Netfinity 5500

User's Handbook
Note

Before using this information and the product it supports, be sure to read the general information under Appendix C, “Product Warranties and Notices” on page 441.
Tables.. vii

Safety Information.. ix
Lithium Battery Notice.................................... xi
Laser Compliance Statements........................... xii
Caution and Danger Statements......................... xiii
 Instruções de Cuidado e Perigo (Português do Brasil) . xiii
 Sikkerhedsforskrifter mærket Pas på! og Fare! (dansk) . xv
 Turvaohjeet (suomi).. xvi
 Consignes Attention et Danger (Français)................ xvi
 Sicherheitshinweise (Deutsch).......................... xvii
 Avvisi di attenzione e di pericolo (Italiano).......... xviii
 Veiligheidsinstructies (Nederlands)................... xx
 Advarsels- og faremerknader (norsk)................... xxi
 Notas de Cuidado e de Perigo (Português)............. xxii
 Declaraciones sobre precauciones y peligros (español) xxiv
 Varningsmeddelanden (Svenska)........................ xxiv

About This Book.. xxvii
How This Book is Organized.............................. xxvii
Notices Used in This Book............................... xxix
Related Publications.................................... xxix

Chapter 1. Introducing the IBM Netfinity 5500........... 1
 Features at a Glance.................................. 3
 What Your IBM Netfinity 5500 Offers................ 4
 Reliability, Availability, and Serviceability Features 7
 Controls and Indicators................................ 9
 Information LED Panel.................................. 12
 Input/Output Connectors and Expansion Slots......... 14
 Power Supplies.. 17

Chapter 2. Setting Up Your Server........................ 19
 Installation Overview.................................. 20
 Installing the NetBAY3 Bezel.......................... 21
 Cabling the Server..................................... 22
 Starting the Server.................................... 23
 Using the CD-ROM Drive................................ 26
 Before You Install Software........................... 29
 Registering Your Server............................... 29
Arranging Your Workspace ... 30

Chapter 3. Configuring and Monitoring Your Disk Arrays ... 33
Understanding Disk Array Technology 35
The ServeRAID Configuration Program 46
Starting the ServeRAID Configuration Program 47
Using the ServeRAID Configuration Program 48
Using the ServeRAID Mini-Configuration Program 96
Administration and Monitoring Utility Program 105

Chapter 4. Configuring Your Server 157
Configuration Overview ... 158
The Configuration/Setup Utility Program 160
Using the Configuration/Setup Utility Main Menu 161
Configuring Options ... 174
Configuring ISA and PCI Adapters 175
Resolving Configuration Conflicts 176
Configuring the Ethernet Controller 178
Failover for Redundant Ethernet 179

Chapter 5. Netfinity System Management Processor 185
System Requirements for the Advanced System Management Service with Netfinity Manager 187
Accessing the System Management Processor without Netfinity Manager ... 187

Chapter 6. Installing Options ... 197
Before You Begin ... 199
Electrical Safety ... 200
Handling Static-Sensitive Devices 202
System Reliability Considerations 203
Working Inside a Netfinity 5500 with Power On 204
Preparing to Install Options 205
Working with Adapters .. 211
Installing a Microprocessor Kit 226
Installing Memory-Module Kits 230
Installing Internal Drives ... 233
Installing a Hot-Swap Power Supply 249
Removing a Hot-Swap Power Supply 253
Replacing a Hot-Swap Fan Assembly 255
Completing the Installation ... 258
Connecting External Options .. 263

Chapter 7. Rack Installation ... 273
Before You Begin ... 273
Installing and Removing the Server 275

Chapter 8. Solving Problems ... 291
Diagnostic Tools Overview .. 293
Diagnostic Programs ... 296
Power-on Self Test (POST) Messages 299
Power-on Self Test (POST) Beep Codes 315
Diagnostic Error Message Tables 319
Ethernet Controller Messages .. 334
ServeRAID II Controller Messages 344
Troubleshooting .. 360
Resolving Configuration Conflicts 376
Identifying Problems Using Status LEDs 377
Checking the System for Damage 385
Replacing the Battery ... 387

Chapter 9. Getting Help, Service, and Information 391
Service Support .. 391
Before You Call for Service ... 393
Getting Customer Support and Service 393
Purchasing Additional Services 397
Ordering Publications ... 400

Chapter 10. Server Records and Specifications 401
Record the Identification Numbers 402
Installed Device Records ... 403
Specifications .. 412
Changing Jumper Positions .. 415
System Board Component Locations 418
System Board Jumpers .. 420
Processor Board Component Locations 422
Processor Board Jumpers ... 424
SCSI Backplane Component Locations 426
SCSI Backplane Option Jumpers 427
Appendix A. Installing Devices in the NetBAY3

- General Considerations .. 430
- Removing the Rear Panel .. 431
- Installing Devices on Side Rails 432
- Removing Cage Nuts .. 434
- Installing Cage Nuts .. 435
- Installing Cantilevered Devices 436
- Installing Devices on the NetBAY3 Base Plate 437

Appendix B. Year-2000-Ready, I2O-Ready, S3 Video Modes

- Year-2000-Ready Statement 439
- I2O-Ready Statement ... 439
- Unsupported S3 Video Modes 439

Appendix C. Product Warranties and Notices

- Warranty Statements .. 442
- Notices .. 448

Glossary

- ... 455

Index

- ... 465
1. Enhanced RAID Level 1 .. 38
2. Automatically Assigned SCSI IDs 236
3. Serial Port Pin-Number Assignments 266
4. Parallel Port Pin-Number Assignments 267
5. Video Port Pin-Number Assignments 268
6. Keyboard and Auxiliary-Device Port Pin-Number
 Assignments .. 269
7. Ethernet Connector Pin-Number Assignments 270
8. USB Connector Pin-Number Assignments 271
9. IBM Netfinity 5500 Identification Numbers 402
10. Internal and External Drives and Devices 404
11. Configuration/Setup Utility Program Defaults and
 Changes ... 405
12. System Memory ... 411
13. Expansion Slot Configuration Information 411
14. System Board Jumpers 420
15. Processor Board Jumpers 424
16. Microprocessor Core Frequency Selection 425
17. Backplane Option Jumper Block 427
18. SCSI IDs for Hot-Swap Drives 427
1

DANGER

To avoid a shock hazard, do not connect or disconnect any cables or perform installation, maintenance, or reconfiguration of this product during an electrical storm.

To avoid shock hazard:

- The power cord must be connected to a properly wired and earthed receptacle.
- Any equipment to which this product will be attached must also be connected to properly wired receptacles.

When possible, use one hand to connect or disconnect signal cables to prevent a possible shock from touching two surfaces with different electrical potentials.

Electrical current from power, telephone, and communications cables is hazardous. To avoid shock hazard, connect and disconnect cables as described following when installing, moving, or opening covers of this product or attached devices.
<table>
<thead>
<tr>
<th>To Connect</th>
<th>To Disconnect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Turn Everything OFF.</td>
<td>1. Turn Everything OFF.</td>
</tr>
<tr>
<td>2. First, attach all cables to devices.</td>
<td>2. First, remove power cord(s) from outlet.</td>
</tr>
<tr>
<td>3. Attach signal cables to receptacles.</td>
<td>3. Remove signal cables from receptacles.</td>
</tr>
<tr>
<td>4. Attach power cord(s) to outlet.</td>
<td>4. Remove all cables from devices.</td>
</tr>
<tr>
<td>5. Turn device ON.</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: In the UK, by law, the telephone cable must be connected after the power cord.

NOTE: In the UK, the power cord must be disconnected after the telephone cable.
Lithium Battery Notice

2

⚠️ CAUTION:
When replacing the battery, use only IBM Part Number 33F8354 or an equivalent type battery recommended by the manufacturer. If your system has a module containing a lithium battery, replace it only with the same module type made by the same manufacturer. The battery contains lithium and can explode if not properly used, handled, or disposed of.

Do not:
- Throw or immerse into water
- Heat to more than 100°C (212°F)
- Repair or disassemble

Dispose of the battery as required by local ordinances or regulations.
Laser Compliance Statements

Some IBM PC Server and Netfinity models are equipped from the factory with a CD-ROM drive. CD-ROM drives are also sold separately as options. The CD-ROM drive is a laser product. The CD-ROM drive is certified in the U.S. to conform to the requirements of the Department of Health and Human Services 21 Code of Federal Regulations (DHHS 21 CFR) Subchapter J for Class 1 laser products. Elsewhere, the drive is certified to conform to the requirements of the International Electrotechnical Commission (IEC) 825 and CENELEC EN 60 825 for Class 1 laser products.

3

CAUTION:
When a CD-ROM drive is installed, note the following.

Use of controls or adjustments or performance of procedures other than those specified herein might result in hazardous radiation exposure.

Removing the covers of the CD-ROM drive could result in exposure to hazardous laser radiation. There are no serviceable parts inside the CD-ROM drive. Do not remove the CD-ROM drive covers.

4

DANGER

Some CD-ROM drives contain an embedded Class 3A or Class 3B laser diode. Note the following.

Laser radiation when open. Do not stare into the beam, do not view directly with optical instruments, and avoid direct exposure to the beam.
Caution and Danger Statements

Important:

All caution and danger statements in this book begin with a number. This number is used to cross reference an English caution or danger statement with translated versions of the caution or danger statement that can be found in the Safety Information book.

For example, if a caution statement begins with a number 1, translations for that caution statement appear in the Safety Information book under statement 1.

Be sure to read all caution and danger statements before performing any of the instructions.

Instruções de Cuidado e Perigo (Português do Brasil)

Importantete:

Todas as instruções de cuidado e perigo deste manual são iniciadas por um número. Este número é utilizado para fazer a referência cruzada de uma instrução de cuidado ou perigo no idioma inglês com as versões traduzidas das instruções de cuidado e perigo que podem ser encontradas na publicação Safety Information (Informações sobre Segurança).

Por exemplo, se uma instrução de cuidado é iniciada pelo número 1, as traduções para aquela instrução de cuidado aparecem na publicação Safety Information sob a instrução 1.

Leia todas as instruções de cuidado e perigo antes de executar qualquer operação.
注意和危险声明（简体中文）

重要事项:

本书中的所有注意和危险声明之前都有编号。该编号用于英语的注意或危险声明与 Safety Information 一书中可以找到的翻译版本的注意或危险声明进行交叉引用。

例如，如果一个注意声明以编号 1 开始，那么对该注意声明的翻译出现在 Safety Information 一书中的声明 1 中。

在按说明执行任何操作前，请务必阅读所有注意和危险声明。

Napomene opasnosti i upozorenja (hrvatski)

Važno

Sva napomene upozorenja i opasnosti u ovoj knjizi započinju brojem. Taj se koristi za usporedbu izvornih napomena na engleskom jeziku s prijevodom koji se nalazi u Sigurnosnim Uputama (Safety Information).

Na pr. ako napomena upozorenja počinje s brojem 1, prijevod tog teksta se nalazi u Sigurnosnim Uputama (Safety Information) kao napomena br. 1

Obavezno pročitajte sve napomene upozorenja i opasnosti prije nego započnete s radovima prema ovim uputama.
Instrukce Nebezpečí a Pozor (Česky)

Pozor:

Všechny bezpečnostní instrukce v této knize začínají číslem. Tato čísla jsou používána pro nalezení odpovídajícího překladu anglické bezpečnostní instrukce v knize Safety Information.

Například pokud bezpečnostní instrukce začíná číslem 1, naleznete odpovídající překlad v knize Safety Information pod číslem 1.

Ujistěte se, že jste si před začátkem provádění jakékoli instrukce nejdříve přečetli všechny bezpečnostní instrukce.

Sikkerhedsforskrifter mærket Pas på! og Fare! (dansk)

Vigtigt:

Alle sikkerhedsforskrifter i dette hæfte begynder med et tal. Dette tal bruges som krydshenvisning fra en engelsk sikkerhedsforskrift mærket CAUTION (Pas på!) eller DANGER (Fare!) til de oversatte forskrifter, der findes i dette hæfte (Safety Information).

Hvis f.eks. en sikkerhedsforskrift mærket Pas på! hedder Forskrift 1, er denne en oversættelse af den engelske forskrift nummer 1 i hæftet.

Læs alle sikkerhedsforskrifter mærket Pas på! og Fare!, før du følger nogen af instruktionerne.
Turvaohjeet (suomi)

Tärkeää:

Kaikkien tämän Safety Information -kirjan turvaohjeiden alussa on numero, jonka avullaenglanninkielistä VAARA-ilmoitusta (DANGER) tai varoitusta (CAUTION) vastaava suomenkielinen turvaohje löytyy kätevästi.

Jos varoitus alkaa esimerkiksi numerolla 1, vastaavalla suomenkielisellä käännöksellä on sama numero, ja se löytyy jäljempänä tästä kirjasta.

Lue kaikki turvaohjeet, ennen kuin aloitat ohjeissa kuvatut toimet.

Consignes Attention et Danger (Français)

Important:

Toutes les consignes Attention et Danger indiquées dans ce document sont précédées d’un numéro. Ce dernier permet de mettre en correspondance la consigne en anglais avec ses versions traduites situées dans le livret Safety Information.

Par exemple, si une consigne de type Attention est précédée du chiffre 1, ses traductions sont également précédées du chiffre 1 dans le livret Safety Information.

Prncez connaissance de toutes les consignes de type Attention et Danger avant de procéder aux opérations décrites par les instructions.
Sicherheitshinweise (Deutsch)

Wichtig:

Alle Sicherheitshinweise in dieser Broschüre beginnen mit einer Nummer. Diese Nummer verweist auf einen englischen Sicherheitshinweis mit den übersetzten Versionen dieses Hinweises, die in der Broschüre mit den Sicherheitshinweisen (Safety Information) enthalten sind.

Wenn z. B. ein Sicherheitshinweis mit der Nummer 1 beginnt, so erscheint die Übersetzung für diesen Sicherheitshinweis in der Broschüre Safety Information unter dem Hinweis 1.

Lesen Sie alle Sicherheitshinweise, bevor Sie eine Anweisung ausführen.

Δηλώσεις προσοχής και κινδύνου (Ελληνικά)

Σημαντικό:

Όλες οι δηλώσεις προσοχής και κινδύνου στο παρόν εγχειρίδιο αρχίζουν με έναν αριθμό. Ο αριθμός αυτός χρησιμοποιείται για την παραπομπή μεταξύ αγγλικών και μεταφρασμένων δηλώσεων προσοχής και κινδύνου που βρίσκονται στο εγχειρίδιο Safety Information.

Για παράδειγμα, αν μια δήλωση προσοχής αρχίζει με τον αριθμό 1, οι μεταφράσεις για τη συγκεκριμένη δήλωση προσοχής βρίσκονται στο εγχειρίδιο Safety Information κάτω από τον τίτλο Δήλωση 1.

Βεβαιωθείτε ότι διαβάσατε όλες τις δηλώσεις προσοχής και κινδύνου πριν πραγματοποιήσετε τις εργασίες που περιγράφονται στις οδηγίες.
Avvisi di attenzione e di pericolo (Italiano)

Importante:

Tutti gli avvisi di attenzione e di pericolo riportati in questo manuale iniziano con un numero. Tale numero contrassegna gli avvisi in lingua inglese e le corrispondenti versioni tradotte che sono riportate nella Safety Information.

Ad esempio, se un avviso di attenzione inizia con il numero 1, la corrispondente versione tradotta è riportata nella Safety Information come l'avviso numero 1.

Accertarsi di leggere tutti gli avvisi di attenzione e di pericolo prima di effettuare qualsiasi operazione.
注意と危険に関する記述（日本語）

重要:

この本では、番号の後に注意と危険に関する記述が掲載されています。この番号は英語の注意と危険に関する記述と小冊子「Safety Information」に記載されている翻訳版の記述との相互参照のために使用します。

たとえば、もし注意の記述が番号1で始まる場合は、この注意の記述は小冊子「Safety Information」の記述1にあります。

作業を始める前に、すべての注意と危険に関する記述をお読みください。

주의 및 위험 경고문(한글)

 중요:

이 책에 나오는 모든 주의 및 위험 경고문은 번호로 시작됩니다。이 번호는 Safety Information 책에 나오는 영문판 주의 및 위험 경고문과 한글판 주의 및 위험 경고문을 상호 참조하는데 사용됩니다。

예를 들어 주의 경고문이 번호1로 시작되면 Safety Information 책에서 이 주의 경고문은 경고문1번 아래에 나옵니다。

지시를 따라 수행하기 전에 먼저 모든 주의 및 위험 경고문을 읽도록 하십시오.
Veiligheidsinstructies (Nederlands)

Belangrijk:

Alle veiligheidsinstructies in dit boekje beginnen met een nummer. Met dit nummer wordt verwezen naar de Engelse instructie en alle vertalingen in dit boekje Safety Information.

Als een instructie bijvoorbeeld begint met nummer 1, kunt u de Engelse versie en alle vertalingen in dit boekje Safety Information eveneens vinden onder instructie 1.

Lees alle instructies in dit boekje voordat u installatie- of onderhoudsprocedures uitvoert.
Advarsels- og faremerknader (norsk)

Viktig:

Alle advarsels- og faremerknader i denne boken begynner med et nummer. Dette nummeret brukes som kryssreferanse mellom en engelsk advarsels- eller faremerknad og den oversatte versjonen av merknaden som du kan finne i boken om sikkerhetsinformasjon (Safety Information).

Hvis for eksempel en advarselsmerknad begynner med nummeret 1, finner du oversettelsen av advarselsmerknaden i boken Safety Information under merknad 1.

Pass på at du leser alle advarsels- og faremerknader før du utfører noen av instruksjonene.

Ostrzeżenia i uwagi o niebezpieczeństwie (polski)

Ważne:

Wszystkie uwagi o niebezpieczeństwie i ostrzeżenia przed niebezpieczeństwem w tej książce zaczynają się numerem. Numer ten jest używany do porównania angielskiej wersji uwag i ostrzeżeń z ich tłumaczeniem, które można znaleźć w książce Uwagi dotyczące bezpieczeństwa (Safety Information).

Na przykład, jeśli uwaga zaczyna się numerem 1, to w książce Uwagi dotyczące bezpieczeństwa (Safety Information), znajduje się jej tłumaczenie zaczynające się też numerem 1.

Należy przeczytać wszystkie uwagi i ostrzeżenia przed wykonaniem jakiejkolwiek instrukcji.
Notas de Cuidado e de Perigo (Português)

Importante:

Todas as notas de cuidado e de perigo, incluídas neste manual, começam por um número. Este número é utilizado para, a partir de uma nota de cuidado ou perigo, em Inglês, identificar a respectiva tradução, a qual pode ser encontrada no manual Safety Information (Informações sobre Segurança).

Por exemplo, se uma nota de cuidado começa pelo número 1, a respectiva tradução é apresentada no manual Safety Information, identificada como nota número 1.

Não deixe de ler todas as notas de cuidado e perigo, antes de executar qualquer das instruções.

Замечания "Осторожно" и "Опасно" (Русский)

Важное замечание:

Все замечания, помеченные в этой книге словами "Осторожно" ("Caution") и "Опасно" ("Danger"), пронумерованы. По этим номерам вы сможете найти перевод замечаний "Осторожно" или "Опасно" в брошюре Safety Information (Информация по технике безопасности).

Так, если вам нужен перевод замечания "Caution" ("Осторожно") под номером 1, то вы найдете его в брошюре Safety Information (Информация по технике безопасности) тоже под номером 1.

Перед тем, как выполнять какие-либо инструкции, обязательно прочтите все замечания, помеченные в этой книге словами "Осторожно" ("Caution") и "Опасно" ("Danger").
Inštrukcie Nebezpečenstvo a Pozor (Slovensky)

Pozor:

Všetky bezpečnostné inštrukcie v tejto knižke začínajú číslom. Tieto čísla sú používané pre hadanie zodpovedajúceho prekladu anglickej bezpečnostnej inštrukcie v knižke Safety Information.

Napíklad ak bezpečnostné inštrukcie začínajú číslom 1, nájdete zodpovedajúci perklad v knižke Safety Information pod číslom 1.

Uistite sa, že ste si pre začiatkom vykonávania akejkoľvek inštrukcie najprv prečítali všetky bezpečnostné inštrukcie.

Navedbe svaril in nevarnosti (slovensko)

Važno:

Vse navedbe svaril in nevarnosti v tej knjigi se začenjajo s številko. To številko uporabljamo za navzkrižno povezavo angleške navedbe svarila ali nevarnosti s prevedenimi verzijami navedbe svarila ali nevarnosti, ki jo lahko najdemo v knjigi Informacije o varnosti (Safety Information).

Na primer, če se navedba svarila začenja s številko 1, se prevod za to navedbo svarila pojavi v knjigi Informacije o varnosti (Safety Information) pod navedbo 1.

Obvezno preberite vse navedbe svaril in nevarnosti, preden začnete izvajati katerokoli navodilo.
Declaraciones sobre precauciones y peligros (español)

Importante:

Todas las declaraciones de precaución y peligro contenidas en este manual empiezan por un número. Dicho número se emplea para establecer una referencia cruzada entre de una declaración de precaución o peligro en inglés con las versiones traducidas que de dichas declaraciones pueden encontrarse en el manual Información de seguridad (Safety Information).

Por ejemplo, si una declaración de peligro empieza con el número 1, las traducciones de esta declaración de precaución aparecen en el manual Información de seguridad (Safety Information) bajo Declaración 1.

Lea atentamente todas las declaraciones de precaución y peligro antes de llevar a cabo cualquier operación.

Varningsmeddelanden (Svenska)

Viktigt:

Alla varningsmeddelanden i den här boken inleds med ett nummer. Med hjälp av numren kan du identifiera meddelandenas översättningar, som finns i boken Safety Information.

Om t ex ett varningsmeddelande har nummer 1 hittar du översättningen av det i Safety Information också som meddelande nummer 1.

Läs alla varningsmeddelanden innan du börjar utföra några åtgärder.
注意及危險聲明（中文）

重要資訊：

本書中所有「注意」及「危險」的聲明均以數字開始。此一數字是用來作為交互參考之用，英文「注意」或「危險」聲明可在「安全資訊」(Safety Information)一書中找到相同內容的「注意」或「危險」聲明的譯文。

例如，有一「危險」聲明以數字1開始，則該「危險」聲明的譯文將出現在「安全資訊」(Safety Information)一書的「聲明」1中。

執行任何指示之前，請詳讀所有「注意」及「危險」的聲明。
This book provides instructions on how to set up, install, and configure your Netfinity 5500. It includes information about how to install and remove options. This book also provides information to help you solve many problems that might occur.

How This Book is Organized

Chapter 1, “Introducing the IBM Netfinity 5500,” describes the Netfinity 5500 and provides an overview of the server's features. This chapter also provides the steps necessary to unpack, set up, and install your server.

Chapter 3, “Configuring and Monitoring Your Disk Arrays,” provides step-by-step instructions to perform the tasks necessary to configure, add, change, or delete one or more disk arrays. This chapter also describes how to install and use the server utility programs that are required by some of the supported operating systems, and how to install and use the Administration and Monitoring program.

Chapter 4, “Configuring Your Server,” describes how to use the Configuration/Setup utility program to configure your server. This chapter also provides instructions for using various utility programs.

Chapter 5, “Netfinity System Management Processor,” provides information about the integrated system management processor in your server.

Chapter 6, “Installing Options,” contains instructions for installing and removing options, such as memory, adapters, and internal drives. Instructions for connecting external options are also included in this chapter.

Chapter 7, “Rack Installation,” contains information about installing your server in a rack.
Chapter 8, “Solving Problems,” includes an overview of the diagnostic tools, instructions for testing the server, lists of error messages, and troubleshooting charts. This chapter also contains information about checking the server for damage, and resolving configuration conflicts.

Chapter 9, “Getting Help, Service, and Information,” provides instructions on how to obtain service and technical assistance for your Netfinity 5500 and other IBM products that you might plan to use. This chapter also contains information about other publications, products, warranties, and services that IBM offers. Also included are fax numbers, toll-free telephone numbers, and access information for electronic bulletin boards, online services, and the World Wide Web.

Chapter 10, “Server Records and Specifications,” provides a section to record and update important information about your server, including serial numbers, key number, and device records. Whenever you add options to your server, be sure to update the information in these records. In addition to server records, this chapter contains specifications. These specifications include product dimensions, environmental operating requirements, system and processor board layouts, and jumper settings. This chapter also describes jumper locations and contains instructions for changing jumpers.

Appendix C, “Product Warranties and Notices,” contains product warranty information, notices, and trademarks.

A glossary and an index follow the appendixes.
Notices Used in This Book
This book contains notices to highlight information or provide safety information:

- **Notes**
 These notices provide important tips, guidance, or advice.

- **Attention**
 These notices indicate possible damage to programs, devices, or data. An attention notice is placed just before the instruction or situation in which damage could occur.

- **Caution**
 These notices indicate situations that can be potentially hazardous to you. A caution notice is placed just before descriptions of potentially hazardous procedure steps or situations.

Related Publications
In addition to this handbook, the following publications come with your Netfinity 5500:

The *IBM Service and Support* pamphlet contains important information and phone numbers to call for different types of support for your server.

The *Safety Information* book contains translated versions of the caution and danger statements in this book. All caution and danger statements in this book begin with a number. This number is used to cross reference an English caution or danger statement with translated versions of the caution or danger statement that can be found in the *Safety Information* book.

The IBM ServerGuide documentation describes the advantages of ServerGuide and describes how to use the ServerGuide software.

The *IBM Hardware Maintenance Manual* is available for purchase. It contains a parts catalog, error codes, and advanced diagnostic procedures. This manual is intended for trained service technicians. (Diagnostic programs are not included.)
Related Publications

The following publications pertain to the server's Ethernet controller. They are available for purchase from IBM.

- *IBM LAN Technical Reference IEEE 802.2 and NETBIOS API*, SC30-3587
- *IBM LAN Server Command and Utilities*, S10H-9686

Additional publications are available for purchase from IBM. For a list of publications available in your country:

- In the U.S., Canada, and Puerto Rico, call 1-800-879-2755.
- In all other countries, contact the IBM support organization that services your area, your IBM marketing representative, or your IBM reseller.
Chapter 1. Introducing the IBM Netfinity 5500

We appreciate your decision to purchase an IBM Netfinity 5500. Your server is a high-performance, symmetric multiprocessing (SMP) server. It is ideally suited for networking environments that require superior microprocessor performance, efficient memory management, flexibility, and large amounts of reliable data storage.

Performance, ease of use, reliability, and expansion capabilities were key considerations during the design of your server. These design features make it possible for you to customize the system hardware to meet your needs today, while providing flexible expansion capabilities for the future.

Your server comes with a three-year limited warranty, IBM ServerGuide, and IBM Start Up Support. For more information about IBM ServerGuide, refer to your ServerGuide package. For more information about IBM Start Up Support, see Chapter 9, "Getting Help, Service, and Information." Chapter 9, "Getting Help, Service, and Information" also lists addresses on the World Wide Web where you can obtain information about your server model and other IBM products.

Note: The information label containing the serial number, machine type, model number, and agencies marks for your server is located at the front of the server behind the media-bay trim bezel. See “Removing the Server Door and Trim Bezels” on page 209 for instructions on removing the trim bezel.

5

CAUTION: Use safe lifting practices when lifting your machine.
Note: Most of the illustrations in this publication show the tower model of the Netfinity 5500 with the IBM Netfinity NetBAY3; the rack model does not come with a NetBAY3.

This chapter contains:
Features at a Glance .. 3
What Your IBM Netfinity 5500 Offers 4
Reliability,Availability, and Serviceability Features 7
Controls and Indicators 9
Information LED Panel 12
Input/Output Connectors and Expansion Slots 14
Power Supplies ... 17
Features at a Glance

The following table summarizes the features of the Netfinity 5500.

<table>
<thead>
<tr>
<th>Microprocessor</th>
<th>Expansion Slots</th>
<th>Integrated Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Intel® Pentium® II microprocessor with MMX™ technology</td>
<td>Up to seven adapters can be installed.</td>
<td>• Two serial ports</td>
</tr>
<tr>
<td>• 16 KB of level-1 cache</td>
<td>• Four 32-bit hot-plug PCI slots</td>
<td>• Two universal serial bus (USB) ports</td>
</tr>
<tr>
<td>• 512 KB of level-2 cache</td>
<td>• Two standard (non-hot-plug) 32-bit PCI slots</td>
<td>• One parallel port</td>
</tr>
<tr>
<td>• Expandable to two microprocessors</td>
<td>• One 16-bit ISA slot</td>
<td>• Mouse port</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memory</th>
<th>Upgradable Firmware</th>
<th>Security Features</th>
<th>Predictive Failure Analysis (PFA) Alerts</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Standard: 128 MB (min.), expandable to 1 GB</td>
<td>• BIOS, diagnostics, system management processor, and ServeRAID II upgrades (when available) can update EEPROMs on the system board</td>
<td>• Door and top cover lock (tower model only)</td>
<td>• Power supplies</td>
</tr>
<tr>
<td>• 100 MHz synchronous dynamic random access memory (SDRAM), error correcting code (ECC)</td>
<td></td>
<td>• NetBAY3 bezel lock</td>
<td>• Fans</td>
</tr>
<tr>
<td>• Four dual inline memory-module (DIMM) sockets</td>
<td></td>
<td>• Power-on and administrator passwords</td>
<td>• Memory</td>
</tr>
<tr>
<td>Diskette Drive</td>
<td></td>
<td>• Selectable drive-startup</td>
<td>• Hard disk drives</td>
</tr>
<tr>
<td>• Standard: One 3.5-inch, 1.44 MB</td>
<td></td>
<td>• Keyboard password</td>
<td>• Microprocessors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hard Disk Drives</th>
<th>Power Supply</th>
<th>Redundant Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Up to six hot-swappable hard disk drives supported</td>
<td>• 400 W (115–230 V ac)</td>
<td>• Three hot-swap fans</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CD-ROM Drive</th>
<th>Automatic voltage range selection</th>
<th>Built-in overload and surge protection</th>
<th>Automatic restart after a loss of power</th>
<th>For redundant power, an optional 400 W power supply is available</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Standard: 32X IDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Keyboard and Auxiliary Device</th>
<th>Video controller (with 1 MB video memory) compatible with:</th>
<th>System management processor on system board</th>
<th>Dedicated systems management I/O port</th>
</tr>
</thead>
<tbody>
<tr>
<td>(some models)</td>
<td>• Super video graphics array (SVGA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Keyboard</td>
<td>• Video graphics adapter (VGA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Mouse</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expansion Bays</th>
<th>Options to provide extra expansion bays</th>
<th>Redundant Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Six slim (1-inch) or three half-high (1.6-inch) hot-swap drive bays</td>
<td></td>
<td>• Three hot-swap fans</td>
</tr>
<tr>
<td>• Three 5.25-inch removable-media bays (one used by CD-ROM drive)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The IBM Netfinity NetBAY3 (tower model only) allows installation of options to provide extra expansion bays</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What Your IBM Netfinity 5500 Offers

The unique design of your server takes advantage of advancements in symmetric multiprocessing (SMP), data storage, disk-array technologies, and memory management. Your server combines:

- **Impressive performance using an innovative approach to SMP**
 Your server supports up to two Pentium II microprocessors. You can install a second microprocessor in your server to enhance performance and provide SMP capability.

- **Integrated disk-array subsystem**
 Although many operating systems provide software fault tolerance through mirroring, IBM provides hardware fault tolerance through the redundant array of independent disks (RAID) controller. The IBM ServeRAID II controller is a standard feature. It provides two channels and supports RAID levels 0, 1, and 5.

 For details about the IBM ServeRAID II controller, see Chapter 3, “Configuring and Monitoring Your Disk Arrays.”

- **Large data-storage and hot-swap capabilities**
 All models of the server support up to six hot-swap hard disk drives. This *hot-swap* feature enables you to remove and replace hard disk drives without turning off the server.

- **Hot-plug PCI adapter capabilities**
 Your server has four *hot-plug* slots for PCI adapters. With operating system support, these slots allow you to replace failing hot-plug PCI adapters without turning off the server. If the *hot-add* feature is supported by your operating system and the PCI adapter, you can also add PCI adapters in these slots without turning off the server.

- **IBM Netfinity NetBAY3**
 The tower model of the Netfinity 5500 comes with a NetBAY3 attached. You can install devices, such as the IBM EXP10 or a power distribution unit, in the NetBAY3. Refer to Appendix A, “Installing Devices in the NetBAY3” for more information.
What Your IBM Netfinity 5500 Offers

- Redundant cooling and power capabilities

The redundant cooling and hot-swap capabilities of the fans in your server allows continued operation if one of the fans fails. You can also replace a failing fan without turning off the server.

The addition of a second, optional power supply provides redundant power for the server. You can install the second power supply, or if you already have the second power supply installed, replace a failing power supply, without turning off the server.

- Large system memory

The memory bus in your server supports up to 1 GB of system memory. The memory controller provides error correcting code (ECC) support for up to four industry standard (Intel PC100 SDRAM specification, revision 1.0 or later), 3.3 V, 168-pin, 8-byte, dual in-line memory modules.

- Systems management capabilities

Your server is shipped with a system management processor on the system board. This controller, in conjunction with the Netfinity Manager provided in your ServerGuide package, allows you to manage the functions of the server locally and remotely. It also provides system monitoring, event recording, and dial-out alert capability.

Note: The system management processor is sometimes referred to as the service processor.

- Integrated network environment support

Your server comes with an Ethernet controller on the system board. This Ethernet controller has an interface for connecting 10-Mbps or 100-Mbps tranceivers. The server automatically selects between 10BASE-T and 100BASE-TX. The controller provides full-duplex (FDX) operation, which allows simultaneous transmission and reception of data on the Ethernet local area network (LAN).
What Your IBM Netfinity 5500 Offers

- Redundant network interface card

 The addition of an optional, redundant network interface card (NIC) provides a failover capability to a redundant Ethernet connection. If a problem occurs with the primary Ethernet connection, all Ethernet traffic associated with this primary connection is automatically switched to the redundant NIC. This switching occurs without data loss and without user intervention.

- IBM ServerGuide

 ServerGuide provides compact disc (CD) based programs to help simplify your server setup and network operating system installation. In addition, all of the included application programs are yours to install, and no software activation keys are required. You can use ServerGuide to:

 - Install a separately-purchased copy of a network operating system. Device drivers are provided as needed.
 - Replicate an installation for five or more Microsoft Windows NT Server 4.0 systems.
 - Install the application programs that come with ServerGuide.
 - Dial-in to IBM at any time\(^1\) using IBM Update Connector, a dial-up program that automatically updates your server Basic Input/Output System (BIOS) level, device drivers, and various programs.
 - Create service and support diskettes for most IBM servers.
 - View or print various online technical publications.

 For more information, refer to the ServerGuide package that comes with your server.

Your server is designed to be cost-effective, powerful, and flexible. It uses both peripheral component interconnect (PCI) and industry standard architecture (ISA) bus architectures to provide

\(^1\) Response time will vary, depending on the number and nature of calls received.
compatibility with a wide range of existing hardware devices and software applications.

As always, your IBM server meets stringent worldwide certifications for power, electromagnetic compatibility (EMC), and safety. See Appendix C, “Product Warranties and Notices” for additional information.

Reliability, Availability, and Serviceability Features

Three of the most important features in server design are reliability, availability, and serviceability (RAS). These factors help to ensure the integrity of the data stored on your server; that your server is available when you want to use it; and that should a failure occur, you can easily diagnose and repair the failure with minimal inconvenience.

The following is an abbreviated list of the RAS features of your server. Many of these features are explained in later chapters of this book.

- Menu-driven setup, system configuration, RAID configuration, and diagnostic programs
- Power-on self-test (POST)
- Integrated system management processor
- Predictive failure alerts
- System auto-configuring from configuration menu
- Remote system problem determination support
- Power and temperature monitoring
- Fault-resilient startup
- Hot-swap drive bays
- RAID level 1 and RAID level 5 disk arrays
- Support for hot-plug PCI adapters
- Error codes and messages
- System error logging
- Upgradable BIOS, diagnostics, system management processor, and ServeRAID II code
- Automatic restart after a power failure
- Parity checking on the SCSI bus and the PCI bus
RAS Features

- Error checking and correcting (ECC) memory
- Redundant hot-swap power supply option
- Redundant hot-swap cooling
- Redundant Ethernet capabilities (with optional adapter)
- Vital Product Data (VPD) on processor complex, system board, power supply, and hot-swap RAID subsystem
- Information and diagnostic LED panels
- Customer support center 24 hours per day 7 days a week

2 Service availability will vary by country. Response time will vary depending on the number and nature of incoming calls.
Controls and Indicators

The most commonly used controls and indicators on the front of the server appear in the following illustration.

Door Lock (Tower Model Only): You can lock the door on your server to deter tampering with the internal components. This same lock also locks the top cover in place.
Controls and Indicators

Power Control Button: Press this button to manually turn the server on or off.

CAUTION:
The Power Control button on the front of the server does not turn off the electrical current supplied to the server. The server also might have more than one power cord. To remove all electrical current from the server, ensure that all power cords are disconnected from the power source.

The server can be activated in several ways:

- You can turn the server on by pressing the Power Control button on the front of the server.

 Note: If you have just plugged the power cord of your server into an electrical outlet, you will have to wait approximately 20 seconds before pressing the Power Control button.

- If the server is activated and a power failure occurs, the server will start automatically.

- The server can also be powered on by the system management processor.

The server can be deactivated as follows:

- You can turn the server off by pressing the Power Control button on the front of the server. Pressing the Power Control button starts a graceful shutdown of the operating system, if this feature is supported by your operating system, and places the server in standby mode.

 Note: After turning off the server, wait at least 5 seconds before pressing the Power Control button to power the server on again.
• Pressing and holding the Power Control button for more than 4 seconds causes an immediate shutdown of the server and places the server in standby mode. This feature can be used if the operating system hangs.

• Disconnecting the server power cords from the electrical outlets will shut off all power to the server.

 Note: Wait about 15 seconds after disconnecting the power cord for your system to stop running. Watch for the System Power light on the information LED panel to stop blinking.

Reset Button: Press this button to reset the system and run the power-on self-test (POST).

Information LED Panel: The lights on this panel give status information for your server. See “Information LED Panel” on page 12 for more information.

Diskette-Eject Button: Press this button to eject a diskette from the drive.

CD-ROM Eject/Load Button: Press this button to eject or retract the CD-ROM tray so that you can insert or remove a CD.

CD-ROM Drive In-Use Light: When this light is lit, the CD-ROM drive is being accessed.

Diskette Drive In-Use Light: When this light is lit, the diskette drive is being accessed.

Hard Disk Lights: Each of the six hot-swap drive bays has a set of two lights, which indicate the following:

 • **Hard Disk Status Light:** When the amber light for a hard disk drive is lit continuously, the drive has failed. When the light flashes slowly (one flash per second), the drive is being rebuilt. When the light flashes rapidly (three flashes per second), the controller is identifying the drive.

 • **Hard Disk Activity Light:** When the green light for a hard disk drive is flashing, the drive is being accessed.
Information LED Panel

The information LED panel on the front of the server contains status lights.

System Power Light: When this green light is lit, system power is present in the server. When this light flashes, the server is in standby mode (the system power supply is turned off and AC current is present). When this light is off, it indicates either power supply failure, an AC power failure, or a light failure.

Note: If this light is off, it does not mean there is no electrical current present in the server. The light might be burned out. To remove all electrical current from the server, you must unplug the server power cords from the electrical outlets.

System POST Complete Light: This green light is lit when the power-on self-test (POST) completes without any errors.

SCSI Hard Drive Activity Light: This green light is lit when there is activity on a hard drive.
System Error Light: This amber light is lit when a system error occurs. A light on the diagnostics LED panel will also be lit to further isolate the error. (For more information, see “Identifying Problems Using Status LEDs” on page 377)

Processor 1 Activity Light: This green light is lit when there is activity on microprocessor 1 (the primary microprocessor).

Processor 2 Activity Light: This green light is lit when there is activity on microprocessor 2 (the secondary microprocessor).

Ethernet Speed 100 Mbps: When this green light is lit, the Ethernet speed is 100 Mbps.

Ethernet Link Status Light: When this green light is lit, there is an active connection on the Ethernet port.

Ethernet Transmit/Receive Activity Light: When this green light is lit, it indicates transmit or receive activity to or from the server.
Input/Output Connectors and Expansion Slots

The following illustration shows the expansion slots and the input/output connectors (ports) on the rear of the server.
Keyboard Connector: The keyboard cable connects here.

Mouse Connector: The mouse cable connects here. This port sometimes is called an auxiliary-device or pointing-device port.

Serial Connectors: Serial signal cables for modems and other serial devices connect here to the two 9-pin serial connectors, ports A and B. See “Devices and I/O Ports” on page 163 for port assignment information. If you are using a 25-pin signal cable, you need a 9-pin-to-25-pin adapter cable.

Video Connector: The monitor signal cable connects here.

NetBAY3: The tower model of the Netfinity 5500 comes with a NetBAY3 attached. You can install devices, such as the IBM EXP10 or a power distribution unit, in the NetBAY3. Refer to Appendix A, “Installing Devices in the NetBAY3” for more information.

Management C Connector: This connector is used to attach a modem that is dedicated to communication with the system management processor.

Parallel Connector: A signal cable for a parallel device, such as a printer connects here.

Universal Serial Bus Connectors: You can attach I/O devices to these two universal serial bus (USB) connectors. You need a 4-pin cable to connect devices to USB 1 or 2.

Note: If a standard (non-USB) keyboard is attached to the keyboard port, the USB ports are disabled while the power-on self-test (POST) is running and no USB devices will work during POST.

Ethernet Connector: Your server has one RJ-45 Ethernet connector. This connector is for attachment of the network to the integrated 10BASE-T or 100BASE-TX, twisted-pair transceiver.

Expansion Slots: Your server has one industry standard architecture (ISA) expansion slot and six peripheral component interconnect (PCI) expansion slots. Four of the PCI slots support hot-plug PCI adapters.
You can install PCI or ISA adapters. Many adapters provide bus-master capabilities, which enable the adapters to perform operations without interrupting the system microprocessors.

Attention Lights for Hot-Plug PCI Slots: Each hot-plug PCI slot has an Attention light that is visible from the rear of the server. An Attention light flashes approximately once per second when it is on. The meaning of the Attention lights is defined by your operating system. Refer to your operating system documentation to determine if it supports hot-plug PCI adapters and, if so, what the Attention lights indicate.

Power Connector: The power cord for power supply 1 connects here. (The power connector for the additional optional power supply is covered by the filler panel.)

External Connector Knockout: Your server has three external connector knockouts that can be used when you install options, such as the external SCSI cable option.

Note: For pin assignments and other details about these connectors, see “Connecting External Options” on page 263.
Power Supplies

The following illustration shows the power supplies on your server.

Hot-Swap Power Supplies: Your server comes with one hot-swap power supply installed. You can install a second hot-swap power supply to provide redundant power. You cannot hot swap a power supply if your server has only one power supply installed. (See “Installing a Hot-Swap Power Supply” on page 249 for instructions.)

Power Switch: This switch turns the power supply on and off.

AC and DC Power Lights: These lights provide status information about the power supply. For normal operation, both lights should be on. For any other combination of lights, see “Power Supply LEDs” on page 377 for more information.
Power Supplies
Chapter 2. Setting Up Your Server

This chapter describes how to set up, start, and use your server. It also contains information about arranging your workspace and using the CD-ROM drive.

If you have a rack model, you can install your options and operating system before you install the system in the rack.

Installation Overview .. 20
 Questions or Problems? 20
Installing the NetBAY3 Bezel 21
Cabling the Server .. 22
Starting the Server .. 23
Using the CD-ROM Drive 26
 Handling a CD .. 27
 Loading a CD .. 27
Before You Install Software 29
Registering Your Server 29
Arranging Your Workspace 30
 Comfort .. 30
 Glare and Lighting 31
 Air Circulation ... 31
 Electrical Outlets and Cable Lengths 32
Installation Overview

This chapter provides the steps necessary to set up and install your server.

Questions or Problems?

- **World Wide Web**

 You can obtain up-to-date information about your server model, a complete listing of the options that are supported on your model, and information about other IBM server products by accessing the home page for the Netfinity 5500 at the following address: http://www.pc.ibm.com/us/server/

 You can obtain a listing of products compatible with your server and related configuration information by accessing the following address: http://www.pc.ibm.com/us/compat/

- **IBM Start Up Support**

 The IBM Start Up Support program provides comprehensive telephone assistance 24 hours a day, seven days a week during your first 90 days after installation. Assistance is available for selected IBM and non-IBM network operating systems, network-interface adapters, and other optional peripherals.

 For more information about this exceptional program or for assistance with the installation of your server:

 - In the U.S. and Puerto Rico, call 1-800-772-2227.
 - In Canada, call 1-800-565-3344.
 - In the U.K., call 01475-555047

 In all other countries, contact your IBM reseller or your IBM marketing representative.

3 Service availability will vary by country. Response time will vary depending on the number and nature of calls received.
Installing the NetBAY3 Bezel

The NetBAY3 bezel is shipped, unattached, inside the NetBAY3.

To install the NetBAY3 bezel:

1. Remove the package containing the NetBAY3 bezel and unpack the bezel.
2. Hook the tabs on the left side of the NetBAY3 bezel around the posts on the NetBAY3.
3. Gently push the right side of the bezel toward the server until the bezel snaps into place.
4. Lock the NetBAY3 bezel.
Cabling the Server

Make sure you have an adequate number of properly grounded electrical outlets for your server, monitor, and any other options that you installed. Place your server in a location that is dry. Rain or spilled liquids might damage your server. Leave about 50 mm (2 inches) of space at the right and left sides of your server to allow the server’s cooling system to work properly. Leave about 100 mm (4 inches) clearance at the rear for cables.

1. Use the illustration in “Input/Output Connectors and Expansion Slots” on page 14 to cable your server.
2. Remove any shipping screws 2 from the power supply.
3. Connect the power cord 1 to the server.

7

CAUTION:

When the power-cord strain-relief bracket option is installed on the power cord, the server must be plugged to a power source that is easily accessible.

4. Install the power-cord strain-relief bracket 3 (if desired).
5. Plug the power cord into a properly grounded electrical outlet.
6. Continue with “Starting the Server.”

Starting the Server

To start the server:

1. If you installed any external devices, such as monitors, printers, or modems, turn them on now.

2. After you turn on your monitor, adjust the Brightness and Contrast controls to the approximate midpoint.

 You can readjust these controls and the monitor location for personal viewing comfort after you turn on your server.

 ![Diagram of a computer monitor with power switch and brightness control]

 Note: The locations of the Power switch and the Brightness and Contrast controls on your monitor might be different from those shown above.
3. Adjust the keyboard feet and position the keyboard for personal typing comfort. (Your keyboard might be different from the one shown.)

4. Locate the keys; then, unlock and open the server door.

8

CAUTION:
When unlocked, the server door will not support the weight of the server. To avoid personal injury, be sure to remove or lock the server door before moving or lifting the server.

5. If the diskette or CD-ROM drives contain packing material, a CD, or a diskette, remove them from the drive.
6. Turn on the server.

a. Make sure that the Power switches on the power supplies are ON. (See the illustration in “Power Supplies” on page 17 for the location of the Power Supply Power switch.)

b. Press the Power Control button on the front of the server.

 Note: If you have just plugged the power cord for your server into an electrical outlet, wait approximately 20 seconds before you press the Power Control button.

 The System Power light comes on. The power-on self-test (POST) begins.

 CAUTION:

The Power Control button on the front of the server does not turn off the electrical current supplied to the server. The server also might have more than one power cord. To remove all electrical current from the server, ensure that all power cords are disconnected from the power source.

7. Watch your monitor during POST:

 • The screen displays the IBM logo and a number that represents the amount of available server memory in MB.

 • The server beeps once at the end of POST to indicate that it is working properly.

 • If no operating system is installed, the system prompts you to insert bootable media in the appropriate drive. Refer to the information provided with your ServerGuide package and with your operating system for more information.

 • If you have set a power-on password, a prompt appears on the screen. If you have set both the power-on and administrator passwords, you can type either password at the password prompt. (See “System Security” on page 165...
for information about setting and using passwords.) Type your password at the prompt; then, press Enter.

Notes:

a. If you hear more than one beep, or no beeps, check to see if an error message appears or if your screen is blank; see Chapter 8, “Solving Problems.”

b. If your server stops running during testing or normal operation, see Chapter 8, “Solving Problems” for more information. Describe the problem to the service technician. After the problem is resolved, continue with the next step.

8. Continue with “Using the CD-ROM Drive.”

Using the CD-ROM Drive

An IDE CD-ROM drive is a standard feature on your server. CD-ROM drives can play back or read from a CD, but cannot write information to it. CD-ROM drives use industry standard, 12 cm (4.75-inch) CDs.

Follow these guidelines when using a CD-ROM drive:

- Do not place the server where the following conditions exist:
 - High temperature
 - High humidity
 - Excessive dust
 - Excessive vibration or sudden shock
 - An inclined surface
 - Direct sunlight
- Do not insert any object other than a CD into the drive.
- Before moving the server, remove the CD from the drive.
The following illustration shows the front of the CD-ROM drive.

Handling a CD
When handling a CD, follow these guidelines:

- Hold the CD by its edges. Do not touch the surface.
- To remove dust or fingerprints, wipe the CD from the center to the outside with a soft, nonabrasive cloth. Wiping the CD in a circular direction might cause loss of data.
- Do not write or stick paper on the CD.
- Do not scratch or mark the CD.
- Do not place or store the CD in direct sunlight.
- Do not use benzene, thinners, or other cleaners to clean the CD.
- Do not drop or bend the CD.

Loading a CD
To load a CD into a CD-ROM drive:

1. Press the Eject/Load button. The tray slides out of the drive. (Do not manually force the tray open.)
2. Place the CD in the tray with the label facing up.
3. Close the tray by pressing the Eject/Load button, or by gently pushing the tray forward. When the tray is closed, the CD-ROM drive In-Use light on the front of the drive will activate to indicate that the drive is in use.
4. To eject the CD, press the Eject/Load button. When the tray slides out, carefully remove the CD.
5. Close the tray by pressing the Eject/Load button, or by gently pushing the tray forward.

Notes:

1. If the tray does not slide out of the drive when you press the Eject/Load button, insert the pointed end of a large paper clip into the emergency-eject hole located on the front of the CD-ROM drive.

