Installing a DLT, SDLT, VS, LTO, or DAT Tape Drive Into a Linux Operating System

Purpose

5

Scope

5

Conventions Used in This Guide

5

Reference Documents

6

Setting Up Communication with the Tape Drives

7

- Before Installing the Tape Drive
- Installing the Tape Drive
- Verifying the st Module is Loaded

Verifying Communication with the Tape Drives

9

- Displaying the Kernel Initialization Information
- Reviewing the Kernel Initialization Information
- Identifying the Tape Devices
- What To Do if Device Information is Missing

Obtaining Device Information Using /proc/scsi/scsi

10

- What is the /proc File System?
- Viewing /proc Files
Contents

Accessing Devices Using /dev/st* Device Nodes
- Generating a List of Device Files ... 11
- Reviewing the List of Device Files ... 11
- What To Do if a Device Node is Missing ... 12
- Interpreting the Device Node File Listing .. 13
- Identifying Device Nodes ... 14
- Identifying Device Modes .. 15
- Creating Device Nodes .. 15
- Creating Auto-Rewind Device Nodes ... 16
- Creating No-Rewind Device Nodes .. 16

mt-st Linux RPM Package
- Verifying mt-st is Installed ... 17
- Installing mt-st ... 17

mt Tape Device Tool
- Tape Device and Parameter Definitions ... 18
- Identifying Tape Devices and Parameters .. 19
- Common Tape Device Keywords ... 19
- Common Parameter Keywords ... 19

stinit and stinit.def
- Tape Device and Parameter Definitions ... 18
- Identifying Tape Devices and Parameters .. 19
- Common Tape Device Keywords ... 19
- Common Parameter Keywords ... 19

mtx Tape Library Tool
- Verifying mtx is Installed ... 20
- Installing mtx ... 21

Appendix A – Tape Drive and Cartridge Compatibility
- Tape Drive and Cartridge Compatibility – DLT ... 22
- Tape Drive and Cartridge Compatibility – SDLT ... 23
- Tape Drive and Cartridge Compatibility – VS ... 23
- Tape Drive and Cartridge Compatibility – LTO ... 24
- Tape Drive and Cartridge Compatibility – DDS/DAT 24
<table>
<thead>
<tr>
<th>Appendix B – Linux Reference Documentation</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix C – Sample stinit.def Definitions File</td>
<td>26</td>
</tr>
<tr>
<td>Recommendations ..</td>
<td>26</td>
</tr>
<tr>
<td>Sample File...</td>
<td>26</td>
</tr>
<tr>
<td>Appendix D – Troubleshooting</td>
<td>31</td>
</tr>
</tbody>
</table>
Purpose

This document provides instructions for integrating a Quantum® DLTtape® drive, a Super DLTtape™ drive, a DLT VS tape drive, an LTO tape drive, or a DAT tape drive into Red Hat® Linux, Novell® SuSE® Linux, or other Linux operating system.

Scope

This document is intended for users who have a general understanding of Linux operating systems.

The instructions and examples provided in this document refer specifically to Red Hat and Novell SuSE Linux systems. The instructions may differ slightly if you are running a Linux system other than Red Hat or Novell SuSE. If these instructions are not adequate, refer to the Linux user guide for your system.

This document pertains to the following products:

- **Tape drives:** DLT 2000, DLT 2000XT, DLT 4000, DLT 7000, DLT 8000, SDLT 220, SDLT 320, SDLT 600, DLT1, VS80, VS160, DLT-V4, LTO-1, LTO-2, LTO-3, and DAT 72.

 Note: The Super DLT1 tape drive is currently known as the SDLT 220 tape drive.

- **Mini-libraries:** DLT 2500, DLT 2500XT, DLT 2700, DLT 2700XT, DLT 4500, and DLT 4700.

Conventions Used in This Guide

This document uses the following conventions when providing examples of st commands and codes:

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>“n” in parentheses in the st file name</td>
<td>(n)st0*</td>
<td>The example applies either to auto-rewind or to no-rewind devices.</td>
</tr>
<tr>
<td>“n” absent from the st file name</td>
<td>st0*</td>
<td>The device is auto-rewind.</td>
</tr>
<tr>
<td>“n” present in the st file name</td>
<td>nst0*</td>
<td>The device is no-rewind.</td>
</tr>
</tbody>
</table>
As you install and work with your Linux system, you should have the manual for your tape drive available to refer to. Following is a list of all the product manuals for Quantum tape drives.

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>“0” in an st file name</td>
<td>st0</td>
<td>Represents the device number. In actual practice, this numeric character may be any number from 0 to 31 depending on the node. See Identifying Device Nodes on page 14 for more information.</td>
</tr>
<tr>
<td>* (asterisk)</td>
<td>mt-st*</td>
<td>The asterisk is a placeholder representing the rest of the file name.</td>
</tr>
</tbody>
</table>

Reference Documents

As you install and work with your Linux system, you should have the manual for your tape drive available to refer to. Following is a list of all the product manuals for Quantum tape drives.

<table>
<thead>
<tr>
<th>Product Manual Title</th>
<th>Document Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLT 2000/DLT 2500/DLT 2700 Cartridge Tape Subsystem Product Manual</td>
<td>81-109132-03</td>
</tr>
<tr>
<td>DLT 2000XT/DLT 2500XT/DLT 2700XT Product Manual</td>
<td>81-109253-03</td>
</tr>
<tr>
<td>DLT 4000 Product Manual</td>
<td>81-60043-04</td>
</tr>
<tr>
<td>DLT 7000 Product Manual</td>
<td>81-60000-06</td>
</tr>
<tr>
<td>DLT 8000 Product Manual</td>
<td>81-60118-04</td>
</tr>
<tr>
<td>SDLT 220 and SDLT 320 Product Manual</td>
<td>81-85002-01</td>
</tr>
<tr>
<td>SDLT 600 Product Manual</td>
<td>81-81184-01</td>
</tr>
<tr>
<td>DLT1 Tape Drive Installation and Operations Guide</td>
<td>000826-01</td>
</tr>
<tr>
<td>VS80 Tape Drive Installation and Operations Guide</td>
<td>001596-01</td>
</tr>
<tr>
<td>VS160 Tape Drive Installation and Operations Guide</td>
<td>81-81191-01</td>
</tr>
<tr>
<td>DLT-V4 Product Manual</td>
<td>81-81422-02</td>
</tr>
<tr>
<td>LTO-1/LTO-2 Tape Drive User’s Guide</td>
<td>50001007</td>
</tr>
<tr>
<td>LTO-3 Tape Drive User’s Guide</td>
<td>50002764</td>
</tr>
<tr>
<td>DDS-4/DAT 72 User’s Guide</td>
<td>50000711</td>
</tr>
</tbody>
</table>
Setting Up Communication with the Tape Drives

This section describes how to install the tape drive and how to configure the Red Hat Linux and Novell SuSE Linux operating systems to recognize and communicate with the tape drive. The Red Hat or Novell SuSE operating system includes a driver to communicate efficiently with SCSI devices, such as a DLT or SDLT tape drive.

