contain binary data. The \texttt{TA\_CRYPT} flag specifies that the information in this column should be encrypted prior to sending it over the network. This flag has no effect in the export version of NIS+. The \texttt{TA\_XDR} flag is used to tell the client application that the data in this column is encoded using the XDR protocol. The \texttt{TA\_BINARY} flag must be specified with the XDR flag. Further, by convention, the name of a column that has the \texttt{TA\_XDR} flag set is the name of the XDR function that will decode the data in that column.

The \texttt{TA\_SEARCHABLE} flag specifies that values in this column can be searched. Searchable columns must contain textual data and must have a name associated with them. The flag \texttt{TA\_CASE} specifies that searches involving this column ignore the case of the value in the column. At least one of the columns in the table should be searchable. Also, the combination of all searchable column values should uniquely select an entry within the table. The \texttt{TA\_MODIFIED} flag is set only when the table column is modified. When \texttt{TA\_MODIFIED} is set, and the object is modified again, the modified access rights for the table column must be copied, not the default access rights.

**Entry Objects**

Entry objects are stored in tables. The structure used to define the entry data is as follows.
```c
#define EN_BINARY 1
#define EN_CRYPT 2
#define EN_XDR 4
#define EN_MODIFIED 8

struct entry_col {
 uint_t ec_flags;
 struct {
 uint_t ec_value_len;
 char *ec_value_val;
 } ec_value;
} entry_col;

typedef struct entry_col entry_col;

struct entry_obj {
 char *en_type;
 struct {
 uint_t en_cols_len;
 entry_col *en_cols_val;
 } en_cols;
} entry_obj;

The `en_type` member contains a string that specifies the type of data this entry represents. The NIS+ server will compare this string to the type string specified in the table object and disallow any updates or modifications if they differ.

The `en_cols` structure contains two members: `en_cols_len` and `en_cols_val`. `en_cols_val` is an array of `entry_col` structures. `en_cols_len` contains a count of the number of cells in the `en_cols_val` array and reflects the number of columns in the table -- it always contains the same value as the `table_obj.ta_cols.ta_cols_len` member from the table which contains the entry.

The `entry_col` structure contains information about the entry’s per-column values. `ec_value` contains information about a particular value. It has two members: `ec_value_val`, which is the value itself, and `ec_value_len`, which is the length (in bytes) of the value. `entry_col` also contains the member `ec_flags`, which contains a set of flags for the entry.

The flags in `ec_flags` are primarily used when adding or modifying entries in a table. All columns that have the flag `EN_CRYPT` set will be encrypted prior to sending them over the network. Columns with `EN_BINARY` set are presumed to contain binary data. The server will ensure that the column in the table object specifies binary data prior to allowing the entry to be added. When modifying entries in a table, only those columns that have changed need be sent to the server. Those columns should each have the `EN_MODIFIED` flag set to indicate this to the server.

SEE ALSO nis+(1), nis_groups(3NSL), nis_names(3NSL), nis_server(3NSL), nis_subr(3NSL), nis_tables(3NSL)

NOTES NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.

392 man pages section 3: Networking Library Functions • Last Revised 18 Dec 2001
nis_ping, nis_checkpoint – NIS+ log administration functions

DESCRIPTION

nis_ping() is called by the master server for a directory when a change has occurred within that directory. The parameter dirname identifies the directory with the change. If the parameter dirobj is NULL, this function looks up the directory object for dirname and uses the list of replicas it contains. The parameter utime contains the timestamp of the last change made to the directory. This timestamp is used by the replicas when retrieving updates made to the directory.

The effect of calling nis_ping() is to schedule an update on the replica. A short time after a ping is received, typically about two minutes, the replica compares the last update time for its databases to the timestamp sent by the ping. If the ping timestamp is later, the replica establishes a connection with the master server and request all changes from the log that occurred after the last update that it had recorded in its local log.

nis_checkpoint() is used to force the service to checkpoint information that has been entered in the log but has not been checkpointed to disk. When called, this function checkpoints the database for each table in the directory, the database containing the directory and the transaction log. Care should be used in calling this function since directories that have seen a lot of changes may take several minutes to checkpoint. During the checkpointing process, the service will be unavailable for updates for all directories that are served by this machine as master.

nis_checkpoint() returns a pointer to a nis_result structure. See nis_tables(3NSL). This structure should be freed with nis_freeresult(). See nis_names(3NSL). The only items of interest in the returned result are the status value and the statistics.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

nislog(1M), nis_names(3NSL), nis_tables(3NSL), nisfiles(4), attributes(5)

NOTES

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
These functions provide a variety of services for NIS+ applications.

nis_mkdir() is used to create the necessary databases to support NIS+ service for a directory, dirname, on a server, machine. If this operation is successful, it means that the directory object describing dirname has been updated to reflect that server machine is serving the named directory. For a description of the nis_server structure, refer to nis_objects(3NSL).

Per-server and per-directory access restrictions may apply to nis_mkdir(). See nisopaccess(1).

nis_rmdir() is used to delete the directory, dirname, from the specified server machine. The machine parameter cannot be NULL. Note that nis_rmdir() does not remove the directory dirname from the namespace or remove a server from the server list in the directory object. To remove a directory from the namespace you must call nis_remove() to remove the directory dirname from the namespace and call nis_rmdir() for each server in the server list to remove the directory from the server. To remove a replica from the server list, you need to first call nis_modify() to remove the server from the directory object and then call nis_rmdir() to remove the replica.

Per-server and per-directory access restrictions may apply to nis_rmdir(). See nisopaccess(1).

For a description of the nis_server structure, refer to nis_objects(3NSL).

nis_servstate() is used to set and read the various state variables of the NIS+ servers. In particular the internal debugging state of the servers may be set and queried.
The nis_stats() function is used to retrieve statistics about how the server is operating. Tracking these statistics can help administrators determine when they need to add additional replicas or to break up a domain into two or more subdomains. For more information on reading statistics, see nisstat(1M).

nis_servstate() and nis_stats() use the tag list. This tag list is a variable length array of nis_tag structures whose length is passed to the function in the numtags parameter. The set of legal tags are defined in the file <rpcsvc/nis_tags.h> which is included in <rpcsvc/nis.h>. Because these tags can and do vary between implementations of the NIS+ service, it is best to consult this file for the supported list. Passing unrecognized tags to a server will result in their tag_value member being set to the string “unknown.” Both of these functions return their results in malloced tag structure, *result. If there is an error, *result is set to NULL. The tag_value pointers points to allocated string memory which contains the results. Use nis_freetags() to free the tag structure.

Per-server and per-directory access restrictions may apply to the NIS_SERVSTATE or NIS_STATUS(nis_stats()) operations and their sub-operations (tags). See nisopaccess(1).

nis_getservlist() returns a null terminated list of nis_server structures that represent the list of servers that serve the domain named dirname. Servers from this list can be used when calling functions that require the name of a NIS+ server. For a description of the nis_server refer to nis_objects(3NSL).

nis_freeservlist() frees the list of servers list of servers returned by nis_getservlist(). Note that this is the only legal way to free that list.

ATTRIBUTES

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

nisopaccess(1), nisstat(1M), nis_names(3NSL), nis_objects(3NSL), nis_subr(3NSL), attributes(5)

NOTES

NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nis_subr(3NSL)

NAME
nis_subr, nis_leaf_of, nis_name_of, nis_domain_of, nis_getnames, nis_freenames,
nis_dir_cmp, nis_clone_object, nis_destroy_object, nis_print_object – NIS+ subroutines

SYNOPSIS
cc [flag ...] file ... -lnsl [library ...]
#include <rpcsvc/nis.h>
nis_name nis_leaf_of(const nis_name name);
nis_name nis_name_of(const nis_name name);
nis_name nis_domain_of(const nis_name name);
nis_name *nis_getnames(const nis_name name);
void nis_freenames(nis_name *namelist);
name_pos nis_dir_cmp(const nis_name n1, const nis_name n2);
nis_object *nis_clone_object(const nis_object *src, nis_object *dest);
void nis_destroy_object(nis_object *obj);
void nis_print_object(const nis_object *obj);

DESCRIPTION
These subroutines are provided to assist in the development of NIS+ applications. They provide several useful operations on both NIS+ names and objects.

The first group, nis_leaf_of(), nis_domain_of(), and nis_name_of() provide the functions for parsing NIS+ names. nis_leaf_of() will return the first label in an NIS+ name. It takes into account the double quote character ‘’ which can be used to protect embedded ‘.’ (dot) characters in object names. Note that the name returned will never have a trailing dot character. If passed the global root directory name ‘.’, it will return the null string.

nis_domain_of() returns the name of the NIS+ domain in which an object resides. This name will always be a fully qualified NIS+ name and ends with a dot. By iteratively calling nis_leaf_of() and nis_domain_of() it is possible to break a NIS+ name into its individual components.

nis_name_of() is used to extract the unique part of a NIS+ name. This function removes from the tail portion of the name all labels that are in common with the local domain. Thus if a machine were in domain foo.bar.baz. and nis_name_of() were passed a name bob.friends.foo.bar.baz, then nis_name_of() would return the unique part, bob.friends. If the name passed to this function is not in either the local domain or one of its children, this function will return null.

nis_getnames() will return a list of candidate names for the name passed in as name. If this name is not fully qualified, nis_getnames() will generate a list of names using the default NIS+ directory search path, or the environment variable NIS_PATH if it is set. The returned array of pointers is terminated by a null pointer, and the memory associated with this array should be freed by calling nis_freenames().
Though \texttt{nis_dir_cmp()} can be used to compare any two NIS+ names, it is used primarily to compare domain names. This comparison is done in a case independent fashion, and the results are an enum of type \texttt{name_pos}. When the names passed to this function are identical, the function returns a value of \texttt{SAME_NAME}. If the name \texttt{n1} is a direct ancestor of name \texttt{n2}, then this function returns the result \texttt{HIGHER_NAME}. Similarly, if the name \texttt{n1} is a direct descendant of name \texttt{n2}, then this function returns the result \texttt{LOWER_NAME}. When the name \texttt{n1} is neither a direct ancestor nor a direct descendant of \texttt{n2}, as it would be if the two names were siblings in separate portions of the namespace, then this function returns the result \texttt{NOT_SEQUENTIAL}. Finally, if either name cannot be parsed as a legitimate name then this function returns the value \texttt{BAD_NAME}.

The second set of functions, consisting of \texttt{nis_clone_object()} and \texttt{nis_destroy_object()}, are used for manipulating objects. \texttt{nis_clone_object()} creates an exact duplicate of the NIS+ object \texttt{src}. If the value of \texttt{dest} is non-null, it creates the clone of the object into this object structure and allocate the necessary memory for the variable length arrays. If this parameter is null, a pointer to the cloned object is returned. Refer to \texttt{nis_objects(3NSL)} for a description of the \texttt{nis_object} structure.

\texttt{nis_destroy_object()} can be used to destroy an object created by \texttt{nis_clone_object().} This will free up all memory associated with the object and free the pointer passed. If the object was cloned into an array using the \texttt{dest} parameter to \texttt{nis_clone_object()}, then the object \texttt{cannot} be freed with this function. Instead, the function \texttt{xdr_free(xdr_nis_object, dest)} must be used.

\texttt{nis_print_object()} prints out the contents of a NIS+ object structure on the standard output. Its primary use is for debugging NIS+ programs.

\texttt{nis_leaf_of()}, \texttt{nis_name_of()} and \texttt{nis_clone_object()} return their results as thread-specific data in multithreaded applications.

\begin{tabular}{|l|l|}
\hline
\textbf{ENVIRONMENT VARIABLES} & \textbf{ATTRIBUTES} \\
\hline
\texttt{NIS_PATH} & See attributes\texttt{(5)} for descriptions of the following attributes: \\
\hline
\texttt{NIS_PATH} & \begin{tabular}{|l|l|}
\hline
\textbf{ATTRIBUTE TYPE} & \textbf{ATTRIBUTE VALUE} \\
\hline
MT-Level & Safe \\
\end{tabular} \\
\hline
\end{tabular}

\textbf{SEE ALSO} \texttt{nis_names(3NSL), nis_objects(3NSL), nis_tables(3NSL), attributes(5)}
NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
NAME

nis_tables, nis_list, nis_add_entry, nis_remove_entry, nis_modify_entry, nis_first_entry,
nis_next_entry – NIS+ table functions

SYNOPSIS

cc [flag ...] file ... -lnsl [library ...]
#include <rpcsvc/nis.h>

nis_result *nis_list(nis_name name, uint_t flags, int (*callback)(nis_name table_name, nis_object *object, void *userdata), void *userdata);
nis_result *nis_add_entry(nis_name table_name, nis_object *object, uint_t flags);
nis_result *nis_remove_entry(nis_name name, nis_object *object, uint_t flags);
nis_result *nis_modify_entry(nis_name name, nis_object *object, uint_t flags);
nis_result *nis_first_entry(nis_name table_name);
nis_result *nis_next_entry(nis_name table_name, netobj *cookie);
void nis_freeresult(nis_result *result);

DESCRIPTION

Use the NIS+ table functions to search and modify NIS+ tables. nis_list() is used
to search a table in the NIS+ namespace. nis_first_entry() and
nis_next_entry() are used to enumerate a table one entry at a time.
nis_add_entry(), nis_remove_entry(), and nis_modify_entry() are used
to change the information stored in a table. nis_freeresult() is used to free the
memory associated with the nis_result structure.

Entries within a table are named by NIS+ indexed names. An indexed name is a
compound name that is composed of a search criteria and a simple NIS+ name that
identifies a table object. A search criteria is a series of column names and their
associated values enclosed in bracket ‘[]’ characters. Indexed names have the
following form:

[colname=value, . . .], tablename

The list function, nis_list(), takes an indexed name as the value for the name
parameter. Here, the tablename should be a fully qualified NIS+ name unless the
EXPAND_NAME flag (described below) is set. The second parameter, flags, defines how
the function will respond to various conditions. The value for this parameter is created
by logically ORing together one or more flags from the following list.

FOLLOW_LINKS If the table specified in name resolves to a LINK type object (see
nis_objects(3NSL)), this flag specifies that the client library
follow that link and do the search at that object. If this flag is not
set and the name resolves to a link, the error
NIS_NOTSEARCHABLE will be returned.

FOLLOW_PATH This flag specifies that if the entry is not found within this table,
the list operation should follow the path specified in the table
object. When used in conjunction with the ALL_RESULTS flag below, it specifies that the path should be followed regardless of the result of the search. When used in conjunction with the FOLLOW_LINKS flag above, named tables in the path that resolve to links will be followed until the table they point to is located. If a table in the path is not reachable because no server that serves it is available, the result of the operation will be either a “soft” success or a “soft” failure to indicate that not all tables in the path could be searched. If a name in the path names is either an invalid or non-existent object then it is silently ignored.

HARD_LOOKUP This flag specifies that the operation should continue trying to contact a server of the named table until a definitive result is returned (such as NIS_NOTFOUND).

ALL_RESULTS This flag can only be used in conjunction with FOLLOW_PATH and a callback function. When specified, it forces all of the tables in the path to be searched. If name does not specify a search criteria (imply that all entries are to be returned), then this flag will cause all of the entries in all of the tables in the path to be returned.

NO_CACHE This flag specifies that the client library should bypass any client object caches and get its information directly from either the master server or a replica server for the named table.

MASTER_ONLY This flag is even stronger than NO_CACHE in that it specifies that the client library should only get its information from the master server for a particular table. This guarantees that the information will be up to date. However, there may be severe performance penalties associated with contacting the master server directly on large networks. When used in conjunction with the HARD_LOOKUP flag, this will block the list operation until the master server is up and available.

EXPAND_NAME When specified, the client library will attempt to expand a partially qualified name by calling nis_getnames(), which uses the environment variable NIS_PATH. See nis_local_names(3NSL).

RETURN_RESULT This flag is used to specify that a copy of the returning object be returned in the nis_result structure if the operation was successful.

The third parameter to nis_list(), callback, is an optional pointer to a function that will process the ENTRY type objects that are returned from the search. If this pointer is NULL, then all entries that match the search criteria are returned in the nis_result structure, otherwise this function will be called once for each entry returned. When called, this function should return 0 when additional objects are desired and 1 when it
The fourth parameter, *userdata*, is simply passed to callback function along with the returned entry object. The client can use this pointer to pass state information or other relevant data that the callback function might need to process the entries.

The *nis_list()* function is not MT-Safe with callbacks.

nis_add_entry() will add the NIS+ object to the NIS+ *table_name*. The *flags* parameter is used to specify the failure semantics for the add operation. The default (*flags* equal 0) is to fail if the entry being added already exists in the table. The *ADD_OVERWRITE* flag may be used to specify that existing object is to be overwritten if it exists, (a modify operation) or added if it does not exist. With the *ADD_OVERWRITE* flag, this function will fail with the error *NIS_PERMISSION* if the existing object does not allow modify privileges to the client.

If the flag *RETURN_RESULT* has been specified, the server will return a copy of the resulting object if the operation was successful.

nis_remove_entry() removes the identified entry from the table or a set of entries identified by *table_name*. If the parameter *object* is non-null, it is presumed to point to a cached copy of the entry. When the removal is attempted, and the object that would be removed is not the same as the cached object pointed to by *object* then the operation will fail with an *NIS_NOTSAMEOBJ* error. If an object is passed with this function, the search criteria in name is optional as it can be constructed from the values within the entry. However, if no object is present, the search criteria must be included in the *name* parameter. If the *flags* variable is null, and the search criteria does not uniquely identify an entry, the *NIS_NOTUNIQUE* error is returned and the operation is aborted. If the flag parameter *REM_MULTIPLE* is passed, and if remove permission is allowed for each of these objects, then all objects that match the search criteria will be removed. Note that a null search criteria and the *REM_MULTIPLE* flag will remove all entries in a table.

nis_modify_entry() modifies an object identified by *name*. The parameter *object* should point to an entry with the *EN_MODIFIED* flag set in each column that contains new information.

The owner, group, and access rights of an entry are modified by placing the modified information into the respective fields of the parameter, *object*: *zo_owner*, *zo_group*, and *zo_access*.

These columns will replace their counterparts in the entry that is stored in the table. The entry passed must have the same number of columns, same type, and valid data in the modified columns for this operation to succeed.
If the flags parameter contains the flag MODSAMEOBJ then the object pointed to by object is assumed to be a cached copy of the original object. If the OID of the object passed is different than the OID of the object the server fetches, then the operation fails with the NISNOTSAMEOBJ error. This can be used to implement a simple read-modify-write protocol which will fail if the object is modified before the client can write the object back.

If the flag RETURN_RESULT has been specified, the server will return a copy of the resulting object if the operation was successful.

nis_first_entry() fetches entries from a table one at a time. This mode of operation is extremely inefficient and callbacks should be used instead wherever possible. The table containing the entries of interest is identified by name. If a search criteria is present in name it is ignored. The value of cookie within the nis_result structure must be copied by the caller into local storage and passed as an argument to nis_next_entry().

nis_next_entry() retrieves the “next” entry from a table specified by table_name. The order in which entries are returned is not guaranteed. Further, should an update occur in the table between client calls to nis_next_entry() there is no guarantee that an entry that is added or modified will be seen by the client. Should an entry be removed from the table that would have been the “next” entry returned, the error NIS_CHAINBROKEN is returned instead.

The path used when the flag FOLLOW_PATH is specified, is the one present in the first table searched. The path values in tables that are subsequently searched are ignored.

It is legal to call functions that would access the nameservice from within a list callback. However, calling a function that would itself use a callback, or calling nis_list() with a callback from within a list callback function is not currently supported.

There are currently no known methods for nis_first_entry() and nis_next_entry() to get their answers from only the master server.

The nis_list() function is not MT-Safe with callbacks. nis_list() callbacks are serialized. A call to nis_list() with a callback from within nis_list() will deadlock. nis_list() with a callback cannot be called from an rpc server. See rpc_svc_calls(3NSL). Otherwise, this function is MT-Safe.

RETURN VALUES

These functions return a pointer to a structure of type nis_result:

```c
struct nis_result {
    nis_error     status;
    struct {
        uint_t   objects_len;
        nis_object *objects_val;
    } objects;
    netobj    cookie;
    uint32_t  zticks;
    uint32_t  dticks;
};
```

nis_tables(3NSL)
The status member contains the error status of the operation. A text message that describes the error can be obtained by calling the function nis_sperrno(). See nis_error(3NSL).

The objects structure contains two members. objects_val is an array of nis_object structures; objects_len is the number of cells in the array. These objects will be freed by a call to nis_freeresult(). See nis_names(3NSL). If you need to keep a copy of one or more objects, they can be copied with the function nis_clone_object() and freed with the function nis_destroy_object(). See nis_server(3NSL).

The various ticks contain details of where the time, in microseconds, was taken during a request. They can be used to tune one’s data organization for faster access and to compare different database implementations.

zticks The time spent in the NIS+ service itself, this count starts when the server receives the request and stops when it sends the reply.

dticks The time spent in the database backend, this time is measured from the time a database call starts, until a result is returned. If the request results in multiple calls to the database, this is the sum of all the time spent in those calls.

aticks The time spent in any "accelerators" or caches. This includes the time required to locate the server needed to resolve the request.

cticks The total time spent in the request, this clock starts when you enter the client library and stops when a result is returned. By subtracting the sum of the other ticks values from this value you can obtain the local overhead of generating a NIS+ request.

Subtracting the value in dticks from the value in zticks will yield the time spent in the service code itself. Subtracting the sum of the values in zticks and aticks from the value in cticks will yield the time spent in the client library itself. Note: all of the tick times are measured in microseconds.

ERRORS

The client library can return a variety of error returns and diagnostics. The more salient ones are documented below.

NIS_BADATTRIBUTE The name of an attribute did not match up with a named column in the table, or the attribute did not have an associated value.

NIS_BADNAME The name passed to the function is not a legal NIS+ name.

NIS_BADREQUEST A problem was detected in the request structure passed to the client library.
NIS_CACHEEXPIRED
The entry returned came from an object cache that has *expired*. This means that the time to live value has gone to zero and the entry may have changed. If the flag NO_CACHE was passed to the lookup function then the lookup function will retry the operation to get an unexpired copy of the object.

NIS_CBERORROR
An RPC error occurred on the server while it was calling back to the client. The transaction was aborted at that time and any unsent data was discarded.

NIS_CBRESULTS
Even though the request was successful, all of the entries have been sent to your callback function and are thus not included in this result.

NIS_FOREIGNNS
The name could not be completely resolved. When the name passed to the function would resolve in a namespace that is outside the NIS+ name tree, this error is returned with a NIS+ object of type DIRECTORY. The returned object contains the type of namespace and contact information for a server within that namespace.

NIS_INVALIDOBJ
The object pointed to by *object* is not a valid NIS+ entry object for the given table. This could occur if it had a mismatched number of columns, or a different data type than the associated column in the table, for example, binary or text.

NIS_LINKNAMEERROR
The name passed resolved to a LINK type object and the contents of the object pointed to an invalid name.

NIS_MODFAIL
The attempted modification failed for some reason.

NIS_NAMEEXISTS
An attempt was made to add a name that already exists. To add the name, first remove the existing name and then add the new name or modify the existing named object.

NIS_NAMEUNREACHABLE
This soft error indicates that a server for the desired directory of the named table object could not be reached. This can occur when there is a network partition or the server has crashed. Attempting the operation again may succeed. See the HARD_LOOKUP flag.

NIS_NOCALLBACK
The server was unable to contact the callback service on your machine. This results in no data being returned.

NIS_NOMEMORY
Generally a fatal result. It means that the service ran out of heap space.
NIS_NOSUCHNAME
This hard error indicates that the named directory of the table object does not exist. This occurs when the server that should be the parent of the server that serves the table, does not know about the directory in which the table resides.

NIS_NOSUCHTABLE
The named table does not exist.

NIS_NOT_ME
A request was made to a server that does not serve the given name. Normally this will not occur, however if you are not using the built in location mechanism for servers, you may see this if your mechanism is broken.

NIS_NOTFOUND
No entries in the table matched the search criteria. If the search criteria was null (return all entries) then this result means that the table is empty and may safely be removed by calling the `nis_remove()`. If the FOLLOW_PATH flag was set, this error indicates that none of the tables in the path contain entries that match the search criteria.

NIS_NOTMASTER
A change request was made to a server that serves the name, but it is not the master server. This can occur when a directory object changes and it specifies a new master server. Clients that have cached copies of the directory object in the `/var/nis/NIS_SHARED_DIRCACHE` file will need to have their cache managers restarted to flush this cache. Use `nis_cachemgr -i`.

NIS_NOTSAMEOBJ
An attempt to remove an object from the namespace was aborted because the object that would have been removed was not the same object that was passed in the request.

NIS_NOTSEARCHABLE
The table name resolved to a NIS+ object that was not searchable.

NIS_PARTIAL
This result is similar to `NIS_NOTFOUND` except that it means the request succeeded but resolved to zero entries. When this occurs, the server returns a copy of the table object instead of an entry so that the client may then process the path or implement some other local policy.

NIS_RPCERROR
This fatal error indicates the RPC subsystem failed in some way. Generally there will be a `syslog(3C)` message indicating why the RPC request failed.
NIS_S_NOTFOUND The named entry does not exist in the table, however not all tables in the path could be searched, so the entry may exist in one of those tables.

NIS_S_SUCCESS Even though the request was successful, a table in the search path was not able to be searched, so the result may not be the same as the one you would have received if that table had been accessible.

NIS_SUCCESS The request was successful.

NIS_SYSTEMERROR Some form of generic system error occurred while attempting the request. Check the syslog(3C) record for error messages from the server.

NIS_TOOMANYATTRS The search criteria passed to the server had more attributes than the table had searchable columns.

NIS_TRYAGAIN The server connected to was too busy to handle your request. add_entry(), remove_entry(), and modify_entry() return this error when the master server is currently updating its internal state. It can be returned to nis_list() when the function specifies a callback and the server does not have the resources to handle callbacks.

NIS_TYPEMISMATCH An attempt was made to add or modify an entry in a table, and the entry passed was of a different type than the table.

ENVIRONMENT VARIABLES

NIS_PATH When set, this variable is the search path used by nis_list() if the flag EXPAND_NAME is set.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe with exceptions</td>
</tr>
</tbody>
</table>

SEE ALSO

niscat(1), niserror(1), nismatch(1), nis_cachemgr(1M),
nis_clone_object(3NSL), n, nis_destroy_object(3NSL), nis_error(3NSL),
nis_getnames(3NSL), nis_local_names(3NSL), nis_names(3NSL),
nis_objects(3NSL), nis_server(3NSL), rpc_svc_calls(3NSL), syslog(3C),
attributes(5)

WARNINGS Use the flag HARD_LOOKUP carefully since it can cause the application to block indefinitely during a network partition.
NIS+ might not be supported in future releases of the Solaris™ Operating Environment. Tools to aid the migration from NIS+ to LDAP are available in the Solaris 9 operating environment. For more information, visit http://www.sun.com/directory/nisplus/transition.html.
nlsgetcall(3NSL)

NAME nlsgetcall – get client’s data passed via the listener

SYNOPSIS
```
#include <sys/tiuser.h>
struct t_call *nlsgetcall(int fildes);
```

DESCRIPTION nlsgetcall() allows server processes started by the listener process to access the client’s t_call structure, that is, the sndcall argument of t_connect(3NSL).

The t_call structure returned by nlsgetcall() can be released using t_free(3NSL).

nlsgetcall() returns the address of an allocated t_call structure or NULL if a t_call structure cannot be allocated. If the t_alloc() succeeds, undefined environment variables are indicated by a negative len field in the appropriate netbuf structure. A len field of zero in the netbuf structure is valid and means that the original buffer in the listener’s t_call structure was NULL.

RETURN VALUES A NULL pointer is returned if a t_call structure cannot be allocated by t_alloc(). t_errno can be inspected for further error information. Undefined environment variables are indicated by a negative length field (len) in the appropriate netbuf structure.

FILES
```
/usr/lib/libnsl_s.a
/usr/lib/libslan.a
/usr/lib/libnls.a
```

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

SEE ALSO nlsadmin(1M), getenv(3C), t_alloc(3NSL), t_connect(3NSL), t_error(3NSL), t_free(3NSL), t_sync(3NSL), attributes(5)

WARNINGS The len field in the netbuf structure is defined as being unsigned. In order to check for error returns, it should first be cast to an int.

The listener process limits the amount of user data (udata) and options data (opt) to 128 bytes each. Address data addr is limited to 64 bytes. If the original data was longer, no indication of overflow is given.

NOTES Server processes must call t_sync(3NSL) before calling this routine.

This interface is unsafe in multithreaded applications. Unsafe interfaces should be called only from the main thread.
NAME nlsprovider – get name of transport provider

SYNOPSIS char *nlsprovider(void);

DESCRIPTION nlsprovider() returns a pointer to a null-terminated character string which contains the name of the transport provider as placed in the environment by the listener process. If the variable is not defined in the environment, a NULL pointer is returned.

The environment variable is only available to server processes started by the listener process.

RETURN VALUES If the variable is not defined in the environment, a NULL pointer is returned.

FILES /usr/lib/libslan.a (7300)
 /usr/lib/libnls.a (3B2
 Computer)
 /usr/lib/libnsl_s.a

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

SEE ALSO nlsadmin(1M), attributes(5)

NOTES This interface is unsafe in multithreaded applications. Unsafe interfaces should be called only from the main thread.
nlsrequest(3NSL)

NAME | nlsrequest – format and send listener service request message

SYNOPSIS |
```c
#include <listen.h>

int nlsrequest(int fildes, char *service_code);
extern int _nlslogt_errno;
extern char * _nlsrmsg;
```

DESCRIPTION | Given a virtual circuit to a listener process (fildes) and a service code of a server process, nlsrequest() formats and sends a service request message to the remote listener process requesting that it start the given service. nlsrequest() waits for the remote listener process to return a service request response message, which is made available to the caller in the static, null-terminated data buffer pointed to by _nlsrmsg. The service request response message includes a success or failure code and a text message. The entire message is printable.

RETURN VALUES | The success or failure code is the integer return code from nlsrequest(). Zero indicates success, other negative values indicate nlsrequest() failures as follows:

-1 | Error encountered by nlsrequest(), see t_errno.

Positive values are error return codes from the listener process. Mnemonics for these codes are defined in <listen.h>.

2 | Request message not interpretable.

3 | Request service code unknown.

4 | Service code known, but currently disabled.

If non-null, _nlsrmsg contains a pointer to a static, null-terminated character buffer containing the service request response message. Note that both _nlsrmsg and the data buffer are overwritten by each call to nlsrequest().

If _nlslog is non-zero, nlsrequest() prints error messages on stderr. Initially, _nlslog is zero.

FILES |
- /usr/lib/libnls.a
- /usr/lib/libslan.a
- /usr/lib/libnsl_s.a

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

SEE ALSO | nlsadmin(1M), t_error(3NSL), t_snd(3NSL), t_rcv(3NSL), attributes(5)
| WARNINGS | nlsrequest() cannot always be certain that the remote server process has been successfully started. In this case, nlsrequest() returns with no indication of an error and the caller will receive notification of a disconnect event by way of a T_LOOK error before or during the first t_snd() or t_rcv() call. |
| NOTES | These interfaces are unsafe in multithreaded applications. Unsafe interfaces should be called only from the main thread. |
rcmd(3SOCKET)

NAME
rcmd, rcmd_af, rresvport, rresvport_af, ruserok – routines for returning a stream to a remote command

SYNOPSIS
cc [flag ...] file ... -lsocket -lnsl [library ...]

int rcmd(char **ahost, unsigned short inport, const char *luser, const char *ruser, const char *cmd, int *fd2p);
int rcmd_af(char **ahost, unsigned short inport, const char *luser, const char *ruser, const char *cmd, int *fd2p, int af);
int rresvport(int *port);
int rresvport_af(int *port, int af);
int ruserok(const char *rhost, int suser, const char *ruser, const char *luser);

DESCRIPTION
rcmd() is a routine used by the superuser to execute a command on a remote machine using an authentication scheme based on reserved port numbers. It is assumed that an AF_INET socket is returned with rcmd(). rcmd_af() allows the application to choose which type of socket is returned by passing in the address family, either AF_INET or AF_INET6.

rresvport() is a routine that returns a descriptor to a socket with an address in the privileged port space. rresvport_af() is equivalent to rresvport(), except that you can choose the type of socket address family that will be returned by rresvport_af(), either AF_INET or AF_INET6.

ruserok() is a routine used by servers to authenticate clients requesting service with rcmd.

All of these functions are present in the same file and are used by the in.rshd(1M) server (among others).

rcmd() and rcmd_af() look up the host *ahost using getipnodebyname(3SOCKET), returning −1 if the host does not exist. Otherwise *ahost is set to the standard name of the host and a connection is established to a server residing at the well-known Internet port inport.

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is returned to the caller, and given to the remote command as its standard input (file descriptor 0) and standard output (file descriptor 1). If fd2p is non-zero, then an auxiliary channel to a control process will be set up, and a descriptor for it will be placed in *fd2p. The control process will return diagnostic output from the command (file descriptor 2) on this channel, and will also accept bytes on this channel as signal numbers, to be forwarded to the process group of the command. If fd2p is 0, then the standard error (file descriptor 2) of the remote command will be made the same as its standard output and no provision is made for sending arbitrary signals to the remote process, although you may be able to get its attention by using out-of-band data.

The protocol is described in detail in in.rshd(1M).
The `resvport()` and `resvport_af()` routines are used to obtain a socket bound to a privileged port number. This socket is suitable for use by `rcmd()` and `resvport_af()` and several other routines. Privileged Internet ports are those in the range 1 to 1023. Only the superuser is allowed to bind a socket to a privileged port number. The application must pass in `port`, which must be in the range 512 to 1023. The system first tries to bind to that port number. If it fails, the system then tries to bind to another unused privileged port, if one is available.

`ruserok()` takes a remote host’s name, as returned by a `gethostbyaddr()` routine, two user names and a flag indicating whether the local user’s name is that of the superuser. See `gethostbyname(3NSL)`. It then checks the files `/etc/hosts.equiv` and possibly `.rhosts` in the local user’s home directory to see if the request for service is allowed. 0 is returned if the machine name is listed in the `/etc/hosts.equiv` file, or the host and remote user name are found in the `.rhosts` file; otherwise `ruserok()` returns −1. If the superuser flag is 1, the checking of the `/etc/hosts.equiv` file is bypassed.

RETURN VALUES

`rcmd()` and `rcmd_af()` return a valid socket descriptor upon success. They return −1 upon error and print a diagnostic message to standard error.

`resvport()` and `resvport_af()` return a valid, bound socket descriptor upon success. They return −1 upon error with the global value `errno` set according to the reason for failure.

FILES

/etc/hosts.equiv system trusted hosts and users

-/.rhosts user’s trusted hosts and users

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

SEE ALSO

`rlogin(1), rsh(1), in.rexecd(1M), in.rshd(1M), intro(2),
gethostbyname(3NSL), getipnodebyname(3SOCKET), rexec(3SOCKET), attributes(5)`

NOTES

The error code `EAGAIN` is overloaded to mean “All network ports in use.”

These interfaces are unsafe in multithreaded applications. Unsafe interfaces should be called only from the main thread.
recv(3SOCKET)

NAME
recv, recvfrom, recvmsg – receive a message from a socket

SYNOPSIS
cc [flag ...] file ... -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/uio.h>
ssize_t recv(int s, void *buf, size_t len, int flags);
ssize_t recvfrom(int s, void *buf, size_t len, int flags, struct sockaddr *from, int *fromlen);
ssize_t recvmsg(int s, struct msghdr *msg, int flags);

DESCRIPTION
recv(), recvfrom(), and recvmsg() are used to receive messages from another
socket. recv() may be used only on a connected socket (see connect(3SOCKET)),
while recvfrom() and recvmsg() may be used to receive data on a socket whether
it is in a connected state or not. s is a socket created with socket(3SOCKET).

If from is not a NULL pointer, the source address of the message is filled in. fromlen is a
value-result parameter, initialized to the size of the buffer associated with from, and
modified on return to indicate the actual size of the address stored there. The length of
the message is returned. If a message is too long to fit in the supplied buffer, excess
bytes may be discarded depending on the type of socket the message is received from.
See socket(3SOCKET).

If no messages are available at the socket, the receive call waits for a message to arrive,
unless the socket is nonblocking, in which case -1 is returned with the external
variable errno set to EWOULDBLOCK. See fcntl(2).

The select() call may be used to determine when more data arrives.

The flags parameter is formed by ORing one or more of the following:

MSG_OOB Read any “out-of-band” data present on the socket rather than the
regular “in-band” data.

MSG_PEEK “Peek” at the data present on the socket; the data is returned, but
not consumed, so that a subsequent receive operation will see the
same data.

The recvmsg() call uses a msghdr structure to minimize the number of directly
supplied parameters. This structure is defined in <sys/socket.h> and includes the
following members:
caddr_t msg_name; /* optional address */
int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
caddr_t msg_accrights; /* access rights sent/received */
int msg_accrightslen;
Here `msg_name` and `msg_namelen` specify the destination address if the socket is unconnected; `msg_name` may be given as a NULL pointer if no names are desired or required. The `msg_iov` and `msg_iovlen` describe the scatter-gather locations, as described in `read(2)`. A buffer to receive any access rights sent along with the message is specified in `msg_accrights`, which has length `msg_accrightslen`.

RETURN VALUES
These calls return the number of bytes received, or −1 if an error occurred.

ERRORS
The `recv()`, `recvfrom()`, and `recvmsg()` functions will fail if:

- **EBADF** `s` is an invalid file descriptor.
- **EINVAL** The `MSG_OOB` flag is set and no out-of-band data is available.
- **EINVAL** The `len` argument overflowed a `ssize_t`.
- **EINVAL** Either one of the `iov_len` values in the `msg_iov` array member of the `msghdr` structure pointed to by `msg` was negative, or the sum of the `iov_len` values in the `msg_iov` array overflowed a `ssize_t`.
- **EINTR** The operation was interrupted by delivery of a signal before any data was available to be received.
- **EIO** An I/O error occurred while reading from or writing to the file system.
- **ENOMEM** There was insufficient user memory available for the operation to complete.
- **ENOSR** There were insufficient STREAMS resources available for the operation to complete.
- **ENOTSOCK** `s` is not a socket.
- **ESTALE** A stale NFS file handle exists.
- **EWOULDBLOCK** The socket is marked non-blocking and the requested operation would block.

The `recv()` and `recvfrom()` functions will fail if:

- **EINVAL** The `msg_iovlen` member of the `msghdr` structure pointed to by `msg` is less than or equal to 0, or greater than `IOV_MAX`. See `Intro(2)` for a definition of `IOV_MAX`.

The `recvmsg()` function will fail if:

- **EINVAL** Either one of the `iov_len` values in the `msg_iov` array member of the `msghdr` structure pointed to by `msg` was negative, or the sum of the `iov_len` values in the `msg_iov` array overflowed a `ssize_t`.

ATTRIBUTES
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>
recv – receive a message from a connected socket

DESCRIPTION

The recv() function receives a message from a connection-mode or connectionless-mode socket. It is normally used with connected sockets because it does not permit the application to retrieve the source address of received data. The function takes the following arguments:

- **socket**: Specifies the socket file descriptor.
- **buffer**: Points to a buffer where the message should be stored.
- **length**: Specifies the length in bytes of the buffer pointed to by the buffer argument.
- **flags**: Specifies the type of message reception. Values of this argument are formed by logically OR’ing zero or more of the following values:
 - **MSG_PEEK**: Peeks at an incoming message. The data is treated as unread and the next recv() or similar function will still return this data.
 - **MSG_OOB**: Requests out-of-band data. The significance and semantics of out-of-band data are protocol-specific.
 - **MSG_WAITALL**: Requests that the function block until the full amount of data requested can be returned. The function may return a smaller amount of data if a signal is caught, if the connection is terminated, if MSG_PEEK was specified, or if an error is pending for the socket.

The recv() function returns the length of the message written to the buffer pointed to by the buffer argument. For message-based sockets such as SOCK_DGRAM and SOCK_SEQPACKET, the entire message must be read in a single operation. If a message is too long to fit in the supplied buffer, and MSG_PEEK is not set in the flags argument, the excess bytes are discarded. For stream-based sockets such as SOCK_STREAM, message boundaries are ignored. In this case, data is returned to the user as soon as it becomes available, and no data is discarded.

If the MSG_WAITALL flag is not set, data will be returned only up to the end of the first message.
If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file descriptor, `recv()` blocks until a message arrives. If no messages are available at the socket and O_NONBLOCK is set on the socket’s file descriptor, `recv()` fails and sets `errno` to EAGAIN or EWOULDBLOCK.

USAGE

The `recv()` function is identical to `recvfrom(3XNET)` with a zero `address_len` argument, and to `read()` if no flags are used.

The `select(3C)` and `poll(2)` functions can be used to determine when data is available to be received.

RETURN VALUES

Upon successful completion, `recv()` returns the length of the message in bytes. If no messages are available to be received and the peer has performed an orderly shutdown, `recv()` returns 0. Otherwise, –1 is returned and `errno` is set to indicate the error.

ERRORS

The `recv()` function will fail if:

- **EAGAIN**
 - The socket’s file descriptor is marked O_NONBLOCK and no data is waiting to be received; or MSG_OOB is set and no out-of-band data is available and either the socket’s file descriptor is marked O_NONBLOCK or the socket does not support blocking to await out-of-band data.

- **EBADF**
 - The socket argument is not a valid file descriptor.

- **ECONNRESET**
 - A connection was forcibly closed by a peer.

- **EFAULT**
 - The `buffer` parameter can not be accessed or written.

- **EINVAL**
 - The MSG_OOB flag is set and no out-of-band data is available.

- **ENOTCONN**
 - A receive is attempted on a connection-mode socket that is not connected.

- **ENOTSOCK**
 - The `socket` argument does not refer to a socket.

- **EOPNOTSUPP**
 - The specified flags are not supported for this socket type or protocol.

- **ETIMEDOUT**
 - The connection timed out during connection establishment, or due to a transmission timeout on active connection.

The `recv()` function may fail if:
An I/O error occurred while reading from or writing to the file system.

ENOBUFFS Insufficient resources were available in the system to perform the operation.

ENOMEM Insufficient memory was available to fulfill the request.

ENOSR There were insufficient STREAMS resources available for the operation to complete.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO poll(2), recvmsg(3XNET), recvfrom(3XNET), select(3C), send(3XNET), sendmsg(3XNET), sendto(3XNET), shutdown(3XNET), socket(3XNET), attributes(5)
recvfrom(3XNET)

NAME recvfrom – receive a message from a socket

SYNOPSIS

```
#include <sys/socket.h>
ssize_t recvfrom(int socket, void *buffer, size_t length, int flags,
          struct sockaddr *address, socklen_t *address_len);
```

DESCRIPTION

The recvfrom() function receives a message from a connection-mode or connectionless-mode socket. It is normally used with connectionless-mode sockets because it permits the application to retrieve the source address of received data.

The function takes the following arguments:

- `socket` Specifies the socket file descriptor.
- `buffer` Points to the buffer where the message should be stored.
- `length` Specifies the length in bytes of the buffer pointed to by the `buffer` argument.
- `flags` Specifies the type of message reception. Values of this argument are formed by logically OR’ing zero or more of the following values:
 - `MSG_PEEK` Peeks at an incoming message. The data is treated as unread and the next recvfrom() or similar function will still return this data.
 - `MSG_OOB` Requests out-of-band data. The significance and semantics of out-of-band data are protocol-specific.
 - `MSG_WAITALL` Requests that the function block until the full amount of data requested can be returned. The function may return a smaller amount of data if a signal is caught, if the connection is terminated, if MSG_PEEK was specified, or if an error is pending for the socket.
- `address` A null pointer, or points to a sockaddr structure in which the sending address is to be stored. The length and format of the address depend on the address family of the socket.
- `address_len` Specifies the length of the sockaddr structure pointed to by the `address` argument.
The `recvfrom()` function returns the length of the message written to the buffer pointed to by the `buffer` argument. For message-based sockets such as `SOCK_DGRAM` and `SOCK_SEQPACKET`, the entire message must be read in a single operation. If a message is too long to fit in the supplied buffer, and `MSG_PEEK` is not set in the `flags` argument, the excess bytes are discarded. For stream-based sockets such as `SOCK_STREAM`, message boundaries are ignored. In this case, data is returned to the user as soon as it becomes available, and no data is discarded.

If the `MSG_WAITALL` flag is not set, data will be returned only up to the end of the first message.

Not all protocols provide the source address for messages. If the `address` argument is not a null pointer and the protocol provides the source address of messages, the source address of the received message is stored in the `sockaddr` structure pointed to by the `address` argument, and the length of this address is stored in the object pointed to by the `address_len` argument.

If the actual length of the address is greater than the length of the supplied `sockaddr` structure, the stored address will be truncated.

If the `address` argument is not a null pointer and the protocol does not provide the source address of messages, the the value stored in the object pointed to by `address` is unspecified.

If no messages are available at the socket and `O_NONBLOCK` is not set on the socket’s file descriptor, `recvfrom()` blocks until a message arrives. If no messages are available at the socket and `O_NONBLOCK` is set on the socket’s file descriptor, `recvfrom()` fails and sets `errno` to `EAGAIN` or `EWouldBlock`.

Upon successful completion, `recvfrom()` returns the length of the message in bytes. If no messages are available to be received and the peer has performed an orderly shutdown, `recvfrom()` returns 0. Otherwise the function returns −1 and sets `errno` to indicate the error.

The `recvfrom()` function will fail if:

- `EAGAIN` The socket’s file descriptor is marked `O_NONBLOCK` and no data is waiting to be received; or `MSG_OOB` is set and no out-of-band data is available and either the socket’s file descriptor is marked `O_NONBLOCK` or the socket does not support blocking to await out-of-band data.
- `EWOULDBLOCK` The socket argument is not a valid file descriptor.
- `EBADF` A connection was forcibly closed by a peer.

The `select(3C)` and `poll(2)` functions can be used to determine when data is available to be received.

USAGE

Networking Library Functions 421
The `recvfrom()` function may fail if:

- **EFAULT** - The `buffer`, `address` or `address_len` parameter can not be accessed or written.
- **EINTR** - A signal interrupted `recvfrom()` before any data was available.
- **EINVAL** - The `MSG_OOB` flag is set and no out-of-band data is available.
- **ENOTCONN** - A receive is attempted on a connection-mode socket that is not connected.
- **ENOTSOCK** - The `socket` argument does not refer to a socket.
- **EOPNOTSUPP** - The specified flags are not supported for this socket type.
- **ETIMEDOUT** - The connection timed out during connection establishment, or due to a transmission timeout on active connection.

Attributes

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See Also

`poll(2)`, `recv(3XNET)`, `recvmsg(3XNET)`, `select(3C)`, `send(3XNET)`, `sendmsg(3XNET)`, `sendto(3XNET)`, `shutdown(3XNET)`, `socket(3XNET)`, `attributes(5)`
recvmsg – receive a message from a socket

SYNOPSIS

```c
#include <sys/socket.h>

ssize_t recvmsg(int socket, struct msghdr *message, int flags);
```

DESCRIPTION

The `recvmsg()` function receives a message from a connection-mode or connectionless-mode socket. It is normally used with connectionless-mode sockets because it permits the application to retrieve the source address of received data.

The function takes the following arguments:

- `socket` Specifies the socket file descriptor.
- `message` Points to a `msghdr` structure, containing both the buffer to store the source address and the buffers for the incoming message. The length and format of the address depend on the address family of the socket. The `msg_flags` member is ignored on input, but may contain meaningful values on output.
- `flags` Specifies the type of message reception. Values of this argument are formed by logically OR'ing zero or more of the following values:
 - `MSG_OOB` Requests out-of-band data. The significance and semantics of out-of-band data are protocol-specific.
 - `MSG_PEEK` Peeks at the incoming message.
 - `MSG_WAITALL` Requests that the function block until the full amount of data requested can be returned. The function may return a smaller amount of data if a signal is caught, if the connection is terminated, if `MSG_PEEK` was specified, or if an error is pending for the socket.

The `recvmsg()` function receives messages from unconnected or connected sockets and returns the length of the message.

The `recvmsg()` function returns the total length of the message. For message-based sockets such as `SOCK_DGRAM` and `SOCK_SEQPACKET`, the entire message must be read in a single operation. If a message is too long to fit in the supplied buffers, and `MSG_PEEK` is not set in the `flags` argument, the excess bytes are discarded, and `MSG_TRUNC` is set in the `msg_flags` member of the `msghdr` structure. For stream-based sockets such as `SOCK_STREAM`, message boundaries are ignored. In this case, data is returned to the user as soon as it becomes available, and no data is discarded.
If the MSG_WAITALL flag is not set, data will be returned only up to the end of the first message.

If no messages are available at the socket, and O_NONBLOCK is not set on the socket’s file descriptor, recvmsg() blocks until a message arrives. If no messages are available at the socket and O_NONBLOCK is set on the socket’s file descriptor, the recvmsg() function fails and sets errno to EAGAIN or EWOULDBLOCK.

In the msghdr structure, the msg_name and msg_namelen members specify the source address if the socket is unconnected. If the socket is connected, the msg_name and msg_namelen members are ignored. The msg_name member may be a null pointer if no names are desired or required. The msg_iov and msg_iovlen fields are used to specify where the received data will be stored. msg_iov points to an array of iovec structures; msg_iovlen must be set to the dimension of this array. In each iovec structure, the iov_base field specifies a storage area and the iov_len field gives its size in bytes. Each storage area indicated by msg_iov is filled with received data in turn until all of the received data is stored or all of the areas have been filled.

On successful completion, the msg_flags member of the message header is the bitwise-inclusive OR of all of the following flags that indicate conditions detected for the received message:

- **MSG_EOR**: End of record was received (if supported by the protocol).
- **MSG_OOB**: Out-of-band data was received.
- **MSG_TRUNC**: Normal data was truncated.
- **MSG_CTRUNC**: Control data was truncated.

USAGE

The `select(3C)` and `poll(2)` functions can be used to determine when data is available to be received.

RETURN VALUES

Upon successful completion, `recvmsg()` returns the length of the message in bytes. If no messages are available to be received and the peer has performed an orderly shutdown, `recvmsg()` returns 0. Otherwise, -1 is returned and `errno` is set to indicate the error.

ERRORS

The `recvmsg()` function will fail if:

- **EAGAIN**: The socket’s file descriptor is marked O_NONBLOCK and no data is waiting to be received; or MSG_OOB is set and no out-of-band data is available and either the socket’s file descriptor is marked O_NONBLOCK or the socket does not support blocking to await out-of-band data.
- **EWOULDBLOCK**: The socket argument is not a valid open file descriptor.
- **EBADF**: A connection was forcibly closed by a peer.
EFAULT
The message parameter, or storage pointed to by the
msg_name, msg_control or msg_iov fields of the message
parameter, or storage pointed to by the iovec
structures pointed to by the msg_iov field can not be
accessed or written.

EINTR
This function was interrupted by a signal before any
data was available.

EINVAL
The sum of the iov_len values overflows an
ssize_t. or the MSG_OOB flag is set and no
out-of-band data is available.

EMSGSIZE
The msg_iovlen member of the msghdr structure
pointed to by message is less than or equal to 0, or is
greater than IOV_MAX.

ENOTCONN
A receive is attempted on a connection-mode socket
that is not connected.

ENOTSOCK
The socket argument does not refer to a socket.

EOPNOTSUPP
The specified flags are not supported for this socket
type.

ETIMEDOUT
The connection timed out during connection
establishment, or due to a transmission timeout on
active connection.

The recvmsg() function may fail if:

EIO
An IO error occurred while reading from or writing to
the file system.

ENOBUFFS
Insufficient resources were available in the system to
perform the operation.

ENOMEM
Insufficient memory was available to fulfill the request.

ENOSR
There were insufficient STREAMS resources available
for the operation to complete.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
poll(2), recv(3XNET), recvfrom(3XNET), select(3C), send(3XNET),
sendmsg(3XNET), sendto(3XNET), shutdown(3XNET), socket(3XNET),
attributes(5)
resolver(3RESOLV)

NAME
resolver, res_ninit, fp_resstat, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

BIND 8.2.2
Interfaces
cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>
#include <netdb.h>

int res_ninit (res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
 char * name, char *buf, size_t buflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
 u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int type,
 u_char *answer, int datalen, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
 *domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
 class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
 *answer, int anslen);

void res_nclose(res_state statp);

int res_nsendsigned(res_state statp, const u_char *msg, int msglen,
 ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
 **dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
 int length);

cost char *hstrerror(int err);

Deprecated
Interfaces
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>
#include <netdb.h>

int res_init(void);

int res_query(const char *dname, int class, int type, u_char *answer,
 int anslen);
These routines are used for making, sending, and interpreting query and reply messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions. Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(), res_send(), and herror() are deprecated. They are supplied for backwards compatibility. They use global configuration and state information that is kept in the structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first call to res_ninit() or res_init() and can be ignored. Options stored in statp->options or _res.options are defined in <resolv.h>. They are stored as a simple bit mask containing the bitwise OR of the options enabled.

- **RES_INIT**: True if the initial name server address and default domain name are initialized, that is, res_init() or res_ninit() has been called.
- **RES_DEBUG**: Print debugging messages.
- **RES_AAONLY**: Accept authoritative answers only. With this option, res_send() will continue until it finds an authoritative answer or finds an error. Currently this option is not implemented.
- **RES_USEVC**: Use TCP connections for queries instead of UDP datagrams.
- **RES_STAYOPEN**: Use with RES_USEVC to keep the TCP connection open between queries. This is a useful option for programs that regularly do many queries. The normal mode used should be UDP.
- **RES_IGNTC**: Ignore truncation errors; that is, do not retry with TCP.
- **RES_RECURSE**: Set the recursion-desired bit in queries. This is the default. res_send() and res_nsend() do not do iterative queries and expect the name server to handle recursion.
RES_DEFNAMES
If set, res_search() and res_nsearch() append the default domain name to single-component names, that is, names that do not contain a dot. This option is enabled by default.

RES_DNSRCH
If this option is set, res_search() and res_nsearch() search for host names in the current domain and in parent domains. See hostname(1). This option is used by the standard host lookup routine gethostbyname(3NSL). This option is enabled by default.

RES_NOALIASES
This option turns off the user level aliasing feature controlled by the HOSTALIASES environment variable. Network daemons should set this option.

RES_BLAST
If the RES_BLAST option is defined, resolver() queries will be sent to all servers. If the RES_BLAST option is not defined, but RES_ROTATE is, the list of nameservers are rotated according to a round-robin scheme. RES_BLAST overrides RES_ROTATE.

RES_ROTATE
This option causes res_nsend() and res_send() to rotate the list of nameservers in statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG
This option causes res_nsendsigned() to leave the message unchanged after TSIG verification. Otherwise the TSIG record would be removed and the header would be updated.

res_ninit, res_init
The res_ninit() and res_init() routines read the configuration file, if any is present, to get the default domain name, search list and the Internet address of the local name server(s). See resolv.conf(4). If no server is configured, res_init() or res_ninit() will try to obtain name resolution services from the host on which it is running. The current domain name is defined by domainname(1M), or by the hostname if it is not specified in the configuration file. Use the environment variable LOCALDOMAIN to override the domain name. This environment variable may contain several blank-separated tokens if you wish to override the search list on a per-process basis. This is similar to the search command in the configuration file. You can set the RES_OPTIONS environment variable to override certain internal resolver options. You can otherwise set them by changing fields in the statp/_res structure. Alternatively, they are inherited from the configuration file's options command. See resolv.conf(4) for information regarding the syntax of the RES_OPTIONS environment variable. Initialization normally occurs on the first call to one of the other resolver routines.

res_nquery, res_query
The res_nquery() and res_query() functions provide interfaces to the server query mechanism. They construct a query, send it to the local server, await a response, and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply message is left in the answer buffer with length anslen supplied by the caller. res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger than anslen. In that case, retry the query with a larger buf. The answer to the second query may be larger still, so it is recommended that you supply a buf larger than the answer returned by the previous query. answer must be large enough to receive a maximum UDP response from the server or parts of the answer will be silently discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a response, just like like res_nquery() and res_query(). In addition, they implement the default and search rules controlled by the RES_DEFNAMES and RES_DNSRCH options. They return the length of the first successful reply which is stored in answer. On error, they return -1.

The res_nsearch() and res_search() routines return a length that may be bigger than anslen. In that case, retry the query with a larger buf. The answer to the second query may be larger still, so it is recommended that you supply a buf larger than the answer returned by the previous query. answer must be large enough to receive a maximum UDP response from the server or parts of the answer will be silently discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The res_nmkquery() and res_mkquery() functions construct a standard query message and place it in buf. The routine returns the size of the query, or -1 if the query is larger than buflen. The query type op is usually QUERY, but can be any of the query types defined in <arpa/nameser.h>. The domain name for the query is given by dname. newrr is currently unused but is intended for making update messages.

These routines are used by res_nquery() and res_query(). The res_nmkquery() and res_mkquery() functions construct a standard query message and place it in buf. The routine returns the size of the query, or -1 if the query is larger than buflen. The query type op is usually QUERY, but can be any of the query types defined in <arpa/nameser.h>. The domain name for the query is given by dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a preformatted query that returns an answer. The routine calls res_ninit() or res_init(). If RES_INIT is not set, the routine sends the query to the local name server and handles timeouts and retries. Additionally, the res_nsendsigned() uses TSIG signatures to add authentication to the query and verify the response. In this case, only one name server will be contacted. The routines return the length of the reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than anslen. In that case, retry the query with a larger buf. The answer to the second query may be larger still, so it is recommended that you supply a buf larger than the answer returned by the previous query. answer must be large enough to receive a maximum UDP response from the server or parts of the answer will be silently discarded. The default maximum UDP response size is 512 bytes.

The function fp_resstat() prints out the active flag bits in statp->options preceded by the text ";; res options:" on file.
The function `res_hostalias()` looks up `name` in the file referred to by the `HOSTALIASES` environment variable and returns the fully qualified host name. If `name` is not found or an error occurs, NULL is returned. `res_hostalias()` stores the result in `buf`.

The `res_nclose()` function closes any open files referenced through `statp`.

dn_comp

`dn_comp()` compresses the domain name `exp_dn` and stores it in `comp_dn`. `dn_comp()` returns the size of the compressed name, or −1 if there were errors. `length` is the size of the array pointed to by `comp_dn`.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in the current message. The first pointer must point to the beginning of the message. The list ends with NULL. The limit to the array is specified by `lastdnptr`.

A side effect of calling `dn_comp()` is to update the list of pointers for labels inserted into the message by `dn_comp()` as the name is compressed. If `dnptrs` is NULL, names are not compressed. If `lastdnptr` is NULL, `dn_comp()` does not update the list of labels.

dn_expand

`dn_expand()` expands the compressed domain name `comp_dn` to a full domain name. The compressed name is contained in a query or reply message. `msg` is a pointer to the beginning of that message. The uncompressed name is placed in the buffer indicated by `exp_dn`, which is of size `length`. `dn_expand()` returns the size of the compressed name, or −1 if there was an error.

hstrerror, herror

The variables `statp->res_h_errno` and `_res.res_h_errno` and external variable `h_errno` are set whenever an error occurs during a resolver operation. The following definitions are given in `<netdb.h>`:

```c
#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/
#define NO_DATA 4 /* Valid name, no data for requested type */
```

The `herror()` function writes a message to the diagnostic output consisting of the string parameters, the constant string “: ”, and a message corresponding to the value of `h_errno`.

The `hstrerror()` function returns a string, which is the message text that corresponds to the value of the `err` parameter.

FILES

/etc/resolv.conf

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

```plaintext
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
</tbody>
</table>
```
resolver(3RESOLV)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Standard BIND 8.2.4</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Unsafe for Deprecated Interfaces; MT-Safe for all others.</td>
</tr>
</tbody>
</table>

SEE ALSO
domainname(1M), in.named(1M), gethostbyname(3NSL), libresolv(3LIB), resolv.conf(4), attributes(5)

NOTES
When the caller supplies a work buffer, for example the answer buffer argument to res_nsend() or res_send(), the buffer should be aligned on an eight byte boundary. Otherwise, an error such as a SIGBUS may result.
rexec(3SOCKET)

NAME
trexec, trexec_af - return stream to a remote command

SYNOPSIS
int trexec(char **ahost, unsigned short inport, const char *user, const
char *passwd, const char *cmd, int *fd2p);

int trexec_af(char **ahost, unsigned short inport, const char *user,
const char *passwd, const char *cmd, int *fd2p, int af);

DESCRIPTION
rexec() and trexec_af() look up the host ahost using
getipnodebyname(3SOCKET), returning -1 if the host does not exist. Otherwise
ahost is set to the standard name of the host. If a username and password are both
specified, then these are used to authenticate to the foreign host; otherwise the user’s
.netrc file in his home directory is searched for appropriate information. If all this
fails, the user is prompted for the information.

The difference between trexec() and trexec_af() is that while trexec() always
returns a socket of the AF_INET address family, with trexec_af() the application can
choose which type of address family the socket returned should be. trexec_af() supports both AF_INET and AF_INET6 address families.

The port inport specifies which well-known DARPA Internet port to use for the
connection. The port number used must be in network byte order, as supplied by a call
to htons(3XNET). The protocol for connection is described in detail in
in.rexecd(1M).

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and given
to the remote command as its standard input and standard output. If fd2p is non-zero,
then an auxiliary channel to a control process will be setup, and a file descriptor for it
will be placed in *fd2p. The control process will return diagnostic output (file
descriptor 2, the standard error) from the command on this channel, and will also
accept bytes on this channel as signal numbers, to be forwarded to the process group
of the command. If fd2p is 0, then the standard error (file descriptor 2 of the remote
command) will be made the same as its standard output and no provision is made for
sending arbitrary signals to the remote process, although you may be able to get its
attention by using out-of-band data.

RETURN VALUES
If trexec() succeeds, a file descriptor number, which is a socket of type
SOCK_STREAM and address family AF_INET is returned by the routine. *ahost is set to
the standard name of the host, and if fd2p is not NULL, a file descriptor number is
placed in *fd2p which represents the command’s standard error stream.

If trexec_af() succeeds, the routine returns a file descriptor number, which is a
socket of type SOCK_STREAM and of address family type AF_INET or AF_INET6, as
determined by the value of the af parameter that the caller passes in.

If either trexec() or trexec_af() fails, -1 is returned.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

SEE ALSO

in.rexecd(1M), gethostbyname(3NSL), getipnodebyname(3SOCKET),
getservbyname(3SOCKET), htons(3XNET), socket(3SOCKET), attributes(5)

NOTES

There is no way to specify options to the socket() call that rexec() or
rexec_af() makes.

This interface is unsafe in multithreaded applications. Unsafe interfaces should be
called only from the main thread.
rpc(3NSL)

NAME rpc – library routines for remote procedure calls

SYNOPSIS cc [flag ...] file ... -lnsl [library ...]
 #include <rpc/rpc.h>
 #include <netconfig.h>

DESCRIPTION These routines allow C language programs to make procedure calls on other machines across a network. First, the client sends a request to the server. On receipt of the request, the server calls a dispatch routine to perform the requested service, and then sends back a reply.

All RPC routines require the header <rpc/rpc.h>. Routines that take a netconfig structure also require that <netconfig.h> be included. Applications using RPC and XDR routines should be linked with the libnsl library.

Multithread Considerations In the case of multithreaded applications, the -mt option must be specified on the command line at compilation time to enable a thread-specific version of rpc_createerr(). See rpc_clnt_create(3NSL) and threads(3THR).

When used in multithreaded applications, client-side routines are MT-Safe. CLIENT handles can be shared between threads; however, in this implementation, requests by different threads are serialized (that is, the first request will receive its results before the second request is sent). See rpc_clnt_create(3NSL).

When used in multithreaded applications, server-side routines are usually Unsafe. In this implementation the service transport handle, SVCXPRT contains a single data area for decoding arguments and encoding results. See rpc_svc_create(3NSL).

Therefore, this structure cannot be freely shared between threads that call functions that do this. Routines that are affected by this restriction are marked as unsafe for MT applications. See rpc_svc_calls(3NSL).

Nettyp Some of the high-level RPC interface routines take a nettype string as one of the parameters (for example, clnt_create(), svc_create(), rpc_reg(), rpc_call(),). This string defines a class of transports which can be used for a particular application.

nettype can be one of the following:

netpath Choose from the transports which have been indicated by their token names in the NETPATH environment variable. If NETPATH is unset or NULL, it defaults to visible. netpath is the default nettype.

visible Choose the transports which have the visible flag (v) set in the /etc/netconfig file.

circuit_v This is same as visible except that it chooses only the connection oriented transports (semantics tpi_cots or tpi_cots_ord) from the entries in the /etc/netconfig file.

434 man pages section 3: Networking Library Functions • Last Revised 5 Jun 2001
This is same as visible except that it chooses only the connectionless datagram transports (semantics tpi_clts) from the entries in the /etc/netconfig file.

circuit_n
This is same as netpath except that it chooses only the connection oriented datagram transports (semantics tpi_cots or tpi_cots_ord).

datagram_n
This is same as netpath except that it chooses only the connectionless datagram transports (semantics tpi_clts).

udp
This refers to Internet UDP.

tcp
This refers to Internet TCP.

If nettype is NULL, it defaults to netpath. The transports are tried in left to right order in the NETPATH variable or in top to down order in the /etc/netconfig file.

Derived Types
In a 64-bit environment, the derived types are defined as follows:

datatype uint32_t rpcprog_t;
typdef uint32_t rpcvers_t;
typdef uint32_t rpcproc_t;
typdef uint32_t rpcprot_t;
typdef uint32_t rpcport_t;
typdef int32_t rpc_inline_t;

In a 32-bit environment, the derived types are defined as follows:

datatype unsigned long rpcprog_t;
typdef unsigned long rpcvers_t;
typdef unsigned long rpcproc_t;
typdef unsigned long rpcprot_t;
typdef unsigned long rpcport_t;
typdef long rpc_inline_t;

Data Structures
Some of the data structures used by the RPC package are shown below.

union des_block {
 struct {
 u_int32 high;
 u_int32 low;
 }
union des_block des_block;

extern bool_t xdr_des_block();

/*
 * Authentication info. Opaque to client.
 */
struct opaque_auth {
 enum_t oa_flavor; /* flavor of auth */
 caddr_t oa_base; /* address of more auth stuff */
 uint_t oa_length; /* not to exceed MAX_AUTH_BYTES */
};

/*
 * Auth handle, interface to client side authenticators.
 */
typedef struct {
 struct opaque_auth ah_cred;
 struct opaque_auth ah_verf;
 union des_block ah_key;
 struct auth_ops {
 void(*ah_nextverf)(); /* nextverf & serialize */
 int(*ah_marshal)(); /* nextverf & serialize */
 int(*ah_validate)(); /* validate verifier */
 int(*ah_refresh)(); /* refresh credentials */
 void(*ah_destroy)(); /* destroy this structure */
 } *ah_ops;
 caddr_t ah_private;
} AUTH;

/*
 * Client rpc handle.
 * Created by individual implementations.
 * Client is responsible for initializing auth.
 */
typedef struct {
 AUTH *cl_auth; /* authenticator */
 struct clnt_ops {
 enum clnt_stat (*cl_call)(); /* call remote procedure */
 void (*cl_abort)(); /* abort a call */
 void (*cl_geterr)(); /* get specific error code */
 bool_t (*cl_freeres)(); /* frees results */
 void (*cl_destroy)(); /* destroy this structure */
 bool_t (*cl_control)(); /* the ioctl() of rpc */
 int (*cl_settimers)(); /* set rpc level timers */
 } *cl_ops;
 caddr_t cl_private; /* private stuff */
 char *cl_netid; /* network identifier */
 char *cl_tp; /* device name */
} CLIENT;

/*
 * Server side transport handle
 */

The CLIENT Structure

The SVCXPRT Structure

enum xprt_stat {
 XPRT_DIED, XPRT_MOREREQS, XPRT_IDLE
};

/*
 * Server side transport handle
 */

436 man pages section 3: Networking Library Functions • Last Revised 5 Jun 2001
typedef struct {
 int xp_fd; /* file descriptor for the
 ushort_t xp_port; /* obsolete */
 struct xp_ops {
 bool_t (*xp_recv)(); /* receive incoming requests */
 enum xprt_stat (*xp_stat)(); /* get transport status */
 bool_t (*xp_getargs)(); /* get arguments */
 bool_t (*xp_reply)(); /* send reply */
 bool_t (*xp_freeargs)(); /* free mem allocated
 for args */
 void (*xp_destroy)(); /* destroy this struct */
 } *xp_ops;
 int xp_addrlen; /* length of remote addr. Obsolete */
 char *xp_tp; /* transport provider device name */
 char *xp_netid; /* network identifier */
 struct netbuf xp_ltaddr; /* local transport address */
 struct netbuf xp_rtaddr; /* remote transport address */
 char xp_raddr[16]; /* remote address. Obsolete */
 struct opaque_auth xp_verf; /* raw response verifier */
 caddr_t xp_p1; /* private: for use by svc ops */
 caddr_t xp_p2; /* private: for use by svc ops */
 caddr_t xp_p3; /* private: for use by svc lib */
 int xp_type; /* transport type */
} SVCXPRT;

The svc_reg Structure

struct svc_req {
 rpcprog_t rq_prog; /* service program number */
 rpcvers_t rq_vers; /* service protocol version */
 rpcproc_t rq_proc; /* the desired procedure */
 struct opaque_auth rq_cred; /* raw creds from the wire */
 caddr_t rq_clntcred; /* read only cooked cred */
 SVCXPRT *rq_xprt; /* associated transport */
};

The XDR Structure

/*/
* XDR operations.
* XDR_ENCODE causes the type to be encoded into the stream.
* XDR_DECODE causes the type to be extracted from the stream.
* XDR_FREE can be used to release the space allocated by an XDR_DECODE request.
*/
enum xdr_op {
 XDR_ENCODE=0,
 XDR_DECODE=1,
 XDR_FREE=2
};

/*
* This is the number of bytes per unit of external data.
*/
#define BYTES_PER_XDR_UNIT (4)
#define RNDUP(x) (((((x) + BYTES_PER_XDR_UNIT - 1) /)
A xdrproc_t exists for each data type which is to be encoded or decoded. The second argument to the xdrproc_t is a pointer to an opaque pointer. The opaque pointer generally points to a structure of the data type to be decoded. If this pointer is 0, then the type routines should allocate dynamic storage of the appropriate size and return it.