2. In some models, you might have to remove the front bezel that houses the CD-ROM drive so that you can access the emergency-eject hole.
Before You Install Software

Use ServerGuide to verify that you have the proper working environment for the specific operating system you are installing.

1. Follow the instructions provided in your ServerGuide package to install your operating system.
 See “What Your IBM Netfinity 5500 Offers” on page 4 for information on the ServerGuide package.

2. Use the tables provided in Chapter 10, “Server Records and Specifications” to record the server serial number, model number, type number, and key serial number. If you installed options, also update the device-records tables.

What to do next?

- To get help with your installation, refer to the IBM Service and Support pamphlet.
- To install application programs, refer to the application program documentation.
- To learn more about your server, see Chapter 1, “Introducing the IBM Netfinity 5500.”
- To register your server, see “Registering Your Server.”

Registering Your Server

After you have completed your server installation, please take time to register your server. After you have registered, we can e-mail you information about updates, performance tips, and compatibility.

The registration takes only a few minutes, and you will need to know the model and serial number of your server.

To register your server, visit our Web site at:
http://www.pc.ibm.com/register
Arranging Your Workspace

To get the most from your server, arrange both the equipment you use and your work area to suit your needs and the kind of work you do. Your comfort is of foremost importance, but light sources, air circulation, and the location of electrical outlets also can affect the way you arrange your workspace.

Comfort

Although no single working position is ideal for everyone, here are a few guidelines to help you find a position that suits you best.

Sitting in the same position for a long time can cause fatigue. A good chair can make a big difference. The backrest and seat should adjust independently and provide good support. The seat should have a curved front to relieve pressure on the thighs. Adjust the seat so that your thighs are parallel to the floor and your feet are either flat on the floor or on a footrest.

When using the keyboard, keep your forearms parallel to the floor and your wrists in a neutral, comfortable position. Try to keep a light touch on the keyboard and your hands and fingers relaxed. You can change the angle of the keyboard for maximum comfort by adjusting the position of the keyboard feet.

Adjust the monitor so the top of the screen is at, or slightly below, eye level. Place the monitor at a comfortable viewing distance,
usually 51 to 61 cm (20 to 24 in.), and position it so you can view it without having to twist your body. Also position other equipment you use regularly, such as the telephone or a mouse, within easy reach.

Glare and Lighting

Position the monitor to minimize glare and reflections from overhead lights, windows, and other light sources. Even reflected light from shiny surfaces can cause annoying reflections on your monitor screen. Place the monitor at right angles to windows and other light sources, when possible. Reduce overhead lighting, if necessary, by turning off lights or using lower wattage bulbs. If you install the monitor near a window, use curtains or blinds to block the sunlight. You might have to adjust the Brightness and Contrast controls on the monitor as the room lighting changes throughout the day.

Where it is impossible to avoid reflections or to adjust the lighting, an antiglare filter placed over the screen might be helpful. However, these filters might affect the clarity of the image on the screen; try them only after you have exhausted other methods of reducing glare.

Dust buildup compounds problems associated with glare. Remember to clean your monitor screen periodically using a soft cloth moistened with a nonabrasive liquid glass cleaner.

Air Circulation

Your server and monitor produce heat. Your server has one or more fans that pull in fresh air and force out hot air. The monitor lets hot air escape through vents. Blocking the air vents can cause overheating, which might result in a malfunction or damage. Place the server and monitor so that nothing blocks the air vents; usually, 15 cm (6 inches) of air space is sufficient. Also, make sure the vented air is not blowing on someone else.
Arranging Your Workspace

Electrical Outlets and Cable Lengths
The location of electrical outlets and the length of power cords and cables that connect to the monitor, printer, and other devices might determine the final placement of your server.

When arranging your workspace:

- Avoid the use of extension cords. When possible, plug the server power cords directly into electrical outlets.

- Keep power cords and cables neatly routed away from walkways and other areas where they might get kicked accidentally.

For more information about power cords, see “Power Cords” on page 452.
Your Netfinity 5500 comes with an integrated ServeRAID II controller. This redundant array of independent disks (RAID) controller supports RAID levels 0, 1, and 5.

You must use the IBM ServeRAID Configuration program to configure your disk arrays before you partition your hard disk drives and install your operating system. (See “The ServeRAID Configuration Program” on page 46 for more information.) If you are not familiar with disk-array technology or the ServeRAID Configuration program, be sure to review the information in “Understanding Disk Array Technology” on page 35.

After you configure your disk arrays, use the information provided in the ServerGuide package to install your operating system. Then, return to this manual for information about installing and using the ServeRAID Administration and Monitoring utility program.

This chapter contains:
Understanding Disk Array Technology 35
 Hard Disk Drive Capacities 35
 Logical Drives ... 36
 RAID Classifications ... 36
 ServeRAID Menus, Screens, and Drive States 40
The ServeRAID Configuration Program 46
Starting the ServeRAID Configuration Program 47
 During the Initial Startup of Your Server 47
 After an Operating System is Installed 47
Using Diskettes to Start the ServeRAID Configuration Program ... 48
Using the ServeRAID Configuration Program 48
 Creating Disk Arrays 50
 Viewing or Changing the Configuration 64
 Copying Logical Drives and Disk Arrays 76
 Deleting Logical Drives and Disk Arrays 79
 Maintaining the Disk-Array Configuration 81
Using the ServeRAID Mini-Configuration Program 96
 Viewing the ServeRAID II Controller Status 99
 Viewing the Configuration 101
Using the Advanced Configuration Functions 102
 Setting the BootCd Feature 104
Understanding Disk Array Technology

When you connect several hard disks together and configure the RAID controller to access them in a predetermined pattern, you create a disk array. The ServeRAID II controller on your system board supports up to eight independent arrays.

Disk arrays are used to improve security, performance, and reliability. The amount of improvement depends on the application programs that you run on the server and the RAID levels that you assign to the logical drives in your arrays. The ServeRAID II controller supports RAID levels 0, 1, and 5.

Your server has space for up to six hot-swap hard disk drives.

Hard Disk Drive Capacities

Hard disk drive capacities influence the way you create arrays. Drives in the array can be of different capacities (1 GB or 2 GB, for example), but the ServeRAID II controller treats them as if they all have the capacity of the smallest disk drive.

For example, if you group three 1 GB drives and one 2 GB drive into an array, the total capacity of the array is 1 GB times 4, or 4 GB, not the 5 GB physically available. Conversely, if you add a smaller drive to an array of larger drives, such as a 1 GB drive to a group containing three 2 GB drives, the total capacity of that array is 4 GB, not the 7 GB physically available. Therefore, the optimal way to create arrays is to use hard disk drives that have the same capacity.

4 When referring to hard-disk-drive capacity, GB means 1 000 000 000 bytes; total user-accessible capacity may vary depending on operating environment.
Logical Drives
When you create an array, you group hard disk drives into one storage area. You can define this storage area as a single logical drive, or you can subdivide it into several logical drives. Each logical drive appears to the operating system as a single physical hard disk drive.

The ServeRAID II controller on your system board supports up to eight logical drives. If you have only one array, you can define it as a single logical drive, or you can divide it into several logical drives. The first logical drive that you define will be your startup (boot) drive. If you have two or more arrays, each array can be one logical drive, or you can divide each array into multiple logical drives, as long as the total number of logical drives for all of the arrays does not exceed eight.

RAID Classifications
With RAID technology, data is striped across an array of hard disk drives. This data-distribution technique complements the way the operating system requests data.

The six basic RAID classifications are RAID level 0 through RAID level 5. The ServeRAID II controller on your system board supports three, industry-recognized RAID levels: 0, 1, and 5.
RAID Level 0

RAID level 0 stripes the data across all the drives in the array. This offers substantial speed enhancement, but provides for no data redundancy. The ServeRAID II controller automatically assigns RAID level 0 to all logical drives in an array containing only one hard disk drive.

A hard disk failure within the array results in loss of data in the logical drive assigned level 0, but only in that logical drive. If you have logical drives assigned RAID level 1 or 5 in the same array, they will not lose data.

When you replace the failed drive, the ServeRAID II controller automatically rebuilds all the logical drives assigned RAID levels 5 and 1 onto the replacement hard disk drive and defines the level 0 logical drive. However, the data that was in the failed level 0 logical drive is lost.

Though the risk of data loss is present, you might want to assign RAID level 0 to one of the logical drives, to take advantage of the speed offered with this RAID level. You could use this logical drive to enter data that you back up each day and for which safety is not of primary importance; that is, data that you can re-create easily. You also might want to use a level 0 logical drive when the work you are doing requires maximum capacity. RAID level 0 provides the largest capacity of the three RAID levels offered, because no room is taken up for redundant data or data parity storage.

RAID Level 1

RAID level 1 provides 100% data redundancy and requires two hard disk drives. With RAID level 1, the first stripe is the data stripe; the second stripe is the mirror (copy) of the first stripe, but written to another drive. If one of the hard disk drives fails, the ServeRAID II controller switches read and write requests to the remaining functional drive in the array.
Because the data is mirrored, the capacity of the logical drive when assigned level 1 is 50% of the physical capacity of the grouping of hard disk drives in the array.

RAID level 1 requires two drives. When you group more than two drives into a RAID level 1 array, the ServeRAID II controller automatically assigns the Enhanced RAID level 1.

The Enhanced RAID level 1 stripes data and copies of the data across all the drives in the array. As with the standard RAID level 1, the data is mirrored, and the capacity of the logical drive is 50% of the physical capacity of the grouping of hard disk drives in the array.

The following illustration shows data arranged in an array with three hard disk drives. The logical drive is assigned the Enhanced level 1. Notice that the mirror of the first data stripe (XXX YYY ZZZ) is shifted one drive. The other data stripes in level 1 follow the same pattern.

<table>
<thead>
<tr>
<th>Stripe</th>
<th>XXX</th>
<th>YYY</th>
<th>ZZZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirrored stripe</td>
<td>ZZZ</td>
<td>XXX</td>
<td>YYY</td>
</tr>
<tr>
<td>Stripe</td>
<td>AAA</td>
<td>BBB</td>
<td>CCC</td>
</tr>
<tr>
<td>Mirrored stripe</td>
<td>CCC</td>
<td>AAA</td>
<td>BBB</td>
</tr>
</tbody>
</table>

Table 1. Enhanced RAID Level 1

If you have only two drives available, the second drive is a mirror copy of the first drive.
RAID Level 5

RAID level 5 stripes data and parity across all drives in the array. When an array is assigned level 5, the capacity of the logical drive is reduced by one drive (for data parity storage).

RAID level 5 is generally the most desirable choice, because it offers both data protection and increased throughput. RAID level 5 gives you higher capacity than level 1, but level 1 offers better performance.

If you want to have a hot-spare drive (that is, a drive that can be automatically used to replace a similar drive that fails) and also assign RAID level 5, you must have at least four hard disk drives in your server.
ServeRAID Menus, Screens, and Drive States
This section contains information about the Main Menu, the ServeRAID screens and pop-up windows, the physical device states, and the logical drive states.

Main Menu
The following illustration shows the Main Menu of the IBM ServeRAID Configuration program.

![Main Menu Illustration]

Descriptions of the choices available from the Main Menu are as follows:

1. **Help** provides information about the choices available on the menu. You also can press F1 from any screen to obtain online Help.

2. **View Configuration** displays the existing disk-array configuration information. See “Viewing or Changing the Configuration” on page 64 for more information.

3. **EZ-RAID Configuration** automatically creates a configuration based on the number of physical drives installed in your system. See “Using the EZ-RAID Configuration Feature” on page 51 for more information.
4. Create/Delete/Copy Log Drive lets you manually create your disk arrays. You can select the drives that you want to include in an array. (See “Creating Disk Arrays Manually” on page 52 for more information.) You also can select this choice to define, delete, or copy logical drives and to define hot-spare drives.

5. Initialize/Synchronize Log Dr prepares the drives for data storage. RAID level 5 logical drives are automatically synchronized when you initialize them. See “Initializing/Synchronizing Logical Drives at the Same Time” on page 58 for more information.

6. Rebuild/Device Management rebuilds RAID level 1 and RAID level 5 logical drives. You also can select this choice to define or change the state of a physical drive, view drive information, and clear the Device Event Log. (See “Maintaining the Disk-Array Configuration” on page 81 for more information.)

7. Advanced Functions lets you change the write policy (the way data is written to the drive), save your configuration information to a diskette, restore your configuration from a diskette, or change the ServeRAID II controller parameters. You also can select this choice to run the RAID subsystems diagnostics, initialize the controller configuration, reset the configuration values to the factory defaults, and select a source (hard disk, NVRAM, Flash) from which to synchronize the ServeRAID II controller configuration.

8. Exit lets you exit from the Main Menu of the ServeRAID Configuration program.
Screens and Pop-Up Windows
The following illustration is a compilation of several configuration screens that appear when you use the IBM ServeRAID Configuration program.

Descriptions of the labeled areas in this illustration are as follows:

1. Pop-up windows that apply to the current menu appear in this area of the screen. For example, when you need to confirm an action, the Confirm pop-up window appears in this area.

2. You can select any of the choices that appear on the menu. To make a selection from a menu, type the highlighted number of the menu item, or use the Up Arrow (↑) or Down Arrow (↓) key to highlight your choice; then, press Enter. You can press the Esc key to return to a previous menu, to a previous work area of a screen, or to the Main Menu.
3 The Array/Bay selection list shows the bays for the ServeRAID II controller. For each bay that contains a drive, the list indicates the array in which the drive is grouped and the physical device state. (See “Physical Device States” on page 44 for more information.) For example, in the illustration, the drive in Channel 1, Bay 1 has a drive state of online (ONL) and is part of Array A.

Notes:

a. The Array/Bay selection list does not reflect the physical configuration of the server. (See “Internal Drive Bays” on page 233 for the physical location of the hard disk drives.)

b. The SCSI IDs for the hot-swap hard disk drives is set by the backplane. The backplane allows you to define the IDs as low (0 to 5) or high (8 to 13). See “SCSI Backplane Option Jumpers” on page 427 for more information about setting jumpers on the backplane.

c. The bay number corresponds to the SCSI ID of the device plus 1. For example, the ServeRAID II controller (INI) uses SCSI ID 7 and its bay number is 8 (7 + 1).

d. Bay Number 8 (SCSI ID 7) is reserved for the ServeRAID II controller (also known as the initiator, INI); therefore do not set the SCSI ID of non-hot-swap device, such as a tape drive, to 7.

4 The Array list indicates the array IDs and the sizes (in megabytes) of the arrays. When a drive is being rebuilt, this list and the Logical Drive list show the progression of the rebuild process.

5 The Logical Drive list shows the size, RAID level, status, and write policy for each logical drive. (See “Logical Drive States” on page 45 for more information.)

6 This area provides information and instructions about the actions you can perform on the current screen or pop-up window.
Physical Device States

Descriptions of the physical device states, which appear in the Array/Bay selection list, are as follows:

<table>
<thead>
<tr>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDR</td>
<td>A CD-ROM drive is installed.</td>
</tr>
</tbody>
</table>
| DDD | The physical hard disk drive is defunct (DDD). A drive in the Online (ONL) or Rebuild (RBL) state has become defunct (DDD). It does not respond to commands, which means that the ServeRAID II controller cannot communicate properly with the drive. (See “ServeRAID II Status and Messages” on page 349 for more information.) A hard disk drive in the DDD state does not necessarily mean that you need to replace the drive. Before you replace the drive, ensure that:
1. All cables are connected correctly to the backplane and to the hard disk drive. Also, check to ensure that all cables inside the server are connected correctly.
2. The hot-swap drive tray is seated properly in the drive bay.
| DHS | A drive enters the Defunct Hot-spare (DHS) state if:
1. A defunct (DDD) drive has been rebuilt to another drive, such as a hot-spare drive.
2. A hot-spare (HSP) or standby hot-spare (SHS) drive fails to respond to commands from the ServeRAID II controller. |
| EMP | No device is present in the bay. This state appears as dashes (– – –) on the ServeRAID configuration screen, or as a blank space on the Administration and Monitor utility screen. |
HSP A hot-spare (HSP) drive is a hard disk drive that is defined for automatic use when a similar drive fails. (See “Defining Hot-Spare Drives” on page 61 for more information.)

INI The INI represents the initiator for the ServeRAID II controller.

ONL The drive is online (ONL). It is functioning properly and is part of an array.

PRC The device is a generic SCSI controller (for example, a hot-swap backplane that has onboard systems-management support).

RBL The drive is being rebuilt. (See “Understanding the Drive Rebuild Process” on page 88 for more information.)

RDY The ServeRAID II controller recognizes a ready (RDY) drive as being available for definition. The ready drive state changes to empty (EMP) when the drive is physically removed from the bay.

SBY A standby (SBY) drive is a hard disk drive that the ServeRAID II controller has spun down.

SHS A standby hot-spare (SHS) is a hot-spare drive that the ServeRAID II controller has spun down. If an online (ONL) drive becomes defunct and no suitable hot-spare drive is available, a standby hot-spare of the appropriate size automatically spins up, and enters the rebuild (RBL) state.

TAP A tape drive is installed.

Logical Drive States
Descriptions of the logical drive states, which appear in the Logical Drive list, are as follows:

<table>
<thead>
<tr>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRM</td>
<td>A logical drive undergoing a logical-drive migration (LDM) is in the critical state.</td>
</tr>
</tbody>
</table>
The ServeRAID Configuration Program

CRS The ServeRAID II controller uses this reserved state during a logical-drive migration (LDM).

CRT A RAID level 1 or 5 logical drive that contains a defunct physical drive is in the critical state. A critical (CRT) logical drive is accessible, despite a physical drive failure.

FRE The drive is in a free (FRE) state. It is not defined.

LDM The logical drive is undergoing a logical-drive migration (LDM); that is, a change in RAID levels, a change in logical drive size, or an increase in free space.

OFL The logical drive is offline (OFL) and not accessible. This state occurs if one or more physical drives in a RAID level 0 logical drive are defunct. This state also occurs when two or more physical drives in a RAID level 1 or RAID level 5 logical drive are defunct.

OKY The drive is okay (OKY). It is in a good, functional state.

SYS The ServeRAID II controller uses this reserved state during logical-drive migration (LDM).

If the state of the logical drive is critical (CRT), you must replace and rebuild the defunct drive. See “Understanding the Drive Rebuild Process” on page 88 for more information.

The ServeRAID Configuration Program

You can use the IBM ServeRAID Configuration program to view the current disk-array configuration, change or delete existing arrays, create and initialize new disk arrays, and perform many other configuration and maintenance tasks.

You must use the ServeRAID Configuration program or the EZ-RAID configuration feature to configure your disk arrays before you partition your hard disk drives and install your operating system. After you configure your disk arrays, use the information provided in the ServerGuide package to install your operating system. Then, return to this manual for information about installing and using the ServeRAID Administration and Monitoring utility program.
Starting the ServeRAID Configuration Program

You can start the ServeRAID Configuration program in one of three ways. Choose one of these startup methods, and follow the appropriate instructions.

- During the initial startup of your server using ServerGuide (see “During the Initial Startup of Your Server”).
- After an operating system is installed using ServerGuide (see “After an Operating System is Installed”).
- Using diskettes (see “Using Diskettes to Start the ServeRAID Configuration Program” on page 48).

During the Initial Startup of Your Server

Using ServerGuide, insert the HardwareGuide CD in the CD-ROM drive and start the server. Follow the instructions in your ServerGuide package to start the ServeRAID Configuration program.

When the ServeRAID Configuration program starts, go to “Using the ServeRAID Configuration Program” on page 48 for more information.

After an Operating System is Installed

Notes:

1. Ensure that the CD-ROM is enabled as the startup drive. (See “Start Options” on page 170 for additional information.)

2. If a screen appears asking you to select an operating system, select the operating system that you have installed. This does not reinstall the operating system. This is for information only.

Insert the HardwareGuide CD in the CD-ROM drive and start the server. Follow the instructions in your ServerGuide package to start the ServeRAID Configuration Program.

When the ServeRAID Configuration Program starts, go to “Using the ServeRAID Configuration Program” on page 48 for more information.
Using Diskettes to Start the ServeRAID Configuration Program

If you choose to use diskettes to configure your ServeRAID II controller, you must first make the ServeRAID diskettes. You can make the diskettes using the Diskette Factory feature of ServerGuide. Refer to your ServerGuide documentation for instructions. You can also download the diskette images from the World Wide Web. See Chapter 9, “Getting Help, Service, and Information” for information about pages IBM maintains on the World Wide Web.

Once you have made the ServeRAID diskettes, do the following to start the ServeRAID Configuration program.

Insert the ServeRAID Configuration Diskette into the primary diskette drive; then, turn on the system. If the system is already turned on, press Ctrl+Alt+Del.

Each time your system starts, the ServeRAID II controller performs a power-on self-test (POST). The POST checks the configuration information for the ServeRAID II controller and for the configured hard disk drives. When POST detects a problem, an error message appears on the screen. If this occurs, see “ServeRAID II POST and Setup Messages” on page 345.

When the ServeRAID Configuration program starts, go to “Using the ServeRAID Configuration Program” for more information.

Using the ServeRAID Configuration Program

After the ServeRAID Configuration program starts, one of the following screens will appear:

- If you have more than one ServeRAID II controller in your system, a screen similar to the following appears.

 Note: You can install multiple ServeRAID adapters in your server, but you must configure each adapter separately.
Note: In the upper-right corner of the screen, you will see Ver. x.xx. On your screen, the x.xx is replaced by the version number of the configuration program.

Use the Up Arrow (↑) or Down Arrow (↓) key to highlight your choice; then, press Enter. The Main Menu appears.

- If you have only one ServeRAID II controller installed in your server, the Main Menu appears.
Type the highlighted number of the menu item, or use the Up Arrow (↑) or Down Arrow (↓) key to highlight your choice; then, press Enter. You can also press Esc to return to the previous menu, the previous work area of a screen, or to the beginning of the Main Menu.

If you are not familiar with the ServeRAID Configuration program, review the information in “ServeRAID Menus, Screens, and Drive States” on page 40.

Creating Disk Arrays
The ServeRAID II controller on your system board supports up to eight independent arrays. You must use the EZ-RAID configuration feature or the Create/Delete/Copy Log Drive menu to configure your disk arrays before you partition your hard disk drives and install your operating system.

The EZ-RAID configuration feature provides an easy way for you to quickly configure your disk arrays. This feature automatically creates a disk array, based on the number of RDY physical drives in your system. The EZ-RAID feature defines, initializes, and synchronizes the logical drive for you. If four or more RDY physical drives are available, this feature also will define a hot-spare drive. (See “Using the EZ-RAID Configuration Feature” on page 51 for more information.)

The Create/Delete/Copy Log Drive menu enables you to configure your arrays manually. You can use this menu to select the physical drives that you want to include in your disk arrays. You also can use this menu to define the logical and hot-spare drives for your arrays. (See “Creating Disk Arrays Manually” on page 52 for more information.)

For Advanced Users

If you want to change the stripe-unit size to maximize performance, see to “Changing the RAID Parameters” on page 71.

50 Netfinity 5500 User's Handbook
Using the EZ-RAID Configuration Feature

The EZ-RAID configuration feature groups up to eight ready (RDY) drives into one disk array and defines one logical drive. The size of the logical drive depends on the amount of free space available, and the RAID level assigned to the logical drive depends on the number of physical drives available.

The following table provides information about how EZ-RAID configuration defines a logical drive, based on the number of ready (RDY) drives available.

<table>
<thead>
<tr>
<th>Physical RDY Drives Available</th>
<th>Logical Drive RAID Level</th>
<th>Hot-Spare Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>4-9</td>
<td>5</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For example, if your server contains six drives that are in the RDY state, the EZ-RAID configuration feature will use five drives to create one disk array and define it as one RAID level 5 logical drive. The remaining drive is defined as a hot-spare drive.

If you want to use the EZ-RAID configuration feature to create multiple disk arrays, you might need to change the device states of some of your drives to prevent them from being included in the first array.

To create a disk array using the EZ-RAID configuration feature:

1. Start the ServeRAID Configuration program (see “Starting the ServeRAID Configuration Program” on page 47).

2. If you want to include all RDY drives in the array, continue with step 3. Otherwise, change the device states of the RDY drives that you do not want to include in the array to SBY. To do this:
 a. Select **Rebuild/Device Management** from the Main Menu; then, press **Enter**.
b. Select **Set Device State** from the next menu; then, press **Enter**.

c. Use the Up Arrow (↑) or Down Arrow (↓) key to highlight the drive that you do not want to include in the array; then, press **Enter**.

d. When the drive states pop-up window appears, select **SBY**; then, press **Enter**.

e. Repeat steps 2b through 2d for each RDY drive that you do not want to include in the array; then, press **Esc** to return to the Main Menu.

Note: After you run EZ-RAID configuration, you can change the device states back to RDY.

3. Select **EZ-RAID Configuration** from the Main Menu; then, press **Enter**. Information about the disk-array configuration appears on the screen.

4. When the Confirm pop-up window appears, select **Yes**; then, press **Enter**. The drives are automatically initialized. RAID level 5 drives are synchronized in the background.

5. If you are creating multiple arrays and you set some of your devices to another state using the procedure in step 2 on page 51, use that procedure to set the devices for your next array to RDY. Then, return to step 3 to create the next array. If you have finished creating your arrays, continue with step 6.

6. When the initialization process completes, you have completed the required steps for creating a ServeRAID disk-array configuration.

7. Back up the disk-array configuration information to diskette. See “Backing Up the Disk-Array Configuration” on page 82 for instructions.

8. You are now ready to install your operating system. Refer to the information provided in the ServerGuide package.

Creating Disk Arrays Manually

You can use the Create/Delete/Copy Log Drive menu to create your disk arrays manually. You also can use this menu to define
the logical and hot-spare drives for your arrays. You must define at least one logical drive for each array.

To create a disk array manually:

1. Start the ServeRAID Configuration program (see “Starting the ServeRAID Configuration Program” on page 47).

2. Select Create/Delete/Copy Log Drive from the Main Menu; then, press Enter.

A screen similar to the following appears.

3. Select Create Disk Array; then, press Enter.

4. Use the Up Arrow (↑) or Down Arrow (↓) key to highlight each drive that you want to include in the array; then, press Enter. The cursor is active in the Array/Bay selection list. (You must press Enter to select each drive. As you select each drive, the state of that drive changes from ready (RDY) to online (ONL).)
Notes:

a. Hard disk drive capacities influence the way you create arrays. Drives in the array can be of different capacities, but the ServeRAID II controller treats them as if they all have the capacity of the smallest disk drive. (See “Hard Disk Drive Capacities” on page 35 for more information.)

b. If you change your mind after selecting the drives for an array, you can delete the array (by selecting Delete Disk Array from the Create/Delete Copy Log Drive menu); then, begin again.

5. After you select all of the drives that you want to include in the array, press Esc to return to the Create/Delete Copy Log Drive menu.

Note: When the stripe-unit size is 8 K (the default setting) or 16 K (a manual setting), the maximum number of physical drives in an array is 16. When the stripe-unit size is 32 K or 64 K (both are manual settings), the maximum number of physical drives in an array is eight.

6. If you want to create another array, return to step 3 on page 53. Otherwise, continue with step 7.

7. You must define at least one logical drive for each new array. Continue with “Defining Logical Drives.”

Defining Logical Drives
You must define at least one logical drive for each array. The ServeRAID II controller supports up to eight logical drives. If you have only one array, you can define it as a single logical drive, or you can divide it into several logical drives. If you have two or more arrays, each array can be one logical drive, or you can divide each array into multiple logical drives, as long as the total number of logical drives for all of the arrays does not exceed eight.

Note: Refer to the documentation provided with your operating system for information about the recommended logical drive size.
To define a logical drive:

1. Select **Define Logical Drive** from the Create/Delete/Copy Log Drive menu; then, press **Enter**.

2. Use the Up Arrow (↑) or Down Arrow (↓) key to highlight the array for which you want to define a logical drive; then, press **Enter**.

 The Select RAID Level pop-up window appears.

Notes:

a. Typically, the first logical drive that you define will be your startup (boot) drive.

b. The ServeRAID Configuration program automatically assigns RAID level 0 to any logical drives defined in an array containing only one hard disk drive. When this is the case, the Select RAID Level pop-up window will not appear.

c. If you have two hard disk drives in the array, the Select RAID Level pop-up window appears, but RAID level 5 is not available. You need at least three hard disk drives in an array to assign RAID level 5 to the logical drives.

d. The RAID level that you assign to a logical drive can influence the amount of space that the drive requires; therefore, you must assign a RAID level before you enter the size of the logical drive.

e. For a description of RAID levels 0, 1, and 5, see “RAID Classifications” on page 36.

f. You can define up to eight logical drives for your array. If you plan to use the logical-drive migration (LDM) procedure, do not define more than seven logical drives. The LDM procedure requires one free logical drive. (See “Logical Drive Migration Administration” on page 134 for more information.)

g. If you plan to use the Change RAID Level feature of the LDM, you must assign the same RAID level to all of the logical drives in the array. (See “Changing RAID Levels” on page 135 for more information.)
3. Use the Up Arrow (↑) or Down Arrow (↓) key to highlight the RAID level that you want to assign to the logical drive; then, press **Enter**. The Logical Drive Size pop-up window appears.

If this is the first logical drive you are defining, the Logical Drive Size pop-up window will show the amount of free space available in the array.

Note: Typically, the first logical drive that you define will be your startup (boot) drive.

If you already defined other logical drives for this array, the Allocation Table appears showing the existing logical drive sizes and the amount of free space available.

The size of a logical drive is determined by several factors, but the size must be divisible by the number of data drives in the array. A logical drive in an array can be any size you choose within the size limitations of the array. Consider the following examples:

Example 1. The array consists of three 1 GB drives. You assign RAID level 0, which uses all the drives in the array with no redundant or parity storage; then, you type `1/0/0/0`. The number 999 will appear in the Size (MB) field because it is the number closest to and lower than 1000 that is divisible by 3.

Example 2. The array consists of three 1 GB drives. You assign RAID level 1, which provides disk mirroring and stripes data across all drives in the array. Because the data is mirrored, the capacity of the logical drive is 50% of the physical capacity of the hard disk drives grouped in the array. If you type `1/0/0/0`, the number 999 will appear in the Size (MB) field. The physical capacity used is 2000 MB, twice that of the logical drive size. The number that is closest to and lower than 2000 that is divisible by 3 is 1998. The logical drive size is 999 MB, which is 50% of the physical capacity.

5 When referring to hard disk drive capacity, MB stands for 1,000,000 bytes and GB stands for 1,000,000,000 bytes. Total user-accessible capacity may vary depending on operating environments.
Example 3. The array consists of three 1 GB drives and you assign RAID level 5. Data is striped across all three drives in the array, but the space equivalent to that of one drive is used for redundant storage. Therefore, if you type 1000, the number 1000 remains in the Size (MB) field because it is divisible by 2 (drives), which is the space available for data. The physical capacity used is 1500 MB.

4. Type the size, in megabytes, that you want for the logical drive; then, press Enter.

5. When the Confirm pop-up window appears, select Yes; then, press Enter.

Information about the new logical drive appears in the Logical Drive list. If you did not use all of the available free space, you can create another logical drive. You can assign the same or a different RAID level to additional logical drives.

6. When a message appears, stating that all logical drives must be initialized, press any key to continue.

Note: To ensure that your server operates correctly, you must initialize the new logical drive. A quick initialization of a logical drive erases the first 1024 sectors on the drive.

7. When the Confirm pop-up window appears, you have two choices:

 - Select Yes to perform a quick initialization; then, press Enter. When the quick initialization is complete, go to step 8.
 - Select No and if the drive is a RAID level 5 drive, it will be automatically synchronized in the background. Go to “Initializing Logical Drives” on page 59 to perform a complete initialization.

8. If you just performed a quick initialization of a RAID level 5 logical drive, a message appears, stating that the logical drive that you just created is being synchronized in the background and is ready for data storage. You have now completed the required steps for creating a ServeRAID configuration. Continue with the next step in this procedure.

If you have not already done so, use the information provided in the ServerGuide package to install your operating system.

Initializing/Synchronizing Logical Drives at the Same Time
Initializing a logical drive sets the drive to a predetermined state. The initialization process overwrites any data on the drive with zeros, and all existing data is lost. The purpose of synchronizing logical drives is to compute and, if necessary, write the parity data on the selected RAID level 5 logical drive. If you did not initialize your logical drives when you defined them, you can now initialize multiple logical drives at the same time. However you can still initialize and synchronize multiple logical drives in separate steps (see “Initializing Logical Drives” on page 59 and “Synchronizing Logical Drives” on page 60 for instructions).

To initialize/synchronize logical drives:

1. Select Initialize/Synchronize Log Drive from the Main Menu; then, press Enter.

2. Select Initialize/Synchronize Log Drive from the next menu; then, press Enter.

3. Use the Up Arrow (↑) or Down Arrow (↓) key to highlight the logical drive that you want to initialize/synchronize; then, press the Spacebar to select the drive. Continue doing this until you have selected all of the drives that you want to initialize/synchronize; then, press Enter.

4. When the Confirm pop-up window appears, select Yes to initialize/synchronize the logical drive or drives; then, press Enter.

The initialization/synchronization process begins. You can see the progress in the Pct. I/S. (percent initialized/synchronized) column of the Logical Drive list.

Note: Once the synchronization process begins, it cannot be interrupted.
5. Once you have completed initializing/synchronizing your logical drives, then you have completed the required steps for creating a ServeRAID configuration.

If you have not already done so, use the information provided in the ServerGuide package to install your operating system. then you have completed the required steps for creating a ServeRAID configuration.

Initializing Logical Drives

Initializing a logical drive sets the drive to a predetermined state. You can initialize multiple logical drives at the same time.

Note: The initialization process overwrites any data on the drive with zeros, and all existing data is lost.

If you did not initialize your logical drives when you defined them, you must use the following instructions to initialize the drives before storing data.

To initialize logical drives:

1. Select **Initialize/Synchronize Log Drive** from the Main Menu; then, press **Enter**.

2. Select **Initialize Logical Drive** from the next menu; then, press **Enter**.

3. Use the Up Arrow (↑) or Down Arrow (↓) key to highlight the logical drive that you want to initialize; then, press the **Spacebar** to select the drive. Continue doing this until you have selected all of the drives that you want to initialize; then, press **Enter**.
The Confirm pop-up window appears.

Attention:
When you select **Yes** in the Confirm pop-up window, information in the logical drive will be overwritten with zeros. All existing data is lost.

4. Select **Yes** to initialize the logical drive or drives; then, press **Enter**.

The initialization process begins. You can see the progress in the **Pct. Int.** (percent initialized) column of the Logical Drive list.

You can pause the initialization at any time by pressing **Esc**. Press **Esc** to stop the initialization and return to the previous menu. Press **Enter** to continue initializing the drive.

Note: You do not need to synchronize RAID level 0 or 1 logical drives before storing data.

5. You **must** synchronize all RAID level 5 logical drives before storing data. If you just initialized RAID level 5 logical drives, continue with “Synchronizing Logical Drives.” Otherwise, continue with step 6.

6. If you have completed initializing your logical drives and do not have to synchronize any RAID level 5 logical drives, then you have completed the required steps for creating a ServeRAID configuration.

7. When the initialization process completes, back up the disk-array configuration information to diskette. See “Backing Up the Disk-Array Configuration” on page 82 for instructions.

If you have not already done so, use the information provided in the ServerGuide package to install your operating system.

Synchronizing Logical Drives
The purpose of synchronizing logical drives is to compute and, if necessary, write the parity data on the selected RAID level 5 logical drive. Synchronizing a RAID level 1 logical drive copies the data from the primary disk to the mirrored disk.

RAID level 5 logical drives are automatically synchronized when you define them. You do not need to synchronize RAID level 0 or 1
logical drives before storing data. Also, the *data scrubbing* feature of
the ServeRAID II controller continuously reads all sections of RAID
level 1 and RAID level 5 logical drives “in the background” while
your system is running. If a defective sector is found, it is
automatically repaired. As a result, you no longer have to
synchronize RAID level 1 and RAID level 5 logical drives on a
weekly basis.

To synchronize logical drives:

1. Select **Initialize/Synchronize Log Drive** from the Main Menu of
 the ServeRAID Configuration program; then, press **Enter**.

2. Select **Synchronize Logical Drive** from the next menu; then,
 press **Enter**.

3. Use the Up Arrow (↑) or Down Arrow (↓) key to highlight the
 logical drive that you want to synchronize; then, press the
 Spacebar to select the drive. Continue doing this until you have
 selected all of the drives that you want to synchronize; then,
 press **Enter**.

4. When the Confirm pop-up window appears, select **Yes** to
 synchronize the logical drive or drives; then, press **Enter**.

 The synchronization progress appears in the **Pct. Syn.** (percent
 synchronized) column of the Logical Drive list.

 Note: Once the synchronization process begins, it cannot be
 interrupted.

5. Once you have completed synchronizing your logical drives,
 then you have completed the required steps for creating a
 ServeRAID configuration.

6. When the synchronization process completes, back up the
disk-array configuration information to diskette. See “Backing
Up the Disk-Array Configuration” on page 82 for instructions.

 If you have not already done so, use the information provided
 in the ServerGuide package to install your operating system.

Defining Hot-Spare Drives

A hot-spare (HSP) drive is a hard disk drive that is defined for
automatic use when a similar drive fails. The drive capacity of the
HSP drive must be equal to or greater than the capacity of the drive being replaced.

Notes:

1. If you want to have a hot-spare drive (HSP) or a standby hot-spare drive (SHS) and also assign RAID level 5 to one of your logical drives, you must have at least four hard disk drives.

2. In the event of a drive failure in an array that contains a logical drive assigned RAID level 0, the ServeRAID II controller will not activate a hot-spare drive.

You can use the Create/Delete/Copy/Log menu to define a RDY drive as a hot-spare drive. Or, you can change the state of a SBY, DHS, SHS, or RDY drive to HSP (see “Changing Device States” on page 70).

To define a RDY drive as a hot-spare drive:

1. Start the ServeRAID Configuration program (see “Starting the ServeRAID Configuration Program” on page 47).

2. Select Create/Delete/Copy Log Drive from the Main Menu; then, press Enter.

3. Select Define/Undefine Hot Spare Drive from the next menu; then, press Enter.

4. Use the Up Arrow (↑) or Down Arrow (↓) key to highlight the RDY drive that you want to define as the hot spare (HSP); then, press Enter.

 The drive state changes from RDY to HSP. You can press Enter to toggle between the HSP and RDY states.

5. Press Esc to make the change; then, press Esc again to return to the Main Menu.

6. To enable or disable the hot-swap rebuild parameter, continue with “Enabling or Disabling Hot-Swap Rebuild” on page 63.
7. Back up the disk-array configuration information to diskette. See “Backing Up the Disk-Array Configuration” on page 82 for instructions.

Enabling or Disabling Hot-Swap Rebuild

The default setting for the hot-swap rebuild parameter is Disable. When you set the hot-swap rebuild parameter to Enable, the ServeRAID II controller can automatically rebuild a defunct (DDD) drive when you replace it.

The ServeRAID II controller will rebuild a defunct drive automatically when all of the following conditions exist:

- The hot-swap rebuild parameter is set to Enable.
- The defunct drive is part of a RAID level 1 or RAID level 5 logical drive.
- The capacity of the replacement drive is equal to or greater than the capacity of the defunct drive.
- No rebuild, synchronization, or RAID level change operation is in progress.

When these requirements are met, the ServeRAID II controller automatically initiates a rebuild of the drive without user intervention.

To enable or disable hot-swap rebuild:

1. Start the ServeRAID configuration program (see “Starting the ServeRAID Configuration Program” on page 47).
2. Select **Advanced Functions** from the Main Menu; then, press **Enter**.
3. Select **Display/Change Adapter Parameters** from the next menu; then, press **Enter**.
4. Select **Enable/Disable Hot Swap Rebuild**; then, press **Enter**.
A screen similar to the following appears:

5. Use the Up Arrow (↑) or Down Arrow (↓) key to highlight your selection - enable or disable; then, press **Enter**.

6. Press **Esc** to return to the Advanced Functions menu.

7. Back up the disk-array configuration information to diskette. See to “Backing Up the Disk-Array Configuration” on page 82 for more information.

Viewing or Changing the Configuration

This section contains the following information and instructions for using the ServeRAID Configuration program to view or change your existing configuration.

- “Viewing the Disk-Array Configuration” on page 65
- “Viewing the Drive Information” on page 66
- “Viewing or Changing the ServeRAID Controller Parameters” on page 68
- “Changing Device States” on page 70
- “Changing the RAID Parameters” on page 71
- “Changing the Write Policy” on page 74
You also can use the Administration and Monitoring utility program to view or change your existing configuration. (See “Using the Administration and Monitoring Utility Program” on page 117 for more information.)

Viewing the Disk-Array Configuration

To view the current configuration:

1. Start the ServeRAID Configuration program (see “Starting the ServeRAID Configuration Program” on page 47).

2. Select **View Configuration** from the Main Menu; then, press **Enter**. The current disk-array configuration information appears on the screen.

3. To see the stripe order (the channel and bay numbers of the physical drives that make up the logical drives):
 a. Press **Enter**. The stripe order will appear in a separate window.
 b. Press any key to return to the View Configuration screen.

4. Press **Esc** to return to the Main Menu.
Viewing the Drive Information
You can use the ServeRAID Configuration program to view the vendor ID, model number, serial number, and capacity of each hard disk drive attached to the ServeRAID II controller.

You also can use this program to view information about the number and types of events that occurred. The Device Event Log, in nonvolatile random-access memory (NVRAM), collects event information for each hard disk drive attached to the ServeRAID II controller.

To view the drive information:

1. Start the ServeRAID Configuration program (see “Starting the ServeRAID Configuration Program” on page 47).
2. Select Rebuild/Device Management from the Main Menu; then, press Enter.
3. Select Display Drive Information from the next menu; then, press Enter.

A screen similar to the following appears.

4. Use the Up Arrow (↑) or Down Arrow (↓) key to highlight the drives in the Array/Bay selection list.

Select drive using the Up Arrow (↑) and Down Arrow (↓) keys. Press Esc to return to the previous menu.

Vendor ID : IBM
Model/Product: DFHSS2W 4141
Serial Number: 00019846
Capacity : 2150 MB
Soft Event : 0
Hard Event : 0
Parity Event : 0
Misc Event : 0

IBM ServeRAID Adapter Disk Array Configuration Ver. X.XX
Adapter Number: 1 Bus Number: 0 Host ID = Null Config

Ch 1
Array
Bay
Ch 2
Array
Bay
1
INI
RDY
HSP
ONL
A
4
INI
RDY
HSP
ONL
A
8
INI
RDY
HSP
ONL
A
12
INI
RDY
HSP
ONL
A
16
INI
RDY
HSP
ONL
A
2
ONL
A
5
ONL
A
9
ONL
A
13
ONL
A
1
ONL
A
3
ONL
A
6
ONL
A
10
ONL
A
14
ONL
A
15
ONL
A
16
ONL
A
When you highlight the drive, the drive information appears as follows:

- **Vendor ID** displays the name of the manufacturer or vendor.
- **Model/Product** displays the 4-digit model number, the 4-digit product number, the 2-digit ROM code revision level, and the 2-digit RAM code revision level.
- **Serial Number** displays the unit serial number of the device.
- **Capacity** displays the size of the device.
- **Soft Event** displays the number of SCSI Check Condition status messages returned from the drive (except Unit Attention and SCSI parity events) since the Device Event Log was last cleared.
- **Hard Event** displays the number of SCSI I/O processor events that occurred on the drive since the Device Event Log was last cleared. It also indicates if the drive exceeded the Predictive Failure Analysis (PFA) threshold.

Notes:

a. If a PFA event is detected, it appears beside the hard event information.

b. If the drive exceeded the PFA threshold, continue with the operation and call for service within 24 hours. As a precaution, back up your RAID level 0 logical drives.

- **Parity Event** displays the number of parity events that occurred on the SCSI bus since the Device Event Log was last cleared.
- **Misc Event** displays the number of other events (such as selection timeout, unexpected bus free, or SCSI phase event) that occurred on the drive since the Device Event Log was last cleared.

5. Press **Esc** to return to the Main Menu.
Viewing or Changing the ServeRAID Controller Parameters
You can use the ServeRAID Configuration program to view or change the ServeRAID II controller parameters.

To view or change the ServeRAID II controller parameters:
1. Start the ServeRAID Configuration program (see “Starting the ServeRAID Configuration Program” on page 47).
2. Select Advanced Functions from the Main Menu; then, press Enter.
3. Select Display/Change Adapter Params from the next menu; then, press Enter.

A screen similar to the following appears.

Descriptions of the choices available from this menu are as follows:

1. **Help** provides information about the choices available on the menu. You also can press F1 from any screen to obtain online Help.

2. **Display Adapter Status** lets you view the current settings (On or Off) for Unattended Mode, CD-ROM Boot, and Read Ahead. You also can select this choice to view information about BIOS Compatibility Mapping, logical drive sizes, and
logical drives that are blocked or have a bad stripe. (See “Changing the RAID Parameters” on page 71 for more information.)

3. **Change Adapter Host/SCSI ID** lets you change the SCSI configuration ID or the SCSI transfer rate for the ServeRAID II controller. You can change the ServeRAID II controller host configuration ID to any 12 characters. If you are using Ultra Fast/Wide SCSI-3 drives, you can change the default SCSI transfer rate from 10 MHz to a maximum of 20 MHz. When the transfer rate is set to 20 MHz, the SCSI bus for the ServeRAID II controller provides a data-transfer rate of up to 40 MB per second. In addition, this choice lets you change the number of hard disk drives in a group that will start up simultaneously, and set the start-up delay (in seconds) between groups of drives.

4. **Set BIOS Compatibility Mapping** lets you change the basic input/output system (BIOS) mapping from 8 GB (default setting) to 2 GB. (For your server, use the default setting.)

5. **Set Channel → Bank Mapping** lets you specify which direct access storage device (DASD) bank is connected to the ServeRAID II controller. This mapping is critical for the correct operation of the Administration and Monitoring utility program, which uses the settings to identify drives, to control power to specific drives, and to operate the SCSI LEDs.

4. Use the Up Arrow (↑) or Down Arrow (↓) key to highlight your choice; then, press **Enter**.

5. Press **Esc** to return to the Advanced Functions menu.

Changing Device States

You can use the ServeRAID Configuration program to change the state of a physical hard disk drive attached to the ServeRAID II controller.

To change the state of a physical hard disk drive:

1. Start the ServeRAID Configuration program (see “Starting the ServeRAID Configuration Program” on page 47).
2. Select **Rebuild/Device Management** from the Main Menu; then, press **Enter**.
3. Select **Set Device State** from the next menu; then, press **Enter**.
4. Use the Up Arrow (↑) or Down Arrow (↓) key to highlight the appropriate drive; then, press **Enter**.

A screen similar to the following appears.

The Drive States pop-up window lists all hard disk drive states. (See “Physical Device States” on page 44 for more information.) The following table shows the current device states and the valid alternate device states that you can assign. For example, you can change the state of a standby hot-spare drive from SHS to HSP or DHS.
Note: Setting a DDD drive that is part of a CRT logical drive to ONL without performing the rebuild process might result in loss of data. (See “Understanding the Drive Rebuild Process” on page 88 for more information.)

<table>
<thead>
<tr>
<th>Device States</th>
<th>Alternate States</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMP</td>
<td>RDY, SBY</td>
</tr>
<tr>
<td>SBY</td>
<td>RDY, EMP, HSP, SHS</td>
</tr>
<tr>
<td>DHS</td>
<td>EMP, HSP, SHS</td>
</tr>
<tr>
<td>SHS</td>
<td>HSP, DHS</td>
</tr>
<tr>
<td>DDD</td>
<td>ONL, RBL</td>
</tr>
<tr>
<td>RDY</td>
<td>EMP, HSP, SHS, SBY</td>
</tr>
<tr>
<td>HSP</td>
<td>RDY, SHS, DHS</td>
</tr>
<tr>
<td>ONL</td>
<td>DDD</td>
</tr>
<tr>
<td>RBL</td>
<td>DDD, ONL</td>
</tr>
</tbody>
</table>

5. Use the Up Arrow (↑) or Down Arrow (↓) key to highlight a valid alternate drive state; then, press **Enter**. The new state appears in the Array/Bay selection list.

6. If you want to change the state of another drive, return to step 4 on page 70. Otherwise, continue with step 7.

7. Press **Esc** to return to the Main Menu.

8. Back up the disk-array configuration information to diskette. See “Backing Up the Disk-Array Configuration” on page 82 for instructions.

Changing the RAID Parameters

You can use the ServeRAID Configuration program to set the stripe-unit size, to set the rebuild priority, to turn Unattended Mode On or Off, or to turn Read Ahead On or Off.

To change the RAID parameters:

1. Start the ServeRAID Configuration program (see “Starting the ServeRAID Configuration Program” on page 47).

2. Select **Advanced Functions** from the Main Menu; then, press **Enter**.

3. Select **Change RAID parameters** from the next menu; then, press **Enter**.
A screen similar to the following appears.

Descriptions of the RAID parameters that you can change are as follows:

- **Stripe Unit Size:** The default setting is 8 K data bytes.

 The stripe-unit size is the amount of data written on a given disk before writing on the next disk. To maximize the overall performance, choose a size that is close to the size of the system I/O request.

 Note: The size of the system I/O request depends on your operating system. If you are not sure of the size, use the default setting.

 Attention:
 After you set a stripe-unit size and store data in the logical drives, you cannot change the size without destroying data in the logical drives.

You can set the stripe-unit size to 8 K, 16 K, 32 K, or 64 K.

- When the stripe-unit size is 8 K or 16 K, the maximum number of physical drives in an array is 16.

- When the stripe-unit size is 32 K or 64 K, the maximum number of physical drives in an array is eight.
• **Rebuild Priority:** The default setting is High.

The rebuild priority can be set to High, Medium, or Low.

– When the rebuild priority is set to High, the rebuild I/O request gets highest priority in the execution order.

– When the rebuild request is set from High to Medium in a heavily loaded system, it can increase the disk rebuild time, but provide better system performance.

– When the rebuild request is set from High or Medium to Low in a moderate to heavily loaded system, it can increase the disk rebuild time, but provide better system performance.

• **Unattended Mode:** The default setting is Off.