Before Installing the Tape Drive

Before you install the tape drive, follow these steps:

1. If you have a DLT 2000, DLT 2500, or DLT 2700 product, make sure it uses version V10 (or higher) controller firmware. If it does not, go to http://www.quantum.com/am/service_support/downloads/default.htm to download V10. (The suggested method to determine what version of firmware you are running is to view the SCSI HBA Bios at boot-up.)

 Note: The DLT 2000XT, DLT 2500XT, DLT 2700XT, DLT 4000, DLT 7000, DLT 8000, SDLT 220, SDLT 320, SDLT 600, DLT1, VS80, VS160, DLT-V4, LTO-1, LTO-2, LTO-3, and DAT 72 tape drives do not have a firmware revision restriction.

2. Make sure that you have the appropriate SCSI interface and cable for your tape drive:

<table>
<thead>
<tr>
<th>If you have this type of tape drive SCSI connection...</th>
<th>You need this type of SCSI interface...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-ended (SE)</td>
<td>SE or LVD</td>
</tr>
<tr>
<td>Low-voltage differential (LVD)</td>
<td>LVD</td>
</tr>
<tr>
<td>High-voltage differential (HVD)</td>
<td>HVD</td>
</tr>
</tbody>
</table>

3. Obtain the appropriate manual for your tape drive. The product manual provides detailed hardware installation instructions, including switch and jumper settings and information about SCSI bus termination. See [Reference Documents](#) on page 6.
Installing a DLT, SDLT, VS, LTO, or DAT Tape Drive Into a Linux Operating System

6464215-01, Rev B
January 2006

Setting Up Communication with the Tape Drives

8

Installing the Tape Drive

To install the tape drive, follow these steps:

1. Shut down your workstation or server and remove AC power from the system.

2. Follow the instructions in your tape drive’s product manual to install the tape drive and set the SCSI ID.

Verifying the st Module is Loaded

st is the tape device driver for Linux. Typically, st is loaded into the kernel as a module to support SCSI tape devices. You must verify that st is loaded to assure that the kernel supports SCSI tape devices.

To verify the st module is loaded, follow these steps:

1. Execute the following command as superuser:

 # modinfo st

 If st is loaded, the output will look similar to one of the following:

 • Red Hat Enterprise Linux 3.0 (RHEL3):

 filename: /lib/modules/2.4.21-4.ELsmp/kernel/drivers/scsi/st.ode
description: "SCSI Tape Driver"
author: "Kai Makisara"
license: "GPL"
parm: buffer_kbs int, description "Default driver buffer size (KB; 32)"
parm: max_buffers int, description "Maximum number of buffer allocated at initialisation (4)"
parm: max_sg_segs int, description "Maximum number of scatter/gather segments to use (32)"
parm: blocking_open int, description "Block in open if not ready an no O_NONBLOCK (0)"

 • Novell SuSE Linux 9 (SuSE9):

 parm: try_wdio:Try direct write i/o when possible
parm: try_rdio:Try direct read i/o when possible
parm: try_direct_io:Try direct I/O between user buffer and tape drive (1)
parm: max_sg_segs:Maximum number of scatter/gather segments to use (256)
parm: buffer_kbs:Default driver buffer size for fixed block mode (KB; 32)
license: GPL
description: SCSI Tape Driver
author: Kai Makisara
depends: scsi_mod
supported: yes
vermagic: 2.6.5-7.79-smp SMP 586 REGPARM gcc-3.3

 If the st module is not loaded, modinfo will report that the module name is not found. You need to load the st module by using the #insmod command. Consult your Linux manuals for instructions.

2. Reboot the server. This allows the st driver to attach tape device nodes (/dev/st#).
Verifying Communication with the Tape Drives

You must ensure the `st` driver sees the all the tape devices. If you have added a tape device, you must verify that the `st` driver sees the new device.

You do this by displaying and reviewing the kernel initialization information which contains `st` driver initialization and attachment of SCSI tape devices.

Displaying the Kernel Initialization Information

You can display the kernel initialization information by using any of the following three methods:

<table>
<thead>
<tr>
<th>Method</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>View <code>st</code> information during boot-up.</td>
<td>At boot-up, Linux displays kernel initialization information, including the <code>st</code> driver initialization and attachment of the SCSI tape devices. The information scrolls by quickly; if you miss it, try one of the other two methods.</td>
</tr>
<tr>
<td>Read the Kernel Message Buffer Log.</td>
<td>The kernel message buffer log contains the most recent kernel logs. Look in <code>/var/log/dmesg</code>. Remember: The kernel message buffer is limited in size; therefore, when the buffer becomes full, old logs are discarded.</td>
</tr>
</tbody>
</table>
| Execute the `dmesg` command to view the Kernel Message Buffer Log. | Executing the `dmesg` command is another way to open the kernel message buffer log. Execute the following command:
  ```sh
  # dmesg | less
  ```  
 See “Read the Kernel Message Buffer Log” above for more information about the log. |

Reviewing the Kernel Initialization Information

All three of the methods show you the same information. The information looks similar to one of the following:

- **RHEL3 output** looks similar to the following:

 Attached scsi tape st0 at scsi2, channel 0, id 4, lun 0
 st0: Block limits 4 - 16777212 bytes.
 st: Version 20030406, bufsize 32768, max init. bufs 4, s/g segs 16

- **SuSE9 output** looks similar to the following:

 Attached scsi tape st0 at scsi0, channel 0, id 3, lun 0
 st0: try direct i/o: yes (alignment 512 B), max page reachable by HBA 1048575
 st: Version 20040318, fixed bufsize 32768, s/g segs 256
Identifying the Tape Devices

You can identify the tape device by looking at the values listed for “channel” (PCI Bus), “id” (SCSI ID), and “lun” (lun is always “0” for standalone configurations).

If you have more than one tape device, you should see similar lines of output for each device.

What To Do if Device Information is Missing

If you do not see the information for every attached tape device, then the st driver is not communicating with the missing device(s). Try the following solutions:

• Verify that the connector cable length does not exceed the specifications listed in your product manual.