```c
typedef bool_t (*xdrproc_t)(XDR *, caddr_t *);
```

The XDR handle.

* Contains operation which is being applied to the stream,
* an operations vector for the particular implementation

```c
typedef struct {
enum xdr_op x_op; /* operation; fast additional param */
struct xdr_ops {
  bool_t (*x_getlong)();  /* get long from underlying stream */
  bool_t (*x_putlong)();  /* put long to underlying stream */
  bool_t (*x_getbytes)();  /* get bytes from underlying stream */
  bool_t (*x_getint32)();  /* get int from underlying stream */
  bool_t (*x_getbytes)();  /* get bytes from underlying stream */
  bool_t (*x_getbytes)();  /* get bytes from underlying stream */
  bool_t (*x_getint32)();  /* get int from underlying stream */
  bool_t (*x_getint32)();  /* get int from underlying stream */
  uint_t (*x_getpostn)();  /* returns bytes off from beginning */
  uint_t (*x_setpostn)();  /* reposition the stream */
  uint_t (*x_inline)();    /* buf quick ptr to buffered data */
  void (*x_destroy)();    /* free privates of this xdr_stream */
  bool_t (*x_control)();  /* changed/retrieve client object info*/
  bool_t (*x_getint32)();  /* get int from underlying stream */
  bool_t (*x_putint32)();  /* put int to underlying stream */
} *x_ops;
}
caddr_t x_public; /* users' data */
caddr_t x_priv /* pointer to private data */
caddr_t x_base; /* private used for position info */
int x_handy; /* extra private word */
```

The following table lists RPC routines and the manual reference pages on which they are described:

<table>
<thead>
<tr>
<th>RPC Routine</th>
<th>Manual Reference Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>auth_destroy</td>
<td>rpc_clnt_auth(3NSL)</td>
</tr>
<tr>
<td>authdes_create</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>authdes_getucred</td>
<td>secure_rpc(3NSL)</td>
</tr>
<tr>
<td>authdes_seccreate</td>
<td>secure_rpc(3NSL)</td>
</tr>
<tr>
<td>authnone_create</td>
<td>rpc_clnt_auth(3NSL)</td>
</tr>
<tr>
<td>authsys_create</td>
<td>rpc_clnt_auth(3NSL)</td>
</tr>
<tr>
<td>authsys_create_default</td>
<td>rpc_clnt_auth(3NSL)</td>
</tr>
<tr>
<td>Function Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>authunix_create</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>authunix_create_default</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>callrpc</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>clnt_broadcast</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>clnt_call</td>
<td>rpc_clnt_calls(3NSL)</td>
</tr>
<tr>
<td>clnt_control</td>
<td>rpc_clnt_create(3NSL)</td>
</tr>
<tr>
<td>clnt_create</td>
<td>rpc_clnt_create(3NSL)</td>
</tr>
<tr>
<td>clnt_destroy</td>
<td>rpc_clnt_create(3NSL)</td>
</tr>
<tr>
<td>clnt_dg_create</td>
<td>rpc_clnt_create(3NSL)</td>
</tr>
<tr>
<td>clnt_freeres</td>
<td>rpc_clnt_calls(3NSL)</td>
</tr>
<tr>
<td>clnt_geterr</td>
<td>rpc_clnt_calls(3NSL)</td>
</tr>
<tr>
<td>clnt_pcreateerror</td>
<td>rpc_clnt_create(3NSL)</td>
</tr>
<tr>
<td>clnt_perrno</td>
<td>rpc_clnt_calls(3NSL)</td>
</tr>
<tr>
<td>clnt_perror</td>
<td>rpc_clnt_calls(3NSL)</td>
</tr>
<tr>
<td>clnt_rancreate</td>
<td>rpc_clnt_create(3NSL)</td>
</tr>
<tr>
<td>clnt_spcreateerror</td>
<td>rpc_clnt_create(3NSL)</td>
</tr>
<tr>
<td>clnt_sperrno</td>
<td>rpc_clnt_calls(3NSL)</td>
</tr>
<tr>
<td>clnt_serror</td>
<td>rpc_clnt_calls(3NSL)</td>
</tr>
<tr>
<td>clnt_tli_create</td>
<td>rpc_clnt_create(3NSL)</td>
</tr>
<tr>
<td>clnt_tp_create</td>
<td>rpc_clnt_create(3NSL)</td>
</tr>
<tr>
<td>clnt_udpcreate</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>clnt_vccreate</td>
<td>rpc_clnt_create(3NSL)</td>
</tr>
<tr>
<td>clixttcp_create</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>clntudp_bufcreate</td>
<td>rpc_sock(3NSL)</td>
</tr>
<tr>
<td>get_myaddress</td>
<td>rpc_sock(3NSL)</td>
</tr>
<tr>
<td>getnetname</td>
<td>secure_rpc(3NSL)</td>
</tr>
<tr>
<td>host2netname</td>
<td>secure_rpc(3NSL)</td>
</tr>
<tr>
<td>key_decryptsession</td>
<td>secure_rpc(3NSL)</td>
</tr>
<tr>
<td>key_encryptsession</td>
<td>secure_rpc(3NSL)</td>
</tr>
<tr>
<td>key_gendes</td>
<td>secure_rpc(3NSL)</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>key_setsecret</td>
<td>secure_rpc(3NSL)</td>
</tr>
<tr>
<td>netname2host</td>
<td>secure_rpc(3NSL)</td>
</tr>
<tr>
<td>netname2user</td>
<td>secure_rpc(3NSL)</td>
</tr>
<tr>
<td>pmap_getmaps</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>pmap_getport</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>pmap_rmtcall</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>pmap_set</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>pmap_unset</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>rac_drop</td>
<td>rpc_rac(3RAC)</td>
</tr>
<tr>
<td>rac_poll</td>
<td>rpc_rac(3RAC)</td>
</tr>
<tr>
<td>rac_recv</td>
<td>rpc_rac(3RAC)</td>
</tr>
<tr>
<td>rac_send</td>
<td>rpc_rac(3RAC)</td>
</tr>
<tr>
<td>registerrpc</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>rpc_broadcast</td>
<td>rpc_clnt_calls(3NSL)</td>
</tr>
<tr>
<td>rpc_broadcast_exp</td>
<td>rpc_clnt_calls(3NSL)</td>
</tr>
<tr>
<td>rpc_call</td>
<td>rpc_clnt_calls(3NSL)</td>
</tr>
<tr>
<td>rpc_reg</td>
<td>rpc_svc_calls(3NSL)</td>
</tr>
<tr>
<td>svc_create</td>
<td>rpc_svc_create(3NSL)</td>
</tr>
<tr>
<td>svc_destroy</td>
<td>rpc_svc_create(3NSL)</td>
</tr>
<tr>
<td>svc_dg_create</td>
<td>rpc_svc_create(3NSL)</td>
</tr>
<tr>
<td>svc_dg_enablecache</td>
<td>rpc_svc_calls(3NSL)</td>
</tr>
<tr>
<td>svc_fd_create</td>
<td>rpc_svc_create(3NSL)</td>
</tr>
<tr>
<td>svc_fds</td>
<td>rpc_svc(3NSL)</td>
</tr>
<tr>
<td>svc_freeargs</td>
<td>rpc_svc_reg(3NSL)</td>
</tr>
<tr>
<td>svc_getargs</td>
<td>rpc_svc_reg(3NSL)</td>
</tr>
<tr>
<td>svc_getcaller</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>svc_getreq</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>svc_getreqset</td>
<td>rpc_svc_calls(3NSL)</td>
</tr>
<tr>
<td>svc_getrpccaller</td>
<td>rpc_svc_calls(3NSL)</td>
</tr>
<tr>
<td>svc_raw_create</td>
<td>rpc_svc_create(3NSL)</td>
</tr>
<tr>
<td>svc_reg</td>
<td>rpc_svc_calls(3NSL)</td>
</tr>
</tbody>
</table>

440 man pages section 3: Networking Library Functions • Last Revised 5 Jun 2001
<table>
<thead>
<tr>
<th>Function</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>svc_register</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>svc_run</td>
<td>rpc_svc_reg(3NSL)</td>
</tr>
<tr>
<td>svc_sendreply</td>
<td>rpc_svc_reg(3NSL)</td>
</tr>
<tr>
<td>svc_tli_create</td>
<td>rpc_svc_create(3NSL)</td>
</tr>
<tr>
<td>svc_tp_create</td>
<td>rpc_svc_create(3NSL)</td>
</tr>
<tr>
<td>svc_unreg</td>
<td>rpc_svc_calls(3NSL)</td>
</tr>
<tr>
<td>svc_unregister</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>svc_vc_create</td>
<td>rpc_svc_create(3NSL)</td>
</tr>
<tr>
<td>svcerr_auth</td>
<td>rpc_svc_err(3NSL)</td>
</tr>
<tr>
<td>svcerr_decode</td>
<td>rpc_svc_err(3NSL)</td>
</tr>
<tr>
<td>svcerr_noproc</td>
<td>rpc_svc_err(3NSL)</td>
</tr>
<tr>
<td>svcerr_noprog</td>
<td>rpc_svc_err(3NSL)</td>
</tr>
<tr>
<td>svcerr_progvers</td>
<td>rpc_svc_err(3NSL)</td>
</tr>
<tr>
<td>svcerr_systemerr</td>
<td>rpc_svc_err(3NSL)</td>
</tr>
<tr>
<td>svcerr_weakauth</td>
<td>rpc_svc_err(3NSL)</td>
</tr>
<tr>
<td>svcfd_create</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>svcraw_create</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>svctcp_create</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>svcudp_bufcreate</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>svcudp_create</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>user2netname</td>
<td>secure_rpc(3NSL)</td>
</tr>
<tr>
<td>xdr_accepted_reply</td>
<td>rpc_xdr(3NSL)</td>
</tr>
<tr>
<td>xdr_authsys_parms</td>
<td>rpc_xdr(3NSL)</td>
</tr>
<tr>
<td>xdr_authunix_parms</td>
<td>rpc_soc(3NSL)</td>
</tr>
<tr>
<td>xdr_callhdr</td>
<td>rpc_xdr(3NSL)</td>
</tr>
<tr>
<td>xdr_callmsg</td>
<td>rpc_xdr(3NSL)</td>
</tr>
<tr>
<td>xdr_opaque_auth</td>
<td>rpc_xdr(3NSL)</td>
</tr>
<tr>
<td>xdr_rejected_reply</td>
<td>rpc_xdr(3NSL)</td>
</tr>
<tr>
<td>xdr_replymsg</td>
<td>rpc_xdr(3NSL)</td>
</tr>
<tr>
<td>xprt_register</td>
<td>rpc_svc_calls(3NSL)</td>
</tr>
<tr>
<td>xprt_unregister</td>
<td>rpc_svc_calls(3NSL)</td>
</tr>
</tbody>
</table>
rpc(3NSL)

FILES

/etc/netconfig

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe with exceptions</td>
</tr>
</tbody>
</table>

SEE ALSO

gnetconfig(3NSL), getnetpath(3NSL), rpc_clnt_auth(3NSL), rpc_clnt_calls(3NSL), rpc_clnt_create(3NSL), rpc_svc_calls(3NSL), rpc_svc_create(3NSL), rpc_svc_err(3NSL), rpc_svc_reg(3NSL), rpc_xdr(3NSL), rpcbind(3NSL), secure_rpc(3NSL), threads(3THR), xdr(3NSL), netconfig(4), rpc(4), attributes(5), environ(5)
NAME
rpcbind, rpcb_getmaps, rpcb_getaddr, rpcb_gettime, rpcb_rmtcall, rpcb_set, rpcb_unset – library routines for RPC bind service

SYNOPSIS
#include <rpc/rpc.h>

struct rpcblist * rpcb_getmaps(const struct netconfig *netconf,
const char *host);

bool_t rpcb_getaddr(const rpcprog_t prognum, const rpcvers_t versnum,
const struct netconfig *netconf, struct netbuf *svcaddr,
const char *host);

bool_t rpcb_gettime(const char *host, time_t *timep);

nenum clnt_stat rpcb_rmtcall(const struct netconfig *netconf,
const char *host, const rpcprog_t prognum, const rpcvers_t versnum,
const rpcproc_t prnum, const xdrproc_t inproc, const caddr_t in,
const xdrproc_t outproc, caddr_t out, const struct timeval tout, struct netbuf *svcaddr);

bool_t rpcb_set(const rpcprog_t prognum, const rpcvers_t versnum,
const struct netconfig *netconf, const struct netbuf *svcaddr);

bool_t rpcb_unset(const rpcprog_t prognum, const rpcvers_t versnum,
const struct netconfig *netconf);

DESCRIPTION
These routines allow client C programs to make procedure calls to the RPC binder service. rpcbind maintains a list of mappings between programs and their universal addresses. See rpcbind(1M).

Routines
rpcb_getmaps()
An interface to the rpcbind service, which returns a list of the current RPC program-to-address mappings on host. It uses the transport specified through netconf to contact the remote rpcbind service on host. This routine will return NULL, if the remote rpcbind could not be contacted.

rpcb_getaddr()
An interface to the rpcbind service, which finds the address of the service on host that is registered with program number prognum, version versnum, and speaks the transport protocol associated with netconf. The address found is returned in svcaddr. svcaddr should be preallocated. This routine returns TRUE if it succeeds. A return value of FALSE means that the mapping does not exist or that the RPC system failed to contact the remote rpcbind service. In the latter case, the global variable rpc_createerr contains the RPC status. See rpc_clnt_create(3NSL).

rpcb_gettime()
This routine returns the time on host in timep. If host is NULL, rpcb_gettime() returns the time on its own machine. This routine returns TRUE if it succeeds, FALSE if it fails. rpcb_gettime() can be used to synchronize the time between the client and the remote server. This routine is particularly useful for secure RPC.
rpcbind(3NSL)

`rpcb_rmtcall()`
An interface to the `rpcbind` service, which instructs `rpcbind` on `host` to make an RPC call on your behalf to a procedure on that host. The `netconfig` structure should correspond to a connectionless transport. The parameter `*svcaddr` will be modified to the server’s address if the procedure succeeds. See `rpc_call()` and `clnt_call()` in `rpc_clnt_calls(3NSL)` for the definitions of other parameters.

This procedure should normally be used for a “ping” and nothing else. This routine allows programs to do lookup and call, all in one step.

Note: Even if the server is not running `rpcbind` does not return any error messages to the caller. In such a case, the caller times out.

Note: `rpcb_rmtcall()` is only available for connectionless transports.

`rpcb_set()`
An interface to the `rpcbind` service, which establishes a mapping between the triple `[prognum, versnum, netconf->nc_netid]` and `svcaddr` on the machine’s `rpcbind` service. The value of `nc_netid` must correspond to a network identifier that is defined by the `netconfig` database. This routine returns `TRUE` if it succeeds, `FALSE` otherwise. See also `svc_reg()` in `rpc_svc_calls(3NSL)`. If there already exists such an entry with `rpcbind`, `rpcb_set()` will fail.

`rpcb_unset()`
An interface to the `rpcbind` service, which destroys the mapping between the triple `[prognum, versnum, netconf->nc_netid]` and the address on the machine’s `rpcbind` service. If `netconf` is `NULL`, `rpcb_unset()` destroys all mapping between the triple `[prognum, versnum, all-transport]` and the addresses on the machine’s `rpcbind` service. This routine returns `TRUE` if it succeeds, `FALSE` otherwise. Only the owner of the service or the super-user can destroy the mapping. See also `svc_unreg()` in `rpc_svc_calls(3NSL)`.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
rpcbind(1M), rpcinfo(1M), rpc_clnt_calls(3NSL), rpc_clnt_create(3NSL), rpc_svc_calls(3NSL), attributes(5)
rpc_clnt_auth, auth_destroy, authnone_create, authsys_create, authsys_create_default
– library routines for client side remote procedure call authentication

void auth_destroy(AUTH *auth);

AUTH *authnone_create(void);

AUTH *authsys_create(const char* host, const uid_t uid, const gid_t gid, const int len, const gid_t *aup_gids);

AUTH *authsys_create_default(void);

These routines are part of the RPC library that allows C language programs to make
procedure calls on other machines across the network, with desired authentication.

These routines are normally called after creating the CLIENT handle. The cl_auth
field of the CLIENT structure should be initialized by the AUTH structure returned by
some of the following routines. The client’s authentication information is passed to the
server when the RPC call is made.

Only the NULL and the SYS style of authentication is discussed here. For the DES style
authentication, please refer to secure_rpc(3NSL).

The NULL and SYS style of authentication are safe in multithreaded applications. For
the MT-level of the DES style, see its pages.

Routines

The following routines require that the header <rpc/rpc.h> be included (see
rpc(3NSL) for the definition of the AUTH data structure).

#include <rpc/rpc.h>

auth_destroy()
 A function macro that destroys the authentication information associated with auth.
 Destruction usually involves deallocation of private data structures. The use of auth
 is undefined after calling auth_destroy().

authnone_create()
 Create and return an RPC authentication handle that passes nonusable
 authentication information with each remote procedure call. This is the default
 authentication used by RPC.

authsys_create()
 Create and return an RPC authentication handle that contains AUTH_SYS
 authentication information. The parameter host is the name of the machine on
 which the information was created; uid is the user’s user ID; gid is the user’s current
 group ID; len and aup_gids refer to a counted array of groups to which the user
 belongs.

authsys_create_default
 Call authsys_create() with the appropriate parameters.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:
rpc_clnt_auth(3NSL)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

rpc(3NSL), rpc_clnt_calls(3NSL), rpc_clnt_create(3NSL), secure_rpc(3NSL), attributes(5)
#include <rpc/rpc.h>

enum clnt_stat clnt_call (CLIENT *clnt, const rpcproc_t procnum,
 const xdrproc_t inproc, const caddr_t in,
 const xdrproc_t outproc, caddr_t out, const struct timeval tout);

enum clnt_stat clnt_send (CLIENT *clnt, const u_long procnum, const
 xdrproc_t proc, const caddr_t in);

bool_t clnt_freeres (CLIENT *clnt, const xdrproc_t outproc, caddr_t out,);

void clnt_geterr(const CLIENT *clnt, struct rpc_err *errp);

void clnt_perrno(const enum clnt_stat stat);

void clnt_perror(const CLIENT *clnt, const char *s);

char *clnt_sperrno(const enum clnt_stat stat);

char *clnt_sperror(const CLIENT *clnt, const char *s);

enum clnt_stat rpc_broadcast (const rpcprog_t prognum, const
 rpcvers_t versnum, const rpcproc_t procnum, const
 xdrproc_t inproc, const caddr_t in, const xdrproc_t outproc,
 caddr_t out, const resultproc_t eachresult, const char *nettype);

enum clnt_stat rpc_broadcast_exp (const rpcprog_t prognum, const
 rpcvers_t versnum, const rpcproc_t procnum, const
 xdrproc_t inproc, const caddr_t in, const xdrproc_t outproc, char
 *in, const xdrproc_t outproc, char
 *out, const resultproc_t eachresult, const char *nettype);

enum clnt_stat rpc_call (const char *host, const rpcprog_t prognum,
 const rpcvers_t versnum, const rpcproc_t procnum, const
 xdrproc_t inproc, const char *in, const xdrproc_t outproc, char
 *out, const char *nettype);

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First, the client calls a procedure to send a request to the
server. Upon receipt of the request, the server calls a dispatch routine to perform the
requested service and then sends back a reply.

The clnt_call(), rpc_call(), and rpc_broadcast() routines handle the client
side of the procedure call. The remaining routines deal with error handling.

Some of the routines take a CLIENT handle as one of the parameters. A CLIENT
handle can be created by an RPC creation routine such as clnt_create(). See
rpc_clnt_create(3NSL).
These routines are safe for use in multithreaded applications. `CLIENT` handles can be shared between threads; however, in this implementation requests by different threads are serialized. In other words, the first request will receive its results before the second request is sent.

See `rpc(3NSL)` for the definition of the `CLIENT` data structure.

Routines

clnt_call()

A function macro that calls the remote procedure `procnum` associated with the client handle, `clnt`, which is obtained with an RPC client creation routine such as `clnt_create()`. See `rpc_clnt_create(3NSL)`. The parameter `inproc` is the XDR function used to encode the procedure’s parameters, and `outproc` is the XDR function used to decode the procedure’s results. `in` is the address of the procedure’s argument(s), and `out` is the address of where to place the result(s). `tout` is the time allowed for results to be returned, which is overridden by a time-out set explicitly through `clnt_control()`. See `rpc_clnt_create(3NSL)`.

If the remote call succeeds, the status returned is `RPC_SUCCESS`. Otherwise, an appropriate status is returned.

clnt_send()

Use the `clnt_send()` function to call a remote asynchronous function.

The `clnt_send()` function calls the remote function `procnum()` associated with the client handle, `clnt`, which is obtained with an RPC client creation routine such as `clnt_create()`. See `rpc_clnt_create(3NSL)`. The parameter `proc` is the XDR function used to encode the procedure’s parameters. The parameter `in` is the address of the procedure’s argument(s).

By default, the blocking I/O mode is used. See the `clnt_control(3NSL)` man page for more information on I/O modes.

The `clnt_send()` function does not check if the program version number supplied to `clnt_create()` is registered with the rpcbind service. Use `clnt_create_vers()` instead of `clnt_create()` to check on incorrect version number registration. `clnt_create_vers()` will return a valid handle to the client only if a version within the range supplied to `clnt_create_vers()` is supported by the server.

`RPC_SUCCESS` is returned when a request is successfully delivered to the transport layer. This does not mean that the request was received. If an error is returned, use the `clnt_geterr()` routine to find the failure status or the `clnt_perrno()` routine to translate the failure status into error messages.

clnt_freeres()

A function macro that frees any data allocated by the RPC/XDR system when it decoded the results of an RPC call. The parameter `out` is the address of the results, and `outproc` is the XDR routine describing the results. This routine returns 1 if the results were successfully freed; otherwise it returns 0.
clnt_geterr()
A function macro that copies the error structure out of the client handle to the
structure at address errp.

clnt_perrno()
Prints a message to standard error corresponding to the condition indicated by stat.
A newline is appended. It is normally used after a procedure call fails for a routine
for which a client handle is not needed, for instance rpc_call().

clnt_perror()
Prints a message to the standard error indicating why an RPC call failed; clnt is the
handle used to do the call. The message is prepended with string s and a colon. A
newline is appended. This routine is normally used after a remote procedure call
fails for a routine that requires a client handle, for instance clnt_call().

clnt_sperrno()
Takes the same arguments as clnt_perrno(), but instead of sending a message to
the standard error indicating why an RPC call failed, returns a pointer to a string
that contains the message.

clnt_sperror() is normally used instead of clnt_perrno() when the
program does not have a standard error, as a program running as a server quite
likely does not. clnt_sperrno() is also used if the programmer does not want
the message to be output with printf(), or if a message format different than that
supported by clnt_perrno() is to be used. See printf(3C). Unlike
clint_sperror() and clnt_spcreateerror(), clnt_sperrno() does not
return a pointer to static data. Therefore, the result is not overwritten on each call.
See rpc_clnt_create(3NSL).

clnt_sperror()
Similar to clnt_perror(), except that like clnt_sperrno(), it returns a string
instead of printing to standard error. However, clnt_sperror() does not append
a newline at the end of the message.

clnt_sperror() returns a pointer to a buffer that is overwritten on each call. In
multithreaded applications, this buffer is implemented as thread-specific data.

rpc_broadcast()
Similar to rpc_call(), except that the call message is broadcast to all the
connectionless transports specified by nettype. If nettype is NULL, it defaults to
netpath. Each time it receives a response, this routine calls eachresult(),
whose form is:

bool_t eachresult(caddr_t out, const struct netbuf *addr,
const struct netconfig *netconf); where out is the same as out passed to
rpc_broadcast(), except that the remote procedure’s output is decoded there.
addr points to the address of the machine that sent the results, and netconf is the
netconfig structure of the transport on which the remote server responded. If
eachresult() returns 0, rpc_broadcast() waits for more replies; otherwise, it
returns with appropriate status.
rpc_clnt_calls(3NSL)

The broadcast file descriptors are limited in size to the maximum transfer size of that transport. For Ethernet, this value is 1500 bytes. rpc_broadcast() uses AUTH_SYS credentials by default. See rpc_clnt_auth(3NSL).

rpc_broadcast_exp()

Similar to rpc_broadcast(), except that the initial timeout, inittime and the maximum timeout, waittime, are specified in milliseconds.

inittime is the initial time that rpc_broadcast_exp() waits before resending the request. After the first resend, the retransmission interval increases exponentially until it exceeds waittime.

rpc_call()

Calls the remote procedure associated with prognum, versnum, and procnum on the machine, host. The parameter inproc is used to encode the procedure’s parameters, and outproc is used to decode the procedure’s results. in is the address of the procedure’s argument(s), and out is the address of where to place the result(s). nettype can be any of the values listed on rpc(3NSL). This routine returns RPC_SUCCESS if it succeeds, or it returns an appropriate status. Use the clnt_perrno() routine to translate failure status into error messages.

The rpc_call() function uses the first available transport belonging to the class nettype on which it can create a connection. You do not have control of timeouts or authentication using this routine.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>All</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWcsl (32–bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64–bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

printf(3C), rpc(3NSL), rpc_clnt_auth(3NSL), rpc_clnt_create(3NSL), attributes(5)
NAME
rpc_clnt_create, clnt_control, clnt_create, clnt_create_timed, clnt_destroy, clnt_dg_create, clnt_pcreateerror,
clnt_raw_create, clnt_spcreateerror, clnt_tli_create, clnt_tp_create,
clnt_tp_create_timed, clnt_vc_create, rpc_createerr, clnt_door_create – library routines
for dealing with creation and manipulation of CLIENT handles

SYNOPSIS
#include <rpc/rpc.h>

bool_t clnt_control(CLIENT *clnt, const uint_t req, char *info);

CLIENT *clnt_create(const char *host, const rpcprog_t prognum,
 const rpcvers_t versnum, const char *nettype);

CLIENT *clnt_create_timed(const char *host, const rpcprog_t prognum,
 const rpcvers_t versnum, const struct timeval *timeout);

CLIENT *clnt_create_vers(const char *host, const rpcprog_t prognum,
 rpcvers_t *vers_outp, const rpcvers_t vers_low,
 const rpcvers_t vers_high, char *nettype);

CLIENT *clnt_create_vers_timed(const char *host, const rpcprog_t prognum,
 rpcvers_t *vers_outp, const rpcvers_t vers_low,
 const rpcvers_t vers_high, char *nettype,
 const struct timeval *timeout);

void clnt_destroy(CLIENT *clnt);

CLIENT *clnt_dg_create(const int fildes, const struct netbuf *
 *svcaddr, const rpcprog_t prognum, const rpcvers_t versnum,
 const uint_t sendsz, const uint_t recsz);

void clnt_pcreateerror(const char *s);

CLIENT *clnt_raw_create(const rpcprog_t prognum, const rpcvers_t versnum);

char *clnt_spcreateerror(const char *s);

CLIENT *clnt_tli_create(const int fildes, const struct netconfig *
 *netconf, const struct netbuf *svcaddr, const rpcprog_t prognum,
 const rpcvers_t versnum, const uint_t sendsz, const uint_t recsz);

CLIENT *clnt_tp_create(const char *host, const rpcprog_t prognum,
 const rpcvers_t versnum, const struct netconfig *netconf);

CLIENT *clnt_tp_create_timed(const char *host, const rpcprog_t prognum,
 const rpcvers_t versnum, const struct netconfig *netconf,
 const struct timeval *timeout);

CLIENT *clnt_vc_create(const int fildes, const struct netbuf *
 *svcaddr, const rpcprog_t prognum, const rpcvers_t versnum,
 const uint_t sendsz, const uint_t recsz);

struct rpc_createerr rpc_createerr
RPC library routines allow C language programs to make procedure calls on other machines across the network. First a CLIENT handle is created and then the client calls a procedure to send a request to the server. On receipt of the request, the server calls a dispatch routine to perform the requested service, and then sends a reply.

These routines are MT-Safe. In the case of multithreaded applications, the -mt option must be specified on the command line at compilation time. When the -mt option is specified, rpc_createerr() becomes a macro that enables each thread to have its own rpc_createerr(). See threads(3THR).

See rpc(3NSL) for the definition of the CLIENT data structure.

cint_control()
A function macro to change or retrieve various information about a client object. req indicates the type of operation, and info is a pointer to the information. For both connectionless and connection-oriented transports, the supported values of req and their argument types and what they do are:

- CLSET_TIMEOUT struct timeval * set total timeout
- CLGET_TIMEOUT struct timeval * get total timeout

If the timeout is set using cint_control(), the timeout argument passed by cint_call() is ignored in all subsequent calls. If the timeout value is set to 0, cint_control() immediately returns RPC_TIMEDOUT. Set the timeout parameter to 0 for batching calls.

- CLGET_SERVER_ADDR struct netbuf * get server’s address
- CLGET_SVC_ADDR struct netbuf * get server’s address
- CLGET_FD int * get associated file descriptor
- CLSET_FD_CLOSE void close the file descriptor when destroying the client handle (see cint_destroy())
- CLSET_FD_NCLOSE void do not close the file descriptor when destroying the client handle
- CLGET_VERS rpcvers_t get the RPC program’s version number associated with the client handle
- CLSET_VERS rpcvers_t set the RPC program’s version number associated with the client handle. This assumes that the RPC server for this new version is still listening at the address of the previous version.
- CLGET_XID uint32_t get the XID of the previous remote procedure call
- CLSET_XID uint32_t set the XID of the next remote procedure call
- CLGET_PROG rpcprog_t get program number
- CLSET_PROG rpcprog_t set program number

The following operations are valid for connection-oriented transports only:
CLSET_IO_MODE rpciomode_t* set the IO mode used to send one-way requests. The argument for this operation can be either:
- RPC_CL_BLOCKING all sending operations block until the underlying transport protocol has accepted requests. If you specify this argument you cannot use flush and getting and setting buffer size is meaningless.
- RPC_CL_NONBLOCKING sending operations do not block and return as soon as requests enter the buffer. You can now use non-blocking I/O. The requests in the buffer are pending. The requests are sent to the server as soon as a two-way request is sent or a flush is done. You are responsible for flushing the buffer. When you choose RPC_CL_NONBLOCKING argument you have a choice of flush modes as specified by CLSET_FLUSH_MODE.

CLGET_IO_MODE rpciomode_t* get the current IO mode

CLSET_FLUSH_MODE rpcflushmode_t* set the flush mode. The flush mode can only be used in non-blocking I/O mode. The argument can be either of the following:
- RPC_CL_BESTEFFORT_FLUSH: All flushes send requests in the buffer until the transport end-point blocks. If the transport connection is congested, the call returns directly.
- RPC_CL_BLOCKING_FLUSH: Flush blocks until the underlying transport protocol accepts all pending requests into the queue.

CLGET_FLUSH_MODE rpcflushmode_t* get the current flush mode.

CLFLUSH rpcflushmode_t* flush the pending requests. This command can only be used in non-blocking I/O mode. The flush policy depends on which of the following parameters is specified:
- RPC_CL_DEFAULT_FLUSH, or NULL: The flush is done according to the current flush mode policy (see CLSET_FLUSH_MODE option).
- RPC_CL_BESTEFFORT_FLUSH: The flush tries to send pending requests without blocking; the call returns directly. If the transport connection is congested, this call could return without the request being sent.
- RPC_CL_BLOCKING_FLUSH: The flush sends all pending requests. This call will block until all the requests have been accepted by the transport layer.

CLSET_CONNMAXREC_SIZE int* set the buffer size.

CLGET_CONNMAXREC_SIZE int* get the current size of the buffer.

CLGET_CURRENT_REC_SIZE int* get the size of the pending requests stored in the buffer. Use of this command is only recommended when you are in non-blocking I/O mode. The current size of the buffer is always zero when the handle is in blocking mode as the buffer is not used in this mode.

The following operations are valid for connectionless transports only:
The retry timeout is the time that RPC waits for the server to reply before retransmitting the request.

`clnt_control()` returns `TRUE` on success and `FALSE` on failure.

`clnt_create()`

Generic client creation routine for program `prognum` and version `versnum`. `host` identifies the name of the remote host where the server is located. `nettype` indicates the class of transport protocol to use. The transports are tried in left to right order in `NETPATH` variable or in top to bottom order in the netconfig database.

`clnt_create()` tries all the transports of the `nettype` class available from the `NETPATH` environment variable and the netconfig database, and chooses the first successful one. A default timeout is set and can be modified using `clnt_control()`. This routine returns `NULL` if it fails. The `clnt_pcreateerror()` routine can be used to print the reason for failure.

Note that `clnt_create()` returns a valid client handle even if the particular version number supplied to `clnt_create()` is not registered with the `rpcbind` service. This mismatch will be discovered by a `clnt_call` later (see `rpc_clnt_calls(3NSL)`).

`clnt_create_timed()`

Generic client creation routine which is similar to `clnt_create()` but which also has the additional parameter `timeout` that specifies the maximum amount of time allowed for each transport class tried. In all other respects, the `clnt_create_timed()` call behaves exactly like the `clnt_create()` call.

`clnt_create_vers()`

Generic client creation routine which is similar to `clnt_create()` but which also checks for the version availability. `host` identifies the name of the remote host where the server is located. `nettype` indicates the class transport protocols to be used. If the routine is successful it returns a client handle created for the highest version between `vers_low` and `vers_high` that is supported by the server. `vers_outp` is set to this value. That is, after a successful return `vers_low <= *vers_outp <= vers_high`. If no version between `vers_low` and `vers_high` is supported by the server then the routine fails and returns `NULL`. A default timeout is set and can be modified using `clnt_control()`. This routine returns `NULL` if it fails. The `clnt_pcreateerror()` routine can be used to print the reason for failure.

Note: `clnt_create()` returns a valid client handle even if the particular version number supplied to `clnt_create()` is not registered with the `rpcbind` service. This mismatch will be discovered by a `clnt_call` later (see `rpc_clnt_calls(3NSL)`). However, `clnt_create_vers()` does this for you and returns a valid handle only if a version within the range supplied is supported by the server.
clnt_create_vers_timed()
Generic client creation routine similar to clnt_create_vers() but with the additional parameter timeout, which specifies the maximum amount of time allowed for each transport class tried. In all other respects, the clnt_create_vers_timed() call behaves exactly like the clnt_create_vers() call.

clnt_destroy()
A function macro that destroys the client’s RPC handle. Destruction usually involves deallocation of private data structures, including clnt itself. Use of clnt is undefined after calling clnt_destroy(). If the RPC library opened the associated file descriptor, or CLSET_FD_CLOSE was set using clnt_control(), the file descriptor will be closed.

The caller should call auth_destroy(clnt->cl_auth) (before calling clnt_destroy()) to destroy the associated AUTH structure (see rpc_clnt_auth(3NSL)).

clint_dg_create()
This routine creates an RPC client for the remote program prognum and version versnum; the client uses a connectionless transport. The remote program is located at address svcaddr. The parameter fdles is an open and bound file descriptor. This routine will resend the call message in intervals of 15 seconds until a response is received or until the call times out. The total time for the call to time out is specified by clnt_call() (see clnt_call() in rpc_clnt_calls(3NSL)). The retry time out and the total time out periods can be changed using clnt_control(). The user may set the size of the send and receive buffers with the parameters sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if it fails.

clint_pcreateerror()
Print a message to standard error indicating why a client RPC handle could not be created. The message is prepended with the string s and a colon, and appended with a newline.

clint_raw_create()
This routine creates an RPC client handle for the remote program prognum and version versnum. The transport used to pass messages to the service is a buffer within the process’s address space, so the corresponding RPC server should live in the same address space; (see svc_raw_create() in rpc_svc_create(3NSL)). This allows simulation of RPC and measurement of RPC overheads, such as round trip times, without any kernel or networking interference. This routine returns NULL if it fails. clint_raw_create() should be called after svc_raw_create().

clint_spcreateerror()
Like clint_pcreateerror(), except that it returns a string instead of printing to the standard error. A newline is not appended to the message in this case.

Warning: returns a pointer to a buffer that is overwritten on each call. In multithread applications, this buffer is implemented as thread-specific data.
clnt_tli_create()
This routine creates an RPC client handle for the remote program prognum and
version versnum. The remote program is located at address svcaddr. If svcaddr is
NULL and it is connection-oriented, it is assumed that the file descriptor is
connected. For connectionless transports, if svcaddr is NULL, RPC_UNKNOWNADDR
error is set. fildes is a file descriptor which may be open, bound and connected. If it
is RPC_ANYFD, it opens a file descriptor on the transport specified by netconf. If
fildes is RPC_ANYFD and netconf is NULL, a RPC_UNKNOWNPROTO error is set. If fildes
is unbound, then it will attempt to bind the descriptor. The user may specify the
size of the buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults. Depending upon the type of the transport (connection-oriented or
connectionless), clnt_tli_create() calls appropriate client creation routines.
This routine returns NULL if it fails. The clnt_pcreateerror() routine can be
used to print the reason for failure. The remote rpcbind service (see
rpcbind(1M)) is not consulted for the address of the remote service.

clnt_tp_create()
Like clnt_create() except clnt_tp_create() tries only one transport
specified through netconf.

clnt_tp_create() creates a client handle for the program prognum, the version
versnum, and for the transport specified by netconf. Default options are set, which
can be changed using clnt_control() calls. The remote rpcbind service on the
host host is consulted for the address of the remote service. This routine returns
NULL if it fails. The clnt_pcreateerror() routine can be used to print the
reason for failure.

clnt_tp_create_timed()
Like clnt_tp_create() except clnt_tp_create_timed() has the extra
parameter timeout which specifies the maximum time allowed for the creation
attempt to succeed. In all other respects, the clnt_tp_create_timed() call
behaves exactly like the clnt_tp_create() call.

clnt_vc_create()
This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connection-oriented transport. The remote program is
located at address svcaddr. The parameter fildes is an open and bound file descriptor.
The user may specify the size of the send and receive buffers with the parameters
sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if
it fails.

The address svcaddr should not be NULL and should point to the actual address of
the remote program. clnt_vc_create() does not consult the remote rpcbind
service for this information.

crpc_createerr()
A global variable whose value is set by any RPC client handle creation routine that
fails. It is used by the routine clnt_pcreateerror() to print the reason for the
failure.
In multithreaded applications, `rpc_createerr` becomes a macro which enables each thread to have its own `rpc_createerr`.

`clnt_door_create()`

This routine creates an RPC client handle over doors for the given program `prognum` and version `versnum`. Doors is a transport mechanism that facilitates fast data transfer between processes on the same machine. The user may set the size of the send buffer with the parameter `sendsz`. If `sendsz` is 0, the corresponding default buffer size is 16 Kbyte. The `clnt_door_create()` routine returns `NULL` if it fails and sets a value for `rpc_createerr`.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>All</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWesl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWeslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

`rpcbind(1M), rpc(3NSL), rpc_clnt_auth(3NSL), rpc_clnt_calls(3NSL), rpc_svc_create(3NSL), svc_raw_create(3NSL), threads(3THR), attributes(5)`
rpc_control(3NSL)

NAME
rpc_control – library routine for manipulating global RPC attributes for client and server applications

SYNOPSIS
bool_t rpc_control(int op, void *info);

DESCRIPTION
This RPC library routine allows applications to set and modify global RPC attributes that apply to clients as well as servers. At present, it supports only server side operations. This function allows applications to set and modify global attributes that apply to client as well as server functions. op indicates the type of operation, and info is a pointer to the operation specific information. The supported values of op and their argument types, and what they do are:

- RPC_SVC_MTMODE_SET int * set multithread mode
- RPC_SVC_MTMODE_GET int * get multithread mode
- RPC_SVC_THRMAX_SET int * set maximum number of threads
- RPC_SVC_THRMAX_GET int * get maximum number of threads
- RPC_SVC_THRTOTAL_GET int * get number of active threads
- RPC_SVC_THRCREATES_GET int * get number of threads created
- RPC_SVC_THREERRORS_GET int * get number of thread create errors
- RPC_SVC_USE_POLLFD int * set number of file descriptors to unlimited
- RPC_SVC_CONNMAXREC_SET int * set non-blocking max rec size
- RPC_SVC_CONNMAXREC_GET int * get non-blocking max rec size

There are three multithread (MT) modes. These are:

- RPC_SVC_MT_NONE Single threaded mode (default)
- RPC_SVC_MT_AUTO Automatic MT mode
- RPC_SVC_MT_USER User MT mode

Unless the application sets the Automatic or User MT modes, it will stay in the default (single threaded) mode. See the Network Interfaces Programmer’s Guide for the meanings of these modes and programming examples. Once a mode is set, it cannot be changed.

By default, the maximum number of threads that the server will create at any time is 16. This allows the service developer to put a bound on thread resources consumed by a server. If a server needs to process more than 16 client requests concurrently, the maximum number of threads must be set to the desired number. This parameter may be set at any time by the server.

Set and get operations will succeed even in modes where the operations don’t apply. For example, you can set the maximum number of threads in any mode, even though it makes sense only for the Automatic MT mode. All of the get operations except RPC_SVC_MTMODE_GET apply only to the Automatic MT mode, so values returned in other modes may be undefined.

By default, RPC servers are limited to a maximum of 1024 file descriptors or connections due to limitations in the historical interfaces svc_fdset(3NSL) and svc_getreqset(3NSL). Applications written to use the preferred interfaces of svc_pollfd(3NSL) and svc_getreq_poll(3NSL) can use an unlimited number of file descriptors. Setting info to point to a non-zero integer and op to RPC_SVC_USE_POLLFD removes the limitation.
Connection oriented RPC transports read RPC requests in blocking mode by default. Thus, they may be adversely affected by network delays and broken clients. `RPC_SVC_CONNMAXREC_SET` enables non-blocking mode and establishes the maximum record size (in bytes) for RPC requests; RPC responses are not affected. Buffer space is allocated as needed up to the specified maximum, starting at the maximum or `RPC_MAXDATASIZE`, whichever is smaller.

The value established by `RPC_SVC_CONNMAXREC_SET` is used when a connection is created, and it remains in effect for that connection until it is closed. To change the value for existing connections on a per-connection basis, see `svc_control(3NSL)`.

`RPC_SVC_CONNMAXREC_GET` retrieves the current maximum record size. A zero value means that no maximum is in effect, and that the connections are in blocking mode.

`info` is a pointer to an argument of type `int`. Non-connection RPC transports ignore `RPC_SVC_CONNMAXREC_SET` and `RPC_SVC_CONNMAXREC_GET`.

```
RETURN VALUES
```

This routine returns TRUE if the operation was successful and returns FALSE otherwise.

```
ATTRIBUTES
```

See `attributes(5)` for descriptions of the following attributes:

```
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>
```

```
SEE ALSO
```

`rpcbind(1M), rpc(3NSL), rpc_svc_calls(3NSL), attributes(5)`

`Network Interfaces Programmer’s Guide`
rpc_gss_getcred(3NSL)

NAME rpc_gss_getcred – get credentials of client

SYNOPSIS #include <rpc/rpcsec_gss.h>

 bool_t rpc_gss_getcred(struct svc_req *req, rpc_gss_rawcred_t **rcred, rpc_gss_ucred **ucred, void **cookie);

DESCRIPTION rpc_gss_getcred() is used by a server to fetch the credentials of a client. These credentials may either be network credentials (in the form of a rpc_gss_rawcred_t structure) or UNIX credentials.

For more information on RPCSEC_GSS data types, see the rpcsec_gss(3NSL) man page.

PARAMETERS Essentially, rpc_gss_getcred() passes a pointer to a request (svc_req) as well as pointers to two credential structures and a user-defined cookie; if rpc_gss_getcred() is successful, at least one credential structure is "filled out" with values, as is, optionally, the cookie.

 req Pointer to the received service request. svc_req is an RPC structure containing information on the context of an RPC invocation, such as program, version, and transport information.

 rcred A pointer to an rpc_gss_rawcred_t structure pointer. This structure contains the version number of the RPCSEC_GSS protocol being used; the security mechanism and QOPs for this session (as strings); principal names for the client (as a rpc_gss_principal_t structure) and server (as a string); and the security service (integrity, privacy, etc., as an enum). If an application is not interested in these values, it may pass NULL for this parameter.

 ucred The caller’s UNIX credentials, in the form of a pointer to a pointer to a rpc_gss_ucred_t structure, which includes the client’s uid and gids. If an application is not interested in these values, it may pass NULL for this parameter.

 cookie A four-byte quantity that an application may use in any manner it wants to; RPC does not interpret it. (For example, a cookie may be a pointer or index to a structure that represents a context initiator.) See also rpc_gss_set_callback(3NSL).

RETURN VALUES rpc_gss_getcred() returns TRUE if it is successful; otherwise, use rpc_gss_get_error() to get the error associated with the failure.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

460 man pages section 3: Networking Library Functions • Last Revised 5 Feb 2002
rpc_gss_getcred(3NSL)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrg (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWrgx (64-bit)</td>
</tr>
</tbody>
</table>

SEE ALSO

rpc(3NSL), rpc_gss_set_callback(3NSL), rpc_gss_set_svc_name(3NSL), rpcsec_gss(3NSL), attributes(5)

ONC+ Developer's Guide

NAME
rpc_gss_get_error – get error codes on failure

SYNOPSIS
#include <rpc/rpcsec_gss.h>

bool_t rpc_gss_get_error(rpc_gss_error_t *error);

DESCRIPTION
rpc_gss_get_error() fetches an error code when an RPCSEC_GSS routine fails.

rpc_gss_get_error() uses a rpc_gss_error_t structure of the following form:

typedef struct {
 int rpc_gss_error; /* RPCSEC_GSS error */
 int system_error; /* system error */
} rpc_gss_error_t;

Currently the only error codes defined for this function are

#define RPC_GSS_ER_SUCCESS 0 /* no error */
#define RPC_GSS_ER_SYSTEMERROR 1 /* system error */

PARAMETERS Information on RPCSEC_GSS data types for parameters may be found on the
rpcsec_gss(3NSL) man page.

error A rpc_gss_error_t structure. If the rpc_gss_error field is
 equal to RPC_GSS_ER_SYSTEMERROR, the system_error field
 will be set to the value of errno.

RETURN VALUES Unless there is a failure indication from an invoked RPCSEC_GSS function,
rpc_gss_get_error() does not set error to a meaningful value.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWrg (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWrgx (64-bit)</td>
</tr>
</tbody>
</table>

SEE ALSO perror(3C), rpc(3NSL), rpcsec_gss(3NSL), attributes(5)

ONC+ Developer’s Guide

NOTES Only system errors are currently returned.
NAME
rpc_gss_get_mechanisms, rpc_gss_get_mech_info, rpc_gss_get_versions,
rpc_gss_is_installed – get information on mechanisms and RPC version

SYNOPSIS
```c
#include <rpc/rpcsec_gss.h>

char **rpc_gss_get_mechanisms();
char **rpc_gss_get_mech_info(char *mech, rpc_gss_service_t *service);
bool_t rpc_gss_get_versions(u_int *vers_hi, u_int *vers_lo);
bool_t rpc_gss_is_installed(char *mech);
```

DESCRIPTION
These "convenience functions" return information on available security mechanisms and versions of RPCSEC_GSS.

- **rpc_gss_get_mechanisms()**
 Returns a list of supported security mechanisms as a null-terminated list of character strings.

- **rpc_gss_get_mech_info()**
 Takes two arguments: an ASCII string representing a mechanism type, for example, kerberosv5, and a pointer to a `rpc_gss_service_t` enum.
 `rpc_gss_get_mech_info()` will return NULL upon error or if no `/etc/gss/qop` file is present. Otherwise, it returns a null-terminated list of character strings of supported Quality of Protections (QOPs) for this mechanism. NULL or empty list implies only that the default QOP is available and can be specified to routines that need to take a QOP string parameter as NULL or as an empty string.

- **rpc_gss_get_versions()**
 Returns the highest and lowest versions of RPCSEC_GSS supported.

- **rpc_gss_is_installed()**
 Takes an ASCII string representing a mechanism, and returns `TRUE` if the mechanism is installed.

PARAMETERS
Information on RPCSEC_GSS data types for parameters may be found on the `rpcsec_gss(3NSL)` man page.

- **mech**
 An ASCII string representing the security mechanism in use. Valid strings may also be found in the `/etc/gss/mech` file.

- **service**
 A pointer to a `rpc_gss_service_t` enum, representing the current security service (privacy, integrity, or none).
rpc_gss_get_mechanisms(3NSL)

<table>
<thead>
<tr>
<th>vers_hi</th>
<th>The highest and lowest versions of RPCSEC_GSS supported.</th>
</tr>
</thead>
<tbody>
<tr>
<td>vers_lo</td>
<td></td>
</tr>
</tbody>
</table>

FILES

- `/etc/gss/mech` File containing valid security mechanisms
- `/etc/gss/qop` File containing valid QOP values

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWrsrg (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWrsrgx (64-bit)</td>
</tr>
</tbody>
</table>

SEE ALSO

rpc(3NSL), rpcsec_gss(3NSL), mech(4), qop(4), attributes(5)

ONC+ Developer’s Guide

NOTES

This function will change in a future release.
include <rpc/rpcsec_gss.h>

bool_t rpc_gss_get_principal_name(rpc_gss_principal_* principal,
 char *mech, char *name, char *node, char *domain);

Servers need to be able to operate on a client’s principal name. Such a name is stored by the server as a rpc_gss_principal_t structure, an opaque byte string which can be used either directly in access control lists or as database indices which can be used to look up a UNIX credential. A server may, for example, need to compare a principal name it has received with the principal name of a known entity, and to do that, it must be able to generate rpc_gss_principal_t structures from known entities.

rpc_gss_get_principal_name() takes as input a security mechanism, a pointer to a rpc_gss_principal_t structure, and several parameters which uniquely identify an entity on a network: a user or service name, a node name, and a domain name. From these parameters it constructs a unique, mechanism-dependent principal name of the rpc_gss_principal_t structure type.

How many of the identifying parameters (name, node, and domain) are necessary to specify depends on the mechanism being used. For example, Kerberos V5 requires only a user name but can accept a node and domain name. An application can choose to set unneeded parameters to NULL.

Information on RPCSEC_GSS data types for parameters may be found on the rpcsec_gss(3NSL) man page.

principal An opaque, mechanism-dependent structure representing the client’s principal name.

mech An ASCII string representing the security mechanism in use. Valid strings may be found in the /etc/gss/mech file, or by using rpc_gss_get_mechanisms() to get the error associated with the failure.

name A UNIX login name (for example, ‘gwashington’) or service name, such as ‘nfs’.
	node A node in a domain; typically, this would be a machine name (for example, ‘valleyforge’).
	domain A security domain; for example, a DNS, NIS, or NIS+ domain name (‘eng.company.com’).

rpc_gss_get_principal_name() returns TRUE if it is successful; otherwise, use rpc_gss_get_error() to get the error associated with the failure.

/etc/gss/mech File containing valid security mechanisms

See attributes(5) for descriptions of the following attributes:
SEE ALSO

free(3C), rpc(3NSL), rpc_gss_get_mechanisms(3NSL),
rpc_gss_set_svc_name(3NSL), rpcsec_gss(3NSL), mech(4), attributes(5)

NOTES

Principal names may be freed up by a call to free(3C). A principal name need only be
freed in those instances where it was constructed by the application. (Values returned
by other routines point to structures already existing in a context, and need not be
freed.)
Performing a security transformation on a piece of data generally produces data with a different (usually greater) length. For some transports, such as UDP, there is a maximum length of data which can be sent out in one data unit. Applications need to know the maximum size a piece of data can be before it’s transformed, so that the resulting data will still “fit” on the transport. These two functions return that maximum size.

rpc_gss_max_data_length() is the client-side version; rpc_gss_svc_max_data_length() is the server-side version.

PARAMETERS

handle
An RPC context handle of type `AUTH`, returned when a context is created (for example, by `rpc_gss_seccreate()`). Security service and QOP are bound to this handle, eliminating any need to specify them.

max_tp_unit_len
The maximum size of a piece of data allowed by the transport.

req
A pointer to an RPC `svc_req` structure, containing information on the context (for example, program number and credentials).

RETURN VALUES
Both functions return the maximum size of untransformed data allowed, as an `int`.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWrsrg (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWrsrgx (64-bit)</td>
</tr>
</tbody>
</table>

SEE ALSO
rpc(3NSL), rpcsec_gss(3NSL), attributes(5)

ONC+ Developer’s Guide

rpc_gss_mech_to_oid(3NSL)

NAME rpc_gss_mech_to_oid, rpc_gss_qop_to_num – map mechanism, QOP strings to non-string values

SYNOPSIS

```c
#include <rpc/rpcsec_gss.h>

bool_t rpc_gss_mech_to_oid(char *mech, rpc_gss_OIDc *oid);

bool_t rpc_gss_qop_to_num(char *qop, char *mech, u_int *num);
```

DESCRIPTION Because in-kernel RPC routines use non-string values for mechanism and Quality of Protection (QOP), these routines exist to map strings for these attributes to their non-string counterparts. (The non-string values for QOP and mechanism are also found in the `/etc/gss/qop` and `/etc/gss/mech` files, respectively.) `rpc_gss_mech_to_oid()` takes a string representing a mechanism, as well as a pointer to a `rpc_gss_OID` object identifier structure. It then gives this structure values corresponding to the indicated mechanism, so that the application can now use the OID directly with RPC routines. `rpc_gss_qop_to_num()` does much the same thing, taking strings for QOP and mechanism and returning a number.

PARAMETERS Information on RPCSEC_GSS data types for parameters may be found on the `rpcsec_gss(3NSL)` man page.

- **mech**: An ASCII string representing the security mechanism in use. Valid strings may be found in the `/etc/gss/mech` file.
- **oid**: An object identifier of type `rpc_gss_OID`, whose elements are usable by kernel-level RPC routines.
- **qop**: This is an ASCII string which sets the quality of protection (QOP) for the session. Appropriate values for this string may be found in the file `/etc/gss/qop`.
- **num**: The non-string value for the QOP.

RETURN VALUES Both functions return TRUE if they are successful, FALSE otherwise.

FILES

- `/etc/gss/mech` File containing valid security mechanisms
- `/etc/gss/qop` File containing valid QOP values

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWrsq (32–bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWrsq (64–bit)</td>
</tr>
</tbody>
</table>

SEE ALSO rpc(3NSL), rpc_gss_get_error(3NSL), rpc_gss_get_mechanisms(3NSL), rpcsec_gss(3NSL), mech(4), qop(4), attributes(5)
ONC+ Developer’s Guide

rpc_gss_seccreate(3NSL)

NAME
rpc_gss_seccreate – create a security context using the RPCSEC_GSS protocol

SYNOPSIS
#include <rpc/rpcsec_gss.h>

AUTH *rpc_gss_seccreate *clnt, char *principal, char *mechanism,
 rpc_gss_service_t service_type, char *qop, rpc_gss_options_req_t
 *options_req, rpc_gss_options_ret_t *options_ret);

DESCRIPTION
rpc_gss_seccreate() is used by an application to create a security context using
the RPCSEC_GSS protocol, making use of the underlying GSS-API network layer.
rpc_gss_seccreate() allows an application to specify the type of security
mechanism (for example, Kerberos v5), the type of service (for example, integrity
checking), and the Quality of Protection (QOP) desired for transferring data.

PARAMETERS
Information on RPCSEC_GSS data types for parameters may be found on the
rpcsec_gss(3NSL) man page.

clnt
This is the RPC client handle. clnt may be obtained, for example, from clnt_create().

principal
This is the identity of the server principal, specified in
the form service@host, where service is the name of the
service the client wishes to access and host is the fully
qualified name of the host where the service resides —
for example, nfs@mymachine.eng.company.com.

mechanism
This is an ASCII string which indicates which security
mechanism to use with this data. Appropriate
mechanisms may be found in the file /etc/gss/mech;
additionally, rpc_gss_get_mechanisms() returns a
list of supported security mechanisms (as
null-terminated strings).

service_type
This sets the initial type of service for the session —
privacy, integrity, authentication, or none.

qop
This is an ASCII string which sets the quality of
protection (QOP) for the session. Appropriate values
for this string may be found in the file /etc/gss/qop.
Additionally, supported QOPs are returned (as
null-terminated strings) by
rpc_gss_get_mech_info().

options_req
This structure contains options which are passed
directly to the underlying GSS_API layer. If the caller
specifies NULL for this parameter, defaults are used.
(See NOTES, below.)

options_ret
These GSS-API options are returned to the caller. If the
caller does not need to see these options, then it may
specify NULL for this parameter. (See NOTES, below.)
rpc_gss_seccreate() returns a security context handle (an RPC authentication handle) of type AUTH. If rpc_gss_seccreate() cannot return successfully, the application can get an error number by calling rpc_gss_get_error().

FILES
/etc/gss/mech File containing valid security mechanisms
/etc/gss/qop File containing valid QOP values.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWrsg (32-bits)</td>
</tr>
<tr>
<td></td>
<td>SUNWrsgx (64-bits)</td>
</tr>
</tbody>
</table>

SEE ALSO
auth_destroy(3NSL), rpc(3NSL), rpc_gss_get_error(3NSL), rpc_gss_get_mechanisms(3NSL), rpcsec_gss(3NSL), mech(4), qop(4), attributes(5)

ONC+ Developer’s Guide

NOTES
Contexts may be destroyed normally, with auth_destroy(). See auth_destroy(3NSL)
rpc_gss_set_callback(3NSL)

NAME rpc_gss_set_callback – specify callback for context

SYNOPSIS

```c
#include <rpc/rpcsec_gss.h>

bool_t rpc_gss_set_callback(struct rpc_gss_callback_t *cb);
```

DESCRIPTION

A server may want to specify a callback routine so that it knows when a context gets first used. This user-defined callback may be specified through the `rpc_gss_set_callback()` routine. The callback routine is invoked the first time a context is used for data exchanges, after the context is established for the specified program and version.

The user-defined callback routine should take the following form:

```c
bool_t callback(struct svc_req *req, gss_cred_id_t deleg, 
                gss_ctx_id_t gss_context, rpc_gss_lock_t *lock, void **cookie);
```

PARAMETERS

- `rpc_gss_set_callback()` takes one argument: a pointer to a `rpc_gss_callback_t` structure. This structure contains the RPC program and version number as well as a pointer to a user-defined `callback()` routine. (For a description of `rpc_gss_callback_t` and other `RPCSEC_GSS` data types, see the `rpcsec_gss`(3NSL) man page.)

The user-defined `callback()` routine itself takes the following arguments:

- `req` Pointer to the received service request. `svc_req` is an RPC structure containing information on the context of an RPC invocation, such as program, version, and transport information.

- `deleg` Delegated credentials, if any. (See NOTES, below.)

- `gss_context` GSS context (allows server to do GSS operations on the context to test for acceptance criteria). See NOTES, below.

- `lock` This parameter is used to enforce a particular QOP and service for a session. This parameter points to a `RPCSEC_GSS rpc_gss_lock_t` structure. When the callback is invoked, the `rpc_gss_lock_t.locked` field is set to TRUE, thus locking the context. A locked context will reject all requests having different values for QOP or service than those specified by the `raw_cred` field of the `rpc_gss_lock_t` structure.

- `cookie` A four-byte quantity that an application may use in any manner it wants to — RPC does not interpret it. (For example, the cookie could be a pointer or index to a structure that represents a context initiator.) The cookie is returned, along with the caller’s credentials, with each invocation of `rpc_gss_getcred()`.

RETURN VALUES

- `rpc_gss_set_callback()` returns TRUE if the use of the context is accepted; false otherwise.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:
rpc_gss_set_callback(3NSL)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWrs (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWrsx (64-bit)</td>
</tr>
</tbody>
</table>

SEE ALSO
rpc(3NL), rpc_gss_getcred(3NL), rpcsec_gss(3NL), attributes(5)

ONC+ Developer’s Guide

NOTES
If a server does not specify a callback, all incoming contexts will be accepted.
Because the GSS-API is not currently exposed, the deleg and gss_context arguments are mentioned for informational purposes only, and the user-defined callback function may choose to do nothing with them.
rpc_gss_set_defaults(3NSL)

NAME rpc_gss_set_defaults – change service, QOP for a session

SYNOPSIS
#include <rpc/rpcsec_gss.h>

bool_t rpc_gss_set_defaults(AUTH *auth, rpc_gss_service_t service,
char *qop);

DESCRIPTION rpc_gss_set_defaults() allows an application to change the service (privacy,
integrity, authentication, or none) and Quality of Protection (QOP) for a transfer
session. New values apply to the rest of the session (unless changed again).

PARAMETERS Information on RPCSEC_GSS data types for parameters may be found on the
rpcsec_gss(3NSL) man page.

auth An RPC authentication handle returned by
rpc_gss_seccreate().

service An enum of type rpc_gss_service_t, representing one of the
following types of security service: authentication, privacy,
integrity, or none.

qop A string representing Quality of Protection. Valid strings may be
found in the file /etc/gss/qop or by using
rpc_gss_get_mech_info().

RETURN VALUES rpc_gss_set_svc_name() returns TRUE if it is successful; otherwise, use
rpc_gss_get_error() to get the error associated with the failure.

FILES /etc/gss/qop File containing valid QOPs

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWrs (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWrsx (64-bit)</td>
</tr>
</tbody>
</table>

SEE ALSO rpc(3NSL), rpc_gss_get_mech_info(3NSL), rpcsec_gss(3NSL), qop(4),
attributes(5)

ONC+ Developer’s Guide

rpc_gss_set_svc_name(3NSL)

NAME
rpc_gss_set_svc_name – send a principal name to a server

SYNOPSIS
#include <rpc/rpcsec_gss.h>

bool_t rpc_gss_set_svc_name(char *principal, char *mechanism, u_int req_time, u_int program, u_int version);

DESCRIPTION
rpc_gss_set_svc_name() sets the name of a principal the server is to represent. If a server is going to act as more than one principal, this procedure can be invoked for every such principal.

PARAMETERS
Information on RPCSEC_GSS data types for parameters may be found on the rpcsec_gss(3NSL) man page.

principal
An ASCII string representing the server’s principal name, given in the form of service@host.

mech
An ASCII string representing the security mechanism in use. Valid strings may be found in the /etc/gss/mech file, or by using rpc_gss_get_mechanisms().

req_time
The time, in seconds, for which a credential should be valid. Note that the req_time is a hint to the underlying mechanism. The actual time that the credential will remain valid is mechanism dependent. In the case of kerberos the actual time will be GSS_C_INDEFINITE.

program
The RPC program number for this service.

version
The RPC version number for this service.

RETURN VALUES
rpc_gss_set_svc_name() returns TRUE if it is successful; otherwise, use rpc_gss_get_error() to get the error associated with the failure.

FILES
/etc/gss/mech File containing valid security mechanisms

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWrs (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWrsx (64-bit)</td>
</tr>
</tbody>
</table>

SEE ALSO
rpc(3NSL), rpc_gss_get_mechanisms(3NSL), rpc_gss_get_principal_name(3NSL), rpcsec_gss(3NSL), mech(4), attributes(5)

ONC+ Developer’s Guide
rpc_gss_set_svc_name(3NSL)

The remote asynchronous calls (RAC) package is a special interface to the RPC library that allows messages to be sent using the RPC protocol without blocking during the time between when the message is sent and the reply is received. To RPC servers, RAC messages are indistinguishable from RPC messages.

A client establishes an RPC session in the usual way (see `rpc_clnt_create(3NSL)`). A RAC message is sent using `rac_send()`. This routine returns immediately, allowing the client to conduct other processing. When the client wants to determine whether the returned value from the call has been received, `rac_poll()` is used. `rac_recv()` is used to collect the returned value; it can also be used to block while waiting for the returned value to arrive. `rac_drop()` is used to inform the RPC library that the client is no longer interested in the results of a particular RAC message.

`rac_drop()` should be called when the user is no longer interested in the result of a `rac_send()` currently in progress. No message to the server is generated by this call, but any subsequent reply received for this handle will be silently dropped. It also frees any space occupied by the asynchronous call handle `h`.

After a call to `rac_drop()` the handle referred to by `h` is invalid. It may no longer be used in any asynchronous operation.

`rac_poll()` returns the status of the call currently in progress on the `<CLIENT, asynchronous handle> tuple referred to by `cl` and `h`. `rac_poll()` return values are:

- **RPC_SUCCESS**: A reply has been received and is available for reading by `rac_recv()`.
- **RPC_INPROGRESS**: No reply has been received. The call referred to by the given handle has not yet timed out.
- **RPC_TIMEDOUT**: No reply has been received. The call referred to by the given handle...
rpc_rac(3RAC)

has exceeded the maximum timeout value specified in `rac_send()`.

RPC_STALERACHANDLE Either the handle referred to by h is invalid or no call is currently in progress for the given <CLIENT, asynchronous handle> tuple.

RPC_CANTRECV Either the file descriptor associated with the given CLIENT handle is bad, or an error occurred while attempting to receive a packet.

RPC_SYSTEMERROR Space could not be allocated to receive a packet.

On unreliable transports, a call to `rac_poll()` will trigger a retransmission when necessary (that is, if a `rac_send()` is in progress, no reply has been received, the per-call timeout has expired, and the total timeout has not yet expired).

The return value for `rac_poll()` is independent of the RPC return value in the reply packet. Although a combination of `clnt_control()`'s CLGET_FD request and `poll(2)` may be used to extract the proper file descriptor and poll for packets, `rac_poll()` is still useful since it will determine whether a reply is available for a specific <CLIENT, asynchronous handle> tuple.

`rac_recv()` retrieves the results of a previous asynchronous RPC call, placing them in the buffer indicated in the `rac_send()` call and using the XDR decode function supplied there. It depends on the application to have ensured that a reply is present (using `rac_poll()`). If `rac_recv()` is called before a reply has been received, it will block awaiting a reply.

All errors normally returned by the RPC client call functions may be returned here. In addition:

RPC_STALERACHANDLE Either the handle referred to by h is invalid or no call is currently in progress for the given <CLIENT, asynchronous handle> tuple.

Additionally, if a packet is present and its status is not RPC_SUCCESS, it is possible that the client credentials need refreshing. In this case, RPC_AUTHERROR is returned and the client should
When a reply has been received, `rac_recv()` will invoke the XDR decode procedure specified in the `rac_send()` call. After a call to `rac_recv()`, the handle referred to by \texttt{h} is invalid. It may no longer be used in any asynchronous operation.

\textbf{rac_send()} \hspace{1em} `rac_send()` initiates (sends to the server) an RPC call to the specified procedure. It does not await a reply from the server. \texttt{argsp} is the address of the procedure’s arguments, \texttt{resultsp} is the address in which to place the results, \texttt{xargs} and \texttt{xresults} are XDR functions used to encode and decode respectively. Note: \texttt{resultsp} must be a valid pointer when \texttt{rac_recv()} is called. \texttt{timeout} should contain the total amount of time the application is willing to wait for a reply.

Upon success, an opaque handle, known as the asynchronous handle, is returned. This handle is to be used in subsequent asynchronous calls to poll for the status of the call (\texttt{rac_poll()}), receive the returned results of the call (\texttt{rac_recv()}), or cancel the call (\texttt{rac_drop()}).

On failure, \texttt{(void *) 0} is returned.

In case of failure, the application may retrieve the RPC failure code by calling \texttt{clnt_geterr()} immediately after a `rac_send()` failure (see \texttt{rpc(3NSL)}). Possible errors include both transient problems (such as transport failures) and permanent ones (such as XDR encoding failures).

Multiple `rac_sends` on the same client handle are permitted, but may introduce unpredictable perturbations to the current timeout and retry model used by the RPC library.

The interface imposes a limit on the amount of time a call may be in progress before it is considered to have failed. This method was chosen over limitations on the number of retries because of a desire for transport independence.

\textbf{ATTRIBUTES} \hspace{1em} See \texttt{attributes(5)} for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

\textbf{SEE ALSO} \hspace{1em} \texttt{poll(2), rpc(3NSL), rpc_clnt_create(3NSL), rpc_clnt_calls(3NSL), xdr(3NSL), attributes(5)}
The RAC interface is not the recommended interface for having multiple RPC requests outstanding. The preferred method of accomplishing this in the Solaris environment is to use synchronous RPC calls with threads. The RAC interface is provided as a service to developers interested in porting RPC applications to Solaris 2.0. Use of this interface will degrade the performance of normal synchronous RPC calls (see `rpc_clnt_calls(3NSL)`). For these reasons, use of this interface is disparaged.

The library `librac` must be linked before `libnsl` to use RAC. If the libraries are not linked in the correct order, then the results are indeterminate.

These interfaces are unsafe in multithreaded applications. Unsafe interfaces should be called only from the main thread.
NAME
rpcsec_gss – security flavor incorporating GSS-API protections

SYNOPSIS
cc [flag...] file... -lns1 [library...]
#include <rpc/rpcsec_gss.h>

DESCRIPTION
RPCSEC_GSS is a security flavor which sits "on top" of the GSS-API (Generic Security Service API) for network transmissions. Applications using RPCSEC_GSS can take advantage of GSS-API security features; moreover, they can use any security mechanism (such as RSA public key or Kerberos) that works with the GSS-API.

The GSS-API offers two security services beyond the traditional authentication services (AUTH_DH, AUTH_SYS, and AUTH_KERB): integrity and privacy. With integrity, the system uses cryptographic checksumming to ensure the authenticity of a message (authenticity of originator, recipient, and data); privacy provides additional security by encrypting data. Applications using RPCSEC_GSS specify which service they wish to use. Type of security service is mechanism-independent.

Before exchanging data with a peer, an application must establish a context for the exchange. RPCSEC_GSS provides a single function for this purpose, rpc_gss_seccreate(), which allows the application to specify the security mechanism, Quality of Protection (QOP), and type of service at context creation. (The QOP parameter sets the cryptographic algorithms to be used with integrity or privacy, and is mechanism-dependent.) Once a context is established, applications can reset the QOP and type of service for each data unit exchanged, if desired.

Valid mechanisms and QOPs may be obtained from configuration files or from the name service. Each mechanism has a default QOP.

Contexts are destroyed with the usual RPC auth_destroy() call.

Data Structures

Some of the data structures used by the RPCSEC_GSS package are shown below.

rpc_gss_service_t

This enum defines the types of security services the context may have.