You can enable the ServeRAID II controller to accept changes in the configuration without user input.

When unattended mode is set to Off, the program waits for user input when an event is detected.

When unattended mode is set to On, the ServeRAID II controller pauses briefly to permit a user to override the default action; then, the controller makes the necessary changes. Unattended mode also clears any blocked drives. This mode is useful when the server operates remotely.

When unattended mode is set to On, the ServeRAID II controller “chooses” an action that is equivalent to pressing one of the function keys.

Note: When F5 is selected, non-responding ONL and RBL drives become DDD, RDY and SBY drives become EMP, and HSP drives become DHS.

F5: The server continues the startup operation after identifying a defunct drive. For example, an HSP drive failed to respond during POST. Startup continues, but the ServeRAID II controller changes the state of the HSP drive to DHS.

F6: When a drive is removed from the server (for example, for maintenance or security), but is returned to
a different bay, the ServeRAID II controller adjusts the configuration to the drive's new location.

F7: A ServeRAID II controller, with stored configuration information that does not match that of the configured drives present, imports the configuration information from the drives.

- **Read Ahead:** The default setting is On.

Normally, the ServeRAID II controller transfers data from disk to its local cache in increments equal to the stripe-unit size. This provides excellent overall performance when workloads are steady and sequential. However, if the workload is random or the system I/O requests are smaller than the stripe-unit size, reading ahead to the end of the stripe might degrade performance.

When read ahead is set to Off, the ServeRAID II controller transfers data from disk to its local cache in increments equal to the system I/O request size, without reading ahead to the end of the stripe.

You can change the read-ahead setting without destroying data in a logical drive.

4. Use the Up Arrow (↑), Down Arrow (↓), Right Arrow (→), or Left Arrow (←) key to highlight the parameter that you want to change; then, press **Enter**.

5. Press **Esc** to return to the Advanced Functions menu.

6. Back up the disk-array configuration information to diskette. See “Backing Up the Disk-Array Configuration” on page 82 for instructions. (The backup procedure also saves the RAID parameters to diskette.)

Changing the Write Policy

When you configure a logical drive, the ServeRAID II controller sets the write policy to *write-through* (WT) mode, where the completion status of a write command is sent *after* the data is written to the hard disk drive. Under certain workloads, you can improve performance by changing the write policy to *write-back* (WB) mode,
where the completion status is sent after the data is copied to cache memory, but before the data is actually written to the storage device.

Although you might gain performance with write-back mode, it creates a greater risk of losing data due to a power failure. If a ServeRAID II controller failure occurs while data is in the cache the data is lost. This is because the system gets a completion status message when the data reaches cache memory, but before data is actually written to the hard disk drive.

To change the write policy:

1. Start the ServeRAID Configuration program (see “Starting the ServeRAID Configuration Program” on page 47).

2. Select **Advanced Functions** from the Main Menu; then, press **Enter**.

3. Select **Logical DriveParms Management** from the Advanced Functions menu; then, press **Enter**.

4. Select **Change Write Policy** from the next menu; then, press **Enter**.

A screen similar to the following appears.

```
IBM ServeRAID Adapter Disk Array Configuration Ver. X.XX
Adapter Number: 1 Bus Number: 0 Host ID = Null Config

Logical Drive Params Management
1. Help
2. Change Write Policy
3. Set NVRAM Cache Controller
4. Exit

Array ID Size LogDrv Size RAID-Wrt Level Status Pol
A 1920 B 2006 A0 100 RAID-0 OKY WT
B0 100 RAID-0 OKY WT
A1 200 RAID-0 OKY WT
B1 200 RAID-1 OKY WT

Select logical drive and press Enter to toggle the write policy. Press the ESC key to make the change.
```

5. Locate the **Wrt Pol** field in the Logical Drive list.
The write policy is shown as either write through (WT), which is the default setting, or write back (WB).

6. Select the logical drive whose write policy you want to change.

Attention:
If you change the write policy to WB, wait at least 10 seconds after your last operation before you turn off your system. It takes that long for the system to move the data from the cache memory to the storage device. Failure to follow this practice can result in lost data.

7. Press Enter to change the write policy. (You can press Enter to toggle between WT and WB.)

8. Press Esc. The Confirm pop-up window appears.

9. Select Yes to save the changes, or select No to return the setting to its original state; then, press Enter.

10. Back up the disk-array configuration information to diskette. See “Backing Up the Disk-Array Configuration” on page 82 for more information.

Copying Logical Drives and Disk Arrays
You can use the ServeRAID Configuration program to make backup copies of the logical drives and disk arrays in your server. You also might want to use this program to create a duplicate copy of a logical drive or array for use in another system.

Copying Logical Drives
You can use this feature to create a backup copy of the data on an existing logical drive, or to duplicate data for use in another system.

The copy logical drive feature does not copy the RAID configuration information. If you want to copy an existing array for use in another system, use the instructions provided in “Copying an Existing Disk Array” on page 78.

Note: If you have a RAID level 5 logical drive, make sure that your target drive is synchronized before starting this procedure.
To copy a logical drive:

1. Start the ServeRAID Configuration program (see “Starting the ServeRAID Configuration Program” on page 47).

2. Select Create/Delete/Copy Log Drive from the Main Menu; then, press Enter.

3. Select Copy Logical Drive from the next menu; then, press Enter.

4. Select the source and target drives:

 Notes:

 - The size of the target logical drive must be equal to or greater than the size of the source logical drive.
 - You can select up to four source/target pairs at a time.

 a. From the Logical Drive list, use the Up Arrow (↑) or Down Arrow (↓) key to highlight the source logical drive that you want to copy from; then, press the Spacebar to select the drive.

 b. From the Logical Drive list, use the Up Arrow (↑) or Down Arrow (↓) key to highlight the target logical drive that you want to copy to; then, press the Spacebar to select the drive.

 c. Select another source and target drive, if desired.

5. To start the copy process, press Enter.

 The Confirm pop-up window appears.

 Attention:

 When you select Yes in the Confirm pop-up window, information in the target logical drive will be overwritten with information from the source logical drive. All existing data on the target logical drive is lost.

6. Select Yes to copy the logical drive; then, press Enter.
The copy progress appears in the percent Read/Write (Pct. R/W) column as a percentage of the total number of sectors read and written.

7. When the copy process completes, back up the disk-array configuration information to diskette. See “Backing Up the Disk-Array Configuration” on page 82 for instructions.

Copying an Existing Disk Array

You can use the following instructions to create a complete copy (including the RAID configuration information) of an existing array. You can use this procedure to duplicate your current disk-array configuration for use on another system.

To copy an existing disk array:

1. Back up the configuration of the source system to a diskette. (See “Backing Up the Disk-Array Configuration” on page 82.)

2. On the source system, create a copy of the disk array that you want to use on another system.

 For example, if you want a copy of Array A to use on another system, create an Array B that is identical to Array A. (See “Creating Disk Arrays Manually” on page 52.)

3. Copy all logical drives from the source array to the target array.
For example, if you made an identical copy of Array A and that copy is Array B, you would copy all logical drives in Array A to Array B. (See “Copying Logical Drives” on page 76.)

4. Physically remove the hard disk drives that contain the copy from the source system; then, install them in the same bays on the target system.

 Note: Ensure that you install the drives in the same bays on the target system that the drives of the source array occupy in the source system. (Remember, the bay number is equal to the SCSI ID of the device +1.)

6. Using the diskette that contains the backup copy of the source configuration (you created this diskette in step 1 on page 78), restore the configuration to the target system. (See “Restoring the Disk-Array Configuration” on page 83.)

Deleting Logical Drives and Disk Arrays
This section contains instructions for deleting logical drives and disk arrays. In all cases, when you delete an array or its associated logical drives, all the data and programs in the array are lost. Before proceeding, back up any data and programs that you want to save. You might want to use a high-speed back up device, such as a tape drive, to back up large amounts of data.

Deleting Logical Drives
In some operating systems, deleting a logical drive might change the drive letters assigned to the existing logical drives.

To delete a logical drive:
1. Start the ServeRAID Configuration program (see “Starting the ServeRAID Configuration Program” on page 47).

2. Select Create/Delete/Copy Log Drive from the Main Menu; then, press Enter.

3. Select Delete Logical Drive from the next menu; then, press Enter.
4. Use the Up Arrow (↑) or Down Arrow (↓) key to highlight the logical drive that you want to delete; then, press the Del key. The Confirm pop-up window appears.

Attention:
All data and programs in the logical drive are lost during this procedure. Before proceeding, back up any data and programs that you want to save.

5. Select **Yes** to delete the logical drive, or select **No** if you do not want to delete the drive; then, press Enter.

6. Select **Exit** or press Esc to return to the Main Menu.

7. Back up the disk-array configuration information to diskette. See “Backing Up the Disk-Array Configuration” on page 82 for instructions.

Deleting Disk Arrays
Deleting a disk array deletes all logical drives that are defined in that disk array. All data and programs are lost once you perform the procedure.

To delete a disk array:

1. Start the ServeRAID Configuration program (see “Starting the ServeRAID Configuration Program” on page 47).

2. Select **Create/Delete/Copy Log Drive** from the Main Menu; then, press Enter.

3. Select **Delete Disk Array** from the next menu; then, press Enter.

4. Use the Up Arrow (↑) or Down Arrow (↓) key to highlight the array that you want to delete; then, press the Del key. The Confirm pop-up window appears.

Attention:
All data and programs in the array are lost during this procedure. Before proceeding, back up any data and programs that you want to save.

5. Select **Yes** to delete the array, or select **No** if you do not want to delete the array; then, press Enter.
If you delete an array of Online (ONL) drives, the state of the ONL drives changes to Ready (RDY). If the array contains a defunct drive (DDD), the state of the DDD drive changes to defunct hot spare (DHS). You can reset the drive state as follows:

- If the drive is good, change the device state from DHS to HSP; then, select the drive again and change the device state from HSP to RDY. (See “Changing Device States” on page 70 for instructions.)

- If the drive is defective, physically replace it with a good drive; then, set the state for the new drive to RDY. (See “Installing Internal Drives” on page 233 and “Changing Device States” on page 70 for instructions.)

6. Select **Exit** or press **Esc** to return to the Main Menu.

7. Back up the disk-array configuration information to diskette. See “Backing Up the Disk-Array Configuration” on page 82 for instructions.

Maintaining the Disk-Array Configuration

This section contains the following information and instructions for using the ServeRAID Configuration program to maintain your existing disk-array configuration.

- “Backing Up the Disk-Array Configuration” on page 82
- “Restoring the Disk-Array Configuration” on page 83
- “Testing the RAID Subsystem” on page 84
- “Formatting Drives” on page 84
- “Clearing the Device Event Log” on page 85
- “Replacing a Faulty Drive” on page 86
- “Understanding the Drive Rebuild Process” on page 88
- “Initializing, Viewing, or Synchronizing the ServeRAID II Controller Configuration” on page 91
Backing Up the Disk-Array Configuration
The disk-array configuration is vital information. To protect this information, back up the information to diskette as soon as you complete your tasks.

The ServeRAID II controller maintains a record of the disk-array configuration information in its NVRAM, in an electrically erasable programmable read-only memory (EEPROM) module, and on each ONL and RBL drive.

Attention:
Dynamic changes in the configuration of your disk arrays can occur due to hot-spare drive replacement or other drive maintenance activity. It is important that you back up the disk-array configuration information frequently, to keep the backup information on the diskette current.

You need a blank, 3.5-inch, 2MB, formatted diskette to create a backup copy.

To back up the disk-array configuration information:

1. Label a blank diskette “Disk-Array Configuration Backup” and date it.

2. Start the ServeRAID Configuration program (see “Starting the ServeRAID Configuration Program” on page 47).

3. Select Advanced Functions from the Main Menu; then, press Enter.

4. Select Backup IPS ServeRAID Config from the next menu; then, press Enter. (The disk-array configuration is also known as the IBM ServeRAID (IPS) configuration.)

5. Insert the blank Disk-Array Configuration Backup diskette into the diskette drive.

6. A pop-up window appears with a default file name of CONFIG; change the file name by typing over the default; then, press Enter. The Backup program assigns a file-name extension of .ips.

7. The Confirm pop-up window appears.
Select Yes to confirm that you want to copy the file to the backup diskette, or select No to return to the previous menu; then press Enter.

8. Remove the backup diskette from the drive and store it in a safe place.

9. Press Esc to return to the Main Menu.

Restoring the Disk-Array Configuration
To restore the disk-array configuration information for the ServeRAID II controller, use the ServeRAID II Configuration CD and an up-to-date disk-array configuration backup diskette.

Attention:
Dynamic changes in the configuration of your disk arrays occur due to hot-spare drive replacement or other drive maintenance activity. Because of this, the configuration backup information on the diskette might be different from the information stored in NVRAM for the ServeRAID II controller. Therefore, it is important that you back up the disk-array configuration information frequently, to keep the backup information on the diskette current.

To restore the ServeRAID configuration information:
1. Start the ServeRAID Configuration program (see “Starting the ServeRAID Configuration Program” on page 47).
2. Select Advanced Functions from the Main Menu; then, press Enter.
3. Select Restore/Convert Saved Configuration from the next menu; then, press Enter.
4. Insert your Disk-Array Configuration Backup diskette into the diskette drive; then, press Enter.
5. A list of backup file names appears. Use the Up Arrow (↑) or Down Arrow (↓) key to select the file name that you want to restore; then, press Enter.
6. The Confirm pop-up window appears.
 Select Yes to restore the configuration information, or select No to return to the previous menu; then, press Enter.
7. Press Esc to return to the Main Menu.

Testing the RAID Subsystem
You can use the RAID Subsystem Diagnostic program to test the ServeRAID II controller and the devices connected to the controller.

To test the RAID subsystem:

1. Start the ServeRAID Configuration program (see “Starting the ServeRAID Configuration Program” on page 47).
2. Select Advanced Functions from the Main Menu; then, press Enter.
3. Select IBM RAID Subsystem Diagnostic from the next menu; then, press Enter.
4. Select the diagnostic test that you want to run; then, press Enter.

Descriptions of the diagnostic tests available are as follows:

- **Run Adapter Self-tests** tests the ServeRAID II controller. Restart your server after the self-test completes.
- **SCSI Device Self-test** runs diagnostic tests on the SCSI devices attached to the ServeRAID II controller.
- **Drive Media Test** verifies that all sectors on the hard disk drive are accessible. The drive must be in the RDY or HSP state.
- **Format Drive** performs a low-level format on a hard disk drive. For more information, see “Formatting Drives.”

5. Follow the instructions that appear on the screen.

Formatting Drives
The Format Drive feature provides a low-level format on a hard disk drive. If you install a new hard disk drive that requires a standard format, use your operating system Format command to format the drive. You can use the Format Drive feature to low-level format hard disk drives that are in the Ready (RDY), Empty (EMP), Standby (SBY), Standby Hot-Spare (SHS), or Hot-Spare (HSP) states. This feature can low-level format multiple drives simultaneously.
To perform a low-level format:

1. Start the ServeRAID Configuration program (see “Starting the ServeRAID Configuration Program” on page 47).

2. Select **Advanced Functions** from the Main Menu; then, press **Enter**.

3. Select **IBM RAID Subsystem Diagnostic** from the next menu; then, press **Enter**.

 You can perform a low-level format on more than one drive at a time.

 Attention:
 A low-level format erases all data and programs from the hard disk drive. Before proceeding, back up any data and programs that you want to save.

4. Select **Format Drive**; then, press **Enter**.

 Note: If formatting is interrupted, the state of the drive being formatted might appear as Empty (EMP) in the Array/Bay selection list. If this occurs, select the drive and format it again.

5. Follow the instructions that appear on the screen. When a message similar to **Formatting Complete** appears, press **Esc** to return to the Main Menu.

Clearing the Device Event Log

The Device Event Log, located in the ServeRAID II controller, collects statistics on the number and type of events that occur on all of the hard disk drives attached to the ServeRAID II controller.

After you correct a disk-array problem, you might want to clear the Device Event Log so that you can quickly identify any subsequent errors.

To clear the Device Event Log:

1. Start the ServeRAID Configuration program (see “Starting the ServeRAID Configuration Program” on page 47).
2. Select **Rebuild/Device Management** from the Main Menu; then, press **Enter**.

3. Select **Erase Device Event Log** from the next menu; then, press **Enter** to clear the log.

Replacing a Faulty Drive

To avoid the loss of critical data, it is important that you replace and rebuild a defunct (DDD) drive promptly.

The results of hard disk drive failures depend on the configuration of your disk arrays and the number of drives that fail. Before you remove or replace a DDD drive, review the following examples.

Example 1. One hard disk drive becomes defunct, but a hot-spare (HSP) drive of the same size exists.

- If the failing drive is part of a redundant (RAID level 1 or RAID level 5) logical drive, the hot-spare drive takes over immediately.
- RAID level 1 and RAID level 5 logical drives within the array change to the critical (CRT) state and remain in the CRT state until the rebuild process completes.
- The RAID level 0 logical drives within the array change to the offline (OFL) state.
- All data in the RAID level 0 logical drives within the array is lost.

Example 2. One hard disk drive becomes defunct, and an appropriate hot-spare (HSP) drive is not available.

- The RAID level 1 and RAID level 5 logical drives change to the CRT state and remain in the CRT state until the rebuild process completes. Data is not lost from logical drives in the CRT state, but you must replace the DDD hard disk drive promptly to avoid the loss of data. (If two drives within the same array become DDD, all data within the array is lost.)
- The RAID level 0 logical drives change to the OFL state.
• All data in the RAID level 0 logical drives within the array is lost.

Example 3. Multiple drives within an array become defunct.

• All logical drives in the array change to the offline (OFL) state.

• All data from the array is lost, regardless of the RAID levels assigned to the logical drives.

To replace a faulty drive:

1. Before you remove or replace a drive that you suspect to be defective, verify that the drive is defective. To do this:

 a. Check the drive for damage.

 b. Verify that the drive is positioned correctly. If the drive is not installed correctly, reposition the drive.

 c. Check the lights on the drive tray. (See the following information for a description of the lights.) Verify that you can remove the drive safely.

 The lights on the hot-swap drive tray provide drive status information, as follows:

• **Hard Disk Activity Light:** When this green light is flashing, it indicates that the server is accessing the drive.

• **Hard Disk Status Light:** When this amber light is lit continuously, it indicates that the drive has failed. When the light flashes slowly (one flash per second), it indicates that the hard disk drive is part of a disk array and is being rebuilt. When the light flashes rapidly (three flashes per second), it indicates that the controller is identifying the drive. The drive *should not* be replaced if this light is blinking; the drive has just been replaced and the disk array is being rebuilt.
2. Physically replace the defective drive or use an existing RDY drive that has a capacity equal to or greater than the drive that you are replacing as a hot-spare replacement drive.

Attention:
Removing the wrong hard disk drive might cause loss of all data in the array.

a. To physically replace the defective hard disk drive, follow the instructions in “Installing Internal Drives” on page 233 and “Installing a Drive in a Hot-Swap Bay” on page 241; then, follow the instructions in “Understanding the Drive Rebuild Process.”

b. To rebuild the defunct drive to an existing RDY drive, follow the instructions in “Understanding the Drive Rebuild Process.”

Note: You can use the Administration and Monitoring utility program to identify a defunct drive and designate a replacement drive without restarting the server. Review the information in “Understanding the Drive Rebuild Process”; then, see “Using the Administration and Monitoring Utility Program” on page 117 for more information.

Understanding the Drive Rebuild Process
This section contains guidelines and instructions for rebuilding a defunct (DDD) drive using the ServeRAID Configuration program.

If you are using the Administration and Monitoring utility program, review the guidelines and information in this section; then, see “Physical Device Administration” on page 139 for instructions.

Automatic Rebuild Process: The ServeRAID II controller will rebuild a defunct drive automatically when all of the following conditions exist:

- The physical drive that failed is part of a RAID level 1 or 5 logical drive.
- A HSP or SHS drive with a capacity equal to or greater than the original drive is available the moment that the drive fails.
• No rebuild, synchronization, or RAID level change operation is in progress.

If multiple hot-spare drives are available, the ServeRAID II controller searches all bays for a hot-spare drive of the appropriate size. The first drive that meets this requirement enters the rebuild state.

A physical hard disk drive can enter the rebuild (RBL) state if:

• You physically replace a defunct drive that is part of the critical (CRT) logical drive.

When you physically replace a defunct drive in a critical (CRT) logical drive, the ServeRAID II controller rebuilds the data on the new physical drive before it changes the logical drive state back to Okay (OKY).

• The ServeRAID II controller adds a hot-spare or a standby hot-spare drive to the array and changes its state from HSP or SHS to RBL.

• A ready or standby drive replaces a defunct drive that is part of the critical (CRT) logical drive.

Guidelines for Rebuilding a Drive: Before you rebuild a drive, review the following guidelines:

• If the state of the logical drive is critical (CRT), you must rebuild the defunct hard disk drive promptly.

• The replacement hard disk drive must be the same size or larger than the failed drive.

• If the hard disk drive being rebuilt is part of a RAID level 0 logical drive, the RAID level 0 drive is blocked to external access during the rebuild process.

 – If you use the ServeRAID Configuration program to initiate the rebuild process, the program unblocks the RAID level 0 logical drive when the rebuild process completes. If the rebuild process is interrupted, you must restart the server to unblock the blocked RAID level 0 logical drive.
If you use the Administration and Monitoring utility program to initiate the rebuild process, you must unblock the RAID level 0 logical drive when the rebuild process completes. (See “Unblocking Logical Drives” on page 133 for more information.)

- Data that was stored in a RAID level 0 logical drive is lost during the rebuild process. If you backed up your data before the drive failed, you can restore the data to the new drive.

Rebuilding a Drive: To rebuild a physical drive:

1. Start the ServeRAID Configuration program (see “Starting the ServeRAID Configuration Program” on page 47).

2. Select Rebuild/Device Management from the Main Menu; then, press Enter.

3. Select Rebuild Drive from the next menu; then, press Enter. The cursor is active in the Array/Bay list.

4. A pop-up window appears. Select one of the following:

 - Select Same Location if you physically replaced a hard disk drive in the same bay; then, press Enter. A Confirm pop-up window appears. Select Yes and continue with step 5.

 - Select New Location to assign a hard disk drive in a new location. Use the Up Arrow (↑) or Down Arrow (↓) key to select the replacement drive that you want to use for the rebuild operation; then, press Enter.

Information and status messages about each stage of the rebuild process appear on the screen.

5. When the rebuild process completes, press Esc to return to the Main Menu. The new configuration is saved.

6. Back up the new configuration to diskette (see “Backing Up the Disk-Array Configuration” on page 82).

7. Select Exit to leave the ServeRAID Configuration program.

8. Remove the HardwareGuide CD and press Ctrl+Alt+Del to restart the server.
Initializing, Viewing, or Synchronizing the ServeRAID II Controller Configuration

The ServeRAID configuration information stored in nonvolatile random-access memory (NVRAM) is critical to the reliable operation of the disk array. To protect the integrity of the configuration information, the configuration information is also stored in an EEPROM and on each RBL and ONL hard disk drive. Each time you change the configuration information, all corresponding copies are updated automatically.

During POST, if the NVRAM configuration information does not match the configuration information stored in the EEPROM or on the hard disk drives, an error message appears.

You can use the Init/View/Synchronize Config menu to initialize, view, or synchronize the ServeRAID II controller configuration information.

To initialize, view, or synchronize the configuration information:

1. Start the ServeRAID Configuration program (see “Starting the ServeRAID Configuration Program” on page 47).
2. Select Advanced Functions from the Main Menu; then, press Enter.
3. Select Init/View/Synchronize Config from the next menu; then, press Enter.
A screen similar to the following appears.

Descriptions of the choices available from this menu are as follows:

- **Help** provides information about the choices available on the menu. You also can press F1 from any screen to obtain online Help.

- **Initialize Configuration** lets you set the configuration of the ServeRAID II controller to its default settings. This choice sets the states for all powered-on hard disk drives to RDY, all CD-ROM drives to CDR, and all tape drives to TAP. This choice also deletes all previously defined arrays and logical drives. This choice writes a “Null Configuration” for the ServeRAID II controller.

You must select this choice if a message appears stating that you have an unrecoverable configuration error, because valid configuration information does not exist.

- **View NVRAM Configuration** displays the current configuration settings stored in the controller’s NVRAM.

- **View EEPROM Configuration** displays the current configuration settings stored in the controller’s EEPROM.
• **View Hard Drive Configuration** displays the configuration settings for the selected ONL or RBL hard disk drive. To view the stripe order, press **Enter**.

• **View Change List** displays the device state configuration changes that the ServeRAID II controller reported since you restarted or turned on the server.

 - **View Power-on Change List** displays the hard disk drive device state changes since the last time that you restarted or turned on the server.

 - **View Wrong SCSI ID List** provides a list of hard disk drives that were found at a different SCSI ID location (bay) when you restarted or turned on the server.

 - **View Unidentified Drive List** provides a list of hard disk drives that have identifiers that do not match the stored configuration information.

 The identifier consists of both the configuration host ID and a time stamp. You can define the host ID (for example, a host ID can be the serial number of the server) as any string up to 12 characters. (See “Viewing or Changing the ServeRAID Controller Parameters” on page 68 for more information.)

• **Configuration Synchronization.** See “Configuration Synchronization” for a description of this choice.

4. Use the Up Arrow (↑) or Down Arrow (↓) key to highlight your choice from the menu; then, press **Enter**.

5. Follow the instructions that appear on the screen.

Configuration Synchronization: When the configuration information stored in NVRAM, in the EEPROM, and on the hard disk drives does not match, you can select one source; then, copy the selected configuration information to the other locations.

You can view the individual configurations to determine if they are valid, and then select the configuration that you want to use.
If a message appears stating that you have a recoverable configuration error, one of the following conditions exists:

- The configuration information in NVRAM is valid, but the configuration information in the EEPROM is invalid.
- The configuration information in the EEPROM is valid, but the configuration information in NVRAM is invalid.
- The configuration information in NVRAM is valid and the configuration information in the EEPROM is valid, but they do not match.

If a message appears stating that you have an unrecoverable configuration error, valid configuration information does not exist. If this occurs, you must initialize the configuration immediately. See “Initializing, Viewing, or Synchronizing the ServeRAID II Controller Configuration” on page 91 for instructions.

Descriptions of the choices available from the Configuration Synchronization menu are as follows:

- **EEPROM as Source** copies configuration information from the controller’s EEPROM to NVRAM and to all configured RBL and ONL hard disk drives defined in the controller’s EEPROM configuration.
- **NVRAM as Source** copies configuration information from NVRAM to the EEPROM and to all configured RBL and ONL hard disk drives defined in the NVRAM configuration.
- **NVRAM and POCL as Source** updates information from the power-on change list (drive state changes at power-on time) with the information in NVRAM, then copies this updated configuration information to the EEPROM and to all configured RBL and ONL hard disk drives defined in the NVRAM configuration.
- **Hard Disk Drive as Source** retrieves configuration information from the most common hard disk drive configuration, then copies the configuration information to NVRAM and to the EEPROM.
- **Identified HDD as Source** updates the configuration information with configuration information from hard disk drive that matches the identifiers stored in NVRAM. The updated configuration information is then copied to NVRAM, to the EEPROM, and to the configured hard disk drives in the array.

- **Specific HDD as Source** retrieves the configuration information from the hard disk drive that you select. The updated configuration information is then copied to NVRAM, to the EEPROM, and to the configured hard disk drives.
Using the ServeRAID Mini-Configuration Program

The ServeRAID Mini-Configuration program is a quick way to view the ServeRAID II controller settings and to perform a limited set of the configuration functions. The ServeRAID Mini Configuration program is stored in read-only memory (ROM).

To access the ServeRAID Mini-Configuration program:

1. Start the server. If the system is already turned on, press Ctrl+Alt+Del to restart the server.

 Each time your system starts, the ServeRAID II controller performs a power-on self-test (POST). The POST checks the configuration information for the ServeRAID II controller and for the configured hard disk drives, to see if any changes have occurred.

 - If POST does not detect changes in the configuration or encounter any hardware problems, continue with step 2.

 - If POST detects changes in the configuration or encounters a hardware problem, messages appear on the screen. If this occurs, see “ServeRAID II POST and Setup Messages” on page 345 and correct the problem; then, return here and continue with step 2.

2. Press Ctrl+I immediately when a screen similar to the following Mini-Configuration screen appears.
Using the Mini-Configuration Program

IBM ServeRAID Adapter Disk Array Mini-Configuration Utility Ver. X.XX

IBM ServeRAID Adapter BIOS
Copyright IBM Corp. 1995, 1997
Ver: X.XX.X MM/DD/YY

Press <Ctrl+I> for Mini-Config Utility

Initializing Adapter Number 1. Please wait Starting drives.
Firmware Version: NNNNN
NvRAM cache controller was found.
4 logical drives are installed.
NonDisk SCSI Devices Found : CDROM: 0 Tape: 0 Removable Disk: 1 Other: 0

Note: In the preceding figure, the version number will be replaced by the version number of your Mini-Configuration program, the MM/DD/YY will be replaced by the date of the version of your Mini-Configuration program, and NNNNN will be replaced by the version number of the firmware.

3. If you have more than one ServeRAID II controller installed, a selection screen appears. Use the Up Arrow (↑) or Down Arrow (↓) key to select your choice; then, press **Enter**. Otherwise, the Main Menu of the Mini-Configuration program appears, similar to the following screen.
Using the Mini-Configuration Program

Descriptions of the choices available from the Main Menu are as follows:

- **View Adapter Status** displays the current status of the ServeRAID II controller. (See “Viewing the ServeRAID II Controller Status” on page 99.)

- **View Configuration** displays the current configuration information for the ServeRAID II controller. (See “Viewing the Configuration” on page 101.)

- **Advanced Functions** lets you initialize the configuration (that is, reset the ServeRAID II controller settings to their factory defaults), import the configuration from drives, enable and disable the Boot CD-ROM and INT13 extensions, and view the controller and PCI information. (See “Using the Advanced Configuration Functions” on page 102.)

4. Use the Up Arrow (↑) or Down Arrow (↓) key to highlight your choice; then, press **Enter**.

5. Follow the instructions that appear on the screen.

6. Select **Exit** to leave the Main Menu.
Viewing the ServeRAID II Controller Status

When you select View Adapter Status from the Main Menu, a screen similar to the following appears.

The screen contains the following fields:

- **Unattended** shows the current state of the Unattended Mode, On or Off. (See “Changing the RAID Parameters” on page 71.)

- **Read Ahead** shows the current state of the Read Ahead Cache Mode, On or Off. (See “Changing the RAID Parameters” on page 71.)

- **BootCd** shows the current state of the BootCd function, On or Off. (See “Setting the BootCd Feature” on page 104.)

- **CompMode** shows the BIOS compatibility mode. **On** indicates 8 GB Extended; **Off** indicates 2 GB Limited.

- **Boot Bk** shows the current version number of the startable code stored in the Boot Block.

- **Code Bk** shows the current version number of the firmware (microcode) for the ServeRAID II controller.
Using the Mini-Configuration Program

- **Rebuild Rate** shows the current speed of the rebuild process: High (default), Medium, or Low. (See “Changing the RAID Parameters” on page 71.)

- **No. of DDD Drv.** shows the current number of defunct drives.

- **No. of OFL Drv.** shows the current number of offline logical drives.

- **No. of CRT Drv.** shows the current number of critical logical drives.

- **Cfg. Updates** shows the current number of times that the configuration has been updated. When you initialize the configuration, the Cfg. Update is reset to zero.

- **Flash Pgms** shows the current number of times that the firmware EEPROM has been updated.

- **Locked, Bad Stripe, or Blocked Drive** identifies the logical drives that are affected, and contains the following fields:
 - **Bad Stripe** indicates the logical drives that contain bad stripes.
 - **Locked Stripe** is a reserved field.
 - **Blocked Drive** indicates the logical drives that are blocked. The drives that are blocked cannot be used until they are unblocked. (See “Unblocking Logical Drives” on page 133.)
Viewing the Configuration
The View Configuration choice provides configuration and status information about your logical drives.

When you select View Configuration from the Main Menu, a screen similar to the following appears. You can view the number and size of logical drives installed, RAID level, current state, stripe unit size, write policy, read-ahead status, and the date that the logical drive was created.

<table>
<thead>
<tr>
<th>Logical Drive</th>
<th>Size (MB)</th>
<th>RAID Level</th>
<th>Current Stripe</th>
<th>Wrt Pol</th>
<th>Read Ahead</th>
<th>Date Created</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>5</td>
<td>OKY</td>
<td>8K</td>
<td>WT</td>
<td>10/31/97</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>5</td>
<td>OKY</td>
<td>8K</td>
<td>WT</td>
<td>10/31/97</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>5</td>
<td>OKY</td>
<td>8K</td>
<td>WT</td>
<td>10/31/97</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>5</td>
<td>OKY</td>
<td>8K</td>
<td>WB</td>
<td>10/31/97</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>5</td>
<td>OKY</td>
<td>8K</td>
<td>WT</td>
<td>10/31/97</td>
</tr>
<tr>
<td>5</td>
<td>99</td>
<td>1</td>
<td>OKY</td>
<td>8K</td>
<td>WT</td>
<td>10/31/97</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>5</td>
<td>OKY</td>
<td>8K</td>
<td>WT</td>
<td>10/31/97</td>
</tr>
<tr>
<td>7</td>
<td>300</td>
<td>1</td>
<td>OKY</td>
<td>8K</td>
<td>WT</td>
<td>10/31/97</td>
</tr>
</tbody>
</table>
Using the Advanced Configuration Functions
The Advanced Functions choice allows you to initialize the configuration (reset the ServeRAID II controller settings), import the configuration information from the drives, enable and disable the Boot CD-ROM and INT13 extensions, and view the controller and PCI information.

When you select Advanced Functions from the Main Menu, a screen similar to the following appears.

Descriptions of the choices available from the Advanced Functions menu are as follows:

Attention:
The following choices might result in loss of data due to changes in the configuration.

- **Initialize Configuration** resets the ServeRAID II controller settings to their factory defaults and sets all functional hard disk drives to the RDY state.

- **Import Configuration from Drive(s)** reads the most common configuration information from the drives in the server and copies it to the controller’s NVRAM and to the controller’s EEPROM module.
Using the Mini-Configuration Program

- **Boot CD-ROM and INT13 Extensions** is used to configure the BootCd feature. When BootCd is enabled, the ServeRAID II controller attempts to start (boot) from a CD, if the CD-ROM drive contains a startable (boot-enabled) CD, and no other controller is currently using INT13 extensions.

Attention:
Only one controller can support INT13 extensions.

- **Adapter and PCI Information** displays the ServeRAID II controller hardware and PCI register information, as shown in the following example screen.
Setting the BootCd Feature
When you select **Boot CD-ROM and INT13 Extensions**, a screen similar to the following appears.

<table>
<thead>
<tr>
<th>BIOS Support for Bootable CD-ROM</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Boot CD-ROM Menu</td>
<td>No</td>
</tr>
<tr>
<td>BIOS Support for INT13 Extensions</td>
<td>No</td>
</tr>
<tr>
<td>BIOS Support for reading Partition tables</td>
<td>Yes</td>
</tr>
<tr>
<td>BIOS Support for Service Processor</td>
<td>No</td>
</tr>
<tr>
<td>Save Configuration in Adapter</td>
<td></td>
</tr>
<tr>
<td>Exit</td>
<td></td>
</tr>
</tbody>
</table>

To enable the BootCd feature:

1. Use the Up Arrow (↑) or Down Arrow (↓) key to highlight *BIOS Support for Bootable CD-ROM*. Press **Enter** to change No to Yes. This also changes No to Yes next to *Display Boot CD-ROM Menu* and *BIOS Support for INT13 Extensions*.

2. Ensure that the screen displays Yes next to *BIOS Support for reading Partition tables*. If not, use the Up Arrow (↑) or Down Arrow (↓) key to highlight *BIOS Support for reading Partition tables*; then, press **Enter** to change No to Yes.

3. Highlight *Save Configuration for Adapter*; then, press **Enter**. A Configuration Saved message appears. The Main Menu of the Mini-Configuration program returns.

 Note: Highlighting **Exit**, instead of **Save Configuration for Adapter**, and pressing **Enter** causes any changes you made **not** to be saved.

4. Press **Ctrl+Alt+Del** to restart the server.
Administration and Monitoring Utility Program

The IBM ServeRAID Administration and Monitoring utility program monitors your ServeRAID II controller while your network operating system is up and running.

The Administration and Monitoring utility program comes in three versions:

- IBM OS/2
- Novell NetWare/IntraNetware
- Microsoft Windows NT and Windows 95

The OS/2 and NetWare/IntraNetware utility programs run on the server in the stand-alone mode only.

The Windows NT/Windows 95 Administration and Monitoring utility program runs on the server in the stand-alone mode, or in a client/server environment in the client/server mode. You can use the stand-alone mode to administer and configure your ServeRAID II controller while at the server.
You can use the client/server mode to administer and configure ServeRAID controllers and adapters that are in servers anywhere on your network. The TCP/IP networking protocol supports the client/server mode and allows connections to IBM OS/2, Microsoft Windows NT, Novell NetWare/IntraNetware and SCO OpenServer operating systems.

Note: The Windows NT and Windows 95 utility programs are required to use the logical-drive migration feature. See “Logical Drive Migration Administration” on page 134.
This section provides installation instructions for the following
ServeRAID utility programs.

- The Administration and Monitoring utility program runs on a
 Windows-based system (Windows 95, Windows NT
 workstation, or Windows NT server).

- Server Utilities
 - OS/2 Server Utility
 - Microsoft Windows NT Server Utility
 - Novell NetWare/Intranetware Server Utility
 - SCO OpenServer Utility

You can obtain updates to the installation instructions for the
ServeRAID utility programs from the World Wide Web. See
Chapter 9, “Getting Help, Service, and Information” for more
information.
Before You Begin

- Be sure that your ServeRAID II controller is configured properly.
- Be sure that your network operating system is installed and functional.
- If you are using Microsoft Windows NT, you can use the Administration and Monitoring utility program in the client/server mode (across the network) or in the stand-alone mode (at the server).
 - See “Installing the Server Utility Programs” on page 109 for client/server mode instructions.
 - See “Installing the Administration and Monitoring Utility Programs Using Diskettes” on page 116 for stand-alone mode instructions.
- If you are using OS/2, NetWare/IntraNetware, or SCO OpenServer, you must use the Administration and Monitoring utility program in the client/server mode. Requirements for this environment include:
 - A Windows NT or Windows 95 client running the IBM ServeRAID Administration and Monitoring utility program
 - A network adapter or controller with proper cabling for access to the client system
 - The TCP/IP networking protocol installed on both the server and client systems
 - The IBM ServeRAID Administration and Monitoring Server utility program installed on the client system
 - See “Installing the Server Utility Programs Using Diskettes” on page 109 to install your server utility program.
 - See “Installing the Administration and Monitoring Utility Programs Using Diskettes” on page 116 to install the Administration and Monitoring utility program on a Windows 95 or Windows NT system.
Installing the Server Utility Programs

Note: If you are installing the OS/2, Novell NetWare/Intranetware, or SCO OpenServer versions of the server utility programs, you must use diskettes. Go to “Installing the Server Utility Programs Using Diskettes” for instructions.

You can install the server utility programs in one of two ways:

- Using ServerGuide (see “Installing the Server Utility Programs Using ServerGuide”)
- Using diskettes (see “Installing the Server Utility Programs Using Diskettes”)

Installing the Server Utility Programs Using ServerGuide

You can install the server utility programs using the CoPilot feature of ServerGuide. Refer to your ServerGuide package for more information.

Once you have installed the server utility programs, go to “Using the Server Utility Programs” on page 114 for information on how to use them.

Installing the Server Utility Programs Using Diskettes

This section contains installation instructions and information about using the IBM OS/2 server utility, Microsoft Windows NT server utility, Novell NetWare/IntraNetware server utility, and SCO OpenServer utility.

Note: You must first make the ServeRAID diskettes using the Diskette Factory feature of ServerGuide. Refer to your ServerGuide package for instructions.

IBM OS/2 Server Utility Programs: To install the IBM OS/2 server utility program using diskettes:

1. Insert the *IBM ServeRAID Device Driver Diskette* into the diskette drive.

2. Create an IPSRAID directory on the hard disk. Type:

   ```
   md d:\ipsraid
   ```
Administration and Monitoring Utility Program

(where d: is the hard disk drive letter)

3. Copy the following file to the target directory. Type:

 `copy a:\remote\servers\os2\ipsadm.exe d:\ipsraid`

 (where a: is the diskette drive letter and d: is the hard disk drive letter)

4. Copy the icon file to the target directory. Type:

 `copy a:\remote\servers\os2\ipsadm.ico d:\ipsraid\ipsadm.ico`

 (where a: is the diskette drive letter and d: is the hard disk drive letter)

5. Create an icon for the application:
 a. Open the template folder from the OS/2 Systems folder on the Desktop.
 b. Drag a program template onto the Desktop.
 c. At the Program Tab, type the following path and file name:

 `d:\ipsraid\ipsadm.exe`

 (where d: is the hard disk drive letter)
 d. At the General Tab, type the following as the title:

 `IPSRAID Admin/Monitor`
 e. Find the current icon,

 `d:\ipsraid\ipsadm.ico`

 (where d: is the hard disk drive letter)

6. Double-click on the new icon to access the server utilities.

7. Continue with “Using the Server Utility Programs” on page 114.

Microsoft Windows NT Server 4.x Utility Program: To install the Microsoft Windows NT 4.x server utility program:

1. Insert the IBM ServeRAID Device Driver Diskette into the diskette drive.

2. Create an IPSRAID directory on the hard disk. Type:

 `md d:\ipsraid`
3. Copy the following file to the target directory. Type:
 copy a:\remote\servers\nt\ipsadm.exe d:\ipsraid\ipsadm.exe
 (where \textit{a:} is the diskette drive letter and \textit{d:} is the hard disk drive letter)

4. Copy the icon file to the target directory. Type:
 copy a:\remote\servers\nt\ipsadm.ico d:\ipsraid\ipsadm.ico
 (where \textit{a:} is the diskette drive letter and \textit{d:} is the hard disk drive letter)

5. To create a new shortcut for the utility:
 a. Using the right mouse button, click on the Desktop and select \textbf{New}; then, select \textbf{Shortcut}.
 b. In the \textbf{Create Shortcut} window, type:
 d:\ipsraid\ipsadm.exe
 (where \textit{d:} is the hard disk drive letter)
 c. Click on \textbf{Next}.
 d. In the \textbf{Select a Title for the Program} window, type:
 ipsraid admin/monitor server
 e. Click on \textbf{Finish} and an icon appears on your desktop.

6. To create a customized icon for the shortcut you just created:
 a. Using the right mouse button, click on the icon that you created for your shortcut; then, select \textbf{Properties}.
 b. Click on the \textbf{Shortcut} notetab.
 c. Click on \textbf{Change Icon}.
d. Click on **OK** in the information window.

e. In the **Change Icon window**, type:

d:\ipsadm\ipsadm.ico

(where *d:* is the hard disk drive letter)

or

If you are not sure of the path and file name, click on the **Browse** button; then, find and select the file:

d:\ipsadm\ipsadm.ico

(where *d:* is the hard disk drive letter)

f. Click on **OK** for the icon.

g. Click on **OK** for the program properties.

h. Double-click on the new icon to access the server utilities.

7. Continue with “Using the Server Utility Programs” on page 114.

Novell NetWare/Intranetware Server Utility Program: To install the Novell Netware 3.x/IntraNetware 1.0 server utility program, do one of the following:

- From a DOS prompt:

 1. Insert the *IBM ServeRAID Device Driver Diskette* into the diskette drive.

 2. Type:

 \[\text{copy a:\remote\servers\netware\ipsadm.nlm d:\nwserver\ipsadm.nlm} \]

 (where *a:* is the diskette drive letter and *d:\nwserver* is the hard disk drive and directory where NetWare/IntraNetware is installed)

 3. Load the NLM from the system console, type:

 \[\text{load d:\nwserver\ipsadm.nlm} \]

 (where *d:\nwserver* is the hard disk drive and directory where NetWare/IntraNetware is installed)

Administration and Monitoring Utility Program

- From a client workstation on the network:
 1. Insert the IBM ServeRAID Device Driver Diskette into a diskette drive, such as drive a:.
 2. Type:
     ```
     copy a:\remote\servers\netware\ipsadm.nlm f:\system\ipsadm.nlm
     ```
 (where a: is the diskette drive letter and f is the SYS volume)
 3. Load the NLM from the system console. Type:
     ```
     load ipsadm.nlm
     ```

SCO OpenServer Server Utility Program: The SCO OpenServer Server utility program is installed from the SCO Open Server Boot-Time Loadable (BTLD) Diskette during the installation of the IBM ServeRAID device driver. The file is installed in the /usr/bin directory.

To run the program, type `ipsadm &` at the command prompt.

If the program does not run, use the following instructions to manually install the SCO OpenServer 5.X utility program.

 1. Insert the IBM ServeRAID SCO Open Server Boot-Time Loadable (BTLD) Diskette into a diskette drive.
 2. Create a directory for the server utility. Type:
     ```
     mkdir /ipsraid
     ```
 3. Mount the diskette drive. Type:
     ```
     mount /dev/fd0 /mnt
     ```
 4. Copy the following file. Type:
     ```
     cp /mnt/ipsraid/new/usr/bin/ipsadm /ipsraid/ipsadm
     ```
 5. Unmount the diskette drive. Type:
     ```
     umount /mnt
     ```
6. To start the server utility to run in the background, type:

 ./ipsadm &

7. Continue with “Using the Server Utility Programs.”

Using the Server Utility Programs
You can use command-line parameters to customize your
ServeRAID programs.

To use command-line parameters, issue the IPSADM command in
the following format:

IPSADM <parameter 1> <parameter 2> ... <parameter n>

Descriptions of the optional command-line parameters are as
follows:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-?</td>
<td>The -? command displays the help for the valid parameters.</td>
</tr>
</tbody>
</table>
| -p: number | The -p: number command specifies the port number on
which the server will check for client connections.

The port number is a parameter used in TCP/IP to
distinguish between different services on a single
server. The default for the ServeRAID utilities is port
number 1087. You can change the port number on the
command line if another service on the system is using
1087. |
| -d | The -d command disables logging of messages to the display. |
| -f | The -f command specifies to log messages to the default file, IPSADM.LOG |
| -f:filename | The -f:filename command specifies the name of a file in which to log messages.

Messages can be logged to the screen or to a text file
on the system. The default setting logs messages to
the standard output (usually the display), but you can
disable this by using the -d parameter. The -f |
parameter enables logging messages to a file. Messages consist of startup information, connecting and disconnecting clients, and error messages.

-\texttt{s:filename} The -s:filename command specifies the name of the file that contains security information. For more information about server security, see “Server Security File.”

\textit{Server Security File}

Security information is maintained in an optional text file on the server system. The file stores unencrypted user names and unencrypted passwords; therefore, the file must be kept in a secure directory.

When user names and passwords are entered on the Administration and Monitoring utility program (the client), they are encrypted for delivery to the server. The server decrypts the user names and passwords to verify authorized access to the ServeRAID II controller. If the verification is successful, the ServeRAID II controller accepts commands from the client. If no security file is present in the default directory or the directory specified by the -s parameter, the ServeRAID II controller disables security and accepts commands from any client connection.

The security file contains one user name and password combination per line. The user name and password strings are separated by a colon (\texttt{:}), and each string can have a maximum of eight characters.

\textit{Server Utility Name Resolution}

The server utility program relies on name resolution to determine the host name from the client that is trying to connect. When a client is trying to access a remote server, the server tries to look up the name of the connecting client. The method used to look up the name is determined by the configuration of the server. Some possible methods for this are Domain Name Servers (DNS) or HOSTS files. With certain configurations, some timing delays might occur due to misconfiguration or inability to access the DNS. If problems occur, check your network configuration.
Installing the Administration and Monitoring Utility Program

You can install the Administration and Monitoring utility program in one of two ways:

- Using ServerGuide (see “Installing the Administration and Monitoring Utility Program Using ServerGuide”)
- Using diskettes (see “Installing the Administration and Monitoring Utility Programs Using Diskettes”)

Note: If you are installing the OS/2, Novell NetWare/IntraNetware, or SCO OpenServer versions of the Administration and Monitoring program, you must use diskettes. Go to “Installing the Administration and Monitoring Utility Programs Using Diskettes” for instructions.

Installing the Administration and Monitoring Utility Program Using ServerGuide

You can install the Administration and Monitoring utility program using the CoPilot feature of ServerGuide. Refer to your ServerGuide package for more information.

Once you have installed the Administration and Monitoring utility program, go to “Using the Administration and Monitoring Utility Program” on page 117 for information on how to use it.

Installing the Administration and Monitoring Utility Programs Using Diskettes

Note: You must first make the ServeRAID diskettes using the Diskette Factory feature of ServerGuide. Refer to your ServerGuide package for instructions. Also, if you are using OS/2, Novell NetWare/IntraNetware, or SCO OpenServer, you must use the Administration and Monitoring utility program in the client/server mode.
To install the Administration and Monitoring utility program using diskettes:

1. Ensure that your system is turned on and Windows NT or Windows 95 is installed. Refer to the documentation that comes with your operating system for installation instructions.

2. Insert the Administration and Monitoring Utility Program Diskette that you created into the diskette drive.

3. At the Run prompt, type:

a:setup

4. Press Enter; then, follow the instructions that appear on the screen.

For instructions on how to use the Administration and Monitoring utility program, see “Using the Administration and Monitoring Utility Program.”

Using the Administration and Monitoring Utility Program

You can use the Administration and Monitoring utility program to monitor your ServeRAID controllers, view the ServeRAID configuration and associated devices, rebuild an array, reassign a drive to replace a defunct drive, rebuild a logical drive, create a logical drive, create an array, delete an array, dynamically increase the logical drive size, change RAID levels, and much more.

To start the Administration and Monitoring utility program:

- Double-click on the IBM ServeRAID Administration icon.

 or

- Select IBM ServeRAID Administration from the start menu.

 The Administration and Monitoring utility program starts in stand-alone mode.
The following illustration is an example of the screen that appears.

Descriptions of the labeled areas are as follows:

1. **Title Bar**
 Displays the title of the application, along with the minimize icon, the maximize icon, and the close icon.