• Make sure the SCSI bus is terminated properly (see your product manual for instructions).

• Ensure there are enough st tape device nodes for all your attached tape devices. If not, you will need to create more. See Creating Device Nodes on page 15 and Creating No-Rewind Device Nodes on page 16.

Obtaining Device Information Using /proc/scsi/scsi

To obtain information about a specific tape drive, view the /proc/scsi/scsi file.

What is the /proc File System?

The /proc file system is a map to the running kernel process. It displays a list of connected SCSI devices. It is not a disk-based file system and is dynamic to reflect the current boot-up information.

Viewing /proc Files

The recommended method to view /proc files is to use the cat command piped (|) with command more or less. Execute the following command:

```
# cat /proc/scsi/scsi | less
```

Caution: Do NOT execute the cat command on the /proc/kcore file. This unique file contains a running image of the kernel’s memory at that particular moment. Executing the cat command on this file will render your terminal unusable.

The output will look something like the following:

```
Attached devices:
Host: scsi0 Channel: 00 Id: 03 Lun: 00
Vendor: QUANTUM Model: SDLT320 Rev: 5252
Type: Sequential-Access ANSI SCSI revision: 02
Host: scsi1 Channel: 00 Id: 03 Lun: 00
```
Installing a DLT, SDLT, VS, LTO, or DAT Tape Drive Into a Linux Operating System
6464215-01, Rev B
January 2006

Vendor: SEAGATE Model: ST336607LC Rev: DS04
Type: Direct-Access ANSI SCSI revision: 03
Host: scsi1 Channel: 00 Id: 06 Lun: 00
Vendor: DELL Model: 1x6 U2W SCSI BP Rev: 5.39
Type: Processor ANSI SCSI revision: 02
Host: scsi2 Channel: 00 Id: 04 Lun: 00
Vendor: NEC Model: CD-ROM DRIVE:466 Rev: 1.06
Type: CD-ROM ANSI SCSI revision: 02
Host: scsi3 Channel: 00 Id: 04 Lun: 00
Vendor: QUANTUM Model: SDLT600 Rev: 1A1A
Type: Sequential-Access ANSI SCSI revision: 04

Accessing Devices Using /dev/st* Device Nodes

You can access most devices by using a corresponding special device file stored in the /dev directory.

Each tape device corresponds to eight device nodes (four auto-rewind nodes and four no-rewind nodes).

Generating a List of Device Files

You can generate a list of the /dev directory device file names by executing the following commands:

<table>
<thead>
<tr>
<th>For this type of device...</th>
<th>Execute this command...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-rewind</td>
<td>#ls -ld /dev/st0*</td>
</tr>
<tr>
<td>No-rewind</td>
<td>#ls -ld /dev/nst0*</td>
</tr>
</tbody>
</table>

Reviewing the List of Device Files

The device files display in blocks of four listings (one for each mode). Each listing contains the device node file name and file attributes.
You should see a block of four listings for each device. The list will look similar to the following:

<table>
<thead>
<tr>
<th>For this type of device...</th>
<th>The list of /dev device files will look similar to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-rewind</td>
<td>crw-rw---- 1 root disk 9, 0 Sep 15 2003 st0</td>
</tr>
<tr>
<td></td>
<td>crw-rw---- 1 root disk 9, 96 Sep 15 2003 st0a</td>
</tr>
<tr>
<td></td>
<td>crw-rw---- 1 root disk 9, 32 Sep 15 2003 st0l</td>
</tr>
<tr>
<td></td>
<td>crw-rw---- 1 root disk 9, 64 Sep 15 2003 st0m</td>
</tr>
</tbody>
</table>

No-rewind	crw-rw---- 1 root disk 9, 128 Sep 15 2003 nst0
	crw-rw---- 1 root disk 9, 224 Sep 15 2003 nst0a
	crw-rw---- 1 root disk 9, 160 Sep 15 2003 nst0l
	crw-rw---- 1 root disk 9, 192 Sep 15 2003 nst0m

If one or more device node listings are not present, see What To Do if a Device Node is Missing on page 12.

For an explanation of what each part of the listing means, see Interpreting the Device Node File Listing on page 13.

What To Do if a Device Node is Missing

If any of the st device node listings are not present in the /dev directory, you need to create them.

Use the mknod commands described in Creating Auto-Rewind Device Nodes on page 16 and Creating No-Rewind Device Nodes on page 16.

Refer to the following documentation for detailed instructions:

- Your Linux documentation
- st(4) man page
- mknod(1) man page
Interpreting the Device Node File Listing

The following table explains each part of the displayed device node listing shown in Reviewing the List of Device Files on page 11.

<table>
<thead>
<tr>
<th>Column</th>
<th>Text Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>First column</td>
<td>crw-rw----</td>
<td>These ten characters describe access type and permissions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The first character indicates type of access device as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• “c” signifies that (n)st0* is a character (sequential access) device.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• “b” signifies that (n)st0* is a block (random access) device.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The next nine characters indicate permissions for:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• the owner (characters 1 - 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• the group (characters 4 - 6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• global users (characters 7 - 9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Permissions are defined as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The first character of each set identifies read permissions. An “r” indicates read permission is granted; a hyphen indicates read permission is denied.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The second character of each set identifies write permissions. A “w” indicates write permission is granted; a hyphen indicates write permission is denied.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The third character of each set identifies execute permissions. An “x” indicates execute permission is granted; a hyphen indicates execute permission is denied.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In the example shown, the device is sequential access. The owner and group both have read/write permission but do not have execute permission; global users have no permissions.</td>
</tr>
<tr>
<td>Second column</td>
<td>1</td>
<td>Numeric character, not applicable.</td>
</tr>
<tr>
<td>Third column</td>
<td>root</td>
<td>Identifies the owner of the device nodes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This is always root (root is the name of the superuser account).</td>
</tr>
<tr>
<td>Fourth column</td>
<td>disk</td>
<td>Identifies the group associated with these device nodes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This is always disk.</td>
</tr>
<tr>
<td>Fifth column</td>
<td>9, n</td>
<td>Identifies the major and minor numbers for that node.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Major Number: The first number is the major number. The major number indexes a particular device driver in the kernel. To utilize the st module, the major number is always 9.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minor Number: The second number is the minor number. The minor number serves as a device driver parameter defining various characteristics such as compression, block size, and density.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For a complete definition of all the major and minor numbers, see device.txt at /usr/src/linux-<kernel revision>/Documentation/device.txt.</td>
</tr>
</tbody>
</table>
Accessing Devices Using /dev/st* Device Nodes