```
typedef enum {
    rpc_gss_svc_default = 0,
    rpc_gss_svc_none = 1,
    rpc_gss_svc_integrity = 2,
    rpc_gss_svc_privacy = 3
} rpc_gss_service_t;
```

rpc_gss_options_req_t

Structure containing options passed directly through to the GSS-API.

```
typedef struct {
    int req_flags; /*GSS request bits*/
    int time_req; /*requested credential lifetime*/
} rpc_gss_options_req_t;
```
typedef struct {
 u_int length;
 void *elements
} *rpc_gss_OID;

RPC_GSS_OID
This data type is used by in-kernel RPC routines, and thus is mentioned here for informational purposes only.

typedef struct {
 int major_status;
 int minor_status;
 u_int rpcsec_version /**< vers. of RPCSEC_GSS */
 int ret_flags
 int time_req
 gss_ctx_id_t gss_context;
 char actual_mechanism[MAX_GSS_MECH]; /**< mechanism used*/
} rpc_gss_options_ret_t;

RPC_GSS_OPTIONS_RET_T
Structure containing GSS-API options returned to the calling function, rpc_gss_seccreate(). MAX_GSS_MECH is defined as 128.

typedef struct {
 int len;
 char name[1];
} *rpc_gss_principal_t;

RPC_GSS_PRINCIPAL_T
The (mechanism-dependent, opaque) client principal type. Used as an argument to the rpc_gss_get_principal_name() function, and in the gsscred table. Also referenced by the rpc_gss_rawcred_t structure for raw credentials (see below).

typedef struct {
 u_int version; /**< RPC version */
 char *mechanism; /**< security mechanism*/
 char *qop; /**< Quality of Protection*/
 rpc_gss_principal_t client_principal; /**< client name*/
 char *svc_principal; /**< server name*/
 rpc_gss_service_t service; /**< service (integrity, etc.)*/
} rpc_gss_rawcred_t;

RPC_GSS_RAWCRED_T
Structure for raw credentials. Used by rpc_gss_getcred() and rpc_gss_set_callback().
 rpc_gss_ucred_t
Structure for UNIX credentials. Used by rpc_gss_getcred() as an alternative to rpc_gss_rawcred_t.

typedef struct {
 uid_t uid; /*user ID*/
 gid_t gid; /*group ID*/
 short gidlen;
 gid_t *gidlist; /*list of groups*/
} rpc_gss_ucred_t;

rpc_gss_callback_t
Callback structure used by rpc_gss_set_callback().

typedef struct {
 u_int program; /*RPC program #*/
 u_int version; /*RPC version #*/
 bool_t (*callback)(); /*user-defined callback routine*/
} rpc_gss_callback_t;

rpc_gss_lock_t
Structure used by a callback routine to enforce a particular QOP and service for a session. The locked field is normally set to FALSE; the server sets it to TRUE in order to lock the session. (A locked context will reject all requests having different QOP and service values than those found in the raw_cred structure.) For more information, see the rpc_gss_set_callback(3NSL) man page.

typedef struct {
 bool_t locked;
 rpc_gss_rawcred_t *raw_cred;
} rpc_gss_lock_t;

rpc_gss_error_t
Structure used by rpc_gss_get_error() to fetch an error code when a RPCSEC_GSS routine fails.

typedef struct {
 int rpc_gss_error;
 int system_error; /*same as errno*/
} rpc_gss_error_t;

Index to Routines
The following lists RPCSEC_GSS routines and the manual reference pages on which they are described. An (S) indicates it is a server-side function:

Routine (Manual Page)
 Description
 rpc_gss_seccreate(3NSL)
 Create a secure RPCSEC_GSS context
The gsscred utility manages the gsscred table, which contains mappings of principal names between network and local credentials. See gsscred(1M).

FILES

/etc/gss/mech List of installed mechanisms
/etc/gss/qop List of valid QOPs

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>
rpcsec_gss(3NSL)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWrs (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWrsx (64-bit)</td>
</tr>
</tbody>
</table>

SEE ALSO
gsscred(1M), rpc(3NSL), rpc_clnt_auth(3NSL), xdr(3NSL), attributes(5), environ(5)

ONC+ Developer’s Guide
rpc_soc(3NSL)

NAME
rpc_soc, authdes_create, authunix_create, authunix_create_default, callrpc,
clnt_broadcast, clntraw_create, clnttcp_create, clntudp_bufcreate, clntudp_create,
get_myaddress, getrpcport, pmap_getmaps, pmap_getport, pmap_rmtcall, pmap_set,
pmap_unset, registerrpc, svc_fds, svc_getcaller, svc_getreq, svc_register,
svc_unregister, svcfd_create, svcraw_create, svctcp_create, svcudp_bufcreate,
svcudp_create, xdr_authunix_parms – obsolete library routines for RPC

SYNOPSIS
#define PORTMAP
#include <rpc/rpc.h>

AUTH *authdes_create(char *name, uint_t window, struct sockaddr_in *
syncaddr, des_block *ckey);

AUTH *authunix_create(char *host, uid_t uid, gid_t gid, int grouplen, gid_t *
gidlistp);

AUTH *authunix_create_default(void);

callrpc(char *host, rpcprog_t prognum, rpcvers_t versnum, rpcproc_t procnun,
 xdrproc_t inproc, char *in, xdrproc_t outproc, char *out);

enum clnt_stat clnt_broadcast(rpcprog_t prognum, rpcvers_t versnum,
 rpcproc_t procmun, xdrproc_t inproc, char *in, xdrproc_t
 outproc, char *out, resultproc_t eachresult);

CLIENT *clntraw_create(rpcproc_t procmun, rpcvers_t versnum);

CLIENT *clnttcp_create(struct sockaddr_in *addr, rpcprog_t prognum,
 rpcvers_t versnum, int *fdp, uint_t sendz, uint_t recvsz);

CLIENT *clntudp_bufcreate(struct sockaddr_in *addr, rpcprog_t prognum,
 rpcvers_t versnum, struct timeval wait, int *fdp, uint_t
 sendz, uint_t recvsz);

CLIENT *clntudp_create(struct sockaddr_in *addr, rpcprog_t prognum,
 struct timeval wait, int *fdp);

void get_myaddress(struct sockaddr_in *addr);

ushort getrpcport(char *host, rpcprog_t prognum, rpcvers_t versnum,
 rpcprot_t proto);

struct pmaplist *pmap_getmaps(struct sockaddr_in *addr);

ushort pmap_getport(struct sockaddr_in *addr, rpcprog_t prognum,
 rpcvers_t versnum, rpcprot_t protocol);

enum clnt_stat pmap_rmtcall(struct sockaddr_in *addr, rpcprog_t prognum,
 rpcvers_t versnum, rpcproc_t procmun, caddr_t in,
 xdrproc_t inproc, caddr_t out, cdrproc_t outproc, struct
 timeval tout, rpcport_t *port);

bool_t pmap_set(rpcprog_t prognum, rpcvers_t versnum, rpcprot_t
 protocol, u_short port);

bool_t pmap_unset(rpcprog_t prognum, rpcvers_t versnum);
RPC routines allow C programs to make procedure calls on other machines across the network. First, the client calls a procedure to send a request to the server. Upon receipt of the request, the server calls a dispatch routine to perform the requested service, and then sends back a reply. Finally, the procedure call returns to the client.

The routines described in this manual page have been superseded by other routines. The preferred routine is given after the description of the routine. New programs should use the preferred routines, as support for the older interfaces may be dropped in future releases.

Transport independent RPC uses TLI as its transport interface instead of sockets. Some of the routines described in this section (such as clnttcp_create()) take a pointer to a file descriptor as one of the parameters. If the user wants the file descriptor to be a socket, then the application will have to be linked with both librpcsoc and libnsl. If the user passed RPC_ANYSOCK as the file_descriptor, and the application is linked with libnsl only, then the routine will return a TLI file descriptor and not a socket.

The following routines require that the header <rpc/rpc.h> be included. The symbol PORTMAP should be defined so that the appropriate function declarations for the old interfaces are included through the header files.

authdes_create()

authdes_create() is the first of two routines which interface to the RPC secure authentication system, known as DES authentication. The second is authdes_getucred(), below. Note: the keyserver daemon keyserv(1M) must be running for the DES authentication system to work.
authdes_create(), used on the client side, returns an authentication handle that will enable the use of the secure authentication system. The first parameter name is the network name, or netname, of the owner of the server process. This field usually represents a hostname derived from the utility routine host2netname(), but could also represent a username using user2netname(). See secure_rpc(3NSL). The second field is window on the validity of the client credential, given in seconds. A small window is more secure than a large one, but choosing too small of a window will increase the frequency of resynchronizations because of clock drift. The third parameter syncaddr is optional. If it is NULL, then the authentication system will assume that the local clock is always in sync with the server’s clock, and will not attempt resynchronizations. If an address is supplied, however, then the system will use the address for consulting the remote time service whenever resynchronization is required. This parameter is usually the address of the RPC server itself. The final parameter ckey is also optional. If it is NULL, then the authentication system will generate a random DES key to be used for the encryption of credentials. If it is supplied, however, then it will be used instead.

This routine exists for backward compatibility only, and it is made obsolete by authdes_seccreate(). See secure_rpc(3NSL).

authunix_create()

Create and return an RPC authentication handle that contains .UX authentication information. The parameter host is the name of the machine on which the information was created; uid is the user’s user ID; gid is the user’s current group ID; grouplen and gidlistp refer to a counted array of groups to which the user belongs.

It is not very difficult to impersonate a user.

This routine exists for backward compatibility only, and it is made obsolete by authsys_create(). See rpc_clnt_auth(3NSL).

authunix_create_default()

Call authunix_create() with the appropriate parameters.

This routine exists for backward compatibility only, and it is made obsolete by authsys_create_default(). See rpc_clnt_auth(3NSL).

callrpc()

Call the remote procedure associated with prognum, versnum, and procnum on the machine, host. The parameter inproc is used to encode the procedure’s parameters, and outproc is used to decode the procedure’s results; in is the address of the procedure’s argument, and out is the address of where to place the result(s). This routine returns 0 if it succeeds, or the value of enum clnt_stat cast to an integer if it fails. The routine clnt_perrno() is handy for translating failure statuses into messages. See rpc_clnt_calls(3NSL).

You do not have control of timeouts or authentication using this routine. This routine exists for backward compatibility only, and is made obsolete by rpc_call(). See rpc_clnt_calls(3NSL).
Clnt_stat_clnt_broadcast()

Like callrpc(), except the call message is broadcast to all locally connected broadcast nets. Each time the caller receives a response, this routine calls eachresult(), whose form is:

eachresult(char *out, struct sockaddr_in *addr);

where out is the same as out passed to clnt_broadcast(), except that the remote procedure’s output is decoded there; addr points to the address of the machine that sent the results. If eachresult() returns 0, clnt_broadcast() waits for more replies; otherwise it returns with appropriate status. If eachresult() is NULL, clnt_broadcast() returns without waiting for any replies.

Broadcast packets are limited in size to the maximum transfer unit of the transports involved. For Ethernet, the callers argument size is approximately 1500 bytes. Since the call message is sent to all connected networks, it may potentially lead to broadcast storms. clnt_broadcast() uses SB AUTH_SYS credentials by default. See rpc_clnt_auth(3NSL). This routine exists for backward compatibility only, and is made obsolete by rpc_broadcast(). See rpc_clnt_calls(3NSL).

eachresult(char *out, struct sockaddr_in *addr);

Clntraw_create()

This routine creates an internal, memory-based RPC client for the remote program prognum, version versnum. The transport used to pass messages to the service is actually a buffer within the process’s address space, so the corresponding RPC server should live in the same address space. See svcraw_create(). This allows simulation of RPC and acquisition of RPC overheads, such as round trip times, without any kernel interference. This routine returns NULL if it fails.

This routine exists for backward compatibility only. It has the same functionality as clnt_raw_create(). See rpc_clnt_create(3NSL), which obsoletes it.

Clnttcp_create()

This routine creates an RPC client for the remote program prognum, version versnum; the client uses TCP/IP as a transport. The remote program is located at Internet address addr. If addr->sin_port is 0, then it is set to the actual port that the remote program is listening on. The remote rpcbind service is consulted for this information. The parameter *fdp is a file descriptor, which may be open and bound; if it is RPC_ANYSOCK, then this routine opens a new one and sets *fdp. Refer to the File Descriptor section for more information. Since TCP-based RPC uses buffered I/O, the user may specify the size of the send and receive buffers with the parameters sendsz and recvsz. Values of 0 choose suitable defaults. This routine returns NULL if it fails.

This routine exists for backward compatibility only. clnt_create(), clnt_tli_create(), or clnt_vc_create() should be used instead. See rpc_clnt_create(3NSL).

Clntudp_bufcreate()

Create a client handle for the remote program prognum, on versnum; the client uses UDP/IP as the transport. The remote program is located at the Internet address addr. If addr->sin_port is 0, it is set to port on which the remote program is listening.

Networking Library Functions 489
The parameter *fdp is a file descriptor, which may be open and bound. If it is RPC_ANYSOCK, then this routine opens a new one and sets *fdp. Refer to the File Descriptor section for more information. The UDP transport resends the call message in intervals of wait time until a response is received or until the call times out. The total time for the call to time out is specified by clnt_call(). See rpc_clnt_calls(3NSL). If successful it returns a client handle, otherwise it returns NULL. The error can be printed using the clnt_pcreateerror() routine. See rpc_clnt_create(3NSL).

The user can specify the maximum packet size for sending and receiving by using sendsz and recvsz arguments for UDP-based RPC messages.

If addr->sin_port is 0 and the requested version number versnum is not registered with the remote portmap service, it returns a handle if at least a version number for the given program number is registered. The version mismatch is discovered by a clnt_call() later (see rpc_clnt_calls(3NSL)).

This routine exists for backward compatibility only. clnt_tli_create() or clnt_dg_create() should be used instead. See rpc_clnt_create(3NSL).

clntudp_create()
This routine creates an RPC client handle for the remote program prognum, version versnum; the client uses UDP/IP as a transport. The remote program is located at Internet address addr. If addr->sin_port is 0, then it is set to actual port that the remote program is listening on. The remote rpcbind service is consulted for this information. The parameter *fdp is a file descriptor, which may be open and bound; if it is RPC_ANYSOCK, then this routine opens a new one and sets *fdp. Refer to the File Descriptor section for more information. The UDP transport resends the call message in intervals of wait time until a response is received or until the call times out. The total time for the call to time out is specified by clnt_call(). See rpc_clnt_calls(3NSL). clntudp_create() returns a client handle on success, otherwise it returns NULL. The error can be printed using the clnt_pcreateerror() routine. See rpc_clnt_create(3NSL).

Since UDP-based RPC messages can only hold up to 8 Kbytes of encoded data, this transport cannot be used for procedures that take large arguments or return huge results.

This routine exists for backward compatibility only. clnt_create(), clnt_tli_create(), or clnt_dg_create() should be used instead. See rpc_clnt_create(3NSL).

get_myaddress()
Places the local system’s IP address into *addr, without consulting the library routines that deal with /etc/hosts. The port number is always set to htons(PMAPPORT).
This routine is only intended for use with the RPC library. It returns the local system’s address in a form compatible with the RPC library, and should not be taken as the system’s actual IP address. In fact, the *addr buffer’s host address part is actually zeroed. This address may have only local significance and should not be assumed to be an address that can be used to connect to the local system by remote systems or processes.

This routine remains for backward compatibility only. The routine `netdir_getbyname()` should be used with the name HOST_SELF to retrieve the local system’s network address as a `netbuf` structure. See `netdir(3NSL)`.

`getrpcport()`

`getrpcport()` returns the port number for the version `versnum` of the RPC program `prognum` running on `host` and using protocol `proto`. `getrpcport()` returns 0 if the RPC system failed to contact the remote portmap service, the program associated with `prognum` is not registered, or there is no mapping between the program and a port.

This routine exists for backward compatibility only. Enhanced functionality is provided by `rpcb_getaddr()`. See `rpcbind(3NSL)`.

`pmaplist()`

A user interface to the portmap service, which returns a list of the current RPC program-to-port mappings on the host located at IP address `addr`. This routine can return NULL. The command ‘rpcinfo -p’ uses this routine.

This routine exists for backward compatibility only, enhanced functionality is provided by `rpcb_getmaps()`. See `rpcbind(3NSL)`.

`pmap_getport()`

A user interface to the portmap service, which returns the port number on which waits a service that supports program `prognum`, version `versnum`, and speaks the transport protocol associated with `protocol`. The value of `protocol` is most likely IPPROTO_UDP or IPPROTO_TCP. A return value of 0 means that the mapping does not exist or that the RPC system failed to contact the remote portmap service. In the latter case, the global variable `rpc_createerr` contains the RPC status.

This routine exists for backward compatibility only, enhanced functionality is provided by `rpcb_getaddr()`. See `rpcbind(3NSL)`.

`pmap_rmtcall()`

Request that the portmap on the host at IP address `*addr` make an RPC on the behalf of the caller to a procedure on that host. `*portp` is modified to the program’s port number if the procedure succeeds. The definitions of other parameters are discussed in `callrpc()` and `clnt_call()`. See `rpc_clnt_calls(3NSL)`.

This procedure is only available for the UDP transport.

If the requested remote procedure is not registered with the remote portmap then no error response is returned and the call times out. Also, no authentication is done.
pmap_set()

A user interface to the portmap service, that establishes a mapping between the triple \([\text{prognum}, \text{versnum}, \text{protocol}]\) and \(\text{port}\) on the machine’s portmap service. The value of \(\text{protocol}\) may be \(\text{IPPROTO_UDP}\) or \(\text{IPPROTO_TCP}\). Formerly, the routine failed if the requested \(\text{port}\) was found to be in use. Now, the routine only fails if it finds that \(\text{port}\) is still bound. If \(\text{port}\) is not bound, the routine completes the requested registration. This routine returns 1 if it succeeds, 0 otherwise.

Automatically done by \(\text{svc_register()}\).

This routine exists for backward compatibility only, enhanced functionality is provided by \(\text{rpcb_set()}\). See \(\text{rpcbind(3NSL)}\).

pmap_unset()

A user interface to the portmap service, which destroys all mapping between the triple \([\text{prognum}, \text{versnum}, \text{all-protocols}]\) and \(\text{port}\) on the machine’s portmap service.

This routine returns one if it succeeds, 0 otherwise.

This routine exists for backward compatibility only, enhanced functionality is provided by \(\text{rpcb_unset()}\). See \(\text{rpcbind(3NSL)}\).

svc_fds()

A global variable reflecting the RPC service side’s read file descriptor bit mask; it is suitable as a parameter to the \(\text{select()}\) call. This is only of interest if a service implementor does not call \(\text{svc_run()}\), but rather does his own asynchronous event processing. This variable is read-only, yet it may change after calls to \(\text{svc_getreq()}\) or any creation routines. Do not pass its address to \(\text{select()}\)!

Similar to \(\text{svc_fdset}\), but limited to 32 descriptors.

This interface is made obsolete by \(\text{svc_fdset}\). See \(\text{rpc_svc_calls(3NSL)}\).

svc_getcaller()

This routine returns the network address, represented as a \text{struct sockaddr_in}, of the caller of a procedure associated with the RPC service transport handle, \(xprt\).

This routine exists for backward compatibility only, and is obsolete. The preferred interface is \(\text{svc_getrpc_caller()}\). See \(\text{rpc_svc_reg(3NSL)}\), which returns the address as a \text{struct netbuf}.

svc_getreq()

This routine is only of interest if a service implementor does not call \(\text{svc_run()}\), but instead implements custom asynchronous event processing. It is called when the \(\text{select()}\) call has determined that an RPC request has arrived on some RPC file descriptors; \(rdfs\) is the resultant read file descriptor bit mask. The routine returns when all file descriptors associated with the value of \(rdfs\) have been serviced. This routine is similar to \(\text{svc_getreqset()}\) but is limited to 32 descriptors.

This interface is made obsolete by \(\text{svc_getreqset()}\).
svcfd_create()
Create a service on top of any open and bound descriptor. Typically, this descriptor is a connected file descriptor for a stream protocol. Refer to the File Descriptor section for more information. sendsz and recvsz indicate sizes for the send and receive buffers. If they are 0, a reasonable default is chosen.

This interface is made obsolete by svc_fd_create() (see rpc_svc_create(3NSL)).

svcraw_create()
This routine creates an internal, memory-based RPC service transport, to which it returns a pointer. The transport is really a buffer within the process’s address space, so the corresponding RPC client should live in the same address space; see clntraw_create(). This routine allows simulation of RPC and acquisition of RPC overheads (such as round trip times), without any kernel interference. This routine returns NULL if it fails.

This routine exists for backward compatibility only, and has the same functionality of svc_raw_create(). See rpc_svc_create(3NSL), which obsoletes it.

svctcp_create()
This routine creates a TCP/IP-based RPC service transport, to which it returns a pointer. The transport is associated with the file descriptor fd, which may be RPC_ANYSOCK, in which case a new file descriptor is created. If the file descriptor is not bound to a local TCP port, then this routine binds it to an arbitrary port. Refer to the File Descriptor section for more information. Upon completion, xprt->xp_fd is the transport’s file descriptor, and xprt->xp_port is the transport’s port number. This routine returns NULL if it fails. Since TCP-based RPC uses buffered I/O, users may specify the size of buffers; values of 0 choose suitable defaults.

This routine exists for backward compatibility only. svc_create(), svc_tli_create(), or svc_vc_create() should be used instead. See rpc_svc_create(3NSL).

svcdudp_bufcreate()
This routine creates a UDP/IP-based RPC service transport, to which it returns a pointer. The transport is associated with the file descriptor fd. If fd is RPC_ANYSOCK then a new file descriptor is created. If the file descriptor is not bound to a local UDP port, then this routine binds it to an arbitrary port. Upon completion, xprtUDP_fd is the transport’s file descriptor, and xprt->xp_port is the transport’s port number. Refer to the File Descriptor section for more information. This routine returns NULL if it fails.

The user specifies the maximum packet size for sending and receiving UDP-based RPC messages by using the sendsz and recvsz parameters.

This routine exists for backward compatibility only. svc_tli_create(), or svc_dg_create() should be used instead. See rpc_svc_create(3NSL).
svcudp_create()
This routine creates a UDP/IP-based RPC service transport, to which it returns a
pointer. The transport is associated with the file descriptor fd, which may be
RPC_ANYSOCK, in which case a new file descriptor is created. If the file descriptor is
not bound to a local UDP port, then this routine binds it to an arbitrary port. Upon
completion, xprt->xp_fd is the transport’s file descriptor, and xprt->xp_port is the
transport’s port number. This routine returns NULL if it fails.

Since UDP-based RPC messages can only hold up to 8 Kbytes of encoded data, this
transport cannot be used for procedures that take large arguments or return huge
results.

This routine exists for backward compatibility only. svc_create(),
svc_tli_create(), or svc_dg_create() should be used instead. See
rpc_svc_create(3NSL).

registerrpc()
Register program prognum, procedure procname, and version versnum with the RPC
service package. If a request arrives for program prognum, version versnum, and
procedure procnum, proname is called with a pointer to its parameter(s). proname
should return a pointer to its static result(s). inpoc is used to decode the parameters
while outproc is used to encode the results. This routine returns 0 if the registration
succeeded, −1 otherwise.

svc_run() must be called after all the services are registered.

This routine exists for backward compatibility only, and it is made obsolete by
rpc_reg().

svc_register()
Associates prognum and versnum with the service dispatch procedure, dispatch. If
protocol is 0, the service is not registered with the portmap service. If protocol is
non-zero, then a mapping of the triple [prognum, versnum, protocol] to
xprt->xp_port is established with the local portmap service (generally protocol is
0, IPPROTO_UDP or IPPROTO_TCP). The procedure dispatch has the following
form:

dispatch(struct svc_req *request, SVCXPRT *xprt);

The svc_register() routine returns one if it succeeds, and 0 otherwise.

This routine exists for backward compatibility only. Enhanced functionality is
provided by svc_reg().

svc_unregister()
Remove all mapping of the double [prognum, versnum] to dispatch routines, and of
the triple [prognum, versnum, all-protocols] to port number from portmap.

This routine exists for backward compatibility. Enhanced functionality is provided
by svc_unreg().
xdr_authunix_parms()

Used for describing UNIX credentials. This routine is useful for users who wish to generate these credentials without using the RPC authentication package.

This routine exists for backward compatibility only, and is made obsolete by xdr_authsys_parms(). See rpc_xdr(3NSL).

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

SEE ALSO

keyserv(1M), rpcbind(1M), rpcinfo(1M), netdir(3NSL),
netdir_getbyname(3NSL), rpc (3NSL), rpc_clnt_auth(3NSL),
rpc_clnt_calls(3NSL), rpc_clnt_create(3NSL), rpc_svc_calls(3NSL),
rpc_svc_create(3NSL), rpc_svc_err(3NSL), rpc_svc_reg(3NSL),
rpc_xdr(3NSL), rpcbind(3NSL), secure_rpc(3NSL), select(3C),
xdr_authsys_parms(3NSL), libnsl(3LIB), librpcsoc(3LIBUCB),
attributes(5)

NOTES

These interfaces are unsafe in multithreaded applications. Unsafe interfaces should be called only from the main thread.
fetch SVC library routines for RPC servers

These routines are part of the RPC library which allows C language programs to make procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some of them are called by the server side dispatch function, while others (such as svc_run()) are called when the server is initiated.

In the current implementation, the service transport handle SVCXPRT contains a single data area for decoding arguments and encoding results. Therefore, this structure cannot be freely shared between threads that call functions that do this. However, when a server is operating in the Automatic or User MT modes, a copy of this structure is passed to the service dispatch procedure in order to enable concurrent request processing. Under these circumstances, some routines which would otherwise be unsafe, become safe. These are marked as such. Also marked are routines that are unsafe for MT applications, and are not to be used by such applications.

```c
#include <rpc/rpc.h>

int svc_dg_enablecache(SVCXPRT *xprt, const uint_t cache_size);

This function allocates a duplicate request cache for the service endpoint xprt, large enough to hold cache_size entries. Once enabled, there is no way to disable caching. This routine returns 1 if space necessary for a cache of the given size was successfully allocated, and 0 otherwise.

This function is safe in MT applications.

int svc_done(SVCXPRT *xprt);

This function frees resources allocated to service a client request directed to the service endpoint xprt. This call pertains only to servers executing in the User MT mode. In the User MT mode, service procedures must invoke this call before returning, either after a client request has been serviced, or after an error or abnormal condition that prevents a reply from being sent. After svc_done() is invoked, the service endpoint xprt should not be referenced by the service procedure. Server multithreading modes and parameters can be set using the rpc_control() call.

This function is safe in MT applications. It will have no effect if invoked in modes other than the User MT mode.

void svc_exit(void);

This function when called by any of the RPC server procedure or otherwise, destroys all services registered by the server and causes svc_run() to return.

If RPC server activity is to be resumed, services must be reregistered with the RPC library either through one of the rpc_svc_create(3NSL) functions, or using xprt_register(3NSL).
svc_exit() has global scope and ends all RPC server activity.

fd_set svc_fdset;
A global variable reflecting the RPC server’s read file descriptor bit mask. This is only of interest if service implementors do not call svc_run(), but rather do their own asynchronous event processing. This variable is read-only, and it may change after calls to svc_getreqset() or any creation routines. Do not pass its address to select(3C)! Instead, pass the address of a copy.

MT applications executing in either the Automatic MT mode or the user MT mode should never read this variable. They should use auxiliary threads to do asynchronous event processing.

svc_fdset is limited to 1024 file descriptors and is considered obsolete. Use of svc_pollfd is recommended instead.

pollfd_t*svc_pollfd;
A global variable pointing to an array of pollfd_t structures reflecting the RPC server’s read file descriptor array. This is only of interest if service service implementors do not call svc_run() but rather do their own asynchronous event processing. This variable is read-only, and it may change after calls to svc_getreq_poll() or any creation routines. Do not pass its address to poll(2)! Instead, pass the address of a copy.

By default, svc_pollfd is limited to 1024 entries. Use rpc_control(3NSL) to remove this limitation.

MT applications executing in either the Automatic MT mode or the user MT mode should never be read this variable. They should use auxiliary threads to do asynchronous event processing.

int svc_max_pollfd;
A global variable containing the maximum length of the svc_pollfd array. This variable is read-only, and it may change after calls to svc_getreq_poll() or any creation routines.

bool_t svc_freeargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that frees any data allocated by the RPC/XDR system when it decoded the arguments to a service procedure using svc_getargs(). This routine returns TRUE if the results were successfully freed, and FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User MT modes.

bool_t svc_getargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that decodes the arguments of an RPC request associated with the RPC service transport handle xprt. The parameter in is the address where the arguments will be placed; inproc is the XDR routine used to decode the arguments. This routine returns TRUE if decoding succeeds, and FALSE otherwise.
void svc_getreq_common(const int fd);
This routine is called to handle a request on the given file descriptor.

void svc_getreq_poll(struct pollfd *pfdp, const int pollretval);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
poll(2) has determined that an RPC request has arrived on some RPC file
descriptors; pollretval is the return value from poll(2) and pfdp is the array of pollfd
structures on which the poll(2) was done. It is assumed to be an array large
enough to contain the maximal number of descriptors allowed.

This function macro is unsafe in MT applications.

void svc_getreqset(fd_set *rdfds);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
select(3C) has determined that an RPC request has arrived on some RPC file
descriptors; rdfds is the resultant read file descriptor bit mask. The routine returns
when all file descriptors associated with the value of rd fds have been serviced.

This function macro is unsafe in MT applications.

struct netbuf *svc_getrpccaller(const SVCXPRT *xprt);
The approved way of getting the network address of the caller of a procedure
associated with the RPC service transport handle xprt.

This function macro is safe in MT applications.

void svc_run(void);
This routine never returns. In single threaded mode, it waits for RPC requests to
arrive, and calls the appropriate service procedure using svc_getreq_poll() when one arrives. This procedure is usually waiting for the poll(2) library call to return.

Applications executing in the Automatic or User MT modes should invoke this
function exactly once. It the Automatic MT mode, it will create threads to service client requests. In the User MT mode, it will provide a framework for service developers to create and manage their own threads for servicing client requests.

bool_t svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc, const caddr_t out);
Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request’s associated transport handle;
outproc is the XDR routine which is used to encode the results; and out is the
address of the results. This routine returns TRUE if it succeeds, FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User MT
modes.
rpc_svc_calls(3NSL)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>See NOTES below.</td>
</tr>
</tbody>
</table>

SEE ALSO

rpcgen(1), poll(2), rpc(3NSL), rpc_control(3NSL), rpc_svc_create(3NSL),
rpc_svc_err(3NSL), rpc_svc_reg(3NSL), select(3C), xprt_register(3NSL), attributes(5)

NOTES

svc_dg_enablecache() and svc_getrpccaller() are safe in multithreaded applications.
svc_freeargs(), svc_getargs(), and svc_sendreply() are safe in MT applications utilizing the Automatic or User MT modes.
svc_getreq_common(), svc_getreqset(), and svc_getreq_poll() are unsafe in multithreaded applications and should be called only from the main thread.
These routines are part of the RPC library which allows C language programs to make procedure calls on servers across the network. These routines deal with the creation of service handles. Once the handle is created, the server can be invoked by calling svc_run().

Routines
See rpc(3NSL) for the definition of the SVCXPRT data structure.

csvc_control() A function to change or retrieve information about a service object. req indicates the type of operation and info is a pointer to the information. The supported values of req, their argument types, and what they do are:

SVCGET_VERSQUIET
If a request is received for a program number served by this server but the version number is outside the range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be returned. *info should be a pointer to an integer. Upon successful completion of the SVCGET_VERSQUIET request, *info contains an integer which describes the server’s current behavior: 0 indicates normal server behavior, that is, an RPC_PROGVERSMISMATCH error will be returned. 1 indicates that the out of range request will be silently ignored.

SVCSET_VERSQUIET
If a request is received for a program number served by this server but the version number is outside the range registered with the server, an RPC_PROGVERSMISMATCH error will normally be returned. It is sometimes desirable to change this behavior. *info should be a pointer to an integer which is either 0, indicating normal server behavior and an RPC_PROGVERSMISMATCH error will be returned, or 1, indicating that the out of range request should be silently ignored.

SVCGET_XID
Returns the transaction ID of connection-oriented and connectionless transport service calls. The transaction ID assists in uniquely identifying client requests for a given RPC version, program number, procedure, and client. The transaction ID is extracted from the service transport handle *svc. *info must be a pointer to an unsigned long. Upon successful completion of the SVCGET_XID request, *info contains the transaction ID. Note that rendezvous and raw service handles do not define a transaction ID. Thus, if the service handle is of rendezvous or raw type, and the request is of type SVCGET_XID, svc_control() will return FALSE. Note also that the transaction ID read by the server can be set by the client through the suboption CLSET_XID in clnt_control(). See clnt_create(3NSL)

SVCSET_RECVERRHANDLER
Attaches or detaches a disconnection handler to the service handle, *svc, that will be called when a transport error arrives during the reception of a request or when the server is waiting for a request and the connection shuts down. This handler is only useful for a connection oriented service handle.
*info contains the address of the error handler to attach, or NULL to detach a previously defined one. The error handler has two arguments. It has a pointer to the erroneous service handle. It also has an integer that indicates if the full service is closed (when equal to zero), or that only one connection on this service is closed (when not equal to zero).

```c
void handler (const SVXPRT *svc, const bool_t isAConnection);
```

With the service handle address, svc, the error handler is able to detect which connection has failed and to begin an error recovery process. The error handler can be called by multiple threads and should be implemented in an MT-safe way.

**SVCGET_RECVERRHANDLER**

Upon successful completion of the SVCGET_RECVERRHANDLER request, *info contains the address of the handler for receiving errors. Upon failure, *info contains NULL.

This routine returns TRUE if the operation was successful. Otherwise, it returns false.

### svc_create()

`s`vc_create()` creates server handles for all the transports belonging to the class nettype.

nettype defines a class of transports which can be used for a particular application. The transports are tried in left to right order in NETPATH variable or in top to bottom order in the netconfig database. If nettype is NULL, it defaults to netpath.

`s`vc_create()` registers itself with the rpcbind service (see rpcbind(1M)). dispatch is called when there is a remote procedure call for the given prognum and versnum; this requires calling svc_run() (see svc_run() in rpc_svc_reg(3NSL)). If svc_create() succeeds, it returns the number of server handles it created, otherwise it returns 0 and an error message is logged.

### svc_destroy()

A function macro that destroys the RPC service handle xprt. Destruction usually involves deallocation of private data structures, including xprt itself. Use of xprt is undefined after calling this routine.

### svc_dg_create()

This routine creates a connectionless RPC service handle, and returns a pointer to it. This routine returns NULL if it fails, and an error message is logged.
and recvsz are parameters used to specify the size of the buffers. If they are 0, suitable defaults are chosen. The file descriptor fildes should be open and bound. The server is not registered with rpcbind(1M).

Warning: since connectionless-based RPC messages can only hold limited amount of encoded data, this transport cannot be used for procedures that take large arguments or return huge results.

svc_fd_create() This routine creates a service on top of an open and bound file descriptor, and returns the handle to it. Typically, this descriptor is a connected file descriptor for a connection-oriented transport. sendsz and recvsz indicate sizes for the send and receive buffers. If they are 0, reasonable defaults are chosen. This routine returns NULL if it fails, and an error message is logged.

svc_raw_create() This routine creates an RPC service handle and returns a pointer to it. The transport is really a buffer within the process’s address space, so the corresponding RPC client should live in the same address space; (see clnt_raw_create() in rpc_clnt_create(3NSL)). This routine allows simulation of RPC and acquisition of RPC overheads (such as round trip times), without any kernel and networking interference. This routine returns NULL if it fails, and an error message is logged.

Note: svc_run() should not be called when the raw interface is being used.

svc_tli_create() This routine creates an RPC server handle, and returns a pointer to it. fildes is the file descriptor on which the service is listening. If fildes is RPC_ANYFD, it opens a file descriptor on the transport specified by netconf. If the file descriptor is unbound and bindaddr is non-null fildes is bound to the address specified by bindaddr, otherwise fildes is bound to a default address chosen by the transport. In the case where the default address is chosen, the number of outstanding connect requests is set to 8 for connection-oriented transports. The user may specify the size of the send and receive buffers with the parameters sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if it fails, and an error message is logged. The server is not registered with the rpcbind(1M) service.

svc_tp_create() svc_tp_create() creates a server handle for the network specified by netconf, and registers itself with
The rpcbind service. *dispatch* is called when there is a remote procedure call for the given *prognum* and *versnum*; this requires calling *svc_run()*. *svc_tp_create()* returns the service handle if it succeeds, otherwise a NULL is returned and an error message is logged.

**svc_vc_create()**

This routine creates a connection-oriented RPC service and returns a pointer to it. This routine returns NULL if it fails, and an error message is logged. The users may specify the size of the send and receive buffers with the parameters *sendsz* and *recvsz*; values of 0 choose suitable defaults. The file descriptor *fildes* should be open and bound. The server is not registered with the rpcbind(1M) service.

**svc_door_create()**

This routine creates an RPC server handle over doors and returns a pointer to it. Doors is a transport mechanism that facilitates fast data transfer between processes on the same machine, for the given program. The user may set the size of the send buffer with the parameter *sendsz*. If *sendsz* is 0, the corresponding default buffer size is 16 Kbyte. If successful, the *svc_door_create()* routine returns the service handle. Otherwise it returns NULL and sets a value for *rpc_createerr*. The server is not registered with rpcbind(1M).

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>All</td>
</tr>
<tr>
<td>Availability</td>
<td>SUNWcsl (32-bit)</td>
</tr>
<tr>
<td></td>
<td>SUNWcslx (64-bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Evolving</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

**SEE ALSO**

rpcbind(1M), rpc(3NSL), rpc_clnt_create(3NSL), rpc_svc_calls(3NSL), rpc_svc_err(3NSL), rpc_svc_reg(3NSL), attributes(5)
rpc_svc_err(3NSL)

NAME
rpc_svc_err, svcerr_auth, svcerr_decode, svcerr_noproc, svcerr_noprog,
svcerr_progvers, svcerr_systemerr, svcerr_weakauth – library routines for server side
remote procedure call errors

DESCRIPTION
These routines are part of the RPC library which allows C language programs to make
procedure calls on other machines across the network.

These routines can be called by the server side dispatch function if there is any error in
the transaction with the client.

Routines
See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

void svcerr_auth(const SVCXPRT *xprt, const enum auth_stat why);
   Called by a service dispatch routine that refuses to perform a remote procedure call
due to an authentication error.

void svcerr_decode(const SVCXPRT *xprt);
   Called by a service dispatch routine that cannot successfully decode the remote
   parameters (see svc_getargs () in rpc_svc_reg(3NSL)).

void svcerr_noproc(const SVCXPRT *xprt);
   Called by a service dispatch routine that does not implement the procedure number
   that the caller requests.

void svcerr_noprog(const SVCXPRT *xprt);
   Called when the desired program is not registered with the RPC package. Service
   implementors usually do not need this routine.

void svcerr_progvers(const SVCXPRT *xprt, const rpcvers_t low_vers, const rpcvers_t high_vers);
   Called when the desired version of a program is not registered with the RPC
   package. low_vers is the lowest version number, and high_vers is the highest version
   number. Service implementors usually do not need this routine.

void svcerr_systemerr(const SVCXPRT *xprt);
   Called by a service dispatch routine when it detects a system error not covered by
   any particular protocol. For example, if a service can no longer allocate storage, it
   may call this routine.

void svcerr_weakauth(const SVCXPRT *xprt);
   Called by a service dispatch routine that refuses to perform a remote procedure call
due to insufficient (but correct) authentication parameters. The routine calls
   svcerr_auth(xprt, AUTH_TOOWEAK).

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>
rpc_svc_err(3NSL)

SEE ALSO rpc(3NSL), rpc_svc_calls(3NSL), rpc_svc_create(3NSL), rpc_svc_reg(3NSL), attributes(5)
The following RPC routines are used to declare or remove a callback on a file descriptor.

### Routines

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#### svc_add_input()

This function is used to register a callback function on a file descriptor, `fd`. The file descriptor, `fd`, is the first parameter to be passed to `svc_add_input()`. This callback function will be automatically called if any of the events specified in the `events` parameter occur on this descriptor. The `events` parameter is used to specify when the callback is invoked. This parameter is a mask of poll events to which the user wants to listen. See `poll(2)` for further details of the events that can be specified.

The callback to be invoked is specified using the `callback` parameter. The `cookie` parameter can be used to pass any data to the callback function. This parameter is a user-defined value which is passed as an argument to the callback function, and it is not used by the Sun RPC library itself.

Several callbacks can be registered on the same file descriptor as long as each callback registration specifies a separate set of event flags.

The callback function is called with the registration `id`, the `fd` file descriptor, an `events` value, which is a bitmask of all events concerning the file descriptor, and the `cookie` user-defined value.

Upon successful completion, the function returns a unique identifier for this registration, that can be used later to remove this callback. Upon failure, -1 is returned and `errno` is set to indicate the error.

The `svc_add_input()` function will fail if:

- **EINVAL** The `fd` or `events` parameters are invalid.
- **EXIST** A callback is already registered to the file descriptor with one of the specified events.
- **ENOMEM** Memory is exhausted.
This function is used to unregister a callback function on a file descriptor, \texttt{fd}. The \texttt{id} parameter specifies the registration to be removed.

Upon successful completion, the function returns zero. Upon failure, -1 is returned and \texttt{errno} is set to indicate the error.

The \texttt{svc_remove_input()} function will fail if:

\begin{itemize}
  \item \texttt{EINVAL} The \texttt{id} parameter is invalid.
\end{itemize}

\textbf{ATTRIBUTES} See attributes (5) for descriptions of the following attributes:

\begin{table}[h]
\begin{tabular}{|c|c|}
\hline
ATTRIBUTE TYPE & ATTRIBUTE VALUE \\
\hline
Architecture & All \\
\hline
Availability & SUNWcsl (32-bit) \\
& SUNWcslx (64-bit) \\
\hline
Interface Stability & Evolving \\
\hline
MT-Level & MT-Safe \\
\hline
\end{tabular}
\end{table}

\textbf{SEE ALSO} \texttt{poll(2)}, \texttt{rpc(3NSL)}, attributes (5)
**NAME**
rpc_svc_reg, rpc_reg, svc_reg, svc_unreg, svc_auth_reg, xprt_register, xprt_unregister – library routines for registering servers

**DESCRIPTION**
These routines are a part of the RPC library which allows the RPC servers to register themselves with `rpcbind()` (see `rpcbind(1M)`), and associate the given program and version number with the dispatch function. When the RPC server receives a RPC request, the library invokes the dispatch routine with the appropriate arguments.

Informative text:

Routines

See `rpc(3NSL)` for the definition of the `SVCXPRT` data structure.

```c
#include <rpc/rpc.h>

bool_t rpc_reg(const rpcprog_t prognum, const rpcvers_t versnum, const rpcproc_t procnum, char *(*procname)(), const xdrproc_t inproc, const xdrproc_t outproc, const char *nettype);

Register program `prognum`, procedure `procname`, and version `versnum` with the RPC service package. If a request arrives for program `prognum`, version `versnum`, and procedure `procnum`, `procname` is called with a pointer to its parameter(s); `procname` should return a pointer to its static result(s). The `arg` parameter to `procname` is a pointer to the (decoded) procedure argument. `inproc` is the XDR function used to decode the parameters while `outproc` is the XDR function used to encode the results. Procedures are registered on all available transports of the class `nettype`. See `rpc(3NSL)`. This routine returns 0 if the registration succeeded, −1 otherwise.

```c
int svc_reg(const SVCXPRT *xprt, const rpcprog_t prognum, const rpcvers_t versnum, const void (*)(dispatch)(), const struct netconfig *netconf);

Associates `prognum` and `versnum` with the service dispatch procedure, `dispatch`. If `netconf` is `NULL`, the service is not registered with the `rpcbind` service. For example, if a service has already been registered using some other means, such as `inetd(1M)`, it will not need to be registered again. If `netconf` is non-zero, then a mapping of the triple `[prognum, versnum, netconf->] to xprt->xp_ltaddr` is established with the local `rpcbind` service.

The `svc_reg()` routine returns 1 if it succeeds, and 0 otherwise.

```c
void svc_unreg(const rpcprog_t prognum, const rpcvers_t versnum);

Remove from the `rpcbind` service, all mappings of the triple `[prognum, versnum, all-transports]` to network address and all mappings within the RPC service package of the double `[prognum, versnum]` to dispatch routines.

```c
int svc_auth_reg(const int cred_flavor, const enum auth_stat (*handler)());

Registers the service authentication routine `handler` with the dispatch mechanism so that it can be invoked to authenticate RPC requests received with authentication type `cred_flavor`. This interface allows developers to add new authentication types to their RPC applications without needing to modify the libraries. Service implementors usually do not need this routine.

```
Typical service application would call `svc_auth_reg()` after registering the service and prior to calling `svc_run()`. When needed to process an RPC credential of type `cred_flavor`, the handler procedure will be called with two parameters (struct `svc_req *rqst`, struct `rpc_msg *msg`) and is expected to return a valid `enum auth_stat` value. There is no provision to change or delete an authentication handler once registered.

The `svc_auth_reg()` routine returns 0 if the registration is successful, 1 if `cred_flavor` already has an authentication handler registered for it, and −1 otherwise.

```c
void xprt_register(const SVCXPRT *xprt);
```
After RPC service transport handle `xprt` is created, it is registered with the RPC service package. This routine modifies the global variable `svc_fdset` (see `rpc_svc_calls(3NSL)`). Service implementors usually do not need this routine.

```c
void xprt_unregister(const SVCXPRT *xprt);
```
Before an RPC service transport handle `xprt` is destroyed, it unregisters itself with the RPC service package. This routine modifies the global variable `svc_fdset` (see `rpc_svc_calls(3NSL)`). Service implementors usually do not need this routine.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

`inetd(1M), rpcbind(1M), rpc(3NSL), rpc_svc_calls(3NSL), rpc_svc_create(3NSL), rpc_svc_err(3NSL), rpcbind(3NSL), select(3C), attributes(5)`
XDR library routines for remote procedure calls

These routines are used for describing the RPC messages in XDR language. They should normally be used by those who do not want to use the RPC package directly. These routines return TRUE if they succeed, FALSE otherwise.

See rpc(3NSL) for the definition of the XDR data structure.

```c
#include <rpc/rpc.h>

bool_t xdr_accepted_reply(XDR *xdrs, const struct accepted_reply *ar);
bool_t xdr_authsys_parms(XDR *xdrs, struct authsys_parms *aupp);
void xdr_callhdr(XDR *xdrs, struct rpc_msg *chdr);
bool_t xdr_callmsg(XDR *xdrs, struct rpc_msg *cmsg);
bool_t xdr_opaque_auth(XDR *xdrs, struct opaque_auth *ap);
bool_t xdr_rejected_reply(XDR *xdrs, const struct rejected_reply *rr);
bool_t xdr_replymsg(XDR *xdrs, const struct rpc_msg *rmsg);
```

Routines

- **xdr_accepted_reply()**
 Used to translate between RPC reply messages and their external representation. It includes the status of the RPC call in the XDR language format. In the case of success, it also includes the call results.

- **xdr_authsys_parms()**
 Used for describing UNIX operating system credentials. It includes machine-name, uid, gid list, etc.

- **xdr_callhdr()**
 Used for describing RPC call header messages. It encodes the static part of the call message header in the XDR language format. It includes information such as transaction ID, RPC version number, program and version number.

- **xdr_callmsg()**
 Used for describing RPC call messages. This includes all the RPC call information such as transaction ID, RPC version number, program number, version number, authentication information, etc. This is normally used by servers to determine information about the client RPC call.

- **xdr_opaque_auth()**
 Used for describing RPC opaque authentication information messages.
rpc_xdr(3NSL)

xdr_rejected_reply()
Used for describing RPC reply messages. It encodes the rejected RPC message in
the XDR language format. The message could be rejected either because of version
number mis-match or because of authentication errors.

xdr_replmsg()
Used for describing RPC reply messages. It translates between the RPC reply
message and its external representation. This reply could be either an acceptance,
rejection or NULL.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO rpc(3NSL), xdr(3NSL), attributes(5)
rstat(3RPC)

NAME
rstat, havedisk – get performance data from remote kernel

SYNOPSIS
cc [flag ...] file ... -lrpcsvec [library ...]
#include <rpc/rpc.h>
#include <rpcsvc/rstat.h>

enum clnt_stat rstat(char *host, struct statstime *statp);
int havedisk(char *host);

PROTOCOL
/usr/include/rpcsvec/rstat.x

DESCRIPTION
These routines require that the rpc.rstatd(1M) daemon be configured and available on the remote system indicated by host. The rstat() protocol is used to gather statistics from remote kernel. Statistics will be available on items such as paging, swapping, and cpu utilization.

rstat() fills in the statstime structure statp for host. statp must point to an allocated statstime structure. rstat() returns RPC_SUCCESS if it was successful; otherwise a enum clnt_stat is returned which can be displayed using clnt_perrno(3NSL).

havedisk() returns 1 if host has disk, 0 if it does not, and −1 if this cannot be determined.

The following XDR routines are available in librpcsvc:

xdr_statstime
xdr_statsvar

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
rup(1), rpc.rstatd(1M), rpc_clnt_calls(3NSL), attributes(5)
rusers(3RPC)

NAME rusers, rnusers – return information about users on remote machines

SYNOPSIS
```
cc [ flag ... ] file ... -lrpcsvc [ library ... ]
#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>

enum clnt_stat rusers(char *host, struct utmpidlearr *up);
int rnusers(char *host);
```

PROTOCOL /usr/include/rpcsvc/rusers.x

DESCRIPTION These routines require that the rpc.rusersd(1M) daemon be configured and available on the remote system indicated by host. The rusers() protocol is used to retrieve information about users logged in on the remote system.

rusers() fills the utmpidlearr structure with data about host, and returns 0 if successful. up must point to an allocated utmpidlearr structure. If rusers() returns successful it will have allocated data structures within the up structure, which should be freed with xdr_free(3NSL) when you no longer need them:
```
xdr_free(xdr_utmpidlearr, up);
```

On error, the returned value can be interpreted as an enum clnt_stat and can be displayed with clnt_perror(3NSL) or clnt_sperrno(3NSL).

See the header <rpcsvc/rusers.h> for a definition of struct utmpidlearr.

rnusers() returns the number of users logged on to host (-1 if it cannot determine that number).

The following XDR routines are available in librpcsvc:
```
xdr_utmpidlearr
```

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO rusers(1), rpc.rusersd(1M), rpc_clnt_calls(3NSL), xdr_free(3NSL), attributes(5)
NAME
rwall – write to specified remote machines

SYNOPSIS
cc [flag ...] file ... -lrpcsvc [library ...]
#include <rpc/rpc.h>
#include <rpcsvc/rwall.h>

enum clnt_stat rwall(char *host, char *msg);

PROTOCOL
/usr/include/rpcsvc/rwall.x

DESCRIPTION
These routines require that the rpc.rwalld(1M) daemon be configured and available on the remote system indicated by host.

rwall() executes wall(1M) on host. The rpc.rwalld process on host prints msg to all users logged on to that system. rwall() returns RPC_SUCCESS if it was successful; otherwise a enum clnt_stat is returned which can be displayed using clnt_perrno(3NSL).

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
rpc.rwalld(1M), wall(1M), rpc_clnt_calls(3NSL), attributes(5)
secure_rpc(3NSL)

NAME
secure_rpc, authdes_getucred, authdes_seccreate, getnetname, host2netname,
key_decryptsession, key_encryptsession, key_gendes, key_setsecret,
key_secretkey_is_set, netname2host, netname2user, user2netname – library routines
for secure remote procedure calls

SYNOPSIS
int authdes_getucred(const struct authdes_cred *adc, uid_t *uidp,
 gid_t *gidp, short *gidlenp, gid_t *gidlist);
AUTH *authdes_seccreate(const char *name, const uint_t window,
 const char *timehost, const des_block *ckey);
int getnetname(char name [MAXNETNAMELEN+1]);
int host2netname(char name [MAXNETNAMELEN+1], const char *host,
 const char *domain);
int key_decryptsession(const char *remotename, des_block *deskey);
int key_encryptsession(const char *remotename, des_block *deskey);
int key_gendes(des_block *deskey);
int key_setsecret(const char *key);
int key_secretkey_is_set(void);
int netname2host(const char *name, char *host, const int hostlen);
int netname2user(const char *name, uid_t *uidp, gid_t *gidp, int
 *gidlenp, gid_t *gidlist [NGRPS]);
int user2netname(char name [MAXNETNAMELEN+1], const uid_t uid,
 const char *domain);

DESCRIPTION
RPC library routines allow C programs to make procedure calls on other machines
across the network.

RPC supports various authentication flavors. Among them are:

AUTH_NONE No authentication (none).
AUTH_SYS Traditional UNIX-style authentication.
AUTH_DES DES encryption-based authentication.

The authdes_getucred() and authdes_seccreate() routines implement the
AUTH_DES authentication flavor. The keyserver daemon keyserv (see keyserv(1M))
must be running for the AUTH_DES authentication system to work, and keylogin(1)
must have been run. Only the AUTH_DES style of authentication is discussed here. For
information about the AUTH_NONE and AUTH_SYS styles of authentication, refer to
rpc_clnt_auth(3NSL).

The routines documented on this page are MT-Safe. See the man pages for the other
authentication styles for their MT-level.

Routines
See rpc(3NSL) for the definition of the AUTH data structure.
#include <rpc/rpc.h>
#include <sys/types.h>

authdes_getucred()
authdes_getucred() is the first of the two routines which interface to the RPC
secure authentication system known as AUTH_DES. The second is
authdes_seccreate(), below. authdes_getucred() is used on the server
side for converting an AUTH_DES credential, which is operating system
independent, into an AUTH_SYS credential. This routine returns 1 if it succeeds, 0 if
it fails.

*uidp is set to the user’s numerical ID associated with adc. *gidp is set to the
numerical ID of the user’s group. *gidlist contains the numerical IDs of the other
groups to which the user belongs. *gidlenp is set to the number of valid group ID
entries in *gidlist (see netname2user(), below).

Warning: authdes_getucred() will fail if the authdes_cred structure was
created with the netname of a host. In such a case, netname2host() should be
used on the host netname in the authdes_cred structure to get the host name.

authdes_seccreate()
authdes_seccreate(), the second of two AUTH_DES authentication routines, is
used on the client side to return an authentication handle that will enable the use of
the secure authentication system. The first parameter name is the network name, or
netname, of the owner of the server process. This field usually represents a
hostname derived from the utility routine host2netname(), but could also
represent a user name using user2netname(), described below.

The second field is window on the validity of the client credential, given in seconds.
If the difference in time between the client’s clock and the server’s clock exceeds
window, the server will reject the client’s credentials, and the clock will have to be
resynchronized. A small window is more secure than a large one, but choosing too
small of a window will increase the frequency of resynchronizations because of
clock drift.

The third parameter, timehost, the host’s name, is optional. If it is NULL, then the
authentication system will assume that the local clock is always in sync with the
timehost clock, and will not attempt resynchronizations. If a timehost is supplied,
however, then the system will consult with the remote time service whenever
resynchronization is required. This parameter is usually the name of the host on
which the server is running.

The final parameter ckey is also optional. If it is NULL, then the authentication
system will generate a random DES key to be used for the encryption of credentials.
If ckey is supplied, then it will be used instead.

If authdes_seccreate() fails, it returns NULL.
getnetname()
getnetname() returns the unique, operating system independent netname of the caller in the fixed-length array name. Returns 1 if it succeeds, and 0 if it fails.

host2netname()
Convert from a domain-specific hostname host to an operating system independent netname. Returns 1 if it succeeds, and 0 if it fails. Inverse of netname2host(). If domain is NULL, host2netname() uses the default domain name of the machine. If host is NULL, it defaults to that machine itself. If domain is NULL and host is a NIS name like “host1.ssi.sun.com,” host2netname() uses the domain “ssi.sun.com” rather than the default domain name of the machine.

domain is NULL, the default domain name of the machine. If host is NULL, it defaults to that machine itself. If domain is NULL and host is a NIS name like “host1.ssi.sun.com,” host2netname() uses the domain “ssi.sun.com” rather than the default domain name of the machine.

key_decryptsession()
key_decryptsession() takes a server netname remotename and a DES key deskey, and decrypts the key by using the the public key of the the server and the secret key associated with the effective UID of the calling process. It is the inverse of key_encryptsession().

key_encryptsession()
key_encryptsession() is a keyserver interface routine. It takes a server netname remotename and a DES key deskey, and encrypts it using the public key of the the server and the secret key associated with the effective UID of the calling process. It is the inverse of key_decryptsession(). This routine returns 0 if it succeeds, −1 if it fails.

key_gendes()
key_gendes() is a keyserver interface routine. It is used to ask the keyserver for a secure conversation key. Choosing one at random is usually not good enough, because the common ways of choosing random numbers, such as using the current time, are very easy to guess. This routine returns 0 if it succeeds, −1 if it fails.

key_setsecret()
key_setsecret() is a keyserver interface routine. It is used to set the key for the effective UID of the calling process. This routine returns 0 if it succeeds, −1 if it fails.

key_secretkey_is_set()
key_secretkey_is_set() is a keyserver interface routine that may be used to determine whether a key has been set for the effective UID of the calling process. If the keyserver has a key stored for the effective UID of the calling process, this routine returns 1. Otherwise it returns 0.

netname2host()
Convert from an operating system independent netname name to a domain-specific hostname host. hostlen is the maximum size of host. Returns 1 if it succeeds, and 0 if it fails. Inverse of host2netname().
netname2user()

Convert from an operating system independent netname to a domain-specific user ID. Returns 1 if it succeeds, and 0 if it fails. Inverse of user2netname().

*uidp is set to the user’s numerical ID associated with name. *gidp is set to the numerical ID of the user’s group. gidlist contains the numerical IDs of the other groups to which the user belongs. *gidlenp is set to the number of valid group ID entries in gidlist.

user2netname()

Convert from a domain-specific username to an operating system independent netname. Returns 1 if it succeeds, and 0 if it fails. Inverse of netname2user().

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO chkey(1), keylogin(1), keyserv(1M), newkey(1M), rpc(3NSL), rpc_clnt_auth(3NSL), attributes(5)
send(3SOCKET)

NAME send, sendto, sendmsg – send a message from a socket

SYNOPSIS
```
#include <sys/types.h>
#include <sys/socket.h>