2. **Menu Bar**
 Displays the pull-down menus for all supported functions.

3. **Tool Bar**
 Displays the icons for the commonly used functions.

4. **Device Area**
 Displays information for each device connected to the physical channel of the ServeRAID controller. This includes the device states and the array identifiers, if applicable.

5. **Status Bar**
 Displays help for the area where the cursor is currently pointing. The date and time are also displayed.
6. Status Window Displays messages regarding the operational status of each ServeRAID controller.

7. Logical Drive Area Displays the number of logical drives that you created and the status of each logical drive.

8. Adapter Area Displays the number of ServeRAID controllers installed in the server and the status of each ServeRAID controller.

Options Pull-Down Menu
This section provides information about the following three choices available from the Options pull-down menu on the main screen of the Administration and Monitoring utility:

- Network Settings
- General Options
- Alert Options

Network Settings: If you want to monitor ServeRAID controllers across a network, you must switch to the client/server mode.

You can use the Network Settings dialog box to select and connect to servers in your network that have an IBM ServeRAID controller installed.

To select and connect to a server:

1. Click on the icon on the tool bar or select Network Settings from the Options pull-down menu.
A screen similar to the following appears.

2. Select the **Client/Server** radio button.

3. If security is enabled on the server to which you are connecting, type in your **User Name** and **Password** as defined by the security file on the server to which you are connecting. (See “Server Security File” on page 115 for information about the security file).

4. Type in either the **Hostname** or the TCP/IP **Address** of the system, or select them from the pull-down list.

 Note: If your server was started on any port other than the default (1087), type in a colon and the correct port number for your configuration (for example: ServeRAID:1088) after the Hostname or TCP/IP Address that you just entered.

5. Click on **Connect** to initiate a connection with the remote system.

General Options: You can use the General Options screen to enable, disable, or reset the alarm; or to set the polling options.
When you select General Options from the Options pull-down menu, a screen similar to the following appears.

![General Options Screen]

Enabling, Disabling, or Resetting the Alarm: The alarm alerts you if any of the following conditions occur:

- A DDD hard disk drive has been detected
- A Predictive Failure Analysis (PFA) event has occurred
- A ServeRAID controller is not responding

To enable or disable the alarm, click on the box for **Disable Alarm** on the General Options screen. Placing a check in the box disables the alarm; removing the check enables the alarm.

To reset the alarm, click on the ![Stop Icon] icon or click on **Reset Alarm** on the General Options menu. Resetting the alarm turns off the alarm for the current failure. It does not disable the feature.

Polling Options: You can use the General Options screen to define how often the ServeRAID II controller will poll, or check your server for any changes that might have occurred in the server (such as a rebuild or a drive entering the defunct (DDD) state). You can set a time interval of from five to 60 seconds. The default time interval setting is five seconds.
The following events are polled for:

- Rebuild started
- Rebuild completed
- Synchronization started
- Synchronization completed
- Migration started
- Migration completed
- PFA event detected
- Dead drive detected
- ServeRAID controller not responding to commands

Netfinity Alert Options: Netfinity alerts allow system administrators who are using the Netfinity Manager to configure the ServeRAID Administration and Monitoring utility program, to notify the Netfinity Alert Manager of various activities occurring on the server.

To configure the settings for the Netfinity alerts:

1. Open the Options pull-down menu.
2. Click on Alert Options.
3. Click on **Netfinity Alerts**.

A screen similar to the following appears.

4. To enable all of the Netfinity alerts, click on the check box next to **Enable Netfinity Alerts**.

5. To disable any of the Netfinity alerts:
 a. Verify that there is a check in the check box next to **Enable Netfinity Alerts**.
 b. Click on the check box next to the specific alert or alerts that you want to disable.

6. To test the Netfinity alerts, click on the **Send Test Alert** button. This will send a Netfinity alert and test message to the Netfinity Alert Manager.
If Netfinity alerts are enabled, the ServeRAID II controller relays three types of messages to the Netfinity Alert Manager:

- **Information messages**
 - Rebuild started
 - Rebuild completed
 - Synchronization started
 - Synchronization completed
 - Migration started
 - Migration completed
- **Warning messages**
 - PFA event detected
- **Critical messages**
 - Dead drive detected
 - ServeRAID controller not responding to commands

By knowing what these types of messages are, the system administrator can then configure Netfinity Manager with instructions for monitoring the server configuration and specifying the appropriate action to take if an alert is issued. For example, the system administrator can program Netfinity Manager to dial out through a modem to a specified phone number if a defunct drive is detected on any server across the network.
Using the ServeRAID Administration Functions
This section describes how to administer your ServeRAID controller using the following functions:

- “Array Administration”
- “Logical Drive Administration” on page 128
- “Logical Drive Migration Administration” on page 134
- “Physical Device Administration” on page 139
- “ServeRAID Controller Administration” on page 143

Array Administration
This section contains instructions for creating a disk array and deleting a disk array using the ServeRAID Administration and Monitoring utility program.

Creating Disk Arrays:

Disk arrays provide access to hard disk drives in a logical manner. Hard disk drives are grouped in a disk array, and divided into logical drives for access by the operating system.

To create a disk array:

1. Click on the icon on the tool bar or select Manage Disk Arrays from the Advanced pull-down menu; then, select Create Disk Array.

A screen similar to the following appears.

<table>
<thead>
<tr>
<th>Select Ready Drives</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select 1 or more RDY (Ready) drives that will be used to create the new array</td>
<td></td>
</tr>
<tr>
<td>Cancel</td>
<td>OK</td>
</tr>
</tbody>
</table>
2. Select one or more Ready (RDY) drives for the new disk array.
 To select a RDY drive, click on the desired RDY button from the device area. A disk array identifier appears beside each RDY drive added to the disk array.

 If you change your mind about a selected drive, select the button again to remove the selected drive from the disk array.

3. Click on **OK** to define a logical drive for the new array.
 A screen similar to the following appears.

 ![Create Logical Drive Screen](image)

4. Select the RAID level that you want to assign to the logical drive from the pull-down list.
 The RAID levels available depend on the number of hard disk drives that you select for the disk array.

 - If you have one hard disk drive, the logical drive can be only RAID level 0.
 - If you have two or more hard disk drives, the logical drive can be RAID level 0 or 1.
 - If you have three or more hard disk drives, the logical drive can be RAID level 0, 1, or 5.

5. Type the size, in megabytes, that you want to assign to the logical drive in the **Requested Space** entry field.
Notes:

a. The Requested Space default value is calculated as the maximum logical drive size available for the RAID level assigned.

b. The Requested Space must be between 2 MB and the maximum available.

c. The actual logical drive size that appears might be slightly different from what you type in the **Space Requested** field.

The size of a logical drive is determined by the RAID level and the number of hard disk drives. For example, a disk array consisting of three, 1 GB hard disk drives with a requested RAID level 0 logical drive of 1000 MB will actually contain only 999 MB because the data is striped across all three drives, with 333 MB on each drive.

6. Click on **OK** to create the disk array.

7. You **must** initialize all new logical drives before storing data in them. See “Initializing Logical Drives” on page 130.

 Note: All new RAID level 5 logical drives are automatically synchronized when you initialize them.

Deleting Disk Arrays:

Deleting a disk array deletes all logical drives that are defined in that array. All data and programs in the disk array are lost during this procedure.

Note: For some operating systems, deleting a disk array and its associated logical drives will change the drive letters that are assigned to the remaining drives when you restart the system.

Attention: Before proceeding, ensure that you have backed up any data and programs that you want to save.
To delete a disk array:

1. Click on the icon on the tool bar or select Manage Disk Arrays from the Advanced pull-down menu; then, select Delete Disk Array.

A screen similar to the following appears.

![Delete Disk Array screen]

2. Select the disk array ID that you want to delete from the pull-down list.

3. Click on OK to delete the disk array.

Logical Drive Administration
This section contains instructions for creating a logical drive, initializing and synchronizing a logical drive, and accessing blocked logical drives using the ServeRAID Administration and Monitoring utility program.

Creating Logical Drives:

You must create at least one logical drive for each disk array. You can create up to eight logical drives.

If you plan to use the logical-drive migration (LDM) feature, do not create more than seven logical drives. The LDM procedure requires one free logical drive to perform the migration. See “Logical Drive Migration Administration” on page 134 for more information.
To create a logical drive:

1. Click on the icon on the tool bar or select **Manage Logical Drive** from the **Advanced** pull-down menu; then, select **Create Logical Drive**.

A screen similar to the following appears.

<table>
<thead>
<tr>
<th>Array ID</th>
<th>Free Space (MB)</th>
<th>RAID Level</th>
<th>Requested Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1762</td>
<td>0</td>
<td>881</td>
</tr>
<tr>
<td>A</td>
<td>1762</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1906</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

2. Select the disk array ID for which you want to create a logical drive.

3. Select the RAID level that you want to assign to the logical drive from the pull-down list.

The RAID levels available depend on the number of hard disk drives that you select for the disk array.

Notes:

a. If you have one hard disk drive, the logical drive can be only RAID level 0.

b. If you have two or more hard disk drives, the logical drive can be RAID level 0 or 1.

c. If you have three or more hard disk drives, the logical drive can be RAID level 0, 1, or 5.

d. If you plan to use the Change RAID Level feature of logical drive migration, you must assign the same RAID level to all of the logical drives in the array. See “Changing RAID Levels” on page 135 for more information.
4. Type the size, in megabytes, that you want to assign to the logical drive in the **Requested Space** entry field.

Notes:

a. The Requested Space default value is calculated as the maximum logical drive size available for the RAID level assigned.

b. The Requested Space must be between 2 MB and the maximum available.

c. The actual logical drive size that appears might be slightly different from what you type in the Requested Space field.

The size of a logical drive is determined by the RAID level and the number of hard disk drives. For example, a disk array consisting of three, 1 GB hard disk drives with a requested RAID level 0 drive of 1000 MB will actually contain only 999 MB because the data is striped across all three drives, with 333 MB on each drive.

5. Click on **OK** to create the logical drive.

6. You **must** initialize all new logical drives before storing data in them. Continue with “Initializing Logical Drives.”

Note: All new RAID level 5 logical drives are automatically synchronized when you initialize them.

Initializing Logical Drives: Initializing a logical drive erases the first 1024 sectors on the drive and prevents access to any data previously stored on that drive. You must initialize all new logical drives before storing data in them.

To initialize a logical drive:

1. Select the logical drive that you want to initialize from the Main Screen of the Administration and Monitoring utility program.
A screen similar to the following appears.

<table>
<thead>
<tr>
<th>Logical Drive Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical Drive Number 1</td>
</tr>
<tr>
<td>Blocked</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Part of Array</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>Part of Merge Group</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Date Created</td>
</tr>
<tr>
<td>05/19/97</td>
</tr>
<tr>
<td>State</td>
</tr>
<tr>
<td>OKY</td>
</tr>
<tr>
<td>Size</td>
</tr>
<tr>
<td>100MB</td>
</tr>
<tr>
<td>RAID Level</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>Write Policy</td>
</tr>
<tr>
<td>WT</td>
</tr>
<tr>
<td>Read Ahead</td>
</tr>
<tr>
<td>On</td>
</tr>
<tr>
<td>Strip Unit Size</td>
</tr>
<tr>
<td>8 KB</td>
</tr>
<tr>
<td>Number of Chunks</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Stripe Order</td>
</tr>
<tr>
<td>1,1 1,2 1,4</td>
</tr>
</tbody>
</table>

2. Click on **Initialize** to initialize the drive.

Note: RAID level 5 logical drives are automatically synchronized when you initialize them. You do not need to synchronize RAID level 0 or 1 logical drives before storing data.

Synchronizing Logical Drives: The purpose of synchronizing logical drives is to compute and write the parity data on the selected RAID level 5 logical drives. Synchronizing a RAID level 1 logical drive copies the data from the primary disk to the mirrored disk.

RAID level 5 logical drives are automatically synchronized when you initialize them. You do not need to synchronize RAID level 0 or 1 logical drives before storing data. Also, the *data scrubbing* feature of the ServeRAID II controller continuously reads all sections of RAID level 1 and RAID level 5 logical drives “in the background” while your system is running. If a defective sector is found, it is automatically repaired. As a result, you no longer have to synchronize RAID level 1 and RAID level 5 logical drives on a weekly basis.

Synchronizing a logical drive verifies that the data redundancy for the logical drive is correct. For RAID level 5, the parity bit is computed and then written to the parity drive.
To synchronize a logical drive:

1. Select the logical drive that you want to synchronize from the Main Screen of the Administration and Monitoring utility program.

 A screen similar to the following appears.

<table>
<thead>
<tr>
<th>Logical Drive Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical Drive Number 1</td>
</tr>
<tr>
<td>Blocked</td>
</tr>
<tr>
<td>Part of Array A</td>
</tr>
<tr>
<td>Part of Merge Group 1</td>
</tr>
<tr>
<td>Date Created 05/19/97</td>
</tr>
<tr>
<td>State OKY</td>
</tr>
<tr>
<td>Size 100MB</td>
</tr>
<tr>
<td>RAID Level 0</td>
</tr>
<tr>
<td>Write Policy WT</td>
</tr>
<tr>
<td>Read Ahead On</td>
</tr>
<tr>
<td>Strip Unit Size 8 KB</td>
</tr>
<tr>
<td>Number of Chunks 3</td>
</tr>
<tr>
<td>Stripe Order 1.1 1.2 1.4</td>
</tr>
</tbody>
</table>

 Unblock Initialize Synchronize OK

2. Click on Synchronize to synchronize the drive.

 The synchronization process begins and reports progress information on the screen.

<table>
<thead>
<tr>
<th>Adapter 1 Synchronization Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Drv 0</td>
</tr>
<tr>
<td>Log Drv 1</td>
</tr>
<tr>
<td>Log Drv 2</td>
</tr>
<tr>
<td>Log Drv 3</td>
</tr>
<tr>
<td>Log Drv 4</td>
</tr>
<tr>
<td>Log Drv 5</td>
</tr>
<tr>
<td>Log Drv 6</td>
</tr>
<tr>
<td>Log Drv 7</td>
</tr>
</tbody>
</table>

 Note: Only one synchronization command can be active at a time.
Unblocking Logical Drives: Whenever the ServeRAID II controller performs a rebuild operation on an array, the data stored in any RAID level 1 and RAID level 5 logical drives in the array is reconstructed. However, the data stored in RAID level 0 logical drives in that array cannot be reconstructed. The data in the RAID level 0 logical drives is blocked when the ServeRAID II controller detects that the array is valid, but the data might be damaged.

After the rebuild process completes, you can unblock the RAID level 0 logical drives; this redefines their state as OKY and allows access to them once again. But remember, the RAID level 0 logical drive might contain damaged data. You must re-create, install, or restore the data for the RAID level 0 logical drive from the most recent backup disk or tape.

To unblock a blocked drive:

1. Select the logical drive that is blocked from the Main Menu of the Administration and Monitoring utility program.

 A screen similar to the following appears.

 ![Logical Drive Information Screen]

 2. Click on **Unblock** to unblock the drive.

 3. You *must* initialize all new logical drives before storing data in them. See with “Initializing Logical Drives” on page 130.

 4. Restore the data to the drive from your most recent backup disk or tape.
Logical Drive Migration Administration

The logical drive migration (LDM) feature dynamically changes the current logical drive structure. You can use this feature to change the RAID level, increase the free space in a disk array, or change the size of a logical drive.

To use the LDM feature, you must have two logical drives available: one free (FRE) logical drive and one source logical drive that is in the okay (OKY) state. During the LDM procedure, the ServeRAID II controller changes the state of the FRE logical drive to SYS; then, temporarily uses the SYS drive to perform the migration. When the migration procedure completes, the ServeRAID II controller changes the state of the SYS drive back to FRE.
Changing RAID Levels:

You can change (migrate) the RAID levels of currently defined logical drives. Depending upon the current RAID level, you might need to add or remove a hard disk drive before you can change the RAID level.

To use the Change RAID Level feature, all of the logical drives within the array must be the same RAID level.

The ServeRAID II controller supports changing RAID levels as follows:

- Change two RAID level 0 logical drives to RAID level 5 by adding one hard disk drive
- Change two RAID level 1 logical drives to RAID level 5 by adding one hard disk drive
- Change from RAID level 5 to RAID level 0 by removing one hard disk drive

To change the RAID level:

1. Click on the icon on the tool bar or select Manage Disk Arrays from the Advanced pull-down menu; then, select Logical Drive Migration.

A screen similar to the following appears.

2. Select Change RAID Level; then, click on OK.
3. Select a migrating option from the pull-down list.

 Note: The affected logical drives appear based on the migrating option selected.

4. Click on **OK** to proceed; then, click on **OK** to verify the operation.

5. Select a Ready (RDY) drive to add to the array if you are migrating to RAID level 5.

 Note: If you are migrating to RAID level 0, the last drive defined in the array becomes RDY.

Authenticating a Physical Drive:

You can expand currently defined arrays to new sizes by adding one to three new hard disk drives.

The ServeRAID II controller supports adding new space to a disk array as follows:

- You can increase the free space in a disk array without adjusting the size of the logical drives. This is useful when you need to add logical drives to your existing disk arrays. Refer to the following illustration.
For example, an existing disk array uses three, 2150 MB hard disk drives that are configured as two RAID level 5 logical drives (one 500 MB and one 1000 MB) and 2800 MB of free space. If you use the logical-drive migration procedure and add a 2150 MB hard disk drive to increase the amount of free space, the end result will be two RAID level 5 logical drives (one 500 MB and one 1000 MB) and 4950 MB of free space.

- You can increase the size of all the logical drives proportionally in a disk array. This is useful when you want to increase the size of the currently defined logical drives. Refer to the following illustration.

For example, an existing array uses three 2150 MB hard disk drives that are configured as two RAID level 5 logical drives (one 500 MB and one 1000 MB) and 2800 MB of free space. If you use the logical-drive migration procedure and add a 2150 MB hard disk drive to proportionally increase the size of the disk array, the end result will be two RAID level 5 logical drives (one 750 MB and one 1500 MB) and 4200 MB of free space.

To add a physical drive:

1. Click on the icon on the tool bar or select Manage Disk Arrays from the Advanced pull-down menu; then, select Logical Drive Migration.
A screen similar to the following appears.

2. Select **Add Physical Drive(s)**; then, click on **OK**.

 A prompt appears requesting that you select from 1 to 3 Ready (RDY) drives to add to the existing array.

3. Click on the appropriate RDY drives. An X appears beside the selected drive.

4. Click on **OK**.

 A screen similar to the following appears.

5. Select one of the available options for expansion from the pull-down list.

 The screen shows a list of the affected logical drives with their new sizes.

6. Click on **OK**.
Physical Device Administration
This section contains instructions for setting physical device states and rebuilding drives using the ServeRAID Administration and Monitoring utility program.

Setting Physical Device States: Physical devices always appear in one of the following defined states, but you can easily redefine them into another state.

The following table shows the valid device states and valid alternative states.

<table>
<thead>
<tr>
<th>Device States</th>
<th>Alternate States</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMP</td>
<td>RDY SBY</td>
</tr>
<tr>
<td>SBY</td>
<td>RDY EMP HSP SHS</td>
</tr>
<tr>
<td>DHS</td>
<td>EMP HSP SHS</td>
</tr>
<tr>
<td>SHS</td>
<td>HSP DHS</td>
</tr>
<tr>
<td>DDD</td>
<td>ONL RBL</td>
</tr>
<tr>
<td>RDY</td>
<td>EMP HSP SHS SBY</td>
</tr>
<tr>
<td>HSP</td>
<td>RDY SHS DHS</td>
</tr>
<tr>
<td>ONL</td>
<td>DDD</td>
</tr>
<tr>
<td>RBL</td>
<td>DDD ONL</td>
</tr>
</tbody>
</table>
To change the physical device state:

1. Select the device from the Main Screen of the Administration and Monitoring utility program. A screen similar to the following appears.

2. Click on the radio button that indicates the desired state.

 Note: If you set a DDD drive to ONL without performing a Rebuild (RBL) operation and that drive is part of a critical (CRT) logical drive, your server might lose data.

3. Click on Set Device State.

 Rebuilding Drives: When a hard disk drive goes defunct (DDD), a Rebuild operation is required to reconstruct the data for the device in its respective disk array. You can rebuild only RAID level 1 and RAID level 5 logical drives. The data stored in RAID level 0 logical drives cannot be reconstructed; therefore, RAID level 0 logical drives are blocked.

 After the rebuild process completes, you can unblock the RAID level 0 logical drives, which redefines their state as OKY and allows access to them once again. But remember, the RAID level 0 logical drive might contain damaged data. You must re-create, install, or restore the data for the RAID level 0 logical drive from the most recent backup disk or tape. (See “Unblocking Logical Drives” on page 133 for more information.)
To rebuild a drive:

1. Click on the DDD device on the Main Screen of the Administration and Monitoring utility program.

2. Click on **Rebuild Device**.

 A screen similar to the following appears.

 ![Rebuild Physical Drive screen]

 Select OK to make the drive in channel 1 bay 5 the destination of the rebuild, or select another drive for the destination of the build.

3. Select a RDY drive on which to store the reconstructed data, or click on **OK** to use the same bay if you have physically replaced the drive.

 Note: The replacement hard disk drive must be the same size or larger than the failed drive.

4. The rebuild process begins and reports progress information on the screen.

 ![Adapter 1 Rebuild Progress]

Notes:

1. Only one Rebuild operation can take place at a time.
2. The Rebuild operation changes the hard disk drive state from DDD to RBL if the array contains a CRT logical drive. After the Rebuild operation completes, the hard disk drive state changes from RBL to ONL. (When you rebuild to a RDY drive, the DDD drive is removed from the array and the state of the DDD drive is changed to defunct hot-spare (DHS).)

3. If multiple hot-spare (HSP) drives are available, the ServeRAID II controller searches all the bays on each channel for a hot-spare drive of the appropriate size and the first appropriate hot-spare drive found enters the Rebuild (RBL) state.

4. If a hot-spare (HSP) drive is available, a Rebuild operation starts automatically.
ServeRAID Controller Administration
This section provides instructions for copying the drive configuration to the ServeRAID II controller, copying the ServeRAID II controller configuration to the drives, initializing the ServeRAID II controller configuration, and scanning for new drives.

Copying the Drive Configuration to the ServeRAID Controller:

You can copy the configuration information stored on the hard disk drives to the ServeRAID II controller. This procedure is useful when you install drives from other systems.

During the copy procedure, the ServeRAID II controller automatically performs any necessary rearrangement of the configuration; then, the controller writes the new configuration information back to the reserved area on the configured hard disk drives.

To copy the drive configuration information to the ServeRAID II controller:

1. Click on the icon on the tool bar or select Adapter Configuration from the Advanced pull-down menu.

A screen similar to the following appears.

2. Select Copy Drive Configuration to Adapter; then, click on OK.
Copying the ServeRAID Controller Configuration to the Drives:

You can copy the configuration information stored in the ServeRAID II controller to all configured hard disk drives.

To copy the ServeRAID II controller configuration information to the drives:

1. Click on the icon on the tool bar or select Adapter Configuration from the Advanced pull-down menu.

 A screen similar to the following appears.

 ![Adapter Configuration Options]

 2. Select Copy Adapter Configuration to Drives; then, click on OK.

Initializing the ServeRAID II Controller:

This procedure initializes the ServeRAID II controller configuration by clearing all the logical drives and resetting all functional hard disk drives to RDY. This procedure is useful when you want to start over and create a new configuration.

Attention:
All the data and programs in the array are lost during this procedure.
To initialize the ServeRAID II controller:

1. Click on the icon on the tool bar or select **Adapter Configuration** from the **Advanced** pull-down menu.

 A screen similar to the following appears.

 ![Adapter Configuration Screen](image)

 - **Adapter Configuration Options**
 - Copy Drive Configuration To Adapter
 - Copy Adapter Configuration To Drives
 - Initialize Adapter Configuration

 2. Select **Initialize Adapter Configuration**; then, click on **OK**.

Scanning for New Drives: This option enables you to locate new drives attached to the ServeRAID II controller.

To scan for new drives:

Click on the icon on the tool bar or select **Scan For New Drives** from the **Advanced** pull-down menu.
Using the ServeRAID Monitoring Functions
This section contains instructions for using the ServeRAID Administration and Monitoring utility program to monitor the ServeRAID II controller status information, event logs, logical drive information, and physical device information.

Monitoring Status Information
You can monitor the ServeRAID II controller status by clicking on the active ServeRAID controller button on the Main Screen of the Administration and Monitoring utility program. The currently active ServeRAID controller button is indicated by a green or red light. (Green indicates an active controller; red indicates that the controller is not responding.)

If there is more than one ServeRAID II controller in the system, click on the appropriate button to make it active.

A screen similar to the following appears.

![Adapter Information Screen]

Descriptions of the information that appears on the screen are as follows.

Note: You might have to scroll down, using the scroll bar, to see all of the items that appear on this screen.
<table>
<thead>
<tr>
<th>Adapter Number</th>
<th>The active ServeRAID II controller (1 to 8).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Logical Drives</td>
<td>The number of defined logical drives (0 to 8).</td>
</tr>
</tbody>
</table>
| **Unattended Mode** | Off - The user chooses the recovery method when there is a ServeRAID II controller startup error.
On - The ServeRAID II controller chooses the recovery method when there is a startup error. |
| **Code Block Version** | The current version level of the firmware microcode for the ServeRAID II controller. |
| **Boot Block Version** | The current version level of the microcode loaded in the boot block for the ServeRAID II controller. |
| **Concurrent Commands** | The maximum numbers of concurrent commands supported. |
| **Maximum Devices Supported** | The maximum number of devices supported. |
| **Flash Program Count** | The number of times that the ServeRAID II controller microcode (Flash EEPROM) has been flashed or updated. |
| **Defunct Disk Count** | The current number of defunct hard disk drives. |
| **Rebuild Rate** | The setting for the rebuild rate can be low, medium, or high priority. (The default setting is high.) |
Hot-Swap Rebuild

If hot-swap rebuild is set to enable, the ServeRAID II controller will rebuild a defunct drive automatically when all of the following conditions exist:

- The hot-swap rebuild parameter is set to Enable
- The defunct drive is part of a RAID level 1 or RAID level 5 logical drive
- The capacity of the replacement drive is equal to or greater than the capacity of the defunct drive
- No rebuild, synchronization, or RAID level change operation is in progress

When you replace the drive and these requirements are met, the ServeRAID II controller automatically initiates a rebuild of the drive without user intervention.

Offline Logical Drive Count

The current number of offline logical drives.

Configuration Update Count

The number of times that the ServeRAID II controller configuration information has been updated.

Monitoring Event Logs

The ServeRAID II controller stores, in the event logs, information concerning various unexpected events. There are three types of event logs: a device event log, a hard event log, and a soft event log.

To view the event logs:

1. Click on the adapter (or controller) on the Main Screen of the Administration and Monitoring utility program.
A screen similar to the following appears.

2. Select the appropriate button at the bottom of the screen for the event log you want to view.
Device Event Log: The Device Event Log contains event counters for each attached physical device.

Descriptions of the events logged in the Device Event Log are as follows:

- **Parity Event**
 The ServeRAID II controller detects parity events while transferring data on the SCSI bus. A large number of parity events might indicate a problem with the SCSI cable, connectors, or terminators attached to the devices.

- **Soft Event**
 SCSI devices detect these events and reports them to the ServeRAID II controller through Check Condition status.

- **Predictive Failure Analysis (PFA)**
 A device has signaled the ServeRAID II controller that it might fail in the near future.

- **Hard Event**
 The ServeRAID II controller detects these events. Most likely, these events are caused by the ServeRAID II controller.
• Misc Event

The ServeRAID II controller detects these events. Most likely, these events are caused by the SCSI device, such as selection timeout, unexpected bus free, or SCSI phase event.

Note: Under normal operating conditions, the event logs will contain entries that are not errors.

Hard Event Log: You can view the Hard Event Log, which is used by your IBM service technician.
Soft Event Log: You can view the Soft Event Log, which is used by your IBM service technician.

```
06/27/97 14:10:26
ServeRAID Soft Event Log for Adapter 1
195 Error Log Entries follow:
```

```
0000: 10F15D00 10200002 168A3063 10F15D00
0004: 10010002 178410AC 012B000E 01014000
0008: 0020B838 012B000E 01004000 00213AB7
0012: 01000000 01014000 00215C34 0101A00E
0016: 01004000 0021DBB3 0132000E 01014000
0020: 0021FC33 1002001A 100000F0 0044210F
0024: 10F15D00 10110102 0093861B 10F15D00
0028: 10110102 00938A7E 012B000E 01014000
002C: 005E9DAE 012B000E 01004000 005E9DAE
0030: 10F15D00 10280102 1F78DAC3 10F15D00
0034: 10280102 1F78E00C 10F15D00 103B0002
0038: 22193F15 10F31100 10300102 274E7B75
```

Monitoring the Logical Drive Information
You can monitor the logical drive information by clicking on the desired logical drive button on the Main Screen of the Administration and Monitoring utility program.

When you click on the logical drive button, a screen similar to the following appears.
Descriptions of the information that appears on this screen are as follows:

Logical Drive Number
The number of the logical drive.

Blocked
No - The logical drive is accessible.
Yes - The logical drive is not accessible.

Part of Array
The identifier of the logical drive's disk array (A, B, C, D, E, F, G, H).

Part of Merge Group
The identifier of the logical drive's merge group (1 through 254).

Date Created
The date that the logical drive was created.

State
The current drive state (see “Logical Drive States” on page 45 for more information).

Size
The size in megabytes.

RAID Level
RAID level (0, 1, or 5).

Write Policy
WT - Write-through.
WB - Write-back.

Read Ahead
Off - Disk Read-Ahead is inactive.
On - Disk Read-Ahead is active.

Stripe Unit Size
The size of each stripe unit per hard disk (8, 16, 32, 64).

Number of Chunks
The number of hard disk drives that make up the logical drive.

Stripe Order
The channel and bay number of the physical drives that make up the logical drive.

Monitoring the Physical Device Information

You can monitor the physical device information by clicking on the desired device button on the Main Screen of the Administration and Monitoring utility program.

When you click on the device button, a screen similar to the following appears.

![Device Management Screen](image)

Descriptions of the information that appears on this screen are as follows:

- **Channel**: The channel to which the device is connected.
- **Bay**: The bay number of the device on a channel (1 to 16).
- **SCSI ID**: The SCSI ID (0 to 15).
- **Vendor**: The drive manufacturer.
- **Serial Number**: The drive manufacturer's identifier.
- **Size**: The size of the drive in megabytes.
<table>
<thead>
<tr>
<th>State</th>
<th>The current drive state (see “Physical Device States” on page 44 and “Logical Drive States” on page 45 for more information.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft Event</td>
<td>The number of soft events reported from the device event log.</td>
</tr>
<tr>
<td>Hard Event</td>
<td>The number of hard events reported from the device event log.</td>
</tr>
<tr>
<td>Misc Event</td>
<td>The number of miscellaneous events reported from the device event log.</td>
</tr>
<tr>
<td>Parity Event</td>
<td>The number of parity events reported from the device event log.</td>
</tr>
</tbody>
</table>
| **PFA** | **Yes** - Device indicates predictive failure analysis event.
No - Device does not indicate predictive failure analysis event. |
This chapter provides information about the Configuration/Setup utility programs that come with your server.

The Configuration/Setup utility programs are part of the basic input/output system (BIOS) that comes with your server. Using these programs, you can set the system date and time, define input and output device parameters, and define system security.

The ROM-based diagnostic program that comes with the server provides diagnostic support for the system board, disk drives, and other system components.

This chapter contains:
Configuration Overview ... 158
The Configuration/Setup Utility Program 160
Using the Configuration/Setup Utility Main Menu 161
 System Summary .. 162
 System Information ... 162
 Devices and I/O Ports ... 163
 Date and Time .. 164
 System Security .. 165
 Start Options ... 170
 Advanced Setup ... 171
 Plug and Play .. 172
 Error Logs .. 173
 Save Settings ... 174
 Restore Settings ... 174
 Load Default Settings .. 174
 Exit Setup .. 174
Configuring Options ... 174
Configuring ISA and PCI Adapters 175
Resolving Configuration Conflicts 176
 Resolving Hardware Configuration Conflicts 177
 Resolving Software Configuration Conflicts 177
Configuring the Ethernet Controller 178
Failover for Redundant Ethernet 179
 Special Considerations When Combining Failover and
 Hot-Plug Functions ... 180
 Configuring for Failover 180
Configuration Overview

You play a key role in how your server allocates resources to organize and interconnect hardware devices and software programs. This allocation process is referred to as configuration. The steps required to configure your server depend on the number and types of devices and programs that you install.

Your server supports several types of adapters and SCSI devices. Because of this flexibility, you can choose from among many adapters and devices that comply with any of the following standards:

- Peripheral Component Interconnect (PCI)
- Industry Standard Architecture (ISA)
- Small Computer System Interface (SCSI)

In general, the greater the number and variety of hardware devices and software programs that you install in your server, the more you will have to interact with your server and your devices to correctly configure your system.

Your server comes with the following hardware configuration utility programs:

- Configuration/Setup Utility

 With the built-in Configuration/Setup Utility program, you can configure system board functions, such as serial and parallel port assignments; change interrupt request (IRQ) settings; and change the startup sequence for drives that you install. You also can use this utility program to set passwords for starting up the server and accessing the Configuration/Setup Utility program.
ServeRAID

You can use ServeRAID programs to define and maintain your disk arrays. You can also use these programs to configure SCSI devices (such as hot-swap drives) that are attached to the ServeRAID controller on the system board. See Chapter 3, “Configuring and Monitoring Your Disk Arrays” for complete instructions.

Before installing a new device or program, read the documentation that comes with it. Reading the instructions helps you to determine the steps required for installation and configuration. The following actions are typically, but not always, required to configure your server.

1. Run the Configuration/Setup Utility program and record the current configuration settings.

2. Set jumpers or switches on the server system board.
 See “Changing Jumper Positions” on page 415 and “System Board Jumpers” on page 420.

3. Set jumpers or switches on the device.
 See the device installation instructions.

4. Install the device in the server.
 See Chapter 6, “Installing Options.”

 If you install an ISA adapter that is not a Plug and Play device, select the Plug and Play choice on the main menu of the Configuration/Setup Utility program to assign the ISA legacy resources. See “Plug and Play” on page 172 for more information.

5. Install software programs.
 See the installation instructions that come with the software.

6. Resolve configuration conflicts.
 See “Resolving Configuration Conflicts” on page 176.
The Configuration/Setup Utility Program

For most configurations, the server will operate using the default system settings. You need to change the settings only to resolve configuration conflicts or to enable or change device functions (for example, defining diskette types, and so on).

When you want or need to change the default settings, the Configuration/Setup Utility program provides a convenient way to display and change the settings.

After you run and exit from the Configuration/Setup Utility program, configuration information is stored in nonvolatile random-access memory (NVRAM). While the server is off, the configuration information remains available for the next system startup.

Always run the Configuration/Setup Utility program if you add, remove, or relocate any hardware option, or if you receive an error message instructing you to do so. Review this chapter and the information that comes with the option before making changes. Also, record the current settings (see Chapter 10, “Server Records and Specifications”) before making any changes.

To start the Configuration/Setup Utility program:

1. Turn on the server and watch the screen.

2. When the message Press F1 for Configuration/Setup appears, press F1.

 Note: If you enter the power-on password and an administrator (supervisor-level) password is also set, a limited version of the menu appears. To see the full menu, you must restart the server and enter the administrator password when you are prompted to enter a password. See “System Security” on page 165 for additional information.

The Configuration/Setup Utility main menu appears. For information about the menu, see “Using the Configuration/Setup Utility Main Menu” on page 161.
Using the Configuration/Setup Utility Main Menu

From the Configuration/Setup Utility main menu, you can select settings that you want to change. The Configuration/Setup Utility main menu is similar to the following screen:

```
 IBM SurePath Setup - © IBM Corporation

Configuration/Setup Utility
  • System Summary
  • System Information
  • Devices and I/O Ports
  • Date and Time
  • System Security
  • Start Options
  • Advanced Setup
  • Plug and Play
  • Error Logs

Save Settings
Restore Settings
Load Default Settings

Exit Setup

<F1> Help     <↑> <↓> Move
<Esc> Exit     <Enter> Select
```

Pressing F1 displays Help information for a selected menu item.

Note: The choices on some menus might differ slightly, depending on the BIOS version that comes with your server.

To change configuration settings:

1. Use the Up Arrow (↑) or Down Arrow (↓) key to highlight the menu item for the configuration setting that you want to change; then, press Enter.

2. Use the Up Arrow (↑) or Down Arrow (↓) key to choose the appropriate setting for the selected menu item; then, press Enter.
3. Repeat step 1 through step 2 for each setting that you want to change. Press Esc to return to the Configuration/Setup Utility main menu.

4. After making changes, you can select:
 - **Save Settings** to save the selected changes.
 - **Restore Settings** to delete the changes and restore the previous settings.
 - **Load Default Settings** to cancel the changes and restore the factory settings.

5. To exit from the Configuration/Setup Utility main menu, select **Exit Setup**. If you made any changes and did not save them with the **Save Settings** choice, the system prompts you to save or discard the changes when you attempt to exit from the Configuration/Setup Utility main menu.

System Summary
Select this choice to display configuration information, including the type and speed of the microprocessor and amount of memory.

Changes that you make to configuration settings appear on this summary screen. You cannot edit the fields.

The **System Summary** choice appears on the full Configuration/Setup Utility menu and on the limited Configuration/Setup Utility menu.

System Information
Select this choice to display information about your Netfinity 5500, and to view the IRQ settings for the RAID and Ethernet controllers on the system board, and other PCI adapters that you purchase and install.

Changes that you make on other menus might appear on this summary screen. You cannot edit any fields.

The System Information choice appears only on the full Configuration/Setup Utility menu.
Product Data
Select this choice to view system information, such as the machine type and model, the system serial number, the system board identifier, and the revision level or issue date of the flash electronically erasable programmable ROM (EEPROM) for the system management processor, diagnostics, and BIOS.

System Card Data
Select this choice to view information for the system board and processor board.

PCI Routing
Select this choice to view the IRQ settings for PCI adapters and for the Ethernet, SCSI, and other controllers on the system board. See “PCI Bus Control” on page 171 for information about changing the PCI IRQ settings.

Devices and I/O Ports
Software recognizes ports through their port assignments. Each port must have a unique port assignment. The Configuration/Setup Utility program normally handles this, but you might have special hardware or software that requires you to change these assignments.

Note: Serial port A can be shared by the system management processor and operating system. Serial port B is used by the operating system only. Management port C is controlled exclusively by the system management processor, cannot be used by the operating system, and cannot be configured using the Configuration/Setup utility program.

Select the Devices and I/O Ports choice to view or change the assignments for devices and input/output ports.

You can add serial ports by installing a serial adapter in an expansion slot. See the documentation that comes with the serial adapter for information about port assignments.

You can configure the parallel port as bidirectional; that is, so that data can be both read from and written to a device. In bidirectional
Using the Configuration/Setup Utility Main Menu

mode, the server supports Extended Capabilities Port (ECP) and Enhanced Parallel Port (EPP).

To display or change the assignments for devices, serial ports, or the parallel port:

1. Select Devices and I/O Ports.
2. Select a device or port; use the Left Arrow (←) or Right Arrow (→) key to advance through the settings available.

The Devices and I/O Ports choice appears only on the full Configuration/Setup Utility menu.

Notes:

1. When you configure the parallel port as bidirectional, use an IEEE 1284-compliant cable. The maximum length of the cable must not exceed 3 meters (9.8 feet).
2. The universal serial bus (USB) is configured automatically. For further details about Plug and Play devices, see “Plug and Play” on page 172.
3. If you install a USB keyboard that has a mouse port, the USB keyboard emulates a mouse and you will not be able to disable the mouse setting in the Configuration/Setup Utility.

Date and Time
Select this choice to set the system date and time.

The system time is in a 24-hour format: hour:minute:second.

The system date is in standard format for your country. For example, in the United States, the format is MM/DD/YYYY (Month/Day/Year).

Select Date and Time; then, use the Left Arrow (←) or Right Arrow (→) key to advance through each data field. Type the new information; the system saves the information as you type it.

The Date and Time choice appears only on the full Configuration/Setup Utility menu.
System Security
To control access to the information in your server databases, you can implement two levels of password protection. Implementing these security measures helps you to ensure the integrity of the data and programs that are stored in your server.

Note: The default values for all security-related data fields are given in Table 11 on page 405.

After you set a power-on password, you can enable the unattended-start mode. This locks the keyboard and mouse, but allows the system to start the operating system. The keyboard and mouse remain locked until you enter the correct password.

The **System Security** choice appears only on the full Configuration/Setup menu.

To set, change, or delete a password:

1. Select **System Security**.
2. Select the password that you want to change.
3. Follow the instructions on the screen.

After you set a power-on or administrator password, you must enter the password when you turn on the server. (The passwords do not appear on the screen as you type them.)
Using the Configuration/Setup Utility Main Menu

<table>
<thead>
<tr>
<th>Type of Password</th>
<th>Results</th>
</tr>
</thead>
</table>
| No password set | • No password required to start system.
 | • You can access all choices on the Configuration/Setup Utility main menu. |
| Power-on password only | • You must enter the password to complete the system startup.
 | • You can access all choices on the Configuration/Setup Utility main menu. |
| Administrator password only | • You must enter the password to complete the system startup.
 | • Administrator password provides access to all choices on the Configuration/Setup Utility main menu. |
| Administrator and power-on password | • You can enter either password to complete the system startup.
 | - Administrator password provides access to all choices on the Configuration/Setup Utility main menu. You can set, change, or delete both the administrator and power-on passwords, and allow a power-on password to be changed by the user.
 | - Power-on password provides access to a limited set of choices on the Configuration/Setup Utility main menu. This might include changing or deleting the power-on password.
 | - If you forget the power-on password, and the administrator password has been set, use the administrator password at the power-on password prompt; then, start the Configuration/Setup Utility program and change the power-on password. |
Using the Power-On Password Menu

When a power-on password is set, you must enter a password each time that you start the system.

To set a power-on password:

1. Select **Power-on Password** from the System Security menu; then, press **Enter**.

The Power-on Password menu appears.

2. Type the password in the **Enter Power-on Password** data field.

 You can use any combination of up to seven characters (A–Z, a–z, and 0–9) for your power-on password. Keep a record of your password in a secure place.

3. Move the cursor to the **Enter Power-on Password Again** data field and type the password again.

 Note: A message appears if the two passwords do not match. If this happens, press **Esc** to cancel the request and return to the System Security menu.

4. Select **Change Power-on Password** to save the new password; then, press **Enter**.

When a power-on password is set, POST does not complete until you enter the password. If you forget the power-on password, you can regain access to the server through one of the following methods:

- If an administrator password has been set, enter the administrator password at the power-on prompt. (See “Using the Administrator Password Menu” on page 169 for details.) Start the Configuration/Setup Utility program and change the power-on password as previously described in this section (see steps 1 through 4).

- You can change the position of the Power-On Password Override jumper, as described in “Bypassing an Unknown Power-on Password” on page 421.

- You can remove the battery as described in “Replacing the Battery” on page 387 and then reinstall the battery.
To delete a power-on password:

1. Select Power-on Password from the System Security menu; then, press Enter.
 The Power-on Password menu appears.
2. Select Delete Power-on Password; then, press Enter.
3. A confirmation window appears. Press Enter to delete the power-on password. Press Esc to cancel the request and return to the System Security menu.

To allow the system to start in unattended mode when a power-on password is set:

1. Select Power-on Password from the System Security menu; then, press Enter.
 The Power-on Password screen appears.
2. Select Allow for unattended boot with password. Press the Left Arrow (←) key or Right Arrow (→) key to toggle the entry to On.
Using the Administrator Password Menu
The administrator password (sometimes called a supervisor-level password) controls access to some features of the server, including the Configuration/Setup Utility program.

Important

Attention:
If an administrator password is set and then forgotten, it cannot be overridden or removed. You must replace the system board.

To set an administrator password:
1. Select **Administrator Password** from the System Security menu; then, press Enter.
 The Administrator Password menu appears.
2. Type the password in the **Enter Administrator Password** data field.
 A password can contain any combination of up to seven alphanumeric characters (A–Z, a–z, and 0–9). Keep a record of your password in a secure place.
3. Move the cursor to the **Enter Administrator Password Again** data field and type the password again.
 Note: A message appears if the two passwords do not match. If this happens, press Esc to cancel the request and return to the System Security menu.
4. Select **Change Administrator Password** to save the new password; then, press Enter. The password becomes effective immediately.

To delete an administrator password:
1. Select **Administrator Password** from the System Security menu; then, press Enter.
 The Administrator Password menu appears.
2. Select **Delete Administrator Password**; then, press Enter.
Using the Configuration/Setup Utility Main Menu

3. A confirmation window appears. Press **Enter** to delete the administrator password. Press **Esc** to return to the System Security menu.

To enable a user to change the power-on password:

1. Select **Administrator Password** from the System Security menu; then, press **Enter**.

 The Administrator Password screen appears.

2. Select **Power-on password changeable by user**. Press the Left Arrow (↔) or Right Arrow (→) key to toggle the entry to **Yes**.

 When this choice is enabled, **System Security** appears on the limited Configuration/Setup Utility menu. The System Security menu contains the **Power-on Password** choice.

Start Options

Start options take effect when you start your server.

You can select keyboard operating characteristics, such as the keyboard speed. You also can specify whether the keyboard number lock starts on or off. You also can enable the server to run in disketteless and monitorless operation.

The server uses a startup sequence to determine the device from which the operating system loads. For example, you can define a startup sequence that checks for a startable diskette in the diskette drive, then checks the hard disk drive in bay 1, and then checks a network adapter.

You can enable a virus-detection test that checks for changes in the master boot record at startup. You also can choose to run POST in the enhanced mode or the quick mode.

Select **Start Options**; then, use the Left Arrow (↔) or Right Arrow (→) key to advance through each data field.

The **Start Options** choice appears only on the full Configuration/Setup Utility menu.
Advanced Setup
Select Advanced Setup to change values for advanced hardware features, such as cache control, ROM shadowing, and PCI bus control.

A warning message displays above the choices on this menu, to alert you that the system might malfunction if these options are configured incorrectly. Follow the instructions on the screen carefully.

Use the Left Arrow (←) or Right Arrow (→) key to scroll through each data field after you select one of the setup options.

The Advanced Setup choice appears only on the full Configuration/Setup Utility menu.

ACPI Control
Select this choice to enable or disable the advanced configuration and power management interface (ACPI) in the BIOS. You can choose to change the ACPI hardware signature or select an IRQ for ACPI.

Cache Control
Select this choice to enable or disable the microprocessor cache. In addition, you can define the microprocessor cache mode as write-back (WB) or write-through (WT).

Selecting write-back mode will provide the maximum system performance.

Note: If the system does not start (boot) successfully after three attempts, the default configuration is loaded, disabling the cache.

PCI Bus Control
Select PCI Bus Control to get the following choices:

- PCI-PCI Bridge Pre-fetching: Set PCI-PCI bridge pre-fetching to Enabled for maximum performance. If you experience problems running peer-to-peer adapters, disable this function.
Using the Configuration/Setup Utility Main Menu

- **PCI Primary Bus MLT:** This setting is for the primary master latency timer (MLT). It can be used to help tune performance of the server.

- **PCI Secondary BUS MLT:** This setting is for the secondary master latency timer (MLT). It can be used to help tune performance of the server.

- **PCI Interrupt Routing:** This choice can be used to manually override the interrupts for PCI devices. Any changes that you make in PCI Interrupt Routing will not be reflected in the IRQ settings displayed in the PCI Routing selection of the System Information menu until you restart the server.

Memory Settings
Select this choice to manually disable or enable a row of memory.

If a memory error is detected during POST or memory configuration, the server can automatically disable the failing row of memory and continue operating with reduced memory capacity. If this occurs, you must manually enable the row of memory after the problem is corrected. Choose **Memory Settings** from the Advanced Setup menu; then use the the Up Arrow (↑) or Down Arrow (↓) key to highlight the row that you want to enable. Use the Left Arrow (←) or Right Arrow (→) key to select **Enable**.

Advanced ISA Settings
Select this choice to select the I/O recovery timer settings.

System Service Processor Settings
Select this choice to change the system management processor IRQ.

Plug and Play
Before you can install Plug and Play adapters, you must configure ISA legacy adapters (if applicable) and assign the resources that are used by these adapters. When you install an ISA legacy adapter, you must allocate the system resources that the adapter will use. Select **Plug and Play** to view and identify these resources, which include:

- Memory
Using the Configuration/Setup Utility Main Menu

- I/O ports
- Direct memory access (DMA)
- Interrupt

Note: These menus do not display the resources that are required for the system or by Plug and Play devices.

Select **Plug and Play**; then, use the Up Arrow (↑) or Down Arrow (↓) key to highlight the assignment that you want to change. Use the Left Arrow (←) or Right Arrow (→) key to select from the list of available choices.

Enter the appropriate values in the **Interrupt Resources** data fields. These values range from 0 through 15.

The **Plug and Play** choice appears only on the full Configuration/Setup Utility main menu.

Note: For further details about Plug and Play devices, see “Plug and Play Technology” on page 214.

Error Logs
Select **Error Logs** to choose to view either the POST error log or the system error log.

POST Error Log
Select **POST Error Log** to view the three most recent error errors detected and logged during POST. You can clear the Post error log from this screen by selecting **Clear error logs**.

System Error Log
Select **System Error Log** to view the system error log. The system error log contains all of the error and warning messages generated during POST and all system status messages from the system management processor. The most recent error is displayed first. Use the Up Arrow (↑) and Down Arrow (↓) keys to move through the system error log. You can clear the system error log by selecting **Clear error logs**.
Configuring Options

Save Settings
After you make configuration changes, review them to be sure that they contain the correct information. If the information is correct, select Save Settings to save the selected changes.

Restore Settings
After you make configuration changes, review them to be sure that they contain the correct information. If the information is incorrect, or if you do not want to save these changes, select Restore Settings to delete the changes and restore the previous settings.

Load Default Settings
If you make configuration changes and then decide that you want to use default values instead, select Load Default Settings to cancel the changes and restore the factory settings.

Exit Setup
Select to exit from the Configuration/Setup utility program. If you have made any changes, you will be asked if you want to make the changes or exit without making the changes.