<table>
<thead>
<tr>
<th>Column</th>
<th>Text Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sixth column</td>
<td>Mmm DD YYYY</td>
<td>Date. Not applicable.</td>
</tr>
<tr>
<td>Seventh column, section heading</td>
<td>(n)stna</td>
<td>Device Node Description. This is also the actual file name.</td>
</tr>
<tr>
<td></td>
<td>n represents a numeric character; a represents an alpha character. In the example: (n)st0*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n)st</td>
<td>(n)st identifies the device node as either auto-rewind or no-rewind as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• st identifies the device node as auto-rewind. See Creating Auto-Rewind Device Nodes on page 16 for more information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• nst identifies the device node as no-rewind. See Creating No-Rewind Device Nodes on page 16 for more information.</td>
</tr>
<tr>
<td></td>
<td>a (the alpha character)</td>
<td>identifies the mode. (No alpha character means mode 1.) See Identifying Device Modes for a list of modes.</td>
</tr>
<tr>
<td></td>
<td>n (the numeric character)</td>
<td>identifies the tape device. “0” identifies the first device; “1” identifies the second device; “2” identifies the third device, and so forth. See Identifying Device Nodes for more information.</td>
</tr>
</tbody>
</table>

Identifying Device Nodes

Linux supports up to 32 tape devices [(n)st0* through (n)st31*]. Device nodes are numbered consecutively beginning with 0.

Each operating system presets a certain number of device nodes as follows. You may add more manually if needed (up to 32 total). The following table shows two examples:

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Preset Device Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHEL3</td>
<td>(n)st0* through (n)st31*</td>
</tr>
<tr>
<td>SuSE9</td>
<td>(n)st0* through (n)st7*</td>
</tr>
</tbody>
</table>
Identifying Device Modes

Each node has four modes. Both the auto-rewind and no-rewind functions use the same modes.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Auto-Rewind Node (example)</th>
<th>No-Rewind Node (example)</th>
<th>Alpha Character Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>st0</td>
<td>nst0</td>
<td>no character</td>
</tr>
<tr>
<td>2</td>
<td>st0l</td>
<td>nst0l</td>
<td>lowercase l</td>
</tr>
<tr>
<td>3</td>
<td>st0m</td>
<td>nst0m</td>
<td>lowercase m</td>
</tr>
<tr>
<td>4</td>
<td>st0a</td>
<td>nst0a</td>
<td>lowercase a</td>
</tr>
</tbody>
</table>

a. The “0” in this table is an example representing the device. In actual practice, this numeric character may be any number from 0 to 31 depending on the node.

Creating Device Nodes

This section shows each stinit mode and its corresponding device node identification parameters.

The next two sections — Creating Auto-Rewind Device Nodes and Creating No-Rewind Device Nodes — show examples of the codes you use to create device nodes.

The following table shows the numbering you use to identify the first tape device in each mode. To identify a second tape device, increment the tape device number and minor number by one, and so on for each successive tape device. You can have up to 32 tape devices per mode.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Tape Device Number for first tape device (increment by one for each successive device)</th>
<th>Alpha Character Mode Identifier</th>
<th>Minor Number of first tape device (increment by one for each successive device)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1 (Auto-Rewind)</td>
<td>0</td>
<td>none</td>
<td>0</td>
</tr>
<tr>
<td>Mode 2 (Auto-Rewind)</td>
<td>0</td>
<td>lowercase l</td>
<td>32</td>
</tr>
<tr>
<td>Mode 3 (Auto-Rewind)</td>
<td>0</td>
<td>lowercase m</td>
<td>64</td>
</tr>
<tr>
<td>Mode 4 (Auto-Rewind)</td>
<td>0</td>
<td>lowercase a</td>
<td>96</td>
</tr>
<tr>
<td>Mode 1 (No-Rewind)</td>
<td>0</td>
<td>none</td>
<td>128</td>
</tr>
<tr>
<td>Mode 2 (No-Rewind)</td>
<td>0</td>
<td>lowercase l</td>
<td>160</td>
</tr>
<tr>
<td>Mode 3 (No-Rewind)</td>
<td>0</td>
<td>lowercase m</td>
<td>192</td>
</tr>
<tr>
<td>Mode 4 (No-Rewind)</td>
<td>0</td>
<td>lowercase a</td>
<td>224</td>
</tr>
</tbody>
</table>
Creating Auto-Rewind Device Nodes

Use the `mknod` commands as shown in the following table to create auto-rewind device nodes. The table shows only the first two tape devices. You can have up to 32 tape devices per mode. For instructions on numbering more than two, see Creating Device Nodes.

<table>
<thead>
<tr>
<th>Mode</th>
<th>SCSI Tape Device</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>First</td>
<td># mknod -m 666 /dev/st0 c 9 0</td>
</tr>
<tr>
<td>1</td>
<td>Second</td>
<td># mknod -m 666 /dev/st1 c 9 1</td>
</tr>
<tr>
<td>2</td>
<td>First</td>
<td># mknod -m 666 /dev/st0l c 9 32</td>
</tr>
<tr>
<td>2</td>
<td>Second</td>
<td># mknod -m 666 /dev/st1l c 9 33</td>
</tr>
<tr>
<td>3</td>
<td>First</td>
<td># mknod -m 666 /dev/st0m c 9 64</td>
</tr>
<tr>
<td>3</td>
<td>Second</td>
<td># mknod -m 666 /dev/st1m c 9 65</td>
</tr>
<tr>
<td>4</td>
<td>First</td>
<td># mknod -m 666 /dev/st0a c 9 96</td>
</tr>
<tr>
<td>4</td>
<td>Second</td>
<td># mknod -m 666 /dev/st1a c 9 97</td>
</tr>
</tbody>
</table>

Creating No-Rewind Device Nodes

Use the `mknod` command as shown in the following table to create no-rewind device nodes. The table shows only the first two tape devices. You can have up to 32 tape devices per mode. For instructions on numbering more than two, see Creating Device Nodes.