ssize_t send(int s, const void *msg, size_t len, int flags);
ssize_t sendto(int s, const void *msg, size_t len, int flags, const
  struct sockaddr *to, int tolen);
ssize_t sendmsg(int s, const struct msghdr *msg, int flags);
```

DESCRIPTION send(), sendto(), and sendmsg() are used to transmit a message to another transport end-point. send() may be used only when the socket is in a connected state, while sendto() and sendmsg() may be used at any time. s is a socket created with socket(3SOCKET).

The address of the target is given by to with tolen specifying its size. The length of the message is given by len. If the message is too long to pass atomically through the underlying protocol, then the error EMSGSIZE is returned, and the message is not transmitted.

A return value of −1 indicates locally detected errors only. It does not implicitly mean the message was not delivered.

If the socket does not have enough buffer space available to hold the message being sent, send() blocks, unless the socket has been placed in non-blocking I/O mode (see fcntl(2)). The select(3C) or poll(2) call may be used to determine when it is possible to send more data.

The flags parameter is formed from the bitwise OR of zero or more of the following:

MSG_OOB Send “out-of-band” data on sockets that support this notion. The underlying protocol must also support “out-of-band” data. Only SOCK_STREAM sockets created in the AF_INET and AF_INET6 address families support out-of-band data.

MSG_DONTROUTE The SO_DONTROUTE option is turned on for the duration of the operation. It is used only by diagnostic or routing programs.

See recv(3SOCKET) for a description of the msghdr structure.

RETURN VALUES These calls return the number of bytes sent, or −1 if an error occurred.

ERRORS The send(), sendto(), and sendmsg() functions will fail if:

EBADF s is an invalid file descriptor.
EINTR The operation was interrupted by delivery of a signal before any data could be buffered to be sent.
EMSGSIZE The socket requires that message be sent atomically, and the message was too long.
ENOMEM There was insufficient memory available to complete the operation.
ENOSR There were insufficient STREAMS resources available for the operation to complete.
ENOTSOCK s is not a socket.
EWOULDBLOCK The socket is marked non-blocking and the requested operation would block.
The send() and sendto() functions will fail if:
EINVAL The len argument overflowed a ssize_t.
The sendto() function will fail if:
EINVAL tolen is not the size of a valid address for the specified address family.
The sendmsg() function will fail if:
EINVAL Either the msg_iovlen member of the msghdr structure pointed to by msg was less than or equal to 0, or the sum of the iov_len values in the msg_iov array overflowed a ssize_t.
EINVAL Either one of the iov_len values in the msg_iov array member of the msghdr structure pointed to by msg was negative, or the sum of the iov_len values in the msg_iov array overflowed a ssize_t.
The send() function will fail if:
EPIPE The socket is shut down for writing, or the socket is connection-mode and is no longer connected. In the latter case, if the socket is of type SOCK_STREAM, the SIGPIPE signal is generated to the calling process.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
fcnt1(2), poll(2), write(2), connect(3SOCKET), getsockopt(3SOCKET), recv(3SOCKET), select(3C), socket(3HEAD), socket(3SOCKET), attributes(5)
send (3XNET)

NAME send – send a message on a socket

SYNOPSIS cc [flag ...] file ... -lxnet [library ...]
#include <sys/socket.h>

ssize_t send(int socket, const void *buffer, size_t length, int flags);

DESCRIPTION

socket Specifies the socket file descriptor.

buffer Points to the buffer containing the message to send.

length Specifies the length of the message in bytes.

flags Specifies the type of message transmission. Values of this argument are formed by logically OR’ing zero or more of the following flags:

- MSG_EOR Terminates a record (if supported by the protocol)
- MSG_OOB Sends out-of-band data on sockets that support out-of-band communications. The significance and semantics of out-of-band data are protocol-specific.

The send() function initiates transmission of a message from the specified socket to its peer. The send() function sends a message only when the socket is connected (including when the peer of a connectionless socket has been set via connect(3XNET)).

The length of the message to be sent is specified by the length argument. If the message is too long to pass through the underlying protocol, send() fails and no data is transmitted.

Successful completion of a call to send() does not guarantee delivery of the message. A return value of −1 indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be transmitted and the socket file descriptor does not have O_NONBLOCK set, send() blocks until space is available. If space is not available at the sending socket to hold the message to be transmitted and the socket file descriptor does have O_NONBLOCK set, send() will fail. The select(3C) and poll(2) functions can be used to determine when it is possible to send more data.

The socket in use may require the process to have appropriate privileges to use the send() function.

USAGE The send() function is identical to sendto(3XNET) with a null pointer dest_len argument, and to write() if no flags are used.
Upon successful completion, `send()` returns the number of bytes sent. Otherwise, −1 is returned and `errno` is set to indicate the error.

Errors

The `send()` function will fail if:

- **EAGAIN**
 - The socket’s file descriptor is marked O_NONBLOCK and the requested operation would block.

- **EW OULD BLOCK**
 - The `socket` argument is not a valid file descriptor.

- **EBADF**
 - A connection was forcibly closed by a peer.

- **ED EST ADDRREQ**
 - The socket is not connection-mode and no peer address is set.

- **EFAULT**
 - The `buffer` parameter can not be accessed.

- **EINTR**
 - A signal interrupted `send()` before any data was transmitted.

- **EMSGSIZE**
 - The message is too large be sent all at once, as the socket requires.

- **ENOTCONN**
 - The socket is not connected or otherwise has not had the peer prespecified.

- **ENOTSOCK**
 - The `socket` argument does not refer to a socket.

- **EOPNOTSUPP**
 - The `socket` argument is associated with a socket that does not support one or more of the values set in `flags`.

- **EPIPE**
 - The socket is shut down for writing, or the socket is connection-mode and is no longer connected. In the latter case, and if the socket is of type `SOCK_STREAM`, the `SIGPIPE` signal is generated to the calling process.

The `send()` function may fail if:

- **EACCES**
 - The calling process does not have the appropriate privileges.

- **EIO**
 - An I/O error occurred while reading from or writing to the file system.

- **ENETDOWN**
 - The local interface used to reach the destination is down.

- **ENETUNREACH**
 - No route to the network is present.

- **ENOBUF S**
 - Insufficient resources were available in the system to perform the operation.

- **ENOSR**
 - There were insufficient STREAMS resources available for the operation to complete.
send(3XNET)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

connect(3XNET), getsockopt(3XNET), poll(2), recv(3XNET), recvfrom(3XNET), recvmsg(3XNET), select(3C), sendmsg(3XNET), sendto(3XNET), setsockopt(3XNET), shutdown(3XNET), socket(3XNET), attributes(5)
The `sendmsg()` function sends a message through a connection-mode or connectionless-mode socket. If the socket is connectionless-mode, the message will be sent to the address specified by `msghdr`. If the socket is connection-mode, the destination address in `msghdr` is ignored.

The function takes the following arguments:

- **socket**: Specifies the socket file descriptor.
- **message**: Points to a `msghdr` structure, containing both the destination address and the buffers for the outgoing message. The length and format of the address depend on the address family of the socket. The `msg_flags` member is ignored.
- **flags**: Specifies the type of message transmission. The application may specify 0 or the following flag:
 - **MSG_EOR**: Terminates a record (if supported by the protocol)
 - **MSG_OOB**: Sends out-of-band data on sockets that support out-of-bound data. The significance and semantics of out-of-band data are protocol-specific.

The `msg_iov` and `msg_iovlen` fields of `msghdr` specify zero or more buffers containing the data to be sent. `msg_iov` points to an array of `iovec` structures; `msg_iovlen` must be set to the dimension of this array. In each `iovec` structure, the `iov_base` field specifies a storage area and the `iov_len` field gives its size in bytes. Some of these sizes can be zero. The data from each storage area indicated by `msg_iov` is sent in turn.

Successful completion of a call to `sendmsg()` does not guarantee delivery of the message. A return value of −1 indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be transmitted and the socket file descriptor does not have O_NONBLOCK set, `sendmsg()` function blocks until space is available. If space is not available at the sending socket to hold the message to be transmitted and the socket file descriptor does have O_NONBLOCK set, `sendmsg()` function will fail.

If the socket protocol supports broadcast and the specified address is a broadcast address for the socket protocol, `sendmsg()` will fail if the SO_BROADCAST option is not set for the socket.
The socket in use may require the process to have appropriate privileges to use the sendmsg() function.

** USAGE **
The select(3C) and poll(2) functions can be used to determine when it is possible to send more data.

** RETURN VALUES **
Upon successful completion, sendmsg() function returns the number of bytes sent. Otherwise, −1 is returned and errno is set to indicate the error.

** ERRORS **
The sendmsg() function will fail if:

- **EAGAIN**
 - The socket’s file descriptor is marked O_NONBLOCK and the requested operation would block.

- **EWOULDBLOCK**
 - Addresses in the specified address family cannot be used with this socket.

- **EBADF**
 - The socket argument is not a valid file descriptor.

- **ECONNRESET**
 - A connection was forcibly closed by a peer.

- **EFAULT**
 - The message parameter, or storage pointed to by the msg_name, msg_control or msg_iov fields of the message parameter, or storage pointed to by the iovec structures pointed to by the msg_iov field can not be accessed.

- **EINVAL**
 - The sum of the iov_len values overflows an ssize_t.

- **EMSGSIZE**
 - The message is too large to be sent all at once (as the socket requires), or the msg_iovlen member of the msghdr structure pointed to by message is less than or equal to 0 or is greater than IOV_MAX.

- **ENOTCONN**
 - The socket is connection-mode but is not connected.

- **ENOTSOCK**
 - The socket argument does not refer a socket.

- **EOPNOTSUPP**
 - The socket argument is associated with a socket that does not support one or more of the values set in flags.

- **EPIPE**
 - The socket is shut down for writing, or the socket is connection-mode and is no longer connected. In the latter case, and if the socket is of type SOCK_STREAM, the SIGPIPE signal is generated to the calling process.

If the address family of the socket is AF_UNIX, then sendmsg() will fail if:
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIO</td>
<td>An I/O error occurred while reading from or writing to the file system.</td>
</tr>
<tr>
<td>ELOOP</td>
<td>Too many symbolic links were encountered in translating the pathname in the socket address.</td>
</tr>
<tr>
<td>ENAMETOOLONG</td>
<td>A component of a pathname exceeded NAME_MAX characters, or an entire pathname exceeded PATH_MAX characters.</td>
</tr>
<tr>
<td>ENOENT</td>
<td>A component of the pathname does not name an existing file or the pathname is an empty string.</td>
</tr>
<tr>
<td>ENOTDIR</td>
<td>A component of the path prefix of the pathname in the socket address is not a directory.</td>
</tr>
</tbody>
</table>

The `sendmsg()` function may fail if:

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EACCES</td>
<td>Search permission is denied for a component of the path prefix; or write access to the named socket is denied.</td>
</tr>
<tr>
<td>EDESTADDRREQ</td>
<td>The socket is not connection-mode and does not have its peer address set, and no destination address was specified.</td>
</tr>
<tr>
<td>EHOSTUNREACH</td>
<td>The destination host cannot be reached (probably because the host is down or a remote router cannot reach it).</td>
</tr>
<tr>
<td>EIO</td>
<td>An I/O error occurred while reading from or writing to the file system.</td>
</tr>
<tr>
<td>EISCONN</td>
<td>A destination address was specified and the socket is already connected.</td>
</tr>
<tr>
<td>ENETDOWN</td>
<td>The local interface used to reach the destination is down.</td>
</tr>
<tr>
<td>ENETUNREACH</td>
<td>No route to the network is present.</td>
</tr>
<tr>
<td>ENOBUFS</td>
<td>Insufficient resources were available in the system to perform the operation.</td>
</tr>
<tr>
<td>ENOMEM</td>
<td>Insufficient memory was available to fulfill the request.</td>
</tr>
<tr>
<td>ENOSR</td>
<td>There were insufficient STREAMS resources available for the operation to complete.</td>
</tr>
</tbody>
</table>

If the address family of the socket is AF_UNIX, then `sendmsg()` may fail if:

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENAMETOOLONG</td>
<td>Pathname resolution of a symbolic link produced an intermediate result whose length exceeds PATH_MAX.</td>
</tr>
</tbody>
</table>

Attributes

See `attributes(5)` for descriptions of the following attributes:
sendmsg(3XNET)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO poll(2) getsockopt(3XNET), recv(3XNET), recvfrom(3XNET), recvmsg(3XNET), select(3C), send(3XNET), sendto(3XNET), setsockopt(3XNET), shutdown(3XNET), socket(3XNET), attributes(5)
NAME
sendto – send a message on a socket

SYNOPSIS
cc [flag ...] file ... -lxnet [library ...]
#include <sys/socket.h>

ssize_t sendto(int socket, const void *message, size_t length, int flags,
 const struct sockaddr *dest_addr, socklen_t dest_len);

DESCRIPTION
The sendto() function sends a message through a connection-mode or
connectionless-mode socket. If the socket is connectionless-mode, the message will be
sent to the address specified by dest_addr. If the socket is connection-mode, dest_addr is
ignored.

The function takes the following arguments:
socket
 Specifies the socket file descriptor.
message
 Points to a buffer containing the message to be sent.
length
 Specifies the size of the message in bytes.
flags
 Specifies the type of message transmission. Values of this
 argument are formed by logically OR'ing zero or more of the
 following flags:
 MSG_EOR Terminates a record (if supported by the
 protocol)
 MSG_OOB Sends out-of-band data on sockets that support
 out-of-band data. The significance and
 semantics of out-of-band data are
 protocol-specific.
dest_addr
 Points to a sockaddr structure containing the destination address.
 The length and format of the address depend on the address
 family of the socket.
dest_len
 Specifies the length of the sockaddr structure pointed to by the
 dest_addr argument.

If the socket protocol supports broadcast and the specified address is a broadcast
address for the socket protocol, sendto() will fail if the SO_BROADCAST option is
not set for the socket.

The dest_addr argument specifies the address of the target. The length argument
specifies the length of the message.

Successful completion of a call to sendto() does not guarantee delivery of the
message. A return value of −1 indicates only locally-detected errors.
sendto(3XNET)

If space is not available at the sending socket to hold the message to be transmitted and the socket file descriptor does not have O_NONBLOCK set, sendto() blocks until space is available. If space is not available at the sending socket to hold the message to be transmitted and the socket file descriptor does have O_NONBLOCK set, sendto() will fail.

The socket in use may require the process to have appropriate privileges to use the sendto() function.

USAGE
The select(3C) and poll(2) functions can be used to determine when it is possible to send more data.

RETURN VALUES
Upon successful completion, sendto() returns the number of bytes sent. Otherwise, -1 is returned and errno is set to indicate the error.

ERRORS
The sendto() function will fail if:

- **EAFNOSUPPORT** Addresses in the specified address family cannot be used with this socket.
- **EAGAIN** The socket’s file descriptor is marked O_NONBLOCK and the requested operation would block.
- **EWOULDBLOCK** The socket’s file descriptor is marked O_NONBLOCK and the requested operation would block.
- **EBADF** The socket argument is not a valid file descriptor.
- **ECONNRESET** A connection was forcibly closed by a peer.
- **EFAULT** The message or destaddr parameter can not be accessed.
- **EINTR** A signal interrupted sendto() before any data was transmitted.
- **EMSGSIZE** The message is too large to be sent all at once, as the socket requires.
- **ENOTCONN** The socket is connection-mode but is not connected.
- **ENOTSOCK** The socket argument does not refer to a socket.
- **EOPNOTSUPP** The socket argument is associated with a socket that does not support one or more of the values set in flags.
- **EPIPE** The socket is shut down for writing, or the socket is connection-mode and is no longer connected. In the latter case, and if the socket is of type SOCK_STREAM, the SIGPIPE signal is generated to the calling process.

If the address family of the socket is AF_UNIX, then sendto() will fail if:

- **EIO** An I/O error occurred while reading from or writing to the file system.
Too many symbolic links were encountered in translating the pathname in the socket address.

A component of a pathname exceeded NAME_MAX characters, or an entire pathname exceeded PATH_MAX characters.

A component of the pathname does not name an existing file or the pathname is an empty string.

A component of the path prefix of the pathname in the socket address is not a directory.

The `sendto()` function may fail if:

Search permission is denied for a component of the path prefix; or write access to the named socket is denied.

The socket is not connection-mode and does not have its peer address set, and no destination address was specified.

The destination host cannot be reached (probably because the host is down or a remote router cannot reach it).

The `dest_len` argument is not a valid length for the address family.

An I/O error occurred while reading from or writing to the file system.

A destination address was specified and the socket is already connected.

The local interface used to reach the destination is down.

No route to the network is present.

Insufficient resources were available in the system to perform the operation.

Insufficient memory was available to fulfill the request.

There were insufficient STREAMS resources available for the operation to complete.

If the address family of the socket is AF_UNIX, then `sendto()` may fail if:

Pathname resolution of a symbolic link produced an intermediate result whose length exceeds PATH_MAX.

See `attributes(5)` for descriptions of the following attributes:
SEE ALSO

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

poll(2), getsockopt(3XNET), recv(3XNET), recvfrom(3XNET), recvmsg(3XNET), select(3C), send(3XNET), sendmsg(3XNET), setsockopt(3XNET), shutdown(3XNET), socket(3XNET), attributes(5)
NAME | setsockopt – set the socket options
SYNOPSIS | cc [flag ...] file ... -lxnet [library ...]
 #include <sys/socket.h>
 int setsockopt(int socket, int level, int option_name, const
 void* option_value, socklen_t option_len);

DESCRIPTION | The setsockopt() function sets the option specified by the
 option_name argument, at the protocol level specified by
 the level argument, to the value pointed to by the
 option_value argument for the socket associated with the
 file descriptor specified by the
 socket argument.

 The level argument specifies the protocol level at which the
 option resides. To set options at the socket level, specify
 the level argument as SOL_SOCKET. To set options
 at other levels, supply the appropriate protocol number for the
 protocol controlling the option. For example, to indicate that an
 option will be interpreted by the TCP
 (Transport Control Protocol), set level to the protocol number of
 TCP, as defined in
 the<netinet/in.h> header, or as determined by using
 getprotobyname(3XNET).

 The option_name argument specifies a single option to set. The
 option_name argument and any specified options are passed
 uninterpreted to the appropriate protocol
 module for interpretations. The <sys/socket.h> header defines the
 socket level
 options. The options are as follows:

 SO_DEBUG
 Turns on recording of debugging information. This
 option enables or disables debugging in the underlying
 protocol modules. This option takes an int value. This
 is a boolean option.

 SO_BROADCAST
 Permits sending of broadcast messages, if this is
 supported by the protocol. This option takes an int
 value. This is a boolean option.

 SO_REUSEADDR
 Specifies that the rules used in validating addresses
 supplied to bind(3XNET) should allow reuse of local
 addresses, if this is supported by the protocol. This
 option takes an int value. This is a boolean option.

 SO_KEEPALIVE
 Keeps connections active by enabling the periodic
 transmission of messages, if this is supported by
 the protocol. This option takes an int value.

 If the connected socket fails to respond to these
 messages, the connection is broken and processes
 writing to that socket are notified with a SIGPIPE
 signal.

 This is a boolean option.

 SO_LINGER
 Lingers on a close(2) if data is present. This option
 controls the action taken when unsent messages queue
on a socket and close(2) is performed. If SO_LINGER is set, the system blocks the process during close(2) until it can transmit the data or until the time expires. If SO_LINGER is not specified, and close(2) is issued, the system handles the call in a way that allows the process to continue as quickly as possible. This option takes a linger structure, as defined in the <sys/socket.h> header, to specify the state of the option and linger interval.

SO_OOBINLINE Leaves received out-of-band data (data marked urgent) in line. This option takes an int value. This is a boolean option.

SO_SNDBUF Sets send buffer size. This option takes an int value.

SO_RCVBUF Sets receive buffer size. This option takes an int value.

SO_DONTROUTE Requests that outgoing messages bypass the standard routing facilities. The destination must be on a directly-connected network, and messages are directed to the appropriate network interface according to the destination address. The effect, if any, of this option depends on what protocol is in use. This option takes an int value. This is a boolean option.

For boolean options, 0 indicates that the option is disabled and 1 indicates that the option is enabled.

Options at other protocol levels vary in format and name.

USAGE

The setsockopt() function provides an application program with the means to control socket behavior. An application program can use setsockopt() to allocate buffer space, control timeouts, or permit socket data broadcasts. The <sys/socket.h> header defines the socket-level options available to setsockopt().

Options may exist at multiple protocol levels. The SO_ options are always present at the uppermost socket level.

RETURN VALUES

Upon successful completion, setsockopt() returns 0. Otherwise, -1 is returned and errno is set to indicate the error.

ERRORS

The setsockopt() function will fail if:

<table>
<thead>
<tr>
<th>Error</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBADF</td>
<td>The socket argument is not a valid file descriptor.</td>
</tr>
<tr>
<td>EDOM</td>
<td>The send and receive timeout values are too big to fit into the timeout fields in the socket structure.</td>
</tr>
<tr>
<td>EFAULT</td>
<td>The option_value parameter can not be accessed or written.</td>
</tr>
</tbody>
</table>
The specified option is invalid at the specified socket level or the socket has been shut down.

The socket is already connected, and a specified option can not be set while the socket is connected.

The option is not supported by the protocol.

The socket argument does not refer to a socket.

The `setsockopt()` function may fail if:

- **ENOMEM**
 - There was insufficient memory available for the operation to complete.

- **ENOBUSFS**
 - Insufficient resources are available in the system to complete the call.

- **ENOSR**
 - There were insufficient STREAMS resources available for the operation to complete.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

`bind(3XNET)`, `endprotoent(3XNET)`, `getsockopt(3XNET)`, `socket(3XNET)`, `attributes(5)`
shutdown(3SOCKET)

NAME shutdown – shut down part of a full-duplex connection

SYNOPSIS int shutdown(int s, int how);

DESCRIPTION The shutdown() call shuts down all or part of a full-duplex connection on the socket associated with s. If how is 0, then further receives will be disallowed. If how is 1, then further sends will be disallowed. If how is 2, then further sends and receives will be disallowed.

RETURN VALUES A 0 is returned if the call succeeds, −1 if it fails.

ERRORS The call succeeds unless:

EBADF s is not a valid file descriptor.
ENOMEM There was insufficient user memory available for the operation to complete.
ENOSR There were insufficient STREAMS resources available for the operation to complete.
ENOTCONN The specified socket is not connected.
ENOTSOCK s is not a socket.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO connect(3SOCKET), socket(3SOCKET), attributes(5), socket(3HEAD)

NOTES The how values should be defined constants.
shutdown – shut down socket send and receive operations

SYNOPSIS

```c
cc [ flag ... ] file ... -lxnet [ library ... ]
#include <sys/socket.h>

int shutdown(int socket, int how);
```

DESCRIPTION

- `socket` specifies the file descriptor of the socket.
- `how` specifies the type of shutdown. The values are as follows:
 - `SHUT_RD`: Disables further receive operations.
 - `SHUT_WR`: Disables further send operations.
 - `SHUT_RDWR`: Disables further send and receive operations.

The `shutdown()` function disables subsequent send and/or receive operations on a socket, depending on the value of the `how` argument.

RETURN VALUES

- Upon successful completion, `shutdown()` returns 0. Otherwise, −1 is returned and `errno` is set to indicate the error.

ERRORS

- `EBADF`: The `socket` argument is not a valid file descriptor.
- `EINVAL`: The `how` argument is invalid.
- `ENOTCONN`: The socket is not connected.
- `ENOTSOCK`: The `socket` argument does not refer to a socket.

The `shutdown()` function may fail if:

- `ENOBUS`: Insufficient resources were available in the system to perform the operation.
- `ENOSR`: There were insufficient STREAMS resources available for the operation to complete.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

`getsockopt(3XNET), recv(3XNET), recvfrom(3XNET), recvmsg(3XNET), select(3C), send(3XNET), sendto(3XNET), setsockopt(3XNET), socket(3XNET), attributes(5)`
NAME
slp_api – Service Location Protocol Application Programming Interface

SYNOPSIS
cc [flag ...] file ... -lslp [library ...]
#include <slp.h>

DESCRIPTION
The slp_api is a C language binding that maps directly into the Service Location
Protocol (“SLP”) defined by RFC 2614. This implementation requires minimal
overhead. With the exception of the SLPDereg() and SLPDelAttrs() functions,
which map into different uses of the SLP deregister request, there is one C language
function per protocol request. Parameters are for the most part character buffers.
Memory management is kept simple because the client allocates most memory and
client callback functions are required to copy incoming parameters into memory
allocated by the client code. Any memory returned directly from the API functions is
deallocated using the SLPFree() function.

To conform with standard C practice, all character strings passed to and returned
through the API are null-terminated, even though the SLP protocol does not use
null-terminated strings. Strings passed as parameters are UTF-8 but they may still be
passed as a C string (a null-terminated sequence of bytes.) Escaped characters must be
encoded by the API client as UTF-8. In the common case of US-ASCII, the usual one
byte per character C strings work. API functions assist in escaping and unescaping
strings.

Unless otherwise noted, parameters to API functions and callbacks are non-NULL.
Some parameters may have other restrictions. If any parameter fails to satisfy the
restrictions on its value, the operation returns a PARAMETER_BAD error.

Syntax for String
Parameters
Query strings, attribute registration lists, attribute deregistration lists, scope lists, and
attribute selection lists follow the syntax described in RFC 2608. The API reflects the
strings passed from clients directly into protocol requests, and reflects out strings
returned from protocol replies directly to clients. As a consequence, clients are
responsible for formatting request strings, including escaping and converting opaque
values to escaped byte-encoded strings. Similarly, on output, clients are required to
unescape strings and convert escaped string-encoded opaques to binary. The
SLPEscape() and SLPUnescape() functions can be used for escaping SLP reserved
characters, but they perform no opaque processing.

Opaque values consist of a character buffer that contains a UTF-8-encoded string, the
first characters of which are the non UTF-8 encoding “\ef”. Subsequent characters are
the escaped values for the original bytes in the opaque. The escape convention is
relatively simple. An escape consists of a backslash followed by the two hexadecimal
digits encoding the byte. An example is “\2c” for the byte 0x2c. Clients handle
opaque processing themselves, since the algorithm is relatively simple and uniform.

System Properties
The system properties established in slp.conf(4), the configuration file, are
accessible through the SLPGetProperty() and SLPSetProperty() functions. The
SLPSetProperty() function modifies properties only in the running process, not in
the configuration file. Errors are checked when the property is used and, as with
parsing the configuration file, are logged at the LOG_INFO priority. Program execution
continues without interruption by substituting the default for the erroneous
parameter. In general, individual agents should rarely be required to override these properties, since they reflect properties of the SLP network that are not of concern to individual agents. If changes are required, system administrators should modify the configuration file.

Properties are global to the process, affecting all threads and all handles created with SLPOpen().

The only API functions that return memory specifically requiring deallocation on the part of the client are SLPParseSrvURL(), SLPFindScope(), SLPEscape(), and SLPUnescape(). Free this memory with SLPFree() when it is no longer needed. Do not free character strings returned by means of the SLPGetProperty() function.

Any memory passed to callbacks belongs to the library, and it must not be retained by the client code. Otherwise, crashes are possible. Clients must copy data out of the callback parameters. No other use of the memory in callback parameters is allowed.

If a handle parameter to an API function is opened asynchronously, the API function calls on the handle to check the other parameters, opens the appropriate operation, and returns immediately. If an error occurs in the process of starting the operation, the error code is returned. If the handle parameter is opened synchronously, the function call is blocked until all results are available, and it returns only after the results are reported through the callback function. The return code indicates whether any errors occurred during the operation.

The callback function is called whenever the API library has results to report. The callback code is required to check the error code parameter before looking at the other parameters. If the error code is not SLP_OK, the other parameters may be NULL or otherwise invalid. The API library can terminate any outstanding operation on which an error occurs. The callback code can similarly indicate that the operation should be terminated by passing back SLP_FALSE to indicate that it is not interested in receiving more results. Callback functions are not permitted to recursively call into the API on the same SLPHandle. If an attempt is made to call into the API, the API function returns SLP_HANDLE_IN_USE. Prohibiting recursive callbacks on the same handle simplifies implementation of thread safe code, since locks held on the handle will not be in place during a second outcall on the handle.

The total number of results received can be controlled by setting the net.slp.maxResults parameter.

On the last call to a callback, whether asynchronous or synchronous, the status code passed to the callback has value SLP_LAST_CALL. There are four reasons why the call can terminate:

- **DA reply received** A reply from a DA has been received and therefore nothing more is expected.
- **Multicast terminated** The multicast convergence time has elapsed and the API library multicast code is giving up.
Multicast null results
Nothing new has been received during multicast for awhile and the API library multicast code is giving up on that (as an optimization).

Maximum results
The user has set the `net.slp.maxResults` property and that number of replies has been collected and returned.

Configuration Files
The API library reads `slp.conf(4)`, the default configuration file, to obtain the operating parameters. You can specify the location of this file with the SLP_CONF_FILE environment variable. If you do not set this variable, or the file it refers to is invalid, the API will use the default configuration file at `/etc/inet/slp.conf` instead.

Data Structures
The data structures used by the SLP API are as follows:

The URL Lifetime Type
```c
typedef enum {
    SLP_LIFETIME_DEFAULT = 10800,
    SLP_LIFETIME_MAXIMUM = 65535
} SLPURLLifetime;
```

The enumeration SLPURLLifetime contains URL lifetime values, in seconds, that are frequently used. SLP_LIFETIME_DEFAULT is 3 hours, while SLP_LIFETIME_MAXIMUM is 18 hours, which corresponds to the maximum size of the lifetime field in SLP messages. Note that on registration SLP_LIFETIME_MAXIMUM causes the advertisement to be continually reregistered until the process exits.

The SLPBoolean Type
```c
typedef enum {
    SLP_FALSE = 0,
    SLP_TRUE = 1
} SLPBoolean;
```

The enumeration SLPBoolean is used as a Boolean flag.

The Service URL Structure
```c
typedef struct srvurl {
    char *s_pcSrvType;
    char *s_pcHost;
    int s_iPort;
    char *s_pcNetFamily;
    char *s_pcSrvPart;
} SLPSrvURL;
```
The SLPSrvURL structure is filled in by the SLPParseSrvURL() function with information parsed from a character buffer containing a service URL. The fields correspond to different parts of the URL, as follows:

- **s_pcSrvType**: A pointer to a character string containing the service type name, including naming authority.
- **s_pcHost**: A pointer to a character string containing the host identification information.
- **s_iPort**: The port number, or zero, if none. The port is only available if the transport is IP.
- **s_pcNetFamily**: A pointer to a character string containing the network address family identifier. Possible values are "ipx" for the IPX family, "at" for the AppleTalk family, and "", the empty string, for the IP address family.
- **s_pcSrvPart**: The remainder of the URL, after the host identification.

The host and port should be sufficient to open a socket to the machine hosting the service; the remainder of the URL should allow further differentiation of the service.

The SLPHandle

```c
typedef void* SLPHandle;
```

The SLPHandle type is returned by SLPOpen() and is a parameter to all SLP functions. It serves as a handle for all resources allocated on behalf of the process by the SLP library. The type is opaque.

Callbacks

Include a function pointer to a callback function specific to a particular API operation in the parameter list when the API function is invoked. The callback function is called with the results of the operation in both the synchronous and asynchronous cases. When the callback function is invoked, the memory included in the callback parameters is owned by the API library, and the client code in the callback must copy out the contents if it wants to maintain the information longer than the duration of the current callback call.

Each callback parameter list contains parameters for reporting the results of the operation, as well as an error code parameter and a cookie parameter. The error code parameter reports the error status of the ongoing (for asynchronous) or completed (for synchronous) operation. The cookie parameter allows the client code that starts the operation by invoking the API function to pass information down to the callback without using global variables. The callback returns an SLPBoolean to indicate whether the API library should continue processing the operation. If the value returned from the callback is SLP_TRUE, asynchronous operations are terminated. Synchronous operations ignore the return since the operation is already complete.
SLPRegReport()

typedef void SLPRegReport(SLPHandle hSLP,
 SLPError errCode,
 void *pvCookie);

SLPRegReport() is the callback function to the SLPReg(), SLPDereg(), and SLPDelAttrs() functions. The SLPRegReport() callback has the following parameters:

- **hSLP**
 - The SLPHandle() used to initiate the operation.

- **errCode**
 - An error code indicating if an error occurred during the operation.

- **pvCookie**
 - Memory passed down from the client code that called the original API function, starting the operation. It may be NULL.

SLPSrvTypeCallback()

typedef SLPBoolean SLPSrvTypeCallback(SLPHandle hSLP,
 const char* pcSrvTypes,
 SLPError errCode,
 void *pvCookie);

The SLPSrvTypeCallback() type is the type of the callback function parameter to the SLPFindSrvTypes() function. The results are collated when the hSLP handle is opened either synchronously or asynchronously. The SLPSrvTypeCallback() callback has the following parameters:

- **hSLP**
 - The SLPHandle used to initiate the operation.

- **pcSrvTypes**
 - A character buffer containing a comma-separated, null-terminated list of service types.

- **errCode**
 - An error code indicating if an error occurred during the operation. The callback should check this error code before processing the parameters. If the error code is other than SLP_OK, then the API library may choose to terminate the outstanding operation.

- **pvCookie**
 - Memory passed down from the client code that called the original API function, starting the operation. It can be NULL.

SLPSrvURLCallback

typedef SLPBoolean SLPSrvURLCallback(SLPHandle hSLP,
 const char* pcSrvURL,
 unsigned short usLifetime,
 SLPError errCode,
 void *pvCookie);
The `SLPSrvURLCallback` type is the type of the callback function parameter to the `SLPFindSrvs` function. The results are collated, regardless of whether the handle was opened collated or uncollated. The `SLPSrvURLCallback` callback has the following parameters:

- **hSLP**: The SLPHandle used to initiate the operation.
- **pcSrvURL**: A character buffer containing the returned service URL.
- **usLifetime**: An unsigned short giving the life time of the service advertisement. The value must be an unsigned integer less than or equal to `SLP_LIFETIME_MAXIMUM`.
- **errCode**: An error code indicating if an error occurred during the operation. The callback should check this error code before processing the parameters. If the error code is other than `SLP_OK`, then the API library may choose to terminate the outstanding operation.
- **pvCookie**: Memory passed down from the client code that called the original API function, starting the operation. It can be `NULL`.

SLPAtrCallback

typedef SLPBoolean SLPAtrCallback(SLPHandle hSLP,
const char* pcAttrList,
SLPError errCode,
void *pvCookie);

The `SLPAtrCallback` type is the type of the callback function parameter to the `SLPFindAttrs` function.

The behavior of the callback differs depending upon whether the attribute request was by URL or by service type. If the `SLPFindAttrs` operation was originally called with a URL, the callback is called once, in addition to the last call, regardless of whether the handle was opened asynchronously or synchronously. The `pcAttrList` parameter contains the requested attributes as a comma-separated list. It is empty if no attributes match the original tag list.

If the `SLPFindAttrs` operation was originally called with a service type, the value of `pcAttrList` and the calling behavior depend upon whether the handle was opened asynchronously or synchronously. If the handle was opened asynchronously, the callback is called every time the API library has results from a remote agent. The `pcAttrList` parameter is collated between calls, and contains a comma-separated list of the results from the agent that immediately returned. If the handle was opened synchronously, the results are collated from all returning agents, the callback is called once, and the `pcAttrList` parameter is set to the collated result.

`SLPAtrCallback` callback has the following parameters:

- **hSLP**: The SLPHandle used to initiate the operation.
slop_api(3SLP)

<table>
<thead>
<tr>
<th>pcAttrList</th>
<th>A character buffer containing a comma-separated and null-terminated list of attribute id/value assignments, in SLP wire format.</th>
</tr>
</thead>
<tbody>
<tr>
<td>errCode</td>
<td>An error code indicating if an error occurred during the operation. The callback should check this error code before processing the parameters. If the error code is other than SLP_OK, then the API library may choose to terminate the outstanding operation.</td>
</tr>
<tr>
<td>pvCookie</td>
<td>Memory passed down from the client code that called the original API function, starting the operation. It can be NULL.</td>
</tr>
</tbody>
</table>

ERRORS

An interface that is part of the SLP API may return one of the following values.

SLP_LAST_CALL	The SLP_LAST_CALL code is passed to callback functions when the API library has no more data for them and therefore no further calls will be made to the callback on the currently outstanding operation. The callback uses this to signal the main body of the client code that no more data will be forthcoming on the operation, so that the main body of the client code can break out of data collection loops. On the last call of a callback during both a synchronous and asynchronous call, the error code parameter has value SLP_LAST_CALL, and the other parameters are all NULL. If no results are returned by an API operation, then only one call is made, with the error parameter set to SLP_LAST_CALL.
SLP_OK	The SLP_OK code indicates that no error occurred during the operation.
SLP_LANGUAGE_NOT_SUPPORTED	No DA or SA has service advertisement information in the language requested, but at least one DA or SA might have information for that service in another language.
SLP_PARSE_ERROR	The SLP message was rejected by a remote SLP agent. The API returns this error only when no information was retrieved, and at least one SA or DA indicated a protocol error. The data supplied through the API may be malformed or damaged in transit.
SLP_INVALID_REGISTRATION	The API may return this error if an attempt to register a service was rejected by all DAs because of a malformed URL or attributes.
SLP does not return the error if at least one DA accepts the registration.

SLP_SCOPE_NOT_SUPPORTED

The API returns this error if the UA or SA has been configured with the net.slp.useScopes list of scopes and the SA request did not specify one or more of these allowable scopes, and no others. It may also be returned by a DA if the scope included in a request is not supported by a DA.

SLP_AUTHENTICATION_ABSENT

This error arises when the UA or SA failed to send an authenticator for requests or registrations when security is enabled and thus required.

SLP_AUTHENTICATION_FAILED

This error arises when a authentication on an SLP message received from a remote SLP agent failed.

SLP_INVALID_UPDATE

An update for a nonexisting registration was issued, or the update includes a service type or scope different than that in the initial registration.

SLP_REFRESH_REJECTED

The SA attempted to refresh a registration more frequently than the minimum refresh interval. The SA should call the appropriate API function to obtain the minimum refresh interval to use.

SLP_NOT_IMPLEMENTED

An outgoing request overflowed the maximum network MTU size. The request should be reduced in size or broken into pieces and tried again.

SLP_BUFFER_OVERFLOW

An outgoing request overflowed the maximum network MTU size. The request should be reduced in size or broken into pieces and tried again.

SLP_NETWORK_TIMED_OUT

When no reply can be obtained in the time specified by the configured timeout interval, this error is returned.

SLP_NETWORK_INIT_FAILED

If the network cannot initialize properly, this error is returned.

SLP_MEMORY_ALLOC_FAILED

If the API fails to allocate memory, the operation is aborted and returns this.
SLP_PARAMETER_BAD
If a parameter passed into an interface is bad, this error is returned.

SLP_NETWORK_ERROR
The failure of networking during normal operations causes this error to be returned.

SLP_INTERNAL_SYSTEM_ERROR
A basic failure of the API causes this error to be returned. This occurs when a system call or library fails. The operation could not recover.

SLP_HANDLE_IN_USE
In the C API, callback functions are not permitted to recursively call into the API on the same SLPHandle, either directly or indirectly. If an attempt is made to do so, this error is returned from the called API function

<table>
<thead>
<tr>
<th>ROUTINES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLPOpen()</td>
</tr>
<tr>
<td>SLPClose()</td>
</tr>
<tr>
<td>SLPReg()</td>
</tr>
<tr>
<td>SLPDereg()</td>
</tr>
<tr>
<td>SLPDeleteAttrs()</td>
</tr>
<tr>
<td>SLPFindSrvTypes()</td>
</tr>
<tr>
<td>SLPFindSrvs()</td>
</tr>
<tr>
<td>SLPFindAttrs()</td>
</tr>
<tr>
<td>SLPGetRefreshInterval()</td>
</tr>
<tr>
<td>SLPFindScopes()</td>
</tr>
<tr>
<td>SLPParseSrvURL()</td>
</tr>
<tr>
<td>SLPEscape()</td>
</tr>
<tr>
<td>SLPUnescape()</td>
</tr>
<tr>
<td>SLPGetProperty()</td>
</tr>
<tr>
<td>SLPSetProperty()</td>
</tr>
<tr>
<td>slp_strerror()</td>
</tr>
<tr>
<td>SLPFree()</td>
</tr>
</tbody>
</table>

ENVIRONMENT VARIABLES
When SLP_CONF_FILE is set, use this file for configuration.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWslpu</td>
</tr>
<tr>
<td>CSI</td>
<td>CSI-enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Standard</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

slpd(1M), slp.conf(4), slpd.reg(4), attributes(5)

System Administration Guide: Resource Management and Network Services

SLPClose(3SLP)

NAME
SLPClose – close an open SLP handle

SYNOPSIS
```
#include <slp.h>

void SLPClose(SLPHandle phSLP);
```

DESCRIPTION
The SLPClose() function frees all resources associated with the handle. If the handle is invalid, the function returns silently. Any outstanding synchronous or asynchronous operations are cancelled, so that their callback functions will not be called any further.

PARAMETERS
phSLP
An SLPHandle handle returned from a call to SPLOpen().

ERRORS
This function or its callback may return any SLP error code. See the ERRORS section in slp_api(3SLP).

EXAMPLES
EX ample 1 Using SLPClose()
The following example will free all resources associated the handle:
```
SLPHandle hSlp
SLPClose(hSlp);
```

ENVIRONMENT
SLP_CONF_FILE
When set, use this file for configuration.

VARIABLES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWslpu</td>
</tr>
</tbody>
</table>

ATTRIBUTES

SEE ALSO
slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

System Administration Guide: Resource Management and Network Services

SLPDelAttrs(3SLP)

NAME
SLPDelAttrs – delete attributes

SYNOPSIS
#include <slp.h>

SLPError SLPDelAttrs(SLPHandle hSLP, const char *pcURL, const char *pcAttrs, SLPRegReport *callback, void *pvCookie);

DESCRIPTION
The SLPDelAttrs() function deletes the selected attributes in the locale of the SLPHandle. If no error occurs, the return value is 0. Otherwise, one of the SLPError codes is returned.

PARAMETERS
hSLP The language specific SLPHandle to use to delete attributes. It cannot be NULL.

pcURL The URL of the advertisement from which the attributes should be deleted. It cannot be NULL.

pcAttrs A comma-separated list of attribute ids for the attributes to deregister.

callback A callback to report the operation’s completion status. It cannot be NULL.

pvCookie Memory passed to the callback code from the client. It cannot be NULL.

ERRORS
This function or its callback may return any SLP error code. See the ERRORS section in s1p_api(3SLP).

EXAMPLES
EXAMPLE 1 Deleting Attributes

Use the following example to delete the location and dpi attributes for the URL service:printer:lpr://serv/queue1

SLPHandle hSLP;
SLPError err;
SLPRegReport report;

err = SLPDelAttrs(hSLP, "service:printer:lpr://serv/queue1", "location,dpi", report, NULL);

ENVIRONMENT VARIABLES
SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWslpu</td>
</tr>
</tbody>
</table>

SEE ALSO
slpd(1M), s1p_api(3SLP), s1p.conf(4), s1p.d.reg(4), attributes(5)

System Administration Guide: Resource Management and Network Services

Networking Library Functions 549
SLPDelAttrs(3SLP)

#include <slp.h>

SLPError SLPDereg(SLPHandle hSLP, const char *pcURL, SLPRegReport callback, void *pvCookie);

The SLPDereg() function deregisters the advertisement for URL pcURL in all scopes where the service is registered and in all language locales, not just the locale of the SLPHandle. If no error occurs, the return value is 0. Otherwise, one of the SLPError codes is returned.

PARAMETERS

- **hSLP**
The language specific SLPHandle to use for deregistering. hSLP cannot be NULL.
- **pcURL**
The URL to deregister. The value of pcURL cannot be NULL.
- **callback**
A callback to report the operation completion status. callback cannot be NULL.
- **pvCookie**
Memory passed to the callback code from the client. pvCookie can be NULL.

ERRORS

This function or its callback may return any SLP error code. See the ERRORS section in slp_api(3SLP).

EXAMPLES

EXAMPLE 1 Using SLPDereg()

Use the following example to deregister the advertisement for the URL "service:ftp://csserver":

```c
SLPerror err;
SLPHandle hSLP;
SLPRegReport regreport;

err = SLPDereg(hSLP, "service:ftp://csserver", regreport, NULL);
```

ENVIRONMENT VARIABLES

- **SLP_CONF_FILE**
When set, use this file for configuration.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWslpu</td>
</tr>
</tbody>
</table>

SEE ALSO

slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

System Administration Guide: Resource Management and Network Services

SLPEscape – escapes SLP reserved characters

#include <slp.h>

SLPError SLPEscape(const char *pcInBuf, char** ppcOutBuf, SLPBoolean isTag);

The SLPEscape() function processes the input string in pcInBuf and escapes any SLP reserved characters. If the isTag parameter is SLPTrue, it then looks for bad tag characters and signals an error if any are found by returning the SLP_PARSE_ERROR code. The results are put into a buffer allocated by the API library and returned in the ppcOutBuf parameter. This buffer should be deallocated using SLPFree(3SLP) when the memory is no longer needed.

pcInBuf Pointer to the input buffer to process for escape characters.

ppcOutBuf Pointer to a pointer for the output buffer with the SLP reserved characters escaped. It must be freed using SLPFree(3SLP) when the memory is no longer needed.

isTag When true, checks the input buffer for bad tag characters.

This function or its callback may return any SLP error code. See the ERRORS section in slp_api(3SLP).

EXAMPLE 1 Converting Attribute Tags

The following example shows how to convert the attribute tag ,tag-example, to on the wire format:

SLPError err;
char* escaped Chars;
err = SLPEscape("", "tag-example", ", escapedChars, SLP_TRUE);
The `SLPFindAttrs()` function returns service attributes matching the attribute tags for the indicated full or partial URL. If `pcURL` is a complete URL, the attribute information returned is for that particular service in the language locale of the `SLPHandle`. If `pcURL` is a service type, then all attributes for the service type are returned, regardless of the language of registration. Results are returned through the `callback` parameter.

The result is filtered with an SLP attribute request filter string parameter, the syntax of which is described in RFC 2608. If the filter string is the empty string, "", all attributes are returned.

If an error occurs in starting the operation, one of the `SLPError` codes is returned.

Parameters

- **`hSLP`**
 - The language-specific `SLPHandle` on which to search for attributes. It cannot be `NULL`.

- **`pcURL`**
 - The full or partial URL. See RFC 2608 for partial URL syntax. It cannot be `NULL`.

- **`pcScopeList`**
 - A pointer to a `char` containing a comma-separated list of scope names. It cannot be `NULL` or an empty string, "".

- **`pcAttrIds`**
 - The filter string indicating which attribute values to return. Use empty string "" to indicate all values. Wildcards matching all attribute ids having a particular prefix or suffix are also possible. It cannot be `NULL`.

- **`callback`**
 - A callback function through which the results of the operation are reported. It cannot be `NULL`.

- **`pvCookie`**
 - Memory passed to the callback code from the client. It may be `NULL`.

Errors

This function or its callback may return any SLP error code. See the ERRORS section in `slp_api(3SLP)`.

Examples

Example 1 Returning Service Attributes for a Specific URL

Use the following example to return the attributes “location” and “dpi” for the URL “service:printer:lpr://serv/queue1” through the callback `attrReturn`:

```c
SLPHandle hSLP;
SLPAttrCallback attrReturn;
SLPError err;
```
EXAMPLE 1 Returning Service Attributes for a Specific URL

```c
err = SLPFindAttrs(hSLP, "service:printer:lpr://serv/queue1", "default", "location,dpi", attrReturn, err);
```

EXAMPLE 2 Returning Service Attributes for All URLs of a Specific Type

Use the following example to return the attributes “location” and “dpi” for all service URLs having type “service:printer:lpr”:

```c
err = SLPFindAttrs(hSLP, "service:printer:lpr", "default", "location, pi", attrReturn, NULL);
```

ENVIRONMENT VARIABLES

- **SLP_CONF_FILE** When set, use this file for configuration.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWslpu</td>
</tr>
</tbody>
</table>

SEE ALSO

- slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)
- System Administration Guide: Resource Management and Network Services
SLPFindScopes() function sets the ppcScopes parameter to a pointer to a comma-separated list including all available scope names. The list of scopes comes from a variety of sources: the configuration file, the net.slp.useScopes property and the net.slp.DAAddresses property, DHCP, or through the DA discovery process. If there is any order to the scopes, preferred scopes are listed before less desirable scopes. There is always at least one string in the array, the default scope, DEFAULT.

If no error occurs, SLPFindScopes() returns SLP_OK, otherwise, it returns the appropriate error code.

PARAMETERS

- **hSLP** The SLPHandle on which to search for scopes. *hSLP* cannot be NULL.
- **ppcScopes** A pointer to a char pointer into which the buffer pointer is placed upon return. The buffer is null-terminated. The memory should be freed by calling SLPFree(). See SLPFree(3SLP).

ERRORS

This function or its callback may return any SLP error code. See the ERRORS section in slp_api(3SLP).

EXAMPLES

EXAMPLE 1 Finding Configured or Discovered Scopes

Use the following example to find configured or discovered scopes:

```c
SLPHandle hSLP;
char *ppcScopes;
SLPError err;
error = SLPFindScopes(hSLP, & ppcScopes);
```

ENVIRONMENT VARIABLES

- **SLP_CONF_FILE** When set, use this file for configuration.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWslpu</td>
</tr>
</tbody>
</table>

SEE ALSO

slpd(1M), slp_api(3SLP), SLPFree(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

System Administration Guide: Resource Management and Network Services

SLPFindSrvs() function issues a request for SLP services. The query is for services on a language-specific SLPHandle. It returns the results through the callback. The parameters will determine the results.

If an error occurs in starting the operation, one of the SLPError codes is returned.

PARAMETERS

- **hSLP**
 The language-specific SLPHandle on which to search for services. It cannot be NULL.

- **pcServiceType**
 The service type string for the request. The `pcServiceType` can be discovered by a call to `SLPSrvTypes()`. Examples of service type strings include
 - "service:printer:lpr"
 - "service:nfs"

 `pcServiceType` cannot be NULL.

- **pcScopeList**
 A pointer to a char containing a comma-separated list of scope names. It cannot be NULL or an empty string, "".

- **pcSearchFilter**
 A query formulated of attribute pattern matching expressions in the form of a LDAPv3 search filter. See RFC 2254. If this filter is empty, "", all services of the requested type in the specified scopes are returned. It cannot be NULL.

- **callback**
 A callback through which the results of the operation are reported. It cannot be NULL.

- **pvCookie**
 Memory passed to the callback code from the client. It can be NULL.

ERRORS

This function or its callback may return any SLP error code. See the ERRORS section in `slp_api(3SLP)`.

EXAMPLES

EXAMPLE 1 Using SLPFindSrvs()

The following example finds all advertisements for printers supporting the LPR protocol with the dpi attribute 300 in the default scope:
EXAMPLE 1 Using SLPFindSrvs() (Continued)

SLPError err;
SLPHandle hSLP;
SLPSrvURLCallback srvngst;

err = SLPFindSrvs(hSLP,
 "service:printer:lpr",
 "default",
 "(dpi=300)",
 srvngst,
 NULL);

SLP_CONF_FILE When set, use this file for configuration.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWslpu</td>
</tr>
</tbody>
</table>

SEE ALSO
slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

System Administration Guide: Resource Management and Network Services

NAME | SLPFindSrvTypes – find service types

SYNOPSIS

```c
#include <slp.h>

SLPError SLPFindSrvTypes(SLPHandle hSLP, const char *pcNamingAuthority, const char *pcScopeList, SLPSrvTypeCallback *callback, void *pvCookie);
```

DESCRIPTION

The `SLPFindSrvTypes()` function issues an SLP service type request for service types in the scopes indicated by the `pcScopeList`. The results are returned through the `callback` parameter. The service types are independent of language locale, but only for services registered in one of the scopes and for the indicated naming authority.

If the naming authority is "*", then results are returned for all naming authorities. If the naming authority is the empty string, "", then the default naming authority, IANA, is used. IANA is not a valid naming authority name; the `SLP_PARAMETER_BAD` error code will be returned if you include it explicitly.

The service type names are returned with the naming authority included in the following format:

```
  service-type ".*" naming-authority
```

unless the naming authority is the default, in which case, just the service type name is returned.

If an error occurs in starting the operation, one of the `SLPError` codes is returned.

PARAMETERS

- `hSLP` The `SLPHandle` on which to search for types. It cannot be `NULL`.
- `pcNamingAuthority` The naming authority to search. Use "*" to search all naming authorities; use the empty string, "", to search the default naming authority. It cannot be `NULL`.
- `pcScopeList` A pointer to a `char` containing a comma-separated list of scope names to search for service types. It cannot be `NULL` or an empty string, "".
- `callback` A callback through which the results of the operation are reported. It cannot be `NULL`.
- `pvCookie` Memory passed to the callback code from the client. It can be `NULL`.

ERRORS

This function or its callback may return any SLP error code. See the ERRORS section in `slp_api(3SLP)`.

EXAMPLES

EXAMPLE 1 Using SLPFindSrvTypes()

The following example finds all service type names in the default scope and default naming authority:

```c
SLPError err;
SLPHandle hSLP;
```
EXAMPLE 1 Using SLPFindSrvTypes() (Continued)

SLPSrvTypeCallback findsrvtypes;
err = SLPFindSrvTypes(hSLP, "", "default", findsrvtypes, NULL);

SLP_CONF_FILE
When set, use this file for configuration.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWslpu</td>
</tr>
</tbody>
</table>

SEE ALSO
slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

System Administration Guide: Resource Management and Network Services

NAME SLPFree – frees memory
SYNOPSIS
#include <slp.h>

SLPError SLPFree(void *pvMem);

DESCRIPTION The SLPFree() function frees memory returned from SLPParseSrvURL(),
 SLPFindScopes(), SLPEscape(), and SLPUnescape().

PARAMETERS pvMem A pointer to the storage allocated by the SLPParseSrvURL(),
 SLPFindScopes(), SLPEscape(), and SLPUnescape() functions. pvMem is ignored if its value is NULL.

ERRORS This function or its callback may return any SLP error code. See the ERRORS section in slp_api(3SLP).

EXAMPLES EXAMPLE 1 Using SLPFree()
 The following example illustrates how to call SLPFree(). It assumes that SrvURL
 contains previously allocated memory.
 SLPError err;
 err = SLPFree((void*) SrvURL);

ENVIRONMENT SLP_CONF_FILE When set, use this file for configuration.
VARIABLES

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWsLpu</td>
</tr>
</tbody>
</table>

SEE ALSO slpd(1M), SLPEscape(3SLP), SLPFindScopes(3SLP), SLPParseSrvURL(3SLP),
 SLPUnescape(3SLP), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

System Administration Guide: Resource Management and Network Services

SLPGetProperty(3SLP)

NAME
SLPGetProperty – return SLP configuration property

SYNOPSIS
```c
#include <slp.h>
const char* SLPGetProperty(const char* pcName);
```

DESCRIPTION
The SLPGetProperty() function returns the value of the corresponding SLP
property name, or NULL, if none. If there is no error, SLPGetProperty() returns a
pointer to the property value. If the property was not set, it returns the empty string,
"". If an error occurs, SLPGetProperty() returns NULL. The returned string should
not be freed.

PARAMETERS
`pcName` A null-terminated string with the property name. `pcName` cannot be NULL.

ERRORS
This function or its callback may return any SLP error code. See the ERRORS section in
slp_api(3SLP).

EXAMPLES
EXAMPLE 1 Using SLPGetProperty()

Use the following example to return a list of configured scopes:
```c
const char* useScopes = SLPGetProperty("net.slp.useScopes");
```

ENVIRONMENT VARIABLES
SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWslpu</td>
</tr>
</tbody>
</table>

SEE ALSO
slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

System Administration Guide: Resource Management and Network Services

SLPGetRefreshInterval(3SLP)

NAME
SLPGetRefreshInterval – return the maximum allowed refresh interval

SYNOPSIS
#include <slp.h>

int SLPGetRefreshInterval(void);

DESCRIPTION
The SLPGetRefreshInterval() function returns the maximum across all DAs of
the min-refresh-interval attribute. This value satisfies the advertised refresh
interval bounds for all DAs. If this value is used by the SA, it assures that no refresh
registration will be rejected. If no DA advertises a min-refresh-interval attribute,
a value of 0 is returned. If an error occurs, an SLP error code is returned.

ERRORS
This function or its callback may return any SLP error code. See the ERRORS section in
slp_api(3SLP).

EXAMPLES
EXAMPLE 1 Using SLPGetRefreshInterval()

Use the following example to return the maximum valid refresh interval for SA:

int minrefresh

minrefresh = SLPGetRefreshInterval();

ENVIRONMENT VARIABLES
SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWslpu</td>
</tr>
</tbody>
</table>

SEE ALSO
slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

System Administration Guide: Resource Management and Network Services

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The Internet Society,
June 1999.
SLPOpen(3SLP)

NAME
SLPOpen – open an SLP handle

SYNOPSIS
#include <slp.h>

SLPError SLPOpen(const char *pcLang, SLPBoolean isAsync, SLPHandle *phSLP);

DESCRIPTION
The SLPOpen() function returns a SLPHandle handle in the phSLP parameter for the
language locale passed in as the pcLang parameter. The client indicates if operations on
the handle are to be synchronous or asynchronous through the isAsync parameter. The
handle encapsulates the language locale for SLP requests issued through the handle,
and any other resources required by the implementation. SLP properties are not
encapsulated by the handle, they are global. The return value of the function is an
SLPError code indicating the status of the operation. Upon failure, the phSLP
parameter is NULL.

An SLPHandle can only be used for one SLP API operation at a time. If the original
operation was started asynchronously, any attempt to start an additional operation on
the handle while the original operation is pending results in the return of an
SLP_HANDLE_IN_USE error from the API function. The SLPClose() function
terminates any outstanding calls on the handle.

PARAMETERS
pcLang A pointer to an array of characters containing the language tag set
forth in RFC 1766 for the natural language locale of requests issued
on the handle. This parameter cannot be NULL.

isAsync An SLPBoolean indicating whether or not the SLPHandle
should be opened for an asynchronous operation.

phSLP A pointer to an SLPHandle in which the open SLPHandle is
returned. If an error occurs, the value upon return is NULL.

ERRORS
This function or its callback may return any SLP error code. See the ERRORS section in
slp_api(3SLP).

EXAMPLES
EXAMPLE 1 Using SLPOpen()

Use the following example to open a synchronous handle for the German (“de”) locale:

```c
SLPHandle HSLP;
SLPError err;

err = SLPOpen("de", SLP_FALSE, &hSLP)
```

ENVIRONMENT VARIABLES
SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:
SLPOpen(3SLP)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWslpu</td>
</tr>
</tbody>
</table>

SEE ALSO

slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

System Administration Guide: Resource Management and Network Services

The `SLPParseSrvURL()` routine parses the URL passed in as the argument into a service URL structure and returns it in the `ppSrvURL` pointer. If a parser error occurs, returns `SLP_PARSE_ERROR`. The structure returned in `ppSrvURL` should be freed with `SLPFree()`. If the URL has no service part, the `s_pcSrvPart` string is the empty string, "", that is, it is not `NULL`. If `pcSrvURL` is not a service: URL, then the `s_pcSrvType` field in the returned data structure is the URL’s scheme, which might not be the same as the service type under which the URL was registered. If the transport is IP, the `s_pcNetFamily` field is the empty string.

If no error occurs, the return value is the `SLP_OK`. Otherwise, if an error occurs, one of the `SLPError` codes is returned.

PARAMETERS
- `pcSrvURL`: A pointer to a character buffer containing the null terminated URL string to parse. It is destructively modified to produce the output structure. It may not be `NULL`.
- `ppSrvURL`: A pointer to a pointer for the `SLPSrvURL` structure to receive the parsed URL. It may not be `NULL`.

ERRORS
This function or its callback may return any SLP error code. See the ERRORS section in `slp_api(3SLP)`.

EXAMPLES
EXAMPLE 1 Using `SLPParseSrvURL()`

The following example uses the `SLPParseSrvURL()` function to parse the service URL `service:printer:lpr://serv/queue1`:

```c
SLPSrvURL* surl;
SLPError err;
err = SLPParseSrvURL("service:printer:lpr://serv/queue1", &surl);
```

ENVIRONMENT VARIABLES
- `SLP_CONF_FILE`: When set, use this file for configuration.

ATTRIBUTES
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWslpu</td>
</tr>
</tbody>
</table>

SEE ALSO
- `slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)`
- *System Administration Guide: Resource Management and Network Services*
SLPParseSrvURL(3SLP)

SLPReg(3SLP)

<table>
<thead>
<tr>
<th>NAME</th>
<th>SLPReg – register an SLP advertisement</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
<td><code>#include <slp.h></code></td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>The <code>SLPReg()</code> function registers the URL in <code>pcSrvURL</code> having the lifetime <code>usLifetime</code> with the attribute list in <code>pcAttrs</code>. The <code>pcAttrs</code> list is a comma-separated list of attribute assignments in on-the-wire format (including escaping of reserved characters). The <code>usLifetime</code> parameter must be nonzero and less than or equal to <code>SLP_LIFETIME_MAXIMUM</code>. If the fresh flag is <code>SLP_TRUE</code>, then the registration is new, the SLP protocol <code>fresh</code> flag is set, and the registration replaces any existing registrations.</td>
</tr>
<tr>
<td>PARAMETERS</td>
<td>hSLP The language specific <code>SLPHandle</code> on which to register the advertisement. <code>hSLP</code> cannot be <code>NULL</code>.</td>
</tr>
<tr>
<td></td>
<td>pcSrvURL The URL to register. The value of <code>pcSrvURL</code> cannot be <code>NULL</code> or the empty string.</td>
</tr>
<tr>
<td></td>
<td>usLifetime An unsigned short giving the life time of the service advertisement, in seconds. The value must be an unsigned integer less than or equal to <code>SLP_LIFETIME_MAXIMUM</code>.</td>
</tr>
<tr>
<td></td>
<td>pcSrvType The service type. If <code>pURL</code> is a service: URL, then this parameter is ignored. <code>pcSrvType</code> cannot be <code>NULL</code>.</td>
</tr>
<tr>
<td></td>
<td>pcAttrs A comma-separated list of attribute assignment expressions for the attributes of the advertisement. <code>pcAttrs</code> cannot be <code>NULL</code>. Use the empty string, <code>""</code>, to indicate no attributes.</td>
</tr>
<tr>
<td></td>
<td>fresh An <code>SLPBoolean</code> that is <code>SLP_TRUE</code> if the registration is new or <code>SLP_FALSE</code> if it is a reregistration.</td>
</tr>
<tr>
<td></td>
<td>callback A callback to report the operation completion status. <code>callback</code> cannot be <code>NULL</code>.</td>
</tr>
<tr>
<td></td>
<td>pvCookie Memory passed to the callback code from the client. <code>pvCookie</code> can be <code>NULL</code>.</td>
</tr>
</tbody>
</table>
This function or its callback may return any SLP error code. See the ERRORS section in slp_api(3SLP).

EXAMPLES

EXAMPLE 1 An Initial Registration

The following example shows an initial registration for the "service:video://bldg15" camera service for three hours:

```c
SLPError err;
SLPHandle hSLP;
SLPRegReport regreport;
err = SLPReg(hSLP, "service:video://bldg15",
10800, "", "(location=B15-corridor),
(scan-rate=100)", SLP_TRUE,
regRpt, NULL);
```

ENVIRONMENT

SLP_CONF_FILE When set, use this file for configuration.

VARIABLES

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWslpu</td>
</tr>
</tbody>
</table>

SEE ALSO

slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

System Administration Guide: Resource Management and Network Services

SLPSetProperty (3SLP)

NAME
SLPSetProperty — set an SLP configuration property

SYNOPSIS

```c
#include <slp.h>

void SLPSetProperty(const char *pcName, const char *pcValue);
```

DESCRIPTION

The SLPSetProperty() function sets the value of the SLP property to the new value. The pcValue parameter contains the property value as a string.

PARAMETERS

- **pcName**: A null-terminated string with the property name. pcName cannot be NULL.
- **pcValue**: A null-terminated string with the property value. pcValue cannot be NULL.

ERRORS

This function or its callback may return any SLP error code. See the ERRORS section in slp_api(3SLP).

EXAMPLES

EXAMPLE 1 Setting a Configuration Property

The following example shows to set the property net.slp.typeHint to service:ftp:

```c
SLPSetProperty("net.slp.typeHint", "service:ftp");
```

ENVIRONMENT

- **SLP_CONF_FILE**: When set, use this file for configuration.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWslpu</td>
</tr>
</tbody>
</table>

SEE ALSO

slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

System Administration Guide: Resource Management and Network Services

slp_strerror – map SLP error codes to messages

#include <slp.h>

const char* slp_strerror(SLPError err_code);

The slp_strerror() function maps err_code to a string explanation of the error. The returned string is owned by the library and must not be freed.

err_code An SLP error code.

EXAMPLES

EXAMPLE 1 Using slp_strerror()

The following example returns the message that corresponds to the error code:

SLPError error;
const char* msg;
msg = slp_strerror(err);

ATTRIBUTES

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWslpu</td>
</tr>
</tbody>
</table>

SEE ALSO

slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

System Administration Guide: Resource Management and Network Services

SLPUnescape(3SLP)

NAME
SLPUnescape – translate escaped characters into UTF-8

SYNOPSIS
#include <slp.h>

SLPError SLPUnescape(const char *pcInBuf, char** ppcOutBuf, SLPBoolean isTag);

DESCRIPTION
The SLPUnescape() function processes the input string in pcInBuf and unescapes any SLP reserved characters. If the isTag parameter is SLPTrue, then look for bad tag characters and signal an error if any are found with the SLP_PARSE_ERROR code. No transformation is performed if the input string is an opaque. The results are put into a buffer allocated by the API library and returned in the ppcOutBuf parameter. This buffer should be deallocated using SLPFree(3SLP) when the memory is no longer needed.

PARAMETERS
pcInBuf Pointer to the input buffer to process for escape characters.
ppcOutBuf Pointer to a pointer for the output buffer with the SLP reserved characters escaped. Must be freed using SLPFree(3SLP) when the memory is no longer needed.
isTag When true, the input buffer is checked for bad tag characters.

ERRORS
This function or its callback may return any SLP error code. See the ERRORS section in slp_api(3SLP).

EXAMPLES
EXAMPLE 1 Using SLPUnescape()
The following example decodes the representation for "\2c tag\2c":

char* pcOutBuf;
SLPError err;
err = SLPUnescape("\2c tag\2c", &pcOutBuf, SLP_TRUE);

ENVIRONMENT VARIABLES
SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>SUNWslpu</td>
</tr>
</tbody>
</table>

SEE ALSO
slpd(1M), SLPFree(3SLP), slp_api(3SLP), slp_conf(4), slpd.reg(4), attributes(5)

System Administration Guide: Resource Management and Network Services

SLPUnescape(3SLP)

socket(3SOCKET)

NAME
socket – create an endpoint for communication

SYNOPSIS
cce [flag ...] file ... -lssocket -lns1 [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

DESCRIPTION
socket() creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which
communication will take place; this selects the protocol family which should be used.
The protocol family generally is the same as the address family for the addresses
supplied in later operations on the socket. These families are defined in the include file
<sys/socket.h>. There must be an entry in the netconfig(4) file for at least each
protocol family and type required. If protocol has been specified, but no exact match for
the tuplet family, type, protocol is found, then the first entry containing the specified
family and type with zero for protocol will be used. The currently understood formats
are:

PF_UNIX UNIX system internal protocols
PF_INET Internet Protocol Version 4 (IPv4)
PF_INET6 Internet Protocol Version 6 (IPv6)
PF_NCA Network Cache and Accelerator (NCA) protocols

The socket has the indicated type, which specifies the communication semantics.
Currently defined types are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection-based byte
streams. An out-of-band data transmission mechanism may be supported. A
SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages of a
fixed (typically small) maximum length). A SOCK_SEQPACKET socket may provide a
sequenced, reliable, two-way connection-based data transmission path for datagrams
of fixed maximum length; a consumer may be required to read an entire packet with
each read system call. This facility is protocol specific, and presently not implemented
for any protocol family. SOCK_RAW sockets provide access to internal network
interfaces. The types SOCK_RAW, which is available only to the superuser, and
SOCK_RDM, for which no implementation currently exists, are not described here.

protocol specifies a particular protocol to be used with the socket. Normally only a
single protocol exists to support a particular socket type within a given protocol
family. However, multiple protocols may exist, in which case a particular protocol
must be specified in this manner. The protocol number to use is particular to the
"communication domain" in which communication is to take place. If a protocol is
specified by the caller, then it will be packaged into a socket level option request and
sent to the underlying protocol layers.

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream
socket must be in a connected state before any data may be sent or received on it. A
connection to another socket is created with a connect(3SOCKET) call. Once
connected, data may be transferred using read(2) and write(2) calls or some variant
of the send(3SOCKET) and recv(3SOCKET) calls. When a session has been
completed, a close(2) may be performed. Out-of-band data may also be transmitted
as described on the send(3SOCKET) manual page and received as described on the
recv(3SOCKET) manual page.

The communications protocols used to implement a SOCK_STREAM insure that data is
not lost or duplicated. If a piece of data for which the peer protocol has buffer space
cannot be successfully transmitted within a reasonable length of time, then the
connection is considered broken and calls will indicate an error with −1 returns and
with ETIMEDOUT as the specific code in the global variable errno. The protocols
optionally keep sockets “warm” by forcing transmissions roughly every minute in the
absence of other activity. An error is then indicated if no response can be elicited on an
otherwise idle connection for a extended period (for instance 5 minutes). A SIGPIPE
signal is raised if a process sends on a broken stream; this causes naive processes,
which do not handle the signal, to exit.

SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sockets.
The only difference is that read(2) calls will return only the amount of data requested,
and any remaining in the arriving packet will be discarded.

SOCK_DGRAM and SOCK_RAW sockets allow datagrams to be sent to correspondents
named in sendto(3SOCKET) calls. Datagrams are generally received with
recvfrom(3SOCKET), which returns the next datagram with its return address.

An fcntl(2) call can be used to specify a process group to receive a SIGURG signal
when the out-of-band data arrives. It may also enable non-blocking I/O and
asynchronous notification of I/O events with SIGIO signals.

The operation of sockets is controlled by socket level options. These options are defined
in the file /sys/socket.h. setsockopt(3SOCKET) and getsockopt(3SOCKET)
are used to set and get options, respectively.

RETURN VALUES

A −1 is returned if an error occurs. Otherwise the return value is a descriptor
referencing the socket.

ERRORS

The socket() call fails if:

- **EACCES** Permission to create a socket of the specified type
 and/or protocol is denied.
- **EMFILE** The per-process descriptor table is full.
socket(3SOCKET)

ENOMEM
Insufficient user memory is available.

ENOSR
There were insufficient STREAMS resources available to complete the operation.

EPROTONOSUPPORT
The protocol type or the specified protocol is not supported within this domain.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
nca(1), close(2), fcntl(2), ioctl(2), read(2), write(2), accept(3SOCKET),
bind(3SOCKET), connect(3SOCKET), getsockname(3SOCKET),
getsockopt(3SOCKET), listen(3SOCKET), recv(3SOCKET),
setsockopt(3SOCKET), send(3SOCKET), shutdown(3SOCKET),
socketpair(3SOCKET), attributes(5), in(3HEAD), socket(3HEAD)
NAME

`socket` – create an endpoint for communication

SYNOPSIS

```c
#include <sys/socket.h>

int socket (int domain, int type, int protocol);
```

DESCRIPTION

The `socket()` function creates an unbound socket in a communications domain, and
returns a file descriptor that can be used in later function calls that operate on sockets.

The function takes the following arguments:

- `domain`: Specifies the communications domain in which a socket is to be created.
- `type` : Specifies the type of socket to be created.
- `protocol` : Specifies a particular protocol to be used with the socket.
 Specifying a `protocol` of 0 causes `socket()` to use an unspecified default protocol appropriate for the requested socket type.

The `domain` argument specifies the address family used in the communications
domain. The address families supported by the system are implementation-dependent.

The `<sys/socket.h>` header defines at least the following values for the `domain` argument:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF_UNIX</td>
<td>File system pathnames.</td>
</tr>
<tr>
<td>AF_INET</td>
<td>Internet Protocol version 4 (IPv4) address.</td>
</tr>
<tr>
<td>AF_INET6</td>
<td>Internet Protocol version 6 (IPv6) address.</td>
</tr>
</tbody>
</table>

The `type` argument specifies the socket type, which determines the semantics of communication over the socket. The socket types supported by the system are implementation-dependent. Possible socket types include:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOCK_STREAM</td>
<td>Provides sequenced, reliable, bidirectional, connection-mode byte streams, and may provide a transmission mechanism for out-of-band data.</td>
</tr>
<tr>
<td>SOCK_DGRAM</td>
<td>Provides datagrams, which are connectionless-mode, unreliable messages of fixed maximum length.</td>
</tr>
<tr>
<td>SOCK_SEQPACKET</td>
<td>Provides sequenced, reliable, bidirectional, connection-mode transmission path for records. A record can be sent using one or more output operations and received using one or more input operations, but a single operation never transfers part of more than one record. Record boundaries are visible to the receiver via the MSG_EOR flag.</td>
</tr>
</tbody>
</table>
If the `protocol` argument is non-zero, it must specify a protocol that is supported by the address family. The protocols supported by the system are implementation-dependent.

The process may need to have appropriate privileges to use the `socket()` function or to create some sockets.

USAGE

The documentation for specific address families specify which protocols each address family supports. The documentation for specific protocols specify which socket types each protocol supports.

The application can determine if an address family is supported by trying to create a socket with `domain` set to the protocol in question.

RETURN VALUES

Upon successful completion, `socket()` returns a nonnegative integer, the socket file descriptor. Otherwise a value of −1 is returned and `errno` is set to indicate the error.

ERRORS

The `socket()` function will fail if:

- `EAFNOSUPPORT` The implementation does not support the specified address family.
- `EMFILE` No more file descriptors are available for this process.
- `ENFILE` No more file descriptors are available for the system.
- `EPROTONOSUPPORT` The protocol is not supported by the address family, or the protocol is not supported by the implementation.
- `EPROTOTYPE` The socket type is not supported by the protocol.

The `socket()` function may fail if:

- `EACCES` The process does not have appropriate privileges.
- `ENOBUFFS` Insufficient resources were available in the system to perform the operation.
- `ENOMEM` Insufficient memory was available to fulfill the request.
- `ENOSR` There were insufficient STREAMS resources available for the operation to complete.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

`accept(3XNET)`, `bind(3XNET)`, `connect(3XNET)`, `getsockname(3XNET)`, `getsockopt(3XNET)`, `listen(3XNET)`, `recv(3XNET)`, `recvfrom(3XNET)`, `recvmsg(3XNET)`, `send(3XNET)`, `sendmsg(3XNET)`, `setsockopt(3XNET)`, `shutdown(3XNET)`, `socketpair(3XNET)`, `attributes(5)`
socketpair – create a pair of connected sockets

SYNOPSIS

```c
cc [ flag ... ] file ... -lsocket -lnsl [ library ... ]
#include <sys/types.h>
#include <sys/socket.h>

int socketpair(int domain, int type, int protocol, int sv[2]);
```

DESCRIPTION
The `socketpair()` library call creates an unnamed pair of connected sockets in the specified address family `domain`, of the specified type, that uses the optionally specified `protocol`. The descriptors that are used in referencing the new sockets are returned in `sv[0]` and `sv[1]`. The two sockets are indistinguishable.

RETURN VALUES

- `socketpair()` returns −1 on failure and 0 on success.

ERRORS
The call succeeds unless:

- **EAFNOSUPPORT** The specified address family is not supported on this machine.
- **EMFILE** Too many descriptors are in use by this process.
- **ENOMEM** There was insufficient user memory for the operation to complete.
- **ENOSR** There were insufficient STREAMS resources for the operation to complete.
- **EOPNOTSUPP** The specified protocol does not support creation of socket pairs.
- **EPROTONOSUPPORT** The specified protocol is not supported on this machine.
- **EACCES** The process does not have appropriate privileges.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
`pipe(2), read(2), write(2), socket(3HEAD), attributes(5)`

NOTES
This call is currently implemented only for the `AF_UNIX` address family.
socketpair(3XNET)

NAME
socketpair – create a pair of connected sockets

SYNOPSIS
cce [flag ...] file ... -lxnet [library ...]
#include <sys/socket.h>

int socketpair(int domain, int type, int protocol, int socket_vector[2]);

DESCRIPTION
The socketpair() function creates an unbound pair of connected sockets in a
specified domain, of a specified type, under the protocol optionally specified by the
protocol argument. The two sockets are identical. The file descriptors used in
referring the created sockets are returned in socket_vector[0] and socket_vector[1].

domain
Specifies the communications domain in which the sockets are to
be created.

type
Specifies the type of sockets to be created.

protocol
Specifies a particular protocol to be used with the sockets.
Specifying a protocol of 0 causes socketpair() to use an
unspecified default protocol appropriate for the requested socket
type.

socket_vector
Specifies a 2-integer array to hold the file descriptors of the created
socket pair.

The type argument specifies the socket type, which determines the semantics of
communications over the socket. The socket types supported by the system are
implementation-dependent. Possible socket types include:

SOCK_STREAM Provides sequenced, reliable, bidirectional,
connection-mode byte streams, and may provide a
transmission mechanism for out-of-band data.

SOCK_DGRAM Provides datagrams, which are connectionless-mode,
unreliable messages of fixed maximum length.

SOCK_SEQPACKET Provides sequenced, reliable, bidirectional,
connection-mode transmission path for records. A
record can be sent using one or more output operations
and received using one or more input operations, but a
single operation never transfers part of more than one
record. Record boundaries are visible to the receiver via
the MSG_EOR flag.

If the protocol argument is non-zero, it must specify a protocol that is supported by
the address family. The protocols supported by the system are implementation-dependent.

The process may need to have appropriate privileges to use the socketpair() function or to create some sockets.
The documentation for specific address families specifies which protocols each address family supports. The documentation for specific protocols specifies which socket types each protocol supports.

The socketpair() function is used primarily with UNIX domain sockets and need not be supported for other domains.

Upon successful completion, this function returns 0. Otherwise, −1 is returned and errno is set to indicate the error.

The socketpair() function will fail if:

- **EAFNOSUPPORT**: The implementation does not support the specified address family.
- **EMFILE**: No more file descriptors are available for this process.
- **ENFILE**: No more file descriptors are available for the system.
- **EOPNOTSUPP**: The specified protocol does not permit creation of socket pairs.
- **EPROTONOSUPPORT**: The protocol is not supported by the address family, or the protocol is not supported by the implementation.
- **EPROTOTYPE**: The socket type is not supported by the protocol.

The socketpair() function may fail if:

- **EACCES**: The process does not have appropriate privileges.
- **ENOBUFFS**: Insufficient resources were available in the system to perform the operation.
- **ENOMEM**: Insufficient memory was available to fulfill the request.
- **ENOSR**: There were insufficient STREAMS resources available for the operation to complete.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See also socket(3XNET), attributes(5)
spray(3SOCKET)

NAME
spray — scatter data in order to test the network

SYNOPSIS
ec [flag ...] file ... -lsocket -lnsl [library ...]
#include <rpcsvc/spray.h>

bool_t xdr_sprayarr(XDR *xdrs, sprayarr *objp);
bool_t xdr_spraycumul(XDR *xdrs, spraycumul *objp);

DESCRIPTION
The spray program sends packets to a given machine to test communications with that machine.

The spray program is not a C function interface, per se, but it can be accessed using the generic remote procedure calling interface clnt_call(). See rpc_clnt_calls(3NSL). The program sends a packet to the called host. The host acknowledges receipt of the packet. The program counts the number of acknowledgments and can return that count.

The spray program currently supports the following procedures, which should be called in the order given:

SPRAYPROC_CLEAR This procedure clears the counter.
SPRAYPROC_SPRAY This procedure sends the packet.
SPRAYPROC_GET This procedure returns the count and the amount of time since the last SPRAYPROC_CLEAR.

EXAMPLES
EXAMPLE 1 Using spray()

The following code fragment demonstrates how the spray program is used:

#include <rpc/rpc.h>
#include <rpcsvc/spray.h>

spraycumul spray_result;
sprayarr spray_data;
char buf[100]; /* arbitrary data */
int loop = 1000;
CLIENT *clnt;
struct timeval timeout0 = {0, 0};
struct timeval timeout25 = {25, 0};
spray_data.sprayarr_len = (uint_t)100;
spray_data.sprayarr_val = buf;
clnt = clnt_create("somehost", SPRAYPROG, SPRAYVERS, "netpath");
if (clnt == (CLIENT *)NULL) {
 /* handle this error */
}
if (clnt_call(clnt, SPRAYPROC_CLEAR,
 xdr_void, NULL, xdr_void, NULL, timeout25)) {
 /* handle this error */
}
while (loop- > 0) {
 if (clnt_call(clnt, SPRAYPROC_SPRAY,
 xdr_sprayarr, &spray_data, xdr_void, NULL, timeout0)) {
 /* handle this error */
 }
}
EXAMPLE 1 Using spray() (Continued)

if (clnt_call(clnt, SPRAYPROC_GET,
 xdr_void, NULL, xdr_spraycumul, &spray_result, timeout25)) {
 /* handle this error */
}

printf("Acknowledged %ld of 1000 packets in %d secs %d usecs\n",
 spray_result.counter,
 spray_result.clock.sec,
 spray_result.clock.usec);

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

SEE ALSO

spray(1M), rpc_clnt_calls(3NSL), attributes(5)

NOTES

This interface is unsafe in multithreaded applications. Unsafe interfaces should be called only from the main thread.

A spray program is not useful as a networking benchmark as it uses unreliable connectionless transports, for example, udp. It can report a large number of packets dropped, when the drops were caused by the program sending packets faster than they can be buffered locally, that is, before the packets get to the network medium.
NAME
t_accept – accept a connection request

SYNOPSIS
#include <xti.h>

int t_accept(int fd, int resfd, const struct t_call *call);

DESCRIPTION
This routine is part of the XTI interfaces that evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI routine that has the same name as an XTI routine, a different header file, tiuser.h, must be used. Refer to the TLI COMPATIBILITY section for a description of differences between the two interfaces.

This function is issued by a transport user to accept a connection request. The parameter fd identifies the local transport endpoint where the connection indication arrived; resfd specifies the local transport endpoint where the connection is to be established, and call contains information required by the transport provider to complete the connection. The parameter call points to a t_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

In call, addr is the protocol address of the calling transport user, opt indicates any options associated with the connection, udata points to any user data to be returned to the caller, and sequence is the value returned by t_listen(3NSL) that uniquely associates the response with a previously received connection indication. The address of the caller, addr may be null (length zero). Where addr is not null then it may optionally be checked by XTI.

A transport user may accept a connection on either the same, or on a different, local transport endpoint than the one on which the connection indication arrived. Before the connection can be accepted on the same endpoint (resfd==fd), the user must have responded to any previous connection indications received on that transport endpoint by means of t_accept() or t_snddis(3NSL). Otherwise, t_accept() will fail and set t_errno to TINDOUT.

If a different transport endpoint is specified (resfd!=fd), then the user may or may not choose to bind the endpoint before the t_accept() is issued. If the endpoint is not bound prior to the t_accept(), the endpoint must be in the T_UNBND state before the t_accept() is issued, and the transport provider will automatically bind it to an address that is appropriate for the protocol concerned. If the transport user chooses to bind the endpoint it must be bound to a protocol address with a qlen of zero and must be in the T_IDLE state before the t_accept() is issued.

Responding endpoints should be supplied to t_accept() in the state T_UNBND.

The call to t_accept() may fail with t_errno set to TLOOK if there are indications (for example connect or disconnect) waiting to be received on endpoint fd. Applications should be prepared for such a failure.
The `udata` argument enables the called transport user to send user data to the caller and the amount of user data must not exceed the limits supported by the transport provider as returned in the `connect` field of the `info` argument of `t_open(3NSL)` or `t_getinfo(3NSL)`. If the `len` field of `udata` is zero, no data will be sent to the caller. All the `maxlen` fields are meaningless.

When the user does not indicate any option (`call->opt.len = 0`) the connection shall be accepted with the option values currently set for the responding endpoint `resfd`.

RETURN VALUES

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and `t_errno` is set to indicate an error.

VALID STATES

- `fd`: `T_INCON`
- `resfd (fd!=resfd)` : `T_IDLE, T_UNBND`

ERRORS

On failure, `t_errno` is set to one of the following:

- **TACCES**
 The user does not have permission to accept a connection on the responding transport endpoint or to use the specified options.

- **TBADADDR**
 The specified protocol address was in an incorrect format or contained illegal information.

- **TBADDATA**
 The amount of user data specified was not within the bounds allowed by the transport provider.

- **TBADF**
 The file descriptor `fd` or `resfd` does not refer to a transport endpoint.

- **TBADOPT**
 The specified options were in an incorrect format or contained illegal information.

- **TBADSEQ**
 Either an invalid sequence number was specified, or a valid sequence number was specified but the connection request was aborted by the peer. In the latter case, its `T_DISCONNECT` event will be received on the listening endpoint.

- **TINDOUT**
 The function was called with `fd==resfd` but there are outstanding connection indications on the endpoint. Those other connection indications must be handled either by rejecting them by means of `t_snddis(3NSL)` or accepting them on a different endpoint by means of `t_accept`.

- **TLOOK**
 An asynchronous event has occurred on the transport endpoint referenced by `fd` and requires immediate attention.

- **TNOTSUPPORT**
 This function is not supported by the underlying transport provider.
Error Description Values

<table>
<thead>
<tr>
<th>Error Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOUTSTATE</td>
<td>The communications endpoint referenced by <code>fd</code> or <code>resfd</code> is not in one of the states in which a call to this function is valid.</td>
</tr>
<tr>
<td>TPROTO</td>
<td>This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (<code>t_errno</code>).</td>
</tr>
<tr>
<td>TPROVMISMATCH</td>
<td>The file descriptors <code>fd</code> and <code>resfd</code> do not refer to the same transport provider.</td>
</tr>
<tr>
<td>TRESADDR</td>
<td>This transport provider requires both <code>fd</code> and <code>resfd</code> to be bound to the same address. This error results if they are not.</td>
</tr>
<tr>
<td>TRESQLEN</td>
<td>The endpoint referenced by <code>resfd</code> (where <code>resfd != fd</code>) was bound to a protocol address with a <code>q_len</code> that is greater than zero.</td>
</tr>
<tr>
<td>TSYSErr</td>
<td>A system error has occurred during execution of this function.</td>
</tr>
</tbody>
</table>

TLI Compatibility

The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

Interface Header

The XTI interfaces use the header file, `xti.h`. TLI interfaces should *not* use this header. They should use the header:

```c
#include <tiuser.h>
```

Option Buffer

The format of the options in an `opt` buffer is dictated by the transport provider. Unlike the XTI interface, the TLI interface does not specify the buffer format.

Attributes

See `attributes(5)` for descriptions of the following attributes:
t_accept(3NSL)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

t_connect(3NSL), t_getinfo(3NSL), t_getstate(3NSL), t_listen(3NSL), t_open(3NSL), t_optmgmt(3NSL), t_rcvconnect(3NSL), t_snddis(3NSL), attributes(5)

WARNINGS

There may be transport provider-specific restrictions on address binding.

Some transport providers do not differentiate between a connection indication and the connection itself. If the connection has already been established after a successful return of t_listen(3NSL), t_accept() will assign the existing connection to the transport endpoint specified by resfd.
t_alloc(3NSL)

NAME | t_alloc – allocate a library structure
SYNOPSIS | #include <xti.h>
 | void *t_alloc(int fd, int struct_type, int fields);

DESCRIPTION
This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI routine that has the same name as an XTI routine, a different header file, tiuser.h, must be used. Refer to the section, TLI COMPATIBILITY, for a description of differences between the two interfaces.

The t_alloc() function dynamically allocates memory for the various transport function argument structures as specified below. This function will allocate memory for the specified structure, and will also allocate memory for buffers referenced by the structure.

The structure to allocate is specified by struct_type and must be one of the following:

- T_BIND struct t_bind
- T_CALL struct t_call
- T_OPTMGMT struct t_optmgmt
- T_DIS struct t_discon
- T_UNITDATA struct t_unitdata
- T_UDERROR struct t_uderr
- T_INFO struct t_info

where each of these structures may subsequently be used as an argument to one or more transport functions.

Each of the above structures, except T_INFO, contains at least one field of type struct netbuf. For each field of this type, the user may specify that the buffer for that field should be allocated as well. The length of the buffer allocated will be equal to or greater than the appropriate size as returned in the info argument of t_open(3NSL) or t_getinfo(3NSL). The relevant fields of the info argument are described in the following list. The fields argument specifies which buffers to allocate, where the argument is the bitwise-or of any of the following:

- T_ADDR The addr field of the t_bind, t_call, t_unitdata or t_uderr structures.
- T_OPT The opt field of the t_optmgmt, t_call, t_unitdata or t_uderr structures.
- T_UDATA The udata field of the t_call, t_discon or t_unitdata structures.
- T_ALL All relevant fields of the given structure. Fields which are not supported by the transport provider specified by fd will not be allocated.
For each relevant field specified in `fields`, `t_alloc()` will allocate memory for the buffer associated with the field, and initialize the `len` field to zero and the `buf` pointer and `maxlen` field accordingly. Irrelevant or unknown values passed in fields are ignored. Since the length of the buffer allocated will be based on the same size information that is returned to the user on a call to `t_open(3NSL)` and `t_getinfo(3NSL)`, `fd` must refer to the transport endpoint through which the newly allocated structure will be passed. In the case where a `T_INFO` structure is to be allocated, `fd` may be set to any value. In this way the appropriate size information can be accessed. If the size value associated with any specified field is `T_INVALID`, `t_alloc()` will be unable to determine the size of the buffer to allocate and will fail, setting `t_errno` to `TSYSERR` and `errno` to `EINVAL`. See `t_open(3NSL)` or `t_getinfo(3NSL)`. If the size value associated with any specified field is `T_INFINITE`, then the behavior of `t_alloc()` is implementation-defined. For any field not specified in `fields`, `buf` will be set to the null pointer and `len` and `maxlen` will be set to zero. See `t_open(3NSL)` or `t_getinfo(3NSL)`.

The pointer returned if the allocation succeeds is suitably aligned so that it can be assigned to a pointer to any type of object and then used to access such an object or array of such objects in the space allocated.

Use of `t_alloc()` to allocate structures will help ensure the compatibility of user programs with future releases of the transport interface functions.

RETURN VALUES
On successful completion, `t_alloc()` returns a pointer to the newly allocated structure. On failure, a null pointer is returned.

VALID STATES
ALL - apart from `T_UNINIT`

ERRORS
On failure, `t_errno` is set to one of the following:

- **TBADF**

 `struct_type` is other than `T_INFO` and the specified file descriptor does not refer to a transport endpoint.

- **TNOSTRUCTYPE**

 Unsupported `struct_type` requested. This can include a request for a structure type which is inconsistent with the transport provider type specified, that is, connection-mode or connectionless-mode.

- **TPROTO**

 This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (`t_errno`).

- **TSYSERR**

 A system error has occurred during execution of this function.

TLI COMPATIBILITY
The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

Interface Header
The XTI interfaces use the header file, `xti.h`. TLI interfaces should not use this header. They should use the header:

```c
#include <tiuser.h>
```
t_alloc(3NSL)

Error Description Values
The `t_errno` values that can be set by the XTI interface and cannot be set by the TLI interface are:

TPROTO
TNOSTRUCTYPE

Special Buffer Sizes
Assume that the value associated with any field of `struct t_info` (argument returned by `t_open()` or `t_getinfo()`) that describes buffer limits is –1. Then the underlying service provider can support a buffer of unlimited size. If this is the case, `t_alloc()` will allocate a buffer with the default size 1024 bytes, which may be handled as described in the next paragraph.

If the underlying service provider supports a buffer of unlimited size in the `netbuf` structure (see `t_connect(3NSL)`), `t_alloc()` will return a buffer of size 1024 bytes. If a larger size buffer is required, it will need to be allocated separately using a memory allocation routine such as `malloc(3C)`. The `buf` and `maxlen` fields of the `netbuf` data structure can then be updated with the address of the new buffer and the 1024 byte buffer originally allocated by `t_alloc()` can be freed using `free(3C)`.

Assume that the value associated with any field of `struct t_info` (argument returned by `t_open()` or `t_getinfo()`) that describes nbuffer limits is –2. Then `t_alloc()` will set the buffer pointer to `NULL` and the buffer maximum size to 0, and then will return success (see `t_open(3NSL)` or `t_getinfo(3NSL)`).

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
`free(3C), malloc(3C), t_connect(3NSL), t_free(3NSL), t_getinfo(3NSL), t_open(3NSL), attributes(5)`
t_bind

bind an address to a transport endpoint

SYNOPSIS

#include <xti.h>

int t_bind(int fd, const struct t_bind *req, struct t_bind *ret);

DESCRIPTION

This routine is part of the XTI interfaces that evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI routine that has the same name as an XTI routine, the tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description of differences between the two interfaces.

This function associates a protocol address with the transport endpoint specified by fd and activates that transport endpoint. In connection mode, the transport provider may begin enqueuing incoming connect indications, or servicing a connection request on the transport endpoint. In connectionless-mode, the transport user may send or receive data units through the transport endpoint.

The req and ret arguments point to a t_bind structure containing the following members:

struct netbuf addr;
unsigned qlen;

The addr field of the t_bind structure specifies a protocol address, and the qlen field is used to indicate the maximum number of outstanding connection indications.

The parameter req is used to request that an address, represented by the netbuf structure, be bound to the given transport endpoint. The parameter len specifies the number of bytes in the address, and buf points to the address buffer. The parameter maxlen has no meaning for the req argument. On return, ret contains an encoding for the address that the transport provider actually bound to the transport endpoint; if an address was specified in req, this will be an encoding of the same address. In ret, the user specifies maxlen, which is the maximum size of the address buffer, and buf which points to the buffer where the address is to be placed. On return, len specifies the number of bytes in the bound address, and buf points to the bound address. If maxlen equals zero, no address is returned. If maxlen is greater than zero and less than the length of the address, t_bind() fails with t_errno set to TBUFOVFLW.

If the requested address is not available, t_bind() will return -1 with t_errno set as appropriate. If no address is specified in req (the len field of addr in req is zero or req is NULL), the transport provider will assign an appropriate address to be bound, and will return that address in the addr field of ret. If the transport provider could not allocate an address, t_bind() will fail with t_errno set to TNOADDR.

The parameter req may be a null pointer if the user does not wish to specify an address to be bound. Here, the value of qlen is assumed to be zero, and the transport provider will assign an address to the transport endpoint. Similarly, ret may be a null pointer if the user does not care what address was bound by the provider and is not interested.
t_bind(3NSL)

in the negotiated value of qlen. It is valid to set req and ret to the null pointer for the
same call, in which case the provider chooses the address to bind to the transport
endpoint and does not return that information to the user.

The qlen field has meaning only when initializing a connection-mode service. It
specifies the number of outstanding connection indications that the transport provider
should support for the given transport endpoint. An outstanding connection
indication is one that has been passed to the transport user by the transport provider
but which has not been accepted or rejected. A value of qlen greater than zero is only
meaningful when issued by a passive transport user that expects other users to call it.
The value of qlen will be negotiated by the transport provider and may be changed if
the transport provider cannot support the specified number of outstanding connection
indications. However, this value of qlen will never be negotiated from a requested
value greater than zero to zero. This is a requirement on transport providers; see
WARNINGS below. On return, the qlen field in ret will contain the negotiated value.

If fd refers to a connection-mode service, this function allows more than one transport
endpoint to be bound to the same protocol address, but it is not possible to bind more
than one protocol address to the same transport endpoint. However, the transport
provider must also support this capability. If a user binds more than one transport
endpoint to the same protocol address, only one endpoint can be used to listen for
connection indications associated with that protocol address. In other words, only one
t_bind() for a given protocol address may specify a value of qlen greater than zero.
In this way, the transport provider can identify which transport endpoint should be
notified of an incoming connection indication. If a user attempts to bind a protocol
address to a second transport endpoint with a value of qlen greater than zero,
t_bind() will return -1 and set t_errno to TADDRBUSY. When a user accepts a
connection on the transport endpoint that is being used as the listening endpoint, the
bound protocol address will be found to be busy for the duration of the connection,
until a t_unbind(3NSL) or t_close(3NSL) call has been issued. No other transport
endpoints may be bound for listening on that same protocol address while that initial
listening endpoint is active (in the data transfer phase or in the T_IDLE state). This
will prevent more than one transport endpoint bound to the same protocol address
from accepting connection indications.

If fd refers to connectionless mode service, this function allows for more than one
transport endpoint to be associated with a protocol address, where the underlying
transport provider supports this capability (often in conjunction with value of a
protocol-specific option). If a user attempts to bind a second transport endpoint to an
already bound protocol address when such capability is not supported for a transport
provider, t_bind() will return -1 and set t_errno to TADDRBUSY.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and t_errno is set to indicate an error.

VALID STATES
T_UNBND

ERRORS
On failure, t_errno is set to one of the following;
TACCES The user does not have permission to use the specified address.
t_addrbusy

The requested address is in use.

t_badaddr

The specified protocol address was in an incorrect format or contained illegal information.

t_badf

The specified file descriptor does not refer to a transport endpoint.

t_bufovflw

The number of bytes allowed for an incoming argument (maxlen) is greater than 0 but not sufficient to store the value of that argument. The provider’s state will change to T_IDLE and the information to be returned in ret will be discarded.

t_outstate

The communications endpoint referenced by fd is not in one of the states in which a call to this function is valid.

t_noaddr

The transport provider could not allocate an address.

t_proto

This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (t_errno).

t_syserr

A system error has occurred during execution of this function.

TLI COMPATIBILITY

The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

Interface Header

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They should use the header:

include <tiuser.h>

Address Bound

The user can compare the addresses in req and ret to determine whether the transport provider bound the transport endpoint to a different address than that requested.

Error Description Values

The t_errno values TPROTO and TADDRBUSY can be set by the XTI interface but cannot be set by the TLI interface.

A t_errno value that this routine can return under different circumstances than its XTI counterpart is TBUFOVFLW. It can be returned even when the maxlen field of the corresponding buffer has been set to zero.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

t_accept(3NSL), t_alloc(3NSL), t_close(3NSL), t_connect(3NSL), t_unbind(3NSL), attributes(5)
The requirement that the value of \textit{qlen} never be negotiated from a requested value greater than zero to zero implies that transport providers, rather than the XTI implementation itself, accept this restriction.

An implementation need not allow an application explicitly to bind more than one communications endpoint to a single protocol address, while permitting more than one connection to be accepted to the same protocol address. That means that although an attempt to bind a communications endpoint to some address with \textit{qlen}=0 might be rejected with \texttt{TADDRBUSY}, the user may nevertheless use this (unbound) endpoint as a responding endpoint in a call to \texttt{t_accept(3NSL)}. To become independent of such implementation differences, the user should supply unbound responding endpoints to \texttt{t_accept(3NSL)}.

The local address bound to an endpoint may change as result of a \texttt{t_accept(3NSL)} or \texttt{t_connect(3NSL)} call. Such changes are not necessarily reversed when the connection is released.
NAME
`t_close` – close a transport endpoint

SYNOPSIS
```
#include <xti.h>

int t_close(int fd);
```

DESCRIPTION
This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI routine that has the same name as an XTI routine, the `tiuser.h` header file must be used. Refer to the TLI COMPATIBILITY section for a description of differences between the two interfaces.

The `t_close()` function informs the transport provider that the user is finished with the transport endpoint specified by `fd`, and frees any local library resources associated with the endpoint. In addition, `t_close()` closes the file associated with the transport endpoint.

The function `t_close()` should be called from the `T_UNBND` state. See `t_getstate(3NSL)`. However, this function does not check state information, so it may be called from any state to close a transport endpoint. If this occurs, the local library resources associated with the endpoint will be freed automatically. In addition, `close(2)` will be issued for that file descriptor; if there are no other descriptors in this process or in another process which references the communication endpoint, any connection that may be associated with that endpoint is broken. The connection may be terminated in an orderly or abortive manner.

A `t_close()` issued on a connection endpoint may cause data previously sent, or data not yet received, to be lost. It is the responsibility of the transport user to ensure that data is received by the remote peer.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and `t_errno` is set to indicate an error.

VALID STATES
`T_UNBND`

ERRORS
On failure, `t_errno` is set to the following:
- **TBADF**: The specified file descriptor does not refer to a transport endpoint.
- **TPROTO**: This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (`t_errno`).
- **TSYSERR**: A system error has occurred during execution of this function.

TLI COMPATIBILITY
The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

Interface Header
The XTI interfaces use the header file, `xti.h`. TLI interfaces should **not** use this header. They should use the header:

Networking Library Functions 597
t_close(3NSL)

#include <tiuser.h>

Error Description Values
The t_errno value that can be set by the XTI interface and cannot be set by the TLI interface is:
TPROTO

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
close(2), t_getstate(3NSL), t_open(3NSL), t_unbind(3NSL), attributes(5)
t_connect – establish a connection with another transport user

SYNOPSIS

```
#include <xti.h>

int t_connect(int fd, const struct t_call *sndcall, struct t_call *rcvcall);
```

DESCRIPTION

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI routine that has the same name as an XTI routine, the tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description of differences between the two interfaces.

This function enables a transport user to request a connection to the specified destination transport user.

This function can only be issued in the T_IDLE state. The parameter `fd` identifies the local transport endpoint where communication will be established, while `sndcall` and `rcvcall` point to a `t_call` structure which contains the following members:

```c
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;
```

The parameter `sndcall` specifies information needed by the transport provider to establish a connection and `rcvcall` specifies information that is associated with the newly established connection.

In `sndcall`, `addr` specifies the protocol address of the destination transport user, `opt` presents any protocol-specific information that might be needed by the transport provider, `udata` points to optional user data that may be passed to the destination transport user during connection establishment, and `sequence` has no meaning for this function.

On return, in `rcvcall`, `addr` contains the protocol address associated with the responding transport endpoint, `opt` represents any protocol-specific information associated with the connection, `udata` points to optional user data that may be returned by the destination transport user during connection establishment, and `sequence` has no meaning for this function.

The `opt` argument permits users to define the options that may be passed to the transport provider. The user may choose not to negotiate protocol options by setting the `len` field of `opt` to zero. In this case, the provider uses the option values currently set for the communications endpoint.

If used, `sndcall→opt.buf` must point to a buffer with the corresponding options, and `sndcall→opt.len` must specify its length. The `maxlen` and `buf` fields of the `netbuf` structure pointed by `rcvcall→addr` and `rcvcall→opt` must be set before the call.
The \textit{udata} argument enables the caller to pass user data to the destination transport user and receive user data from the destination user during connection establishment. However, the amount of user data must not exceed the limits supported by the transport provider as returned in the \textit{connect} field of the \textit{info} argument of \texttt{t_open(3NSL)} or \texttt{t_getinfo(3NSL)}. If the \textit{len} of \textit{udata} is zero in \texttt{sndcall}, no data will be sent to the destination transport user.

On return, the \textit{addr}, \textit{opt} and \textit{udata} fields of \texttt{rcvcall} will be updated to reflect values associated with the connection. Thus, the \textit{maxlen} field of each argument must be set before issuing this function to indicate the maximum size of the buffer for each. However, \textit{maxlen} can be set to zero, in which case no information to this specific argument is given to the user on the return from \texttt{t_connect()}. If \textit{maxlen} is greater than zero and less than the length of the value, \texttt{t_connect()} fails with \texttt{t_errno} set to \texttt{TBUFOVFLW}. If \textit{rcvcall} is set to \texttt{NULL}, no information at all is returned.

By default, \texttt{t_connect()} executes in synchronous mode, and will wait for the destination user's response before returning control to the local user. A successful return (that is, return value of zero) indicates that the requested connection has been established. However, if \texttt{O_NONBLOCK} is set by means of \texttt{t_open(3NSL)} or \texttt{fcntl(2)}, \texttt{t_connect()} executes in asynchronous mode. In this case, the call will not wait for the remote user's response, but will return control immediately to the local user and return \texttt{–1} with \texttt{t_errno} set to \texttt{TNODATA} to indicate that the connection has not yet been established. In this way, the function simply initiates the connection establishment procedure by sending a connection request to the destination transport user. The \texttt{t_rcvconnect(3NSL)} function is used in conjunction with \texttt{t_connect()} to determine the status of the requested connection.

When a synchronous \texttt{t_connect()} call is interrupted by the arrival of a signal, the state of the corresponding transport endpoint is \texttt{T_OUTCON}, allowing a further call to either \texttt{t_rcvconnect(3NSL)}, \texttt{t_rcvdis(3NSL)} or \texttt{t_snddis(3NSL)}. When an asynchronous \texttt{t_connect()} call is interrupted by the arrival of a signal, the state of the corresponding transport endpoint is \texttt{T_IDLE}.

\begin{tabular}{|l|}
\hline
\textbf{RETURN VALUES} & \\
\hline
Upon successful completion, a value of 0 is returned. Otherwise, a value of \texttt{–1} is returned and \texttt{t_errno} is set to indicate an error. & \\
\hline
\textbf{VALID STATES} & \texttt{T_IDLE} \\
\hline
\textbf{ERRORS} & \\
\hline
On failure, \texttt{t_errno} is set to one of the following: & \\
\hline
\texttt{TACCES} & The user does not have permission to use the specified address or options. \\
\hline
\texttt{TADDRBUSY} & This transport provider does not support multiple connections with the same local and remote addresses. This error indicates that a connection already exists. \\
\hline
\texttt{TBADADDR} & The specified protocol address was in an incorrect format or contained illegal information. \\
\hline
\end{tabular}
The amount of user data specified was not within the bounds allowed by the transport provider.

The specified file descriptor does not refer to a transport endpoint.

The specified protocol options were in an incorrect format or contained illegal information.

The number of bytes allocated for an incoming argument (maxlen) is greater than 0 but not sufficient to store the value of that argument. If executed in synchronous mode, the provider’s state, as seen by the user, changes to T_DATAXFER, and the information to be returned in recv is discarded.

An asynchronous event has occurred on this transport endpoint and requires immediate attention.

0_NONBLOCK was set, so the function successfully initiated the connection establishment procedure, but did not wait for a response from the remote user.

This function is not supported by the underlying transport provider.

The communications endpoint referenced by fd is not in one of the states in which a call to this function is valid.

This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (t_errno).

A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They should use the header:

```
#include <tiuser.h>
```

The TPROTO and TADDRBUSY t_errno values can be set by the XTI interface but not by the TLI interface.

A t_errno value that this routine can return under different circumstances than its XTI counterpart is TBUFOVFLW. It can be returned even when the maxlen field of the corresponding buffer has been set to zero.

The format of the options in an opt buffer is dictated by the transport provider. Unlike the XTI interface, the TLI interface does not fix the buffer format.
t_connect(3NSL)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

fcnt1(2), t_accept(3NSL), t_alloc(3NSL), t_getinfo(3NSL), t_listen(3NSL), t_open(3NSL), t_optmgmt(3NSL), t_rcvconnect(3NSL), t_rcvdis(3NSL), t_snddis(3NSL), attributes
NAME
`t_errno` - XTI error return value

SYNOPSIS
```
#include <xti.h>
```

DESCRIPTION
This error return value is part of the XTI interfaces that evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI interface that has the same name as an XTI interfaces, a different headerfile, `<tiuser.h>`, must be used. Refer the the TLI COMPATIBILITY section for a description of differences between the two interfaces.

`t_errno` is used by XTI functions to return error values.

XTI functions provide an error number in `t_errno` which has type `int` and is defined in `<xti.h>`. The value of `t_errno` will be defined only after a call to a XTI function for which it is explicitly stated to be set and until it is changed by the next XTI function call. The value of `t_errno` should only be examined when it is indicated to be valid by a function's return value. Programs should obtain the definition of `t_errno` by the inclusion of `<xti.h>`. The practice of defining `t_errno` in program as `extern int t_errno` is obsolescent. No XTI function sets `t_errno` to 0 to indicate an error.

It is unspecified whether `t_errno` is a macro or an identifier with external linkage. It represents a modifiable `lvalue` of type `int`. If a macro definition is suppressed in order to access an actual object or a program defines an identifier with name `t_errno`, the behavior is undefined.

The symbolic values stored in `t_errno` by an XTI function are defined in the ERRORS sections in all relevant XTI function definition pages.

`t_errno` is also used by TLI functions to return error values.

The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

TLI COMPATIBILITY

Interface Header
The XTI interfaces use the header file, `<xti.h>`. TLI interfaces should *not* use this header. They should use the header:

```
#include <tiuser.h>
```

Error Description Values
The `t_errno` values that can be set by the XTI interface but cannot be set by the TLI interface are:

- TNOSTRUCTYPE
- TBADNAME
- TBADQLEN
- TADDRBUSY
- TINDOUT
t_errno(3NSL)

TPROVMISMATCH
TRESADDR
TQFULL
TPROTO

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
attributes(5)
t_error(3NSL)

NAME

`t_error` - produce error message

SYNOPSIS

```c
#include <xti.h>

int t_error(const char *errmsg);
```

DESCRIPTION

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI routine that has the same name as an XTI routine, the `tiuser.h` header file must be used. Refer to the TLI COMPATIBILITY section for a description of differences between the two interfaces.

The `t_error()` function produces a message on the standard error output which describes the last error encountered during a call to a transport function. The argument string `errmsg` is a user-supplied error message that gives context to the error.

The error message is written as follows: first (if `errmsg` is not a null pointer and the character pointed to be `errmsg` is not the null character) the string pointed to by `errmsg` followed by a colon and a space; then a standard error message string for the current error defined in `t_errno`. If `t_errno` has a value different from `TSYSERR`, the standard error message string is followed by a newline character. If, however, `t_errno` is equal to `TSYSERR`, the `t_errno` string is followed by the standard error message string for the current error defined in `errno` followed by a newline.

The language for error message strings written by `t_error()` is that of the current locale. If it is English, the error message string describing the value in `t_errno` may be derived from the comments following the `t_errno` codes defined in `xti.h`. The contents of the error message strings describing the value in `errno` are the same as those returned by the `strerror(3C)` function with an argument of `errno`.

The error number, `t_errno`, is only set when an error occurs and it is not cleared on successful calls.

EXAMPLES

If a `t_connect(3NSL)` function fails on transport endpoint `fd2` because a bad address was given, the following call might follow the failure:

```c
int ret = t_connect(fd2, addr);
if (ret < 0)
    t_error("t_connect failed on fd2");
```

The diagnostic message to be printed would look like:

```
t_connect failed on fd2: incorrect addr format
```

where `incorrect addr format` identifies the specific error that occurred, and `t_connect failed on fd2` tells the user which function failed on which transport endpoint.

RETURN VALUES

Upon completion, a value of 0 is returned.

VALID STATES

All - apart from `T_UNINIT`

ERRORS

No errors are defined for the `t_error()` function.
The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

Interface Header
The XTI interfaces use the header file, `xti.h`. TLI interfaces should not use this header. They should use the header:
```
#include <tiuser.h>
```

Error Description Values
The `t_errno` value that can be set by the XTI interface and cannot be set by the TLI interface is:
```
TPROTO
```

ATTRIBUTES
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
`t_errno(3NSL)` `strerror(3C)` `attributes(5)`
NAME
t_free – free a library structure

SYNOPSIS
#include <xti.h>

int t_free(void *ptr, int struct_type);

DESCRIPTION
This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI routine that has the same name as an XTI routine, the tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description of differences between the two interfaces.

The t_free() function frees memory previously allocated by t_alloc(3NSL). This function will free memory for the specified structure, and will also free memory for buffers referenced by the structure.

The argument ptr points to one of the seven structure types described for t_alloc(3NSL), and struct_type identifies the type of that structure which must be one of the following:

T_BIND	struct t_bind
T_CALL	struct t_call
T_OPTMGMT	struct t_optmgmt
T_DIS	struct t_discon
T_UNITDATA	struct t_unitdata
T_UDERROR	struct t_uderr
T_INFO	struct t_info

where each of these structures is used as an argument to one or more transport functions.

The function t_free() will check the addr, opt and udata fields of the given structure, as appropriate, and free the buffers pointed to by the buf field of the netbuf structure. If buf is a null pointer, t_free() will not attempt to free memory. After all buffers are freed, t_free() will free the memory associated with the structure pointed to by ptr.

Undefined results will occur if ptr or any of the buf pointers points to a block of memory that was not previously allocated by t_alloc(3NSL).

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and t_errno is set to indicate an error.

VALID STATES
ALL - apart from T_UNINIT.

ERRORS
On failure, t_errno is set to the following:

| TNOSTRUCTYPE | Unsupported struct_type requested. |
| TPROTO | This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (t_errno). |
t_free(3NSL)

TSYSERR A system error has occurred during execution of this function.

TLI COMPATIBILITY The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

Interface Header The XTI interfaces use the header file, *xti.h*. TLI interfaces should not use this header. They should use the header:

```c
#include <tiuser.h>
```

Error Description Values The \texttt{t_errno} value that can be set by the XTI interface and cannot be set by the TLI interface is:

TPROTO

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO \texttt{t_alloc(3NSL)}, attributes(5)
NAME

\texttt{t_getinfo} – get protocol-specific service information

SYNOPSIS

```c
#include <xti.h>

int \texttt{t_getinfo}(int \texttt{fd}, \texttt{struct t_info *info});
```

DESCRIPTION

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI routine that has the same name as an XTI routine, the \texttt{tiuser.h} header file must be used. Refer to the TLI compatibility section for a description of differences between the two interfaces.

This function returns the current characteristics of the underlying transport protocol and/or transport connection associated with file descriptor \texttt{fd}. The \texttt{info} pointer is used to return the same information returned by \texttt{t_open(3NSL)}, although not necessarily precisely the same values. This function enables a transport user to access this information during any phase of communication.

This argument points to a \texttt{t_info} structure which contains the following members:

\begin{verbatim}
t_scalar_t \texttt{addr}; /*max size in octets of the transport protocol address*/
t_scalar_t \texttt{options}; /*max number of bytes of protocol-specific options */
t_scalar_t \texttt{tsdu}; /*max size in octets of a transport service data unit */
t_scalar_t \texttt{etsdu}; /*max size in octets of an expedited transport service*/
t_scalar_t \texttt{connect}; /*max number of octets allowed on connection */
t_scalar_t \texttt{discon}; /*max number of octets of data allowed on \texttt{t_snddis()} */
t_scalar_t \texttt{servtype}; /*service type supported by the transport provider */
t_scalar_t \texttt{flags}; /*other info about the transport provider */
\end{verbatim}

The values of the fields have the following meanings:

\textbf{addr}

A value greater than zero indicates the maximum size of a transport protocol address and a value of \texttt{T_INVALID (-2)} specifies that the transport provider does not provide user access to transport protocol addresses.

\textbf{options}

A value greater than zero indicates the maximum number of bytes of protocol-specific options supported by the provider, and a value of \texttt{T_INVALID (-2)} specifies that the transport provider does not support user-settable options.

\textbf{tsdu}

A value greater than zero specifies the maximum size in octets of a transport service data unit (TSDU); a value of \texttt{T_NULL (zero)} specifies that the transport provider does not support the concept of TSDU, although it does support the sending of a datastream with no logical boundaries preserved across a connection; a value of \texttt{T_INFINITE (-1)} specifies that there is no limit on the size in octets of a TSDU; and a value of \texttt{T_INVALID (-2)} specifies that the transfer of normal data is not supported by the transport provider.
etsdu
A value greater than zero specifies the maximum size in octets of an expedited transport service data unit (ETSDU); a value of `T_NULL` (zero) specifies that the transport provider does not support the concept of ETSDU, although it does support the sending of an expedited data stream with no logical boundaries preserved across a connection; a value of `T_INFINITE` (–1) specifies that there is no limit on the size (in octets) of an ETSDU; and a value of `T_INVALID` (–2) specifies that the transfer of expedited data is not supported by the transport provider. Note that the semantics of expedited data may be quite different for different transport providers.

connect
A value greater than zero specifies the maximum number of octets that may be associated with connection establishment functions and a value of `T_INVALID` (–2) specifies that the transport provider does not allow data to be sent with connection establishment functions.

discon
If the `T_ORDRELDATA` bit in `flags` is clear, a value greater than zero specifies the maximum number of octets that may be associated with the `t_snddis(3NSL)` and `t_rcvdis(3NSL)` functions, and a value of `T_INVALID` (–2) specifies that the transport provider does not allow data to be sent with the abortive release functions. If the `T_ORDRELDATA` bit is set in `flags`, a value greater than zero specifies the maximum number of octets that may be associated with the `t_sndreldata()`, `t_rcvreldata()`, `t_snddis(3NSL)` and `t_rcvdis(3NSL)` functions.

servtype
This field specifies the service type supported by the transport provider, as described below.

flags
This is a bit field used to specify other information about the communications provider. If the `T_ORDRELDATA` bit is set, the communications provider supports sending user data with an orderly release. If the `T_SENDZERO` bit is set in `flags`, this indicates that the underlying transport provider supports the sending of zero-length TSDUs.

If a transport user is concerned with protocol independence, the above sizes may be accessed to determine how large the buffers must be to hold each piece of information. Alternatively, the `t_alloc(3NSL)` function may be used to allocate these buffers. An error will result if a transport user exceeds the allowed data size on any function. The value of each field may change as a result of protocol option negotiation during connection establishment (the `t_optmgmt(3NSL)` call has no effect on the values returned by `t_getinfo()`) and `t_open(3NSL)` after the endpoint enters the `T_DATAXFER` state.

The `servtype` field of `info` specifies one of the following values on return:
The transport provider supports a connection-mode service but does not support the optional orderly release facility.

The transport provider supports a connection-mode service with the optional orderly release facility.

The transport provider supports a connectionless-mode service. For this service type, t_open(3NSL) will return T_INVALID (-1) for etsdu, connect and discon.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and t_errno is set to indicate an error.

On failure, t_errno is set to one of the following:

- TBADF: The specified file descriptor does not refer to a transport endpoint.
- TPROTO: This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (t_errno).
- TSYSERR: A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They should use the header:

```
#include <tiuser.h>
```

The t_errno value TPROTO can be set by the XTI interface but not by the TLI interface.

For TLI, the t_info structure referenced by info lacks the following structure member:

```
t_scalar_t flags; /* other info about the transport provider */
```

This member was added to struct t_info in the XTI interfaces.

When a value of -1 is observed as the return value in various t_info structure members, it signifies that the transport provider can handle an infinite length buffer for a corresponding attribute, such as address data, option data, TSDU (octet size), ETSDU (octet size), connection data, and disconnection data. The corresponding structure members are addr, options, tsdu, estdu, connect, and discon, respectively.

See attributes(5) for descriptions of the following attributes:
t_getinfo(3NSL)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO t_alloc(3NSL), t_open(3NSL), t_optmgmt(3NSL), t_rcvdis(3NSL), t_snddis(3NSL), attributes(5)
#include <xti.h>

```c
int t_getprotaddr(int fd, struct t_bind *boundaddr, struct t_bind *peeraddr);
```

DESCRIPTION

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI routine that has the same name as an XTI routine, the `tiuser.h` header file must be used. Refer to the TLI COMPATIBILITY section for a description of differences between the two interfaces.

The `t_getprotaddr()` function returns local and remote protocol addresses currently associated with the transport endpoint specified by `fd`. In `boundaddr` and `peeraddr` the user specifies `maxlen`, which is the maximum size (in bytes) of the address buffer, and `buf` which points to the buffer where the address is to be placed. On return, the `buf` field of `boundaddr` points to the address, if any, currently bound to `fd`, and the `len` field specifies the length of the address. If the transport endpoint is in the `T_UNBND` state, zero is returned in the `len` field of `boundaddr`. The `buf` field of `peeraddr` points to the address, if any, currently connected to `fd`, and the `len` field specifies the length of the address. If the transport endpoint is not in the `T_DATAFER`, `T_INREL`, `T_OUTCON` or `T_OUTREL` states, zero is returned in the `len` field of `peeraddr`. If the `maxlen` field of `boundaddr` or `peeraddr` is set to zero, no address is returned.

RETURN VALUES

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned and `t_errno` is set to indicate the error.

VALID STATES

ALL - apart from `T_UNINIT`.

ERRORS

On failure, `t_errno` is set to one of the following:

- **TBADF**
The specified file descriptor does not refer to a transport endpoint.

- **TBUFOVFLW**
The number of bytes allocated for an incoming argument (`maxlen`) is greater than 0 but not sufficient to store the value of that argument.

- **TPROTO**
This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (`t_errno`).

- **TSYSERR**
A system error has occurred during execution of this function.

TLI COMPATIBILITY

In the TLI interface definition, no counterpart of this routine was defined.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:
t_getprotaddr(3NSL)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

`t_bind(3NSL), attributes(5)`
The \texttt{t_getstate()} function returns the current state of the provider associated with the transport endpoint specified by \textit{fd}.

State is returned upon successful completion. Otherwise, a value of \texttt{-1} is returned and \texttt{t_errno} is set to indicate an error. The current state is one of the following:

\begin{itemize}
 \item \texttt{T_UNBND} Unbound.
 \item \texttt{T_IDLE} Idle.
 \item \texttt{T_OUTCON} Outgoing connection pending.
 \item \texttt{T_INCON} Incoming connection pending.
 \item \texttt{T_DATAXFER} Data transfer.
 \item \texttt{T_OUTREL} Outgoing direction orderly release sent.
 \item \texttt{T_INREL} Incoming direction orderly release received.
\end{itemize}

If the provider is undergoing a state transition when \texttt{t_getstate()} is called, the function will fail.

\textbf{ERRORS} On failure, \texttt{t_errno} is set to one of the following:

\begin{itemize}
 \item \texttt{TBADF} The specified file descriptor does not refer to a transport endpoint.
 \item \texttt{TPROTO} This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (\texttt{t_errno}).
 \item \texttt{TSTATECHNG} The transport provider is undergoing a transient state change.
 \item \texttt{TSYSERR} A system error has occurred during execution of this function.
\end{itemize}

\textbf{TLI COMPATIBILITY} The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

\textbf{Interface Header} The XTI interfaces use the header file, \texttt{xti.h}. TLI interfaces should not use this header. They should use the header:

\begin{verbatim}
#include <tiuser.h>
\end{verbatim}
The `t_errno` value that can be set by the XTI interface and cannot be set by the TLI interface is:

TPROTO

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

`t_open(3NSL), attributes(5)`
t_listen(3NSL)

NAME

_t_listen – listen for a connection indication

SYNOPSIS

#include <xti.h>

int _t_listen(int fd, struct t_call *call);

DESCRIPTION

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI routine that has the same name as an XTI routine, the tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description of differences between the two interfaces.

This function listens for a connection indication from a calling transport user. The argument fd identifies the local transport endpoint where connection indications arrive, and on return, call contains information describing the connection indication. The parameter call points to a t_call structure which contains the following members:

- struct netbuf addr;
- struct netbuf opt;
- struct netbuf udata;
- int sequence;

In call, addr returns the protocol address of the calling transport user. This address is in a format usable in future calls to _t_connect(3NSL). Note, however that _t_connect(3NSL) may fail for other reasons, for example TADDRBUSY. opt returns options associated with the connection indication, udata returns any user data sent by the caller on the connection request, and sequence is a number that uniquely identifies the returned connection indication. The value of sequence enables the user to listen for multiple connection indications before responding to any of them.

Since this function returns values for the addr, opt and udata fields of call, the maxlen field of each must be set before issuing the _t_listen() to indicate the maximum size of the buffer for each. If the maxlen field of call->addr, call->opt or call->udata is set to zero, no information is returned for this parameter.

By default, _t_listen() executes in synchronous mode and waits for a connection indication to arrive before returning to the user. However, if O_NONBLOCK is set via _t_open(3NSL) or fcntl(2), _t_listen() executes asynchronously, reducing to a poll for existing connection indications. If none are available, it returns -1 and sets t_errno to TNODATA.

RETURN VALUES

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and t_errno is set to indicate an error.

VALID STATES

T_IDLE, T_INCON

ERRORS

On failure, t_errno is set to one of the following:

- TBADF The specified file descriptor does not refer to a transport endpoint.
- TBADQLEN The argument qlen of the endpoint referenced by fd is zero.
The number of bytes allocated for an incoming argument (maxlen) is greater than 0 but not sufficient to store the value of that argument. The provider's state, as seen by the user, changes to T_INCON, and the connection indication information to be returned in call is discarded. The value of sequence returned can be used to do a t_snddis(3NSL).

An asynchronous event has occurred on this transport endpoint and requires immediate attention.

O_NONBLOCK was set, but no connection indications had been queued.

This function is not supported by the underlying transport provider.

The communications endpoint referenced by fd is not in one of the states in which a call to this function is valid.

This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (t_errno).

The maximum number of outstanding connection indications has been reached for the endpoint referenced by fd. Note that a subsequent call to t_listen() may block until another incoming connection indication is available. This can only occur if at least one of the outstanding connection indications becomes no longer outstanding, for example through a call to t_accept(3NSL).

A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They should use the header:

```
#include <tiuser.h>
```

The t_errno values TPROTO, TBADQLEN, and TQFULL can be set by the XTI interface but not by the TLI interface.

A t_errno value that this routine can return under different circumstances than its XTI counterpart is TBUFOVFLW. It can be returned even when the maxlen field of the corresponding buffer has been set to zero.

The format of the options in an opt buffer is dictated by the transport provider. Unlike the XTI interface, the TLI interface does not fix the buffer format.
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO `fcntl(2)`, `t_accept(3NSL)`, `t_alloc(3NSL)`, `t_bind(3NSL)`, `t_connect(3NSL)`, `t_open(3NSL)`, `t_optmgmt(3NSL)`, `t_rcvconnect(3NSL)`, `t_snddis(3NSL)`, `attributes(5)`

WARNINGS Some transport providers do not differentiate between a connection indication and the connection itself. If this is the case, a successful return of `t_listen()` indicates an existing connection.
t_look(3NSL)

NAME
 t_look – look at the current event on a transport endpoint

SYNOPSIS
 #include <xti.h>

 int t_look(int fd);

DESCRIPTION
 This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
 represents the future evolution of these interfaces. However, TLI interfaces are
 supported for compatibility. When using a TLI routine that has the same name as an
 XTI routine, the tiuser.h header file must be used. Refer to the TLI
 COMPATIBILITY section for a description of differences between the two interfaces.

 This function returns the current event on the transport endpoint specified by fd. This
 function enables a transport provider to notify a transport user of an asynchronous
 event when the user is calling functions in synchronous mode. Certain events require
 immediate notification of the user and are indicated by a specific error, TLOOK, on the
 current or next function to be executed.

 This function also enables a transport user to poll a transport endpoint periodically for
 asynchronous events.

RETURN VALUES
 Upon success, t_look() returns a value that indicates which of the allowable events
 has occurred, or returns zero if no event exists. One of the following events is
 returned:

 T_LISTEN Connection indication received.
 T_CONNECT Connect confirmation received.
 T_DATA Normal data received.
 T_EXDATA Expedited data received.
 T_DISCONNECT Disconnection received.
 T_UDERR Datagram error indication.
 T_ORDREL Orderly release indication.
 T_GODATA Flow control restrictions on normal data flow that led
t to a TFLOW error have been lifted. Normal data may be
 sent again.
 T_GOEXDATA Flow control restrictions on expedited data flow that
 led to a TFLOW error have been lifted. Expedited data
 may be sent again.

 On failure, –1 is returned and t_errno is set to indicate the error.

VALID STATES
 ALL - apart from T_UNINIT.

ERRORS
 On failure, t_errno is set to one of the following:

 TBADF The specified file descriptor does not refer to a
 transport endpoint.
This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (t_errno).

A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They should use the header:

```c
#include <tiuser.h>
```

The return values that are defined by the XTI interface and cannot be returned by the TLI interface are:

- T_GODATA
- T_GOEXDATA

The t_errno value that can be set by the XTI interface and cannot be set by the TLI interface is:

- TPROTO

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See also t_open(3NL), t_snd(3NL), t_sndudata(3NL), attributes(5)
NAME
t_open – establish a transport endpoint

SYNOPSIS
```c
#include <xti.h>
#include <fcntl.h>

int t_open(const char *name, int oflag, struct t_info *info);
```

DESCRIPTION
This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI routine that has the same name as an XTI routine, the tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description of differences between the two interfaces.

The `t_open()` function must be called as the first step in the initialization of a transport endpoint. This function establishes a transport endpoint by supplying a transport provider identifier that indicates a particular transport provider, that is, transport protocol, and returning a file descriptor that identifies that endpoint.

The argument `name` points to a transport provider identifier and `oflag` identifies any open flags, as in `open(2)`. The argument `oflag` is constructed from `O_RDWR` optionally bitwise inclusive-OR’ed with `O_NONBLOCK`. These flags are defined by the header `<fcntl.h>`. The file descriptor returned by `t_open()` will be used by all subsequent functions to identify the particular local transport endpoint.

This function also returns various default characteristics of the underlying transport protocol by setting fields in the `t_info` structure. This argument points to a `t_info` which contains the following members:

- `t_scalar_t addr; /* max size of the transport protocol address */`
- `t_scalar_t options; /* max number of bytes of */
 /* protocol-specific options */`
- `t_scalar_t tsdu; /* max size of a transport service data */
 /* unit (TSDU) */`
- `t_scalar_t etsdu; /* max size of an expedited transport */
 /* service data unit (ETSDU) */`
- `t_scalar_t connect; /* max amount of data allowed on */
 /* connection establishment functions */`
- `t_scalar_t discon; /* max amount of data allowed on */
 /* t_snddis() and t_rcvdis() functions */`
- `t_scalar_t servtype; /* service type supported by the */
 /* transport provider */`
- `t_scalar_t flags; /* other info about the transport provider */`

The values of the fields have the following meanings:

- `addr`: A value greater than zero (T_NULL) indicates the maximum size of a transport protocol address and a value of −2 (T_INVALID) specifies that the transport provider does not provide user access to transport protocol addresses.

- `options`: A value greater than zero (T_NULL) indicates the maximum number of bytes of protocol-specific options supported by the transport provider.
provider, and a value of -2 (T_INVALID) specifies that the transport provider does not support user-settable options.

tsd

A value greater than zero (T_NULL) specifies the maximum size of a transport service data unit (TSDU); a value of zero (T_NULL) specifies that the transport provider does not support the concept of TSDU, although it does support the sending of a data stream with no logical boundaries preserved across a connection; a value of -1 (T_INFINITY) specifies that there is no limit to the size of a TSDU; and a value of -2 (T_INVALID) specifies that the transfer of normal data is not supported by the transport provider.

tsd

A value greater than zero (T_NULL) specifies the maximum size of an expedited transport service data unit (ETSDU); a value of zero (T_NULL) specifies that the transport provider does not support the concept of ETSDU, although it does support the sending of an expedited data stream with no logical boundaries preserved across a connection; a value of -1 (T_INFINITY) specifies that there is no limit on the size of an ETSDU; and a value of -2 (T_INVALID) specifies that the transfer of expedited data is not supported by the transport provider. Note that the semantics of expedited data may be quite different for different transport providers.

connect

A value greater than zero (T_NULL) specifies the maximum amount of data that may be associated with connection establishment functions, and a value of -2 (T_INVALID) specifies that the transport provider does not allow data to be sent with connection establishment functions.

discon

If the T_ORDRELDATA bit in flags is clear, a value greater than zero (T_NULL) specifies the maximum amount of data that may be associated with the t_snddis(3NSL) and t_rcvdis(3NSL) functions, and a value of -2 (T_INVALID) specifies that the transport provider does not allow data to be sent with the abortive release functions. If the T_ORDRELDATA bit is set in flags, a value greater than zero (T_NULL) specifies the maximum number of octets that may be associated with the t_sndrel(data()), t_rcvrel(data()), t_snddis(3NSL) and t_rcvdis(3NSL) functions.

servtype

This field specifies the service type supported by the transport provider, as described below.

flags

This is a bit field used to specify other information about the communications provider. If the T_ORDRELDATA bit is set, the communications provider supports user data to be sent with an orderly release. If the T_SENDZERO bit is set in flags, this indicates the underlying transport provider supports the sending of zero-length TSDUs.
If a transport user is concerned with protocol independence, the above sizes may be accessed to determine how large the buffers must be to hold each piece of information. Alternatively, the \texttt{t_alloc(3NSL)} function may be used to allocate these buffers. An error will result if a transport user exceeds the allowed data size on any function.

The \texttt{servtype} field of \texttt{info} specifies one of the following values on return:

- \texttt{T_COTS} The transport provider supports a connection-mode service but does not support the optional orderly release facility.
- \texttt{T_COTS_ORD} The transport provider supports a connection-mode service with the optional orderly release facility.
- \texttt{T_CLTS} The transport provider supports a connectionless-mode service. For this service type, \texttt{t_open()} will return \(-2\) (\texttt{T_INVALID}) for \texttt{etsdu, connect\ and\ discon}.

A single transport endpoint may support only one of the above services at one time.

If \texttt{info} is set to a null pointer by the transport user, no protocol information is returned by \texttt{t_open()}. A valid file descriptor is returned upon successful completion. Otherwise, a value of \(-1\) is returned and \texttt{t_errno} is set to indicate an error.

RETURN VALUES

A valid file descriptor is returned upon successful completion. Otherwise, a value of \(-1\) is returned and \texttt{t_errno} is set to indicate an error.

VALID STATES

\texttt{T_UNINIT}.

ERRORS

On failure, \texttt{t_errno} is set to the following:

- \texttt{TBADFLAG} An invalid flag is specified.
- \texttt{TBADNAME} Invalid transport provider name.
- \texttt{TPROTO} This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (\texttt{t_errno}).
- \texttt{TSYSERR} A system error has occurred during execution of this function.

TLI COMPATIBILITY

The XTI and TLI interface definitions have common names but use different header files. This and other semantic differences between the two interfaces are described in the subsections below.

Interface Header

The XTI interfaces use the \texttt{xti.h} TLI interfaces should \textit{not} use this header. They should use the header:

\begin{verbatim}
#include <tiuser.h>
\end{verbatim}

Error Description Values

The \texttt{t_errno} values \texttt{TPROTO} and \texttt{TBADNAME} can be set by the XTI interface but cannot be set by the TLI interface.
For TLI, the `t_info` structure referenced by `info` lacks the following structure member:

```
t_scalar_t flags; /* other info about the transport provider */
```

This member was added to `struct t_info` in the XTI interfaces.

When a value of −1 is observed as the return value in various `t_info` structure members, it signifies that the transport provider can handle an infinite length buffer for a corresponding attribute, such as address data, option data, TSDU (octet size), ETSDU (octet size), connection data, and disconnection data. The corresponding structure members are `addr`, `options`, `tsdu`, `estdu`, `connect`, and `discon`, respectively.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

`open(2)`, `attributes(5)`
NAME

int t_optmgmt(int fd, const struct t_optmgmt *req, struct t_optmgmt *ret);

DESCRIPTION

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are
supported for compatibility. When using a TLI routine that has the same name as an
XTI routine, the tiuser.h header file must be used. Refer to the TLI
COMPATIBILITY section for a description of differences between the two interfaces.

The t_optmgmt() function enables a transport user to retrieve, verify or negotiate
protocol options with the transport provider. The argument fd identifies a transport
endpoint.

The req and ret arguments point to a t_optmgmt structure containing the following
members:

struct netbuf opt;
t_scalar_t flags;

The opt field identifies protocol options and the flags field is used to specify the action
to take with those options.

The options are represented by a netbuf structure in a manner similar to the address
in t_bind(3NSL). The argument req is used to request a specific action of the provider
and to send options to the provider. The argument len specifies the number of bytes in
the options, buf points to the options buffer, and maxlen has no meaning for the req
argument. The transport provider may return options and flag values to the user
through ret. For ret, maxlen specifies the maximum size of the options buffer and buf
points to the buffer where the options are to be placed. If maxlen in ret is set to zero, no
options values are returned. On return, len specifies the number of bytes of options
returned. The value in maxlen has no meaning for the req argument, but must be set in
the ret argument to specify the maximum number of bytes the options buffer can hold.

Each option in the options buffer is of the form struct t_opthdr possibly followed
by an option value.

The level field of struct t_opthdr identifies the XTI level or a protocol of the
transport provider. The name field identifies the option within the level, and len
contains its total length; that is, the length of the option header t_opthdr plus the
length of the option value. If t_optmgmt() is called with the action T_NEGOTIATE
set, the status field of the returned options contains information about the success or
failure of a negotiation.

Several options can be concatenated. The option user has, however to ensure that each
options header and value part starts at a boundary appropriate for the
architecture\-hyphen\-specific alignment rules. The macros T_OPT_FIRSTHDR(nbp),
T_OPT_NEXTHDR (nbp, tohp), T_OPT_DATA(tohp) are provided for that purpose.
T_OPTS_DATA(nhp)
If argument is a pointer to a t_opthdr structure, this macro returns an unsigned character pointer to the data associated with the t_opthdr.

T_OPTS_NEXTHDR(nbp, tohp)
If the first argument is a pointer to a netbuf structure associated with an option buffer and second argument is a pointer to a t_opthdr structure within that option buffer, this macro returns a pointer to the next t_opthdr structure or a null pointer if this t_opthdr is the last t_opthdr in the option buffer.

T_OPTS_FIRSTHDR(tohp)
If the argument is a pointer to a netbuf structure associated with an option buffer, this macro returns the pointer to the first t_opthdr structure in the associated option buffer, or a null pointer if there is no option buffer associated with this netbuf or if it is not possible or the associated option buffer is too small to accommodate even the first aligned option header.

T_OPTS_FIRSTHDR is useful for finding an appropriately aligned start of the option buffer. T_OPTS_NEXTHDR is useful for moving to the start of the next appropriately aligned option in the option buffer. Note that OPT_NEXTHDR is also available for backward compatibility requirements. T_OPTS_DATA is useful for finding the start of the data part in the option buffer where the contents of its values start on an appropriately aligned boundary.

If the transport user specifies several options on input, all options must address the same level.

If any option in the options buffer does not indicate the same level as the first option, or the level specified is unsupported, then the t_optmgmt() request will fail with TBADOPT. If the error is detected, some options have possibly been successfully
negotiated. The transport user can check the current status by calling \texttt{t_optmgmt()} with the \texttt{T_CURRENT} flag set.

The \texttt{flags} field of \texttt{req} must specify one of the following actions:

T_NEGOTIATE

This action enables the transport user to negotiate option values.

The user specifies the options of interest and their values in the buffer specified by \texttt{req\rightarrow opt_buf} and \texttt{req\rightarrow opt_len}. The negotiated option values are returned in the buffer pointed to by \texttt{ret\rightarrow opt_buf}. The \texttt{status} field of each returned option is set to indicate the result of the negotiation. The value is \texttt{T_SUCCESS} if the proposed value was negotiated, \texttt{T_PARTSUCCESS} if a degraded value was negotiated, \texttt{T_FAILURE} if the negotiation failed (according to the negotiation rules), \texttt{T_NOTSUPPORT} if the transport provider does not support this option or illegally requests negotiation of a privileged option, and \texttt{T_READONLY} if modification of a read-only option was requested. If the status is \texttt{T_SUCCESS}, \texttt{T_FAILURE}, \texttt{T_NOTSUPPORT} or \texttt{T_READONLY}, the returned option value is the same as the one requested on input.

The overall result of the negotiation is returned in \texttt{ret\rightarrow flags}.

This field contains the worst single result, whereby the rating is done according to the order \texttt{T_NOTSUPPORT}, \texttt{T_READONLY}, \texttt{T_FAILURE}, \texttt{T_PARTSUCCESS}, \texttt{T_SUCCESS}. The value \texttt{T_NOTSUPPORT} is the worst result and \texttt{T_SUCCESS} is the best.

For each level, the option \texttt{T_ALLOPT} can be requested on input. No value is given with this option; only the \texttt{t_opt_hdr} part is specified. This input requests to negotiate all supported options of this level to their default values. The result is returned option by option in \texttt{ret\rightarrow opt_buf}. Note that...
depending on the state of the transport endpoint, not all requests to negotiate the default value may be successful.

This action enables the user to verify whether the options specified in `req` are supported by the transport provider. If an option is specified with no option value (it consists only of a `t_opthdr` structure), the option is returned with its `status` field set to `T_SUCCESS` if it is supported, `T_NOTSUPPORT` if it is not or needs additional user privileges, and `T_READONLY` if it is read-only (in the current XTI state). No option value is returned.

If an option is specified with an option value, the `status` field of the returned option has the same value, as if the user had tried to negotiate this value with `T_NEGOTIATE`. If the status is `T_SUCCESS`, `T_FAILURE`, `T_NOTSUPPORT` or `T_READONLY`, the returned option value is the same as the one requested on input.

The overall result of the option checks is returned in `ret->flags`. This field contains the worst single result of the option checks, whereby the rating is the same as for `T_NEGOTIATE`.

Note that no negotiation takes place. All currently effective option values remain unchanged.

This action enables the transport user to retrieve the default option values. The user specifies the options of interest in `req->opt.buf`. The option values are irrelevant and will be ignored; it is sufficient to specify the `t_opthdr` part of an option only. The default values are then returned in `ret->opt.buf`.

The `status` field returned is `T_NOTSUPPORT` if the protocol level does not support this option or the transport user illegally requested a privileged option, `T_READONLY`.
if the option is read-only, and set to
T_SUCCESS in all other cases. The overall
result of the request is returned in ret→flags.
This field contains the worst single result,
whereby the rating is the same as for
T_NEGOTIATE.

For each level, the option T_ALLOPT can be
requested on input. All supported options
of this level with their default values are
then returned. In this case, ret→opt.maxlen
must be given at least the value
info→options before the call. See
t_getinfo(3NSL) and t_open(3NSL).

This action enables the transport user to
retrieve the currently effective option
values. The user specifies the options of
interest in req→opt.buf. The option values
are irrelevant and will be ignored; it is
sufficient to specify the t_opthdr part of
an option only. The currently effective
values are then returned in req→opt.buf.

The status field returned is T_NOTSUPPORT
if the protocol level does not support this
option or the transport user illegally
requested a privileged option,
T_READONLY if the option is read-only,
and set to T_SUCCESS in all other cases.
The overall result of the request is returned
in ret→flags. This field contains the worst
single result, whereby the rating is the same
as for T_NEGOTIATE.

For each level, the option T_ALLOPT can be
requested on input. All supported options
of this level with their currently effective
values are then returned.

The option T_ALLOPT can only be used
with t_optmgmt() and the actions
T_NEGOTIATE, T_DEFAULT and
T_CURRENT. It can be used with any
supported level and addresses all
supported options of this level. The option
has no value; it consists of a t_opthdr
only. Since in a t_optmgmt() call only

T_CURRENT
options of one level may be addressed, this option should not be requested together with other options. The function returns as soon as this option has been processed.

Options are independently processed in the order they appear in the input option buffer. If an option is multiply input, it depends on the implementation whether it is multiply output or whether it is returned only once.

Transport providers may not be able to provide an interface capable of supporting T_NEGOTIATE and/or T_CHECK functionalities. When this is the case, the error TNOTSUPPORT is returned.

The function t_optmgmt() may block under various circumstances and depending on the implementation. The function will block, for instance, if the protocol addressed by the call resides on a separate controller. It may also block due to flow control constraints; that is, if data sent previously across this transport endpoint has not yet been fully processed. If the function is interrupted by a signal, the option negotiations that have been done so far may remain valid. The behavior of the function is not changed if O_NONBLOCK is set.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and t_errno is set to indicate an error.

On failure, t_errno is set to one of the following:

- **TBADF**: The specified file descriptor does not refer to a transport endpoint.
- **TBADFLAG**: An invalid flag was specified.
- **TBADOPT**: The specified options were in an incorrect format or contained illegal information.
- **TBUFOVFLW**: The number of bytes allowed for an incoming argument (maxlen) is greater than 0 but not sufficient to store the value of that argument. The information to be returned in ret will be discarded.
- **TNOTSUPPORT**: This action is not supported by the transport provider.
TLI COMPATIBILITY

<table>
<thead>
<tr>
<th>Error Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface Header</th>
<th>The XTI interfaces use the header file, <code>xti.h</code>. TLI interfaces should not use this header. They should use the header:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>#include <tiuser.h></code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>The <code>t_errno</code> value <code>TPROTO</code> can be set by the XTI interface but not by the TLI interface.</td>
<td></td>
</tr>
</tbody>
</table>

| The `t_errno` values that this routine can return under different circumstances than its XTI counterpart are `TACCES` and `TBUFOVFLW`. |

| Option Buffers | The format of the options in an `opt` buffer is dictated by the transport provider. Unlike the XTI interface, the TLI interface does not fix the buffer format. The macros `T_OPT_DATA`, `T_OPT_NEXTHDR`, and `T_OPT_FIRSTHDR` described for XTI are not available for use by TLI interfaces. |

| Actions | The semantic meaning of various action values for the `flags` field of `req` differs between the TLI and XTI interfaces. TLI interface users should heed the following descriptions of the actions: |

| T_NEGOTIATE | This action enables the user to negotiate the values of the options specified in `req` with the transport provider. The provider will evaluate the requested options and negotiate the values, returning the negotiated values through `ret`. |

| T_CHECK | This action enables the user to verify whether the options specified in `req` are supported by the transport provider. On return, the `flags` field of `ret` will have either `T_SUCCESS` or `T_FAILURE` set to indicate to the user whether the options are supported. These flags are only meaningful for the T_CHECK request. |
This action enables a user to retrieve the default options supported by the transport provider into the opt field of ref. In req, the len field of opt must be zero and the buf field may be NULL.

If issued as part of the connectionless mode service, t_optmgmt() may block due to flow control constraints. The function will not complete until the transport provider has processed all previously sent data units.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

close(2), poll(2), select(3C), t_accept(3NSL), t_alloc(3NSL), t_bind(3NSL), t_close(3NSL), t_connect(3NSL), t_getinfo(3NSL), t_listen(3NSL), t_open(3NSL), t_rcv(3NSL), t_rcvconnect(3NSL), t_rcvdata(3NSL), t_snddis(3NSL), attributes(5)
NAME
t_rcv - receive data or expedited data sent over a connection

SYNOPSIS
 #include <xti.h>

 int t_rcv(int fd, void *buf, unsigned int nbytes, int *flags);

DESCRIPTION
This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are
supported for compatibility. When using a TLI routine that has the same name as an
XTI routine, the tiuser.h header file must be used. Refer to the TLI
COMPATIBILITY section for a description of differences between the two interfaces.

This function receives either normal or expedited data. The argument fd identifies the
local transport endpoint through which data will arrive, buf points to a receive buffer
where user data will be placed, and nbytes specifies the size of the receive buffer. The
argument flags may be set on return from t_rcv() and specifies optional flags as
described below.

By default, t_rcv() operates in synchronous mode and will wait for data to arrive if
none is currently available. However, if O_NONBLOCK is set by means of
t_open(3NSL) or fcntl(2), t_rcv() will execute in asynchronous mode and will
fail if no data is available. See TNODATA below.

On return from the call, if T_MORE is set in flags, this indicates that there is more data,
and the current transport service data unit (TSDU) or expedited transport service data
unit (ETSDU) must be received in multiple t_rcv() calls. In the asynchronous mode,
or under unusual conditions (for example, the arrival of a signal or T_EXDATA event),
the T_MORE flag may be set on return from the t_rcv() call even when the number
of bytes received is less than the size of the receive buffer specified. Each t_rcv() with the T_MORE flag set indicates that another t_rcv() must follow to get more data
for the current TSDU. The end of the TSDU is identified by the return of a t_rcv()
call with the T_MORE flag not set. If the transport provider does not support the
concept of a TSDU as indicated in the info argument on return from t_open(3NSL) or
t_getinfo(3NSL), the T_MORE flag is not meaningful and should be ignored. If
nbytes is greater than zero on the call to t_rcv(), t_rcv() will return 0 only if the
end of a TSDU is being returned to the user.

On return, the data is expedited if T_EXPEDITED is set in flags. If T_MORE is also set,
it indicates that the number of expedited bytes exceeded nbytes, a signal has
interrupted the call, or that an entire ETSDU was not available (only for transport
protocols that support fragmentation of ETSDUs). The rest of the ETSDU will be
returned by subsequent calls to t_rcv() which will return with T_EXPEDITED set in
flags. The end of the ETSDU is identified by the return of a t_rcv() call with
T_EXPEDITED set and T_MORE cleared. If the entire ETSDU is not available it is
possible for normal data fragments to be returned between the initial and final
fragments of an ETSDU.
If a signal arrives, \texttt{t_rcv()} returns, giving the user any data currently available. If no data is available, \texttt{t_rcv()} returns –1, sets \texttt{t_errno} to \texttt{TSYSERR} and \texttt{errno} to \texttt{EINTR}. If some data is available, \texttt{t_rcv()} returns the number of bytes received and \texttt{T_MORE} is set in flags.

In synchronous mode, the only way for the user to be notified of the arrival of normal or expedited data is to issue this function or check for the \texttt{T_DATA} or \texttt{T_EXDATA} events using the \texttt{t_look(3NSL)} function. Additionally, the process can arrange to be notified by means of the EM interface.

RETURN VALUES
On successful completion, \texttt{t_rcv()} returns the number of bytes received. Otherwise, it returns 1 on failure and \texttt{t_errno} is set to indicate the error.

VALID STATES
\texttt{T_DATAFER, T_OUTREL}.

ERRORS
On failure, \texttt{t_errno} is set to one of the following:
- \texttt{TBADF} The specified file descriptor does not refer to a transport endpoint.
- \texttt{TLOOK} An asynchronous event has occurred on this transport endpoint and requires immediate attention.
- \texttt{TNODATA} \texttt{O_NONBLOCK} was set, but no data is currently available from the transport provider.
- \texttt{TNOTSUPPORT} This function is not supported by the underlying transport provider.
- \texttt{TOUTSTATE} The communications endpoint referenced by \texttt{fd} is not in one of the states in which a call to this function is valid.
- \texttt{TPROTO} This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (\texttt{t_errno}).
- \texttt{TSYSERR} A system error has occurred during execution of this function.

TLI COMPATIBILITY
The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

Interface Header
The XTI interfaces use the header file, \texttt{xti.h}. TLI interfaces should not use this header. They should use the header:

```c
#include <tiuser.h>
```

Error Description Values
The \texttt{t_errno} value that can be set by the XTI interface and cannot be set by the TLI interface is:

\texttt{TPROTO}
t_rcv(3NSL)

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

fcntl(2), t_getinfo(3NSL), t_look(3NSL), t_open(3NSL), t_snd(3NSL), attributes(5)
t_rcvconnect

NAME
t_rcvconnect – receive the confirmation from a connection request

SYNOPSIS
#include <xti.h>

int t_rcvconnect(int fd, struct t_call *call);

DESCRIPTION
This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are
supported for compatibility. When using a TLI routine that has the same name as an
XTI routine, the tiuser.h header file must be used. Refer to the TLI
COMPATIBILITY section for a description of differences between the two interfaces.

This function enables a calling transport user to determine the status of a previously
sent connection request and is used in conjunction with t_connect(3NSL) to
establish a connection in asynchronous mode, and to complete a synchronous
t_connect(3NSL) call that was interrupted by a signal. The connection will be
established on successful completion of this function.

The argument fd identifies the local transport endpoint where communication will be
established, and call contains information associated with the newly established
connection. The argument call points to a t_call structure which contains the
following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

In call, addr returns the protocol address associated with the responding
transport endpoint, opt presents any options associated with the connection, udata
points to optional user data that may be returned by the destination transport user
during connection establishment, and sequence has no meaning for this function.

The maxlen field of each argument must be set before issuing this function to indicate
the maximum size of the buffer for each. However, maxlen can be set to zero, in which
case no information to this specific argument is given to the user on the return from
t_rcvconnect(). If call is set to NULL, no information at all is returned. By default,
t_rcvconnect() executes in synchronous mode and waits for the connection to be
established before returning. On return, the addr, opt and udata fields reflect values
associated with the connection.

If O_NONBLOCK is set by means of t_open(3NSL) or fcntl(2), t_rcvconnect() executes in asynchronous mode, and reduces to a poll for existing connection
confirmations. If none are available, t_rcvconnect() fails and returns immediately
without waiting for the connection to be established. See TNODATA below. In this case,
t_rcvconnect() must be called again to complete the connection establishment
phase and retrieve the information returned in call.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is
returned and t_errno is set to indicate an error.

VALID STATES
T_OUTCON.
t_rcvconnect(3NSL)

ERRORS

On failure, t_errno is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.
TBUFOVFLW The number of bytes allocated for an incoming argument (maxlen) is greater than 0 but not sufficient to store the value of that argument, and the connection information to be returned in call will be discarded. The provider’s state, as seen by the user, will be changed to T_DATAXFER.
TLOOK An asynchronous event has occurred on this transport connection and requires immediate attention.
TNODATA O_NONBLOCK was set, but a connection confirmation has not yet arrived.
TNOTSUPPORT This function is not supported by the underlying transport provider.
TOUTSTATE The communications endpoint referenced by fd is not in one of the states in which a call to this function is valid.
TPROTO This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (t_errno).
TSYSERR A system error has occurred during execution of this function.

TLI COMPATIBILITY

The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

Interface Header

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They should use the header:

#include<tiuser.h>

Error Description Values

The t_errno value TPROTO can be set by the XTI interface but not by the TLI interface.

A t_errno value that this routine can return under different circumstances than its XTI counterpart is TBUFOVFLW. It can be returned even when the maxlen field of the corresponding buffer has been set to zero.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>
SEE ALSO
fcnt1(2), t_accept(3NSL), t_alloc(3NSL), t_bind(3NSL), t_connect(3NSL), t_listen(3NSL), t_open(3NSL), t_optmgmt(3NSL), attributes(5)
t_rcvdis(3NSL)

NAME
 t_rcvdis – retrieve information from disconnection

SYNOPSIS
 #include <xti.h>
 int t_rcvdis(int fd, struct t_discon *discon);

DESCRIPTION
 This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
 represents the future evolution of these interfaces. However, TLI interfaces are
 supported for compatibility. When using a TLI routine that has the same name as an
 XTI routine, the tiuser.h header file must be used. Refer to the TLI
 COMPATIBILITY section for a description of differences between the two interfaces.

 This function is used to identify the cause of a disconnection and to retrieve any user
 data sent with the disconnection. The argument fd identifies the local transport
 endpoint where the connection existed, and discon points to a t_discon structure
 containing the following members:

 struct netbuf udata;
 int reason;
 int sequence;

 The field reason specifies the reason for the disconnection through a
 protocol-dependent reason code, udata identifies any user data that was sent with the
 disconnection, and sequence may identify an outstanding connection indication with
 which the disconnection is associated. The field sequence is only meaningful when
 t_rcvdis() is issued by a passive transport user who has executed one or more
 t_listen(3NSL) functions and is processing the resulting connection indications. If a
 disconnection indication occurs, sequence can be used to identify which of the
 outstanding connection indications is associated with the disconnection.

 The maxlen field of udata may be set to zero, if the user does not care about incoming
 data. If, in addition, the user does not need to know the value of reason or sequence,
 discon may be set to NULL and any user data associated with the disconnection
 indication shall be discarded. However, if a user has retrieved more than one
 outstanding connection indication by means of t_listen(3NSL), and discon is a null
 pointer, the user will be unable to identify with which connection indication the
 disconnection is associated.

RETURN VALUES
 Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
 returned and t_errno is set to indicate an error.

VALID STATES
 T_DATAXFER, T_OUTCON, T_OUTREL, T_INREL, T_INCON (ocnt > 0).

ERRORS
 On failure, t_errno is set to one of the following:

 TBADF The specified file descriptor does not refer to a transport endpoint.
 TBUFOVFLW The number of bytes allocated for incoming data (maxlen) is
 greater than 0 but not sufficient to store the data. If fd is a passive
 endpoint with ocnt > 1, it remains in state T_INCON; otherwise,
 the endpoint state is set to T_IDLE.
TNODIS No disconnection indication currently exists on the specified transport endpoint.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

TLI COMPATIBILITY

The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

Interface Header

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They should use the header:

```
#include <tiuser.h>
```

Error Description Values

The t_errno values TPROTO and TOUTSTATE can be set by the XTI interface but not by the TLI interface.

A failure return, and a t_errno value that this routine can set under different circumstances than its XTI counterpart is TBUFOVFLW. It can be returned even when the maxlen field of the corresponding buffer has been set to zero.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO t_alloc(3NSL), t_connect(3NSL), t_listen(3NSL), t_open(3NSL), t_snddis(3NSL), attributes(5)
t_rcvrel(3NSL)

<table>
<thead>
<tr>
<th>NAME</th>
<th>t_rcvrel – acknowledge receipt of an orderly release indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
<td>#include <xti.h></td>
</tr>
<tr>
<td></td>
<td>int t_rcvrel(int fd);</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI routine that has the same name as an XTI routine, the tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description of differences between the two interfaces. This function is used to receive an orderly release indication for the incoming direction of data transfer. The argument fd identifies the local transport endpoint where the connection exists. After receipt of this indication, the user may not attempt to receive more data by means of t_rcv(3NSL) or t_rcvv(). Such an attempt will fail with t_error set to TOUTSTATE. However, the user may continue to send data over the connection if t_sndrel(3NSL) has not been called by the user. This function is an optional service of the transport provider, and is only supported if the transport provider returned service type T_COTS_ORD on t_open(3NSL) or t_getinfo(3NSL). Any user data that may be associated with the orderly release indication is discarded when t_rcvrel() is called.</td>
</tr>
<tr>
<td>RETURN VALUES</td>
<td>Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and t_errno is set to indicate an error.</td>
</tr>
<tr>
<td>VALID STATES</td>
<td>T_DATAxFER, T_OUTREL.</td>
</tr>
<tr>
<td>ERRORS</td>
<td>On failure, t_errno is set to one of the following:</td>
</tr>
<tr>
<td>TBADF</td>
<td>The specified file descriptor does not refer to a transport endpoint.</td>
</tr>
<tr>
<td>TLOOK</td>
<td>An asynchronous event has occurred on this transport endpoint and requires immediate attention.</td>
</tr>
<tr>
<td>TNOREL</td>
<td>No orderly release indication currently exists on the specified transport endpoint.</td>
</tr>
<tr>
<td>TNOTSUPPORT</td>
<td>This function is not supported by the underlying transport provider.</td>
</tr>
<tr>
<td>TOUTSTATE</td>
<td>The communications endpoint referenced by fd is not in one of the states in which a call to this function is valid.</td>
</tr>
<tr>
<td>TPROTO</td>
<td>This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (t_errno).</td>
</tr>
<tr>
<td>TSYSERR</td>
<td>A system error has occurred during execution of this function.</td>
</tr>
</tbody>
</table>

TLI COMPATIBILITY

The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.
The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They should use the header:

```c
#include<tiuser.h>
```

The `t_errno` values that can be set by the XTI interface and cannot be set by the TLI interface are:

- TPROTO
- TOUTSTATE

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

`t_getinfo(3NSL), t_open(3NSL), t_sndrel(3NSL), attributes(5)`
NAME

_t_rcvreldata - receive an orderly release indication or confirmation containing user data

SYNOPSIS

#include <xti.h>

int _t_rcvreldata(int fd, struct t_discon *discon);

DESCRIPTION

This function is used to receive an orderly release indication for the incoming direction of data transfer and to retrieve any user data sent with the release. The argument _fd identifies the local transport endpoint where the connection exists, and _discon points to a t_discon structure containing the following members:

struct netbuf udata;
int reason;
int sequence;

After receipt of this indication, the user may not attempt to receive more data by means of _t_rcv(3NSL) or _t_rcvv(3NSL). Such an attempt will fail with _t_errno set to _TOUTSTATE. However, the user may continue to send data over the connection if _t_sndrel(3NSL) or _t_sndreldata(3N) has not been called by the user.

The field _reason specifies the reason for the disconnection through a protocol-dependent _reason code, and _udata identifies any user data that was sent with the disconnection; the field _sequence is not used.

If a user does not care if there is incoming data and does not need to know the value of _reason, _discon may be a null pointer, and any user data associated with the disconnection will be discarded.

If _discon→udata.maxlen is greater than zero and less than the length of the value, _t_rcvreldata() fails with _t_errno set to _TBUFOVFLW.

This function is an optional service of the transport provider, only supported by providers of service type _T_COTS_ORD. The flag _T_ORDRELDATA in the info→flag field returned by _t_open(3NSL) or _t_getinfo(3NSL) indicates that the provider supports orderly release user data; when the flag is not set, this function behaves like _t_rcvrel(3NSL) and no user data is returned.

This function may not be available on all systems.

RETURN VALUES

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and _t_errno is set to indicate an error.

VALID STATES

_T_DATAXHR, _T_OUTREL.

ERRORS

On failure, _t_errno is set to one of the following:

_TBADF The specified file descriptor does not refer to a transport endpoint.
_TBUFOVFLW The number of bytes allocated for incoming data (maxlen) is greater than 0 but not sufficient to store the data, and the disconnection information to be returned in _discon will be
discarded. The provider state, as seen by the user, will be changed as if the data was successfully retrieved.

TLOOK
An asynchronous event has occurred on this transport endpoint and requires immediate attention.

TNOREL
No orderly release indication currently exists on the specified transport endpoint.

TNOTSUPPORT
Orderly release is not supported by the underlying transport provider.

TOUTSTATE
The communications endpoint referenced by *fd* is not in one of the states in which a call to this function is valid.

TPROTO
This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (*t_errno*).

TSYSERR
A system error has occurred during execution of this function.

In the TLI interface definition, no counterpart of this routine was defined.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
t_getinfo(3NSL), t_open(3NSL), t_sndreldata(3NSL), t_rcvrel(3NSL), t_sndrel(3NSL), attributes(5)

NOTES
The interfaces *t_sndreldata(3NSL)* and *t_rcvreldata()* are only for use with a specific transport called “minimal OSI,” which is not available on the Solaris platform. These interfaces are not available for use in conjunction with Internet Transports (TCP or UDP).
t_rcvudata(3NSL)

NAME t_rcvudata – receive a data unit

SYNOPSIS

```c
#include <xti.h>

int t_rcvudata(int fd, struct t_unitdata *unitdata, int *flags);
```

DESCRIPTION

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI routine that has the same name as an XTI routine, the tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description of differences between the two interfaces.

This function is used in connectionless-mode to receive a data unit from another transport user. The argument `fd` identifies the local transport endpoint through which data will be received, `unitdata` holds information associated with the received data unit, and `flags` is set on return to indicate that the complete data unit was not received.

The argument `unitdata` points to a `t_unitdata` structure containing the following members:

```c
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
```

The `maxlen` field of `addr`, `opt` and `udata` must be set before calling this function to indicate the maximum size of the buffer for each. If the `maxlen` field of `addr` or `opt` is set to zero, no information is returned in the `buf` field of this parameter.

On return from this call, `addr` specifies the protocol address of the sending user, `opt` identifies options that were associated with this data unit, and `udata` specifies the user data that was received.

By default, `t_rcvudata()` operates in synchronous mode and will wait for a data unit to arrive if none is currently available. However, if `O_NONBLOCK` is set by means of `t_open(3NSL)` or `fcntl(2)`, `t_rcvudata()` will execute in asynchronous mode and will fail if no data units are available.

If the buffer defined in the `udata` field of `unitdata` is not large enough to hold the current data unit, the buffer will be filled and `T_MORE` will be set in `flags` on return to indicate that another `t_rcvudata()` should be called to retrieve the rest of the data unit. Subsequent calls to `t_rcvudata()` will return zero for the length of the address and options until the full data unit has been received.

If the call is interrupted, `t_rcvudata()` will return `EINTR` and no datagrams will have been removed from the endpoint.

RETURN VALUES

Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and `t_errno` is set to indicate an error.

VALID STATES

`T_IDLE`.

ERRORS

On failure, `t_errno` is set to one of the following:
The specified file descriptor does not refer to a transport endpoint.

The number of bytes allocated for the incoming protocol address or options (maxlen) is greater than 0 but not sufficient to store the information. The unit data information to be returned in unitdata will be discarded.

An asynchronous event has occurred on this transport endpoint and requires immediate attention.

0_NONBLOCK was set, but no data units are currently available from the transport provider.

This function is not supported by the underlying transport provider.

The communications endpoint referenced by fd is not in one of the states in which a call to this function is valid.

This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (t_errno).

A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They should use the header:

```
#include<tiuser.h>
```

The t_errno values that can be set by the XTI interface and cannot be set by the TLI interface are:

TPROTO TOUTSTATE

A t_errno value that this routine can return under different circumstances than its XTI counterpart is TBUFOVFLW. It can be returned even when the maxlen field of the corresponding buffer has been set to zero.

The format of the options in an opt buffer is dictated by the transport provider. Unlike the XTI interface, the TLI interface does not fix the buffer format.

See attributes(5) for descriptions of the following attributes:
t_rcvudata(3NSL)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
fcnt1(2), t_alloc(3NSL), t_open(3NSL), t_rcvuderr(3NSL),
t_sndudata(3NSL), attributes(5)
NAME

t_rcvuderr – receive a unit data error indication

SYNOPSIS

```
#include <xti.h>

int t_rcvuderr(int fd, struct t_uderr *uderr);
```

DESCRIPTION

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI routine that has the same name as an XTI routine, the *tiuser.h* header file must be used. Refer to the TLI COMPATIBILITY section for a description of differences between the two interfaces.

This function is used in connectionless-mode to receive information concerning an error on a previously sent data unit, and should only be issued following a unit data error indication. It informs the transport user that a data unit with a specific destination address and protocol options produced an error. The argument *fd* identifies the local transport endpoint through which the error report will be received, and *uderr* points to a *t_uderr* structure containing the following members:

- `struct netbuf addr;`
- `struct netbuf opt;`
- `t_scalar_t error;`

The *maxlen* field of *addr* and *opt* must be set before calling this function to indicate the maximum size of the buffer for each. If this field is set to zero for *addr* or *opt*, no information is returned in the *buf* field of this parameter.

On return from this call, the *addr* structure specifies the destination protocol address of the erroneous data unit, the *opt* structure identifies options that were associated with the data unit, and *error* specifies a protocol-dependent error code.

If the user does not care to identify the data unit that produced an error, *uderr* may be set to a null pointer, and *t_rcvuderr()* will simply clear the error indication without reporting any information to the user.

RETURN VALUES

Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and *t_errno* is set to indicate an error.

VALID STATES

T_IDLE.

ERRORS

On failure, *t_errno* is set to one of the following:

- **TBADF** The specified file descriptor does not refer to a transport endpoint.
- **TBUFOVFLW** The number of bytes allocated for the incoming protocol address or options (*maxlen*) is greater than 0 but not sufficient to store the information. The unit data error information to be returned in *uderr* will be discarded.
- **TNOTSUPPORT** This function is not supported by the underlying transport provider.
- **TNODERR** No unit data error indication currently exists on the specified transport endpoint.
The communications endpoint referenced by *fd* is not in one of the states in which a call to this function is valid.

This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (*t_errno*).

A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

The XTI interfaces use the header file, *xti.h*. TLI interfaces should not use this header. They should use the header:

```c
#include <tiuser.h>
```

The *t_errno* values `TPROTO` and `TOUTSTATE` can be set by the XTI interface but not by the TLI interface.

A *t_errno* value that this routine can return under different circumstances than its XTI counterpart is `TBUFOVFLW`. It can be returned even when the *maxlen* field of the corresponding buffer has been set to zero.

The format of the options in an *opt* buffer is dictated by the transport provider. Unlike the XTI interface, the TLI interface does not fix the buffer format.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

The XTI interfaces use the header file, *xti.h*. TLI interfaces should not use this header. They should use the header:

```c
#include <tiuser.h>
```

The *t_errno* values `TPROTO` and `TOUTSTATE` can be set by the XTI interface but not by the TLI interface.

A *t_errno* value that this routine can return under different circumstances than its XTI counterpart is `TBUFOVFLW`. It can be returned even when the *maxlen* field of the corresponding buffer has been set to zero.

The format of the options in an *opt* buffer is dictated by the transport provider. Unlike the XTI interface, the TLI interface does not fix the buffer format.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>
NAME

t_rcvv – receive data or expedited data sent over a connection and put the data into
one or more non-contiguous buffers

SYNOPSIS

```
#include <xti.h>

int t_rcvv(int fd, struct t_iovec *iov, unsigned int iovcount, int *flags);
``` 

DESCRIPTION

This function receives either normal or expedited data. The argument `fd` identifies the
local transport endpoint through which data will arrive, `iov` points to an array of
buffer address/buffer size pairs (`iov_base`, `iov_len`). The `t_rcvv()` function receives
data into the buffers specified by `iov[0].iov_base`, `iov[1].iov_base`, through `iov`
`[iovcount-1].iov_base`, always filling one buffer before proceeding to the next.

Note that the limit on the total number of bytes available in all buffers passed:
`iov[0].iov_len + .. + iov[iovcount-1].iov_len` may be constrained by implementation limits. If no
other constraint applies, it will be limited by `INT_MAX`. In practice, the availability of
memory to an application is likely to impose a lower limit on the amount of data that
can be sent or received using scatter/gather functions.

The argument `iovcount` contains the number of buffers which is limited to
`T_IOV_MAX`, which is an implementation-defined value of at least 16. If the limit is
exceeded, the function will fail with `TBADDATA`.

The argument `flags` may be set on return from `t_rcvv()` and specifies optional flags
as described below.

By default, `t_rcvv()` operates in synchronous mode and will wait for data to arrive
if none is currently available. However, if `O_NONBLOCK` is set by means of
`t_open(3NSL)` or `fcntl(2)`, `t_rcvv()` will execute in asynchronous mode and will
fail if no data is available. See `TNODATA` below.

On return from the call, if `T_MORE` is set in `flags`, this indicates that there is more data,
and the current transport service data unit (TSDU) or expedited transport service data
unit (ETSDU) must be received in multiple `t_rcvv()` or `t_rcv(3NSL)` calls. In the
asynchronous mode, or under unusual conditions (for example, the arrival of a signal
or `T_EXDATA` event), the `T_MORE` flag may be set on return from the `t_rcvv()` call
even when the number of bytes received is less than the total size of all the receive
buffers. Each `t_rcvv()` with the `T_MORE` flag set indicates that another `t_rcvv()`
must follow to get more data for the current TSDU. The end of the TSDU is identified
by the return of a `t_rcvv()` call with the `T_MORE` flag not set. If the transport
provider does not support the concept of a TSDU as indicated in the `info` argument on
return from `t_open(3NSL)` or `t_getinfo(3NSL)`, the `T_MORE` flag is not meaningful
and should be ignored. If the amount of buffer space passed in `iov` is greater than zero
on the call to `t_rcvv()`, then `t_rcvv()` will return 0 only if the end of a TSDU is
being returned to the user.
t_rcvv(3NSL)

On return, the data is expedited if T_EXPEDITED is set in flags. If T_MORE is also set, it indicates that the number of expedited bytes exceeded nbytes, a signal has interrupted the call, or that an entire ETSDU was not available (only for transport protocols that support fragmentation of ETSDUs). The rest of the ETSDU will be returned by subsequent calls to t_rcvv() which will return with T_EXPEDITED set in flags. The end of the ETSDU is identified by the return of a t_rcvv() call with T_EXPEDITED set and T_MORE cleared. If the entire ETSDU is not available it is possible for normal data fragments to be returned between the initial and final fragments of an ETSDU.

If a signal arrives, t_rcvv() returns, giving the user any data currently available. If no data is available, t_rcvv() returns -1, sets t_errno to TSYSERR and errno to EINTR. If some data is available, t_rcvv() returns the number of bytes received and T_MORE is set in flags.

In synchronous mode, the only way for the user to be notified of the arrival of normal or expedited data is to issue this function or check for the T_DATA or T_EXDATA events using the t_look(3NSL) function. Additionally, the process can arrange to be notified via the EM interface.

RETURN VALUES
On successful completion, t_rcvv() returns the number of bytes received. Otherwise, it returns -1 on failure and t_errno is set to indicate the error.

VALID STATES
T_DATAxFER, T_OUTREL.

ERRORS
On failure, t_errno is set to one of the following:

TBADDATA
iovcount is greater than T_IOV_MAX.

TBADF
The specified file descriptor does not refer to a transport endpoint.

TLOOK
An asynchronous event has occurred on this transport endpoint and requires immediate attention.

TNODATA
O_NONBLOCK was set, but no data is currently available from the transport provider.

TNOTSUPPORT
This function is not supported by the underlying transport provider.

TOUTSTATE
The communications endpoint referenced by fd is not in one of the states in which a call to this function is valid.

TPROTO
This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (t_errno).

TSYSERR
A system error has occurred during execution of this function.

In the TLI interface definition, no counterpart of this routine was defined.

See attributes(5) for descriptions of the following attributes:
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO `fcnt1(2), t_getinfo(3NSL), t_look(3NSL), t_open(3NSL), t_rcv(3NSL), t_snd(3NSL), t_sndv(3NSL), attributes(5)`
t_rcvvudata(3NSL)

NAME
t_rcvvudata - receive a data unit into one or more noncontiguous buffers

SYNOPSIS

#include <xti.h>

int t_rcvvudata(int fd, struct t_unitdata *unitdata, struct t_iovec *iov, unsigned int iovcount, int *flags);

DESCRIPTION

This function is used in connectionless mode to receive a data unit from another transport user. The argument fd identifies the local transport endpoint through which data will be received, unitdata holds information associated with the received data unit, iovcount contains the number of non-contiguous udata buffers which is limited to T_IOV_MAX, which is an implementation-defined value of at least 16, and flags is set on return to indicate that the complete data unit was not received. If the limit on iovcount is exceeded, the function fails with TBADDATA. The argument unitdata points to a t_unitdata structure containing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

The maxlen field of addr and opt must be set before calling this function to indicate the maximum size of the buffer for each. The udata field of t_unitdata is not used. The iov_len and iov_base fields of "iov[0]" through iov[iovcount-1].iov_base must be set before calling t_rcvvudata() to define the buffer where the userdata will be placed. If the maxlen field of addr or opt is set to zero then no information is returned in the buf field for this parameter.

On return from this call, addr specifies the protocol address of the sending user, opt identifies options that were associated with this data unit, and iov[0].iov_base through iov[iovcount-1].iov_base contains the user data that was received. The return value of t_rcvvudata() is the number of bytes of user data given to the user.

Note that the limit on the total number of bytes available in all buffers passed:

iov[0].iov_len + ... + iov[iovcount-1].iov_len

may be constrained by implementation limits. If no other constraint applies, it will be limited by INT_MAX. In practice, the availability of memory to an application is likely to impose a lower limit on the amount of data that can be sent or received using scatter/gather functions.

By default, t_rcvvudata() operates in synchronous mode and waits for a data unit to arrive if none is currently available. However, if O_NONBLOCK is set by means of t_open(3NSL) or fcntl(2), t_rcvvudata() executes in asynchronous mode and fails if no data units are available.

If the buffers defined in the iov[] array are not large enough to hold the current data unit, the buffers will be filled and T_MORE will be set in flags on return to indicate that another t_rcvvudata() should be called to retrieve the rest of the data unit. Subsequent calls to t_rcvvudata() will return zero for the length of the address and options, until the full data unit has been received.

RETURN VALUES

On successful completion, t_rcvvudata() returns the number of bytes received. Otherwise, it returns −1 on failure and t_errno is set to indicate the error.
VALID STATES

T_IDLE.

ERRORS

On failure, t_errno is set to one of the following:

TBADDATA iovcnt is greater than T_IOV_MAX.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW The number of bytes allocated for the incoming protocol address or options (maxlen) is greater than 0 but not sufficient to store the information. The unit data information to be returned in unitdata will be discarded.

TLOOK An asynchronous event has occurred on this transport endpoint and requires immediate attention.

TNODATA O_NONBLOCK was set, but no data units are currently available from the transport provider.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

In the TLI interface definition, no counterpart of this routine was defined.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

fcntl(2), t_alloc(3NSL), t_open(3NSL), t_rcvudata(3NSL), t_rcvuderr(3NSL), t_sndudata(3NSL), t_sndvudata(3NSL), attributes(5)
t_snd(3NSL)

NAME

\texttt{t snd} – send data or expedited data over a connection

SYNOPSIS

\begin{verbatim}
#include <xti.h>

int \texttt{t snd}(int \texttt{fd}, void *\texttt{buf}, unsigned int \texttt{nbytes}, int \texttt{flags});
\end{verbatim}

DESCRIPTION

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are
supported for compatibility. When using a TLI routine that has the same name as an
XTI routine, the \texttt{tiuser.h} header file must be used. Refer to the TLI
COMPATIBILITY section for a description of differences between the two interfaces.

This function is used to send either normal or expedited data. The argument \texttt{fd}
identifies the local transport endpoint over which data should be sent, \texttt{buf} points to the
user data, \texttt{nbytes} specifies the number of bytes of user data to be sent, and \texttt{flags}
specifies any optional flags described below:

- **T_EXPEDITED**: If set in \texttt{flags}, the data will be sent as expedited data and will be
subject to the interpretations of the transport provider.

- **T_MORE**: If set in \texttt{flags}, this indicates to the transport provider that the
transport service data unit (TSDU) (or expedited transport service
data unit - ETSDU) is being sent through multiple \texttt{t snd()} calls. Each \texttt{t snd()} with the \texttt{T_MORE} flag set indicates that another
\texttt{t snd()} will follow with more data for the current TSDU (or
ETSDU).

The end of the TSDU (or ETSDU) is identified by a \texttt{t snd()} call
with the \texttt{T_MORE} flag not set. Use of \texttt{T_MORE} enables a user to
break up large logical data units without losing the boundaries of
those units at the other end of the connection. The flag implies
nothing about how the data is packaged for transfer below the
transport interface. If the transport provider does not support the
concept of a TSDU as indicated in the \texttt{info} argument on return
from \texttt{t open(3NSL)} or \texttt{t getinfo(3NSL)}, the \texttt{T_MORE} flag is not
meaningful and will be ignored if set.

The sending of a zero-length fragment of a TSDU or ETSDU is
only permitted where this is used to indicate the end of a TSDU or
ETSDU; that is, when the \texttt{T_MORE} flag is not set. Some transport
providers also forbid zero-length TSDUs and ETSDUs.

- **T_PUSH**: If set in \texttt{flags}, requests that the provider transmit all data that it has
accumulated but not sent. The request is a local action on the
provider and does not affect any similarly named protocol flag (for
example, the TCP PUSH flag). This effect of setting this flag is
protocol\-hyphen\-dependent, and it may be ignored entirely by
transport providers which do not support the use of this feature.

Note that the communications provider is free to collect data in a send buffer until it
accumulates a sufficient amount for transmission.
By default, `t_snd()` operates in synchronous mode and may wait if flow control restrictions prevent the data from being accepted by the local transport provider at the time the call is made. However, if `O_NONBLOCK` is set by means of `t_open(3NSL)` or `fcntl(2)`, `t_snd()` will execute in asynchronous mode, and will fail immediately if there are flow control restrictions. The process can arrange to be informed when the flow control restrictions are cleared by means of either `t_look(3NSL)` or the EM interface.

On successful completion, `t_snd()` returns the number of bytes (octets) accepted by the communications provider. Normally this will equal the number of octets specified in `nbytes`. However, if `O_NONBLOCK` is set or the function is interrupted by a signal, it is possible that only part of the data has actually been accepted by the communications provider. In this case, `t_snd()` returns a value that is less than the value of `nbytes`. If `t_snd()` is interrupted by a signal before it could transfer data to the communications provider, it returns `-1` with `t_errno` set to `TSYSERR` and `errno` set to `EINTR`.

If `nbytes` is zero and sending of zero bytes is not supported by the underlying communications service, `t_snd()` returns `-1` with `t_errno` set to `TBADDATA`.

The size of each TSDU or ETSDU must not exceed the limits of the transport provider as specified by the current values in the TSDU or ETSDU fields in the `info` argument returned by `t_getinfo(3NSL)`.

The error `TLOOK` is returned for asynchronous events. It is required only for an incoming disconnect event but may be returned for other events.

RETURN VALUES

On successful completion, `t_snd()` returns the number of bytes accepted by the transport provider. Otherwise, `-1` is returned on failure and `t_errno` is set to indicate the error.

Note that if the number of bytes accepted by the communications provider is less than the number of bytes requested, this may either indicate that `O_NONBLOCK` is set and the communications provider is blocked due to flow control, or that `O_NONBLOCK` is clear and the function was interrupted by a signal.

ERRORS

On failure, `t_errno` is set to one of the following:

- **TBADDATA** Illegally amount of data:
 - A single send was attempted specifying a TSDU (ETSDU) or fragment TSDU (ETSDU) greater than that specified by the current values of the TSDU or ETSDU fields in the `info` argument.
 - A send of a zero byte TSDU (ETSDU) or zero byte fragment of a TSDU (ETSDU) is not supported by the provider.
 - Multiple sends were attempted resulting in a TSDU (ETSDU) larger than that specified by the current value of the TSDU or ETSDU fields in the `info` argument – the ability of an XTI...
The specified file descriptor does not refer to a transport endpoint.

An invalid flag was specified.

O_NONBLOCK was set, but the flow control mechanism prevented the transport provider from accepting any data at this time.

An asynchronous event has occurred on this transport endpoint.

This function is not supported by the underlying transport provider.

The communications endpoint referenced by fd is not in one of the states in which a call to this function is valid.

This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (t_errno).

A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They should use the header:

#include <tiuser.h>

The t_errno values that can be set by the XTI interface and cannot be set by the TLI interface are:

TPROTO
TLOOK
TBADFLAG
TOUTSTATE

The t_errno values that this routine can return under different circumstances than its XTI counterpart are:

TBADDATA

In the TBADDATA error cases described above, TBADDATA is returned, only for illegal zero byte TSDU (ETSDU) send attempts.

See attributes(5) for descriptions of the following attributes:
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
fcnt1(2), t_getinfo(3NSL), t_look(3NSL), t_open(3NSL), t_rcv(3NSL), attributes(5)

WARNINGS
It is important to remember that the transport provider treats all users of a transport endpoint as a single user. Therefore if several processes issue concurrent `t_snd()` calls then the different data may be intermixed.

Multiple sends which exceed the maximum TSDU or ETSDU size may not be discovered by XTI. In this case an implementation-dependent error will result, generated by the transport provider, perhaps on a subsequent XTI call. This error may take the form of a connection abort, a `TSYSERR`, a `TBADDATA` or a `TPROTO` error.

If multiple sends which exceed the maximum TSDU or ETSDU size are detected by XTI, `t_snd()` fails with `TBADDATA`.
t_snddis(3NSL)

NAME

`t_snddis` – send user-initiated disconnection request

SYNOPSIS

```c
#include <xti.h>

int t_snddis(int fd, const struct t_call *call);
```

DESCRIPTION

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI routine that has the same name as an XTI routine, the `tiuser.h` header file must be used. Refer to the TLI COMPATIBILITY section for a description of differences between the two interfaces.

This function is used to initiate an abortive release on an already established connection, or to reject a connection request. The argument `fd` identifies the local transport endpoint of the connection, and `call` specifies information associated with the abortive release. The argument `call` points to a `t_call` structure which contains the following members:

- `struct netbuf addr;`
- `struct netbuf opt;`
- `struct netbuf udata;`
- `int sequence;`

The values in `call` have different semantics, depending on the context of the call to `t_snddis()`. When rejecting a connection request, `call` must be non-null and contain a valid value of `sequence` to uniquely identify the rejected connection indication to the transport provider. The `sequence` field is only meaningful if the transport connection is in the `T_INCON` state. The `addr` and `opt` fields of `call` are ignored. In all other cases, `call` need only be used when data is being sent with the disconnection request. The `addr`, `opt` and `sequence` fields of the `t_call` structure are ignored. If the user does not wish to send data to the remote user, the value of `call` may be a null pointer.

The `udata` structure specifies the user data to be sent to the remote user. The amount of user data must not exceed the limits supported by the transport provider, as returned in the `discon` field, of the `info` argument of `t_open(3NSL)` or `t_getinfo(3NSL)`. If the `len` field of `udata` is zero, no data will be sent to the remote user.

RETURN VALUES

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and `t_errno` is set to indicate an error.

VALID STATES

`T_DATAXFER`, `T_OUTCON`, `T_OUTREL`, `T_INREL`, `T_INCON (ocnt > 0)`.

ERRORS

On failure, `t_errno` is set to one of the following:

- **TBAF** The specified file descriptor does not refer to a transport endpoint.
- **TBADDATA** The amount of user data specified was not within the bounds allowed by the transport provider.
- **TBADSEQ** An invalid sequence number was specified, or a null `call` pointer was specified, when rejecting a connection request.
- **TLOOK** An asynchronous event, which requires attention, has occurred.
This function is not supported by the underlying transport provider.

The communications endpoint referenced by fd is not in one of the states in which a call to this function is valid.

This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (t_errno).

A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They should use the header:

```c
#include <tiuser.h>
```

The t_errno value TPROTO can be set by the XTI interface but not by the TLI interface.

The format of the options in an opt buffer is dictated by the transport provider. Unlike the XTI interface, the TLI interface does not fix the buffer format.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
t_connect(3NSL), t_getinfo(3NSL), t_listen(3NSL), t_open(3NSL), t_snd(3NSL), attributes(5)

WARNINGS
t_snddis() is an abortive disconnection. Therefore a t_snddis() issued on a connection endpoint may cause data previously sent by means of t_snd(3NSL), or data not yet received, to be lost, even if an error is returned.
t_sndrel(3NSL)

NAME

 t_sndrel – initiate an orderly release

SYNOPSIS

 #include <xti.h>

 int t_sndrel(int fd);

DESCRIPTION

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI routine that has the same name as an XTI routine, the tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description of differences between the two interfaces.

For transport providers of type T_COTS_ORD, this function is used to initiate an orderly release of the outgoing direction of data transfer and indicates to the transport provider that the transport user has no more data to send. The argument fd identifies the local transport endpoint where the connection exists. After calling t_sndrel(), the user may not send any more data over the connection. However, a user may continue to receive data if an orderly release indication has not been received. For transport providers of types other than T_COTS_ORD, this function fails with error TNOTSUPPORT.

RETURN VALUES

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and t_errno is set to indicate an error.

VALID STATES

T_DATAEXFER, T_INREL.

ERRORS

On failure, t_errno is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TFLOW O_NONBLOCK was set, but the flow control mechanism prevented the transport provider from accepting the function at this time.

TLOOK An asynchronous event has occurred on this transport endpoint and requires immediate attention.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

TLI COMPATIBILITY

The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.
The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They should use the header:

```
#include <tiuser.h>
```

The `t_errno` values that can be set by the XTI interface and cannot be set by the TLI interface are:

- TPROTO
- TLOOK
- TOUTSTATE

Notes: Whenever this function fails with `t_errno` set to `TFLOW`, `O_NONBLOCK` must have been set.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

`t_error(3NSL), t_getinfo(3NSL), t_open(3NSL), t_rcvrel(3NSL), attributes(5)`
t_sndreldata(3NSL)

NAME
t_sndreldata – initiate or respond to an orderly release with user data

SYNOPSIS
#include <xti.h>

int t_sndreldata(int fd, struct t_discon *discon);

DESCRIPTION
This function is used to initiate an orderly release of the outgoing direction of data transfer and to send user data with the release. The argument fd identifies the local transport endpoint where the connection exists, and discon points to a t_discon structure containing the following members:

struct netbuf udata;
int reason;
int sequence;

After calling t_sndreldata(), the user may not send any more data over the connection. However, a user may continue to receive data if an orderly release indication has not been received.

The field reason specifies the reason for the disconnection through a protocol-dependent reason code, and udata identifies any user data that is sent with the disconnection; the field sequence is not used.

The udata structure specifies the user data to be sent to the remote user. The amount of user data must not exceed the limits supported by the transport provider, as returned in the discon field of the info argument of t_open(3NSL) or t_getinfo(3NSL). If the len field of udata is zero or if the provider did not return T_ORDRELDATA in the t_open(3NSL) flags, no data will be sent to the remote user.

If a user does not wish to send data and reason code to the remote user, the value of discon may be a null pointer.

This function is an optional service of the transport provider, only supported by providers of service type T_COTS_ORD. The flag T_ORDRELDATA in the info→flag field returned by t_open(3NSL) or t_getinfo(3NSL) indicates that the provider supports orderly release user data.

This function may not be available on all systems.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and t_errno is set to indicate an error.

VALID STATES
T_DATAXFER, T_INREL.

ERRORS
On failure, t_errno is set to one of the following:

TBADDATA The amount of user data specified was not within the bounds allowed by the transport provider, or user data was supplied and the provider did not return T_ORDRELDATA in the t_open(3NSL) flags.

TBADF The specified file descriptor does not refer to a transport endpoint.
TFLOW
O_NONBLOCK was set, but the flow control mechanism prevented the transport provider from accepting the function at this time.

TLOOK
An asynchronous event has occurred on this transport endpoint and requires immediate attention.

TNOTSUPPORT
Orderly release is not supported by the underlying transport provider.

TOUTSTATE
The communications endpoint referenced by fd is not in one of the states in which a call to this function is valid.

TPROTO
This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (t_errno).

TSYSERR
A system error has occurred during execution of this function.

In the TLI interface definition, no counterpart of this routine was defined.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
t_getinfo(3NSL), t_open(3NSL), t_rcvrel(3NSL), t_rcvreldata(3NSL), t_sndrel(3NSL), attributes(5)

NOTES
The interfaces t_sndreldata() and t_rcvreldata(3NSL) are only for use with a specific transport called “minimal OSI,” which is not available on the Solaris platform. These interfaces are not available for use in conjunction with Internet Transports (TCP or UDP).
t_sndudata(3NSL)

NAME t_sndudata – send a data unit

SYNOPSIS

```c
#include <xti.h>

int t_sndudata(int fd, const struct t_unitdata *unitdata);
```

DESCRIPTION

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI routine that has the same name as an XTI routine, the tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description of differences between the two interfaces.

This function is used in connectionless-mode to send a data unit to another transport user. The argument `fd` identifies the local transport endpoint through which data will be sent, and `unitdata` points to a `t_unitdata` structure containing the following members:

```c
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
```

In `unitdata`, `addr` specifies the protocol address of the destination user, `opt` identifies options that the user wants associated with this request, and `udata` specifies the user data to be sent. The user may choose not to specify what protocol options are associated with the transfer by setting the `len` field of `opt` to zero. In this case, the provider uses the option values currently set for the communications endpoint.

If the `len` field of `udata` is zero, and sending of zero octets is not supported by the underlying transport service, the `t_sndudata()` will return -1 with `t_errno` set to TBADDATA.

By default, `t_sndudata()` operates in synchronous mode and may wait if flow control restrictions prevent the data from being accepted by the local transport provider at the time the call is made. However, if `O_NONBLOCK` is set by means of `t_open(3NSL)` or `fcntl(2)`, `t_sndudata()` will execute in asynchronous mode and will fail under such conditions. The process can arrange to be notified of the clearance of a flow control restriction by means of either `t_look(3NSL)` or the EM interface.

If the amount of data specified in `udata` exceeds the TSDU size as returned in the `tsdu` field of the `info` argument of `t_open(3NSL)` or `t_getinfo(3NSL)`, a TBADDATA error will be generated. If `t_sndudata()` is called before the destination user has activated its transport endpoint (see `t_bind(3NSL)`), the data unit may be discarded.

If it is not possible for the transport provider to immediately detect the conditions that cause the errors TBADDADDR and TBADOPT, these errors will alternatively be returned by `t_rcvuderr`. Therefore, an application must be prepared to receive these errors in both of these ways.

If the call is interrupted, `t_sndudata()` will return EINTR and the datagram will not be sent.
t_sndudata(3NSL)

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and t_errno is set to indicate an error.

VALID STATES
T_IDLE.

ERRORS
On failure, t_errno is set to one of the following:

- TBADADDR: The specified protocol address was in an incorrect format or
 contained illegal information.
- TBADDATA: Illegal amount of data. A single send was attempted specifying a
 TSDU greater than that specified in the info argument, or a send of a zero byte
 TSDU is not supported by the provider.
- TBADF: The specified file descriptor does not refer to a transport endpoint.
- TBADOPT: The specified options were in an incorrect format or contained
 illegal information.
- TFLOW: O_NONBLOCK was set, but the flow control mechanism prevented
 the transport provider from accepting any data at this time.
- TLOOK: An asynchronous event has occurred on this transport endpoint.
- TNOTSUPPORT: This function is not supported by the underlying transport
 provider.
- TOUTSTATE: The communications endpoint referenced by fd is not in one of the
 states in which a call to this function is valid.
- TPROTO: This error indicates that a communication problem has been
 detected between XTI and the transport provider for which there is no other suitable XTI error (t_errno).
- TSYSERR: A system error has occurred during execution of this function.

TLI COMPATIBILITY
The XTI and TLI interface definitions have common names but use different header
files. This, and other semantic differences between the two interfaces are described in
the subsections below.

Interface Header
The XTI interfaces use the header file, xti.h. TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Error Description Values
The t_errno values that can be set by the XTI interface and cannot be set by the TLI
interface are:

TPROTO
TBADADDR
TBADOPT
TLOOK
t_sndudata(3NSL)

TOUTSTATE

Notes Whenever this function fails with t_error set to TFLOW, O_NONBLOCK must have been set.

Option Buffers The format of the options in an opt buffer is dictated by the transport provider. Unlike the XTI interface, the TLI interface does not fix the buffer format.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO fcntl(2), t_alloc(3NSL), t_bind(3NSL), t_error(3NSL), t_getinfo(3NSL), t_look(3NSL), t_open(3NSL), t_rcvudata(3NSL), t_rcvuderr(3NSL), attributes(5)
NAME

t_sndv – send data or expedited data, from one or more non-contiguous buffers, on a
collection

SYNOPSIS

#include <xti.h>

int t_sndv(int fd, const struct t_iovec *iov, unsigned int iovcount,
int flags);

DESCRIPTION

This function is used to send either normal or expedited data. The argument fd
identifies the local transport endpoint over which data should be sent, iov points to an
array of buffer address/length pairs. t_sndv() sends data contained in buffers
iov[0], iov[1], through iov [iovcount-1]. iovcount contains the number of non-contiguous
data buffers which is limited to T_IOV_MAX, an implementation-defined value of at
least 16. If the limit is exceeded, the function fails with TBADDATA.

iov(0).iov_len + .. + iov(iovcount-1).iov_len

Note that the limit on the total number of bytes available in all buffers passed:

may be constrained by implementation limits. If no other constraint applies, it will be
limited by INT_MAX. In practice, the availability of memory to an application is likely
to impose a lower limit on the amount of data that can be sent or received using
scatter/gather functions.

The argument flags specifies any optional flags described below:

T_EXPEDITED If set in flags, the data will be sent as expedited data and will be
subject to the interpretations of the transport provider.

T_MORE If set in flags, this indicates to the transport provider that the
transport service data unit (TSDU) (or expedited transport service
data unit – ETSDU) is being sent through multiple t_sndv() calls. Each t_sndv() with the T_MORE flag set indicates that
another t_sndv() or t_snd(3NSL) will follow with more data for
the current TSDU (or ETSDU).

The end of the TSDU (or ETSDU) is identified by a t_sndv() call with the T_MORE
flag not set. Use of T_MORE enables a user to break up large logical data units without
losing the boundaries of those units at the other end of the connection. The flag
implies nothing about how the data is packaged for transfer below the transport
interface. If the transport provider does not support the concept of a TSDU as
indicated in the info argument on return from t_open(3NSL) or t_getinfo(3NSL),
the T_MORE flag is not meaningful and will be ignored if set.

The sending of a zero-length fragment of a TSDU or ETSDU is only permitted where
this is used to indicate the end of a TSDU or ETSDU, that is, when the T_MORE flag is
not set. Some transport providers also forbid zero-length TSDUs and ETSDUs.
If set in flags, requests that the provider transmit all data that it has accumulated but not sent. The request is a local action on the provider and does not affect any similarly named protocol flag (for example, the TCP PUSH flag). This effect of setting this flag is protocol-dependent, and it may be ignored entirely by transport providers which do not support the use of this feature.

The communications provider is free to collect data in a send buffer until it accumulates a sufficient amount for transmission.

By default, t_sndv() operates in synchronous mode and may wait if flow control restrictions prevent the data from being accepted by the local transport provider at the time the call is made. However, if O_NONBLOCK is set by means of t_open(3NSL) or fcntl(2), t_sndv() executes in asynchronous mode, and will fail immediately if there are flow control restrictions. The process can arrange to be informed when the flow control restrictions are cleared via either t_loo(3NSL) or the EM interface.

On successful completion, t_sndv() returns the number of bytes accepted by the transport provider. Normally this will equal the total number of bytes to be sent, that is,

\[(\text{iov}_0.\text{iov}_{\text{len}} + \ldots + \text{iov}_{[\text{iovcount}-1]}.\text{iov}_{\text{len}})\]

However, the interface is constrained to send at most INT_MAX bytes in a single send. When t_sndv() has submitted INT_MAX (or lower constrained value, see the note above) bytes to the provider for a single call, this value is returned to the user. However, if O_NONBLOCK is set or the function is interrupted by a signal, it is possible that only part of the data has actually been accepted by the communications provider. In this case, t_sndv() returns a value that is less than the value of nbytes. If t_sndv() is interrupted by a signal before it could transfer data to the communications provider, it returns -1 with t_errno set to T_SYSERR and errno set to EINTR.

If the number of bytes of data in the iov array is zero and sending of zero octets is not supported by the underlying transport service, t_sndv() returns -1 with t_errno set to TBADDATA.

The size of each TSDU or ETSDU must not exceed the limits of the transport provider as specified by the current values in the TSDU or ETSDU fields in the info argument returned by t_getinfo(3NSL).

The error TLOOK is returned for asynchronous events. It is required only for an incoming disconnect event but may be returned for other events.

RETURN VALUES

On successful completion, t_sndv() returns the number of bytes accepted by the transport provider. Otherwise, -1 is returned on failure and t_errno is set to indicate the error.

Note that in synchronous mode, if more than INT_MAX bytes of data are passed in the iov array, only the first INT_MAX bytes will be passed to the provider.
If the number of bytes accepted by the communications provider is less than the number of bytes requested, this may either indicate that O_NONBLOCK is set and the communications provider is blocked due to flow control, or that O_NONBLOCK is clear and the function was interrupted by a signal.

VALID STATES

T_DATAFER, T_INREL.

ERRORS

On failure, t_errno is set to one of the following:

- **TBADDATA**
 - The specified file descriptor does not refer to a transport endpoint.
 - A single send was attempted specifying a TSDU (ETSDU) or fragment TSDU (ETSDU) greater than that specified by the current values of the TSDU or ETSDU fields in the *info* argument.
 - A send of a zero byte TSDU (ETSDU) or zero byte fragment of a TSDU (ETSDU) is not supported by the provider.
 - Multiple sends were attempted resulting in a TSDU (ETSDU) larger than that specified by the current value of the TSDU or ETSDU fields in the *info* argument – the ability of an XTI implementation to detect such an error case is implementation-dependent. See WARNINGS, below.

- **TBADF**
 - *iovcount* is greater than T_IOV_MAX.

- **TBADFLAG**
 - An invalid flag was specified.

- **TFLOW**
 - O_NONBLOCK was set, but the flow control mechanism prevented the transport provider from accepting any data at this time.

- **TLOOK**
 - An asynchronous event has occurred on this transport endpoint.

- **TNOTSUPPORT**
 - This function is not supported by the underlying transport provider.

- **TOUTSTATE**
 - The communications endpoint referenced by *fd* is not in one of the states in which a call to this function is valid.

- **TPROTO**
 - This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (t_errno).

- **TSYSERR**
 - A system error has occurred during execution of this function.

In the TLI interface definition, no counterpart of this routine was defined.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>
It is important to remember that the transport provider treats all users of a transport endpoint as a single user. Therefore if several processes issue concurrent `t_sndv()` or `t_snd(3NSL)` calls, then the different data may be intermixed.

Multiple sends which exceed the maximum TSDU or ETSDU size may not be discovered by XTI. In this case an implementation-dependent error will result (generated by the transport provider), perhaps on a subsequent XTI call. This error may take the form of a connection abort, a `TSYSERR`, a `TBADDATA` or a `TPROTO` error.

If multiple sends which exceed the maximum TSDU or ETSDU size are detected by XTI, `t_sndv()` fails with `TBADDATA`.

SEE ALSO

`t_getinfo(3NSL)`, `t_open(3NSL)`, `t_rcvv(3NSL)`, `t_rcv(3NSL)`, `t_snd(3NSL)`, `attributes(5)`
t_sndvudata - send a data unit from one or more noncontiguous buffers

SYNOPSIS

#include <xti.h>

int t_sndvudata(int fd, struct t_unitdata *unitdata, struct t_iovec *iov, unsigned int iovcount);

DESCRIPTION

This function is used in connectionless mode to send a data unit to another transport user. The argument fd identifies the local transport endpoint through which data will be sent, iovcount contains the number of non-contiguous udata buffers and is limited to an implementation-defined value given by T_IOV_MAX which is at least 16, and unitdata points to a t_unitdata structure containing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

If the limit on iovcount is exceeded, the function fails with TBADDATA.

In unitdata, addr specifies the protocol address of the destination user, and opt identifies options that the user wants associated with this request. The udata field is not used. The user may choose not to specify what protocol options are associated with the transfer by setting the len field of opt to zero. In this case, the provider may use default options.

The data to be sent is identified by iov[0] through iov[iovcount-1].

Note that the limit on the total number of bytes available in all buffers passed:

iov(0).iov_len + ... + iov(iovcount-1).iov_len

may be constrained by implementation limits. If no other constraint applies, it will be limited by INT_MAX. In practice, the availability of memory to an application is likely to impose a lower limit on the amount of data that can be sent or received using scatter/gather functions.

By default, t_sndvudata() operates in synchronous mode and may wait if flow control restrictions prevent the data from being accepted by the local transport provider at the time the call is made. However, if O_NONBLOCK is set by means of t_open(3NSL) or fcntl(2), t_sndvudata() executes in asynchronous mode and will fail under such conditions. The process can arrange to be notified of the clearance of a flow control restriction by means of either t_loook(3NSL) or the EM interface.

If the amount of data specified in iov0 through iov[iovcount-1] exceeds the TSDU size as returned in the tsdu field of the info argument of t_open(3NSL) or t_getinfo(3NSL), or is zero and sending of zero octets is not supported by the underlying transport service, a TBADDATA error is generated. If t_sndvudata() is called before the destination user has activated its transport endpoint (see t_bind(3NSL)), the data unit may be discarded.
t_sndvudata(3NSL)

If it is not possible for the transport provider to immediately detect the conditions that cause the errors TBADADDR and TBADOPT, these errors will alternatively be returned by t_rcvuderr(3NSL). An application must therefore be prepared to receive these errors in both of these ways.

RETURN VALUES

Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and t_errno is set to indicate an error.

VALID STATES

T_IDLE.

ERRORS

On failure, t_errno is set to one of the following:

- TBADADDR: The specified protocol address was in an incorrect format or contained illegal information.
- TBADDATA: Illegal amount of data.
 - A single send was attempted specifying a TSDU greater than that specified in the info argument, or a send of a zero byte TSDU is not supported by the provider.
 - iovcount is greater than T_IOV_MAX.
- TBADF: The specified file descriptor does not refer to a transport endpoint.
- TBADOPT: The specified options were in an incorrect format or contained illegal information.
- TFLOW: O_NONBLOCK was set, but the flow control mechanism prevented the transport provider from accepting any data at this time.
- TLOOK: An asynchronous event has occurred on this transport endpoint.
- TNOTSUPPORT: This function is not supported by the underlying transport provider.
- TOUTSTATE: The communications endpoint referenced by fd is not in one of the states in which a call to this function is valid.
- TPROTO: This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (t_errno).
- TSYSERR: A system error has occurred during execution of this function.

In the TLI interface definition, no counterpart of this routine was defined.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

674 man pages section 3: Networking Library Functions • Last Revised 23 Aug 2001
SEE ALSO fcntl(2), t_alloc(3NSL), t_open(3NSL), t_rcvudata(3NSL),
t_rcvvudata(3NSL) t_rcvuderr(3NSL), t_sndudata(3NSL), attributes(5)
t_strerror – produce an error message string

#include <xti.h>

const char *t_strerror(int errnum);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI routine that has the same name as an XTI routine, the tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description of differences between the two interfaces.

The t_strerror() function maps the error number in errnum that corresponds to an XTI error to a language-dependent error message string and returns a pointer to the string. The string pointed to will not be modified by the program, but may be overwritten by a subsequent call to the t_strerror function. The string is not terminated by a newline character. The language for error message strings written by t_strerror() is that of the current locale. If it is English, the error message string describing the value in t_errno may be derived from the comments following the t_errno codes defined in <xti.h>. If an error code is unknown, and the language is English, t_strerror() returns the string:

"<error>: error unknown" where <error> is the error number supplied as input. In other languages, an equivalent text is provided.

VALID STATES

ALL - apart from T_UNINIT.

RETURN VALUES

The function t_strerror() returns a pointer to the generated message string.

TLI COMPATIBILITY

The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

Interface Header

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They should use the header:

#include <tiuser.h>

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

t_errno(3NSL), t_error(3NSL), attributes(5)

676 man pages section 3: Networking Library Functions • Last Revised 7 May 1998
This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI routine that has the same name as an XTI routine, the tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description of differences between the two interfaces.

For the transport endpoint specified by \(fd \), \(t_sync() \) synchronizes the data structures managed by the transport library with information from the underlying transport provider. In doing so, it can convert an uninitialized file descriptor (obtained by means of a \(\text{open}(2) \), \(\text{dup}(2) \) or as a result of a \(\text{fork}(2) \) and \(\text{exec}(2) \)) to an initialized transport endpoint, assuming that the file descriptor referenced a transport endpoint, by updating and allocating the necessary library data structures. This function also allows two cooperating processes to synchronize their interaction with a transport provider.

For example, if a process forks a new process and issues an \(\text{exec}(2) \), the new process must issue a \(t_sync() \) to build the private library data structure associated with a transport endpoint and to synchronize the data structure with the relevant provider information.

It is important to remember that the transport provider treats all users of a transport endpoint as a single user. If multiple processes are using the same endpoint, they should coordinate their activities so as not to violate the state of the transport endpoint. The function \(t_sync() \) returns the current state of the transport endpoint to the user, thereby enabling the user to verify the state before taking further action. This coordination is only valid among cooperating processes; it is possible that a process or an incoming event could change the endpoint’s state after a \(t_sync() \) is issued.

If the transport endpoint is undergoing a state transition when \(t_sync() \) is called, the function will fail.

On successful completion, the state of the transport endpoint is returned. Otherwise, a value of \(-1\) is returned and \(t_errno \) is set to indicate an error. The state returned is one of the following:

- **T_UNBND**: Unbound.
- **T_IDLE**: Idle.
- **T_OUTCON**: Outgoing connection pending.
- **T_INCON**: Incoming connection pending.
- **T_DATAXFER**: Data transfer.
- **T_OUTREL**: Outgoing orderly release (waiting for an orderly release indication).
t_sync(3NSL)

ERRORS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_INREL</td>
<td>Incoming orderly release (waiting for an orderly release request)</td>
</tr>
</tbody>
</table>

On failure, `t_errno` is set to one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBADF</td>
<td>The specified file descriptor does not refer to a transport endpoint. This error may be returned when the <code>fd</code> has been previously closed or an erroneous number may have been passed to the call.</td>
</tr>
<tr>
<td>TPROTO</td>
<td>This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (<code>t_errno</code>).</td>
</tr>
<tr>
<td>TSTATECHNG</td>
<td>The transport endpoint is undergoing a state change.</td>
</tr>
<tr>
<td>TSYSERR</td>
<td>A system error has occurred during execution of this function.</td>
</tr>
</tbody>
</table>

TLI COMPATIBILITY

The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

Interface Header
The XTI interfaces use the header file, `xti.h`. TLI interfaces should not use this header. They should use the header:

```c
#include <tiuser.h>
```

Error Description Values
The `t_errno` value that can be set by the XTI interface and cannot be set by the TLI interface is:

`TPROTO`

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
`dup(2), exec(2), fork(2), open(2), attributes(5)`
NAME

\texttt{t_sysconf} – get configurable XTI variables

SYNOPSIS

\begin{verbatim}
#include <xti.h>

int \texttt{t_sysconf\{}(int \texttt{name});
\end{verbatim}

DESCRIPTION

The \texttt{t_sysconf()} function provides a method for the application to determine the current value of configurable and implementation-dependent XTI limits or options.

The \texttt{name} argument represents the XTI system variable to be queried. The following table lists the minimal set of XTI system variables from \texttt{<xti.h>} that can be returned by \texttt{t_sysconf()}, and the symbolic constants, defined in \texttt{<xti.h>} that are the corresponding values used for \texttt{name}.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
Variable & Value of Name \\
\hline
T_IOV_MAX & _SC_T_IOV_MAX \\
\hline
\end{tabular}
\end{table}

RETURN VALUES

If \texttt{name} is valid, \texttt{t_sysconf()} returns the value of the requested limit/option, which might be -1, and leaves \texttt{t_errno} unchanged. Otherwise, a value of -1 is returned and \texttt{t_errno} is set to indicate an error.

VALID STATES

All.

ERRORS

On failure, \texttt{t_errno} is set to the following:

\begin{verbatim}
TBADFLAG name has an invalid value.
\end{verbatim}

TLI COMPATIBILITY

In the TLI interface definition, no counterpart of this routine was defined.

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
ATTRIBUTE TYPE & ATTRIBUTE VALUE \\
\hline
MT-Level & MT-Safe \\
\hline
\end{tabular}
\end{table}

SEE ALSO

\texttt{sysconf(3C)}, \texttt{t_rcvv(3NSL)}, \texttt{t_rcvvudata(3NSL)}, \texttt{t_sndv(3NSL)}, \texttt{t_sndvudata(3NSL)}, attributes(5)
t_unbind(3NSL)

NAME | t_unbind – disable a transport endpoint

SYNOPSIS |
#include <xti.h>

int t_unbind(int fd);

DESCRIPTION | The This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI represents the future evolution of these interfaces. However, TLI interfaces are supported for compatibility. When using a TLI routine that has the same name as an XTI routine, the tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description of differences between the two interfaces.

The t_unbind() function disables the transport endpoint specified by fd which was previously bound by t_bind(3NSL). On completion of this call, no further data or events destined for this transport endpoint will be accepted by the transport provider. An endpoint which is disabled by using t_unbind() can be enabled by a subsequent call to t_bind(3NSL).

RETURN VALUES | Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned and t_errno is set to indicate an error.

VALID STATES | T_IDLE.

ERRORS | On failure, t_errno is set to one of the following:

TBADF | The specified file descriptor does not refer to a transport endpoint.

TLOOK | An asynchronous event has occurred on this transport endpoint.

TOUTSTATE | The communications endpoint referenced by fd is not in one of the states in which a call to this function is valid.

TPROTO | This error indicates that a communication problem has been detected between XTI and the transport provider for which there is no other suitable XTI error (t_errno).

TSYSERR | A system error has occurred during execution of this function.

TLI COMPATIBILITY | The XTI and TLI interface definitions have common names but use different header files. This, and other semantic differences between the two interfaces are described in the subsections below.

Interface Header | The XTI interfaces use the header file, xti.h . TLI interfaces should not use this header. They should use the header:

#include <tiuser.h>

Error Description Values | The t_errno value that can be set by the XTI interface and cannot be set by the TLI interface is:

TPROTO
t_unbind(3NSL)

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO t_bind(3NSL), attributes(5)
NAME
xdr – library routines for external data representation

DESCRIPTION
XDR routines allow C programmers to describe arbitrary data structures in a machine-independent fashion. Data for remote procedure calls (RPC) are transmitted using these routines.

Index to Routines
The following table lists XDR routines and the manual reference pages on which they are described:

<table>
<thead>
<tr>
<th>XDR Routine</th>
<th>Manual Reference Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xdr_array</td>
<td>xdr_complex(3NSL)</td>
</tr>
<tr>
<td>xdr_bool</td>
<td>xdr_simple(3NSL)</td>
</tr>
<tr>
<td>xdr_bytes</td>
<td>xdr_complex(3NSL)</td>
</tr>
<tr>
<td>xdr_char</td>
<td>xdr_simple(3NSL)</td>
</tr>
<tr>
<td>xdr_control</td>
<td>xdr_admin(3NSL)</td>
</tr>
<tr>
<td>xdr_destroy</td>
<td>xdr_create(3NSL)</td>
</tr>
<tr>
<td>xdr_double</td>
<td>xdr_simple(3NSL)</td>
</tr>
<tr>
<td>xdr_enum</td>
<td>xdr_simple(3NSL)</td>
</tr>
<tr>
<td>xdr_float</td>
<td>xdr_simple(3NSL)</td>
</tr>
<tr>
<td>xdr_free</td>
<td>xdr_simple(3NSL)</td>
</tr>
<tr>
<td>xdr_getpos</td>
<td>xdr_admin(3NSL)</td>
</tr>
<tr>
<td>xdr_hyper</td>
<td>xdr_simple(3NSL)</td>
</tr>
<tr>
<td>xdr_inline</td>
<td>xdr_admin(3NSL)</td>
</tr>
<tr>
<td>xdr_int</td>
<td>xdr_simple(3NSL)</td>
</tr>
<tr>
<td>xdr_long</td>
<td>xdr_simple(3NSL)</td>
</tr>
<tr>
<td>xdr_longlong_t</td>
<td>xdr_simple(3NSL)</td>
</tr>
<tr>
<td>xdrOpaque</td>
<td>xdr_complex(3NSL)</td>
</tr>
<tr>
<td>xdr_pointer</td>
<td>xdr_complex(3NSL)</td>
</tr>
<tr>
<td>xdr_quadruple</td>
<td>xdr_simple(3NSL)</td>
</tr>
<tr>
<td>xdr_reference</td>
<td>xdr_complex(3NSL)</td>
</tr>
<tr>
<td>xdr_setpos</td>
<td>xdr_admin(3NSL)</td>
</tr>
<tr>
<td>xdr_short</td>
<td>xdr_simple(3NSL)</td>
</tr>
<tr>
<td>xdr_sizeof</td>
<td>xdr_admin(3NSL)</td>
</tr>
<tr>
<td>xdr_string</td>
<td>xdr_complex(3NSL)</td>
</tr>
<tr>
<td>xdr_u_char</td>
<td>xdr_simple(3NSL)</td>
</tr>
<tr>
<td>ATTRIBUTE TYPE</td>
<td>ATTRIBUTE VALUE</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>MT-Level Safe</td>
<td>Safe</td>
</tr>
</tbody>
</table>

ATTRIBUTES

See attributes(5) for descriptions of the following attributes:

- xdr_u_hyper
- xdr_u_int
- xdr_u_long
- xdr_u_longlong_t
- xdr_u_short
- xdr_union
- xdr_vector
- xdr_void
- xdr_wrapstring
- xdrmem_create
- xdrrec_create
- xdrrec_endofrecord
- xdrrec_eof
- xdrrec_readbytes
- xdrrec_skiprecord
- xdrstdio_create

SEE ALSO

rpc(3NSL), xdr_admin(3NSL), xdr_complex(3NSL), xdr_create(3NSL), xdr_simple(3NSL), attributes(5)
XDR library routines allow C programmers to describe arbitrary data structures in a
machine-independent fashion. Protocols such as remote procedure calls (RPC) use
these routines to describe the format of the data.

These routines deal specifically with the management of the XDR stream.

See `rpc(3NSL)` for the definition of the XDR data structure. Note that any buffers
passed to the XDR routines must be properly aligned. It is suggested either that
`malloc(3C)` be used to allocate these buffers, or that the programmer insure that the
buffer address is divisible evenly by four.

```c
#include <rpc/xdr.h>

bool_t xdr_control( XDR *xdrs, int req, void *info);
    A function macro to change or retrieve various information about an XDR stream.
    `req` indicates the type of operation and `info` is a pointer to the information. The
    supported values of `req` is `XDR_GET_BYTES_AVAIL` and its argument type is
    `xdr_bytesrec *`. They return the number of bytes left unconsumed in the stream
    and a flag indicating whether or not this is the last fragment.

double_t xdr_getpos(const XDR *xdrs);
    A macro that invokes the get-position routine associated with the XDR stream,
    `xdrs`. The routine returns an unsigned integer, which indicates the position of the XDR
    byte stream. A desirable feature of XDR streams is that simple arithmetic works
    with this number, although the XDR stream instances need not guarantee this.
    Therefore, applications written for portability should not depend on this feature.

long *xdr_inline(XDR *xdrs, const int len);
    A macro that invokes the in-line routine associated with the XDR stream, `xdrs`. The
    routine returns a pointer to a contiguous piece of the stream’s buffer; `len` is the byte
    length of the desired buffer. Note: pointer is cast to `long *`.

    Warning: `xdr_inline()` may return `NULL` (0) if it cannot allocate a contiguous
    piece of a buffer. Therefore the behavior may vary among stream instances; it exists
    for the sake of efficiency, and applications written for portability should not depend
    on this feature.

bool_t xdrrec_endofrecord(XDR *xdrs, int sendnow);
    This routine can be invoked only on streams created by `xdrrec_create()`. See
    `xdr_create(3NSL)`. The data in the output buffer is marked as a completed
    record, and the output buffer is optionally written out if `sendnow` is non-zero. This
    routine returns `TRUE` if it succeeds, `FALSE` otherwise.

bool_t xdrrec_eof(XDR *xdrs);
    This routine can be invoked only on streams created by `xdrrec_create()`. After
    consuming the rest of the current record in the stream, this routine returns `TRUE` if
there is no more data in the stream’s input buffer. It returns \texttt{FALSE} if there is
additional data in the stream’s input buffer.

\begin{verbatim}
int xdrrec_readbytes(XDR *xdrs, caddr_t addr, uint_t nbytes);
This routine can be invoked only on streams created by \texttt{xdrrec_create()}. It
attempts to read \texttt{nbytes} bytes from the XDR stream into the buffer pointed to by
\texttt{addr}. Upon success this routine returns the number of bytes read. Upon failure, it
returns \texttt{-1}. A return value of \texttt{0} indicates an end of record.
\end{verbatim}

\begin{verbatim}
bool_t  xdrrec_skiprecord(XDR *xdrs);
This routine can be invoked only on streams created by \texttt{xdrrec_create()}. See
\texttt{xdr_create(3NSL)}. It tells the XDR implementation that the rest of the current
record in the stream’s input buffer should be discarded. This routine returns \texttt{TRUE}
if it succeeds, \texttt{FALSE} otherwise.
\end{verbatim}

\begin{verbatim}
bool_t  xdr_setpos(XDR *xdrs, const uint_t pos);
A macro that invokes the set position routine associated with the XDR stream \texttt{xdrs}.
The parameter \texttt{pos} is a position value obtained from \texttt{xdr_getpos()}. This routine
returns \texttt{TRUE} if the XDR stream was repositioned, and \texttt{FALSE} otherwise.
\end{verbatim}

Warning: it is difficult to reposition some types of XDR streams, so this routine may
fail with one type of stream and succeed with another. Therefore, applications
written for portability should not depend on this feature.

\begin{verbatim}
unsigned long xdr_sizeof(xdrproc_t func, void *data);
This routine returns the number of bytes required to encode \texttt{data} using the XDR
filter function \texttt{func}, excluding potential overhead such as RPC headers or record
markers. \texttt{0} is returned on error. This information might be used to select between
transport protocols, or to determine the buffer size for various lower levels of RPC
client and server creation routines, or to allocate storage when XDR is used outside
of the RPC subsystem.
\end{verbatim}

\textbf{ATTRIBUTES} See \texttt{attributes(5)} for descriptions of the following attributes:

\begin{center}
\begin{tabular}{|c|c|}
\hline
\textbf{ATTRIBUTE TYPE} & \textbf{ATTRIBUTE VALUE} \\
\hline
MT-Level & Safe \\
\hline
\end{tabular}
\end{center}

\textbf{SEE ALSO} \texttt{malloc(3C)}, \texttt{rpc(3NSL)}, \texttt{xdr_complex(3NSL)}, \texttt{xdr_create(3NSL)},
\texttt{xdr_simple(3NSL)}, \texttt{attributes(5)}

\begin{center}
\texttt{xdr_admin(3NSL)}
\end{center}
XDR library routines allow C programmers to describe complex data structures in a machine-independent fashion. Protocols such as remote procedure calls (RPC) use these routines to describe the format of the data. These routines are the XDR library routines for complex data structures. They require the creation of XDR streams. See \textit{xdr\_create(3NSL)}.

See \textit{rpc(3NSL)} for the definition of the XDR data structure. Note that any buffers passed to the XDR routines must be properly aligned. It is suggested either that \textit{malloc()} be used to allocate these buffers, or that the programmer insure that the buffer address is divisible evenly by four.

```c
#include <rpc/xdr.h>

bool_t xdr_array(XDR *xdrs, caddr_t *arrp, uint_t *sizep, const uint_t maxsize, const uint_t elsie, const xdrproc_t elproc);

xdr_array() translates between variable-length arrays and their corresponding external representations. The parameter \textit{arrp} is the address of the pointer to the array, while \textit{sizep} is the address of the element count of the array; this element count cannot exceed \textit{maxsize}. The parameter \textit{elsie} is the size of each of the array’s elements, and \textit{elproc} is an XDR routine that translates between the array elements’ C form and their external representation. If *\textit{arrp} is NULL when decoding, \textit{xdr_array()} allocates memory and *\textit{arrp} points to it. This routine returns \texttt{TRUE} if it succeeds, \texttt{FALSE} otherwise.

bool_t xdr_bytes(XDR *xdrs, char **sp, uint_t *sizep, const uint_t maxsize);

xdr_bytes() translates between counted byte strings and their external representations. The parameter \textit{sp} is the address of the string pointer. The length of the string is located at address \textit{sizep}; strings cannot be longer than \textit{maxsize}. If *\textit{sp} is NULL when decoding, \textit{xdr_bytes()} allocates memory and *\textit{sp} points to it. This routine returns \texttt{TRUE} if it succeeds, \texttt{FALSE} otherwise.

bool_t xdr_opaque(XDR *xdrs, caddr_t cp, const uint_t cnt);

xdr_opaque() translates between fixed size opaque data and its external representation. The parameter \textit{cp} is the address of the opaque object, and \textit{cnt} is its size in bytes. This routine returns \texttt{TRUE} if it succeeds, \texttt{FALSE} otherwise.

bool_t xdr_pointer(XDR *xdrs, char **objpp, uint_t *obssize, const xdrproc_t xdrproc);

Like \textit{xdr_reference()} except that it serializes null pointers, whereas \textit{xdr_reference()} does not. Thus, \textit{xdr_pointer()} can represent recursive data structures, such as binary trees or linked lists. If *\textit{objpp} is NULL when decoding, \textit{xdr_pointer()} allocates memory and *\textit{objpp} points to it.

bool_t xdr_reference(XDR *xdrs, caddr_t *pp, uint_t size, const xdrproc_t proc);

xdr_reference() provides pointer chasing within structures. The parameter \textit{pp} is the address of the pointer; \textit{size} is the size of the structure that *\textit{pp} points to; and \textit{proc} is an XDR procedure that translates the structure between its C form and
its external representation. If *pp is NULL when decoding, xdr_reference() allocates memory and *pp points to it. This routine returns 1 if it succeeds, 0 otherwise.

Warning: this routine does not understand null pointers. Use xdr_pointer() instead.

bool_t xdr_string(XDR *xdrs, char **sp, const uint_t maxsize);
xdr_string() translates between C strings and their corresponding external representations. Strings cannot be longer than maxsize. Note: sp is the address of the string's pointer. If *sp is NULL when decoding, xdr_string() allocates memory and *sp points to it. This routine returns TRUE if it succeeds, FALSE otherwise.
Note: xdr_string() can be used to send an empty string (" "), but not a null string.

bool_t xdr_union(XDR *xdrs, enum_t *dscmp, char *unp, const struct xdr_discrim *choices, const xdrproc_t (*defaultarm));
xdr_union() translates between a discriminated C union and its corresponding external representation. It first translates the discriminant of the union located at dscmp. This discriminant is always an enum_t. Next the union located at unp is translated. The parameter choices is a pointer to an array of xdr_discrim structures. Each structure contains an ordered pair of [value, proc]. If the union's discriminant is equal to the associated value, then the proc is called to translate the union. The end of the xdr_discrim structure array is denoted by a routine of value NULL. If the discriminant is not found in the choices array, then the defaultarm procedure is called (if it is not NULL). It returns TRUE if it succeeds, FALSE otherwise.

bool_t xdr_vector(XDR *xdrs, char *arrp, const uint_t size, const uint_t elsise, const xdrproc_t elproc);
xdr_vector() translates between fixed-length arrays and their corresponding external representations. The parameter arrp is the address of the pointer to the array, while size is the element count of the array. The parameter elsise is the sizeof each of the array's elements, and elproc is an XDR routine that translates between the array elements' C form and their external representation. This routine returns TRUE if it succeeds, FALSE otherwise.

bool_t xdr_wrapstring(XDR *xdrs, char **sp);
A routine that calls xdr_string(xdrs, sp, maxuint); where maxuint is the maximum value of an unsigned integer.

Many routines, such as xdr_array(), xdr_pointer(), and xdr_vector() take a function pointer of type xdrproc_t(), which takes two arguments.
xdr_string(), one of the most frequently used routines, requires three arguments, while xdr_wrapstring() only requires two. For these routines, xdr_wrapstring() is desirable. This routine returns TRUE if it succeeds, FALSE otherwise.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:
xdr_complex(3NSL)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO
- malloc(3C)
- rpc(3NSL)
- xdr_admin(3NSL)
- xdr_create(3NSL)
- xdr_simple(3NSL)
- attributes(5)
NAME

xdr_create, xdr_destroy, xdrmem_create, xdrrec_create, xdrstdio_create – library routines for external data representation stream creation

SYNOPSIS

```c
#include <rpc/xdr.h>

void xdr_destroy(XDR *xdrs);

void xdrmem_create(XDR *xdrs, const caddr_t addr, const uint_t size,
    const enum xdr_op op);

void xdrrec_create(XDR *xdrs, const uint_t sendsz, const uint_t recvsz,
    const caddr_t handle, const int (*readit) const void *
    *read_handle, char *buf, const int len, const int (*writeit) const
    void *write_handle, const char *buf, const int len);

void xdrstdio_create(XDR *xdrs, FILE *file, const enum xdr_op op);
```

DESCRIPTION

The XDR library routines allow C programmers to describe arbitrary data structures in a machine-independent fashion. Protocols such as remote procedure calls (RPC) use these routines to describe the format of the data.

These routines deal with the creation of XDR streams, which must be created before any data can be translated into XDR format.

Routines

See rpc(3NSL) for the definition of the XDR CLIENT and SVCXPRT data structures.

Any buffers passed to the XDR routines must be properly aligned. Use malloc(3C) to allocate these buffers or be sure that the buffer address is divisible evenly by four.

xdr_destroy()

A macro that invokes the destroy routine associated with the XDR stream, `xdrs`. Private data structures associated with the stream are freed. Using `xdrs` after `xdr_destroy()` is invoked is undefined.

xdrmem_create()

This routine initializes the XDR stream object pointed to by `xdrs`. The stream’s data is written to or read from a chunk of memory at location `addr` whose length is no less than `size` bytes long. The `op` determines the direction of the XDR stream. The value of `op` can be either XDR_ENCODE, XDR_DECODE, or XDR_FREE.

xdrrec_create()

This routine initializes the read-oriented XDR stream object pointed to by `xdrs`. The stream’s data is written to a buffer of `sendsz` size. A value of 0 indicates the system should use a suitable default. The stream’s data is read from a buffer of `recvsz`. It too can be set to a suitable default by passing a 0 value. When a stream’s output buffer is full, `writeit` is called. Similarly, when a stream’s input buffer is empty, `xdrrec_create()` calls `readit`. The behavior of these two routines is similar to the system calls `read()` and `write()`, except that an appropriate handle, `read_handle` or `write_handle`, is passed to the former routines as the first parameter instead of a file descriptor. See `read(2)` and `write(2)`, respectively. The XDR stream’s `op` field must be set by the caller.
This XDR stream implements an intermediate record stream. Therefore, additional bytes in the stream are provided for record boundary information.

xdrstdio_create()

This routine initializes the XDR stream object pointed to by `xdrs`. The XDR stream data is written to or read from the standard I/O stream `file`. The parameter `op` determines the direction of the XDR stream. The value of `op` can be either `XDR_ENCODE`, `XDR_DECODE`, or `XDR_FREE`.

The destroy routine associated with XDR streams calls `fflush()` on the `file` stream, but never `fclose()`. See `fclose(3C)`.

A failure of any of these functions can be detected by first initializing the `x_ops` field in the XDR structure (`xdrs->x_ops`) to `NULL` before calling the `xdr_*_create()` function. If the `x_ops` field is still `NULL`, after the return from the `xdr_*_create()` function, the call has failed. If the `x_ops` field contains some other value, assume that the call has succeeded.

ATTRIBUTES

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

SEE ALSO

`read(2), write(2), fclose(3C), malloc(3C), rpc(3NSL), xdr_admin(3NSL), xdr_complex(3NSL), xdr_simple(3NSL), attributes(5)`
The XDR library routines allow C programmers to describe simple data structures in a machine-independent fashion. Protocols such as remote procedure calls (RPC) use these routines to describe the format of the data.

These routines require the creation of XDR streams (see xdr_create(3NSL)).

Routines

See rpc(3NSL) for the definition of the XDR data structure. Note that any buffers passed to the XDR routines must be properly aligned. It is suggested that malloc(3C) be used to allocate these buffers or that the programmer insure that the buffer address is divisible evenly by four.

xdr_bool() xdr_bool() translates between booleans (C integers) and their external representations. When encoding
data, this filter produces values of either 1 or 0. This routine returns TRUE if it succeeds, FALSE otherwise.

xdr_char() xdr_char() translates between C characters and their external representations. This routine returns TRUE if it succeeds, FALSE otherwise. Note: encoded characters are not packed, and occupy 4 bytes each. For arrays of characters, it is worthwhile to consider xdr_bytes(), xdrOpaque(), or xdr_string() (see xdr_complex(3NSL)).

xdr_double() xdr_double() translates between C double precision numbers and their external representations. This routine returns TRUE if it succeeds, FALSE otherwise.

xdr_enum() xdr_enum() translates between C enums (actually integers) and their external representations. This routine returns TRUE if it succeeds, FALSE otherwise.

xdr_float() xdr_float() translates between C floats and their external representations. This routine returns TRUE if it succeeds, FALSE otherwise.

xdr_free() Generic freeing routine. The first argument is the XDR routine for the object being freed. The second argument is a pointer to the object itself. Note: the pointer passed to this routine is not freed, but what it points to is freed (recursively, depending on the XDR routine).

xdr_hyper() xdr_hyper() translates between ANSI C long long integers and their external representations. This routine returns TRUE if it succeeds, FALSE otherwise.

xdr_int() xdr_int() translates between C integers and their external representations. This routine returns TRUE if it succeeds, FALSE otherwise.

xdr_long() xdr_long() translates between C long integers and their external representations. This routine returns TRUE if it succeeds, FALSE otherwise.

In a 64-bit environment, this routine returns an error if the value of lp is outside the range [INT32_MIN, INT32_MAX]. The xdr_int() routine is recommended in place of this routine.

xdr_longlong_t() xdr_longlong_t() translates between ANSI C long long integers and their external representations. This routine returns TRUE if it succeeds, FALSE otherwise. This routine is identical to xdr_hyper().
xdr_quaduple() xdr_quaduple() translates between IEEE quadruple precision floating point numbers and their external representations. This routine returns TRUE if it succeeds, FALSE otherwise.

xdr_short() xdr_short() translates between C short integers and their external representations. This routine returns TRUE if it succeeds, FALSE otherwise.

xdr_u_char() xdr_u_char() translates between unsigned C characters and their external representations. This routine returns TRUE if it succeeds, FALSE otherwise.

xdr_u_hyper() xdr_u_hyper() translates between unsigned ANSI C long long integers and their external representations. This routine returns TRUE if it succeeds, FALSE otherwise.

xdr_u_int() A filter primitive that translates between a C unsigned integer and its external representation. This routine returns TRUE if it succeeds, FALSE otherwise.

xdr_u_long() xdr_u_long() translates between C unsigned long integers and their external representations. This routine returns TRUE if it succeeds, FALSE otherwise.

In a 64-bit environment, this routine returns an error if the value of ulp is outside the range [0, UINT32_MAX]. The xdr_u_int() routine is recommended in place of this routine.

xdr_u_longlong_t() xdr_u_longlong_t() translates between unsigned ANSI C long long integers and their external representations. This routine returns TRUE if it succeeds, FALSE otherwise. This routine is identical to xdr_u_hyper().

xdr_u_short() xdr_u_short() translates between C unsigned short integers and their external representations. This routine returns TRUE if it succeeds, FALSE otherwise.

xdr_void() This routine always returns TRUE. It may be passed to RPC routines that require a function parameter, where nothing is to be done.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>
The primary service provided by a federated naming system is to map a composite name to a reference. A composite name is composed of name components from one or more naming systems. A reference consists of one or more communication end points. An additional service provided by a federated naming system is to provide access to attributes associated with named objects. This extension is to satisfy most applications' additional naming service needs without cluttering the basic naming service model. XFN is a programming interface for a federated naming service.

To use the XFN interface, include the `xfn/xfn.h` header file and link the application with `-lxfn`.

The `xfn/xfn.h` header file contains the interface declarations for:
- the XFN base context interface,
- the XFN base attribute interface,
- status object and status codes used by operations in these two interfaces,
- abstract data types passed as parameters to and returned as values from operations in these two interfaces, and
- the interface for the XFN standard syntax model for parsing compound names.

NAME
xfn – overview of the XFN interface

DESCRIPTION
The XFN interface provides a mechanism for mapping composite names to references and accessing attributes associated with named objects.

FILES
/usr/include/xfn/xfn.h

SEE ALSO
FN_ctx_t(3XFN), FN_status_t(3XFN), xfn_attributes(3XFN), xfn_composite_names(3XFN), xfn_compound_names(3XFN), xfn_status_codes(3XFN), fns(5), fns_policies(5)

NOTES
The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
XFN assumes the following model for attributes. A set of zero or more attributes is associated with a named object. Each attribute in the set has a unique attribute identifier, an attribute syntax, and a (possibly empty) set of distinct data values. Each attribute value has an opaque data type. The attribute identifier serves as a name for the attribute. The attribute syntax indicates how the value is encoded in the buffer.

The operations of the base attribute interface may be used to examine and modify the settings of attributes associated with existing named objects. These objects may be contexts or other types of objects. The attribute operations do not create names or remove names from contexts.

The range of support for attribute operations may vary widely. Some naming systems may not support any attribute operations. Other naming systems may only support read operations, or operations on attributes whose identifiers are in some fixed set. A naming system may limit attributes to have a single value, or may require at least one value. Some naming systems may only associate attributes with context objects, while others may allow associating attributes with non-context objects.

These are the interfaces:

```c
#include <xfn/xfn.h>

FN_attribute_t *fn_attr_get(FN_ctx_t *ctx, const FN_composite_name_t *name,
const FN_identifier_t *attribute_id, FN_status_t *status);

int fn_attr_modify(FN_ctx_t *ctx, const FN_composite_name_t *name,
unsigned int mod_op, const FN_attribute_t *attr, FN_status_t *status);

FN_attrset_t *fn_attr_get_ids(FN_ctx_t *ctx, const FN_composite_name_t *name,
FN_status_t *status);

FN_valuelist_t *fn_attr_get_values(FN_ctx_t *ctx, const FN_composite_name_t *name,
const FN_identifier_t *attribute_id, FN_status_t *status);

FNAttributeValue_t *fn_valuelist_next(FN_valuelist_t *vl,
FN_identifier_t **attr_syntax,
FN_status_t *status);

void fn_valuelist_destroy(FN_valuelist_t *vl, FN_status_t *status);

FN_multigetlist_t *fn_attr_multi_get(FN_ctx_t *ctx,
const FN_composite_name_t *name, const FN_attrset_t *attr_ids,
FN_status_t *status);

FN_attribute_t *fn_multigetlist_next(FN_multigetlist_t *ml,
```

NAME

xfn_attributes – an overview of XFN attribute operations

DESCRIPTION

XFN assumes the following model for attributes. A set of zero or more attributes is associated with a named object. Each attribute in the set has a unique attribute identifier, an attribute syntax, and a (possibly empty) set of distinct data values. Each attribute value has an opaque data type. The attribute identifier serves as a name for the attribute. The attribute syntax indicates how the value is encoded in the buffer.

The operations of the base attribute interface may be used to examine and modify the settings of attributes associated with existing named objects. These objects may be contexts or other types of objects. The attribute operations do not create names or remove names from contexts.

The range of support for attribute operations may vary widely. Some naming systems may not support any attribute operations. Other naming systems may only support read operations, or operations on attributes whose identifiers are in some fixed set. A naming system may limit attributes to have a single value, or may require at least one value. Some naming systems may only associate attributes with context objects, while others may allow associating attributes with non-context objects.
The following describes briefly the operations in the base attribute interface. Detailed descriptions are given in the respective reference manual pages for these operations.

`fn_attr_get()` returns the attribute identified. `fn_attr_modify()` modifies the attribute identified as described by `mod_op`.

`fn_attr_get_ids()` returns the identifiers of the attributes of the named object.

`fn_attr_get_values()` and its set of related operations are used for returning the individual values of an attribute.

`fn_attr_multi_get()` and its set of related operations are used for returning the requested attributes associated with the named object. `fn_attr_multi_modify()` modifies multiple attributes associated with the named object in a single invocation.

`fn_ctx_get_syntax_attrs()` returns the syntax attributes associated with the named context.

ERRORS

`status` is set as described in `FN_status_t(3XFN)` and `xfn_status_codes(3XFN)`. The following status codes are of special relevance to attribute operations:

- **FN_E_ATTR_VALUE_REQUIRED**
 The operation attempted to create an attribute without a value, and the specific naming system does not allow this.

- **FN_E_ATTR_NO_PERMISSION**
 The caller did not have permission to perform the attempted attribute operation.

- **FN_E_INSUFFICIENT_RESOURCES**
 There are insufficient resources to retrieve the requested attribute(s).

- **FN_E_INVALID_ATTR_IDENTIFIER**
 The attribute identifier was not in a format acceptable to the naming system, or its contents was not valid for the format specified for the identifier.

- **FN_E_INVALID_ATTR_VALUE**
 One of the values supplied was not in the appropriate form for the given attribute.
The object did not have an attribute with the given identifier.

The operation attempted to associate more values with an attribute than the naming system supported.

Except for fn_ctx_get_syntaxAttrs(), an attribute operation using a composite name is not necessarily equivalent to an independent fn_ctx_lookup() operation followed by an attribute operation in which the caller supplies the resulting reference and an empty name. This is because there is a range of attribute models in which an attribute is associated with a name in a context, or an attribute is associated with the object named, or both. XFN accommodates all of these alternatives. Invoking an attribute operation using the target context and the terminal atomic name accesses either the attributes that are associated with the target name or target named object; this is dependent on the underlying attribute model. This document uses the term "attributes associated with a named object" to refer to all of these cases.

XFN specifies no guarantees about the relationship between the attributes and the reference associated with a given name. Some naming systems may store the reference bound to a name in one or more attributes associated with a name. Attribute operations might affect the information used to construct a reference.

To avoid undefined results, programmers must use the operations in the context interface and not attribute operations when the intention is to manipulate a reference. Programmers should avoid the use of specific knowledge about how an XFN context implementation over a particular naming system constructs references.

SEE ALSO

fn_attribute_t(3XFN), fn_attrset_t(3XFN), fn_attrvalue_t(3XFN),
fn_composite_name_t(3XFN), fn_ctx_t(3XFN), fn_identifier_t(3XFN),
fn_status_t(3XFN), fn_attr_get(3XFN), fn_attr_get_ids(3XFN),
fn_attr_get_values(3XFN), fn_attr_modify(3XFN),
fn_attr_multi_get(3XFN), fn_attr_multi_modify(3XFN),
fn_ctx_get_syntaxAttrs(3XFN), fn_ctx_lookup(3XFN), xfn(3XFN),
xfn_status_codes(3XFN)

NOTES

The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
An XFN composite name consists of an ordered list of zero or more components. Each component is a string name from the namespace of a single naming system. It may be an atomic or a compound name in that namespace.

XFN defines an abstract data type, FN_composite_name_t, for representing the structural form of a composite name. XFN also defines a standard string form for composite names. This form is the concatenation of the components of a composite name from left to right with the XFN component separator ('/') character to separate each component.

These are the interfaces:

```c
#include <xfn/xfn.h>
FN_composite_name_t *fn_composite_name_from_string( const FN_string_t *str);
FN_string_t *fn_string_from_composite_name( const FN_composite_name_t *name);
```

The function `fn_composite_name_from_string` parses the string representation of a composite name into its corresponding composite name object `FN_composite_name_t`. The function `fn_string_from_composite_name` composes the string representation of a composite name given its composite name object form `FN_composite_name_t`.

Special characters used in the XFN composite name syntax, such as the separator or escape characters, have the same encoding as they would in ISO 646.

All XFN implementations are required to support the portable representation, ISO 646. All other representations are optional.

All characters of the string form of a XFN composite name use a single encoding. This does not preclude component names of a composite name in its structural form from having different encodings. Code set mismatches that occur during the process of converting a composite name structure to its string form are resolved in an implementation-dependent way. When an implementation discovers that a composite name has components with incompatible code sets, it returns the error code `FN_E_INCOMPATIBLE_CODE_SETS`.

SEE ALSO

FN_string_t(3XFN), FN_composite_name_t(3XFN), xfn(3XFN)
NAME

xfn_compound_names – XFN compound syntax: an overview of XFN model for compound name parsing

DESCRIPTION

Each naming system in an XFN federation has a naming convention. XFN defines a standard model of expressing compound name syntax that covers a large number of specific name syntaxes and is expressed in terms of syntax properties of the naming convention.

The model uses the attributes in the following table to describe properties of the syntax. Unless otherwise qualified, these syntax attributes have attribute identifiers that use the FN_ID_STRING format. A context that supports the XFN standard syntax model has an attribute set containing the fn_syntax_type (with identifier format FN_ID_STRING) attribute with the value "standard" (ASCII attribute syntax).

These are the interfaces:

```
#include <xfn/xfn.h>
FN_attrset_t *fn_ctx_get_syntax_attrs(FN_ctx_t *ctx,
const FN_composite_name_t *name,
FN_status_t *status);
FN_compound_name_t *fn_compound_name_from_syntax_attrs(const FN_attrset_t *aset,
const FN_string_t *name, FN_status_t *status);
```

fn_syntax_type

Its value is the ASCII string "standard" if the context supports the XFN standard syntax model. Its value is an implementation-specific value if another syntax model is supported.

fn_std_syntax_direction

Its value is an ASCII string, one of "left_to_right", "right_to_left", or "flat". This determines whether the order of components in a compound name string goes from left to right, right to left, or whether the namespace is flat (in other words, not hierarchical; all names are atomic).

fn_std_syntax_separator

Its value is the separator string for this name syntax. This attribute is required unless the fn_std_syntax_direction is "flat".

fn_std_syntax_escape

If present, its value is the escape string for this name syntax.

fn_std_syntax_case_insensitive

If this attribute is present, it indicates that names that differ only in case are considered identical. If this attribute is absent, it indicates that case is significant. If a value is present, it is ignored.

fn_std_syntax_begin_quote

If present, its value is the begin-quote string for this syntax. There can be multiple values for this attribute.
fn_std_syntax_end_quote
 If present, its value is the end-quote string for this syntax. There can be multiple
 values for this attribute.

fn_std_syntax_ava_separator
 If present, its value is the attribute value assertion separator string for this syntax.

fn_std_syntax_typeval_separator
 If present, its value is the attribute type-value separator string for this syntax.

fn_std_syntax_code_sets
 If present, its value identifies the code sets of the string representation for this
 syntax. Its value consists of a structure containing an array of code sets supported
 by the context; the first member of the array is the preferred code set of the context.
 The values for the code sets are defined in the X/Open code set registry. If this
 attribute is not present, or if the value is empty, the default code set is ISO 646
 (same encoding as ASCII).

fn_std_syntax_locale_info
 If present, identifies locale information, such as character set information, of the
 string representation for this syntax. The interpretation of its value is
 implementation-dependent.

The XFN standard syntax attributes are interpreted according to the following rules:

1. In a string without quotes or escapes, any instance of the separator string delimits
 two atomic names.

2. A separator, quotation or escape string is escaped if preceded immediately (on the
 left) by the escape string.

3. A non-escaped begin-quote which precedes a component must be matched by a
 non-escaped end-quote at the end of the component. Quotes embedded in
 non-quoted names are treated as simple characters and do not need to be matched.
 An unmatched quotation fails with the status code FN_E_ILLEGAL_NAME.

4. If there are multiple values for begin-quote and end-quote, a specific begin-quote
 value must be matched with its corresponding end-quote value.

5. When the separator appears between a (non-escaped) begin quote and the end
 quote, it is ignored.

6. When the separator is escaped, it is ignored. An escaped begin-quote or end-quote
 string is not treated as a quotation mark. An escaped escape string is not treated as
 an escape string.

7. A non-escaped escape string appearing within quotes is interpreted as an escape
 string. This can be used to embed an end-quote within a quoted string.

After constructing a compound name from a string, the resulting component atoms
have one level of escape strings and quotations interpreted and consumed.

fn_ctx_get_syntaxAttrs() is used to obtain the syntax attributes associated
with a context.
fn_compound_name_from_syntax()

is used to construct a compound name object using the string form of the name and the syntax attributes of the name.

ERRORS

FN_E_ILLEGAL_NAME

The name supplied to the operation was not a well-formed component according to the name syntax of the context.

FN_E_INCOMPATIBLE_CODE_SETS

Code set mismatches that occur during the construction of the compound name's string form are resolved in an implementation-dependent way. When an implementation discovers that a compound name has components with incompatible code sets, it returns this error code.

FN_E_INVALID_SYNTAX_ATTRS

The syntax attributes supplied are invalid or insufficient to fully specify the syntax.

FN_E_SYNTAX_NOT_SUPPORTED

The syntax specified is not supported.

USAGE

Most applications treat names as opaque data. Hence, the majority of clients of the XFN interface will not need to parse compound names from specific naming systems. Some applications, however, such as browsers, need such capabilities. These applications would use `fn_ctx_get_syntax_attrs()` to obtain the syntax-related attributes of a context and, if the context uses the XFN standard syntax model, it would examine these attributes to determine the name syntax of the context.

SEE ALSO

`FN_attribute_t(3XFN), FN_attrset_t(3XFN), FN_compound_name_t(3XFN), FN_identifier_t(3XFN), FN_string_t(3XFN) fn_ctx_get_syntax_attrs(3XFN), xfn(3XFN)`

NOTES

The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
NAME: xfnn_links – XFN links: an overview of XFN links

DESCRIPTION: An XFN link is a special form of reference that contains a composite name, the link name, and that may be bound to an atomic name in an XFN context. Because the link name is a composite name, it may span multiple namespaces.

Normal resolution of names in context operations always follows XFN links. If the first composite name component of the link name is the atomic name ".", the link name is resolved relative to the same context in which the link is bound, otherwise, the link name is resolved relative to the XFN Initial Context of the client. The link name may itself cause resolution to pass through other XFN links. This gives rise to the possibility of a cycle of links whose resolution could not terminate normally. As a simple means to avoid such non-terminating resolutions, implementations may define limits on the number of XFN links that may be resolved in any single operation invoked by the caller.

These are the interfaces:

#include <xfn/xfn.h>

FN_ref_t *fn_ref_create_link(const FN_composite_name_t *link_name);

int fn_ref_is_link(const FN_ref_t *ref);

FN_composite_name_t *fn_ref_link_name(const FN_ref_t *link_ref);

FN_ref_t *fn_ctx_lookup_link(FN_ctx_t *ctx, const FN_composite_name_t *name, FN_status_t *status);

unsigned int fn_status_link_code(const FN_status_t *stat);

const FN_composite_name_t *fn_status_link_remaining_name(const FN_status_t *stat);

const FN_composite_name_t *fn_status_link_resolved_name(const FN_status_t *stat);

const FN_ref_t *fn_status_link_resolved_ref(const FN_status_t *stat);

int fn_status_set_link_code(FN_status_t *stat, unsigned int code);

int fn_status_set_link_remaining_name(FN_status_t *stat, const FN_composite_name_t *name);

int fn_status_set_link_resolved_name(FN_status_t *stat, const FN_composite_name_t *name);

int fn_status_set_link_resolved_ref(FN_status_t *stat, const FN_ref_t *ref);
Links are bound to names using the normal fn_ctx_bind() and unbound using the normal fn_ctx_unbind() operation. The operation fn_ref_create_link() is provided for constructing a link reference from a composite name. Since normal resolution always follows links, a separate operation, fn_ctx_lookup_link() is provided to lookup the link itself.

In the case that an error occurred while resolving an XFN link, the status object set by the operation contains additional information about that error and sets the corresponding link status fields using fn_status_set_link_code(), fn_status_set_link_remaining_name(), fn_status_set_link_resolved_name() and fn_status_set_link_resolved_ref(). The link status fields can be retrieved using fn_status_link_code(), fn_status_link_remaining_name(), fn_status_link_resolved_name() and fn_status_link_resolved_ref().

Errors

The following status codes are of special relevance when performing operations involving XFN links:

- **FN_E_LINK_ERROR**

 There was an error encountered resolving an XFN link encountered during resolution of the supplied name. Check the link part of the status object to determine cause of the link error.

- **FN_E_LINK_LOOP_LIMIT**

 A non-terminating loop (cycle) in the resolution can arise due to XFN links encountered during the resolution of a composite name. This code indicates either the definite detection of such a cycle, or that resolution exceeded an implementation-defined limit on the number of XFN links allowed for a single operation invoked by the caller.

- **FN_E_MALFORMED_LINK**

 A malformed link reference was encountered. For the fn_ctx_lookup_link() operation, the name supplied resolved to a reference that was not a link.

Application Usage

For the fn_ctx_bind(), fn_ctx_unbind(), fn_ctx_rename(), fn_ctx_lookup_link(), fn_ctx_create_subcontext() and fn_ctx_destroy_subcontext() operations, resolution of the given name continues to the target context — that named by all but the terminal atomic part of the given name; the terminal atomic name is not resolved. Consequently, for operations that involve unbinding the terminal atomic part such as fn_ctx_unbind(), if the terminal atomic name is bound to a link, the link is not followed and the link itself is unbound from the terminal atomic name.

Many naming systems support a native notion of link that may be used within the naming system itself. XFN does not determine whether there is any relationship between such native links and XFN links.
The result status of operations in the context interface and the attribute interface is encapsulated in an `FN_status_t` object. This object contains information about how the operation completed: whether an error occurred in performing the operation; if so, what kind of error; and information localizing where the error occurred. In the case that the error occurred while resolving an XFN link, the status object contains additional information about that error.

The context status object consists of several items of information. One of them is the primary status code, describing the disposition of the operation. In the case that an error occurred while resolving an XFN link, the primary status code has the value `FN_E_LINK_ERROR`, and the link status code describes the error that occurred while resolving the XFN link.

Both the primary status code and the link status code are values of type `unsigned int` that are drawn from the same set of meaningful values. XFN reserves the values 0 through 127 for standard meanings. Currently, values and interpretations for the following codes are determined by XFN.

- **FN_SUCCESS**: The operation succeeded.
- **FN_E_ATTR_NO_PERMISSION**: The caller did not have permission to perform the attempted attribute operation.
- **FN_E_ATTR_VALUE_REQUIRED**: The operation attempted to create an attribute without a value, and the specific naming system does not allow this.
- **FN_E_AUTHENTICATION_FAILURE**: The identity of the client principal could not be verified.
- **FN_E_COMMUNICATION_FAILURE**: An error occurred in communicating with one of the contexts involved in the operation.
- **FN_E_CONFIGURATION_ERROR**: A problem was detected that indicated an error in the installation of the XFN implementation.
- **FN_E_CONTINUE**: The operation should be continued using the remaining name and the resolved reference returned in the status.
- **FN_E_CTX_NO_PERMISSION**: The client did not have permission to perform the operation.
- **FN_E_CTX_NOT_EMPTY**: (Applies only to `fn_ctx_destroy_subcontext()`.)
naming system required that the context be empty before its destruction, and it was not empty.

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FN_E_CTX_UNAVAILABLE</td>
<td>Service could not be obtained from one of the contexts involved in the operation. This may be because the naming system is busy, or is not providing service. In some implementations this may not be distinguished from a communication failure.</td>
</tr>
<tr>
<td>FN_E_ILLEGAL_NAME</td>
<td>The name supplied to the operation was not a well-formed XFN composite name, or one of the component names was not well-formed according to the syntax of the naming system(s) involved in its resolution.</td>
</tr>
<tr>
<td>FN_E_INCOMPATIBLE_CODE_SETS</td>
<td>The operation involved character strings of incompatible code sets, or the supplied code set is not supported by the implementation.</td>
</tr>
<tr>
<td>FN_E_INSUFFICIENT_RESOURCES</td>
<td>Either the client or one of the involved contexts could not obtain sufficient resources (for example, memory, file descriptors, communication ports, stable media space, and so on) to complete the operation successfully.</td>
</tr>
<tr>
<td>FN_E_INVALID_ATTR_IDENTIFIER</td>
<td>The attribute identifier was not in a format acceptable to the naming system, or its content was not valid for the format specified for the identifier.</td>
</tr>
<tr>
<td>FN_E_INVALID_ATTR_VALUE</td>
<td>One of the values supplied was not in the appropriate form for the given attribute.</td>
</tr>
<tr>
<td>FN_E_INVALID_ENUM_HANDLE</td>
<td>The enumeration handle supplied was invalid, either because it was from another enumeration, or because an update operation occurred during the enumeration, or because of some other reason.</td>
</tr>
<tr>
<td>FN_E_INVALID_SYNTAX_ATTRS</td>
<td>The syntax attributes supplied are invalid or insufficient to fully specify the syntax.</td>
</tr>
<tr>
<td>FN_E_LINK_ERROR</td>
<td>There was an error in resolving an XFN link encountered during resolution of the supplied name.</td>
</tr>
<tr>
<td>FN_E_LINK_LOOP_LIMIT</td>
<td>A non-terminating loop (cycle) in the resolution can arise due to XFN links</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FN_E_MALFORMED_LINK</td>
<td>A malformed link reference was encountered. For fn_ctx_lookup_link(), the name supplied resolved to a reference that was not a link.</td>
</tr>
<tr>
<td>FN_E_MALFORMED_REFERENCE</td>
<td>A context object could not be constructed from the supplied reference, because the reference was not properly formed.</td>
</tr>
<tr>
<td>FN_E_NAME_IN_USE</td>
<td>(Only for operations that bind names.) The supplied name was already in use.</td>
</tr>
<tr>
<td>FN_E_NAME_NOT_FOUND</td>
<td>Resolution of the supplied composite name proceeded to a context in which the next atomic component of the name was not bound.</td>
</tr>
<tr>
<td>FN_E_NO_SUCH_ATTRIBUTE</td>
<td>The object did not have an attribute with the given identifier.</td>
</tr>
<tr>
<td>FN_E_NO_SUPPORTED_ADDRESS</td>
<td>A context object could not be constructed from a particular reference. The reference contained no address type over which the context interface was supported.</td>
</tr>
<tr>
<td>FN_E_NOT_A_CONTEXT</td>
<td>Either one of the intermediate atomic names did not name a context, and resolution could not proceed beyond this point, or the operation required that the caller supply the name of a context, and the name did not resolve to a reference for a context.</td>
</tr>
<tr>
<td>FN_E_OPERATION_NOT_SUPPORTED</td>
<td>The operation attempted is not supported.</td>
</tr>
<tr>
<td>FN_E_PARTIAL_RESULT</td>
<td>The operation attempted is returning a partial result.</td>
</tr>
<tr>
<td>FN_E_SYNTAX_NOT_SUPPORTED</td>
<td>The syntax type specified is not supported.</td>
</tr>
<tr>
<td>FN_E_TOO_MANY_ATTR_VALUES</td>
<td>The operation attempted to associate more values with an attribute than the naming system supported.</td>
</tr>
</tbody>
</table>
An error occurred that could not be classified by any of the other error codes.

<table>
<thead>
<tr>
<th>FILES</th>
<th>SEE ALSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>#include <xfn/xfn.h></td>
<td>FN_status_t(3XFN), xfn(3XFN)</td>
</tr>
</tbody>
</table>

The implementation of XFN in this Solaris release is based on the X/Open preliminary specification. It is likely that there will be minor changes to these interfaces to reflect changes in the final version of this specification. The next minor release of Solaris will offer binary compatibility for applications developed using the current interfaces. As the interfaces evolve toward standardization, it is possible that future releases of Solaris will require minor source code changes to applications that have been developed against the preliminary specification.
ypclnt(3NSL)

NAME
 ypclnt, yp_get_default_domain, yp_bind, yp_unbind, yp_match, yp_first, yp_next,
 yp_all, yp_order, yp_master, yperr_string, ypprot_err – NIS Version 2 client interface

SYNOPSIS
 cc -flag ... file ...-lnsl [library ...]
#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

yp_bind(char *indomain);
void yp_unbind(char *indomain);

yp_get_default_domain(char **outdomain);

yp_match(char *indomain, char *inmap, char *inkey, int inkeylen, char
**outval, int *outvallen);

yp_first(char *indomain, char *inmap, char **outkey, int *outkeylen,
char **outval, int *outvallen);

yp_next(char *indomain, char *inmap, char *inkey, int *inkeylen, char
**outkey, int *outkeylen, char **outval, int *outvallen);

yp_all(char *indomain, char *inmap, struct ypall_callback *incallback);

yp_order(char *indomain, char *inmap, unsigned long *outorder);

yp_master(char *indomain, char *inmap, char **outname);

char *yperr_string(int incode);

ypprot_err(unsigned int incode);

DESCRIPTION
 This package of functions provides an interface to NIS, Network Information Service
Version 2, formerly referred to as YP. In this version of SunOS, NIS version 2 is
supported only for compatibility with previous versions. The recommended enterprise
level information service is NIS+ or NIS version 3. See nis+(1). The current SunOS
supports only the client interface to NIS version 2. This client interface will in turn be
served either by an existing ypserv process running on another machine on the
network that has an earlier version of SunOS, or by a NIS+ server running in
"YP-compatibility mode." See rpc.nisd(1M). The NOTES section in ypfiles(4)
discusses the implications of being an NIS client of an NIS+ server in
"YP-compatibility mode." For commands to access NIS from a client machine, see
ypbind(1M), ypwhich(1), ypmatch(1), and ypcat(1). The package can be loaded
from the standard library, /usr/lib/libnsl.so.1.

All input parameter names begin with in. Output parameters begin with out. Output
parameters of type char ** should be addresses of uninitialized character pointers.
Memory is allocated by the NIS client package using malloc(3C) and can be freed by
the user code if it has no continuing need for it. For each outkey and outval, two extra
bytes of memory are allocated at the end that contain NEWLINE and null,
respectively, but these two bytes are not reflected in outkeylen or outvallen. The
Routines

yp_bind()

To use the NIS name services, the client process must be “bound” to an NIS server that serves the appropriate domain using `yp_bind()`. Binding need not be done explicitly by user code. Binding is done automatically whenever an NIS lookup function is called. `yp_bind()` can be called directly for processes that make use of a backup strategy, for example, a local file in cases when NIS services are not available. If a process calls `yp_bind()`, it should call `yp.unbind()` when it is finished using NIS in order to free up resources.

`yp.unbind()` is available at the client interface for processes that explicitly manage their socket descriptors while accessing multiple domains. The call to `yp.unbind()` makes the domain unbound, and frees all per-process and per-node resources used to bind it.

If an RPC failure results upon use of a binding, that domain will be unbound automatically. At that point, the `ypclnt()` layer will retry a few more times or until the operation succeeds, provided that `rpcbind(1M)` and `ypbind(1M)` are running, and either:

- The client process cannot bind a server for the proper domain; or
- RPC requests to the server fail.

Under the following circumstances, the `ypclnt` layer will return control to the user code, with either an error or success code and the results:

- If an error is not RPC-related.
- If `rpcbind` is not running.
- If `ypbind` is not running.
- If a bound `ypserv` process returns any answer (success or failure).

yp_get_default_domain()

The NIS lookup calls require a map name and a domain name, at minimum. The client process should know the name of the map of interest. Client processes fetch the node’s default domain by calling `yp_get_default_domain()` and use the returned `outdomain` as the `indomain` parameter to successive NIS name service calls. The domain returned is the same as that returned using the `SI_SRPC_DOMAIN` command to the `sysinfo(2)` system call. The value returned in `outdomain` should not be freed.
yp_match()
yp_match() returns the value associated with a passed key. This key must be exact because no pattern matching is available. yp_match() requires a full YP map name, such as hosts.byname, instead of the nickname hosts.

yp_first()
yp_first() returns the first key-value pair from the named map in the named domain.

yp_next()
yp_next() returns the next key-value pair in a named map. The inkey parameter must be the outkey returned from an initial call to yp_first() (to get the second key-value pair) or the one returned from the n-th call to yp_next() (to get the n-th + second key-value pair). Similarly, the inkeylen parameter must be the outkeylen returned from the earlier yp_first() or yp_next() call.

The concept of first and next is particular to the structure of the NIS map being processed. Retrieval order is not related to either the lexical order within any original (non-NIS name service) data base, or to any obvious numerical sorting order on the keys, values, or key-value pairs. The only ordering guarantee is that if the yp_first() function is called on a particular map, and then the yp_next() function is repeatedly called on the same map at the same server until the call fails with a reason of YPERR_NOMORE, every entry in the data base is seen exactly once. Further, if the same sequence of operations is performed on the same map at the same server, the entries are seen in the same order.

Under conditions of heavy server load or server failure, the domain can become unbound, then bound once again (perhaps to a different server) while a client is running. This binding can cause a break in one of the enumeration rules. Specific entries may be seen twice by the client, or not at all. This approach protects the client from error messages that would otherwise be returned in the midst of the enumeration. For a better solution to enumerating all entries in a map, see yp_all().

yp_all()
The function yp_all() provides a way to transfer an entire map from server to client in a single request using TCP (rather than UDP as with other functions in this package). The entire transaction takes place as a single RPC request and response. yp_all() can be used just like any other NIS name service procedure to identify the map in the normal manner and to supply the name of a function that will be called to process each key-value pair within the map. The call to yp_all() returns only when the transaction is completed (successfully or unsuccessfully), or the foreach() function decides that it does not want to see any more key-value pairs.

The third parameter to yp_all() is:

```c
struct ypall_callback *incallback {
    int (*foreach)();
    char *data;
};
```
The function `foreach()` is called:

```c
foreach(int instatus, char *inkey,
        int inkeylen, char *inval,
        int invalen, char *indata);
```

The `instatus` parameter holds one of the return status values defined in `<rpcsvc/yp_prot.h>`, either `YP_TRUE` or an error code. See `ypprot_err()` for a function that converts an NIS name service protocol error code to a ypclnt layer error code.

The key and value parameters are somewhat different than defined in the synopsis section above. First, the memory pointed to by the `inkey` and `inval` parameters is private to the `yp_all()` function, and is overwritten with the arrival of each new key-value pair. The `foreach()` function must do something useful with the contents of that memory, but it does not own the memory itself. Key and value objects presented to the `foreach()` function look exactly as they do in the server’s map. If they were not NEWLINE-terminated or null-terminated in the map, they would not be here either.

The `indata` parameter is the contents of the `incallback->data` element passed to `yp_all()`. The data element of the callback structure can be used to share state information between the `foreach()` function and the mainline code. Its use is optional, and no part of the NIS client package inspects its contents; cast it to something useful, or ignore it. The `foreach()` function is Boolean. It should return 0 to indicate that it wants to be called again for further received key-value pairs, or non-zero to stop the flow of key-value pairs. If `foreach()` returns a non-zero value, it is not called again. The functional value of `yp_all()` is then 0.

`yp_order()`

`yp_order()` returns the order number for a map. This function is not supported if the `ypbind` process on the client’s system is bound to an NIS+ server running in “YP-compatibility mode.”

`yp_master()`

`yp_master()` returns the machine name of the master NIS server for a map.

`yperr_string()`

`yperr_string()` returns a pointer to an error message string that is null-terminated but contains no period or NEWLINE.

`ypprot_err()`

`ypprot_err()` takes an NIS name service protocol error code as input, and returns a ypclnt() layer error code, which can be used as an input to `yperr_string()`.

RETURN VALUES

All integer functions return 0 if the requested operation is successful, or one of the following errors if the operation fails:

- **YPERR_ACCESS** Access violation.
- **YPERR_BADARGS** The arguments to the function are bad.
ypclnt(3NSL)

YPERR_BADDB The YP database is bad.
YPERR_BUSY The database is busy.
YPERR_DOMAIN Cannot bind to server on this domain.
YPERR_KEY No such key in map.
YPERR_MAP No such map in server’s domain.
YPERR_NODOM Local domain name not set.
YPERR_NOMORE No more records in map database.
YPERR_PMAP Cannot communicate with rpcbind.
YPERR_RESRC Resource allocation failure.
YPERR_RPC RPC failure; domain has been unbound.
YPERR_YPBIND Cannot communicate with ypbind.
YPERR_YPERR Internal YP server or client error.
YPERR_YPSERVER Cannot communicate with yp servant.
YPERR_VERS YP version mismatch.

FILES /usr/lib/libnsl.so.1

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

SEE ALSO nis+(1), ypcat(1), ypmatch(1), ypwhich(1), rpc.nisd(1M), rpcbind(1M),
 ypbind(1M), ypserver(1M), sysinfo(2), malloc(3C), ypfiles(4), attributes(5)
NAME
yp_update – change NIS information

SYNOPSIS
#include <rpcsvc/ypclnt.h>

int yp_update(char *domain, char *map, unsigned ypop, char *key, int keylen, char *data, int datalen);

DESCRIPTION
yp_update() is used to make changes to the NIS database. The syntax is the same as that of yp_match() except for the extra parameter ypop which may take on one of four values. If it is POP_CHANGE then the data associated with the key will be changed to the new value. If the key is not found in the database, then yp_update() will return YPERR_KEY. If ypop has the value YPOP_INSERT then the key-value pair will be inserted into the database. The error YPERR_KEY is returned if the key already exists in the database. To store an item into the database without concern for whether it exists already or not, pass ypop as YPOP_STORE and no error will be returned if the key already or does not exist. To delete an entry, the value of ypop should be YPOP_DELETE.

This routine depends upon secure RPC, and will not work unless the network is running secure RPC.

RETURN VALUES
If the value of ypop is POP_CHANGE, yp_update() returns the error YPERR_KEY if the key is not found in the database.

If the value of ypop is POP_INSERT, yp_update() returns the error YPERR_KEY if the key already exists in the database.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

SEE ALSO
secure_rpc(3NSL), ypclnt(3NSL), attributes(5)

NOTES
This interface is unsafe in multithreaded applications. Unsafe interfaces should be called only from the main thread.
yp_update(3NSL)
Index

A
abandon an LDAP operation in progress —
lap_abandon, 297
accept — accept a connection on a socket, 18
accept a security context initiated by a peer
application — gss_accept_sec_context, 202
acquire a handle for a pre-existing credential by
name — gss_acquire_cred, 208
add a credential-element to a credential —
gss_add_cred, 211
add an object identifier to an object identifier set
— gss_add_oid_set_member, 215
address in an XFN reference
— fn_ref_addr_assign, 131
— fn_ref_addr_copy, 131
— fn_ref_addr_create, 131
— fn_ref_addr_data, 131
— fn_ref_addr_description, 131
— fn_ref_addr_destroy, 131
— fn_ref_addr_length, 131
— FN_ref_addr_t, 131
— fn_ref_addr_type, 131
allow application to determine maximum
message size with resulting output token of a
specified maximum size —
gss_wrap_size_limit, 273
attach a cryptographic message —
gss_wrap, 271
attribute modifications, list of
— fn_attrmodlist_add, 77
— fn_attrmodlist_assign, 77
— fn_attrmodlist_copy, 77
— fn_attrmodlist_count, 77
attribute modifications, list of (continued)
— fn_attrmodlist_create, 77
— fn_attrmodlist_destroy, 77
— fn_attrmodlist_first, 77
— fn_attrmodlist_next, 77
— FN_attrmodlist_t, 77
attribute search options
— fn_search_control_assign, 136
— fn_search_control_copy, 136
— fn_search_control_create, 136
— fn_search_control_destroy, 136
— fn_search_control_follow_links, 136
— fn_search_control_max_names, 136
— fn_search_control_return_attr_ids, 136
— fn_search_control_return_ref, 136
— fn_search_control_scope, 136
— FN_search_control_t, 136
auth_destroy — library routines for client side
remote procedure call authentication, 445
authnone_create — library routines for client
side remote procedure call
authentication, 445
authsys_create — library routines for client side
remote procedure call authentication, 445
authsys_create_default — library routines for
client side remote procedure call
authentication, 445

B
Basic Encoding Rules library decoding
functions
attribute search options (continued)
— ber_alloc_t, 22
— ber_bvdup, 22
— ber_bvecfree, 22
— ber_bvfree, 22
— ber_decode, 22
— ber_first_element, 22
— ber_flatten, 22
— ber_free, 22
— ber_get_bitstring, 22
— ber_get_boolean, 22
— ber_get_int, 22
— ber_get_next, 22
— ber_get_null, 22
— ber_get_stringa, 22
— ber_get_stringal, 22
— ber_get_stringb, 22
— ber_init, 22
— ber_next_element, 22
— ber_peek_tag, 22
— ber_scanf, 22
— ber_skiptag, 22
ber_alloc — simplified Basic Encoding Rules library encoding functions, 27
ber_alloc_t — Basic Encoding Rules library decoding functions, 22
ber_bvdup — Basic Encoding Rules library decoding functions, 22
ber_bvecfree — Basic Encoding Rules library decoding functions, 22
ber_bvfree — Basic Encoding Rules library decoding functions, 22
ber_decode — Basic Encoding Rules library decoding functions, 22
ber_encode — simplified Basic Encoding Rules library encoding functions, 27
ber_first_element — Basic Encoding Rules library encoding functions, 27
ber_flatten — Basic Encoding Rules library decoding functions, 22
ber_free — Basic Encoding Rules library decoding functions, 22
ber_get_bitstring — Basic Encoding Rules library decoding functions, 22
ber_get_boolean — Basic Encoding Rules library decoding functions, 22
ber_get_int — Basic Encoding Rules library decoding functions, 22
bind an address to a transport endpoint —
 t_bind, 593
byte order, convert values between host and
 network
 — byteorder, 35
 — htonl, 35
 — htons, 35
 — ntohl, 35
 — ntohs, 35

C
change QOP, service for session
 — rpc_gss_set_defaults, 474
character string
 — fn_string_assign, 152
 — fn_string_bytecount, 152
 — fn_string_charcount, 152
 — fn_string_code_set, 152
 — fn_string_compare, 152
 — fn_string_compare_substring, 152
 — fn_string_contents, 152
 — fn_string_copy, 152
 — fn_string_create, 152
 — fn_string_destroy, 152
 — fn_string_from_contents, 152
 — fn_string_from_str, 152
 — fn_string_from_str_n, 152
 — fn_string_from_strings, 152
 — fn_string_is_empty, 152
 — fn_string_next_substring, 152
 — fn_string_prev_substring, 152
 — fn_string_str, 152
 — FN_string_t, 152
cldap_close — dispose of connectionless LDAP
 pointer, 36
cldap_open — LDAP connectionless
 communication preparation, 37
cldap_search_s — connectionless LDAP
 search, 38
 Retransmission Algorithm, 38
cldap_setretryinfo — set connectionless LDAP
 request retransmission parameters, 40
client side remote procedure call authentication,
library routines for (continued)
 — authnone_create, 445
 — authsys_create, 445
 — authsys_create_default, 445
 — rpc_clnt_auth, 445
cldnt_call — library routines for client side
 calls, 447
cldnt_control — library routines for dealing with
 creation and manipulation of CLIENT
 handles, 451
cldnt_create — library routines for dealing with
 creation and manipulation of CLIENT
 handles, 451
cldnt_create_timed — library routines for dealing
 with creation and manipulation of CLIENT
 handles, 451
cldnt_create_vers — library routines for dealing
 with creation and manipulation of CLIENT
 handles, 451
cldnt_create_vers_timed — library routines for
 dealing with creation and manipulation of
 CLIENT handles, 451
cldnt_destroy — library routines for dealing with
 creation and manipulation of CLIENT
 handles, 451
cldnt_dg_create — library routines for dealing
 with creation and manipulation of CLIENT
 handles, 451
cldnt_door_create — library routines for dealing
 with creation and manipulation of CLIENT
 handles, 451
cldnt_freeres — library routines for client side
 calls, 447
cldnt_geterr — library routines for client side
 calls, 447
cldnt_pcreateerror — library routines for dealing
 with creation and manipulation of CLIENT
 handles, 451
cldnt_perror — library routines for client side
 calls, 447
cldnt_errno — library routines for client side
 calls, 447
cldnt_raw_create — library routines for dealing
 with creation and manipulation of CLIENT
 handles, 451
clnt_spcreateerror — library routines for dealing with creation and manipulation of CLIENT handles, 451
clnt_sperrno — library routines for client side calls, 447
clnt_sperror — library routines for client side calls, 447
clnt_tli_create — library routines for dealing with creation and manipulation of CLIENT handles, 451
clnt_tp_create — library routines for dealing with creation and manipulation of CLIENT handles, 451
clnt_tp_create_timed — library routines for dealing with creation and manipulation of CLIENT handles, 451
clnt_vc_create — library routines for dealing with creation and manipulation of CLIENT handles, 451

close an open SLP handle — SLPClose, 548
communications
accept a connection on a socket —
accept, 18
allocate memory for, 590
bind a name to a socket — bind, 31
create a pair of connected sockets —
socketpair, 581
create an endpoint for communication —
socket, 576
get name of peer connected to socket —
getpeername, 180
get socket name — getsockname, 193
initiate a connection on a socket —
connect, 41
listen for connections on a socket —
listen, 365
scatter data in order to test the network —
spray, 584
send a message from a socket — send,
sendto, sendmsg, 520
shut down part of a full-duplex connection — shutdown, 536
compare two internal-form names —
gss_compare_name, 218
component names spanning multiple naming systems
— fn_composite_name_append_comp, 95
— fn_composite_name_append_name, 95
configuration script
execute — doconfig, 48
connect — initiate a connection on socket, 41
connectionless LDAP search —
cldap_search_s, 38
construct a handle to a context object using the given reference —
fn_ctx_handle_from_ref, 116
construct equivalent name in same context —
fn_ctx_equivalent_name, 108
convert a contiguous string name to GSS_API internal format — gss_import_name, 233
convert a GSS-API status code to text —
gss_display_status, 225
convert a mechanism name to export form —
gss_export_name, 228
convert a string to an OID —
gss_str_to_oid, 264
convert an internal name to a mechanism name — gss_canonicalize_name, 216
convert an OID to a string —
gss_oid_to_str, 255
convert internal-form name to text —
gss_display_name, 223
create a copy of an internal name —
gss_duplicate_name, 227
create a security context using the RPCSEC_GSS
protocol — rpc_gss_seccreate, 470
create an object-identifier set containing no
object identifiers —
gss_create_empty_oid_set, 220
create subcontext and associate attributes —
fn_attr_create_subcontext, 61
delete a GSS-API security context —
gss_delete_sec_context, 221
delete attributes — SLPDelAttrs, 549
deregister the SLP advertisement —
SLPDereg, 551
descriptions of XFN status codes —
xfn_status_codes, 706
determine available security mechanisms —
gss_indicate_mechs, 237
determine how long a context will remain valid
— gss_context_time, 219
dial — establish an outgoing terminal line
connection, 46
discard a credential handle —
gss_release_cred, 260
discard an internal-form name —
gss_release_name, 261
dispose of connectionless LDAP pointer —
cldap_close, 36
dn_comp — resolver routines, 426
dn_expand — resolver routines, 426
doconfig — execute a configuration script, 48

E
endservent — get service entry, 189
escapes SLP reserved characters —
SLPEscape, 553
Ethernet address mapping operations
— ethers, 58
ethers — Ethernet address mapping
operations, 58
external data representation
See XDR, 682

F
filter expression for attribute search
— fn_search_filter_arguments, 139
— fn_search_filter_assign, 139
— fn_search_filter_copy, 139
— fn_search_filter_create, 139
— fn_search_filter_destroy, 139
— fn_search_filter_expression, 139
— FN_search_filter_t, 139
find service types — SLPFindSrvTypes, 561
fn_attr_bind — bind a reference to a name and
associate attributes with named object, 60
fn_attr_create_subcontext — create subcontext
and associate attributes, 61
fn_attr_ext_search — search for names whose
attributes satisfy filter, 62
fn_attr_get — return specified attribute
associated with name, 69
fn_attr_get_ids — get list of attribute
identifiers, 70
fn_attr_get_values — return values of an
attribute, 71
fn_attr_modify — modify specified attribute
associated with name, 75
fn_attr_multi_get — return multiple attributes
associated with named object, 80
fn_attr_multi_modify — modify multiple
attributes associated with named object, 84
fn_attr_search — search for atomic name with
specified attributes in single context, 86
fn_attribute_add — an XFN attribute, 73
fn_attribute_assign — an XFN attribute, 73
fn_attribute_copy — an XFN attribute, 73
fn_attribute_create — an XFN attribute, 73
fn_attribute_destroy — an XFN attribute, 73
fn_attribute_first — an XFN attribute, 73
fn_attribute_identifier — an XFN attribute, 73
fn_attribute_next — an XFN attribute, 73
fn_attribute_remove — an XFN attribute, 73
fn_attribute_syntax — an XFN attribute, 73
FN_attribute_t — an XFN attribute, 73
fn_attribute_valuecount — an XFN
attribute, 73
fn_attrmodlist_add — a list of attribute modifications, 77
fn_attrmodlist_assign — a list of attribute modifications, 77
fn_attrmodlist_copy — a list of attribute modifications, 77
fn_attrmodlist_count — a list of attribute modifications, 77
fn_attrmodlist_create — a list of attribute modifications, 77
fn_attrmodlist_destroy — a list of attribute modifications, 77
fn_attrmodlist_first — a list of attribute modifications, 77
FN_attrmodlist_t — a list of attribute modifications, 77
fn_attrset_add — a set of XFN attributes, 91
fn_attrset_assign — a set of XFN attributes, 91
fn_attrset_copy — a set of XFN attributes, 91
fn_attrset_count — a set of XFN attributes, 91
fn_attrset_create — a set of XFN attributes, 91
fn_attrset_destroy — a set of XFN attributes, 91
fn_attrset_first — a set of XFN attributes, 91
FN_attrset_t — a set of XFN attributes, 91
fn_bindinglist_destroy — list the atomic names and references bound in a context, 118
fn_bindinglist_next — list the atomic names and references bound in a context, 118
FN_bindinglist_t — list the atomic names and references bound in a context, 118
fn_composite_name_append_comp — component names spanning multiple naming systems, 95
fn_composite_name_append_name — component names spanning multiple naming systems, 95
fn_composite_name_assign — component names spanning multiple naming systems, 95
fn_composite_name_copy — component names spanning multiple naming systems, 95
fn_composite_name_count — component names spanning multiple naming systems, 95
fn_composite_name_create — component names spanning multiple naming systems, 95
fn_composite_name_delete_comp — component names spanning multiple naming systems, 95
fn_composite_name_destroy — component names spanning multiple naming systems, 95
fn_composite_name_first — component names spanning multiple naming systems, 95
fn_composite_name_from_str — component names spanning multiple naming systems, 95
fn_composite_name_from_string — component names spanning multiple naming systems, 95
fn_composite_name_insert_comp — component names spanning multiple naming systems, 95
fn_composite_name_insert_name — component names spanning multiple naming systems, 95
fn_composite_name_is_empty — component names spanning multiple naming systems, 95
fn_composite_name_is_equal — component names spanning multiple naming systems, 95
fn_composite_name_is_prefix — component names spanning multiple naming systems, 95
fn_composite_name_is_suffix — component names spanning multiple naming systems, 95
fn_composite_name_last — component names spanning multiple naming systems, 95
fn_composite_name_next — component names spanning multiple naming systems, 95
fn_composite_name_prefix — component names spanning multiple naming systems, 95
fn_composite_name_prepend_comp — component names spanning multiple naming systems, 95
fn_composite_name_prepend_name — component names spanning multiple naming systems, 95
722 man pages section 3: Networking Library Functions • May 2002
fn_ref_addr_data — an address in an XFN reference, 131
fn_ref_addr_description — an address in an XFN reference, 131
fn_ref_addr_destroy — an address in an XFN reference, 131
fn_ref_addr_length — an address in an XFN reference, 131
FN_ref_addr_t — an address in an XFN reference, 131
fn_ref_addr_type — an address in an XFN reference, 131
fn_ref_addrcount — an XFN reference, 133
fn_ref_append_addr — an XFN reference, 133
fn_ref_assign — an XFN reference, 133
fn_ref_copy — an XFN reference, 133
fn_ref_create — an XFN reference, 133
fn_ref_create_link — an XFN reference, 133
fn_ref_delete_addr — an XFN reference, 133
fn_ref_delete_all — an XFN reference, 133
fn_ref_description — an XFN reference, 133
fn_ref_destroy — an XFN reference, 133
fn_ref_first — an XFN reference, 133
fn_ref_insert_addr — an XFN reference, 133
fn_ref_is_link — an XFN reference, 133
fn_ref_link_name — an XFN reference, 133
fn_ref_next — an XFN reference, 133
fn_ref_prepend_addr — an XFN reference, 133
FN_ref_t — an XFN reference, 133
fn_search_control_assign — options for attribute search, 136
fn_search_control_copy — options for attribute search, 136
fn_search_control_create — options for attribute search, 136
fn_search_control_destroy — options for attribute search, 136
fn_search_control_follow_links — options for attribute search, 136
fn_search_control_max_names — options for attribute search, 136
fn_search_control_return_attr_ids — options for attribute search, 136
fn_search_control_return_ref — options for attribute search, 136
fn_search_control_scope — options for attribute search, 136
FN_search_control_t — filter expression for attribute search, 139
fn_search_filter_assign — filter expression for attribute search, 139
fn_search_filter_copy — filter expression for attribute search, 139
fn_search_filter_create — filter expression for attribute search, 139
fn_search_filter_expression — filter expression for attribute search, 139
FN_search_filter_t — filter expression for attribute search, 139
BNF of Filter Expression, 140
Extended Operations, 142
Precedence, 140
Relational Operators, 141
Specification of Filter Expression, 140
Wildcarded Strings, 141
fn_searchlist_destroy — terminate search for atomic name with specified attributes in single context, 86
fn_searchlist_next — search for next atomic name with specified attributes in single context, 86
FN_searchlist_t — search for atomic name with specified attributes in single context, 86
fn_status_advance_by_name — an XFN status object, 147
fn_status_append_remaining_name — an XFN status object, 147
fn_status_append_resolved_name — an XFN status object, 147
fn_status_assign — an XFN status object, 147
fn_status_code — an XFN status object, 147
fn_status_copy — an XFN status object, 147
fn_status_create — an XFN status object, 147
fn_status_description — an XFN status object, 147
fn_status_diagnostic_message — an XFN status object, 147
fn_status_is_success — an XFN status object, 147
Index

725

fn_status_link_code — an XFN status object, 147
fn_status_link_diagnostic_message — an XFN status object, 147
fn_status_link_remaining_name — an XFN status object, 147
fn_status_link_resolved_name — an XFN status object, 147
fn_status_link_resolved_ref — an XFN status object, 147
fn_status_remaining_name — an XFN status object, 147
fn_status_resolved_name — an XFN status object, 147
fn_status_resolved_ref — an XFN status object, 147
fn_status_set — an XFN status object, 147
fn_status_set_code — an XFN status object, 147
fn_status_set_diagnostic_message — an XFN status object, 147
fn_status_set_link_code — an XFN status object, 147
fn_status_set_link_diagnostic_message — an XFN status object, 147
fn_status_set_link_remaining_name — an XFN status object, 147
fn_status_set_link_resolved_name — an XFN status object, 147
fn_status_set_link_resolved_ref — an XFN status object, 147
fn_status_set_remaining_name — an XFN status object, 147
fn_status_set_resolved_name — an XFN status object, 147
fn_status_set_resolved_ref — an XFN status object, 147
fn_status_set_success — an XFN status object, 147
FN_status_t — an XFN status object, 147
fn_string_assign — a character string, 152
fn_string_bytecount — a character string, 152
fn_string_charcount — a character string, 152
fn_string_code_set — a character string, 152
fn_string_compare — a character string, 152
fn_string_compare_substring — a character string, 152
fn_string_contents — a character string, 152
fn_string_copy — a character string, 152
fn_string_create — a character string, 152
fn_string_destroy — a character string, 152
fn_string_from_composite_name — component names spanning multiple naming systems, 95
fn_string_from_compound_name — an XFN compound name, 100
fn_string_from_contents — a character string, 152
fn_string_from_str — a character string, 152
fn_string_from_str_n — a character string, 152
fn_string_from_strings — a character string, 152
fn_string_from_substring — a character string, 152
fn_string_is_empty — a character string, 152
fn_string_next_substring — a character string, 152
fn_string_prev_substring — a character string, 152
FN_string_t — a character string, 152
FN_valuelist_t — return values of an attribute, 71
FNS component names spanning multiple naming systems
See FN_composite_name_t
fn_attr_bind — bind a reference to a name and associate attributes with named object, 60
fn_attr_create_subcontext — create subcontext and associate attributes, 61
fn_attr_ext_search — search for names whose attributes satisfy filter, 62
fn_attr_ext_search — search for atomic name with specified attributes in single context, 86
fn_ctx_equivalent_name — construct equivalent name in same context, 108
fn_ext_searchlist_destroy — search for names whose attributes satisfy filter, 62

Index 725
FNS (continued)

fn_ext_searchlist_next — search for names whose attributes satisfy filter, 62
FN_ext_searchlist_t — search for names whose attributes satisfy filter, 62
FN_search_control_t — options for attribute search, 136
FN_search_filter_t — filter expression for attribute search, 139
fn_searchlist_destroy — terminate search for atomic name with specified attributes in single context, 86
fn_searchlist_next — search for next atomic name with specified attributes in single context, 86
FN_searchlist_t — search for atomic name with specified attributes in single context, 86

fp_resstat — resolver routines, 426
free a BerElement structure from memory — ldap_ber_free, 300
free buffer storage allocated by a GSS-API function — gss_release_buffer, 259
free memory allocated by LDAP API functions — ldap_memfree, 343
free storage associated with a GSS-API-generated gss_OID_set object — gss_release_oid_set, 263
freeaddrinfo — translate between node name and address, 155
freehostent — get IP node entry, 166
frees memory — SLPFree, 563
functions to map Internet Protocol network interface names and interface indexes — if_freenamexindex, 278
functions to map Internet Protocol network interface names and interface indexes — if_indextoname, 278
functions to map Internet Protocol network interface names and interface indexes — if_namexindex, 278
functions to map Internet Protocol network interface names and interface indexes — if_nametoindex, 278

G

gai_strerror — translate between node name and address, 155
generic transport name-to-address translation
— netdir, 368
— netdir_free, 368
— netdir_getbyaddr, 368
— netdir_getbyname, 368
— netdir_mergeaddr, 368
— netdir_options, 368
— netdir_perror, 368
— netdir_serror, 368
— taddr2uaddr, 368
— uaddr2taddr, 368
get IP node entry — freehostent, 166
get IP node entry — getipnodebyaddr, 166
get IP node entry — getipnodebyname, 166
get service entry — getservbyname, 189
endservent, 189
getservbyname_r, 189
getservbyport, 189
getservbyport_r, 189
getservent, 189
getservent_r, 189
getservent, 189
get credentials of client —
— rpc_gss_getcred, 460
generate error codes on failure
— rpc_gss_get_error, 462
generate list of attribute identifiers —
— fn_attr_get_ids, 70
generate maximum data length for transmission
— rpc_gss_max_data_length, 467
— rpc_gss_svc_max_data_length, 467
generate principal names at server
— rpc_get_principal_name, 465
getaddinfo — translate between node name and address, 155
getipnodebyaddr — get IP node entry, 166
getipnodebyname — get IP node entry, 166
getnameinfo — translate between node name and address, 155
getpeername — get name of peer connected to socket, 180
getpublickey — retrieve public or secret key, 185
getsecretkey — retrieve public or secret key, 185
getservbyname — get service entry, 189
getservbyname_r — get service entry, 189
getservbyport — get service entry, 189
getservbyport_r — get service entry, 189
getservent — get service entry, 189
getservent_r — get service entry, 189
gss_acquire_cred — acquire a handle for a pre-existing credential by name, 208
gss_add_cred — add a credential-element to a credential, 211
gss_add_oid_set_member — add an object identifier to an object identifier set, 215
gss_canonicalize_name — convert an internal name to a mechanism name, 216
gss_compare_name — compare two internal-form names, 218
gss_context_time — determine how long a context will remain valid, 219
gss_create_empty_oid_set — create an object-identifier set containing no object identifiers, 220
gss_delete_sec_context — delete a GSS-API security context, 221
gss_display_name — convert internal-form name to text, 223
gss_display_status — convert a GSS-API status code to text, 225
gss_duplicate_name — create a copy of an internal name, 227
gss_export_name — convert a mechanism name to export form, 228
gss_export_sec_context — transfer a security context to another process, 229
gss_import_name — convert a contiguous string name to GSS_API internal format, 233
gss_import_sec_context — import security context established by another process, 235
gss_indicate_mechs — determine available security mechanisms, 237
gss_init_sec_context — initiate a GSS-API security context with a peer application, 238
gss_inquire_context — obtain information about a security context, 245
gss_inquire_cred — obtain information about a credential, 248
gss_inquire_cred_by_mech — obtain per-mechanism information about a credential, 250
gss_inquire_mechs_for_name — list mechanisms that support the specified name-type, 252
gss_inquire_names_for_mech — list the name-types supported by the specified mechanism, 254
gss_oid_to_str — convert an OID to a string, 255
gss_process_context_token — pass an asynchronous token to security service, 257
gss_release_buffer — free buffer storage allocated by a GSS-API function, 259
gss_release_cred — discard a credential handle, 260
gss_release_name — discard an internal-form name, 261
gss_release_oid — release an object identifier, 262
gss_release_oid_set — free storage associated with a GSS-API-generated gss_OID_set object, 263
gss_str_to_oid — convert a string to an OID, 264
gss_test_oid_set_member — interrogate an object identifier set, 266
gss_verify_mic — verify integrity of a received message, 269
gss_wrap — attach a cryptographic message, 271
gss_wrap — verify a message with attached cryptographic message, 267
gss_wrap_size_limit — allow application to determine maximum message size with resulting output token of a specified maximum size, 273

H
host machines, remote
 return information about users — rusers, rnusers, 514
hostalias — resolver routines, 426
hstrerror — resolver routines, 426

if_freenameindex — functions to map Internet Protocol network interface names and interface indexes, 278

if_indexname — functions to map Internet Protocol network interface names and interface indexes, 278

if_nameindex — functions to map Internet Protocol network interface names and interface indexes, 278

if_nametoindex — functions to map Internet Protocol network interface names and interface indexes, 278

import security context established by another process — gss_import_sec_context, 235

inet — Internet address manipulation, 280

inet_addr — Internet address manipulation, 280

inet_lnaof — Internet address manipulation, 280

inet_makeaddr — Internet address manipulation, 280

inet_netof — Internet address manipulation, 280

inet_network — Internet address manipulation, 280

inet_ntoa — Internet address manipulation, 280

inet_ntop — Internet address manipulation, 280

inet_ppton — Internet address manipulation, 280

inet6 — Internet address manipulation, 280

initialize an LDAP session — ldap_init, 348

initialize an LDAP session — ldap_open, 348

interrogate an object identifier set — gss_test_oid_set_member, 266

LDAP bind functions — ldap_bind, 301

LDAP bind functions — ldap_bind_s, 301

LDAP bind functions — ldap_sasl_bind, 301

LDAP bind functions — ldap_sasl_bind_s, 301

LDAP bind functions — ldap_set_rebind_proc, 301

LDAP bind functions — ldap_simple_bind, 301

LDAP bind functions — ldap_simple_bind_s, 301

LDAP bind functions — ldap_unbind_ext, 301

LDAP bind functions — ldap_unbind, 301

LDAP bind functions — ldap_unbind_s, 301

LDAP client caching functions — ldap_memcache_destroy, 340

LDAP client caching functions — ldap_memcache_flush, 340

LDAP client caching functions — ldap_memcache_get, 340

LDAP client caching functions — ldap_memcache_init, 340

LDAP client caching functions — ldap_memcache, 340

LDAP client caching functions — ldap_memcache_set, 340

LDAP client caching functions — ldap_memcache_update, 340

LDAP entry parsing and counting functions — ldap_count_entries, 324

LDAP entry parsing and counting functions — ldap_count_references, 324

728 man pages section 3: Networking Library Functions • May 2002
LDAP entry parsing and counting functions
- ldap_first_entry, 324
- ldap_first_reference, 324
- ldap_next_entry, 324
- ldap_next_reference, 324

LDAP filter generating functions
- ldap_build_filter, 331
- ldap_getfilter_free, 331
- ldap_getfilter, 331
- ldap_getfirstfilter, 331
- ldap_getnextfilter, 331

LDAP filter generating functions
- ldap_init_getfilter_buf, 331
- ldap_init_getfilter, 331

LDAP filter generating functions
- ldap_setfilteraffixes, 331

LDAP protocol error handling functions
- ldap_err2string, 319
- ldap_error, 319
- ldap_errno, 319
- ldap_result2error, 319

LDAP attribute remapping functions
- ldap_free_friendlymap, 327
- ldap_friendly_name, 327

LDAP attribute value handling functions
- ldap_count_values, 338
- ldap_get_values, 338
- ldap_get_values_len, 338

ldap_ber_free — free a BerElement structure from memory, 300

ldap_bind — LDAP bind functions, 301
 General Authentication, 301
 Rebinding While Following Referral, 302
 Simple Authentication, 301
 Unbinding, 302

ldap_bind_s — LDAP bind functions, 301

ldap_build_filter — LDAP filter generating functions, 331

LDAP character set translation functions
- ldap_8859_to_t61, 304
- ldap_enable_translation, 304
- ldap_set_string_translators, 304
- ldap_t61_to_8859, 304
- ldap_translate_from_t61, 304
- ldap_translate_to_t61, 304

ldap_compare — LDAP compare operation, 306
- ldap_compare_ext — LDAP compare operation, 306
- ldap_compare_ext_s — LDAP compare operation, 306

LDAP compare operation
- ldap_compare, 306
- ldap_compare_ext, 306
- ldap_compare_ext_s, 306
- ldap_compare_s, 306

ldap_compare_s — LDAP compare operation, 306

LDAP connectionless communication preparation
- cldap_open, 37

LDAP control disposal
- ldap_control_free, 308
- ldap_controls_free, 308

ldap_control_free — LDAP control disposal, 308
- ldap_controls_free — LDAP control disposal, 308

ldap_count_entries — LDAP entry parsing and counting functions, 324
ldap_count_messages — LDAP message processing functions, 326
ldap_count_references — LDAP entry parsing and counting functions, 324
ldap_count_values — LDAP attribute value handling functions, 338
ldap_delete — LDAP delete operation, 309
ldap_delete_ext — LDAP delete operation, 309
ldap_delete_ext_s — LDAP delete operation, 309
LDAP delete operation
— ldap_delete, 309
— ldap_delete_ext, 309
— ldap_delete_ext_s, 309
ldap_delete_s — LDAP delete operation, 309
LDAP display template functions
— ldap_disptmpl, 310
— ldap_first_disptmpl, 310
— ldap_first_tmplcol, 310
— ldap_first_tmplrow, 310
— ldap_free_templates, 310
— ldap_init_templates, 310
— ldap_init_templates_buf, 310
— ldap_next_disptmpl, 310
— ldap_next_tmplcol, 310
— ldap_next_tmplrow, 310
— ldap_oc2template, 310
— ldap_tmplattrs, 310
ldap_disptmpl — LDAP display template functions, 310
DISPTMPL Structure Elements, 312
Syntax IDs, 314
TMPLITEM Structure Elements, 313
LDAP DN handling functions
— ldap_dn2ufn, 328
— ldap_dns_to_dn, 328
— ldap_explode_dn, 328
— ldap_explode_dns, 328
— ldap_get_dn, 328
— ldap_is_dns_dn, 328
ldap_dn_to_url — LDAP Uniform Resource Locator functions, 361
ldap_dns_to_url — LDAP Uniform Resource Locator functions, 361
ldap_enable_translation — LDAP character set translation functions, 304
LDAP entry display functions
— ldap_entry2text, 316
— ldap_entry2text_search, 316
— ldap_vals2text, 316
LDAP entry modification functions
— ldap_modify, 344
— ldap_modify_ext, 344
— ldap_modify_ext_s, 344
— ldap_modify_s, 344
LDAP entry sorting functions
— ldap_sort, 357
— ldap_sort_entries, 357
— ldap_sort_strcasecmp, 357
— ldap_sort_values, 357
ldap_entry2text — LDAP entry display functions, 316
ldap_entry2text_search — LDAP entry display functions, 316
ldap_err2string — LDAP protocol error handling functions, 319
ldap_error — LDAP protocol error handling functions, 319
ldap_explode_dn — LDAP DN handling functions, 328
ldap_explode_dns — LDAP DN handling functions, 328
ldap_first_attribute — step through LDAP entry attributes, 323
ldap_first_disptmpl — LDAP display template functions, 310
ldap_first_entry — LDAP entry parsing and counting functions, 324
ldap_first_message — LDAP message processing functions, 326
ldap_first_reference — LDAP entry parsing and counting functions, 324
ldap_first_searchobj — LDAP search preference configuration routines, 355
ldap_firsttmplcol — LDAP display template functions, 310
ldap_first_tmplrow — LDAP display template functions, 310
ldap_free_friendlymap — LDAP attribute remapping functions, 327
ldap_free_searchprefs — LDAP search preference configuration routines, 355
ldap_free_templates — LDAP display template functions, 310
ldap_free_urldesc — LDAP Uniform Resource Locator functions, 361
ldap_friendly_name — LDAP attribute remapping functions, 327
ldap_get_dn — LDAP DN handling functions, 328
ldap_get_lang_values — return an attribute’s values that matches a specified language subtype, 333
ldap_get_lang_values_len — return an attribute’s values that matches a specified language subtype, 333
ldap_get_values — LDAP attribute value handling functions, 338
ldap_get_values_len — LDAP attribute value handling functions, 338
ldap_getfilter — LDAP filter generating functions, 331
ldap_getfirstfilter — LDAP filter generating functions, 331
ldap_getnextfilter — LDAP filter generating functions, 331
ldap_init — initialize an LDAP session, 348
ldap_init_getfilter — LDAP filter generating functions, 331
ldap_init_getfilter_buf — LDAP filter generating functions, 331
ldap_init_searchprefs — LDAP search preference configuration routines, 355
ldap_init_searchprefs_buf — LDAP search preference configuration routines, 355
ldap_init_templates — LDAP display template functions, 310
ldap_init_templates_buf — LDAP display template functions, 310
ldap_is_dns_dn — LDAP DN handling functions, 328
ldap_is_ldap_url — LDAP Uniform Resource Locator functions, 361
ldap_memcache — LDAP client caching functions, 340
ldap_memcache_destroy — LDAP client caching functions, 340
ldap_memcache_flush — LDAP client caching functions, 340
ldap_memcache_get — LDAP client caching functions, 340
ldap_memcache_init — LDAP client caching functions, 340
ldap_memcache_set — LDAP client caching functions, 340
ldap_memcache_update — LDAP client caching functions, 340
ldap_memfree — free memory allocated by LDAP API functions, 343
LDAP message processing functions
— ldap_count_message, 326
— ldap_first_message, 326
— ldap_msgtype, 326
— ldap_next_message, 326
LDAP message result parser
— ldap_parse_extended_result, 350
— ldap_parse_result, 350
— ldap_parse_sasl_bind_result, 350
ldap_modify — LDAP entry modification functions, 335, 344
ldap_modify_ext — LDAP entry modification functions, 344
ldap_modify_ext_s — LDAP entry modification functions, 344
ldap_modify_s — LDAP entry modification functions, 344
ldap_modrdn — modify LDAP entry RDN, 346
ldap_modrdn_s — modify LDAP entry RDN, 346
ldap_modrdn2 — modify LDAP entry RDN, 346
ldap_modrdn2_s — modify LDAP entry RDN, 346
ldap_msgfree — wait for and return LDAP operation result, 351
ldap_msgtype — LDAP message processing functions, 326
ldap_next_attribute — step through LDAP entry attributes, 323
ldap_next_disptmpl — LDAP display template functions, 310
ldap_next_entry — LDAP entry parsing and counting functions, 324
ldap_next_message — LDAP message processing functions, 326
ldap_next_reference — LDAP entry parsing and counting functions, 324
ldap_next_searchobj — LDAP search preference configuration routines, 355
ldap_next_tmplcol — LDAP display template functions, 310
ldap_next_tmplrow — LDAP display template functions, 310
ldap_open — initialize an LDAP session, 348
ldap_parse_extended_result — LDAP message result parser, 350
ldap_parse_result — LDAP message result parser, 350
ldap_parse_sasl_bind_result — LDAP message result parser, 350
ldap_perror — LDAP protocol error handling functions, 319
ldap_rename — modify LDAP entry RDN, 346
ldap_rename_s — modify LDAP entry RDN, 346
ldap_result — wait for and return LDAP operation result, 351
ldap_result2error — LDAP protocol error handling functions, 319
ldap_sasl_bind — LDAP bind functions, 301
ldap_sasl_bind_s — LDAP bind functions, 301
ldap_search — LDAP search operations, 353
ldap_search_ext — LDAP search operations, 353
ldap_search_ext_s — LDAP search operations, 353
LDAP search operations
 — ldap_search, 353
 — ldap_search_ext, 353
 — ldap_search_ext_s, 353
 — ldap_search_s, 353
 — ldap_search_st, 353
LDAP search preference configuration routines
 — ldap_first_searchobj, 355
 — ldap_free_searchprefs, 355
 — ldap_init_searchprefs, 355
 — ldap_init_searchprefs_buf, 355
 LDAP search preference configuration routines (continued)
 — ldap_next_searchobj, 355
 — ldap_searchprefs, 355
ldap_search_s — LDAP search operations, 353
ldap_search_st — LDAP search operations, 353
ldap_searchprefs — LDAP search preference configuration routines, 355
ldap_set_rebind_proc — LDAP bind functions, 301
ldap_set_string_translators — LDAP character set translation functions, 304
ldap_setfilteraffixes — LDAP filter generating functions, 331
ldap_simple_bind — LDAP bind functions, 301
ldap_simple_bind_s — LDAP bind functions, 301
ldap_sort — LDAP entry sorting functions, 357
ldap_sort_entries — LDAP entry sorting functions, 357
ldap_sort_strcasecmp — LDAP entry sorting functions, 357
ldap_sort_values — LDAP entry sorting functions, 357
ldap_t61_to_8859 — LDAP character set translation functions, 304
ldap_tmplattrs — LDAP display template functions, 310
ldap_translate_from_t61 — LDAP character set translation functions, 304
ldap_translate_to_t61 — LDAP character set translation functions, 304
ldap_ufn — LDAP user friendly search functions, 359
ldap_ufn_search_c — LDAP user friendly search functions, 359
ldap_ufn_search_ct — LDAP user friendly search functions, 359
ldap_ufn_search_s — LDAP user friendly search functions, 359
ldap_ufn_setfilter — LDAP user friendly search functions, 359
ldap_ufn_setprefix — LDAP user friendly search functions, 359
ldap_ufn_timeout — LDAP user friendly search functions, 359
ldap_unbind — LDAP bind functions, 301
ldap_unbind_ext — LDAP bind functions, 301
ldap_unbind_s — LDAP bind functions, 301
LDAP Uniform Resource Locator functions
 — ldap_dn_to_url, 361
 — ldap_dns_to_url, 361
 — ldap_free_urldesc, 361
 — ldap_is_ldap_url, 361
 — ldap_url, 361
 — ldap_url_parse, 361
 — ldap_url_search, 361
 — ldap_url_search_s, 361
 — ldap_url_search_st, 361
ldap_url — LDAP Uniform Resource Locator functions, 361
ldap_url_parse — LDAP Uniform Resource Locator functions, 361
ldap_url_search — LDAP Uniform Resource Locator functions, 361
ldap_url_search_s — LDAP Uniform Resource Locator functions, 361
ldap_url_search_st — LDAP Uniform Resource Locator functions, 361
LDAP user friendly search functions
 — ldap_ufn, 359
 — ldap_ufn_search_c, 359
 — ldap_ufn_search_ct, 359
 — ldap_ufn_search_s, 359
 — ldap_ufn_setfilter, 359
 — ldap_ufn_setprefix, 359
 — ldap_ufn_timeout, 359
ldap_vals2text — LDAP entry display functions, 316
library routines for dealing with creation and manipulation of CLIENT handles —
 clnt_control, 451
library routines for dealing with creation and manipulation of CLIENT handles —
 clnt_create, 451
library routines for dealing with creation and manipulation of CLIENT handles —
 clnt_create_timed, 451
library routines for dealing with creation and manipulation of CLIENT handles —
 clnt_destroy, 451
library routines for dealing with creation and manipulation of CLIENT handles —
 clnt dg_create, 451
library routines for dealing with creation and manipulation of CLIENT handles —
 clnt door_create, 451
library routines for dealing with creation and manipulation of CLIENT handles —
 clnt pcreateerror, 451
library routines for dealing with creation and manipulation of CLIENT handles —
 clnt raw_create, 451
library routines for dealing with creation and manipulation of CLIENT handles —
 clnt service_createerror, 451
library routines for dealing with creation and manipulation of CLIENT handles —
 clnt tli_create, 451
library routines for dealing with creation and manipulation of CLIENT handles —
 clnt tp_create, 451
library routines for dealing with creation and manipulation of CLIENT handles —
 clnt tp_create_timed, 451
library routines for dealing with creation and manipulation of CLIENT handles —
 clnt vc_create, 451
library routines for dealing with creation and manipulation of CLIENT handles —
 rpc clnt create, 451
library routines for dealing with creation and manipulation of CLIENT handles —
 rpc createerror, 451
library routines for the creation of server handles — rpc svc create, 500
library routines for the creation of server handles — svc control, 500
library routines for the creation of server handles — svc create, 500
library routines for the creation of server handles — svc destroy, 500
library routines for the creation of server handles — svc_dg_create, 500
library routines for the creation of server handles — svc_door_create, 500
library routines for the creation of server handles — svc_fd_create, 500
library routines for the creation of server handles — svc_raw_create, 500
library routines for the creation of server handles — svc_tli_create, 500
library routines for the creation of server handles — svc_tp_create, 500
library routines for the creation of server handles — svc_vc_create, 500
library routines for client side calls
— clnt_call, 447
— clnt_freesres, 447
— clnt_geterr, 447
— clnt_perror, 447
— clnt_seterror, 447
— clnt_sperror, 447
— rpc_broadcast, 447
— rpc广播_exp, 447
— rpc_call, 447
— rpc_clnt_calls, 447
library routines for RPC servers
— rpc_svc_calls, 496
— svc_dg_enablecache, 496
— svc_done, 496
— svc_exit, 496
— svc_fdset, 496
— svc_freeargs, 496
— svc_getargs, 496
— svc_getreq_common, 496
— svc_getreq_poll, 496
— svc_getreqset, 496
— svc_getrpccaller, 496
— svc_max_pollfd, 496
— svc_pollfd, 496
— svc_run, 496
— svc_sendreply, 496
list mechanisms that support the specified name-type —
gss_inquire_mechs_for_name, 252
list the atomic names and references bound in a context (continued)
— fn_bindinglist_next, 118
— FN_bindinglist_t, 118
— fn_ctx_list_bindings, 118
list the atomic names bound in a context
— fn_ctx_list_names, 119
— fn_namelist_destroy, 119
— fn_namelist_next, 119
— FN_namelist_t, 119
list the name-types supported by the specified mechanism —
gss_inquire_names_for_mech, 254
listen — listen for connections on a socket, 365
look up the link reference bound to a name —
fn_ctx_lookup_link, 123

M
map ASCII mechanism to OID
— rpc_gss_mech_to_oid, 463, 468
map ASCII qop to number
— rpc_gss_qop_to_num, 463, 468
map SLP error codes to messages —
slp_strerror, 573
modify LDAP entry RDN
— ldap_modrdn, 346
— ldap_modrdn_s, 346
— ldapmodrdn2, 346
— ldap_modrdn2_s, 346
— ldap_rename, 346
— ldap_rename_s, 346
modify multiple attributes associated with named object —
fn_attr_multi_modify, 84
modify specified attribute associated with name —
fn_attr_modify, 75

N
netdir — generic transport name-to-address translation, 368
netdir_free — generic transport
name-to-address translation, 368
netdir_getbyaddr — generic transport
name-to-address translation, 368
netdir_getbyname — generic transport name-to-address translation, 368
netdir_mergeaddr — generic transport name-to-address translation, 368
netdir_options — generic transport name-to-address translation, 368
netdir_perror — generic transport name-to-address translation, 368
netdir_serror — generic transport name-to-address translation, 368
network configuration database entry
— endnetconfig, 176
— freenetconfig, 176
— getnetconfig, 176
— getnetconfig, 176
— nc_perror, 176
— nc_serror, 176
— setnetconfig, 176
network configuration entry corresponding to NETPATH
— endnetpath, 178
— getnetpath, 178
— setnetpath, 178
network entry
— endnetent, 172
— getnetbyaddr, 172
— getnetbyaddr, 172
— getnetbyname, 172
— getnetbyname, 172
— getnetent, 172
— getnetent, 172
— setnetent, 172
network host entry
— endhostent, 159
— gethostbyaddr, 159
— gethostbyaddr, 159
— gethostbyname, 159
— gethostbyname, 159
— gethostent, 159
— gethostent, 159
— sethostent, 159
network listener service
format and send listener service request message — nlsrequest, 410
get client’s data passed via the listener — nlsgetcall, 408
get name of transport provider — nlsprovider, 409
network protocol entry
— endprotoent, 182
— getprotobynumber, 182
— getprotobynumber_r, 182
— getprotoent, 182
— getprotoent_r, 182
— setprotoent, 182
NIS+ table functions — nis_tables
nis_first_entry, 399
nis_modify_entry, 399
nis_next_entry, 399
nis_remove_entry, 399
NIS, change information
— yp_update, 715
NIS+ error messages
nis_error, 372
nis_errno, 372
nis_perror, 372
nis_sperror, 372
nis_sperror, 372
nis_sperror_r, 372
NIS+ group manipulation functions
— nis_addmember, 374
— nis_creategroup, 374
— nis_destroygroup, 374
— nis_groups, 374
— nis_ismember, 374
— nis_print_group_entry, 374
— nis_removemember, 374
— nis_unverifygroup, 374
NIS+ local names
— nis_freenames, 396
— nis_getnames, 396
— nis_local_directory, 377
— nis_local_group, 377
— nis_local_host, 377
— nis_local_names, 377
— nis_local_principal, 377
NIS+ log administration functions
— nis_checkpoint, 393
— nis_ping, 393
NIS+ miscellaneous functions
— nis_freeservelist, 394
— nis_freetags, 394
— nis_getservlist, 394
— nis_mkdir, 394
Index 735
NIS+ miscellaneous functions (continued)
— nis_rmdir, 394
— nis_server, 394
— nis_servstate, 394
— nis_stats, 394
NIS+ namespace functions
— nis_add, 379
— nis_freeresult, 379
— nis_lookup, 379
— nis_modify, 379
— nis_names, 379
— nis_remove, 379
NIS+ object formats
— nis_objects, 385
NIS+ subroutines
— nis_clone_object, 396
— nis_destroy_object, 396
— nis_dir_cmp, 396
— nis_domain_of, 396
— nis_leaf_of, 396
— nis_name_of, 396
— nis_print_object, 396
— nis_subr, 396
NIS+ table functions
— nis_add_entry, 399
— nis_first_entry, 399
— nis_list, 399
— nis_modify_entry, 399
— nis_next_entry, 399
— nis_remove_entry, 399
— nis_tables, 399
NIS client interface
— yp_all, 710
— yp_bind, 710
— yp_first, 710
— yp_get_default_domain, 710
— yp_master, 710
— yp_match, 710
— yp_next, 710
— yp_order, 710
— yp_unbind, 710
— ypclnt, 710
— yperr_string, 710
— ypprot_err, 710
nis_tables — NIS+ table functions, 399

O
obtain information about a credential —
gss_inquire_cred, 248
obtain information about a security context —
gss_inquire_context, 245
obtain per-mechanism information about a credential —
gss_inquire_cred_by_mech, 250
open an SLP handle — SLPOpen, 566
overview of the XFN interface — xfn, 695
an overview of XFN attribute operations —
xfn_attributes, 696
XFN compound syntax: an overview of XFN
model for compound name parsing —
xfn_compound_names, 700

P
parse service URL — SLPParseSrvURL, 568
pass asynchronous token to security service —
gss_process_context_token, 257
perform an LDAP add operation
— ldap_add, 298
— ldap_add_ext, 298
— ldap_add_ext_s, 298
— ldap_add_s, 298
publickey — retrieve public or secret key, 185

R
rac_drop() — remote asynchronous calls, 477
rac_poll() — remote asynchronous calls, 477
rac_recv() — remote asynchronous calls, 477
rac_send() — remote asynchronous calls, 477
rcmd — routines for returning a stream to a
remote command, 412
rcmd_af — routines for returning a stream to a
remote command, 412
receive a message from a socket — recv, 414
recvfrom, 414
recvmsg, 414
recv — receive a message from a socket, 414
recvfrom — receive a message from a
socket, 414
recvmsg — receive a message from a
socket, 414
register an SLP advertisement — SLPReg, 570
release an object identifier —
gss_release_oid, 262
remote procedure calls, library routines for —
rpc, 434
remote system
return information about users — rusers,
musers, 514
write to — rstat, 513
write to — rwall, 515
rename the name of a binding —
fn_ctx_rename, 124
res_hostalias — resolver routines, 426
res_init — resolver routines, 426
res_mkquery — resolver routines, 426
res_nclose — resolver routines, 426
res_ninit — resolver routines, 426
res_nmkquery — resolver routines, 426
res_nquery — resolver routines, 426
res_nquerydomain — resolver routines, 426
res_nsearch — resolver routines, 426
res_nsend — resolver routines, 426
res_nsendsigned — resolver routines, 426
res_query — resolver routines, 426
res_querydomain — resolver routines, 426
res_search — resolver routines, 426
res_send — resolver routines, 426
res_update — resolver routines, 426
resolver routines — fn_ctx_handle_from_initial, 114
resolver routines — res_search, 426
resolver routines — res_send, 426
resolver routines — res_update, 426
retrieve public or secret key —
getpublickey, 185
getsecretkey, 185
publickey, 185
return an attribute’s values that matches a
specified language subtype —
ldap_get_lang_values, 333
return an attribute’s values that matches a
specified language subtype —
ldap_get_lang_values_len, 333
return stream to a remote command —
rexec_af, 432
return stream to a remote command —
rexec, 432
return a handle to the Initial Context —
fn_ctx_handle_from_initial, 114
return list of configured and discovered scopes
— SLPFindScopes, 557
return multiple attributes associated with
named object —
fn_attr_multi_get, 80
fn_multigetlist_destroy, 80
fn_multigetlist_next, 80
FN_multigetlist_t, 80
return service attributes — SLPFindAttrs, 555
return service URLs — SLPFindSrvs, 559
return SLP configuration property —
SLPGetProperty, 564
return specified attribute associated with name
— fn_attr_get, 69
return the maximum allowed refresh interval —
SLPGetRefreshInterval, 565
return values of an attribute —
fn_attr_get_values, 71
fn_valuelist_destroy, 71
fn_valuelist_next, 71
FN_valuelist_t, 71
rexec — return stream to a remote
cmd, 432
rexec_af — return stream to a remote
command, 432
rnusers — return information about users on
remote machines, 514
routines for returning a stream to a remote
command — rcmd_af, 412
routines for returning a stream to a remote command — rcmd, 412
routines for returning a stream to a remote command — resvport_af, 412
routines for returning a stream to a remote command — resvport, 412
routines for returning a stream to a remote command — ruserok, 412
routines for returning a stream to a remote command — rcmd, 412
routines for returning a stream to a remote command — resvport_af, 412
routines for returning a stream to a remote command — resvport, 412
routines for returning a stream to a remote command — ruserok, 412
rpc — library routines for remote procedure calls, 434
RPC
data transmission using XDR routines — xdr, 682
RPC, XDR library routines
— rpc_xdr, 511
— xdr_accepted_reply, 511
— xdr_authsys_parms, 511
— xdr_callhdr, 511
— xdr_callmsg, 511
— xdr_opaque_auth, 511
— xdr_rejected_reply, 511
— xdr_replmsg, 511
RPC bind service library routines
— rpc_getmaps, 443
— rpcb_getaddr, 443
— rpcb_gettime, 443
— rpcb_rmtcall, 443
— rpcb_set, 443
— rpcb_unset, 443
— rpcbind, 443
rpc_broadcast — library routines for client side calls, 447
rpc_broadcast_exp — library routines for client side calls, 447
rpc_call — library routines for client side calls, 447
rpc_clnt_auth — library routines for client side remote procedure call authentication, 445
rpc_clntCalls — library routines for client side calls, 447
Routines, 447
rpc_clnt_create — library routines for dealing with creation and manipulation of CLIENT handles, 451
Routines, 447
rpc_createerr — library routines for dealing with creation and manipulation of CLIENT handles, 451
RPC entry
— endrpcent, 186
— getrpcbyname, 186
— getrpcbyname_r, 186
— getrpcbyname, 186
— getrpcbyname_r, 186
— getrpcent, 186
— getrpcent_r, 186
— setrpcent, 186
rpc_gss_getcred — get credentials of client, 460
rpc_gss_seccreate — create a security context using the RPCSEC_GSS protocol, 470
RPC library routine for manipulating global RPC attributes for client and server applications
— rpc_control, 458
RPC library routines for registering servers
— rpc_reg, 509
— rpc_svc_reg, 509
— svc_auth_reg, 509
— svc_reg, 509
— svc_unreg, 509
— xprt_register, 509
— xprt_unregister, 509
RPC library routines for server side errors
— rpc_svc_err, 505
— svcerr_auth, 505
— svcerr_decode, 505
— svcerr_noproc, 505
— svcerr_noprog, 505
— svcerr_progrvers, 505
— svcerr_systemerr, 505
— svcerr_weakauth, 505
RPC obsolete library routines
— authdes_create, 487
— authunix_create_default, 487
— callrpc, 487
— clnt_broadcast, 487
— clntraw_create, 487
— clnttcp_create, 487
— clntudp_create, 487
— get_myaddress, 487
— getrpcport, 487
— pmap_getmaps, 487
— pmap_getport, 487
— pmap_rmtcall, 487

May 2002
RPC obsolete library routines (continued)
- pmap_set, 487
- pmap_unset, 487
- registerrpc, 487
- rpc_soc, 487
- svc_fds, 487
- svc_getcaller, 487
- svc_getreq, 487
- svc_register, 487
- svc_unregister, 487
- svcfd_create, 487
- svcraw_create, 487
- svctcp_create, 487
- svcudp_bufcreate, 487
- svcudp_create, 487
- xdr_authunix_parms, 487

RPC routines
- rac_drop() — remote asynchronous calls, 477
- rac_poll() — remote asynchronous calls, 477
- rac_recv() — remote asynchronous calls, 477
- rac_send() — remote asynchronous calls, 477

rpc_svc_calls — library routines for RPC servers, 496
Routines, 496
rpc_svc_create — library routines for the creation of server handles, 500
rpc — security flavor incorporating GSS-API onto ONC RPC, 481
rresvport — routines for returning a stream to a remote command, 412
rresvport_af — routines for returning a stream to a remote command, 412
rstat — get performance data from remote kernel, 513
ruserok — routines for returning a stream to a remote command, 412
rusers — return information about users on remote machines, 514
xdr_utmidlearr, 514
rwall — write to specified remote machines, 515

S
search for atomic name with specified attributes in single context
- fn_attr_search, 86
- fn_searchlist_destroy, 86
- fn_searchlist_next, 86
- FN_searchlist_t, 86
search for names whose attributes satisfy filter
- fn_attr_ext_search, 62
- fn_ext_searchlist_destroy, 62
- fn_ext_searchlist_next, 62
- FN_ext_searchlist_t, 62
send — send message from a socket, 520
sendmsg — send message from a socket, 520
sendto — send message from a socket, 520
Service Access Facility library function
- doconfig, 48
Service Location Protocol Application Programming Interface — slp_api, 538
set an SLP configuration property — SLPSetProperty, 572
set connectionless LDAP request retransmission parameters — cldap_setretryinfo, 40
set server principal name
- rpc_gss_set_svc_name, 475
shutdown — shut down part of a full-duplex connection, 536
simplified Basic Encoding Rules library encoding functions
- ber_alloc, 27
- ber_encode, 27
- ber_printf, 27
- ber_put_bitstring, 27
- ber_put_boolean, 27
- ber_put_int, 27
- ber_put_null, 27
- ber_put_ostring, 27
- ber_start_seq, 27
- ber_start_set, 27
- slp_api — Service Location Protocol Application Programming Interface, 538
slp_strerror — map SLP error codes to messages, 573
SLPClose — close an open SLP handle, 548
SLPDelAttrs — delete attributes, 549
SLPDereg — deregister the SLP advertisement, 551
SLPEscape — escapes SLP reserved characters, 553
SLPFindAttrs — return service attributes, 555
SLPFindScopes — return list of configured and discovered scopes, 557
SLPFindSrvs — return service URLs, 559
SLPFindSrvTypes — find service types, 561
SLPFree — frees memory, 563
SLPGetProperty — return SLP configuration property, 564
SLPGetRefreshInterval — return the maximum allowed refresh interval, 565
SLPOpen — open an SLP handle, 566
SLPParseSrvURL — parse service URL, 568
SLPReg — register an SLP advertisement, 570
SLPSetProperty — set an SLP configuration property, 572
SLPUnecape — translate escaped characters into UTF-8, 574
socket — create an endpoint for communication, 576
socket
 accept a connection — accept, 18
 bind a name — bind, 31
 get options — getsockopt, 195
 get name — getsockname, 193
 get name of connected peer — getpeername, 180
 initiate a connection — connect, 41
 listen for connections — listen, 365
 send a message from a socket — send, sendto, sendmsg, 520
 set options — setsockopt, 195
 shut down part of a full-duplex connection — shutdown, 536
socketpair — create a pair of connected sockets, 581
spray — scatter data in order to test the network, 584
step through LDAP entry attributes
 — ldap_first_attribute, 323
 — ldap_next_attribute, 323
STREAMS (continued)
 bind a name to a socket — bind, 31
 create a pair of connected sockets — socketpair, 581
 create an endpoint for communication — socket, 576
 get and set socket options — getsockopt, setsockopt, 195
 get name of peer connected to socket — getpeername, 180
 get socket name — getsockname, 193
 initiate a connection on a socket — connect, 41
 listen for connections on a socket — listen, 365
 send a message from a socket — send, sendto, sendmsg, 520
 shut down part of a full-duplex connection — shutdown, 536
svc_control — library routines for the creation of server handles, 500
svc_create — library routines for the creation of server handles, 500
svc_destroy — library routines for the creation of server handles, 500
svc dg_create — library routines for the creation of server handles, 500
svc dg_enablecache — library routines for RPC servers, 496
svc done — library routines for RPC servers, 496
svc_door_create — library routines for the creation of server handles, 500
svc_exit — library routines for RPC servers, 496
svc fd_create — library routines for the creation of server handles, 500
svc fdset — library routines for RPC servers, 496
svc freeargs — library routines for RPC servers, 496
svc getargs — library routines for RPC servers, 496
svc getreq_common — library routines for RPC servers, 496
svc getreq poll — library routines for RPC servers, 496
svc_getreq poll — library routines for RPC servers, 496
svc_getreqset — library routines for RPC servers, 496
svc_getrpccaller — library routines for RPC servers, 496
svc_max_pollfd — library routines for RPC servers, 496
svc_pollfd — library routines for RPC servers, 496
svc_raw_create — library routines for the creation of server handles, 500
svc_run — library routines for RPC servers, 496
svc_sendreply — library routines for RPC servers, 496
svc_tli_create — library routines for the creation of server handles, 500
svc_tp_create — library routines for the creation of server handles, 500
svc_vc_create — library routines for the creation of server handles, 500

T

t_alloc — allocate memory for argument structures, 590
t_bind — bind an address to a transport endpoint, 593	taddr2uaddr — generic transport name-to-address translation, 368
terminal line
 establish an outgoing connection — dial, 46
transfer a security context to another process — gss_export_sec_context, 229
translate between node name and address — freeaddrinfo, 155
translate between node name and address — gai_strerror, 155
translate between node name and address — getaddrinfo, 155
translate between node name and address — getnameinfo, 155
translate escaped characters into UTF-8 — SLPUnescape, 574
transport functions
 allocate memory, 590

U
uaddr2uaddr — generic transport name-to-address translation, 368
users
 return information from remote machines — rusers, rusers, 514

V
verify a message with attached cryptographic message — gss_wrap, 267
verify integrity of a received message — gss_verify_mic, 269

W
wait for and return LDAP operation result — ldap_msgfree, 351
wait for and return LDAP operation result — ldap_result, 351

X
XDR library routines
 — xdr, 682
 — xdr_admin, 684
 — xdr_control, 684
 — xdr_getpos, 684
 — xdr_inline, 684
 — xdr_setpos, 684
 — xdr_sizeof, 684
 — xdrrec_endofrecord, 684
 — xdrrec_eof, 684
 — xdrrec_readbytes, 684
 — xdrrec_skiprecord, 684
XDR library routines for complex data structures
 — xdr_array, 686
 — xdr_bytes, 686
 — xdr_complex, 686
 — xdrOpaque, 686
 — xdr_pointer, 686
 — xdr_reference, 686
 — xdr_string, 686
 — xdr_union, 686
XDR library routines for complex data structures (continued)
- xdr_vector, 686
- xdr_wrapstring, 686

XDR library routines for RPC
- rpc_xdr, 511
- xdr_accepted_reply, 511
- xdr_authsys_parms, 511
- xdr_callhdr, 511
- xdr_callmsg, 511
- xdr_opaque_auth, 511
- xdr_rejected_reply, 511
- xdr_replymsg, 511

XDR library routines for simple data structures
- xdr_bool, 691
- xdr_char, 691
- xdr_double, 691
- xdr_enum, 691
- xdr_float, 691
- xdr_free, 691
- xdr_hyper, 691
- xdr_int, 691
- xdr_long, 691
- xdr_longlong_t, 691
- xdr_quadruple, 691
- xdr_short, 691
- xdr_simple, 691
- xdr_u_char, 691
- xdr_u_hyper, 691
- xdr_u_int, 691
- xdr_u_long, 691
- xdr_u_longlong_t, 691
- xdr_u_short, 691
- xdr_u_void, 691

xdr_statstime — get performance data from remote kernel, 513
xdr_statsvar — get performance data from remote kernel, 513

XDR stream creation library routines
- xdr_create, 689
- xdr_destroy, 689
- xdrmem_create, 689
- xdrrec_create, 689
- xdrstdio_create, 689

xfn — overview of the XFN interface, 695

XFN attribute (continued)
- fn_attribute_copy, 73
- fn_attribute_create, 73
- fn_attribute_destroy, 73
- fn_attribute_first, 73
- fn_attribute_identifier, 73
- fn_attribute_next, 73
- fn_attribute_remove, 73
- fn_attribute_syntax, 73
- FN_attribute_t, 73
- fn_attribute_valuecount, 73

xfn_attributes — an overview of XFN attribute operations, 696

XFN attributes, a set of
- fn_attrset_add, 91
- fn_attrset_assign, 91
- fn_attrset_copy, 91
- fn_attrset_count, 91
- fn_attrset_create, 91
- fn_attrset_destroy, 91
- fn_attrset_first, 91
- fn_attrset_get, 91
- fn_attrset_next, 91
- fn_attrset_remove, 91
- FN_attrset_t, 91

XFN compound name
- fn_compound_name_append_comp, 100
- fn_compound_name_assign, 100
- fn_compound_name_copy, 100
- fn_compound_name_count, 100
- fn_compound_name_delete_all, 100
- fn_compound_name_delete_comp, 100
- fn_compound_name_destroy, 100
- fn_compound_name_first, 100
- fn_compound_name_from_syntax_attrs, 100
- fn_compound_name_get_syntax_attrs, 100
- fn_compound_name_insert_comp, 100
- fn_compound_name_is_empty, 100
- fn_compound_name_is_equal, 100
- fn_compound_name_is_prefix, 100
- fn_compound_name_is_suffix, 100
- fn_compound_name_last, 100
- fn_compound_name_next, 100
- fn_compound_name_prefix, 100
- fn_compound_name_prepend_comp, 100
XFN compound name (continued)
— fn_compound_name_prev, 100
— fn_compound_name_suffix, 100
— FN_compound_name_t, 100
— fn_string_from_compound_name, 100

xfn_compound_names — XFN compound syntax: an overview of XFN model for compound name parsing, 700
an XFN context — FN_ctx_t, 127
an XFN identifier — FN_identifier_t, 130

XFN reference
— fn_ref_addrcount, 133
— fn_ref_append_addr, 133
— fn_ref_assign, 133
— fn_ref_copy, 133
— fn_ref_create, 133
— fn_ref_create_link, 133
— fn_ref_delete_addr, 133
— fn_ref_delete_all, 133
— fn_ref_description, 133
— fn_ref_destroy, 133
— fn_ref_first, 133
— fn_ref_insert_addr, 133
— fn_ref_is_link, 133
— fn_ref_link_name, 133
— fn_ref_next, 133
— fn_ref_prepend_addr, 133
— FN_ref_t, 133
— fn_ref_type, 133

xfn_status_codes — descriptions of XFN status codes, 706
XFN Status Codes, 706

XFN status object (continued)
— fn_status_link_resolved_ref, 147
— fn_status_remaining_name, 147
— fn_status_resolved_name, 147
— fn_status_resolved_ref, 147
— fn_status_set, 147
— fn_status_set_code, 147
— fn_status_set_diagnostic_message, 147
— fn_status_set_link_code, 147
— fn_status_set_link_diagnostic_message, 147
— fn_status_set_link_remaining_name, 147
— fn_status_set_link_resolved_name, 147
— fn_status_set_resolved_name, 147
— fn_status_set_resolved_ref, 147
— fn_status_set_success, 147
— FN_status_t, 147

XFN status object
— fn_status_advance_by_name, 147
— fn_status_append_remaining_name, 147
— fn_status_append_resolved_name, 147
— fn_status_assign, 147
— fn_status_code, 147
— fn_status_copy, 147
— fn_status_create, 147
— fn_status_description, 147
— fn_status_destroy, 147
— fn_status_diagnostic_message, 147
— fn_status_is_success, 147
— fn_status_link_code, 147
— fn_status_set_link_diagnostic_message, 147
— fn_status_set_link_remaining_name, 147
— fn_status_set_link_resolved_name, 147
— fn_status_set_resolved_name, 147
— fn_status_set_resolved_ref, 147
— fn_status_set_success, 147
— FN_status_t, 147