Configuring Options
Before installing a new device or program, read the documentation that comes with it. Reading the instructions helps you to determine the steps that are required for installation and configuration. The following list provides a preview of the actions that might be required to configure your server.

1. Run the Configuration/Setup Utility program and record the current configuration settings.

2. Set jumpers or switches on the server system board.
 See “Changing Jumper Positions” on page 415 and “System Board Jumpers” on page 420.
3. Set jumpers or switches on the device.
 See the instructions that came with the adapter.

4. Install the adapter in the server.
 See “Working with Adapters” on page 211.

5. Install software programs.
 See the installation instructions that came with the software.

6. Resolve configuration conflicts.
 See “Resolving Configuration Conflicts” on page 176.

Configuring ISA and PCI Adapters

You cannot assign an ISA adapter to the same interrupt that you have assigned to a PCI adapter. This is because the Netfinity 5500 does not support interrupt sharing among PCI and ISA adapters.

If a situation occurs where you need an additional interrupt, you can use an interrupt from another function that you might not need, such as COM2 (Interrupt 3).

To configure ISA adapters, select Plug and Play and follow the instructions on the screen. See “Plug and Play” on page 172 and “Plug and Play Technology” on page 214 for additional information.

PCI devices automatically communicate with the server configuration information. This usually results in automatic configuration of a PCI device. If a conflict does occur, see “Resolving Configuration Conflicts” on page 176.

Multiple-function PCI adapters use more than one interrupt. When you install one of these adapters, review the IRQ assignments in the Configuration/Setup Utility programs (see “PCI Routing” on page 163). Verify that the IRQ assignments are correct.

Your Netfinity 5500 uses a rotational interrupt technique to configure PCI adapters. This technique enables you to install a variety of PCI adapters that currently do not support sharing of PCI interrupts.
Resolving Configuration Conflicts

The resources used by your server consist of IRQs, DMA, I/O ports addresses, and memory. This information is useful when a resource configuration conflict occurs.

Conflicts in the configuration occur if:

- A device is installed that requires the same resource as another device. (For example, a conflict occurs when two adapters try to write to the same address space.)
- A device resource is changed (for example, changing jumper settings).
- A device function is changed (for example, assigning COM1 to two serial ports).
- A software program is installed that requires the same resource as a hardware device.

The steps required to resolve a configuration error are determined by the number and variety of hardware devices and software programs that you install. If a hardware configuration error is detected, a configuration error message appears after the server completes POST and before the operating system is loaded. You can bypass the error by pressing Esc while the error message is displayed.

The Configuration/Setup Utility program configures the system hardware and PCI IRQs. The program does not consider the requirements of the operating system or the application programs. See “Resolving Software Configuration Conflicts” on page 177 for additional information.
Resolving Hardware Configuration Conflicts

Use the following information to help resolve hardware configuration conflicts:

1. Run the Configuration/Setup Utility program to view and change resources used by the system board functions and the installed options. Record the current settings before making any changes. (See “The Configuration/Setup Utility Program” on page 160 for instructions.)

2. Determine which adapter or device is causing the conflict. (See Chapter 8, “Solving Problems” for instructions.)

3. Change adapter jumpers or switches. Some devices use jumpers and switches to define the system resources that the devices need. If the settings are incorrect or set to use a resource that cannot be shared, a conflict occurs and the device will remain deactivated by the configuration program.

4. Change system board jumpers or switches. See “Preparing to Install Options” on page 205, for instructions on removing the cover. Then, refer to the system-board diagram inside your server.

5. Remove the device or adapter. Some configurations are not supported. If you must remove an adapter, see “Working with Adapters” on page 211.

Resolving Software Configuration Conflicts

The memory-address space and IRQs used by some hardware options might conflict with addresses defined for use through application programs or the expanded memory specification (EMS). (EMS is used only with DOS.)

If a conflict exists, one or more of the following conditions might exist:

- The system cannot load the operating system.
- The system does not work.
- An application program does not operate, or it returns an error.
- Screen messages indicate a conflict exists.
Configuring the Ethernet Controller

To resolve conflicts, you can change the software or hardware configuration.

Note: Start the Configuration/Setup Utility program to view the addresses used by your system board functions. (See “The Configuration/Setup Utility Program” on page 160 for instructions.)

The best way to resolve memory-address conflicts is to change the addresses used by the application program or the device driver. You can use the Configuration/Setup Utility program to change addresses.

If a device driver is causing a memory-address conflict, refer to your operating-system documentation or the documentation that comes with the device drivers.

Configuring the Ethernet Controller

Your Netfinity 5500 comes with an Ethernet controller on the system board. The Ethernet controller provides 10BASE-T and 100BASE-TX support through the RJ-45 connector on the back of your server. When you connect your server to the network, the Ethernet controller automatically detects the data-transfer rate (10 Mbps or 100 Mbps) on the network and then sets the controller to operate at the appropriate rate. That is, the Ethernet controller will adjust to the network data rate, whether the data rate is standard Ethernet (10BASE-T), Fast Ethernet (100BASE-TX), half duplex (HDX), or full duplex (FDX). This process is also known as auto-negotiating. This auto-negotiation occurs without requiring software intervention. The controller supports half-duplex (HDX) and full-duplex (FDX) modes at both speeds.

Note: The 100BASE-TX Fast Ethernet standard requires that the cabling in the network be Category 5 or higher.

Fast Ethernet operates at a data rate of 100 Mbps; that is, ten times faster than standard Ethernet. However, except for the different operating speeds, Fast Ethernet and standard Ethernet are structurally identical. Applications and protocols that are currently hosted on a standard Ethernet system can be seamlessly migrated to
a Fast Ethernet system. (In a very small number of cases, minor
tuning might be required to adjust the application to the higher
performance of a Fast Ethernet system). Because of the equivalence
of the two types of Ethernet, mixed Ethernet and Fast Ethernet
systems also can be designed and implemented.

The bandwidth required at each workstation connected to a server is
generally far less than the bandwidth required at the server. This is
because the server might have to handle the bandwidth of multiple
workstations at the same time. A cost-effective solution to the
bandwidth requirements of this type of system is a mixed Ethernet
and Fast Ethernet network. This mixed network consists of
standard Ethernet connections at the workstations and Fast Ethernet
connections at the servers.

The Ethernet controller is a PCI device, and is therefore, a Plug and
Play device. You do not have to set any jumpers or configure the
controller for your operating system before you use the Ethernet
controller. However, you must install a device driver to enable your
operating system to address the Ethernet controller (refer to your
ServerGuide documentation or operating-system documentation).

For troubleshooting information, see “Troubleshooting the Ethernet
Controller” on page 371.

If you need additional Ethernet connections, you can install an
Ethernet adapter, such as the IBM 10/100 PCI Ethernet adapter.
Review your network-adapter documentation for any additional
configuration requirements and for troubleshooting information.

Failover for Redundant Ethernet

Your Netfinity 5500 has an integrated Ethernet controller. The IBM
Netfinity 10/100 Fault Tolerant Adapter is an optional redundant
network interface card (NIC adapter) that you can install in your
server. If you install this NIC adapter and connect it to the same
logical segment as the primary Ethernet controller, you can
configure the server to support a failover function. You can
configure either the integrated Ethernet controller or the NIC
adapter as the primary Ethernet controller. In failover mode, if the
primary Ethernet controller detects a link failure, all Ethernet traffic associated with it is switched to the redundant (secondary) controller. This switching occurs without any user intervention. Applications with active sessions do not experience any data loss. When the primary link is restored to an operational state, the Ethernet traffic automatically switches back to the primary Ethernet controller.

Note that only one controller in the redundant pair is active at any given time. For example, if the primary Ethernet controller is active, then the secondary Ethernet controller cannot be used for any other network operation.

Note: Your operating system determines the maximum number of IBM Netfinity 10/100 Fault Tolerant Adapters that you can install in your server. See the documentation that comes with the adapter for more information.

Special Considerations When Combining Failover and Hot-Plug Functions

If your operating system supports hot-plug PCI adapters and the optional redundant NIC adapter is installed in a hot-plug PCI slot, you can replace the NIC adapter without powering off the server — even if it is the primary Ethernet controller. Disconnecting the Ethernet cable from the primary Ethernet controller will cause the Ethernet traffic to be automatically switched to the secondary Ethernet controller. This can be very useful when a network problem is caused by faulty adapter hardware or when you want to upgrade the primary adapter hardware.

Configuring for Failover

The failover feature currently is supported by OS/2, Windows NT, and IntraNetware. The setup required for each operating system follows.

OS/2

1. Add the redundant NIC adapter according to the instructions provided with the adapter and in “Working with Adapters” on page 211.
2. Use ServerGuide to install the AMD PCNet Ethernet Family adapter device driver.

3. Using the MPTS utility program, select the driver from the list and select the **Edit** button.

 Note: Only one driver instance needs to be loaded for each redundant pair of Ethernet controllers.

4. Change the PermaNet Server Feature keyword to **True** and specify the Primary and Standby slots that contain the redundant pair. Refer to “System Board Component Locations” on page 418 for the locations and slot numbers of the PCI slots. The integrated controller is located in slot E.

5. To enable the writing of messages to the IBMCOM\LANTRAN.LOG file when a failover occurs:
 a. Copy the file PCNETOS2.EXE from the root directory of the diskette created by ServerGuide to your hard disk drive.
 b. Add the following statement to the CONFIG.SYS file:

 \[Run=d:\path\PCNETOS2.EXE\]

 where \textit{d} and \textit{path} are the drive and path to which you copied PCNETOS2.EXE.

6. Restart the server.

The failover function is now enabled.

Windows NT

1. Add the redundant NIC adapter according to the instructions provided with the adapter and in “Working with Adapters” on page 211.

2. Use ServerGuide to install the AMD PCNet Ethernet Family adapter device driver.

3. From the NT desktop, select **Control Panel**, then select the **Network** icon, then the **Adapters** tab.

4. Highlight one of the adapters that will be in the redundant pair and then select the **Properties...** button.
Failover for Redundant Ethernet

5. Check the **Grouping** box. This will show the possible combinations for redundant pairs.

6. Select the adapter pair you want and then select **OK**. Note that the integrated Ethernet controller is located at PCI bus 0, slot 14.

7. Select **Close** to exit from the Network setup.

 When you restart the server, the failover function will be in effect.

If a failover occurs, a message is written to the NT Event Viewer log. If the DMI instrumentation code for the integrated Ethernet controller is active (PCNET.EXE was run), a popup message is generated also.

IntraNetware

1. Add the redundant NIC adapter according to the instructions provided with the adapter and in “Working with Adapters” on page 211.

2. Load the device driver by using the following command:

 \[\text{LOAD } d:\text{path}\text{\ PCNTNW.LAN PRIMARY}=x \text{ SECONDARY}=y\]

 where \(d\) and \(path\) are the drive and path where the driver is located, and \(x\) and \(y\) are the PCI slot numbers where the redundant pair is located.

 The slot number associated with the integrated Ethernet controller can vary depending upon the configuration of the server. To determine the slot number, load the driver with no parameters. The driver will display the available slot numbers. The slot number that is greater that 10000 will be the slot number of integrated Ethernet controller. When the slot number of the integrated Ethernet controller is determined, reload the driver with the appropriate parameters.

3. When the driver is loaded, bind it to a protocol stack.

 The failover function is now enabled. If a failover occurs:

 - A message is generated to the operating system console.
• The custom counters for the device driver contains variables that define the state of the failover function and the location of the redundant pair. You can use the Netware Monitor to view the custom counters.

Note: If the primary adapter was hot-replaced while the Ethernet traffic was being handled by the secondary Ethernet controller, the traffic does not automatically switch back to the primary adapter when the primary adapter comes back online. In this case, issue the command:

```
LOAD d:\path\PCNTNW SCAN
```

where *d* and *path* are the drive and path where the driver is located. This command causes the device driver to locate the primary adapter and switch the Ethernet traffic to it.
Failover for Redundant Ethernet
This chapter contains information about the system management processor that is integrated in your server. It also describes how to access the system management processor without Netfinity Manager.

This chapter contains:

- System Requirements for the Advanced System Management Service with Netfinity Manager 187
- Accessing the System Management Processor without Netfinity Manager ... 187
- System Power Menu Selections 190
- Boot Menu Selections ... 192
- Using Remote Video Mode to Monitor and Access POST 194
One of the features of your Netfinity 5500 is the integrated system management processor.

Note: To use all of the functions of the system management processor, you must install the Advanced System Management service for Netfinity Manager. You also will need a user-provided modem attached to serial port A to use the remote functions. Refer to “Serial Ports” on page 265 for information about serial port A.

The Advanced System Management service gives you the ability to configure and monitor many features of your server’s system management processor. You can connect to, and directly access and control, the system management processor of a remote system. With the Advanced System Management service you can configure Advanced System Management service events (such as, POST, loader, and operating-system timeouts; and critical temperature and voltage failures). If any of these events occur, the Advanced System Management service can be configured to automatically forward a Netfinity alert in one of three ways:

- Alert forwarded to another Netfinity system
- Alert forwarded to a standard numeric pager
- Alert forwarded to an alphanumeric pager

In addition, with the Advanced System Management service you can remotely monitor, record, and replay all textual data generated by a remote system during POST. While monitoring a remote system during POST, you can enter key commands on your keyboard that will then be relayed to the remote system.

The Netfinity Manager software is included in your ServerGuide package. Refer to the documentation that comes with ServerGuide for information on how to install the Netfinity Manager software. Then, refer to the online Netfinity documentation or the online *Advanced System Management Service for Netfinity Manager User’s Guide* for information on using the system management processor.
System Requirements for the Advanced System Management Service with Netfinity Manager

The minimum system requirements for using the Advanced System Management service are:

- System management processor (built into the Netfinity 5500)
- Netfinity Manager or Client Services for Netfinity Manager, version 5.10.4 or later
- 2 MB of available hard disk drive space

Accessing the System Management Processor without Netfinity Manager

If for some reason you are unable to use Netfinity Manager to access and manage your system management processor, you can use a terminal program and a modem to connect directly to the system management processor. This modem should be connected to management port C. (Refer to “Management Port C” on page 266 for information on management port C.) When connected, you will be able to access a variety of monitor, configuration, and error log data. You can also power the remote system on or off, shutdown and restart the server, and initiate remote video mode on the system management processor. Remote video mode enables you to remotely monitor all textual output generated during POST. All POST data will be displayed in the terminal program window as the remote system completes POST. While you are monitoring POST on the remote system, all local keystrokes are relayed automatically to the remote system, enabling you to use POST utilities (such as system configuration, RAID mini-configuration program, and diagnostic programs) that can be accessed during POST.
To use a terminal program to establish a connection with the system management processor:

1. Use a terminal program to establish a connection with the system management processor modem. The modem settings you should use are:

- **Baud**: 57.6 k
- **Data Bits**: 8
- **Parity**: None
- **Stop Bits**: 1
- **Flow Control**: Hardware

2. Log in to the system management processor.

 When you have established a connection with the system management processor, you will be prompted for a username and password. You must provide a username and password combination that has been previously configured for use with the system management processor. You can use one of two username and password combinations:

 - The default username (USERID) and password (PASSW0RD)

 Note: The default username and password is case sensitive. You must use all caps, and the “0” in PASSW0RD is the numeral zero.

 - A username and password that you define using the Advanced System Management service and Netfinity Manager

Important

For security purposes, change the username and password using the Netfinity Manager software. For more information see the online Netfinity Manager documentation provided in ServerGuide.

If you update the system management processor microcode, the default username (USERID) and password (PASSW0RD) are reset. If you had previously changed them, you will need to change them again.
When you have logged into the system management processor, the following main menu appears:

2 Monitors
3 Error Logs
4 Service Processor Configuration
5 System Services
6 System Power
7 Boot
B Remote Terminal Status
Y Disconnect Current Logon
Z Start Remote Video

To access a menu item, press the number or letter that corresponds to the information you want to access. After you select a menu item, subsequent menus will offer more specific information that pertains to the selection you made from the main menu.

Note: Selecting Y Disconnect Current Logon ends the current session and requires you to enter a new username and password before continuing.

<table>
<thead>
<tr>
<th>Menu Selection</th>
<th>Data Available for Viewing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitors</td>
<td>System board temperature, CPU temperatures, power supply temperatures, voltage readings, voltage regulator module readings, fan status, redundant power supply status</td>
</tr>
<tr>
<td>Error Logs</td>
<td>Contents of system error log</td>
</tr>
<tr>
<td>Service Processor</td>
<td>System management processor modem configuration, dial-out entries, dial-out alerts, dial-in logins, system status, thresholds, system statistics, VPD information and system state</td>
</tr>
<tr>
<td>Configuration</td>
<td></td>
</tr>
<tr>
<td>System Services</td>
<td>Status of system management processor watchdog timers and event alerts sent to the server</td>
</tr>
<tr>
<td>System Power</td>
<td>Current system power status, power-off configuration and power-off delay values.</td>
</tr>
</tbody>
</table>

Note: You can use selections available from the System Power menu to power the system on or off. For more information, see “System Power Menu Selections” on page 190.
When you are finished accessing the system management processor using a terminal program, select **Disconnect Current Logon** from the main menu and then use your terminal program to close the connection to the system management processor.

System Power Menu Selections
You can use the selections available from the System Power menu to:

- View data regarding the current server power status
- View data regarding the server power configuration
- Power the server off
- Power the server on

To access these functions:

1. Use a terminal program to establish a connection with the system management processor modem.
2. Log in to the system management processor.

When you have established a connection with the system management processor, you will be prompted for a username and password. You must provide a username and password combination that has been previously configured for use with the system management processor. You can use one of two username and password combinations:

- The default username (USERID) and password (PASSW0RD)
Note: The default username and password is case sensitive. You must use all caps, and the “0” in PASSW0RD, is the numeral zero.

- A username and password that you define using the Advanced System Management service and Netfinity Manager

Important

For security purposes, change the username and password using the Netfinity Manager software. For more information see the online Netfinity Manager documentation provided in ServerGuide.

If you update the system management processor microcode, the default username (USERID) and password (PASSW0RD) are reset. If you had previously changed them, you will need to change them again.

When you have logged into the system management processor, the following main menu appears:

2 Monitors
3 Error Logs
4 Service Processor Configuration
5 System Services
6 System Power
7 Boot
B Remote Terminal Status
Y Disconnect Current Logon
Z Start Remote Video

3. Select **6 System Power**.

The following System Power menu appears:

1 Current Power Status
2 Power Configuration
3 Power On
4 Power Off

4. Select a System Power menu item.

- Select **1 Current power Status** for information about the current server power status.
• Select **2 Power Configuration** for information about the server power configuration.

• Select **3 Power On** to power the server on (if it is currently powered off).

• Select **4 Power Off** to power the server off (if it is currently powered on).

Boot Menu Selections

You can use the selections available from the Boot menu to:

• Shutdown the server operating system and then restart the server

• Restart the server immediately, without first performing an operating system shutdown

• Restart the system management processor

To access these functions:

1. Use a terminal program to establish a connection with the system management processor modem.

2. Log in to the system management processor.

 When you have established a connection with the system management processor, you will be prompted for a username and password. You must provide a username and password combination that has been previously configured for use with the system management processor. You can use one of two username and password combinations:

 • The default username (USERID) and password (PASSW0RD)

 Note: The default username and password is case sensitive. You must use all caps, and the “0” in PASSW0RD, is the numeral zero.

 • A username and password that you define using the Advanced System Management service and Netfinity Manager
Important

For security purposes, change the username and password using the Netfinity Manager software. For more information see the online Netfinity Manager documentation provided in ServerGuide.

If you update the system management processor microcode, the default username (USERID) and password (PASSW0RD) are reset. If you had previously changed them, you will need to change them again.

When you have logged into the system management processor, the following main menu appears:

2 Monitors
3 Error Logs
4 Service Processor Configuration
5 System Services
6 System Power
7 Boot
B Remote Terminal Status
Y Disconnect Current Logon
Z Start Remote Video

3. Select 7 Boot.

The following Boot menu appears:

1 Reboot w/OS Shutdown
2 Reboot immediately
3 Restart SP

4. Select a Boot menu item.

- Select 1 Reboot w/OS Shutdown to shutdown the server operating system and then restart the server.
- Select 2 Reboot immediately to restart the server immediately, without first shutting down the operating system.
- Select 3 Restart SP to restart the system management processor.
Using Remote Video Mode to Monitor and Access POST

You can use a terminal program to remotely monitor all textual output generated during POST. All POST data will be displayed in the terminal program window as the remote system completes POST. While you are monitoring POST on the remote system, all local keystrokes are relayed automatically to the remote system, enabling you to use POST utilities (such as system configuration, RAID mini-configuration program, or diagnostic programs) that can be accessed during POST.

To use Remote Video Mode to monitor and access POST on the server:

1. Use a terminal program to establish a connection with the system management processor modem.
2. Log in to the system management processor.

 When you have established a connection with the system management processor, you will be prompted for a username and password. You must provide a username and password combination that has been previously configured for use with the system management processor. You can use one of two username and password combinations:

 • The default username (USERID) and password (PASSW0RD)

 Note: The default username and password is case sensitive. You must use all caps, and the “0” in PASSW0RD, is the numeral zero.

 • A username and password that you define using the Advanced System Management service and Netfinity Manager
Important

For security purposes, change the username and password using the Netfinity Manager software. For more information see the online Netfinity Manager documentation provided in ServerGuide.

If you update the system management processor microcode, the default username (USERID) and password (PASSW0RD) are reset. If you had previously changed them, you will need to change them again.

When you have logged into the system management processor, the following main menu appears:

2 Monitors
3 Error Logs
4 Service Processor Configuration
5 System Services
6 System Power
7 Boot
B Remote Terminal Status
Y Disconnect Current Logon
Z Start Remote Video

3. Start (or restart) the server.

- If the remote server is currently powered off:
 a. Select 6 System Power from the main menu.
 b. Select 4 Power On from the System Power menu.

- If the server is currently powered on, you must restart the server. You can use selections from the System Power menu or the Boot menu to restart the server in several ways.

To restart the server using System Power menu selection:

 a. Select 6 System Power from the main menu.
 b. Select 3 Power Off from the System Power menu.
 c. Once the server has powered off, select 4 Power On to restore power to the server.

To restart the server using Boot menu selections:
a. Select 7 **Boot** from the main menu.

b. Select either 1 **Reboot w/OS Shutdown** or 2 **Reboot Immediately** to restart the server.

Note: For information on the System Power and Boot menus, see “System Power Menu Selections” on page 190 and “Boot Menu Selections” on page 192.

4. After you restart the server, return to the main menu and select **Z Start Remote Video**.

Once you have started Remote Video mode on the system management processor, all textual output generated during POST will be sent to your terminal window. Your terminal will also act as a fully-active remote session, enabling you to enter keyboard commands that will be sent to the remote server. In this way, you can enter key commands and key-combinations that access POST operations and utilities such as system setup or the RAID mini-configuration program.

When you have finished using Remote Video mode, press **Ctrl+R**, then press **Ctrl+E**, and then press **Ctrl+T**. This will end Remote Video mode and return you to the main menu.
This chapter provides instructions to help you add options to your server. Some option-removal instructions are provided, in case you need to remove one option to install another.

Note: Most of the illustrations in this publication show the tower model of the Netfinity 5500 with the IBM Netfinity NetBAY3; the rack model does not come with a NetBAY3.

This chapter contains:
- Before You Begin 199
- Electrical Safety 200
- Handling Static-Sensitive Devices 202
- System Reliability Considerations 203
- Working Inside a Netfinity 5500 with Power On 204
- Preparing to Install Options 205
 - Removing the Top Cover 207
 - Removing the Server Door and Trim Bezels 209
- Working with Adapters 211
 - LEDs for Hot-Plug PCI Slots 212
 - Adapter Considerations 213
 - Plug and Play Technology 214
 - Installing a Hot-Plug PCI Adapter 216
 - Installing a Non-Hot-Plug Adapter 221
 - Verifying Compatibility between Network Adapters and Device Drivers 225
 - Installing a Microprocessor Kit 226
 - Installing Memory-Module Kits 230
- Installing Internal Drives 233
 - Internal Drive Bays 233
 - SCSI Drives 235
 - Preinstallation Steps (All Bays) 237
 - Installing a 5.25-inch Removable-Media Drive 237
 - Installing a Drive in a Hot-Swap Bay 241
 - Replacing a Drive in a Hot-Swap Bay 244
 - Installing a Hot-Swap Power Supply 249
 - Removing a Hot-Swap Power Supply 253
 - Replacing a Hot-Swap Fan Assembly 255
- Completing the Installation 258
 - Installing the Top Cover 259
 - Installing the Trim Bezels and Server Door .. 260
Updating Device Records and Reconfiguring the Server 262
Connecting External Options 263
Connecting External SCSI Devices 263
Input/Output Ports and Connectors 265
Before You Begin

Notes:

1. You do not need to turn the server off to install or replace hot-swap power supplies, hot-swap drives, hot-swap fans, or hot-plug PCI adapters.

2. The color orange on components or labels in your Netfinity 5500 indicates hot-plug components.

- Become familiar with the safety and handling guidelines specified under “Safety Information” on page ix, “Electrical Safety” on page 200 and “Handling Static-Sensitive Devices” on page 202. These guidelines will help you work safely while working with your server or options.

- Make sure that you have an adequate number of properly grounded electrical outlets for your server, monitor, and any other options that you intend to install.

- Place your server in a location that is dry. Rain or spilled liquids might damage your server.

- Leave about 50 mm (2 inches) of ventilated space on the right and left sides of the server to allow the server cooling system to work properly. Leave 100 mm (4 inches) of clearance at the rear of the server for cables.

- Have a supply of 1 MB and 2 MB, 3.5-inch diskettes available.

- Back up all important data before you make changes to disk drives.

- Have a small, flat-blade screwdriver available.

Electrical Safety

For your safety, do the following before removing the top cover:

Note: You do not need to turn off the server and attached devices before you remove the top cover to install or remove a hot-plug PCI adapter (see “Installing a Hot-Plug PCI Adapter” on page 216), to replace a hot-swap fan (see “Replacing a Hot-Swap Fan Assembly” on page 255), or to check the diagnostics LED panel.

1. Turn off the server and any attached devices, such as printers, monitors, and external drives.

2. If you are in the United Kingdom and have a modem or fax machine attached to your server, you must disconnect the telephone line from the server before unplugging any power cords (also known as power cables). When reassembling your server, you must reconnect the telephone line after you plug in the power cords.

3. Unplug all the power cords from electrical outlets.

4. Disconnect all communication cables from external receptacles.

5. Disconnect all cables and power cords from the back of the server.

Note: Reconnect the cables or power cords only after you reassemble the server and put the covers back on.
CAUTION:
Never remove the cover on a power supply or any part (power backplane and AC box) that has the following label attached.

Hazardous voltage, current, and energy levels are present inside the power supplies, power backplane, and AC box. There are no serviceable parts inside the power supplies, power backplane, or AC box. If you suspect a problem with one of these parts, contact an IBM service technician.
Handling Static-Sensitive Devices

Static electricity, though harmless to you, can seriously damage server components or options.

Note: When you are adding an internal option, do not open the static-protective package containing the option until you are instructed to do so.

When you handle options and other server components, take these precautions to avoid damage from static electricity:

- Limit your movement. Movement can cause static electricity to build up around you.
- Always handle components carefully. Handle adapters, the processor board, and memory-module kits by the edges. Never touch any exposed circuitry.
- Prevent others from touching components.
- When you are installing a new option, touch the static-protective package containing the option to a metal expansion-slot screw or other unpainted metal surface on the server for at least two seconds. (This reduces static electricity from the package and from your body.)
- When possible, remove the option and install it directly into the server without setting the option down. When this is not possible, place the static-protective package that the option comes in on a smooth, level surface and place the option on it.
- Do not place the option on the server’s covers or any metal surface.
System Reliability Considerations
To help ensure proper cooling and system reliability, make sure:

- Each of the drive bays has either a drive or a filler panel installed.
- Each of the power supply bays has either a power supply or a filler panel installed.
- The top cover is in place during normal operation.

Note: The front door and side covers (tower model) can be permanently removed without affecting system reliability.

- There is at least 50 mm (2 inches) of ventilated space at the sides of the server and 100 mm (4 inches) at the rear of the server.
- The top cover is removed for no longer than 30 minutes while the server is operating.
- The Power switch on the power supply is off before you remove a functional power supply.
- A removed hot-swap drive is replaced within two minutes of removal.
- Cables for optional adapters are routed according to the instructions provided with the adapters.
- A failed fan is replaced within 48 hours.
Working Inside a Netfinity 5500 with Power On

Your Netfinity 5500 is designed with special features that make it highly available. These features include hot-plug PCI expansion slots and hot-swap fans. You can add or replace PCI adapters (if supported by your operating system) or replace a fan which no longer functions. In the past you would need to power off the server and disconnect power to perform these operations. With the hot-plug features you remove the top cover of your server with the power on — something most people have not done before.

Your Netfinity 5500 is designed to operate safely while powered on with the top cover removed. The server is designed to protect you and the server. Here are some simple guidelines to follow when you work inside a Netfinity 5500 that is powered on:

- Avoid loose-fitting clothing on your forearms. (Button long-sleeved shirts before working inside the server; do not wear cufflinks while you are working inside the server.
- Do not allow your necktie to hang inside the server.
- Remove jewelry, such as bracelets and loose-fitting wrist watches.
- Remove items from your shirt pocket (such as pens or pencils) that could fall into the server as you lean over it.
- Take care to avoid dropping any metallic objects, such as paper clips, hair pins, or screws, into the server.
Preparing to Install Options

Before you begin:

Note: You do not need to turn the server off to work with hot-plug or hot-swap devices, such as hot-plug PCI adapters, and hot-swap hard disk drives.

If you are:

• Installing or removing a hot-plug PCI adapter, go to “Working with Adapters” on page 211.

• Installing or replacing a hot-swap hard disk drive, go to “Installing Internal Drives” on page 233.

• Installing or replacing a hot-swap power supply, go to “Installing a Hot-Swap Power Supply” on page 249.

• Removing a hot-swap power supply, go to “Removing a Hot-Swap Power Supply” on page 253.

• Replacing a hot-swap fan, go to “Replacing a Hot-Swap Fan Assembly” on page 255.

• Installing or removing an option not listed in the preceding list, continue with the following steps.

1. Unlock and open the server door.

CAUTION:
When unlocked, the server door will not support the weight of the server. To avoid personal injury, be sure to remove or lock the server door before moving or lifting the server.
Preparing to Install Options

2. Remove all media (diskettes, CDs, optical discs, or tapes) from the drives; then, turn off the server and all attached options.

6

⚠️

CAUTION:
The Power Control button on the front of the server does not turn off the electrical current supplied to the server. The server also might have more than one power cord. To remove all electrical current from the server, ensure that all power cords are disconnected from the power source.

3. If you have a modem or fax machine attached to the server, disconnect the telephone line from the electrical outlet.

4. Unplug all power cords (cables) from electrical outlets.

5. Note the location of the remaining cables and cords; then disconnect them from the back of the server.

10

⚠️

CAUTION:
Electrical current from power, telephone, and communication cables can be hazardous. To avoid personal injury or equipment damage, disconnect the attached power cords, telecommunications systems, networks, and modems before you open the server covers, unless instructed otherwise in the installation and configuration procedures.
Removing the Top Cover

Before you begin:

Read “Electrical Safety” on page 200 and “Handling Static-Sensitive Devices” on page 202.
Removing the Top Cover

To remove the server top cover:

1. Turn off the server and all attached devices and disconnect all external cables and power cords (see “Preparing to Install Options” on page 205).

2. Loosen the two thumbscrews 1 on the back edge of the top cover.

3. Slide the top cover 2 slightly toward the rear of the server; the cover will stop after about 25 mm (1 inch). Lift the cover off the server and set the cover aside.

Attention:
For proper cooling and airflow, replace the top cover before turning on the server. Operating the server for extended periods of time (over 30 minutes) with the top cover removed might damage server components.
Removing the Server Door and Trim Bezels
Refer to the following illustration while you perform the steps in this procedure.
Removing the Server Door and Trim Bezels on the Tower Model

To remove the server door:
1. Unlock and open the server door.
2. Lift the server door up and off its hinges. Store the door in a safe place.

To remove the NetBAY3 bezel (tower model only):
1. Unlock the NetBAY3 bezel.
2. With your fingers on the ribbed area on the right side of the NetBAY3 bezel, grasp the right side of the NetBAY3 bezel and pull it away from the pedestal.
3. Unhook the left side of the bezel from the server. Store the bezel in a safe place.

To remove the media-bay trim bezel:
1. Release the two tabs at the bottom edge of the bezel and pull the bottom of the bezel slightly away from the server.
2. Pull the bezel down to release the two tabs at the top edge of the bezel. Store the bezel in a safe place.
Working with Adapters

You can add adapters to extend the capabilities and power of your server. Many adapters provide bus-master capabilities, which enable the adapters to perform operations without interrupting the server’s microprocessor.

You can install up to seven adapters in the expansion connectors, called slots, on the system board of your server. Six of the slots are peripheral component interconnect (PCI) expansion slots and one is an industry standard architecture (ISA) expansion slot.

Four of the PCI slots allow you to install a new PCI adapter or replace an existing PCI adapter with the same type of adapter without turning the server power off and restarting the system, if these features are supported by your operating system. These slots are called *hot-pluggable* PCI slots. They are also referred to as hot-plug PCI slots.

The expansion slots have Plug and Play capabilities. See “Plug and Play Technology” on page 214 for additional information.

Your server comes with a video controller. This video controller is an integrated component on the system board. It is *not* in an expansion slot. The integrated video controller has super video graphics array (SVGA) technology.

The integrated video controller is not removable. If you want to disable this controller and use a video adapter instead, you can install a video adapter in an expansion slot. When you install a PCI video adapter, the server BIOS automatically disables the integrated video controller. When you install an ISA video adapter, you must move a jumper to disable the integrated video controller. See “System Board Jumpers” on page 420 for more information.
The following illustration shows the location of the PCI and ISA expansion slots on the system board.

LEDs for Hot-Plug PCI Slots
Each hot-plug PCI slot has three LEDs associated with it — two Attention LEDs and one Power LED.

- **Power LED**: This LED is on when the hot-plug PCI slot is active and has power. An adapter **must not** be added to or removed from the PCI slot when the Power LED is on. When this LED is off, the PCI slot is inactive and has no power.
applied. An adapter can be installed when the Power LED for the PCI slot is off. Refer to your operating system documentation to determine if it supports hot-plug PCI adapters, and, if so, how to disable the hot-plug PCI slot.

- **Attention LEDs:** Each hot-plug PCI slot has an Attention LED that is visible from the rear of the server and one that can be seen from inside the server. (The LEDs have the same meaning; they are duplicated to be visible from outside or inside the server.) An Attention LED flashes approximately once per second when it is on. The meaning of the Attention LEDs is defined by your operating system. Refer to your operating system documentation to determine if it supports hot-plug PCI adapters and, if so, what the Attention LEDs indicate.

The following table describes the LEDs:

<table>
<thead>
<tr>
<th>Power LED</th>
<th>Attention LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Flashing</td>
<td>The adapter required attention. Slot still has power applied. Do not remove or install an adapter in the slot. Refer to your operating system documentation for instructions.</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Normal operation; no intervention is required.</td>
</tr>
<tr>
<td>Off</td>
<td>Flashing</td>
<td>The adapter requires intervention. Power is removed from the slot. An adapter can be removed or installed in the slot.</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Power is removed from the slot. An adapter can be removed or installed in the slot.</td>
</tr>
</tbody>
</table>

Adapter Considerations

Before you continue with the adapter-installation procedure:

- Review the documentation that comes with the adapter and follow those instructions in addition to the instructions given in this chapter. If you need to change the switch or jumper settings on your adapter, follow the instructions that come with the adapter documentation.
Working with Adapters

- You can install a full-length ISA adapter in the ISA expansion slot.
- You can install full-length adapters in all PCI expansion slots.
- You can install hot-plug PCI adapters in PCI slots 1–4, if your operating system supports this feature. Non-hot-plug PCI adapters can also be installed in these slots.
- Your server supports 5.0 V and universal PCI adapters; it does not support 3.3 V adapters.

 Note: A universal PCI adapter supports both 3.3 V and 5.0 V operation.

- Your server uses a rotational interrupt technique to configure PCI adapters. This technique enables you to install a variety of PCI adapters that currently do not support sharing of PCI interrupts.
- PCI slots 5 and 6 are on the primary PCI bus and PCI slots 1–4 are on the secondary PCI bus. The performance of the PCI adapters depends on the configuration of adapters in your system.

Plug and Play Technology

Plug and Play is an ISA technology designed to make expanding your server easier. Plug and Play adapter support is built into the system board in your server. If your operating system supports Plug and Play technology, your server will automatically configure itself when you install an ISA Plug and Play device.

Note: PCI adapters are also often referred to as plug and play because they configure automatically.

Plug and Play Adapters

Plug and Play adapters are easier to install and set up because they are auto-configuring. This means that there are no jumpers or switches to set.

A Plug and Play adapter comes with built-in identification and configuration specifications (set in memory on the adapter) that provide installation information to the server during startup. This
information is read by the input/output (I/O) bus and interpreted by the server BIOS. The BIOS routines automatically configure the adapter around the resources already in use by other devices.

Legacy Adapters

If an adapter that you install is not Plug and Play compatible, the Configuration/Setup utility program can help you to manually configure the adapter. Adapters that are not Plug and Play compatible are known as *legacy devices*.

Configuration/Setup Utility Program

Within the Configuration/Setup utility program, the Plug and Play screen displays server resources that are typically required by adapters:

- I/O port address
- Memory address
- IRQ line
- DMA channel

From the Configuration/Setup utility program screens, you can select available resources for the adapter that you are installing. Resources that are not currently being used by adapters that are already installed in your server are listed as [ISA Legacy]. The system resources that are in use by other devices are listed as [Not Applicable].

Notes:

1. Refer to the documentation that comes with the adapter for information about required system resources. Then, make the appropriate jumper or switch settings on the adapter.

2. If you have a resource conflict, set the resources that are used by the ISA legacy adapter to [ISA Legacy]. This will manually configure the ISA legacy adapter to that specific server resource. Once Plug and Play detects that a resource is not available, it will skip that resource, and reconfigure to other available system resources. (See “Plug and Play” on page 172.)
Installing a Hot-Plug PCI Adapter
This section gives the procedure for installing a hot-plug PCI adapter. If you want to remove a hot-plug adapter, reverse the steps. If your operating system supports hot-replace PCI adapters, you can replace a failing hot-plug PCI adapter with a new adapter of the same type without turning off power to the server. If your operating system and adapter also support the hot-add feature, you can install a new adapter without turning off the power to the server.

Note: You do not need to turn the server off to install or remove a hot-plug PCI adapter.

Before you begin:
- Read “Electrical Safety” on page 200 and “Handling Static-Sensitive Devices” on page 202.
- Read the documentation that comes with your adapter for any special requirements or restrictions.
- Read the documentation that comes with your operating system.

Attention:
Do not remove a hot-plug adapter before performing the operating-system-defined procedure for disabling the hot-plug PCI slot that contains the adapter. Failure to do so might cause your system to lock up. Refer to your operating system documentation.
Refer to the following illustrations while you perform the steps in this procedure.

1. Tab
2. Adapter retention latch
3. Expansion-slot cover
4. Attention light
5. Power light
6. Plastic divider
Working with Adapters

1. Tab
2. Adapter retention latch
3. Adapter
4. Adapter retention latch
To install a hot-plug PCI adapter:

1. Remove the top cover (see “Removing the Top Cover” on page 207).

2. Determine which expansion slot you will use for the adapter.

 Note: Only PCI slots 1–4 can be used for hot-plug PCI adapters.

3. Disable the selected PCI slot from your operating system. (Refer to the documentation that comes with your operating system for information about disabling a hot-plug PCI slot.) Disabling the PCI slot turns off the Power light for that PCI slot.

 Attention: Make sure the Power light 5 for the hot-plug PCI slot is off before you continue to the next step.

4. Remove the expansion-slot cover 3:

 a. Rotate the adapter retention latch 2 counterclockwise.

 b. Lift the tab 1 covering the top of the expansion-slot cover 3 and remove expansion-slot cover from the server. Store it in a safe place for future use.

 Attention: Expansion-slot covers must be installed on all vacant slots. This maintains the electromagnetic emissions characteristics of the system and ensures proper cooling of system components.

5. Refer to the documentation that comes with your adapter for any cabling instructions. It might be easier for you to route any cables before you install the adapter.

6. Remove the adapter from the static-protective package.

 Note: Avoid touching the components and gold-edge connectors on the adapter.

7. Place the adapter, component-side up, on a flat, static-protective surface.

8. Install the adapter 7:
Working with Adapters

a. Carefully grasp the adapter by its top edge or upper corners, and align it with the expansion slot on the system board.

b. Press the adapter firmly into the expansion slot.

 Attention:
 When you install an adapter in the server, be sure that it is completely and correctly seated in the system-board connector. Incomplete insertion might cause damage to the system board or the adapter.

c. Lower the tab over the tab on the top corner of adapter. Rotate the adapter retention latch clockwise until it snaps into place.

 Note: The expansion slot also has an adapter retention latch at the end of the slot toward the middle of the server. To remove the adapter, you need to push this adapter retention latch away from the adapter until the top edge of the adapter is past the latch.

9. Connect any needed cables to the adapter.

10. Enable the PCI slot from your operating system. (Refer to the documentation that comes with your operating system for information about enabling a hot-plug PCI slot.) Make sure that the Power light for the hot-plug PCI slot is on.

11. If you have other options to install or remove, do so now; otherwise, go to “Completing the Installation” on page 258.
Installing a Non-Hot-Plug Adapter
This section gives the procedure for installing a non-hot-plug adapter. If you want to remove a non-hot-plug adapter, reverse the steps.

Before you begin:

- Read “Electrical Safety” on page 200 and “Handling Static-Sensitive Devices” on page 202.
- Read the documentation that comes with your option.
Refer to the following illustration while you perform the steps in this procedure.

1. Expansion-slot cover screw
2. Expansion-slot cover
3. Adapter
4. Adapter retention latch
To install a non-hot-plug adapter:

1. Turn off the server and peripheral devices and disconnect all external cables and power cords (see “Preparing to Install Options” on page 205); then remove the top cover (see “Removing the Top Cover” on page 207).

2. Determine which expansion slot you will use for the adapter.

 Note: Check the instructions that come with the adapter for any requirements or restrictions.

3. Remove the expansion-slot cover 2:

 • If you are installing an adapter in PCI slot 1, 2, 3, or 4:
 a. See the illustration in “Installing a Hot-Plug PCI Adapter” on page 216 for operation of the adapter retention latch on the end of the slot near the rear of the server.
 b. Rotate the adapter retention latch counterclockwise.
 c. Lift the tab covering the top of the expansion-slot cover and remove expansion-slot cover from the server. Store it in a safe place for future use.

 • If you are installing an adapter in PCI slot 5 or 6 or in the ISA slot:
 a. Remove the screw 1 on the top of the expansion-slot cover 2.
 b. Slide the expansion-slot cover out of the server.
 c. Store these items in a safe place for future use.

Attention:
Expansion-slot covers must be installed on all vacant slots. This maintains the electromagnetic emissions characteristics of the system and ensures proper cooling of system components.

4. Refer to the documentation that comes with your adapter for any cabling instructions. It might be easier for you to route any cables before you install the adapter.

5. Remove the adapter from the static-protective package.
Note: Avoid touching the components and gold-edge connectors on the adapter.

6. Place the adapter, component-side up, on a flat, static-protective surface.

7. Set any jumpers or switches as described by the adapter manufacturer.

8. Install the adapter:
 a. Carefully grasp the adapter by its top edge or upper corners, and align it with the expansion slot on the system board.
 b. Press the adapter firmly into the expansion slot.

Attention:
When you install an adapter in the server, be sure that it is completely and correctly seated in the system-board connector before you apply power. Incomplete insertion might cause damage to the system board or the adapter.

9. If you are installing an adapter in PCI slots 1, 2, 3, or 4:
 a. Refer to the illustration in “Installing a Hot-Plug PCI Adapter” on page 216 for operation of the adapter retention latch on the end of the slot near the rear of the server.
 b. Lower the tab on the adapter guide over the tab on the top corner of the adapter. Rotate the adapter retention latch clockwise until it snaps into place.

If you are installing an adapter in PCI slots 5 or 6 or in the ISA slot:
 a. Align the rounded notch in the retaining bracket with the threaded hole in the expansion-slot frame. The retaining bracket on the adapter fits into the space that was occupied by the expansion-slot cover.
 b. Insert the expansion-slot screw that you removed earlier into the threaded hole, and push the rounded notch up against the screw.
 c. Tighten the expansion-slot screw firmly.
Note: The expansion slot also has an adapter retention latch at the end of the slot toward the middle of the server. To remove the adapter, you need to push this adapter retention latch away from the adapter until the top edge of the adapter is past the latch.

10. Connect any needed cables to the adapter.

11. If you have other options to install or remove, do so now; otherwise, go to “Completing the Installation” on page 258.

Verifying Compatibility between Network Adapters and Device Drivers

Your server supports several types of network adapters. If you are having trouble with the installation or operation of a network adapter or network operating system, ensure that the network-adapter device driver supports dual processors. Refer to your network-adapter documentation for additional information about adapter compatibility requirements.
Installing a Microprocessor Kit

Your server comes with one microprocessor installed on the processor board. When you install an additional microprocessor kit, your server can operate as a symmetric multiprocessing (SMP) server. With SMP, certain operating systems and application programs can distribute the processing load between the microprocessors. This enhances performance for database and point-of-sale applications, integrated manufacturing solutions, and other applications.

Before you begin:

- Read “Electrical Safety” on page 200 and “Handling Static-Sensitive Devices” on page 202.

- Thoroughly review the documentation that comes with the microprocessor, so that you can determine whether you need to update the server basic input/output system (BIOS). The latest level of BIOS for your server is available through the World Wide Web and the IBM Bulletin Board System (BBS). See Chapter 9, “Getting Help, Service, and Information” for the appropriate World Wide Web addresses and bulletin-board telephone numbers.

Notes:

1. The illustrations in this section might differ slightly from your hardware.

2. To order additional microprocessor options, contact your IBM reseller or IBM marketing representative.

3. To avoid damage and ensure proper server operation when you install a new or additional microprocessor, use the same speed and voltage as those of the currently installed microprocessor. Microprocessor internal and external clock frequencies must be identical.

4. The microprocessor that is installed in the primary microprocessor connector is CPU or processor 1. If a microprocessor is installed in the secondary microprocessor connector, it is CPU or processor 2. If the server has only one microprocessor installed, that microprocessor is installed in the primary microprocessor connector and is the boot processor. If the server has two microprocessors installed, the microprocessor in the secondary microprocessor connector is the boot processor and the microprocessor in the primary microprocessor connector is the application processor.
Installing a Microprocessor Kit

Refer to the following illustration while you perform the steps in this section.

Note: The illustration shows only the processor board for simplicity; you do not need to remove the processor board to install a microprocessor kit.

1. Voltage regulator module (VRM) for secondary microprocessor
2. VRM for primary microprocessor
3. Primary microprocessor (CPU or processor 1)
4. Secondary microprocessor connector
5. Terminator card
6. Secondary microprocessor (CPU or processor 2)
7. Latches
8. Connector for VRM for secondary microprocessor
To install an additional microprocessor kit:

1. Turn off the server and peripheral devices and disconnect all external cables and power cords (see “Preparing to Install Options” on page 205); then remove the top cover (see “Removing the Top Cover” on page 207).

2. Remove the terminator card from the secondary microprocessor connector. You do not need the terminator card when you have a second microprocessor installed. You can store it in a safe place in the static-protective package that your new microprocessor is shipped in.

3. Install the microprocessor:
 a. Touch the static-protective package containing the new microprocessor to any unpainted metal surface on the server; then, remove the microprocessor from the package.
 b. Center the microprocessor over the secondary connector.

 Attention:
 Make sure the microprocessor is oriented and aligned correctly before you try to press it into the connector.
 c. Press in on the latches and carefully insert the microprocessor into the connector.
 d. Press outward on the latches to lock the microprocessor in place.

 Note: To remove the microprocessor, press in on the latches and lift the microprocessor out of the connector.

4. Install the voltage regulator module (VRM) included in the microprocessor kit in the secondary VRM connector.

 Note: If you remove the secondary microprocessor at some time in the future, remember to install the terminator card in the secondary microprocessor connector and to remove the VRM for the secondary microprocessor.

5. If you have other options to install or remove, do so now; otherwise, go to “Completing the Installation” on page 258.
Installing Memory-Module Kits

Adding memory to your server is an easy way to make programs run faster. You can increase the amount of memory in your server by installing options called *memory-module kits*. Each kit contains one industry-standard, dual-inline memory module (DIMM). Your server uses a noninterleaved memory configuration.

Your server comes with a memory-module installed in connector J1, the connector nearest the rear of the server. Install additional memory modules in connectors J2, J3, and J4, in that order. If you mix DIMM sizes, install the largest sized DIMM in connector J1, the next largest sized DIMM in connector J2, and so forth.

Notes:

1. The memory-module kit sizes available for your server are 64 MB, 128 MB, and 256 MB. Your server supports a minimum of 128 MB and a maximum of 1 GB of system memory.

2. Install only 3.3 V, 168-pin, 8-byte DIMMs. Only 100 MHz, 72-bit, unbuffered, synchronous, error correcting code (ECC), x8 configuration DIMM memory is supported for the 64 MB and 128 MB DIMMs. Only 100 MHz, 72-bit, registered, synchronous, ECC, x4 configuration DIMM memory is supported for the 256 MB DIMMs.

3. Mixing of DIMM types (registered and unbuffered) is not supported. You can install 64 MB unbuffered and 128 MB unbuffered DIMMs in the same system, but neither 64 MB unbuffered nor 128 MB unbuffered DIMMs can be installed in a system with 256 MB registered DIMMs.

4. Installing or removing memory modules changes the configuration information in the server. Therefore, after installing or removing a DIMM, save the new configuration information in the Configuration/Setup program. When you restart the server, the system displays a message indicating that the memory configuration has changed. Start the Configuration/Setup program and select **Save Settings**. See “Using the Configuration/Setup Utility Main Menu” on page 161 for more information.
Refer to this illustration while you perform the steps in this procedure.