<table>
<thead>
<tr>
<th>Mode</th>
<th>SCSI Tape Device</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>First</td>
<td># mknod -m 666 /dev/nst0 c 9 128</td>
</tr>
<tr>
<td>1</td>
<td>Second</td>
<td># mknod -m 666 /dev/nst1 c 9 129</td>
</tr>
<tr>
<td>2</td>
<td>First</td>
<td># mknod -m 666 /dev/nst0l c 9 160</td>
</tr>
<tr>
<td>2</td>
<td>Second</td>
<td># mknod -m 666 /dev/nst1l c 9 161</td>
</tr>
<tr>
<td>3</td>
<td>First</td>
<td># mknod -m 666 /dev/nst0m c 9 192</td>
</tr>
<tr>
<td>3</td>
<td>Second</td>
<td># mknod -m 666 /dev/nst1m c 9 193</td>
</tr>
<tr>
<td>4</td>
<td>First</td>
<td># mknod -m 666 /dev/nst0a c 9 224</td>
</tr>
<tr>
<td>4</td>
<td>Second</td>
<td># mknod -m 666 /dev/nst1a c 9 225</td>
</tr>
</tbody>
</table>
mt-st Linux RPM Package

The **mt-st** Linux Red Hat Package Manager (RPM) package consists of the following tools:

- **mt** tape device manager (see [mt Tape Library Tool](#) on page 20)
- **stinit** tape configuration utility (see [mt Tape Device Tool](#))

In order to use the package, you must ensure that **mt-st** is installed. See the following chapters:

- [Verifying mt-st is Installed](#) and
- [Installing mt-st](#)

Verifying mt-st is Installed

To perform the actions described from this point forward in this guide, you must ensure **mt-st** is installed.

To check whether **mt-st** is installed, execute the following command:

```
# rpm -qa | grep mt-st
```

This command returns the name of the package followed by a version number (for example, RHEL3 returns **mt-st-0.7-11**).

If no information is returned, **mt-st** is not installed on your system. To install **mt-st**, see [Installing mt-st](#).

Installing mt-st

mt-st is usually included on your Linux installation CD-ROM.

To install **mt-st**, execute the following command:

```
# rpm -ivh mt-st*
```

where the asterisk represents the remaining portion of the file name (in this case, it is the version number).

mt Tape Device Tool

mt is a tape device management tool that enables you to set **st** driver flags, position loaded media, and secure-erase media.

If **mt-st** is installed, then **mt** is available for use. See [Verifying mt-st is Installed](#) for instructions on checking whether **mt-st** is installed.
stinit and stinit.def

stinit automatically initializes SCSI tape drive modes at system startup or reboot by sending ioctl commands to the drive. The commands are defined in the stinit.def definitions text file. The text file is indexed using the inquiry data returned by the drive (manufacturer, device, and revision). See [Tape Device and Parameter Definitions](#) for more information about the stinit.def file.

After a new installation of the Linux operating system or a new installation of **mt-st**, an stinit.def file may not exist. You can create an stinit.def file by using the following sample file:

```
/usr/share/doc/mt-st-<version>/stinit.def.examples
```

If you modify stinit.def, you can re-initialize the SCSI tape drive modes by rebooting the server or executing the following command:

```
# stinit or # stinit -f <pathname>/stinit.def
```

where *pathname* is the path where stinit.def file is stored.

By default, **stinit** searches your present working directory to find the stinit.def file. If **stinit** cannot find stinit.def in the working directory, it searches /etc/stinit.def.

For more information on **stinit**, see the stinit(8) man page.

Tape Device and Parameter Definitions

The stinit.def file contains definitions of tape devices and their corresponding initialization parameters.

Some of the parameter conventions are listed in the following table:

<table>
<thead>
<tr>
<th>Item</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>Parameter definitions are delimited by {}.</td>
</tr>
<tr>
<td>name = value</td>
<td>Definitions consist of pairs where name = value. The value is either a numeric parameter, a string not containing blanks, or a string enclosed within quotation marks. If = value is omitted, a value of “1” is assigned.</td>
</tr>
<tr>
<td>#</td>
<td>If the # character appears in an input line, stinit deletes from the buffer everything following the # character up to the next carriage return. This enables you to make comments in the stinit.def file.</td>
</tr>
</tbody>
</table>

The following example shows a single entry of a tape device in the stinit.def file:

```
# The XY dat
manufacturer=XY-COMPANY model = "UVW DRIVE" {
scsi2logical=1 # Common definitions for all modes
can-bsr can-partitions auto-lock
# Definition of modes
```
Identifying Tape Devices and Parameters

You identify tape devices and parameters using keywords. The keywords correspond to the data returned by the tape device in response to a SCSI INQUIRY command. The matches are case-sensitive and performed up to the length defined in the configuration file. Partial matches are permitted.

Note: You may abbreviate some keywords. Some keywords show a portion of the word enclosed within square brackets []. The portion enclosed within the brackets is not required when entering commands. For example, the keyword block[size] means you can signify block size by entering either blocksize or block.

Common Tape Device Keywords

The following table lists the most common tape device keywords.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>manufacturer=</td>
<td>Specifies the string that must match the vendor identification returned by the tape device; for example, QUANTUM.</td>
</tr>
<tr>
<td>model=</td>
<td>Specifies the string that must match the product identification returned by the tape device; for example, SDLT600.</td>
</tr>
<tr>
<td>revision=</td>
<td>Specifies the string that must match the product revision level returned by the tape device; for example, 1E1E, which represents V30.</td>
</tr>
</tbody>
</table>

Common Parameter Keywords

Following are some common parameter keywords. For a more thorough description of the keywords used for tape devices and parameters, see the following references:

- stinit(8) man page
- st(4) man page
- /usr/src/linux-<kernel revision>/drivers/scsi/README.st.
- Appendix C – Sample stinit.def Definitions File on page 26
All the matching initializations are collected in the order they are defined in the stinit.def file. This means that you can define global parameters that apply to all devices by placing them before all tape device definitions in stinit.def. For an example, see # Global Keywords and Values in Appendix C – Sample stinit.def Definitions File.

mtx Tape Library Tool

mtx is a tape library media management tool. This section shows you how to determine if mtx is installed and how to install it.

The use of mtx is beyond the scope of this document.

To verify mtx is installed, execute the following command:

```
# rpm -qa mtx
```

This command returns the name of the package followed by a version number (for example, RHEL2.1 returns mtx-1.2.13-1).

If no information is returned, mtx is not installed on the system. To install mtx, see [Installing mtx](#).

Note: mtx rpm is not included in the Red Hat Enterprise Linux 3.0. If you are running RHEL 3.0, you will not be able to use the mtx module.
Installing mtx

mtx is typically included on your Linux installation CD-ROMs (except for RHEL3.0).

To install mtx, execute the following command:

```
# rpm -ivh mtx*
```

where the asterisk represents the remaining portion of the file name (in this case, it is the version number).