Note: The illustration shows only the processor board for simplicity; you do not need to remove the processor board to install a memory module.

Before you begin:
- Read “Electrical Safety” on page 200 and “Handling Static-Sensitive Devices” on page 202.
- Read the documentation that comes with your option.

To install a memory module:

1. Turn off the server and peripheral devices and disconnect all external cables and power cords (see “Preparing to Install Options” on page 205); then remove the top cover (see “Removing the Top Cover” on page 207).
2. Locate the memory-module connectors on the memory board.

3. Touch the static-protective package containing the memory-module kit to any unpainted metal surface on the server. Then, remove the memory module from the package.

4. Install the memory module:

 Note: To avoid breaking the retaining clips or damaging the memory-module connectors, handle the clips gently.

 a. Locate the lowest-numbered, empty memory-module connector on the processor board.

 b. Turn the memory module (DIMM) so that the pins align correctly with the connector.

 c. Insert the DIMM into the connector by pressing on one edge of the DIMM and then on the other edge of the DIMM. Be sure to press straight into the connector.

 d. Repeat the preceding step to make sure the DIMM is seated correctly.

 e. Make sure the retaining clips are in the closed position.

 f. If a gap exists between the DIMM and the retaining clips, the DIMM has not been properly installed. In this case, open the retaining clips and remove the DIMM; then, reinsert the DIMM.

 g. Repeat these steps for each memory module that you install.

5. If you have other options to install or remove, do so now; otherwise, go to “Completing the Installation” on page 258.
Installing Internal Drives

Different types of drives allow your system to read multiple types of media and store more data. Several types of drives are available, such as:

- Diskette
- Hard disk
- CD-ROM
- Tape

Internal Drive Bays

Internal drives are installed in bays. Your server comes with one 3.5-inch, 1.44 MB diskette drive and one CD-ROM drive.

Your server contains hardware that lets you replace a failed hard disk drive without turning off the server. Therefore, you have the advantage of continuing to operate your system while a hard disk drive is removed or installed. These drives are known as *hot-swappable* drives. They are also referred to as hot-swap drives.

Each hot-swap drive bay has two indicator lights on the front of the server (see “Information LED Panel” on page 12). If the amber
Hard Disk Status light for a drive is lit continuously, that individual drive is faulty and needs to be replaced. When the Hard Disk Status light indicates a drive fault, you can replace a hot-swap drive without turning off the server.

Each hot-swap drive that you plan to install must have a hot-swap-drive tray attached. The drive must have a single connector attachment (SCA) connector. Hot-swap-drive trays come with the hot-swap drives.

- Your server comes with a preinstalled 3.5-inch, 1.44 MB diskette drive and a preinstalled IDE CD-ROM drive.
- Bays A and B come without a device installed. These bays are for 5.25-inch, half-high, removable-media drives, such as tape backup drives. Bays A and B can be combined into a single full-high bay.
- The Netfinity 5500 supports only one diskette drive.
- Your server does not support hard disk drives in bays A and B because of cooling considerations.

Note: The server’s EMI integrity and cooling are both protected by having the left front bays (removable-media bays) covered or occupied. When you install a drive, save the filler panel from the bay, in case you later remove the drive and do not replace it with another.

- If you are installing a device with a 50-pin connector in one of the removable-media bays (bays A–B), you need a 68-pin to 50-pin converter. To order the converter, contact your IBM reseller or IBM marketing representative.
- Your server supports six slim (1-inch) or three half-high (1.6-inch), 3.5-inch hot-swap hard disk drives in the hot-swap bays.
- The hot-swap bays connect to a SCSI *backplane*. This backplane is the printed circuit board behind the bay. The backplane supports up to six hard disk drives.
- The diskette drive uses 1 MB and 2 MB diskettes. For optimum use, format 1 MB diskettes to 720 KB and format 2 MB diskettes to 1.44 MB.
SCSI Drives
Some drives have a special design called small computer system interface, or SCSI. This design allows you to attach multiple drives to a single SCSI channel.

Notes:
1. Any information about SCSI drives also applies to other SCSI devices, such as tape drives.
2. If you plan to install both internal and external SCSI devices, you must follow the instructions in “Connecting External Options” on page 263, in addition to the instructions in this section.

A 16-bit (wide) SCSI cable connects the hot-swap backplane to one channel of the integrated RAID SCSI controller on the system board. An additional 16-bit SCSI cable with connectors for optional devices in bays A and B connects to the second channel of the RAID controller. This cable has a terminator at the other end and is folded and restrained with a cable clamp to the bottom of your server between the open bays and the power supply area.

SCSI IDs
Each SCSI device that is connected to an individual channel of the RAID controller needs a unique identification (ID) so that the controller can identify the devices and ensure that different devices do not attempt to transfer data at the same time. (The two channels of the integrated RAID controller operate independently.) If you need to set IDs for SCSI devices, refer to the instructions that come with those devices.

Your server automatically sets SCSI IDs for hot-swap hard disk drives, according to the jumper settings on the SCSI backplanes. The server uses the hard disk drive SCSI IDs to send status information to the indicator lights above each hot-swap bay.

The SCSI backplane in the server supports up to six hot-swap bays. Table 2 on page 236 shows the default SCSI IDs that the backplane assigns for hot-swap hard disk drives.
Installing Internal Drives

You can change the default ID addresses of the drives by changing the jumper settings on the SCSI backplane. See “SCSI Backplane Option Jumpers” on page 427. A simplified layout of the SCSI backplane is shown in “SCSI Backplane Component Locations” on page 426.

The processing sequence for SCSI devices is set through the ServeRAID Configuration Utility program. The sequence proceeds from the lowest SCSI ID to the highest (0 to 6, then 8 to 15).

Termination (Internal SCSI Devices)

SCSI buses must be terminated at each end. The ends of the SCSI buses in your server are already terminated.

All the hot-swap drives in your server have automatic termination and the RAID controller provides termination at the other end of the SCSI bus.

If you install SCSI devices in the removable-media bays (bays A and B), you must disable the termination on the devices; the RAID controller is already terminated and the SCSI cable for devices in the removable-media drive bays has a terminator at the other end. For example, when you install a SCSI device in a removable-media drive bay (bay A or B), set its termination to Disable, because the SCSI cable is already terminated at the end.

Refer to the information that come with the SCSI device for instructions about setting device jumpers or switches that control termination.

<table>
<thead>
<tr>
<th>Bay</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Note: The default SCSI ID for the SCSI backplane is 15. The default SCSI ID for each channel of the RAID controller is 7.
Preinstallation Steps (All Bays)
Before you install drives in your server, verify that you have all the cables and any other equipment specified in the documentation that comes with the internal drive. You might also need to perform certain preinstallation activities. Some of the steps are required only during the initial installation of an option.

Before you begin:

- Read “Electrical Safety” on page 200 and “Handling Static-Sensitive Devices” on page 202.
- Read the documentation that comes with the internal drive.

1. Choose the bay in which you want to install the drive.
2. Check the instructions that come with the drive to see if you need to set any switches or jumpers on the drive.
3. To install the drive, go to “Installing a 5.25-inch Removable-Media Drive” or “Installing a Drive in a Hot-Swap Bay” on page 241.

Installing a 5.25-inch Removable-Media Drive

Before you begin:

- Read “Electrical Safety” on page 200 and “Handling Static-Sensitive Devices” on page 202.
- Read the documentation that comes with your drive.
- Prepare the drive for installation (see “Preinstallation Steps (All Bays)”).

Note: The server’s EMI integrity and cooling are both protected by having the left front bays covered or occupied. When you install a drive, save the filler panel from the bay, in case you later remove the drive and do not replace it with another.
Refer to the following illustrations while you perform the steps in this procedure.

1. Screws for filler panel
2. Filler panel with EMI shield
3. Slide rails
4. Screws for slide rails
5. Drive
Installing Internal Drives

5 Drive
6 SCSI cable for the removable-media drive bays
7 Shuttle
8 Thumbscrews
To install a removable-media drive in one of the left front bays:

1. Turn off the server and peripheral devices (see “Preparing to Install Options” on page 205) and remove the top cover (see “Removing the Top Cover” on page 207).

2. Remove the NetBAY3 bezel and the media-bay trim bezel. (See “Removing the Server Door and Trim Bezels” on page 209.)

3. Remove the screws and filler panel from the bay opening. Save screws for later use in this procedure. You do not need the filler panel when you have a drive installed in the bay.

4. Touch the static-protective bag containing the drive to any unpainted metal surface on the server; then, remove the drive from the bag and place it on a static-protective surface.

5. Set any jumpers or switches on the drive according to the documentation that comes with the drive.

6. Use screws of the appropriate size and length to attach a slide rail to each side of the drive. Note: The slide rails and screws are included in the drive accessory kit that comes with your server.

7. Place the drive so that the slide rails engage in the bay guide rails. Push the drive into the bay and attach it with the two screws from the filler panel.

8. Loosen the four thumbscrews on the shuttle at the back of the server.

9. Pull the shuttle toward the back of the server.

10. Connect one of the connectors on the SCSI cable for the removable-media drive bays to the back of the drive.

11. Connect a power cable to the back of the drive. Power cables for removable-media drives come installed in your server. The connectors are keyed and can be inserted only one way.

12. If you are installing another 5.25-inch drive, do so at this time. Otherwise, continue with the next step.
13. Push the shuttle 7 toward the front of the server and tighten the four thumbscrews 8 at the back of the shuttle.

14. Install the media-bay trim bezel and the NetBAY3 bezel that you removed earlier. (See “Installing the Trim Bezels and Server Door” on page 260)

15. If you have other options to install or remove, do so now; otherwise, go to “Completing the Installation” on page 258.

Installing a Drive in a Hot-Swap Bay
The bays on the right front of the server support hot-swap drives only.

Note: You do not have to turn off the server to install hot-swap drives in these bays. However, you must turn off the server when performing any steps that involve installing or removing cables.

Before you begin:

- Read “Electrical Safety” on page 200 and “Handling Static-Sensitive Devices” on page 202.
- Read the documentation that comes with your drive.
- Reviewed Chapter 3, “Configuring and Monitoring Your Disk Arrays” on page 33 for information about the RAID controller and disk-array configuration.
- Prepare the drive for installation (see “Preinstallation Steps (All Bays)” on page 237).
Installing Internal Drives

Refer to the following illustration while you perform the steps in this procedure.

1 Filler panel
2 Hot-swap hard disk drive
3 Drive tray handle (open position)
To install a drive in a hot-swap bay:

1. Unlock and open the server door (see “Preparing to Install Options” on page 205).

 Attention:
 To maintain proper system cooling, do not operate the server for more than two minutes without either a drive or a filler panel installed for each bay.

2. Remove the filler panel from one of the empty hot-swap bays by inserting your finger into the depression at the left side of the filler panel and pulling it away from the server.

3. Install the hard disk drive in the hot-swap bay:
 a. Ensure the tray handle is open (that is, perpendicular to the drive).
 b. Align the drive/tray assembly so that it engages the guide rails in the bay.
 c. Gently push the drive assembly into the bay until the drive connects to the backplane.
 d. Push the tray handle to the right until it locks.

4. Check the hard disk drive status indicators to verify that the hard disk drives are operating properly. See “Identifying Problems Using Status LEDs” on page 377 for details.

5. Close and lock the server door.

 Note: Because your server has a RAID controller, you must reconfigure your disk arrays after installing hard disk drives. Record the configuration information in the appropriate tables in “Installed Device Records” on page 403.
Replacing a Drive in a Hot-Swap Bay

Note: You do not have to turn off the server to remove a drive from the hot-swap bays.

Attention:
Before you remove from a hot-swap bay a hard disk drive that is not defective, back up all important data.

Before you attempt to remove a defective drive, thoroughly review the information that appears on your server screen to determine the location of the failed drive. “ServeRAID Menus, Screens, and Drive States” on page 40 explains the status codes that your server uses to indicate a defective drive. Also, if the amber Hard Disk Status light for a drive is lit continuously, that individual drive is faulty and needs to be replaced. If you remove a hard disk drive that is not defective from an array that already has a defective hard disk drive, all data in the array will be lost. This situation is especially relevant if you assigned RAID level 1 or 5 to the logical drives in your disk array. However, the RAID controller can rebuild the data that you need, provided that certain conditions are met. See “Replacing a Faulty Drive” on page 86 for further details.

Before you begin:

- Read “Electrical Safety” on page 200 and “Handling Static-Sensitive Devices” on page 202.
- Read the documentation that comes with your drive.
- Reviewed Chapter 3, “Configuring and Monitoring Your Disk Arrays” on page 33 for information about the ServeRAID controller and disk-array configuration.
- Prepare the drive for installation (see “Preinstallation Steps (All Bays)” on page 237).
Refer to the following illustrations while you perform the steps in this procedure.

1 Hard disk drive
2 Drive tray handle (open position)
Installing Internal Drives

3 Screws for half-high drive
4 Screw holes for slim-high drive
5 Drive tray
6 Drive
7 Connector for half-high drive
8 Screws for half-high drive connector
To replace a drive in a hot-swap bay:

1. Unlock and open the server door (see “Preparing to Install Options” on page 205).

 Attention:
 To maintain proper system cooling, do not operate the server for more than two minutes without either a drive or a filler panel installed for each bay.

2. Remove the defective hard disk drive 1 by placing the handle 2 on the drive to the open position (perpendicular to the drive) and pulling the hot-swap tray from the bay.

3. Remove the hard disk drive from the tray:
 a. If the drive is a half-high drive, remove the two screws 8 that hold the connector 7 to the hot-swap tray 5; then, remove the connector from the back of the drive.
 b. Remove the four screws 3 (for a half-high drive) or 4 (for a slim-high drive) that attach the drive 6 to the hot-swap tray, and remove the drive from the tray.

4. Place the new hard disk drive on the hot-swap tray and attach the drive to the tray using four screws, as follows:
 a. If the drive is a half-high drive, use screws 3 to attach the drive to the tray. If the drive is a slim-high drive, use screws in holes 4 to attach the drive to the tray.
 b. As you tighten each screw, press on the metal spring nearest the screw at the point indicated by the arrow on the illustration.
 c. If the drive is a half-high drive, plug the connector 7 to the back of the drive and secure the connector to the drive with screws 8. (Slim-high drives do not need the connector.)

5. Install the hard disk drive in the hot-swap bay:
 a. Ensure the tray handle is open (that is, perpendicular to the drive).
 b. Align the drive/tray assembly so that it engages the guide rails in the bay.
Installing Internal Drives

c. Push the drive assembly into the bay until the drive connects to the backplane.

d. Push the tray handle to the right until it locks.

6. Check the hard disk drive status indicators to verify that the hard disk drive is installed properly. See “Identifying Problems Using Status LEDs” on page 377 for details.

7. Close and lock the server door.
Installing a Hot-Swap Power Supply

Your server comes with one power supply. You can add a second power supply to provide redundant power. After you install a power supply, check the power-supply status indicators to verify that the power supply is operating properly. See “Power Supplies” on page 17 for details.

9

CAUTION:
Never remove the cover on a power supply or any part (power backplane and AC box) that has the following label attached.

Hazardous voltage, current, and energy levels are present inside the power supplies, power backplane, and AC box. There are no serviceable parts inside the power supplies, power backplane, or AC box. If you suspect a problem with one of these parts, contact an IBM service technician.
Installing a Hot-Swap Power Supply

Refer to the following illustration while performing the steps in this procedure.

Note: You do not need to turn off the power to the server to install hot-swap power supplies.

1. Power cord connector for power supply 2
2. Screws
3. Filler panel
4. Power supply
5. Handle
6. Power switch on power supply
7. AC Power light
8. DC Power light
9. Holes for shipping screws
10. Power-cord strain-relief bracket
To add a power supply:

9

⚠️

CAUTION:
Never remove the cover on a power supply or any part (power backplane and AC box) that has the following label attached.

🚫⚠️

Hazardous voltage, current, and energy levels are present inside the power supplies, power backplane, and AC box. There are no serviceable parts inside the power supplies, power backplane, or AC box. If you suspect a problem with one of these parts, contact an IBM service technician.

Note: It is not necessary to turn the Power switch on the power supply off when you are installing a power supply.

1. Remove the filler panel 3:
 a. Remove the four screws 2 from the filler panel.
 b. Remove the filler panel 3 from the power-supply bay and save it and the four screws you removed for future use.

Note: During normal operation, each power-supply bay should have either a power supply or filler panel installed for proper cooling.

2. Place the handle 5 on the power supply in the open position, and slide the power supply into the chassis.

3. Gently close the handle 5 on the power supply to seat the power supply in the bay.

4. Plug the power cord for the added power supply into power cord connector 1.
CAUTION:
When the power-cord strain-relief bracket option is installed on the power cord, the server must be plugged to a power source that is easily accessible.

5. Install a power-cord strain-relief bracket, if desired.
6. Plug the power cord into a properly grounded electrical outlet.
7. Make sure the Power switch on the power supply is in the On position.
8. Verify that the DC Power light and AC Power light on the power supply are lit, indicating that the power supply is operating correctly.
Removing a Hot-Swap Power Supply

Your server comes with one power supply. You can add a second power supply to provide redundant power. Each power supply has two status indicators; see “Power Supplies” on page 17 for information about the status indicators.

Attention:
You cannot hot swap a power supply if your server has only one power supply installed.

Refer to the illustration in “Installing a Hot-Swap Power Supply” on page 249 while you perform the steps in this procedure.

To remove a hot-swap power supply:

9

CAUTION:
Never remove the cover on a power supply or any part (power backplane and AC box) that has the following label attached.

Hazardous voltage, current, and energy levels are present inside the power supplies, power backplane, and AC box. There are no serviceable parts inside the power supplies, power backplane, or AC box. If you suspect a problem with one of these parts, contact an IBM service technician.

1. If your server has only one power supply installed, turn off the server and peripheral devices (see “Preparing to Install Options” on page 205); otherwise, go to the next step.

Attention:
Before removing a functional power supply, set the Power switch on the power supply to the Off position.
Removing a Hot-Swap Power Supply

2. Set the Power switch on the power supply that you are removing to the Off position.

3. Remove the power supply:
 a. Remove the shipping screws from the power supply, if they have not already been removed.

 Note: You do not need to replace the shipping screws.
 b. Remove the power-cord strain-relief bracket, if one is installed.
 c. Grasp the handle on the power supply and pull the handle toward the center of the server; then, slide the power supply out of the chassis.

 Note: During normal operation, each power-supply bay should have either a power supply or filler panel installed for proper cooling.

4. If you are not installing a replacement power supply:
 a. Disconnect the power cord for the power supply that you replaced.
 b. Install a power-supply filler panel; then go to step 5 on page 255.

If you are replacing the power supply:
 a. Place the handle on the power supply in the open position, and slide the power supply into the chassis.
 b. Gently close the handle on the power supply to seat the power supply in the bay.
 c. Make sure the Power switch on the power supply is in the On position.
 d. Verify that the AC Power light and DC Power light are lit, indicating that the power supply is operating correctly.
7

CAUTION:
When the power-cord strain-relief bracket option is installed on the power cord, the server must be plugged to a power source that is easily accessible.

e. Install a power-cord strain-relief bracket , if desired.

5. If you have other options to install or remove, do so now; otherwise, go to “Completing the Installation” on page 258.

Replacing a Hot-Swap Fan Assembly

Your server comes with three hot-swap fan assemblies.

Attention:
Replace a fan that has failed within 48 hours to help ensure proper cooling.

Note: You do not need to turn off the power to the server to replace a hot-swap fan assembly.
Replacing a Hot-Swap Fan Assembly

The following illustration shows the replacement of a hot-swap fan assembly. Refer to this illustration while performing the steps in this procedure.

1. Fan power cables
2. Hot-swap fan assembly 2
3. Hot-swap fan assembly 1
4. Tabs
5. Hot-swap fan assembly 3
6. Quarter-turn fasteners
To replace a hot-swap fan assembly:

1. CAUTION: The power cable to the fan should be disconnected whenever the fan assembly is not installed in the server; otherwise, the fan might start turning while you are holding it and the fan blades could injure your fingers.

 1. Remove the top cover (see “Removing the Top Cover” on page 207).

 Attention: To ensure proper system cooling, the top cover should be removed for no more than 30 minutes during this procedure.

 2. Determine which fan assembly needs to be replaced by checking the fan LEDs on the diagnostic panel (see “Diagnostics Panel LEDs” on page 379).

 3. Disconnect the fan power cable from the fan assembly that you are replacing.

 4. Turn the quarter-turn fastener one quarter turn and remove the fan assembly from the server.

 5. Slide the replacement fan assembly into the server. (If you are replacing fan assembly 3, make sure the tabs fit into the slots at the bottom of the fan opening in the server.)

 6. When you have the fan assembly correctly seated, turn the quarter-turn fastener one quarter turn to secure the fan in the server.

 7. Connect the fan power cable to the power connector.

 8. Replace the top cover (see “Installing the Top Cover” on page 259).
Completing the Installation

To complete your installation, you must reinstall the side and top covers, reconnect all the cables that you disconnected in “Preparing to Install Options” on page 205, and, for certain options, run the Configuration utility program. Follow the instructions in this section.

Attention:
For correct cooling and airflow, install the top cover before turning on the server. Operating the server for extended periods of time (over 30 minutes) with the top cover removed might damage server components.
Installing the Top Cover

To install the server top cover:

1. Before installing a cover, check that all cables, adapters, and other components are installed and seated correctly and that you have not left loose tools or parts inside the server.

2. Lower the cover 2 with the rear edge of the cover about 25 mm (1 inch) back from the rear edge of the server.

3. Slide the cover forward.

4. Tighten the two thumbscrews 1 on the back edge of the cover.

5. If you disconnected any cables from the back of the server, reconnect the cables; then, plug the power cords into properly grounded electrical outlets.
Installing the Trim Bezels and server Door

Notes:

a. If you are in the United Kingdom and have a modem or fax machine attached to your server, reconnect the telephone line after you plug in the power cords.

b. If necessary, see “Input/Output Connectors and Expansion Slots” on page 14 for connector locations.

Installing the Trim Bezels and Server Door
Refer to the following illustration while you perform the steps in this procedure.
To install the media-bay trim bezel:
1. Insert the two tabs on the top of the media-bay trim bezel in the matching holes on the server chassis.
2. Push the bottom of the bezel toward the server until the two tabs at the bottom of the bezel snap into place.

To install the NetBAY3 bezel:
1. Hook the tabs on the left side of the NetBAY3 bezel around the posts on the NetBAY3.
2. Gently push the right side of the bezel toward the server until the bezel snaps into place.
3. Lock the NetBAY3 bezel.

To install the server front door:
1. Align the pins on the server door with the hinges on the server and slide the door down.
2. Close and lock the door.
Updating Device Records and Reconfiguring the Server

When you start your server for the first time after you add or remove an internal option or an external SCSI device, you might see a message telling you that the configuration has changed.

Some options have device drivers that you need to install. Refer to the documentation that comes with your option for information about installing any required device drivers.

If you have installed a new microprocessor, you might want to upgrade your operating system. Refer to your ServerGuide package. If you have installed or removed hard disk drives, see Chapter 3, “Configuring and Monitoring Your Disk Arrays” for information about reconfiguring your disk arrays.

Run the Configuration/Setup utility program to save the new configuration information. See Chapter 4, “Configuring Your Server.”

Record your updated device and configuration information in the appropriate tables in “Installed Device Records” on page 403.
Connecting External Options

Before you begin:

- Read “Electrical Safety” on page 200 and “Handling Static-Sensitive Devices” on page 202.
- Read the documentation that comes with your options.

Connecting External SCSI Devices
You can attach a SCSI storage expansion enclosure to your server.

Cabling Requirements
The ServeRAID II controller in your server has one channel that can be used to attach external devices.

If you plan to install external SCSI devices, you must order additional SCSI cables. The cables must have the proper connectors for the ServeRAID II controller and the external devices. To select and order the correct cables for use with external devices, contact your IBM reseller or IBM marketing representative.

Refer to the information provided with your adapter to determine the number of internal and external connectors, channels, and SCSI devices that the adapter supports.

For information about the maximum length of SCSI cable between the terminated ends of the cable, see ANSI SCSI Standards:

- X3.131-1986 (SCSI)
- X3.131-1994 (SCSI-2)
- X3T10/1071D

Adhering to these standards ensures that your server operates properly.

Setting SCSI IDs for External Devices
Each SCSI device that is connected to a SCSI controller must have a unique SCSI ID, so that the SCSI controller can identify the devices and ensure that different devices do not attempt to transfer data at the same time. SCSI devices that are connected to different SCSI
Connecting External Options

controllers can have duplicate SCSI IDs. See “SCSI IDs” on page 235 and to the instructions that come with the SCSI devices for more information about setting a SCSI ID.

Installation Procedure
To attach an external device:

1. Turn off the server and all attached devices.

2. Follow the instructions that come with the option to prepare it for installation and to connect it to the server.
Input/Output Ports and Connectors

The input/output (I/O) connectors are for attaching external devices, such as printers, keyboards, and displays, to your server. The I/O connectors on your server include:

- Two serial-port connectors
- One systems management connector
- One parallel-port connector
- One video-port connector
- One keyboard-port connector
- One auxiliary-device-port connector
- One Ethernet-port connector
- Two USB-port connectors

See the illustration in “Input/Output Connectors and Expansion Slots” on page 14 for the locations of the connectors.

Serial Ports

Your server comes with two serial ports. (See “Input/Output Connectors and Expansion Slots” on page 14 for the locations of the connectors.) These ports are used to communicate with printers, plotters, external modems, scanners, and auxiliary terminals. These ports also enable you to transfer data between computers.

Serial ports can transfer data *asynchronously*, which means that they can transmit any number of characters at any time, with no restriction on the duration of the pauses between characters.

The serial ports can transmit and receive data and commands at rates of from 300 bits per second up to 115,000 bits per second.

Serial port A is shared by the operating system and the integrated system management processor. Serial port B can be used by only by the operating system.
Each serial port has a 9-pin, male D-shell connector on the back of the server. The pin-number assignments of this connector conform to the industry standard.

The following table shows the pin-number assignments for the serial-port connectors.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data carrier detect</td>
<td>6</td>
<td>Data set ready</td>
</tr>
<tr>
<td>2</td>
<td>Receive data</td>
<td>7</td>
<td>Request to send</td>
</tr>
<tr>
<td>3</td>
<td>Transmit data</td>
<td>8</td>
<td>Clear to send</td>
</tr>
<tr>
<td>4</td>
<td>Data terminal ready</td>
<td>9</td>
<td>Ring indicator</td>
</tr>
<tr>
<td>5</td>
<td>Signal ground</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When you turn on your server, the POST routine assigns the serial ports to specific communication port addresses.

Some application programs use only certain ports, and some modems are designed for use only at certain communication port addresses. You might need to use the Configuration/Setup Utility program to change communication port address assignments to resolve conflicts.

Management Port C

Your server has a dedicated systems management I/O port. This port can be used to attach a modem that is dedicated to communication with the system management processor.

The connector on the back of the server and the pin-number assignments are the same as for the serial ports.
Parallel Port

The parallel port usually is used to communicate with printers, and transfers data one byte at a time. The parallel port has a 25-pin, female D-shell connector on the back of your server. It support three standard IEEE 1284 modes of operation: Standard Parallel Port (SPP), Enhanced Parallel Port (EPP), and Extended Capacity Port (ECP). (See “Input/Output Connectors and Expansion Slots” on page 14 for the location of the connector.)

The following table shows the pin-number assignments for the parallel-port connector.

<table>
<thead>
<tr>
<th>Pin</th>
<th>I/O</th>
<th>SPP/ECP Signal</th>
<th>EPP Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td>-STROBE</td>
<td>-WRITE</td>
</tr>
<tr>
<td>2</td>
<td>I/O</td>
<td>Data 0</td>
<td>Data 0</td>
</tr>
<tr>
<td>3</td>
<td>I/O</td>
<td>Data 1</td>
<td>Data 1</td>
</tr>
<tr>
<td>4</td>
<td>I/O</td>
<td>Data 2</td>
<td>Data 2</td>
</tr>
<tr>
<td>5</td>
<td>I/O</td>
<td>Data 3</td>
<td>Data 3</td>
</tr>
<tr>
<td>6</td>
<td>I/O</td>
<td>Data 4</td>
<td>Data 4</td>
</tr>
<tr>
<td>7</td>
<td>I/O</td>
<td>Data 5</td>
<td>Data 5</td>
</tr>
<tr>
<td>8</td>
<td>I/O</td>
<td>Data 6</td>
<td>Data 6</td>
</tr>
<tr>
<td>9</td>
<td>I/O</td>
<td>Data 7</td>
<td>Data 7</td>
</tr>
<tr>
<td>10</td>
<td>I</td>
<td>-ACK</td>
<td>-ACK</td>
</tr>
<tr>
<td>11</td>
<td>I</td>
<td>BUSY</td>
<td>-WAIT</td>
</tr>
<tr>
<td>12</td>
<td>I</td>
<td>PE (paper end)</td>
<td>PE (paper end)</td>
</tr>
<tr>
<td>13</td>
<td>I</td>
<td>SLCT (select)</td>
<td>SLCT (select)</td>
</tr>
<tr>
<td>14</td>
<td>O</td>
<td>-AUTO FD (feed)</td>
<td>-DSTRB</td>
</tr>
<tr>
<td>15</td>
<td>I</td>
<td>-ERROR</td>
<td>-ERROR</td>
</tr>
<tr>
<td>16</td>
<td>O</td>
<td>-INIT</td>
<td>-INIT</td>
</tr>
<tr>
<td>17</td>
<td>O</td>
<td>-SLCT IN</td>
<td>-ASTRB</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>21</td>
<td>-</td>
<td>Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>22</td>
<td>-</td>
<td>Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>23</td>
<td>-</td>
<td>Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>24</td>
<td>-</td>
<td>Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>25</td>
<td>-</td>
<td>Ground</td>
<td>Ground</td>
</tr>
</tbody>
</table>
When you turn on your server, the POST routine assigns the parallel port a specific port address. You can change the parallel-port assignment by using the Configuration/Setup Utility program.

Video Port
The system board in your server has one SVGA video port. This port is used to attach a video monitor. The video port has a 15-pin analog connector on the back of the server. (See “Input/Output Connectors and Expansion Slots” on page 14 for the location of the connector.)

The following table shows the pin-number assignments for the video connector.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Red</td>
</tr>
<tr>
<td>2</td>
<td>Green or monochrome</td>
</tr>
<tr>
<td>3</td>
<td>Blue</td>
</tr>
<tr>
<td>4</td>
<td>Monitor ID bit 2</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>Ground</td>
</tr>
<tr>
<td>7</td>
<td>Ground</td>
</tr>
<tr>
<td>8</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>+5 V</td>
</tr>
<tr>
<td>10</td>
<td>Ground</td>
</tr>
<tr>
<td>11</td>
<td>Monitor ID bit 0</td>
</tr>
<tr>
<td>12</td>
<td>DDC SDA</td>
</tr>
<tr>
<td>13</td>
<td>Horizontal synchronization (Hsync)</td>
</tr>
<tr>
<td>14</td>
<td>Vertical synchronization (Vsync)</td>
</tr>
<tr>
<td>15</td>
<td>DDC SDL</td>
</tr>
</tbody>
</table>
Keyboard and Auxiliary-Device Ports
The system board has one keyboard port and one auxiliary-device port that supports a mouse or other pointing device. (See “Input/Output Connectors and Expansion Slots” on page 14 for the locations of the connectors.)

The following table shows the pin-number assignments for the connectors used by the keyboard and auxiliary-device ports.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data</td>
</tr>
<tr>
<td>2</td>
<td>Not connected</td>
</tr>
<tr>
<td>3</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>+5 V dc</td>
</tr>
<tr>
<td>5</td>
<td>Clock</td>
</tr>
<tr>
<td>6</td>
<td>Not connected</td>
</tr>
</tbody>
</table>
Connecting External Options

Ethernet Port
The system board in your Netfinity 5500 contains an Ethernet controller. The controller has an external RJ-45 connector on the rear of the server that is used with a category 3, 4, or 5 unshielded twisted-pair (UTP) cable. The connector enables an Ethernet network to attach to the internal transceiver in your server.

Note: The 100BASE-TX Fast Ethernet standard requires that the cabling in the network is Category 5 or higher.

See “Configuring the Ethernet Controller” on page 178 for additional information about the Ethernet controller.

Table 7 shows the pin-number assignments for the RJ-45 connector. These assignments apply to both 10BASE-T and 100BASE-TX devices.

Table 7. Ethernet Connector Pin-Number Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Transmit data+</td>
<td>5</td>
<td>Reserved</td>
</tr>
<tr>
<td>2</td>
<td>Transmit data−</td>
<td>6</td>
<td>Receive data−</td>
</tr>
<tr>
<td>3</td>
<td>Receive data+</td>
<td>7</td>
<td>Reserved</td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
<td>8</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

10BASE-T or 100 BASE-TX UTP Cable
RJ-45 Modular Plug Connector
Universal Serial Bus Ports
The system board in your Netfinity 5500 contains two universal serial bus (USB) ports. Each USB port has an external connector on the rear on the server for attaching devices that previously used serial, parallel, keyboard, mouse, and game ports.

USB is an emerging serial interface standard for telephony and multimedia devices. USB technology uses Plug and Play to determine what device is attached to the connector. Each USB device is accessed by a unique USB address. A device called a hub is used to convert the USB port into multiple attachment points. A hub has multiple ports where peripherals can be attached. USB provides 12 megabits-per-second (Mbps) bandwidth with a maximum of 63 peripherals and a maximum signal distance of five meters (16 ft.) per segment.

Note: If more than one USB device is to be attached, then the device must be connected to a hub.

Table 8 shows the pin-number assignments for the USB connectors.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
</tr>
<tr>
<td>2</td>
<td>-Data</td>
</tr>
<tr>
<td>3</td>
<td>+Data</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
</tr>
</tbody>
</table>
Connecting External Options
This chapter provides instructions for installing a server in a rack and for removing a server from a rack.

This chapter contains:
Before You Begin ... 273
Installing and Removing the Server 275
 Preparing the Rack .. 275
 Installing the Server in the Rack 281
 Removing the Server from a Rack 287

Your server comes with all the rack installation hardware (rack model only). Review the preinstallation information in “Before You Begin”; then, continue with “Installing and Removing the Server” on page 275.

CAUTION:
Do not place any object weighing more than 50 kg (110 lbs) on top of the rack model of the server.

Before You Begin

- You will need the following items:
 - An assortment of small screwdrivers
 - 8-inch adjustable wrench or pliers

Some of the installation procedures require three people.

- Before you begin to install your server in the rack, review the safety and handling guidelines specified under “Safety Information” on page ix, and “Electrical Safety” on page 200.
These guidelines will help you work safely while working with your server and options.

- To ensure rack stability, plan the installation of servers in the rack starting from the bottom. For more information, refer to the IBM Netfinity Rack Configurator program provided with ServerGuide.

- Review the documentation that comes with your rack enclosure for safety or cabling considerations. Ensure that your planned installation is within the rack's guidelines for heat generation, electrical requirements, air flow, and mechanical loading.

- Verify that the rack can meet the operating parameters, as detailed in “Specifications” on page 412.
Installing and Removing the Server

During the installation procedure, you must install parts on the rack and the server. This process can be divided into two parts:

- Preparing the rack
- Installing the server in the rack

Preparing the Rack

5

![CAUTION: Use safe lifting practices when lifting your machine.]

In this section, you will use the following parts:

- IBM Installation Template
- Two slide-bracket assemblies
- One cable-management arm
- Two bezel brackets
- Six screws (for attaching the bezel brackets)
- Sixteen long screws (M6 by 16 mm)
- Eight short screws (M4 by 8 mm)
- Six cage nuts
- Two hex nuts (M6)
- Four lift handles (shipped with some servers)
- Cable ties
- One server bracket (for attaching the cable management arm to the server)
Installing and Removing the Server

Attention:
To ensure rack stability, plan the installation of servers in the rack starting from the bottom.

To attach the mounting hardware to the rack:

1. Remove the rack front door. Refer to the rack documentation for instructions.

2. Mark the positions of the slide-bracket assemblies, bezel brackets, and the cable-management arm on the rack:
 a. Position the installation template on the front mounting rails on the rack, aligning the holes.
 b. Mark the holes for the slide-bracket assemblies and bezel brackets.
 c. Move the template to the same U level at the rear of the server and mark the locations for the slide-bracket assemblies and cable-management arm.
 d. Install the six cage nuts at the locations marked on the mounting rails.

![Diagram of server installation]
3. Attach a slide-bracket assembly to the front of the rack:

 Notes:

 - Get another person to help you attach the slide-bracket assemblies to the rack.
 - The slide-bracket assemblies can be installed on either the left or right side of the rack.
 - Refer to the illustrations for examples of the proper alignment of the slide-bracket assemblies.

 a. Position the slide-bracket assembly behind the mounting rail so that the slides will extend out from the front of the rack.

 b. If necessary, loosen the screws at the rear of the slide bracket assembly and adjust the length of the slide-bracket to fit the mounting rail. Tighten the screws.

 ![Diagram of slide-bracket assembly](image-url)
c. Insert screws (6M by 16 mm) through the mounting rail to the slide-bracket assembly. Do not tighten the screws.

4. Attach the slide bracket assembly to the rear of the rack:
 a. Position the slide-bracket assembly inside the mounting rail.
 b. Insert screws (6M by 16 mm) through the mounting rail to the slide-bracket assembly. Do not tighten the screws.
5. Attach the other slide-bracket assembly to the front and rear of the rack.

6. Push the slide-bracket assemblies to the outermost positions on the rack.

7. Tighten all screws to secure both slide-bracket assemblies. If you are using a torque screwdriver, use the following torque setting: 8–11 Nm (70.8–97.0 in/lbs).
8. Attach the cable-management arm to the rear of the rack:
 a. Position the cable-management arm bracket on the outside of the mounting rail.
 b. Insert screws (M6 by 16 mm) through the cable-management arm bracket, mounting rail, and cage nuts. Tighten the screws.
 c. Position the server bracket on the cable-management arm.
 d. Insert screws through the cable-management arm and the server bracket. Attach M6 hex nuts to the screws and tighten the hex nuts.
Installing the Server in the Rack
In this section, you will use eight screws (M4 by 8).

To install the server in the rack:

1. Fully extend the slide-bracket assemblies until they lock.

2. Install the four lift handles on the sides of the server:
 a. Press in on the sides of the lift handle near the tabs and insert the handle tabs into the slots on the side of the server.
 b. Move the handle up in the slots so that the hooked part of each tab is inside the server. Release the pressure on the sides of the handle.
 c. Install the remaining three lift handles.
CAUTION:
Use safe lifting practices when lifting your machine.

3. Lift and position the server so that the bayonet slots on the server are above the bayonets on the slide-bracket assemblies.

4. Lower the server and slip the bayonets into the bayonet slots.

5. Insert screws through one slide-bracket assembly and server side. Tighten the screws. Repeat this step for the other slide-bracket assembly on the opposite side of the server. This secures the server.
6. Remove the four lift handles from the sides of the server:
 a. Grasp the lift handle and press in on the sides of the lift handle near the tabs until the tabs touch the inside edges of the slots.
 b. Move the handle down in the slots so that the hooked parts of the tabs clear the top edges of the slots; then, pull the handle away from the server.
 c. Remove the remaining three handles. Store the handles in a safe place.

 Note: When the drawer is fully extended, safety latches on the slide-brackets lock into place. To release the safety latch, press the latch on each side of the rack.

7. Press the safety latches and slide the drawer about halfway into the rack.
Installing and Removing the Server

8. Attach the cable-management arm to the server using the captive screws.

9. Attach the monitor, keyboard, and power cables to the corresponding connectors on the server. Refer to the rack documentation for instructions.

10. Attach the cables to the cable-management arm using cable ties.
11. Attach the two bezel brackets (one for each side) to the front sides of the server with the six screws provided.
12. Secure the server in the rack:
 a. Slide the server into the rack.
 b. Secure the server to both sides of the rack by inserting screws (M6 by 16 mm) through the bezel brackets, mounting rails, and cage nuts.

13. Install the rack front door.

14. To complete the installation, refer to the documentation that came with the rack.
Removing the Server from a Rack

Before you begin

- Read “Electrical Safety” on page 200 and “Handling Static-Sensitive Devices” on page 202.
- Turn off the server.
- Follow any additional installation and safety instructions that come with the rack.

To remove the server from a rack:

1. If you have a modem or fax machine attached to the server, disconnect the telephone line from the electrical outlet and the server.

 Note: If you are in the United Kingdom, you must perform this step before disconnecting the power cords.

2. Disconnect all cables and power cords from the rear of the server.

3. Disconnect all power cords from the rack.

4. Remove the screws from the bezel brackets on each side of the front bezel. Set them aside for later use.

5. Slide the server about halfway out of the rack.

6. Loosen the captive screws that secure the cable-management arm.

7. Fully extend the slide-bracket assemblies until they lock.

8. Remove the screws that attach the server to each slide-bracket assembly.
Removing the Server from a Rack

5

CAUTION:
Use safe lifting practices when lifting your machine.

9. Install the four lift handles on the sides of the server:
 a. Press in on the sides of the lift handle near the tabs and insert the handle tabs into the slots on the side of the server.
 b. Move the handle up in the slots so that the hooked part of each tab is inside the server. Release the pressure on the sides of the handle.
 c. Install the remaining three lift handles.
10. Lift the server from the slide bracket assemblies and place the server on a flat, nonconductive surface.
Removing the Server from a Rack
Chapter 8. Solving Problems

Server problems can be caused by hardware, software, or a user error. An example of a user error is pressing the wrong key on the keyboard. You can check server hardware by using the diagnostic programs and other information in this chapter.

This chapter contains:

Diagnostic Tools Overview ... 293
 Diagnostic Programs ... 293
 Power-on Self Test (POST) 293
 POST Beep Codes .. 294
 Error Messages .. 295
 Troubleshooting Charts ... 296
 System Error Log .. 296
 Option Diskettes .. 296

Diagnostic Programs ... 296
 Running Diagnostic Programs 297
 Viewing the Test Log .. 299

Power-on Self Test (POST) Messages 299
 POST Message Table ... 300

Power-on Self Test (POST) Beep Codes 315
 POST Beep Code Descriptions 315
 POST Beep Code Table .. 318

Diagnostic Error Message Tables 319
 Failed Diagnostic Messages 321
 Failed Diagnostic Messages That Prevent Proper Testing 329

Ethernet Controller Messages ... 334
 Novell NetWare or IntraNetware Server ODI Driver Messages ... 334
 NDIS 2.01 (OS/2) Driver Messages 338
 NDIS 4.0 (Windows NT) Driver Messages 340
 UNIX Messages .. 341
 ServeRAID II Controller Messages 344
 ServeRAID II POST and Setup Messages 345
 ServeRAID II Status and Messages 349
 ServeRAID II Configuration Conflicts Messages 351
 ServeRAID II Diagnostic Messages 352
 ServeRAID II ISPR, BCS, and ECS Codes 353

Troubleshooting .. 360
 Troubleshooting Charts ... 360
 Troubleshooting the Ethernet Controller 371

© Copyright IBM Corp. 1998
Resolving Configuration Conflicts .. 376
Changing the Software Configuration Setup 376
Changing the Hardware Configuration Setup 376
Identifying Problems Using Status LEDs 377
 Power Supply LEDs .. 377
 Diagnostics Panel LEDs ... 379
 Light Path Diagnostics .. 380
Checking the System for Damage .. 385
 After Dropping It ... 385
 After Spilling Liquid on It .. 386
Replacing the Battery .. 387
Diagnostic Tools Overview

The following tools are available to help identify and resolve hardware-related problems:

- Diagnostic programs
- Power-on self-test (POST)
- POST beep codes
- Error messages
- Troubleshooting charts
- Option diskettes

Diagnostic Programs

The server diagnostic programs are stored in upgradable read-only memory (ROM) on the system board. These programs are the primary method of testing the major components of your server: the system board, Ethernet controller, video controller, RAM, keyboard, mouse (pointing device), diskette drive, serial port, and parallel port. You can also use them to test some external devices.

Also, if you cannot determine whether a problem is caused by the hardware or by the software, you can run the diagnostic programs to confirm that the hardware is working properly.

Note: When you run the diagnostic programs, a single problem might cause several error messages. When this occurs, work to correct the cause of the first error message. After the cause of the first error message is corrected, the other error messages might not occur the next time you run the test.

Power-on Self Test (POST)

When you turn on the server, it performs a series of tests to check the operation of server components and some of the options installed in the server. This series of tests is called the power-on self-test or POST.

POST does the following:

- Checks the operation of some basic system-board operations
- Checks the memory
Diagnostic Tools Overview

- Compares the current server configuration with the stored server configuration information
- Configures PCI adapters
- Starts the video operation
- Verifies that drives (such as the diskette, CD-ROM, and hard disk drives) are connected properly

If you have a power-on password or administrator password set, you must type the password and press Enter, when prompted, before POST will continue.

While the memory is being tested, the amount of available memory appears on the screen. These numbers advance as the server progresses through POST and the final number that appears on the screen represents the total amount of memory available. If POST finishes without detecting any problems, a single beep sounds, the first screen of your operating system or application program appears, and the System POST Complete (OK) light is illuminated on the information LED panel.

If POST detects a problem, more than one beep sounds and an error message appears on your screen.

Note: A single problem might cause several error messages. When this occurs, work to correct the cause of the first error message. After the cause of the first error message is corrected, the other error messages usually will not occur the next time you run the test.

POST Beep Codes
POST generates beep codes to indicate successful completion or the detection of a problem.

- One beep indicates the successful completion of POST.
- More than one beep indicates that POST detected a problem. For more information, see “Power-on Self Test (POST) Beep Codes” on page 315.
Error Messages
Error messages indicate that a problem exists; they are not intended to be used to identify a failing part. Troubleshooting and servicing of complex problems indicated by error messages should be performed by trained service personnel.

Hardware error messages that occur can be text, numeric, or both. Messages generated by your software generally are text messages, but they also can be numeric.

POST Error Messages
POST error messages occur during startup when POST finds a problem with the hardware or detects a change in the hardware configuration. For more information, see “Power-on Self Test (POST) Messages” on page 299.

Diagnostic Error Messages
Diagnostic error messages occur when a test finds a problem with the server hardware. These error messages are alphanumeric and they are saved in the Test Log. For more information, see “Diagnostic Error Message Tables” on page 319.

Software-Generated Error Messages
These messages occur if a problem or conflict is found by an application program, the operating system, or both. Messages are generally text messages, but they also can be numeric. For information about these error messages, refer to the documentation that comes with your software.
Troubleshooting Charts
The charts under “Troubleshooting Charts” on page 360 list symptoms of problems (for example, a symptom might be “The mouse or pointing device does not work.”), along with steps to correct the problems.

System Error Log
The system error log contains all error and warning messages issued during POST and all system status messages from the system management processor. See “System Error Log” on page 173 for information about how to view the system error log.

Option Diskettes
An optional device or adapter can come with an Option Diskette. Option Diskettes usually contain option-specific diagnostic test programs or configuration files.

If your optional device or adapter comes with an Option Diskette, follow the instructions that come with the option. Different instructions apply depending on whether the Option Diskette is startable or not.

Diagnostic Programs
This section includes useful information about running the diagnostic programs. These programs are designed to test the IBM Netfinity 5500. If you want to test a non-IBM product, refer to the information that comes with that product.

Note: When you run the diagnostic programs, a single problem might cause several error messages. When this occurs, work to correct the cause of the first error message. After the cause of the first error message is corrected, the other error messages usually will not occur the next time you run the test.
Running Diagnostic Programs

While you are running the diagnostic programs, F1 displays Help information. Pressing F1 from within a help screen provides a help index from which you can select different categories. Pressing Esc exits Help and returns to where you left off.

Notes:

1. To run the diagnostic programs, you must start the server with the highest level password.

 That is, if you enter the power-on password and an administrator password is set, you cannot run the programs. You can only view the error messages in the Test Log.

 You must enter the administrator password to run the diagnostic programs.

2. If the server stops during testing and you cannot continue, restart the server and try running the diagnostic programs again. If the problem persists, have the system serviced.

3. If the diagnostic tests do not find a problem but the problem persists during normal operations, see “Troubleshooting” on page 360 and look for the problem symptom.

4. You might have to install a wrap connector on your active parallel or serial port to obtain accurate test results for these ports. If you do not have a wrap connector, contact your IBM reseller or IBM marketing representative.

5. You might need a scratch diskette to obtain accurate test results when testing the diskette drive.

6. The keyboard and mouse (pointing device) tests assume that a keyboard and mouse are attached to the server.
To start the diagnostic programs:

1. Turn on the server and watch the screen.

 If the server is turned on already, shut down your operating system and restart the server.

2. When the message F2 for Diagnostics appears, press F2.

 If a power-on password or administrator password is set, the server prompts you for it. Type in the appropriate password; then, press Enter.

3. The Diagnostic Programs screen appears.

4. Select either Extended or Basic from the top of the screen.

5. Select the test you want to run from the list that appears; then, follow the instructions on the screen.

 When the tests have completed, you can view the Test Log by selecting Utility from the top of the screen.

 Also, you can view server configuration information (such as system configuration, memory contents, interrupt request (IRQ) use, direct memory access (DMA) use, device drivers, and so on) by selecting Hardware Info from the top of the screen.

If the hardware checks out OK but the problem persists during normal server operations, a software error might be the cause. If you suspect a software problem, refer to the information that comes with the software package.
Viewing the Test Log
If you are already running the diagnostic programs, continue with step 4 in this procedure.

To view the Test Log:

1. Turn on the server and watch the screen.
 If the server is turned on already, shut down your operating system and restart the server.
2. When the message F2 for Diagnostics appears, press F2.
 If a power-on password or administrator password is set, the server prompts you for it. Type in the appropriate password; then, press Enter.
3. The Diagnostic Programs screen appears.
4. Select Utility from the top of the screen.
5. Select View Test Log from the list that appears; then, follow instructions on the screen.

Power-on Self Test (POST) Messages
The following table shows error messages that can appear on the screen during the power-on self-test (POST).

Notes:

1. The actions for some of the messages require you to run the Configuration/Setup Utility. For information about using these programs, see “Using the Configuration/Setup Utility Main Menu” on page 161.
2. If a password prompt appears with a POST message, type the administrator or power-on password; then, press Enter.
POST Message Table

<table>
<thead>
<tr>
<th>POST Message</th>
<th>Description</th>
</tr>
</thead>
</table>
| 062 | The server failed to boot on three consecutive attempts. All caches are disabled. This can be caused by repeatedly turning the server on and then off or resetting the server.
Action: Start the Configuration/Setup Utility and verify that all settings are correct. (See Chapter 4, “Configuring Your Server.”) Use the Cache Control selection in the Advanced Setup menu of the Configuration/Setup Utility to enable the caches. (See “Advanced Setup” on page 171.)
If the problem persists, have the system serviced. When the problem is corrected, make sure to enable the caches. |
| 101 | An error occurred during the system board and microprocessor test.
Action: Have the system serviced. |
| 102 | An error occurred during the system board and microprocessor test.
Action: Have the system serviced. |
| 106 | An error occurred during the system board and microprocessor test.
Action: Remove the options. If you can start the server without the options installed, reinstall each option one at a time and retest after each is reinstalled. When an option fails, replace it.
If you cannot isolate and correct the problem, have the system serviced. |
| 114 | An adapter read-only memory (ROM) error occurred.
Action: Remove the options. If you can start the server without the options installed, reinstall each option one at a time and retest after each is reinstalled. When an option fails, replace it.
If you cannot isolate and correct the problem, have the system serviced. |
POST Messages

<table>
<thead>
<tr>
<th>POST Message</th>
<th>Description</th>
</tr>
</thead>
</table>
| 129 | An error was detected in the L1 cache of one of the microprocessors.
Action:
1. If you just installed a microprocessor, verify that the microprocessor is installed and seated correctly.
2. If the problem persists, check to see if the system has isolated the problem to a microprocessor:
 - If the System Error LED on the information LED panel is on, check to see if the CPU LED on the diagnostics panel is on. If it is on, check the Microprocessor Error LEDs next to the microprocessor sockets on the processor board (see “Processor Board Component Locations” on page 422).
 - If a Microprocessor LED is on, run the diagnostic program for the microprocessor indicated by the LED. If the tests fail, replace the microprocessor.
 - If the microprocessor tests do not fail, have the system serviced.
 - If no error LED is on, the error logs in the Configuration/Setup Utility might provide additional information on the microprocessor error.
 If the problem persists, have the system serviced. |
| 151 | A real-time clock (RTC) error occurred.
Action: Have the system serviced. |
| 161 | The real-time clock battery has failed.
Action: Have the system serviced or replace the battery yourself.
For additional information, see “Replacing the Battery” on page 387 and “Lithium Battery Notice” on page xi before you attempt to change the battery.
You can use the server until you replace the battery. However, you must run the configuration programs and set the time and date and other custom settings each time you turn on the server. |
POST Messages

<table>
<thead>
<tr>
<th>POST Message</th>
<th>Description</th>
</tr>
</thead>
</table>
| 162 | A change in device configuration occurred. This error occurs under one or more of the following conditions:
 - A new device has been installed.
 - A device has been moved to a different location or cable connection.
 - A device has been removed or disconnected from a cable.
 - A device is failing and is no longer recognized by the server as being installed.
 - An external device is not turned on.
 - An invalid checksum is detected in the battery-backed memory.

Action: Verify that all external devices are turned on. You must turn on external devices before turning on the server.
If you did not add, remove, or change the location of a device, a device is probably failing. Running the diagnostic test programs might isolate the failing device, but you must have the system serviced. |
| 163 | The time of day has not been set.

Action: Set the correct date and time. If the date and time are set correctly and saved, but the 163 error message reappears, have the system serviced.
The server can be used until the system is serviced, but any application programs that use the date and time will be affected. |
<table>
<thead>
<tr>
<th>POST Message</th>
<th>Description</th>
</tr>
</thead>
</table>
| 164 | A change in the memory configuration occurred. This message might appear after you add or remove memory.
Note: The server can be used with decreased memory capacity.
Action:
1. If POST error message 289 also occurred, follow the instructions for that error message first.
2. If you have installed or removed memory, run the Configuration/Setup Utility; then, exit, saving the new configuration settings. For information about using the configuration programs, see “Using the Configuration/Setup Utility Main Menu” on page 161.
If the message appears again, shutdown the server, reseat the memory modules, and restart the server.
3. If the problem persists, check to see if the system has isolated the problem to a memory module:
 - If the System Error LED on the information LED panel is on, check to see if the MEM LED on the diagnostics panel is on. If it is on, check the DIMM Error LEDs next to the memory sockets on the processor board (see “Processor Board Component Locations” on page 422).
 - If the tests fail, replace the DIMM. If the problem persists after you replace the DIMM, have the system serviced.
 - If the memory tests do not fail, have the system serviced.
 - If no error LED is on, the error logs in the Configuration/Setup Utility might provide additional information on the memory error.
If the problem persists, have the system serviced. |
| 175 | A vital product data (VPD) error occurred.
Action: Have the system serviced. |
| 176 | A security hardware error occurred.
Action: Check for indications that someone has tampered with the server. If no one has tampered with the server, have the system serviced. |
<table>
<thead>
<tr>
<th>POST Message</th>
<th>Description</th>
</tr>
</thead>
</table>
| 184 | The power-on password information stored in your server has been removed.

Action: From the Configuration/Setup Utility main menu, select **System Security**. Then, follow the instructions on the screen.
For information about using the configuration programs, see “Using the Configuration/Setup Utility Main Menu” on page 161.
If this information cannot be restored, have the system serviced. |
| 185 | A power failure damaged the stored information about the drive-startup sequence.

Action: From the Configuration/Setup Utility main menu, select **Start Options**; then, follow the instructions on the screen. For information about using the configuration programs, see “Using the Configuration/Setup Utility Main Menu” on page 161.
If this information cannot be restored, have the system serviced. |
| 186 | A system board or hardware error occurred.

Action: Have the system serviced. |
| 187 | The VPD serial number is not set.

Action: The system serial number is set in the VPD EEPROM at the time of manufacturing. If the system board has been replaced, the system serial number will be invalid and should be set. From the main menu of the Configuration/Setup Utility, select **System Information**, then select **Product Data**. If the problem persists, have the system serviced. |
| 188 | A vital product data (VPD) error occurred.

Action: Have the system serviced. |
| 189 | An attempt has been made to access the server with invalid passwords. After three incorrect attempts, the server locks up; that is, the logon data fields are no longer available to the user. |
POST Messages

201 An error occurred during the memory controller test. This error can be caused by:
 • Incorrectly installed memory
 • A failing memory module
 • A processor-board problem
 • A system board problem

Action:

1. If you just installed memory, see “Installing Memory-Module Kits” on page 230 to verify that the new memory is correct for your server. Verify that the memory modules are installed and seated correctly.

2. If the problem persists, check to see if the system has isolated the problem to a memory module:
 • If the System Error LED on the information LED panel is on, check to see if the MEM LED on the diagnostics panel is on. If it is on, check the DIMM Error LEDs next to the memory sockets on the processor board (see “Processor Board Component Locations” on page 422). If a DIMM Error LED is on, run the diagnostic program for the memory.
 • If the tests fail, replace the DIMM. If the problem persists after you replace the DIMM, have the system serviced.
 • If the memory tests do not fail, have the system serviced.

3. If no error LED is on, the error logs in the Configuration/Setup Utility might provide additional information on the memory error.

 If the problem persists, have the system serviced.
POST Messages

<table>
<thead>
<tr>
<th>POST Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>229</td>
<td>An error was detected in the L2 cache of one of the microprocessors.</td>
</tr>
</tbody>
</table>

Action:

1. If you just installed a microprocessor, verify that the microprocessor is installed and seated correctly.

2. If the problem persists, check to see if the system has isolated the problem to a microprocessor:
 - If the System Error LED on the information LED panel is on, check to see if the CPU LED on the diagnostics panel is on. If it is on, check the Microprocessor Error LEDs next to the microprocessor sockets on the processor board (see "Processor Board Component Locations" on page 422).
 - If a Microprocessor LED is on, run the diagnostic program for the microprocessor indicated by the LED. If the tests fail, replace the microprocessor.
 - If the microprocessor tests do not fail, have the system serviced.
 - If no error LED is on, the error logs in the Configuration/Setup Utility might provide additional information on the microprocessor error.

If the problem persists, have the system serviced.

| 289 | An error occurred during POST memory tests and a failing DIMM was disabled. |

Note: The server can be used with decreased memory.

Action:

1. If you just installed memory, see “Installing Memory-Module Kits” on page 230 to verify that the new memory is correct for your server. Verify that the memory modules are installed and seated correctly. Start the Configuration/Setup Utility (see Chapter 4, “Configuring Your Server”). In the Advanced Setup menu, select **Memory Settings** and enable the DIMM. (See “Advanced Setup” on page 171.)

2. If the problem persists, replace the failing DIMM.

If the problem persists, have the system serviced.
<table>
<thead>
<tr>
<th>POST Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>301</td>
<td>An error occurred during the keyboard and keyboard controller test. These error messages also might be accompanied by continuous beeping. Action: Ensure that: 1. Nothing is resting on the keyboard and pressing a key. 2. No key is stuck. 3. The keyboard cable is connected correctly to the keyboard and to the correct connector on the server. Running the diagnostic tests can isolate the server component that failed, but you must have your system serviced. If the error message remains, have the keyboard, cable, and system serviced. Note: If you have just connected a new mouse or other pointing device, turn off the server and disconnect that device. Wait at least 5 seconds, and then, turn on the server. If the error message goes away, replace the device.</td>
</tr>
<tr>
<td>303</td>
<td>An error occurred during the keyboard and keyboard controller test. These error messages also might be accompanied by continuous beeping. Action: Ensure that: 1. Nothing is resting on the keyboard and pressing a key. 2. No key is stuck. 3. The keyboard cable is connected correctly to the keyboard and to the correct connector on the server. Running the diagnostic tests can isolate the server component that failed, but you must have your system serviced. If the error message remains, have the keyboard, cable, and system serviced. Note: If you have just connected a new mouse or other pointing device, turn off the server and disconnect that device. Wait at least 5 seconds, and then, turn on the server. If the error message goes away, replace the device.</td>
</tr>
<tr>
<td>604</td>
<td>An error occurred during a diskette drive test. Action: 1. Verify that the configuration programs correctly reflect the type of diskette drive that you have installed. 2. Run the diagnostic tests. If the diagnostic tests fail, have the system serviced.</td>
</tr>
<tr>
<td>662</td>
<td>A diskette drive configuration error occurred. Action: If you removed a diskette drive, make sure that the diskette drive setting is correct in the configuration programs. If the setting is not correct, change it. For information about using the configuration programs, see “Using the Configuration/Setup Utility Main Menu” on page 161. If the problem persists, have the system serviced.</td>
</tr>
<tr>
<td>962</td>
<td>A parallel port configuration error occurred. Action: If you changed a hardware option, make sure that the parallel port setting is correct in the configuration programs. If the setting is not correct, change it. For information about using the configuration programs, see “Using the Configuration/Setup Utility Main Menu” on page 161. If the problem persists, have the system serviced.</td>
</tr>
</tbody>
</table>
POST Messages

<table>
<thead>
<tr>
<th>POST Message</th>
<th>Description</th>
</tr>
</thead>
</table>
| 11xx | An error occurred during the system-board serial port test.
 Action: If you have a modem, serial printer, or other serial device attached to your server, verify that the serial cable is connected correctly. If it is, use the following procedure:
 1. Turn off the server.
 2. Disconnect the serial cable from the serial port.
 3. Wait five seconds; then, turn on the server.

 If the POST error message does not reappear, either the serial cable or the device is probably failing. See the documentation that comes with the serial device for additional testing information.

 If the POST error message reappears, have the system serviced. |
| 1162 | The serial port configuration conflicts with another device in the system.
 Action:
 1. Make sure the IRQ and I/O port assignments needed by the serial port are available. (See Chapter 4, “Configuring Your Server.”)
 2. If all interrupts are being used by adapters, you might need to remove an adapter to make an interrupt available to the PCI adapter, or force other adapters to share an interrupt. For information about removing adapters, see “Working with Adapters” on page 211. For information about setting interrupts, see Chapter 4, “Configuring Your Server.” |
| 1600 | POST is unable to communicate with the system management processor.
 Action:
 1. If the RAID System Error LED (CR30) on the system board is on, have your system serviced. (See “System Board Component Locations” on page 418 for the location of the LED.)
 2. If the RAID System Error LED is not on, disconnect the server from all electrical sources, wait for 30 seconds, reconnect the server to the electrical sources, and restart the server.

 If the problem persists, have the system serviced.
<table>
<thead>
<tr>
<th>POST Message</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1800 | A PCI adapter has requested a hardware interrupt that is not available.

Action:
1. Make sure that the PCI adapter and all other adapters are set correctly in the configuration programs. If the interrupt resource settings are not correct, change the settings. For information about using the configuration programs, see “PCI Bus Control” on page 171.
2. If all interrupts are being used by other adapters, you might need to remove an adapter to make an interrupt available to the PCI adapter, or force other adapters to share an interrupt. For information about removing adapters, see “Working with Adapters” on page 211. For information about setting interrupts, see “PCI Bus Control” on page 171. |
| 1801 | A PCI adapter has requested memory resources that are not available.

Action:
1. Make sure that the PCI adapter and all other adapters are set correctly in the configuration programs. If the memory resource settings are not correct, change the settings. For information about using the configuration programs, see “Using the Configuration/Setup Utility Main Menu” on page 161.
2. If all memory resources are being used, you might need to remove an adapter to make memory available to the PCI adapter. For information about removing adapters, see “Working with Adapters” on page 211. Disabling the adapter BIOS on the adapter might correct the error. Refer to the documentation provided with the adapter. |
| 1802 | A PCI adapter has requested an I/O address that is not available, or the PCI adapter might be defective.

Action:
1. Make sure that the I/O address for the PCI adapter and all other adapters are set correctly in the configuration programs. For information about using the configuration programs, see “Using the Configuration/Setup Utility Main Menu” on page 161.
2. If the I/O port resource settings are correct, the PCI adapter might be defective. Have the system serviced. |
1803 A PCI adapter has requested a memory address that is not available, or the PCI adapter might be defective.

Action:

1. Make sure that the memory address for all other adapters are set correctly in the configuration programs. If the memory resource settings are not correct, change the settings. For information about using the configuration programs, see “Using the Configuration/Setup Utility Main Menu” on page 161.

2. If the memory resource settings are correct, the PCI adapter might be defective. Have the system serviced.

1804 A PCI adapter has requested a memory address that is not available.

Action: If all memory addresses are being used, you might need to remove an adapter to make memory address space available to the PCI adapter. For information about removing adapters, see “Working with Adapters” on page 211. Disabling the adapter BIOS on the adapter might correct the error. Refer to the documentation provided with the adapter.

1805 A PCI adapter ROM error occurred.

Action: Remove the PCI adapters. If you can start the server without the adapters, reinstall each adapter one at a time and retest after each is reinstalled. When an adapter fails, replace it.

If you cannot isolate and correct the problem, have the system serviced.

1806 A PCI-to-PCI bridge error occurred. More than one PCI bus tried to access memory below 1 MB.

Action: Remove the PCI adapter that has the PCI bridge. If you can start the server without the adapter, reinstall and retest the adapter. If the adapter fails, replace it.

If you cannot isolate and correct the problem, have the system serviced.

1808 Unsupported PCI device is installed.

The latch on a hot-plug PCI slot might have been opened while the slot was active or the optical switch for the slot might be defective.

Action: Shut down the server, ensure the latches on the hot-plug PCI slots are closed and locked; then, restart the server.

If the problem persists, have the system serviced.
POST Messages

POST Message **Description**

1962 No valid startup devices were found. The system cannot find the startup drive or operating system.

Action: Be sure that the drive you want to start from is in the startup sequence.

1. Select **Start Options** from the Configuration/Setup utility program main menu. If you are unable to set the startup sequence, have the system serviced.

2. Check the list of startup devices in the **Startup device** data fields. Is the drive you want to start from in the startup sequence?

 - **Yes** Exit from this screen; then select **Exit Setup** to exit the Configuration/Setup menu. Go to step 3.

 - **No** Follow the instructions on the screen to add the drive; then save the changes and exit the Configuration/Setup menu. Restart the server.

3. Is an operating system installed?

 - **Yes** Turn off the server. Go to step 4.

 - **No** Install the operating system in your server; follow your operating system instructions to shut down and restart the server.

4. During server startup, watch for messages indicating a hardware problem.

 If the same error message appears, have the system serviced.

2400 An error occurred during the video controller (on the system board) test. This error can be caused by a failing monitor, a failing system board, or, if a video adapter is installed, a failing video adapter.

Action: Verify that the monitor is connected correctly to the video connector. If the monitor is connected correctly, have the system serviced.

2462 A video memory configuration error occurred.

Action:

1. Make sure that the monitor cables are correctly and securely connected to the server.

2. If the problem persists, have the system serviced.
POST Message Description

<table>
<thead>
<tr>
<th>POST Message</th>
<th>Description</th>
</tr>
</thead>
</table>
| 5962 | An IDE CD-ROM configuration error occurred.
Action: Check the signal and power cable connections to the CD-ROM drive. See “System Board Component Locations” on page 418 for the locations of the cable connectors on the system board.
If the problem persists, have the system serviced. |
| 8603 | An error occurred during the mouse (pointing device) and mouse (pointing device) controller test. This error can be caused by the addition or removal of a mouse, or by a failing system board.
Note: This error also can occur if electrical power was lost for a very brief period and then restored. In this case, turn off the server for at least 5 seconds, and then, turn it back on.
Action: Ensure that the keyboard and mouse (pointing device) are attached to the correct connectors. If they are connected correctly, use the following procedure:
1. Turn off the server.
2. Disconnect the mouse from the server.
3. Turn on the server.
If the POST error message does not reappear, the mouse is probably failing. See the documentation that comes with the mouse for additional testing information. If the problem remains, have the mouse (pointing device) serviced.
If the POST error message reappears, run the diagnostic tests to isolate the problem. If the diagnostic tests do not find a problem and the POST error message remains, have the system serviced. |
| 00019501 | Processor 1 is not functioning.
Action: Replace the primary microprocessor. (The Primary Microprocessor Error LED on the system board will be on. See “System Board Component Locations” on page 418 for the location of the LED.)
If the problem persists, have the system serviced. |
| 00019502 | Processor 2 is not functioning.
Action: Replace the secondary microprocessor. (The Secondary Microprocessor Error LED on the system board will be on. See “System Board Component Locations” on page 418 for the location of the LED.)
If the problem persists, have the system serviced. |
<table>
<thead>
<tr>
<th>POST Message</th>
<th>Description</th>
</tr>
</thead>
</table>
| 00019701 | Processor 1 failed the built-in self test.
Action: Replace the primary microprocessor. (The Primary Microprocessor Error LED on the system board will be on. See “System Board Component Locations” on page 418 for the location of the LED.)
If the problem persists, have the system serviced. |
| 00019702 | Processor 2 failed the built-in self-test.
Action: Replace the secondary microprocessor. (The Secondary Microprocessor Error LED on the system board will be on. See “System Board Component Locations” on page 418 for the location of the LED.)
If the problem persists, have the system serviced. |
| 01298001 | No update data for the processor 1 (the primary microprocessor).
Action: Update the system BIOS to a level that supports the microprocessors installed in the server. See Chapter 9, “Getting Help, Service, and Information” for information about obtaining updates from the World Wide Web. |
| 01298002 | No update data for processor 2 (the secondary microprocessor).
Action: Update the system BIOS to a level that supports the microprocessors installed in the server. See Chapter 9, “Getting Help, Service, and Information” for information about obtaining updates from the World Wide Web. |
| 01298101 | Bad update data for processor 1 (the primary microprocessor).
Action: Update the system BIOS to a level that supports the microprocessors installed in the server. See Chapter 9, “Getting Help, Service, and Information” for information about obtaining updates from the World Wide Web. |
| 01298102 | Bad update data for processor 2 (the secondary microprocessor).
Action: Update the system BIOS to a level that supports the microprocessors installed in the server. See Chapter 9, “Getting Help, Service, and Information” for information about obtaining updates from the World Wide Web. |
| 19990301 | A hard disk drive error occurred.
Action: Have the system serviced. |
POST Messages

<table>
<thead>
<tr>
<th>POST Message</th>
<th>Description</th>
</tr>
</thead>
</table>
| 19990305 | POST could not find an operating system.
Action: Install an operating system. If you have already installed the operating system, check the drive startup sequence (see “Start Options” on page 170). If the drive sequence is correct, run the diagnostic tests to verify that the hard disk drive is functioning correctly. If there is a problem with the hard disk drive (such as a bad sector), you might have to reinstall the operating system.
If you cannot reinstall the operating system, have the system serviced. |

| Other Numbers | POST found an error.
Action: Follow the instructions on the screen. |
Power-on Self Test (POST) Beep Codes

The successful completion of POST is indicated by one beep and the appearance of the first screen of your operating system or application program. More than one beep indicates that POST detected an error.

Beep codes are sounded in a series of beeps. For example, a 1–2–4 beep code sounds like one beep, a pause, two consecutive beeps, another pause, and four more consecutive beeps.

POST Beep Code Descriptions

The following list contains more detailed descriptions of the possible types of beeps that your server might emit.

No beeps
If no beep occurs after your server successfully completes POST (that is, after the System POST Complete (OK) light on the information LED panel is illuminated), have the system serviced.

Continuous beep
This indicates that your boot microprocessor has failed, or your system board or speaker subsystem might contain a failing component. If the system continues through POST with no errors, have the system serviced. If no video appears, the boot processor has failed; replace the boot processor.

Note: If the server has only one microprocessor installed, that microprocessor is the boot processor. If the server has two microprocessors installed, the microprocessor in the secondary microprocessor connector is the boot processor and the microprocessor in the primary microprocessor connector is the application processor.

One short beep
If one beep occurs after your server successfully completes POST (that is, after the System POST Complete (OK) light on the information LED panel is illuminated), then POST has no configuration or functional errors to report. One beep also
POST Beep Codes

occurs after your server completes POST if you enter an incorrect power-on password.

Two short beeps
This beep combination indicates that POST encountered an error. The Configuration/Setup Utility program will display additional information; follow the instructions displayed. See “Power-on Self Test (POST) Messages” on page 299 for explanations of any POST error messages.

Three short beeps
This beep combination indicates a system memory error. This combination occurs only if the video BIOS cannot display the error message. Replace the failing memory module.

Repeating short beeps
This beep combination indicates that your server system board might contain a failing component, your keyboard might be defective, or a key on the keyboard might be stuck. Ensure that:

1. Nothing is resting on the keyboard and pressing a key.
2. No key is stuck.
3. The keyboard cable is connected correctly to the keyboard and to the correct connector on the server.

Running the diagnostic tests can isolate the server component that failed, but you must have your system serviced. If the error message remains, have the keyboard, cable, and system serviced.

Note: If you have just connected a new mouse or other pointing device, turn off the server and disconnect that device. Wait at least 5 seconds, and then, turn on the server. If the error message goes away, replace the device.

One long and one short beep
This beep combination indicates that POST encountered an error on a video adapter. Have the system serviced if the integrated video adapter on the system board is being used. If an optional video adapter is being used, replace the failing video adapter.
One long and two short beeps
This beep combination indicates that a video I/O adapter ROM is not readable, or the video subsystem is defective. If you hear this beep combination twice, both the server system board and an optional video adapter have failed the test. This beep combination might also indicate that your server system board contains a failing component.

One long and three short beeps
This beep combination indicates that the system-board video subsystem has not detected a monitor connection to the server. Ensure that the monitor is connected to the server. If the problem persists, replace the monitor.

Two long and two short beeps
This beep combination indicates that POST does not support the optional video adapter. This beep combination occurs when a video adapter is installed that is incompatible with your server. Replace the optional video adapter with one that is supported by the server or use the integrated video controller on the system board.
POST Beep Codes

POST Beep Code Table

<table>
<thead>
<tr>
<th>Beep Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1-2</td>
<td>Microprocessor register test has failed.</td>
</tr>
<tr>
<td>1-1-3</td>
<td>CMOS write/read test has failed.</td>
</tr>
<tr>
<td>1-1-4</td>
<td>BIOS ROM checksum has failed.</td>
</tr>
<tr>
<td>1-2-1</td>
<td>Programmable Interval Timer test has failed.</td>
</tr>
<tr>
<td>1-2-2</td>
<td>DMA initialization has failed.</td>
</tr>
<tr>
<td>1-2-3</td>
<td>DMA page register write/read test has failed.</td>
</tr>
<tr>
<td>1-4-3</td>
<td>Interrupt vector loading test has failed.</td>
</tr>
<tr>
<td>2-1-1</td>
<td>Secondary DMA register test has failed.</td>
</tr>
<tr>
<td>2-1-2</td>
<td>Primary DMA register test has failed.</td>
</tr>
<tr>
<td>2-1-3</td>
<td>Primary interrupt mask register test has failed.</td>
</tr>
<tr>
<td>2-1-4</td>
<td>Secondary interrupt mask register test has failed.</td>
</tr>
<tr>
<td>2-2-1</td>
<td>Interrupt vector loading has failed.</td>
</tr>
<tr>
<td>2-2-2</td>
<td>Keyboard controller test has failed.</td>
</tr>
<tr>
<td>2-2-3</td>
<td>CMOS power failure and checksum checks have failed.</td>
</tr>
<tr>
<td>2-2-4</td>
<td>CMOS configuration information validation has failed.</td>
</tr>
<tr>
<td>2-3-2</td>
<td>Screen memory test has failed.</td>
</tr>
<tr>
<td>2-3-3</td>
<td>Screen retrace tests have failed.</td>
</tr>
<tr>
<td>2-3-4</td>
<td>Search for video ROM has failed.</td>
</tr>
<tr>
<td>2-4-1</td>
<td>Screen test indicates the screen is operable.</td>
</tr>
<tr>
<td>3-1-1</td>
<td>Timer tick interrupt test has failed.</td>
</tr>
<tr>
<td>3-1-2</td>
<td>Interval timer channel 2 test has failed.</td>
</tr>
<tr>
<td>3-1-3</td>
<td>RAM test has failed above address hex 0FFFF.</td>
</tr>
<tr>
<td>3-1-4</td>
<td>Time-of-Day clock test has failed.</td>
</tr>
<tr>
<td>3-2-1</td>
<td>Serial port test has failed.</td>
</tr>
<tr>
<td>3-2-2</td>
<td>Parallel port test has failed.</td>
</tr>
<tr>
<td>3-2-3</td>
<td>Math Coprocessor test has failed.</td>
</tr>
<tr>
<td>3-2-4</td>
<td>Comparison of CMOS memory size against actual has failed.</td>
</tr>
</tbody>
</table>

Action: Have the system serviced.

<table>
<thead>
<tr>
<th>Beep Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2-4</td>
<td>RAM refresh verification has failed.</td>
</tr>
<tr>
<td>1-3-1</td>
<td>First 64 Kb RAM test has failed.</td>
</tr>
<tr>
<td>1-3-2</td>
<td>First 64 Kb RAM parity test has failed.</td>
</tr>
<tr>
<td>3-3-1</td>
<td>A memory size mismatch has occurred.</td>
</tr>
</tbody>
</table>

Action: Reseat the memory modules. If the problem persists, have the system serviced.

<table>
<thead>
<tr>
<th>Beep Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3-1</td>
<td>Screen initialization has failed.</td>
</tr>
</tbody>
</table>

Action: Make sure that a jumper is installed on pins 1 and 2 of the Reset Video Controller jumper (J14) on the system board. (This is the default position, which enables the video controller on the system board.) If the problem persists, have the system serviced.
Diagnostic Error Message Tables

Error messages indicate that a problem exists; they are not intended to be used to identify a failing part. Troubleshooting and servicing of complex problems indicated by error messages should be performed by trained service personnel.

Sometimes the first error to occur causes additional errors. In this case, the server displays more than one error message. Always follow the suggested action instructions for the first error message that appears.

The following pages contain the error codes that you might receive in the diagnostic program detailed test log and summary log when running the diagnostic programs for your Netfinity 5500.

The format for the codes is:

fff-ttt-iii-date-cc-text message

where:

fff is the three-digit function code that indicates the function being tested when the error occurred. For example, function code 089 is for the microprocessor.

ttt is the three-digit failure code that indicates the exact test failure that was encountered. (These codes are for trained service personnel and are not listed.)

iii is the three-digit device ID. (These codes are for trained service personnel and are not listed.)

date is the date that the diagnostic test was run and the error recorded.

cc is the check digit that is used to verify the validity of the information.

text message is a message that the diagnostic program generates that indicates the reason for the problem. More information about the text message follows.
Text Messages
The text message format is:
Function Name: Result (test specific string)

where:

Function Name is the name of the function being tested when the error occurred. This corresponds to the function code (fff) given in the previous list.

Result can be one of the following:

Passed This result occurs when the diagnostic test completes without any errors.

Failed This result occurs when the diagnostic test discovers an error.

Aborted This result occurs when the user ends the diagnostic test before it is complete.

Warning This result occurs when a possible problem is reported during the diagnostic test, such as when a device that is to be tested is not installed.

Test Specific String This is additional information that the user can use to analyze the diagnostic problem.
Failed Diagnostic Messages
The following tables display the primary hardware failure messages that the diagnostics might display.

Function: Core System Messages (001)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>System board.</td>
</tr>
</tbody>
</table>

Action: Have the system serviced.

Function: Video System Messages (005)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>Processor and system boards.</td>
</tr>
</tbody>
</table>

Action: Have the system serviced.

Function: Serial Port Messages (011)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>Built-in serial port on system board.</td>
</tr>
</tbody>
</table>

Action: Have the system serviced.

Function: Parallel Port Messages (014)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>Built-in parallel port on system board.</td>
</tr>
</tbody>
</table>

Action: Have the system serviced.
Function: USB Port Interface Messages (015)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>System board.</td>
</tr>
</tbody>
</table>

Action: Have the system serviced.

Function: PCI Interface Messages (020)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>Tab on PCI Hot Swap slot #1 is bad.</td>
</tr>
</tbody>
</table>

Action: Make sure the tab and latch on hot-plug PCI slot 1 are closed correctly.

Note: For normal operation, the Power LED for the hot-plug PCI slot will be on and the Attention LEDs will be off.

If the problem persists, have the system serviced.

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>Tab on PCI Hot Swap slot #2 is bad.</td>
</tr>
</tbody>
</table>

Action: Make sure the tab and latch on hot-plug PCI slot 2 are closed correctly.

Note: For normal operation, the Power LED for the hot-plug PCI slot will be on and the Attention LEDs will be off.

If the problem persists, have the system serviced.

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>Tab on PCI Hot Swap slot #3 is bad.</td>
</tr>
</tbody>
</table>

Action: Make sure the tab and latch on hot-plug PCI slot 3 are closed correctly.

Note: For normal operation, the Power LED for the hot-plug PCI slot will be on and the Attention LEDs will be off.

If the problem persists, have the system serviced.

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>Tab on PCI Hot Swap slot #4 is bad.</td>
</tr>
</tbody>
</table>

Action: Make sure the tab and latch on hot-plug PCI slot 4 are closed correctly.

Note: For normal operation, the Power LED for the hot-plug PCI slot will be on and the Attention LEDs will be off.

If the problem persists, have the system serviced.

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>System board.</td>
</tr>
</tbody>
</table>

Action: Have the system serviced.
Function: SCSI Interface Messages (030)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>Internal SCSI interface.</td>
</tr>
<tr>
<td></td>
<td>Action: Have the system serviced.</td>
</tr>
</tbody>
</table>

Function: RAID Messages (035)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>On system board.</td>
</tr>
<tr>
<td></td>
<td>Action: Have the system serviced.</td>
</tr>
<tr>
<td>Failed</td>
<td>On system board adapter; indicates POST error</td>
</tr>
<tr>
<td></td>
<td>Action: Have the system serviced.</td>
</tr>
<tr>
<td>Failed</td>
<td>On system board testing drive in bay #1, SCSI ID 0</td>
</tr>
<tr>
<td></td>
<td>Action: Have the system serviced.</td>
</tr>
<tr>
<td>Failed</td>
<td>On system board testing drive in bay #2, SCSI ID 1</td>
</tr>
<tr>
<td></td>
<td>Action: Have the system serviced.</td>
</tr>
<tr>
<td>Failed</td>
<td>On system board testing drive in bay #3, SCSI ID 2</td>
</tr>
<tr>
<td></td>
<td>Action: Have the system serviced.</td>
</tr>
<tr>
<td>Failed</td>
<td>On system board testing drive in bay #4, SCSI ID 3</td>
</tr>
<tr>
<td></td>
<td>Action: Have the system serviced.</td>
</tr>
<tr>
<td>Failed</td>
<td>On system board testing drive in bay #5, SCSI ID 4</td>
</tr>
<tr>
<td></td>
<td>Action: Have the system serviced.</td>
</tr>
<tr>
<td>Failed</td>
<td>On system board testing drive in bay #6, SCSI ID 5</td>
</tr>
<tr>
<td></td>
<td>Action: Have the system serviced.</td>
</tr>
</tbody>
</table>
Function: Power Supply Messages (075)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>Voltage sensed by the system is out of range.</td>
</tr>
</tbody>
</table>

Action: Have the system serviced.

Function: Microprocessor Error Messages (089)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>Secondary microprocessor in socket number U6.</td>
</tr>
</tbody>
</table>

Note: The Secondary Microprocessor Error LED will be on. See “Processor Board Component Locations” on page 422 for the location of the LED.

Action:

1. Reseat the secondary microprocessor (in connector U6).
2. If the problem persists, replace the secondary microprocessor.

If the problem persists, have the system serviced.

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>Microprocessor in socket number U5.</td>
</tr>
</tbody>
</table>

Note: The Primary Microprocessor Error LED will be on. See “Processor Board Component Locations” on page 422 for the location of the LED.

Action:

1. Reseat the primary microprocessor (in connector U5).
2. If the problem persists, replace the primary microprocessor.

If the problem persists, have the system serviced.

Function: System Management Processor Messages (165)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>System management processor on system board.</td>
</tr>
</tbody>
</table>

Action: Have the system serviced.
Function: Thermal System Messages (175)

<table>
<thead>
<tr>
<th>Function</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>Fan #1</td>
</tr>
<tr>
<td>Note:</td>
<td>The FAN1 LED on the diagnostics panel will also be on.</td>
</tr>
<tr>
<td>Action:</td>
<td>Replace fan 1.</td>
</tr>
<tr>
<td></td>
<td>If the problem persists, have the system serviced.</td>
</tr>
<tr>
<td>Failed</td>
<td>Fan #2</td>
</tr>
<tr>
<td>Note:</td>
<td>The FAN2 LED on the diagnostics panel will also be on.</td>
</tr>
<tr>
<td>Action:</td>
<td>Replace fan 2.</td>
</tr>
<tr>
<td></td>
<td>If the problem persists, have the system serviced.</td>
</tr>
<tr>
<td>Failed</td>
<td>Fan #3</td>
</tr>
<tr>
<td>Note:</td>
<td>The FAN3 LED on the diagnostics panel will also be on.</td>
</tr>
<tr>
<td>Action:</td>
<td>Replace fan 3.</td>
</tr>
<tr>
<td></td>
<td>If the problem persists, have the system serviced.</td>
</tr>
<tr>
<td>Failed</td>
<td>Temperature sensed on processor board is out of range.</td>
</tr>
<tr>
<td>Action:</td>
<td>If one of the FAN LEDs on the diagnostics panel is on, replace the indicated fan.</td>
</tr>
<tr>
<td></td>
<td>If the problem persists, have the system serviced.</td>
</tr>
</tbody>
</table>

Function: Status Display Messages (180)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>Information LED panel.</td>
</tr>
<tr>
<td>Action:</td>
<td>Have the system serviced.</td>
</tr>
<tr>
<td>Failed</td>
<td>Diagnostics LED panel.</td>
</tr>
<tr>
<td>Action:</td>
<td>Have the system serviced.</td>
</tr>
<tr>
<td>Failed</td>
<td>LED on system board.</td>
</tr>
<tr>
<td>Action:</td>
<td>Have the system serviced.</td>
</tr>
<tr>
<td>Failed</td>
<td>LED on processor board.</td>
</tr>
<tr>
<td>Action:</td>
<td>Have the system serviced.</td>
</tr>
<tr>
<td>Failed</td>
<td>LED on hot-swap SCSI backplane</td>
</tr>
<tr>
<td>Action:</td>
<td>Have the system serviced.</td>
</tr>
</tbody>
</table>
Function: System Memory Messages (201)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>DIMM location J1</td>
</tr>
</tbody>
</table>

Note: The DIMM 4 Error LED will be on. See “Processor Board Component Locations” on page 422 for the locations of the LED and the DIMMs.

Action:
1. Reseat the DIMM in DIMM socket J1.
2. If the problem persists, replace the DIMM.

If the problem persists, have the system serviced.

| Failed | DIMM location J2 |

Note: The DIMM 3 Error LED will be on. See “Processor Board Component Locations” on page 422 for the locations of the LED and the DIMMs.

Action:
1. Reseat the DIMM in DIMM socket J2.
2. If the problem persists, replace the DIMM.

If the problem persists, have the system serviced.

| Failed | DIMM location J3 |

Note: The DIMM 2 Error LED will be on. See “Processor Board Component Locations” on page 422 for the locations of the LED and the DIMMs.

Action:
1. Reseat the DIMM in DIMM socket J3.
2. If the problem persists, replace the DIMM.

If the problem persists, have the system serviced.

| Failed | DIMM location J4 |

Note: The DIMM 1 Error LED will be on. See “Processor Board Component Locations” on page 422 for the locations of the LED and the DIMMs.

Action:
1. Reseat the DIMM in DIMM socket J4.
2. If the problem persists, replace the DIMM.

If the problem persists, have the system serviced.
Function: System Cache Messages (202)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
</table>
| Failed | Microprocessor in socket number U5.

Note: The Primary Microprocessor Error LED will be on. See “Processor Board Component Locations” on page 422 for the location of the LED.

Action:
1. Reseat the primary microprocessor (in connector U5).
2. If the problem persists, replace the primary microprocessor.

If the problem persists, have the system serviced.

| Failed | Microprocessor in socket number U6.

Note: The Secondary Microprocessor Error LED will be on. See “Processor Board Component Locations” on page 422 for the location of the LED.

Action:
1. Reseat the secondary microprocessor (in connector U5).
2. If the problem persists, replace the secondary microprocessor.

If the problem persists, have the system serviced.

Function: Diskette Drive Messages (206)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
</table>
| Failed | Internal diskette drive bay.

Action: Have the system serviced.

Function: CD-ROM Messages (215)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
</table>
| Failed | On system board.

Action: Have the system serviced.
Function: Hard Disk Drive Messages (217)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>BIOS drive #1. Action: Have the system serviced.</td>
</tr>
<tr>
<td>Failed</td>
<td>BIOS drive #2. Action: Have the system serviced.</td>
</tr>
<tr>
<td>Failed</td>
<td>BIOS drive #3. Action: Have the system serviced.</td>
</tr>
<tr>
<td>Failed</td>
<td>BIOS drive #4. Action: Have the system serviced.</td>
</tr>
<tr>
<td>Failed</td>
<td>BIOS drive #5. Action: Have the system serviced.</td>
</tr>
<tr>
<td>Failed</td>
<td>BIOS drive #6. Action: Have the system serviced.</td>
</tr>
</tbody>
</table>

Function: Keyboard Messages (301)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>On system board keyboard test failed. Action:</td>
</tr>
<tr>
<td></td>
<td>1. Replace the keyboard.</td>
</tr>
<tr>
<td></td>
<td>2. If the problem persists, replace the keyboard cable.</td>
</tr>
<tr>
<td></td>
<td>If the problem persists, have the system serviced.</td>
</tr>
</tbody>
</table>

Function: Pointing Device (Mouse) Messages (302)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>On system board pointing device test failed. Action:</td>
</tr>
<tr>
<td></td>
<td>Replace the pointing device (mouse).</td>
</tr>
<tr>
<td></td>
<td>If the problem persists, have the system serviced.</td>
</tr>
</tbody>
</table>
Function: Ethernet Messages (405)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>On system board.</td>
</tr>
</tbody>
</table>

Actions: Have the system serviced.

Failed Diagnostic Messages That Prevent Proper Testing

The following tables display failures that occur during diagnostics that prevent proper testing of the hardware.

Function: RAID Messages (035)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>Test setup error: On system board. Cannot find RAID adapter on PCI bus or BIOS setup problem.</td>
</tr>
</tbody>
</table>

Actions: Have the system serviced.

| Failed | Test setup error: On system board. PCI configuration of RAID adapter cannot be determined or BIOS setup problem. |

Actions: Have the system serviced.

Function: Microprocessor Messages (089)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>Test setup error: Primary microprocessor in socket number U5 is installed but not functioning; check system error log.</td>
</tr>
</tbody>
</table>

Actions:

1. Update the BIOS. See Chapter 9, “Getting Help, Service, and Information” for information about obtaining updates.

2. If the problem persists, replace the primary microprocessor and run the microprocessor diagnostic program again.

If the problem persists, have the system serviced.

| Failed | Test setup error: Secondary microprocessor in socket number U6 is installed but not functioning; check system error log. |

Actions:

1. Update the BIOS. See Chapter 9, “Getting Help, Service, and Information” for information about obtaining updates.

2. If the problem persists, replace the secondary microprocessor and run the microprocessor diagnostic program again.

If the problem persists, have the system serviced.
<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>Test setup error: Invalid microprocessor in socket number U5 or BIOS setup problem.</td>
</tr>
<tr>
<td></td>
<td>1. Update the BIOS. See Chapter 9, “Getting Help, Service, and Information” for information about obtaining updates.</td>
</tr>
<tr>
<td></td>
<td>2. If the problem persists, replace the primary microprocessor and run the microprocessor diagnostic program again.</td>
</tr>
<tr>
<td></td>
<td>If the problem persists, have the system serviced.</td>
</tr>
<tr>
<td>Failed</td>
<td>Test setup error: Invalid microprocessor in socket number U6 or BIOS setup problem.</td>
</tr>
<tr>
<td></td>
<td>1. Update the BIOS. See Chapter 9, “Getting Help, Service, and Information” for information about obtaining updates.</td>
</tr>
<tr>
<td></td>
<td>2. If the problem persists, replace the secondary microprocessor and run the microprocessor diagnostic program again.</td>
</tr>
<tr>
<td></td>
<td>If the problem persists, have the system serviced.</td>
</tr>
<tr>
<td>Warning</td>
<td>Test setup error: Secondary microprocessor not installed or BIOS setup problem.</td>
</tr>
<tr>
<td></td>
<td>1. Verify that the secondary microprocessor is installed and seated correctly.</td>
</tr>
<tr>
<td></td>
<td>2. If the problem persists, update the BIOS. See Chapter 9, “Getting Help, Service, and Information” for information about obtaining updates.</td>
</tr>
<tr>
<td></td>
<td>3. If the problem persists, replace the secondary microprocessor and run the microprocessor diagnostic program again.</td>
</tr>
<tr>
<td></td>
<td>If the problem persists, have the system serviced.</td>
</tr>
</tbody>
</table>
Function: System Memory Messages (201)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
</table>
| Failed | Test setup error: Corrupt DMI BIOS, information in BIOS is not as expected.
Action: Update the BIOS. See Chapter 9, “Getting Help, Service, and Information” for information about obtaining updates.
If the problem persists, have the system serviced. |
| Failed | Test setup error: Unknown hardware problem associated with microprocessor in socket number U5.
Action:
1. Update the BIOS and run the diagnostic program again. See Chapter 9, “Getting Help, Service, and Information” for information about obtaining updates.
2. If the problem persists, replace the primary microprocessor.
If the problem persists, have the system serviced. |
| Failed | Test setup error: Unknown hardware problem associated with microprocessor in socket number U6.
Action:
1. Update the BIOS and run the diagnostic program again. See Chapter 9, “Getting Help, Service, and Information” for information about obtaining updates.
2. If the problem persists, replace the secondary microprocessor.
If the problem persists, have the system serviced. |
| Failed | Test setup error: Corrupt BIOS in ROM.
Action: Update the BIOS. See Chapter 9, “Getting Help, Service, and Information” for information about obtaining updates.
If the problem persists, have the system serviced. |
Function: System Cache Messages (202)

<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
</table>
| Failed | Test setup error: No L2 cache detected on microprocessor socket U5 or BIOS setup problem.
Action:
1. Update the BIOS and run the diagnostic program again. See Chapter 9, “Getting Help, Service, and Information” for information about obtaining updates.
2. If the problem persists, replace the primary microprocessor.
If the problem persists, have the system serviced. |
| Failed | Test setup error: No L2 cache detected on microprocessor socket U6 or BIOS setup problem.
Action:
1. Update the BIOS and run the diagnostic program again. See Chapter 9, “Getting Help, Service, and Information” for information about obtaining updates.
2. If the problem persists, replace the secondary microprocessor.
If the problem persists, have the system serviced. |
| Warning | Test setup error: Cache is disabled. Use system setup to enable before retrying the test.
Action: Use the Cache Control selection in the Advanced Setup menu of the Configuration/Setup Utility to enable the cache. (See “Advanced Setup” on page 171.)
If the problem persists, have the system serviced. |
| Failed | Test setup error: Corrupt DMI BIOS. Information in BIOS is not as expected.
Action: Update the BIOS. See Chapter 9, “Getting Help, Service, and Information” for information about obtaining updates.
If the problem persists, have the system serviced. |
| Failed | Test setup error: BIOS cannot access VPD information.
Action: Update the BIOS. See Chapter 9, “Getting Help, Service, and Information” for information about obtaining updates.
If the problem persists, have the system serviced. |
<table>
<thead>
<tr>
<th>Result</th>
<th>Test Specific String</th>
</tr>
</thead>
</table>
| Failed | Test setup error: Unknown hardware problem associated with microprocessor in socket number U5.

Action:
1. Update the BIOS. See Chapter 9, “Getting Help, Service, and Information” for information about obtaining updates.
2. If the problem persists, replace the primary microprocessor and run the diagnostic program again.
If the problem persists, have the system serviced. |
| Failed | Test setup error: Unknown hardware problem associated with microprocessor in socket number U6.

Action:
1. Update the BIOS. See Chapter 9, “Getting Help, Service, and Information” for information about obtaining updates.
2. If the problem persists, replace the secondary microprocessor and run the diagnostic program again.
If the problem persists, have the system serviced. |
| Failed | Test setup error: Cannot allocate memory due to unknown memory problem.

Action: Have the system serviced. |
Ethernet Controller Messages

The integrated Ethernet controller might display messages from the following device drivers:

- Novell NetWare or IntraNetware Server ODI
- Novell NetWare or IntraNetware Server LAN
- NDIS Adapter for level 2.01 (OS/2)
- NDIS Adapter for level 4.0 (Windows NT)
- SCO UNIX LLI

Novell NetWare or IntraNetware Server ODI Driver Messages

This section contains the error messages for the Novell NetWare or IntraNetware server ODI driver. The explanation and recommended action are included with each message.

PCNTNW-NW-026 The MSM is unable to parse a required custom keyword.

Explanation: The user entered an incorrect parameter keyword.

Action: Reload the driver using the correct keyword.

PCNTNW-NW-054 The adapter did not respond to the initialization command.

Explanation: The adapter did not respond when the driver tried to initialize it.

Action: Verify that the Ethernet jumper on the system board is set to the default (enabled) position (see “System Board Jumpers” on page 420). If the jumper is set to the default (enabled) position, go to “Diagnostic Programs” on page 296 to run the diagnostic utility.

PCNTNW-NW-058 The adapter did not respond to the initialization command.

Explanation: The interrupt request (IRQ) setting might not be valid or the EEPROM information might be incorrect.

Action: Make sure the IRQ settings are correct in the configuration programs. See “PCI Bus Control” on page 171 for information on setting the interrupt requests. If the IRQ settings are correct, have the system serviced.

PCNTNW-NW-066 The cable might be disconnected from the adapter.

Explanation: The cable might be disconnected from the server Ethernet port.

Action: Verify that a cable is connected to the Ethernet port.
PCNTNW-NW-071 The matching virtual adapter could not be found.

Explanation: You tried to load another instance of the driver with a different I/O address. This new adapter could not be found.

Action: If you installed an IBM Ethernet adapter, make sure that the adapter is seated correctly. If the adapter is seated correctly, have the system serviced.

PCNTNW-NW-072 A resource tag is unavailable.

Explanation: The driver tried to allocate some resources that were not available.

Action: Add or free some memory in the server. Then, restart the server.

PCNTNW-NW-073 Unable to allocate memory.

Explanation: The driver failed to allocate the memory needed for normal operation.

Action: Add more memory, or free some memory resources in the server. Then, restart the server.

PCNTNW-NW-074 The hardware interrupt cannot be set.

Explanation: An attempt was made to initialize a given hardware interrupt. The attempt was not successful.

Action: Verify that the Ethernet jumper on the system board is set to the default (enabled) position (see “System Board Jumpers” on page 420).

Make sure that the interrupt request numbers are set correctly. If you are using an ISA adapter, make sure resources are reserved as ISA Legacy in the configuration programs (see “Plug and Play” on page 172.)

PCNTNW-NW-075 The Multiple Link Interface Driver (MLID) cannot be registered with the Link Support Layer (LSL).

Explanation: An error occurred while the driver was trying to register with the LSL.

Action: Check the version of the NetWare or IntraNetware Operating System. Make sure that this driver is correct for the version of NetWare or IntraNetware that you are using. Restart the server.

PCNTNW-NW-076 The polling procedure cannot be added.

Explanation: An error occurred while the driver was adding a polling procedure to the NetWare or IntraNetware Operating System polling routines.

Action: Check the version of NetWare or IntraNetware Operating System. Make sure that this driver is correct for the version of NetWare or IntraNetware that you are using. Restart the server.
Ethernet Controller Messages

PCNTNW-NW-077 The event notification cannot be registered.
Explanation: The driver failed to register its event notification routines with the NetWare or IntraNetware Operating System.
Action: Check the version of NetWare or IntraNetware Operating System. Make sure that this driver is correct for the version of NetWare or IntraNetware that you are using. Restart the server.

PCNTNW-NW-078 The microcode file cannot be read.
Explanation: The driver attempted to read a microcode file. The read process failed.
Action: Make sure that the support files that accompany the driver are present. Restart the server.