For a detailed description of these access modes, refer to the appropriate product manual for your DLTtape mini-library.
Appendix A – Tape Drive and Cartridge Compatibility

This section provides information about tape cartridge and tape drive compatibility. Use these tables to determine which cartridges to use in your tape drive.

Tape Drive and Cartridge Compatibility – DLT

<table>
<thead>
<tr>
<th>Tape Cartridge</th>
<th>Drive Type</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DLT 2000</td>
<td>DLT 2000XT</td>
<td>DLT 4000</td>
<td>DLT 7000</td>
<td>DLT 8000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLT 2500</td>
<td>DLT 2500XT</td>
<td>DLT 4500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLT 2700</td>
<td>DLT 2700XT</td>
<td>DLT 4700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLTtape III</td>
<td>10/20 GB</td>
<td>10/20 GB (read only)</td>
<td>10/20 GB (read only)</td>
<td>10/20 GB (read only)</td>
<td>10/20 GB (read only)</td>
<td></td>
</tr>
<tr>
<td>(CompacTape™ III)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLTtape IIIXT</td>
<td>N/A</td>
<td>15/30 GB</td>
<td>15/30 GB (read only)</td>
<td>15/30 GB (read only)</td>
<td>15/30 GB (read only)</td>
<td></td>
</tr>
<tr>
<td>(CompacTape III XT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLTtape IV</td>
<td>N/A</td>
<td>N/A</td>
<td>20/40 GB (read only)</td>
<td>20/40 GB (read only)</td>
<td>20/40 GB (read only)</td>
<td></td>
</tr>
<tr>
<td>(CompacTape IV)</td>
<td></td>
<td></td>
<td>35/70 GB (read only)</td>
<td>35/70 GB (read only)</td>
<td>35/70 GB (read only)</td>
<td></td>
</tr>
<tr>
<td>Cleaning Tape III</td>
<td>20 uses</td>
<td>20 uses</td>
<td>20 uses</td>
<td>20 uses</td>
<td>20 uses</td>
<td></td>
</tr>
<tr>
<td>Cleaning Tape IV</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>20 uses</td>
<td>20 uses</td>
<td></td>
</tr>
</tbody>
</table>
Tape Drive and Cartridge Compatibility – SDLT

<table>
<thead>
<tr>
<th>Tape Cartridge</th>
<th>SDLT 220</th>
<th>SDLT 320</th>
<th>SDLT 600</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLTtape IV (CompacTape IV)</td>
<td>20/40 GB (read only)</td>
<td>20/40 GB (read only)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>35/70 GB (read only)</td>
<td>35/70 GB (read only)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40/80 GB (read only)</td>
<td>40/80 GB (read only)</td>
<td></td>
</tr>
<tr>
<td>Super DLTtape I</td>
<td>110/220 GB</td>
<td>110/220 GB</td>
<td>110/220 GB (read only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>160/320 GB</td>
<td>160/320 GB (read only)</td>
</tr>
<tr>
<td>Super DLTtape II</td>
<td>N/A</td>
<td>N/A</td>
<td>300/600 GB</td>
</tr>
<tr>
<td>DLTtape VS1</td>
<td>N/A</td>
<td>N/A</td>
<td>80/160 GB (read only)</td>
</tr>
<tr>
<td>Cleaning Tape III</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SDLT Cleaning Tape</td>
<td>20 uses</td>
<td>20 uses</td>
<td>20 uses</td>
</tr>
</tbody>
</table>

Tape Drive and Cartridge Compatibility – VS

<table>
<thead>
<tr>
<th>Tape Cartridge</th>
<th>DLT1</th>
<th>VS80</th>
<th>VS160</th>
<th>DLT-V4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLTtape IV (CompacTape IV)</td>
<td>40/80 GB</td>
<td>40/80 GB</td>
<td>40/80 GB (read only)</td>
<td>40/80 GB (read only)</td>
</tr>
<tr>
<td>DLTtape VS1</td>
<td>N/A</td>
<td>N/A</td>
<td>80/160 GB</td>
<td>80/160 GB (read only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>160/320 GB</td>
</tr>
<tr>
<td>DLTtape IV Cleaning Tape</td>
<td>20 uses</td>
<td>20 uses</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>VS160 Cleaning Tape</td>
<td>N/A</td>
<td>N/A</td>
<td>20 uses</td>
<td>20 uses</td>
</tr>
</tbody>
</table>
Tape Drive and Cartridge Compatibility – LTO

<table>
<thead>
<tr>
<th>Drive Type</th>
<th>Tape Cartridge</th>
<th>LTO-1</th>
<th>LTO-2</th>
<th>LTO-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrium 1</td>
<td>100/200</td>
<td>100/200 (read only)</td>
<td>100/200 (read only)</td>
<td></td>
</tr>
<tr>
<td>Ultrium 2</td>
<td>N/A</td>
<td>200/400</td>
<td>200/400 (read only)</td>
<td></td>
</tr>
<tr>
<td>Ultrium 3</td>
<td>N/A</td>
<td>N/A</td>
<td>400/800</td>
<td></td>
</tr>
<tr>
<td>Ultrium Cleaning Tape</td>
<td>20 uses</td>
<td>20 uses</td>
<td>20 uses</td>
<td></td>
</tr>
</tbody>
</table>

Tape Drive and Cartridge Compatibility – DDS/DAT

<table>
<thead>
<tr>
<th>Drive Type</th>
<th>Tape Cartridge</th>
<th>DDS3</th>
<th>DDS4/SP40</th>
<th>DAT 72</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDS2</td>
<td>4/8</td>
<td>4/8</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>DDS3</td>
<td>12/24</td>
<td>12/24</td>
<td>12/24</td>
<td></td>
</tr>
<tr>
<td>DDS4</td>
<td>N/A</td>
<td>20/40</td>
<td>20/40</td>
<td></td>
</tr>
<tr>
<td>DAT 72</td>
<td>N/A</td>
<td>N/A</td>
<td>36/72</td>
<td></td>
</tr>
<tr>
<td>Cleaning Tape</td>
<td>40 uses</td>
<td>40 uses</td>
<td>40 uses</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B – Linux Reference Documentation

For further information about the topics discussed in this guide, refer to the following documentation:

• stinit(8) man page
• /usr/share/doc/mt-st-<version>/stinit.def.examples
• st(4) man page
• dmesg(8) man page
• /usr/src/linux-<kernel revision>/Documentation/devices.txt
• /usr/src/linux-<kernel revision>/drivers/scsi/README.st
• mt(1) man page
• mtx(1) man page
Appendix C – Sample stinit.def Definitions File

This section provides a sample stinit.def definitions file. You must set up your stinit.def file if you have not done so already.

Recommendations

This sample contains Quantum’s recommendations for setting up your stinit.def file.

You may use the information provided here (you can copy and paste the information directly into your stinit.def file or enter it manually). You may modify this information as needed. You may also create your own stinit.def file.

Caution: Your system configuration may not be compatible with this particular stinit.def file. Refer to your system documentation before implementing any stinit.def file.

Sample File

Red Hat Linux 9.0, EL 2.1, EL 3.0
Novell SuSE Linux 8.0, 9.0
Quantum Corporation
Jeff Willener
8-29-2003
Initial Release
12-20-2004
Add SDLT600 Support
6-17-2005
Add LTO, LTO2, LTO3 support
11-1-2005
Add DAT72, DLT-V4 support

See also: man page stinit(8),
/usr/share/doc/mt-st-*/stinit.def.examples,
man page st(4),
man page mt(1),
man page stinit(8)

Supported Quantum Devices:
QUANTUM SDLT600
Density Codes:
0x4A 320.0 GB (Super DLTtape 2)
Alternate Density Codes Not Supported
QUANTUM SDLT320
Density Codes:
0x49 160.0 GB (Super DLTtape 1)
0x92 160.0 GB compression off (Super DLTtape 1)
0x93 320.0 GB compression on (Super DLTtape 1)
QUANTUM SDLT220
0x48 100.0 GB (Super DLTtape 1)
0x90 100.0 GB compression off (Super DLTtape 1)
0x91 200.0 GB compression on (Super DLTtape 1)
QUANTUM DL8000
0x41 40.0 GB (DLTtape IV)
0x88 40.0 GB compression off (DLTtape IV)
0x89 80.0 GB compression on (DLTtape IV)
CERTANCE ULTRIUM 3
0x44 400.0 GB
CERTANCE ULTRIUM 2
0x42 200.0 GB
CERTANCE ULTRIUM
0x40 100.0 GB
CERTANCE DAT72
0x47 36.0 GB (DAT 72)
QUANTUM DLT-V4
0x51 160.0 GB (DLTtape VS1)
QUANTUM DLT VS160
0x50 80.0 GB (DLTtape VS1)
0x98 80.0 GB compression off (DLTtape VS1)
0x99 160.0 GB compression on (DLTtape VS1)
BNCHMARK DLT1
0x40 40.0 GB (DLTtape IV)
0x86 40.0 GB compression off (DLTtape IV)
0x87 80.0 GB compression on (DLTtape IV)

/usr/src/linux-<kernel revision>/Documentation/devices.txt
9 --> Kernel Device Index Number
char --> Character Device
0-255 --> SCSI Tape Device Node
#
9 char SCSI tape devices
0 = /dev/st0 First SCSI tape, mode 0
1 = /dev/st1 Second SCSI tape, mode 0
...
32 = /dev/st0l First SCSI tape, mode 1
33 = /dev/st1l Second SCSI tape, mode 1
...
64 = /dev/st0m First SCSI tape, mode 2
65 = /dev/st1m Second SCSI tape, mode 2
...
96 = /dev/st0a First SCSI tape, mode 3
97 = /dev/st1a Second SCSI tape, mode 3
...
128 = /dev/nst0 First SCSI tape, mode 0, no rewind
129 = /dev/nst1 Second SCSI tape, mode 0, no rewind
...
160 = /dev/nst0l First SCSI tape, mode 1, no rewind
161 = /dev/nst1l Second SCSI tape, mode 1, no rewind
...
192 = /dev/nst0m First SCSI tape, mode 2, no rewind
193 = /dev/nst1m Second SCSI tape, mode 2, no rewind
...
224 = /dev/nst0a First SCSI tape, mode 3, no rewind

Appendix C – Sample stinit.def Definitions File
Installing a DLT, SDLT, VS, LTO, or DAT Tape Drive Into a Linux Operating System
6464215-01, Rev B
January 2006

225 = /dev/nst1a Second SCSI tape, mode 3, no rewind

Global Keywords and Values
drive-buffering=1
#scsi2logical=1
no-wait=0
buffering=0
async-writes=0
read-ahead=1
two-fms=0
auto-lock=0
fast-eom=1
can-bsr=1
noblklimits=0
can-partitions=0

QUANTUM SDLT600
manufacturer=QUANTUM model="SDLT600" {
timeout=3600 # 1 hour timeout
long-timeout=14400 # 4 hour long timeout
can-partitions=0
mode1 blocksize=0 density=0x4A compression=1 # SDLT600 density, compression on
mode2 blocksize=0 density=0x4A compression=0 # SDLT600 density, compression off
mode3 blocksize=0 density=0x49 compression=1 # SDLT320 density, compression on
mode4 blocksize=0 density=0x48 compression=1 # SDLT220 density, compression on
}

QUANTUM SDLT320
manufacturer=QUANTUM model="SDLT320" {
timeout=3600 # 1 hour timeout
long-timeout=14400 # 4 hour long timeout
can-partitions=0
mode1 blocksize=0 density=0x49 compression=1 # SDLT320 density, compression on
mode2 blocksize=0 density=0x49 compression=0 # SDLT320 density, compression off
mode3 blocksize=0 density=0x48 compression=1 # SDLT220 density, compression on
mode4 blocksize=0 density=0x48 compression=0 # SDLT220 density, compression off
}

QUANTUM SDLT220
manufacturer=QUANTUM model="SuperDLT1" {
timeout=3600
long-timeout=14400
can-partitions=0
mode1 blocksize=0 density=0x48 compression=1 # SDLT220 density, compression on
mode2 blocksize=0 density=0x48 compression=0 # SDLT220 density, compression off
mode3 blocksize=0 density=0x41 compression=1 # DLT8000 density, compression on
mode4 blocksize=0 density=0x41 compression=0 # DLT8000 density, compression off
}

QUANTUM DLT8000
manufacturer=QUANTUM model="DLT8000" {
timeout=3600
long-timeout=14400
can-partitions=0
mode1 blocksize=0 density=0x41 compression=1 # DLT8000 density, compression on
mode2 blocksize=0 density=0x41 compression=0 # DLT8000 density, compression off
mode3 blocksize=0 density=0x1B compression=1 # DLT7000 density, compression on

Appendix C – Sample stinit.def Definitions File 28
mode4 blocksize=0 density=0x1B compression=0 # DLT7000 density, compression off
}

CERTANCE ULTRIUM 3
manufacturer=CERTANCE model="ULTRIUM 3" {
timeout=800
long-timeout=14400
can-partitions=0
mode1 blocksize=0 density=0x44 compression=1 # ULTRIUM 3 density, compression on
mode2 blocksize=0 density=0x44 compression=0 # ULTRIUM 3 density, compression off
mode3 blocksize=0 density=0x42 compression=1 # ULTRIUM 2 density, compression on
mode4 blocksize=0 density=0x40 compression=1 # ULTRIUM density, compression on
}

CERTANCE ULTRIUM 2
manufacturer=CERTANCE model="ULTRIUM 2" {
timeout=800
long-timeout=14400
can-partitions=0
mode1 blocksize=0 density=0x42 compression=1 # ULTRIUM 2 density, compression on
mode2 blocksize=0 density=0x42 compression=0 # ULTRIUM 2 density, compression off
mode3 blocksize=0 density=0x40 compression=1 # ULTRIUM density, compression on
mode4 blocksize=0 density=0x40 compression=0 # ULTRIUM density, compression off
}

CERTANCE ULTRIUM
manufacturer=SEAGATE model="ULTRIUM06242-XXX" {
timeout=800
long-timeout=14400
can-partitions=0
mode1 blocksize=0 density=0x40 compression=1 # ULTRIUM density, compression on
mode2 blocksize=0 density=0x40 compression=0 # ULTRIUM density, compression off
mode3 blocksize=0 density=0x40 compression=1 # ULTRIUM density, compression on
mode4 blocksize=0 density=0x40 compression=1 # ULTRIUM density, compression on
}

CERTANCE DAT72
manufacturer=SEAGATE model="DAT DAT72" {
timeout=600
long-timeout=-10800
can-partitions=0
mode1 blocksize=512 density=0x47 compression=1 # DAT72 density, compression on
mode2 blocksize=512 density=0x47 compression=0 # DAT72 density, compression off
mode3 blocksize=512 density=0x26 compression=1 # DDS4 density, compression on
mode4 blocksize=512 density=0x25 compression=1 # DDS3 density, compression on
}

QUANTUM DLT-V4
manufacturer=QUANTUM model="DLT-V4" {
timeout=3600
long-timeout=14400
can-partitions=0
mode1 blocksize=0 density=0x51 compression=1 # DLT-V4 density, compression on
mode2 blocksize=0 density=0x51 compression=0 # DLT-V4 density, compression off
mode3 blocksize=0 density=0x50 compression=1 # VS160 density, compression on
mode4 blocksize=0 density=0x40 compression=1 # VS80 density, compression on
QUANTUM DLT VS160
manufacturer=QUANTUM model="DLT VS160" {
 timeout=3600
 long-timeout=14400
 can-partitions=0
 mode1 blocksize=0 density=0x50 compression=1 # VS160 density, compression on
 mode2 blocksize=0 density=0x50 compression=0 # VS160 density, compression off
 mode3 blocksize=0 density=0x40 compression=1 # VS80 density, compression on
 mode4 blocksize=0 density=0x40 compression=0 # VS80 density, compression off
}

BNCHMARK VS80
manufacturer=BNCHMARK model="DLT1" {
 timeout=180
 long-timeout=14400
 can-partitions=0
 mode1 blocksize=0 density=0x40 compression=1 # VS80 density, compression on
 mode2 blocksize=0 density=0x40 compression=0 # VS80 density, compression off
 mode3 blocksize=0 density=0x41 compression=1 # DLT8000 density, compression on
 mode4 blocksize=0 density=0x41 compression=0 # DLT8000 density, compression off
}
Appendix D – Troubleshooting

This section covers common errors.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Explanation</th>
<th>Fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>You receive a non-recoverable error that looks similar to this after performing the <code>tar</code> command: <code>tar: /dev/st0: Wrote only 0 of 10240 bytes</code> <code>tar: Error is not recoverable: exiting now</code></td>
<td>The tape device has a blocksize set to a parameter value other than 0.</td>
<td>Use <code>mt</code> to set the blocksize to 0 so the tape drive can operate in variable blocksize mode. Execute this command: <code># mt -f /dev/st0 setblk 0</code> Note: <code>st0</code> is used as the device node for this example only; be sure to use the correct <code>mode0</code> node.</td>
</tr>
<tr>
<td>No information is returned when you execute the command `# rpm -qa</td>
<td>grep mt-st<code>to verify</code>mt-st` is installed.</td>
<td><code>mt-st</code> is not installed.</td>
</tr>
<tr>
<td>No information is returned when you execute the command <code># rpm -qa mtx</code> to verify <code>mtx</code> is installed.</td>
<td><code>mtx</code> is not installed.</td>
<td>Install <code>mtx</code> (see Installing <code>mtx</code> on page 21).</td>
</tr>
<tr>
<td><code>modinfo st</code> reports the <code>st</code> module name not found.</td>
<td><code>st</code> module is not loaded.</td>
<td>Load the <code>st</code> module. Consult your Linux manuals for instructions.</td>
</tr>
</tbody>
</table>
| The `st` device nodes are not present in the `/dev` directory. | | Create the device nodes. Use the `mknod` commands described in Creating Auto-Rewind Device Nodes on page 16 and Creating No-Rewind Device Nodes on page 16. Refer to the following documentation for more detailed instructions:
 • Your Linux documentation
 • `st(4)` man page
 • `mknod(1)` man page |
<p>| The backup application does not work. | Your backup application may not be compatible with the <code>stinit.def</code> file you are using. | Check your backup application documentation for information on what type of <code>stinit.def</code> files you can use; then rewrite the <code>stinit.def</code> file. |</p>
<table>
<thead>
<tr>
<th>Problem</th>
<th>Explanation</th>
<th>Fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>The <code>st</code> driver does not see all attached tape devices.</td>
<td>The connector cable may be too long.</td>
<td>Verify that the connector cable length does not exceed the specifications listed in your product manual.</td>
</tr>
<tr>
<td></td>
<td>Your SCSI bus may not be terminated properly.</td>
<td>Ensure the SCSI bus is terminated properly (see your product manual for instructions).</td>
</tr>
</tbody>
</table>
| | You don’t have enough `st` tape device nodes. | Verify that you have enough `st` tape device nodes for all your attached tape devices. If you need to create more, see instructions in the following sections:
 - [Identifying Device Modes](#) on page 15
 - [Creating Device Nodes](#) on page 15
 - [Creating No-Rewind Device Nodes](#) on page 16 |