PCNTNW-NW-079 The Multiple Link Interface Driver (MLID) did not initialize MSMTx Free Count.
Explanation: The MSMTx Free Count is not initialized correctly.
Action: Restart the server. If the problem persists, have the system serviced.

PCNTNW-NW-084 Unable to allocate memory below the 16 Mb boundary.
Explanation: A request was made to allocate memory below 16 Mb. The request did not complete successfully.
Action: Free some memory below 16 Mb by unloading some NLMs (NetWare loadable modules). If the problem persists, have the system serviced.

PCNTNW-NW-086 The driver parameter block is too small.
Explanation: The driver parameter block is too small.
Action: Restart the server. If the problem persists, have the system serviced.

PCNTNW-NW-087 The media parameter block is too small.
Explanation: The driver media parameter block is too small.
Action: Restart the server. If the problem persists, have the system serviced.

PCNTNW-NW-091 The hardware configuration conflicts.
Explanation: You tried to load a new frame type for the existing controller. The hardware assumptions made in doing so are incorrect. This error can also occur if you try to specify a mode (such as, redundancy) that conflicts with another specified mode.
Action: Make sure that your hardware configuration matches the software settings. See “PCI Bus Control” on page 171 for information on viewing and changing interrupt requests.
PCNTNW-NW-126 The group bit in the node address override was cleared.

Explanation: The IEEE address has a group bit indicating that an address belongs to a group of stations. This bit is used only as a destination address; it cannot be used as a source address. You tried to enter a source address with this bit set. The driver cleared the group bit of the source address.

Action: None necessary, message is for information only.

PCNTNW-NW-127 The local bit in the node address override was set.

Explanation: The local bit in the IEEE address format indicates that the addresses are being managed locally. If you use the node address override capabilities of this driver to enter a new address, the local bit must be set. You entered an address without the local bit set. The driver has set the local bit.

Action: None necessary, message is for information only.

PCNTNW-NW-164 The device was not found.

Explanation: The driver cannot find an Ethernet controller in the server.

Action: Verify that the Ethernet enable jumper is set to the default (enabled) position (see “System Board Jumpers” on page 420). If the jumper is set to the default (enabled) position, go to “Diagnostic Programs” on page 296 to run the diagnostic utility.

PCNTNW-NW-165 The device was not found at IOADDRESS.

Explanation: The Ethernet controller cannot be found at the I/O address specified.

Action: The Ethernet controller does not require a parameter for the I/O address. Remove the I/O address parameter.

PCNTNW-NW-167 PCI scan specified, device not found.

Explanation: The driver cannot locate the Ethernet controller on the PCI bus.

Action: Verify that the Ethernet jumper on the system board is set to the default (enabled) position (see “System Board Jumpers” on page 420).

If the problem persists, go to “Diagnostic Programs” on page 296 to run the diagnostic utility.

PCNTNW-NW-180 The DMA parameter is not necessary for PCI device.

Explanation: The Ethernet controller does not require a DMA setting.

Action: None necessary, message is for information only.
NDIS 2.01 (OS/2) Driver Messages
This section contains the error messages for the NDIS 2.01 (OS/2) drivers. The explanation and recommended action are included with each message.

PCNTND-1 Unable to open the Protocol Manager.
Explanation: The NDIS stack is not configured correctly.
Action: Check and correct your configuration.

PCNTND-6 Out of memory while allocating buffers.
Explanation: The driver could not allocate the requested buffers.
Action: Check your system configuration. Edit the PROTOCOL.INI file to reduce the number of Txbuffers and Rxbuffers specified for the driver.

PCNTND-7 A Protocol Manager device error occurred.
Explanation: The NDIS stack is not configured correctly.
Action: Check and correct your configuration.

PCNTND-8 Bad status for the Protocol Manager.
Explanation: The NDIS stack is not configured correctly in the PROTOCOL.INI file.
Action: Check and correct your configuration.

PCNTND-9 Cannot find the PROTOCOL.INI entry.
Explanation: The NDIS stack is not configured correctly in the PROTOCOL.INI file.
Action: Check and correct your configuration.

PCNTND-10 The Protocol Manager Input Output Control (IOCTL) failed.
Explanation: The NDIS stack is not configured correctly in the PROTOCOL.INI file.
Action: Check and correct your configuration.

PCNTND-11 Protocol Manager registration failed.
Explanation: The NDIS stack is not configured correctly.
Action: Check and correct your configuration.
PCNTND-15 Device not found.

Explanation: The driver cannot find an Ethernet controller in the server.

Action: Verify that the Ethernet enable jumper is set to the default (enabled) position (see “System Board Jumpers” on page 420). If the jumper is set to the default (enabled) position, go to “Diagnostic Programs” on page 296 to run the diagnostic utility.

PCNTND-16 PCI scan specified, device not found.

Explanation: The driver cannot locate the Ethernet controller on the PCI bus.

Action: Verify that the Ethernet enable jumper is set to the default (enabled) position (see “System Board Jumpers” on page 420). If the jumper is set to the default (enabled) position, go to “Diagnostic Programs” on page 296 to run the diagnostic utility.

PCNTND-21 The adapter failed the checksum test.

Explanation: The driver cannot find an Ethernet controller.

Action: Verify that the Ethernet enable jumper is set to the default (enabled) position (see “System Board Jumpers” on page 420). If the jumper is set to the default (enabled) position, go to “Diagnostic Programs” on page 296 to run the diagnostic utility.

PCNTND-23 WARNING: PCNET IRQ found = xx

Explanation: The interrupt request (IRQ) setting (xx) in the PROTOCOL.INI file does not match the hardware IRQ setting.

Action: Remove the IRQ setting from the PROTOCOL.INI file or change the IRQ setting in the PROTOCOL.INI file to match the IRQ setting shown in the PCI Routing selection of the System Information menu in the Configuration/Setup Utility. (See “PCI Routing” on page 163.)

PCNTNW-24 WARNING: PCNET IRQ does not match PROTOCOL.INI.

Explanation: The interrupt request (IRQ) setting in the PROTOCOL.INI file does not match the hardware IRQ setting.

Action: Remove the IRQ setting from the PROTOCOL.INI file or change the IRQ setting in the PROTOCOL.INI file to match the IRQ setting shown in the PCI Routing selection of the System Information menu in the Configuration/Setup Utility. (See “PCI Routing” on page 163.)
Ethernet Controller Messages

PCNTNW-25 PCI scan specified, PCI bus not found!

Explanation: The driver cannot locate the Ethernet controller on the PCI bus.

Action: Verify that the Ethernet enable jumper is set to the default (enabled) position (see “System Board Jumpers” on page 420). If the jumper is set to the default (enabled) position, go to “Diagnostic Programs” on page 296 to run the diagnostic utility.

PCNTNW-29 WARNING: DMA number is not necessary for PCI device.

Explanation: The Ethernet controller does not require a DMA setting.

Action: Remove the DMA setting in the PROTOCOL.INI file.

PCNTNW-32 IRQ number is already in use by another PCNET device.

Explanation: The specified interrupt request (IRQ) number is already in use by another Ethernet controller or device.

Action: Modify the IRQ setting in the PROTOCOL.INI file, or modify the IRQ settings in the configuration programs. See “PCI Bus Control” on page 171 for information about setting the interrupt requests in the configuration programs.

PCNTNW-33 PCNET device with specified IOBASE is already in use.

Explanation: The specified I/O address number is already in use by another Ethernet controller or device.

Action: Remove the I/O address setting in the PROTOCOL.INI file.

NDIS 4.0 (Windows NT) Driver Messages

This section contains the error messages for the NDIS 4.0 drivers. The explanation and recommended action are included with each message.

Explanation: The failover option requires an adapter that is compatible with the device driver of the Ethernet controller on the system board. No such adapter was found.

Action: Make sure the correct adapter is installed.

Explanation: The system detected a problem with the primary Ethernet connection and has transferred all network traffic to the secondary Ethernet controller.

Action: Identify the cause of the failure on the primary Ethernet connection. Restoring the operational state of the primary connection will cause the network traffic to automatically transfer to the primary Ethernet controller.

PermaNet(tm) Server: Switching back to Primary Adapter.

Explanation: The primary Ethernet connection is now operating correctly. Network traffic will automatically transfer to the primary Ethernet controller.

Action: None needed, message is for information only.

UNIX Messages

This section contains the error messages for the SCO UNIX LLI driver.

pnt0-2
PCI search specified, PCI device not found!

Explanation: The driver cannot locate the Ethernet controller on the PCI bus.

Action: Run the NETCONFIG program to search for another Ethernet controller.

Verify that the Ethernet enable jumper is set to the default (enabled) position (see “System Board Jumpers” on page 420).

If the problem persists, go to “Diagnostic Programs” on page 296 to run the diagnostic utility.

pnt0-6
Cannot allocate memory for the adapter during an interrupt. Please check your Streams parameters.

Explanation: On a SunSoft Solaris system, this message indicates that the system is out of Streams memory blocks.

Action: Use the CRASH utility to increase the number of Streams memory blocks.

Modify the interrupt request (IRQ) settings in the configuration programs, or run the NETCONFIG program to match the hardware settings.

pnt0-7
Cannot allocate memory for the adapter during reset. Please check your Streams parameters.

Explanation: The system is out of Streams memory blocks.

Action: Use the CRASH utility to increase the number of Streams memory blocks.
Ethernet Controller Messages

pnt0-11
Device not found!

Explanation: The driver cannot find an Ethernet controller.

Action: Verify that the Ethernet enable jumper is set to the default (enabled) position (see “System Board Jumpers” on page 420). If the jumper is set to the default (enabled) position, go to “Diagnostic Programs” on page 296 to run the diagnostic utility.

pnt0-12
Device failed checksum test!

Explanation: The driver cannot find an Ethernet controller.

Action: Verify that the Ethernet enable jumper is set to the default (enabled) position (see “System Board Jumpers” on page 420). If the jumper is set to the default (enabled) position, go to “Diagnostic Programs” on page 296 to run the diagnostic utility.

pnt0-13
add_intr_handler failed! Interrupts already enabled.

Explanation: The interrupt request (IRQ) that was specified, or the IRQ that was found, conflicts with other devices in the server.

Action: Modify your hardware settings.

Run the NETCONFIG program to match the hardware settings.

pnt0-14
Cannot locate hardware.

Explanation: The SunSoft Solaris driver cannot find any Ethernet controller.

Action: Verify that the Ethernet enable jumper is set to the default (enabled) position (see “System Board Jumpers” on page 420). If the jumper is set to the default (enabled) position, go to “Diagnostic Programs” on page 296 to run the diagnostic utility.

pnt0-15
No more devices to open.

Explanation: The SunSoft Solaris driver cannot find any more Ethernet controllers.

Action: Verify that additional IBM PCI Ethernet adapters are present or replace the Ethernet adapter that fails to respond. If the problem persists, go to “Diagnostic Programs” on page 296 to run the diagnostic utility.

pnt0-17
Device fault...Reset initiated!

Explanation: The SunSoft Solaris driver has been reset due to a device fault.

Action: Verify that additional IBM PCI Ethernet adapters are present or replace the PCnet card that fails to respond. If the problem persists, go to “Diagnostic Programs” on page 296 to run the diagnostic utility.
Ethernet Controller Messages

pnt0-19 irq found for PCnet hardware does not match space.c (or pnt.conf)!
Explanation: This is a warning message referring to the interrupt request (IRQ) that the SunSoft Solaris driver found in the system.
Action: Ignore this message if you are sure that this is what you want to do. Otherwise, run the NETCONFIG program to match the hardware settings.

pnt0-20 add_intr_handler failed! Unknown interrupt type.
Explanation: The interrupt request (IRQ) that was specified, or the IRQ that was found, conflicts with other devices in the server.
Action: Modify your hardware settings.
Run the NETCONFIG program to search for another Ethernet controller.

pnt0-21 add_intr_handler failed! Out of range interrupt number.
Explanation: The interrupt request (IRQ) that was specified, or the IRQ that was found, conflicts with other devices in the server.
Action: Modify your hardware settings.
Run the NETCONFIG program to search for another Ethernet controller.

pnt0-22 add_intr_handler failed! Out of range IPL.
Explanation: The interrupt request (IRQ) that was specified, or the IRQ that was found, conflicts with other devices in the server.
Action: Modify your hardware settings.
Run the NETCONFIG program to search for another Ethernet controller.

pnt0-23 add_intr_handler failed! Vector already occupied.
Explanation: The interrupt request (IRQ) that was specified, or the IRQ that was found, conflicts with other devices in the server.
Action: Modify your hardware settings.
Run the NETCONFIG program to search for another Ethernet controller.

pnt0-24 add_intr_handler failed! Vector already shared at different IPL.
Explanation: The interrupt request (IRQ) that was specified, or the IRQ that was found, conflicts with other devices in the server.
Action: Modify your hardware settings.
Run the NETCONFIG program to search for another Ethernet controller.
ServeRAID II Controller Messages

pnt0-26 The DMA number is not necessary for PCI device.
Explanation: The IBM PCI Ethernet adapter does not require a DMA setting.
Action: Edit the SPACE.C file to delete the DMA parameter.

pnt0-29 The IRQ number is already in use.
Explanation: The specified I/O address is already in use.
Action: Run the NETCONFIG program to modify your hardware settings.

pnt0-31 I/O address is not necessary for the PCI device.
Explanation: The I/O address specified is not required.
Action: Remove the assigned I/O address specified for the Ethernet controller.

ServeRAID II Controller Messages
This section lists the ServeRAID II diagnostic and run-time error messages that might appear during system startup.

The ServeRAID II controller contains a Device Event Log that collects statistics on the number and types of events that occur on a selected hard disk drive. After correcting a problem with the disk array, clear the table so that you can identify any subsequent errors quickly. For more information, see “Viewing the Drive Information” on page 66.

All hard disk drives contain unique identifiers, such as the drive serial number and manufacturer. During configuration, the ServeRAID II controller stores this information.

The ServeRAID II controller also adds an additional unique identifier, called the host ID, to each hard disk drive that is part of a logical drive. The host ID is a user-defined 12-character string. See “Viewing or Changing the ServeRAID Controller Parameters” on page 68 for information on assigning a host ID.
ServeRAID II POST and Setup Messages

During power-on self-test (POST), the ServeRAID II controller compares the stored configuration information to the configuration that is actually present. If a discrepancy exists, one or more status messages appear after POST completes, but before the operating system loads. When the ServeRAID II controller requires your input, a list of function keys will appear below the message.

A new drive was installed.

Explanation: When the ServeRAID II controller detects a new drive that is not part of the current configuration, the following message appears:

Following new drives found (old state: new state: ch: bay)

Action: This is an information message. No action is required.

Configured drives are missing.

Explanation: When the ServeRAID II controller detects that a previously configured drive is missing, the following message appears:

Following drives not responding (old state: new state: ch: bay)

Where:
- **old state** is the configured state of the drive.
- **new state** is the state that the ServeRAID II controller will assign to the drive.
- **ch** is the channel where the drive was located previously.
- **bay** is bay where the drive was located previously.

Examples of the possible state changes include:

(ONL: DDD x: y)
(RDY: EMP x: y)
(SBY: EMP x: y)
(RBL: DDD x: y)
(HSP: DHS x: y)
(SHS: DHS x: y)

Action: Press one of the following keys:

F4 Retry. Press this key after correcting a problem. For example, press retry after you turn on the external storage enclosure that contains the hard disk drive.

F5 Accept. Press this key to accept the new state that the ServeRAID II controller will assign to the drive. For example, the controller will assign the drive a state of defunct (DDD) or empty (EMP).

You can also press F5 when you must remove a drive, RAID level 1 and RAID level 5 logical drives are present, and performance in a degraded...
mode is acceptable. The ServeRAID II controller will assign the drive a state of defunct (DDD), but the server can complete startup. However, the array will remain in Critical mode and the potential for data loss will exist until you replace and rebuild the defunct drive. To prevent the loss of data, replace and rebuild the defunct drive in a timely manner.

Note: A hard disk drive in the DDD state does not necessarily mean that you need to replace the drive. Before you replace the drive, ensure that:

1. All cables are connected properly to the backplane and to the hard disk drive. Also, ensure that all cables inside the server are connected properly.

2. The hot-swap drive trays are seated properly in the drive bay.

3. If you have not already attempted to rebuild the drive, try rebuilding it. See “Understanding the Drive Rebuild Process” on page 88 for more information.

After you perform these steps, if the hard disk drive does not function properly, replace the drive.

F10 Continue. Press this key to continue without change to the configuration.

Configured drives are not in the configured location.

Explanation: This message will be preceded by the previous messages and the F5 key choice because configured drives were not found in the configured location. When the ServeRAID II controller detects that a previously configured drive is present, but the drive is in a new location, the following message appears:

Following drives found in new location (old ch: old bay: > new ch: new bay)

Where: old ch is the channel that matches the existing drive configuration information.

old bay is the bay that matches the existing drive configuration information.

new ch is the channel where the drive is now located.

new bay is the bay where the drive is now located.

For example:

(1 :5 > 1: 14)

In this example, the message indicates that the drive from Channel 1, Bay 5 is now located at Channel 1, Bay 14. The drive might have been physically moved to the new bay.

Action: Press one of the following keys:

F4 Retry. Press this key after correcting a problem. For example, press retry after you move the hard disk drive to its previously assigned location.

F5 Accept. Press this key to accept the new state that the ServeRAID II controller will assign to the drive. For example, the controller will assign the drive a state of defunct (DDD) or empty.
Note: A hard disk drive in the DDD state does not necessarily mean that you need to replace the drive. Before you replace the drive, ensure that:

1. All cables are connected properly to the backplane and to the hard disk drive. Also, ensure that all cables inside the server are connected properly.

2. The hot-swap drive trays are seated properly in the drive bay.

3. If you have not already attempted to rebuild the drive, try rebuilding it. See “Understanding the Drive Rebuild Process” on page 88 for more information.

After you perform these steps, if the hard disk drive does not function properly, replace the drive.

F6 Modify. Press this key to modify the configuration to match the current drive location.

You might remove the hot-swap drives from the server for security or maintenance reasons. If you replace the drives but install them in different bays, you can press F6 to accept the new locations, and the ServeRAID II controller will update the configuration.

New adapter installed in a configured server or drives are imported from a different server.

Explanation: This message might be preceded by the previous two messages and the F5 and F6 key choices because the drives were not found in the configured location. When the ServeRAID II controller detects that the identifiers of the drives do not match the adapter configuration information, the following message appears:

Following new drive found: (host id: old ch: old bay: new ch: new bay)

Where: host id is the adapter identification.

old ch is the channel that matches the drive configuration information.

old bay is the bay that matches the drive configuration information.

New ch is the channel where the drive is now located.

new bay is the bay where the drive is now located.

This message might be preceded by the two previously described messages and the F5 and F6 function key choices, because the drives are not found in the configured location.

For example, when drivers are imported from a server with the host ID of My Machine: (My Machine: 1:6 > 1:10)

In this example, the message indicates that the drive from Channel 1, Bay 6 is now located at Channel 1, Bay 10. The drive might have been physically moved to the new bay.

Action: Press one of the following keys:
ServeRAID II Controller Messages

F4 Retry. Press this key after correcting the problem. For example, press retry after you move the hard disk drive to its previously assigned location, or after you install the original hard disk drives back in the server.

F5 Accept. Press this key to accept the new state that the ServeRAID II controller will assign to the drive. For example, the controller will assign the drive a state of defunct (DDD) or empty.

Note: A hard disk drive in the DDD state does not necessarily mean that you need to replace the drive. Before you replace the drive, ensure that:

1. All cables are connected properly to the backplane and to the hard disk drive. Also, ensure that all cables inside the server are connected properly.
2. The hot-swap drive trays are seated properly in the drive bay.
3. If you have not already attempted to rebuild the drive, try rebuilding it. See “Understanding the Drive Rebuild Process” on page 88 for more information.

After you perform these steps, if the hard disk drive does not function properly, replace the drive.

F6 Modify. This choice is not always active. Press this key to modify the configuration to match the current drive location.

You might remove the hot-swap drives from the server for security or maintenance reasons. If you replace the drives but install them in different bays, you can press F6 to accept the new locations, and the ServeRAID II controller will update the configuration.

F7 Import. Press this key to import the configuration information from the drive and to update the configuration information on the ServeRAID II controller. This choice is useful when you replace the ServeRAID II controller in an existing disk-array model.

You also might press F7 if you replace a whole set of drives with drives that were configured in another server with a ServeRAID II controller.

Note: When you install drives in a server that has no logical drives defined, the F7 choice will not appear. The controller does not contain any logical drives in its factory configuration. Therefore, F7 will not appear. In this case, do the following:

1. Restart the server and press Ctrl+I to enter the Mini-Configuration program (see “Using the ServeRAID Mini-Configuration Program” on page 96).
2. Select Advanced Functions.
3. Select Import Configuration from Drives to Adapter and follow the instructions on the screen.
ServeRAID II Status and Messages

This table lists, in alphabetical order, messages associated with the IBM ServeRAID II Controller.

Where the “Action” information tells you to start the IBM ServeRAID Configuration program, insert the ServeRAID Configuration Diskette in the primary diskette drive (usually drive A); then, press **Ctrl+Alt+Del**. The action column also provides general information about the message.

Where m or n appears in these messages, a number will appear in the actual message.

<table>
<thead>
<tr>
<th>n logical drives are installed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation: n represents the number of defined logical drives.</td>
</tr>
<tr>
<td>Action: This is an information message. No action is required.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controller is not responding to commands. No logical drives are installed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation: The ServeRAID II controller is not operational.</td>
</tr>
<tr>
<td>Action: Have the system serviced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error: Cannot disable this adapter BIOS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation: The controller was unable to prevent an extra copy of the controller BIOS from being stored on the server. This condition occurs when the server contains multiple ServeRAID II controllers.</td>
</tr>
<tr>
<td>Action: This is an information message. No action is required.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Following drives not responding (old state: new state ch: bay)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation: One or more drives did not respond to the controller. For example, the controller detected a new drive in an unconfigured bay, and the drive is not part of the current configuration. This might also occur if the controller detected that a configured drive is missing.</td>
</tr>
<tr>
<td>Action: Select F5 to accept the new state that the ServeRAID II controller will assign to the drive. For example, the controller will assign the drive a state of defunct (DDD) or empty (EMP).</td>
</tr>
<tr>
<td>A hard disk drive in the DDD state does not necessarily mean that you need to replace the drive. Before you replace the drive, ensure that:</td>
</tr>
<tr>
<td>1. All cables are connected properly to the backplane and to the hard disk drive. Also, ensure that all cables inside the server are connected properly.</td>
</tr>
</tbody>
</table>
2. The hot-swap drive trays are seated properly in the drive bay.

3. If you have not already attempted to rebuild the drive, try rebuilding it. See “Understanding the Drive Rebuild Process” on page 88 for more information.

After you perform these steps, if the hard disk drive does not function properly, replace the drive.

For more information, see “Configured drives are missing.” on page 345.

Following new drives found (old state: new state ch: bay)

Explanation: One or more drives were found in an unconfigured bay. For each drive listed, a new state of Ready (RDY) appears.

Action: This is an information message. No action is required.

Following drives found in new location (old ch: old bay > new ch: new bay)

Explanation: POST found that the location of one or more drives does not match the stored configuration information.

Action: For more information, see “Configured drives are not in the configured location.” on page 346.

Installation stopped.

Explanation: The server cannot access the ServeRAID II controller.

Action: This is a follow-on message to a preceding message. Follow the “Action” instructions for the preceding message to resolve the problem.

Recoverable configuration error; run Configuration program.

Explanation: The configuration data stored in NVRAM does not match the configuration data stored in the EEPROM.

Action:

1. Insert the ServeRAID II Configuration CD.
2. Press Ctrl+Alt+Del to restart the system.
3. Select Advanced Functions and synchronize the configuration.
4. See “Synchronizing Logical Drives” on page 60 for more information.

WARNING: n logical drives are critical; n logical drives are offline.

Explanation: One or more hard disk drives have failed.

Action: Replace the defunct drives as soon as possible to prevent data loss.
Your server has an error due to a Blocked Logical Drive.

Explanation: One or more logical drives are in a blocked state. A blocked logical drive cannot be accessed. See “Rebuilding Drives” on page 140 for additional information.

Action: Press F4 to unblock the logical drive. Press F5 to continue without unblocking.

ServeRAID II Configuration Conflict Messages
This table lists messages associated with ServeRAID II controller configuration conflicts.

Auto rearrange message M0

Explanation: Auto rearrange is enabled/disabled.

Action: None

Standard BIOS error message M1

Explanation: Your system has a configuration error due to the conditions in the message.

Action: Press the following keys:
- F1 Retry
- F2 Accept the changes in configuration.
- F3 Rearrange with the drive configuration.
- F4 Synchronize with the drive configuration.
- F10 Exit without any change in configuration.

Recoverable configuration error M2

Explanation: A recoverable configuration error occurred.

Action: Run ServeRAID II configuration. See Chapter 3, “Configuring and Monitoring Your Disk Arrays” on page 33.

Unrecoverable configuration error M3

Explanation: An unrecoverable configuration error occurred.

Action: Run ServeRAID II configuration. See Chapter 3, “Configuring and Monitoring Your Disk Arrays” on page 33.
ServeRAID II Controller Messages

Adapter not responding properly M4

Explanation: The ServeRAID II adapter is not responding correctly.

Action: Run ServeRAID II diagnostics, get the adapter status, and display message M0.

- If no errors are detected:

 BCS = X'0F' or X'09'

 ECS = X'00'

- If the BCS is NOT X'0F' or X'09', and ECS is NOT X'00', then:

 - Get and display the Power-on Change list if present.

 - Get and display the Wrong SCSI ID list if present.

 - Get and display the Undefined Device list if present.

 - Display message M1.

 Press the corresponding Fx keys and use the table under “BCS/ECS Configuration Registers Codes” on page 355.

ServeRAID II Diagnostic Messages

<table>
<thead>
<tr>
<th>Diagnostic Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2601h</td>
<td>A ServeRAID error occurred.</td>
</tr>
<tr>
<td>2602h</td>
<td>A ServeRAID controller hardware error occurred.</td>
</tr>
<tr>
<td>2603h</td>
<td>Action: Have the system serviced.</td>
</tr>
<tr>
<td>2604h</td>
<td>A ServeRAID disk configuration or hard disk error occurred.</td>
</tr>
<tr>
<td>2605h</td>
<td>Action: Run ServeRAID II configuration. See Chapter 3, “Configuring and Monitoring Your Disk Arrays” on page 33.</td>
</tr>
<tr>
<td>2606h</td>
<td>If the problem persists, have the system serviced.</td>
</tr>
</tbody>
</table>
ServeRAID II ISPR, BCS, and ECS Codes

Once the RAID test has completed the following register information is displayed on the screen before returning to the Diagnostic (test selection) menu.

Hardware: ISPR=aaaa BCS=bb ECS=cc

ISPR is the Interrupt Status Port Register; BCS and ECS are Configuration Registers.

If NO errors occur:

- **ISPR** (aaaa) = X'EF10'
- **BCS** (bb) = X'0F' or X'09'
- **ECS** (cc) = X'00'

If an error occurs:

- ISPR is translated into the error codes under “ISPR (Interrupt Status Port Register) Codes.”
- BCS and ECS are translated into the codes under “BCS/ECS Configuration Registers Codes” on page 355.

ISPR (Interrupt Status Port Register) Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Explanation</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF10</td>
<td>No Error</td>
<td>None</td>
</tr>
<tr>
<td>1xxx</td>
<td>A flash checksum error occurred.</td>
<td>Have the system serviced.</td>
</tr>
<tr>
<td>2xxx</td>
<td>A code DRAM error occurred.</td>
<td>Have the system serviced.</td>
</tr>
<tr>
<td>3xxx</td>
<td>A NVRAM error occurred.</td>
<td>Have the system serviced.</td>
</tr>
</tbody>
</table>
ServeRAID II Controller Messages

4xxx
Explanation: A timer/cache memory controller error occurred.
Action: Have the system serviced.

5xxx
Explanation: A cache memory controller error occurred.
Action: Have the system serviced.

6xxx
Explanation: A cache DRAM error occurred.
Action: Have the system serviced.

7xxx
Explanation: A host/local PCI bus interface error occurred.
Action: Have the system serviced.

8xxx
Explanation: A SCSI I/O port error occurred.
Action: Have the system serviced.

9xxx
Explanation: A SCSI termination error occurred.
Action: Check cable connections and device termination. See “Termination (Internal SCSI Devices)” on page 236 for more information. If the problem persists, have the system serviced.

Axxx
Explanation: A SCSI I/O port error occurred.
Action: Have the system serviced.

Bxxx
Explanation: A SCSI bus interface error occurred.
Action: Have the system serviced.
BCS/ECS Configuration Registers Codes

<table>
<thead>
<tr>
<th>BCS</th>
<th>ECS</th>
<th>Explanation and Possible Recovery Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCS not in table</td>
<td>ECS not in table</td>
<td>Explanation: The adapter is not functioning properly. Action: Run ServeRAID II diagnostics and display message M4.</td>
</tr>
<tr>
<td>0000 0000 (X'00')</td>
<td>0000 0001 (X'01')</td>
<td>Explanation: Invalid Flash configuration. Action: Run ServeRAID II configuration and display message M2. See Chapter 3, “Configuring and Monitoring Your Disk Arrays” on page 33.</td>
</tr>
<tr>
<td>0000 0000 (X'00')</td>
<td>0000 0010 (X'02')</td>
<td>Explanation: Invalid NVRAM configuration. Action: Run ServeRAID II configuration and display message M2. See Chapter 3, “Configuring and Monitoring Your Disk Arrays” on page 33.</td>
</tr>
<tr>
<td>0000 0000 (X'00')</td>
<td>0000 0011 (X'03')</td>
<td>Explanation: Invalid Flash and NVRAM configuration. Action: Run ServeRAID II configuration and display message M3. See Chapter 3, “Configuring and Monitoring Your Disk Arrays” on page 33.</td>
</tr>
<tr>
<td>0000 0001 (X'01')</td>
<td>0000 1000 (X'08')</td>
<td>Explanation: No configuration was found in drive(s) and ONL/RBL drive(s) are not responding. Action: Press F1, F2, F4, F10</td>
</tr>
<tr>
<td>0000 0001 (X'01')</td>
<td>0001 1000 (X'18')</td>
<td>Explanation: No configuration was found in drive(s) and ONL/RBL and HSP/SHS drive(s) are not responding. Action: Press F1, F2, F4, F10</td>
</tr>
<tr>
<td>0000 0001 (X'01')</td>
<td>0010 1000 (X'28')</td>
<td>Explanation: No configuration was found in drive(s) and ONL/RBL and RDY/SBY drive(s) are not responding. Action: Press F1, F2, F4, F10</td>
</tr>
<tr>
<td>0000 0001 (X'01')</td>
<td>0011 1000 (X'38')</td>
<td>Explanation: No configuration was found in drive(s) and ONL/RBL, HSP/SHS, and RDY/SBY drive(s) are not responding. Action: Press F1, F2, F4, F10</td>
</tr>
<tr>
<td>0000 0001 (X'01')</td>
<td>0100 1000 (X'48')</td>
<td>Explanation: No configuration was found in drive(s) and ONL/RBL drive(s) are not responding and unidentified drive(s) were found. Action: Press F1, F2, F4, F10</td>
</tr>
</tbody>
</table>
ServeRAID II Controller Messages

<table>
<thead>
<tr>
<th>BCS</th>
<th>ECS</th>
<th>Explanation and Possible Recovery Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 0001</td>
<td>0101 1000</td>
<td>Explanation: No configuration was found in drive(s) and ONL/RBL and HSP/SHS drive(s) are not responding and unidentified drive(s) were found. Action: Press F1, F2, F4, F10</td>
</tr>
<tr>
<td>(X'01')</td>
<td>(X'58')</td>
<td></td>
</tr>
<tr>
<td>0000 0001</td>
<td>0110 1000</td>
<td>Explanation: No configuration was found in drive(s) and ONL/RBL and RDY/SBY drive(s) are not responding and unidentified drive(s) were found. Action: Press F1, F2, F4, F10</td>
</tr>
<tr>
<td>(X'01')</td>
<td>(X'68')</td>
<td></td>
</tr>
<tr>
<td>0000 0001</td>
<td>0111 1000</td>
<td>Explanation: No configuration was found in drive(s) and ONL/RBL, HSP/SHS, and RDY/SBY drive(s) are not responding and unidentified drive(s) were found. Action: Press F1, F2, F4, F10</td>
</tr>
<tr>
<td>(X'01')</td>
<td>(X'78')</td>
<td></td>
</tr>
<tr>
<td>0000 0011</td>
<td>1000 1000</td>
<td>Explanation: A drive was imported from another system and it has valid configuration and ONL/RBL drive(s) are not responding. Action: Press F1, F2, F4, F10</td>
</tr>
<tr>
<td>(X'03')</td>
<td>(X'88')</td>
<td></td>
</tr>
<tr>
<td>0000 0011</td>
<td>1001 1000</td>
<td>Explanation: A drive was imported from another system and it has valid configuration and ONL/RBL and HSP/SHS drive(s) are not responding. Action: Press F1, F2, F4, F10</td>
</tr>
<tr>
<td>(X'03')</td>
<td>(X'98')</td>
<td></td>
</tr>
<tr>
<td>0000 0011</td>
<td>1010 1000</td>
<td>Explanation: A drive was imported from another system and it has valid configuration and ONL/RBL and RDY/SBY drive(s) are not responding. Action: Press F1, F2, F4, F10</td>
</tr>
<tr>
<td>(X'03')</td>
<td>(X'A8')</td>
<td></td>
</tr>
<tr>
<td>0000 0011</td>
<td>1011 1000</td>
<td>Explanation: A drive was imported from another system and it has valid configuration and ONL/RBL, HSP/SHS, and RDY/SBY drive(s) are not responding. Action: Press F1, F2, F4, F10</td>
</tr>
<tr>
<td>(X'03')</td>
<td>(X'B8')</td>
<td></td>
</tr>
<tr>
<td>0000 0011</td>
<td>1100 1000</td>
<td>Explanation: A drive was imported from another system and it has valid configuration and ONL/RBL drive(s) are not responding and unidentified drive(s) were found. Action: Press F1, F2, F4, F10</td>
</tr>
<tr>
<td>(X'03')</td>
<td>(X'C8')</td>
<td></td>
</tr>
<tr>
<td>0000 0011</td>
<td>1101 1000</td>
<td>Explanation: A drive was imported from another system and it has valid configuration and ONL/RBL and HSP/SHS drive(s) are not responding and unidentified drive(s) were found. Action: Press F1, F2, F4, F10</td>
</tr>
<tr>
<td>(X'03')</td>
<td>(X'D8')</td>
<td></td>
</tr>
<tr>
<td>BCS</td>
<td>ECS</td>
<td>Explanation and Possible Recovery Action</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| 0000 0011 (X'03') | 1110 1000 (X'E8') | **Explanation:** A drive was imported from another system and it has valid configuration and ONL/RBL and RDY/SBY drive(s) are not responding and unidentified drive(s) were found.
Action: Press F1, F2, F4, F10 |
| 0000 0011 (X'03') | 1111 1000 (X'F8') | **Explanation:** A drive was imported from another system and it has valid configuration and ONL/RBL, HSP/SHS, and RDY/SBY drive(s) are not responding and unidentified drive(s) were found.
Action: Press F1, F2, F4, F10 |
| 0000 0111 (X'07') | 0000 1000 (X'08') | **Explanation:** ONL/RBL drive(s) are not responding.
Action: Press F1, F2, F10 |
| 0000 0111 (X'07') | 0001 1100 (X'0C') | **Explanation:** ONL/RBL drive(s) are not responding and drive in wrong ID.
Action: Press F1, F2, F3, F10 |
| 0000 0111 (X'07') | 0010 1000 (X'18') | **Explanation:** ONL/RBL and HSP/SHS drive(s) are not responding.
Action: Press F1, F2, F10 |
| 0000 0111 (X'07') | 0011 1100 (X'1C') | **Explanation:** ONL/RBL and HSP/SHS drive(s) are not responding and drive in wrong ID.
Action: Press F1, F2, F3, F10 |
| 0000 0111 (X'07') | 0010 1000 (X'28') | **Explanation:** ONL/RBL and RDY/SBY drive(s) are not responding.
Action: Press F1, F2, F10 |
| 0000 0111 (X'07') | 0010 1100 (X'2C') | **Explanation:** ONL/RBL and RDY/SBY drive(s) are not responding and drive in wrong ID.
Action: Press F1, F2, F3, F10 |
| 0000 0111 (X'07') | 0011 1000 (X'38') | **Explanation:** ONL/RBL, RDY/SBY, and HSP/SHS drive(s) are not responding.
Action: Press F1, F2, F10 |
| 0000 0111 (X'07') | 0011 1100 (X'3C') | **Explanation:** ONL/RBL, RDY/SBY, and HSP/SHS drive(s) are not responding and drive in wrong ID.
Action: Press F1, F2, F3, F10 |
| 0000 0111 (X'07') | 0100 1000 (X'48') | **Explanation:** ONL/RBL drive(s) are not responding and unidentified drive(s) were found.
Action: Press F1, F2, F10 |
<table>
<thead>
<tr>
<th>BCS</th>
<th>ECS</th>
<th>Explanation and Possible Recovery Action</th>
</tr>
</thead>
</table>
| 0000 0111 (X'07') | 0100 1100 (X'4C') | **Explanation**: ONL/RBL drive(s) are not responding, drive in wrong ID, and unidentified drive(s) were found.
Action: Press F1, F2, F3, F10 |
| 0000 0111 (X'07') | 0101 1000 (X'58') | **Explanation**: ONL/RBL and HSP/SHS drive(s) are not responding and unidentified drive(s) were found.
Action: Press F1, F2, F10 |
| 0000 0111 (X'07') | 0101 1100 (X'5C') | **Explanation**: ONL/RBL and HSP/SHS drive(s) are not responding, drive in wrong ID, and unidentified drive(s) were found.
Action: Press F1, F2, F3, F10 |
| 0000 0111 (X'07') | 0110 1000 (X'68') | **Explanation**: ONL/RBL and RDY/SBY drive(s) are not responding and unidentified drive(s) were found.
Action: Press F1, F2, F10 |
| 0000 0111 (X'07') | 0110 1100 (X'6C') | **Explanation**: ONL/RBL and RDY/SBY drive(s) are not responding, drive in wrong ID, and unidentified drive(s) were found.
Action: Press F1, F2, F3, F10 |
| 0000 0111 (X'07') | 0111 1000 (X'78') | **Explanation**: ONL/RBL, RDY/SBY, and HSP/SHS drive(s) are not responding and unidentified drive(s) were found.
Action: Press F1, F2, F10 |
| 0000 0111 (X'07') | 0111 1100 (X'7C') | **Explanation**: ONL/RBL, RDY/SBY, and HSP/SHS drive(s) are not responding, drive in wrong ID, and unidentified drive(s) were found.
Action: Press F1, F2, F3, F10 |
| 0000 1000 (X'09') | 0000 1000 (X'00') | **Explanation**: No error occurred.
Action: None |
| 0000 1001 (X'09') | 0001 0000 (X'10') | **Explanation**: HSP/SHS drive(s) are not responding.
Action: Press F1, F2, F10 |
| 0000 1001 (X'09') | 0010 0000 (X'20') | **Explanation**: RDY/SBY drive(s) are not responding.
Action: Press F1, F2, F10 |
| 0000 1001 (X'09') | 0011 0000 (X'30') | **Explanation**: HSP/SHS and RDY/SBY drive(s) are not responding.
Action: Press F1, F2, F10 |
BCS ECS Explanation and Possible Recovery Action

<table>
<thead>
<tr>
<th>BCS</th>
<th>ECS</th>
<th>Explanation and Possible Recovery Action</th>
</tr>
</thead>
</table>
| 0000 1111 (X'0F') | 0000 0000 (X'00') | **Explanation:** No error occurred.
Action: None |
| 0000 1111 (X'0F') | 0001 0000 (X'10') | **Explanation:** HSP/SHS drives are not responding.
Action: Press F1, F2, F10 |
| 0000 1111 (X'0F') | 0010 0000 (X'20') | **Explanation:** RDY/SBY drives are not responding.
Action: Press F1, F2, F10 |
| 0000 1111 (X'0F') | 0011 0000 (X'30') | **Explanation:** HSP/SHS and RDY/SBY drive(s) are not responding.
Action: Press F1, F2, F10 |
Troubleshooting

You can use the troubleshooting charts in this section to find solutions to problems that have definite symptoms.

Troubleshooting Charts

Look for the symptom in the left column of the chart. Instructions and probable solutions to the problem are in the right column. If you have just added new software or a new option and your server is not working, do the following before using the troubleshooting charts:

- Remove the software or device that you just added.
- Run the diagnostic tests to determine if your server is running correctly.
- Reinstall the new software or new device.

<table>
<thead>
<tr>
<th>Integrated ServeRAID II Controller Problems</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drives are not responding or errors are reported when ServeRAID II BIOS is loaded during POST.</td>
<td>If the Systems Management Processor Error LED (CR24) on the system board is on, have your system serviced.</td>
</tr>
<tr>
<td></td>
<td>If the Systems Management Processor Error LED (CR24) is not on, check the RAID Channel 1 Error LED (CR30) and the RAID Channel 2 Error LED (CR31) on the system board.</td>
</tr>
<tr>
<td></td>
<td>1. If either CR30 or CR31 is on and not flashing, have your system serviced.</td>
</tr>
<tr>
<td></td>
<td>2. If either CR30 or CR31 are flashing in a pattern of 3 or 6 flashes followed by a pause, update the ServeRAID II controller firmware. See Chapter 9, “Getting Help, Service, and Information” for information on obtaining updates.</td>
</tr>
<tr>
<td></td>
<td>If a problem still exists, have the system serviced.</td>
</tr>
<tr>
<td></td>
<td>Note: See “System Board Component Locations” on page 418 for the locations of the LEDs on the system board.</td>
</tr>
</tbody>
</table>
Troubleshooting

CD-ROM Drive Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action</th>
</tr>
</thead>
</table>
| The CD is not working properly. | Clean the CD by wiping it with a soft, lint-free cloth, from the center of the CD to the outer edge. Do not clean in a circular pattern. This can cause loss of data.
If this does not correct the problem, clean the optical-head lens. Discs for cleaning the lens are available from your place of purchase.
If a problem still exists, have the system serviced. |
| The CD-ROM drive tray is not working. | The server must be turned on. If the server is on and the tray does not eject, insert the end of a paper clip into the manual tray-release opening. If the drive still does not work correctly, have the system serviced. |
| The CD-ROM drive is not recognized. | Verify that:
1. The primary IDE channel is enabled in the Configuration/Setup utility program.
2. All cables and jumpers are installed correctly.
3. The correct device driver is installed for the CD-ROM drive. |

Diskette Drive Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action</th>
</tr>
</thead>
</table>
| The diskette drive in-use light stays on, or the system bypasses the diskette drive. | If there is a diskette in the drive, verify that:
1. The diskette drive is enabled in the configuration programs.
2. The diskette is good and not damaged. (Try another diskette if you have one.)
3. The diskette is inserted correctly in the drive.
4. The diskette contains the necessary files to start the server.
5. Your software program is OK. See “Software Problem” on page 370.
If the diskette drive in-use light stays on, or the system continues to bypass the diskette drive, have the system serviced. |
Troubleshooting

Monitor Self-Tests

<table>
<thead>
<tr>
<th>Monitor Self-Tests</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Some IBM monitors have their own self-tests. If you suspect a problem with your monitor, refer to the information that comes with the monitor for adjusting and testing instructions.</td>
</tr>
<tr>
<td></td>
<td>If you still cannot find the problem, have the monitor and system serviced.</td>
</tr>
</tbody>
</table>

Monitor Problems

<table>
<thead>
<tr>
<th>Monitor Problems</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The screen is blank.</td>
<td>Verify that:</td>
</tr>
<tr>
<td></td>
<td>1. The server power cord is plugged into the server and a working electrical outlet.</td>
</tr>
<tr>
<td></td>
<td>2. The monitor is turned on and the Brightness and Contrast controls are adjusted correctly.</td>
</tr>
<tr>
<td></td>
<td>3. The monitor signal cable is connected to the correct connector on the server.</td>
</tr>
<tr>
<td></td>
<td>If the items above are correct and the screen remains blank, have the system serviced.</td>
</tr>
<tr>
<td>Only the cursor appears.</td>
<td>Have the system serviced.</td>
</tr>
<tr>
<td>The monitor works when you turn on the server, but goes blank when you start some application programs.</td>
<td>Verify that the primary monitor cable is connected to the video port.</td>
</tr>
<tr>
<td></td>
<td>To find the video port, see “Input/Output Connectors and Expansion Slots” on page 14.</td>
</tr>
<tr>
<td></td>
<td>Be sure that you installed the necessary device drivers for the applications.</td>
</tr>
<tr>
<td>The screen flickers.</td>
<td>Set the monitor for the highest, noninterlaced refresh rate available.</td>
</tr>
<tr>
<td></td>
<td>To reset the refresh rate, use a utility program, such as AnyView Professional or WinMode.</td>
</tr>
</tbody>
</table>
Monitor Problems | **Action**
--- | ---
Wavy, unreadable, rolling, distorted screen, or screen jitter. | If the monitor self-tests show the monitor is OK, consider the location of the monitor. Magnetic fields around other devices (such as transformers, appliances, fluorescent lights, and other monitors) can cause screen jitter or wavy, unreadable, rolling, or distorted screen images. If this happens, turn off the monitor. (Moving a color monitor while it is turned on might cause screen discoloration.) Then move the device and the monitor at least 305 mm (12 in.) apart. Turn on the monitor.

Note:

1. To prevent diskette drive read/write errors, be sure the distance between monitors and diskette drives is at least 76 mm (3 in.).
2. Non-IBM monitor cables might cause unpredictable problems.
3. An enhanced monitor cable with additional shielding is available for the 9521 and 9527 monitors. For information about the enhanced monitor cable, see your IBM reseller or IBM marketing representative.

If the problem still exists, have the monitor and system serviced.

Wrong characters appear on the screen. | If the wrong language is displayed, update the BIOS with the correct language. See Chapter 9, “Getting Help, Service, and Information” for information about obtaining updates for the BIOS.

If the problem still exists, have the system serviced.

General Problems	**Action**
Problems such as broken cover locks or indicator lights not working. | Have the system serviced.
Troubleshooting

Power Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action</th>
</tr>
</thead>
</table>
| The server does not power on. | Verify that:
1. The power cables are properly connected to the server.
2. The power outlet functions properly.
3. The type of memory installed is correct.
4. If you just installed an option, remove it, and restart the server. If the server now powers on, you might have installed more options than the power supply supports.
5. The LEDs on the power supply are on. See “Power Supply LEDs” on page 377 for more information about the power supply LEDs. |

If the problem still exists, have the system serviced.

Intermittent Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action</th>
</tr>
</thead>
</table>
| A problem occurs only occasionally and is difficult to detect. | Verify that:
1. All cables and cords are connected securely to the rear of the server and attached options.
2. When the server is turned on, air is flowing from the rear of the server at the fan grill. If there is no air flow, the fan is not working. This causes the server to overheat and shut down.
3. Ensure that the SCSI bus and devices are configured correctly and that the last external device in each SCSI chain is terminated correctly. See “SCSI Drives” on page 235. |

If the items above are correct, have the system serviced.
<table>
<thead>
<tr>
<th>Microprocessor Problems</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The server emits a continuous tone during POST.</td>
<td>The startup (boot) microprocessor is not working properly. If your server contains two microprocessors the microprocessor in the secondary microprocessor socket is the startup microprocessor.</td>
</tr>
<tr>
<td></td>
<td>1. Verify that the startup microprocessor is seated properly.</td>
</tr>
<tr>
<td></td>
<td>2. If your server contains two microprocessors, remove the startup microprocessor and restart the server. If the server starts properly, replace the old startup microprocessor.</td>
</tr>
<tr>
<td></td>
<td>3. Replace the startup microprocessor. Restart the server.</td>
</tr>
<tr>
<td></td>
<td>If the problem still exists, have the system serviced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Keyboard, Mouse, or Pointing-Device Problems</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>All or some keys on the keyboard do not work.</td>
<td>1. Make sure that the keyboard cable is properly connected to the server.</td>
</tr>
<tr>
<td></td>
<td>2. Make sure that the server and the monitor are turned on.</td>
</tr>
<tr>
<td></td>
<td>3. Try using another keyboard.</td>
</tr>
<tr>
<td></td>
<td>If the items above are correct, have the system serviced.</td>
</tr>
<tr>
<td>The mouse or pointing device does not work.</td>
<td>1. Verify that the mouse or pointing-device cable is securely connected and the device drivers are installed correctly.</td>
</tr>
<tr>
<td></td>
<td>2. Try using another mouse or pointing device.</td>
</tr>
<tr>
<td></td>
<td>If the problem still exists, have the server and the device serviced.</td>
</tr>
</tbody>
</table>
Troubleshooting

Memory Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action</th>
</tr>
</thead>
</table>
| The amount of memory displayed is less than the amount of memory installed. | Verify that:
1. The memory modules are seated properly.
2. You have installed the correct type of memory (see “Installing Memory-Module Kits” on page 230).
3. If you changed the memory, you updated the memory configuration with the Configuration/Setup utility. For information about using the configuration programs, see “Using the Configuration/Setup Utility Main Menu” on page 161.
4. All banks of memory on the DIMMs are enabled (see “Memory Settings” on page 172). The server might have automatically disabled a DIMM bank when it detected a problem or a DIMM bank could have been manually disabled. |

If the above items are correct, run the memory diagnostic program. The system might have detected a bad memory module and automatically reallocated memory to enable you to continue to operate. If the memory tests fail, have the system serviced or replace the failing DIMM.

Option Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action</th>
</tr>
</thead>
</table>
| An IBM option that used to work does not work now. | Verify that all of the option hardware and cable connections are secure.
If the option comes with its own test instructions, use those instructions to test the option. |

If the failing option is a SCSI option, verify that:
1. The cables for all external SCSI options are connected correctly.
2. The last option in each SCSI chain, or the end of the SCSI cable, is terminated correctly.
3. Any external SCSI option is turned on. You must turn on an external SCSI option before turning on the server. |

If the problem still exists, have the system serviced.
Option Problems

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
</table>
| An IBM option that was just installed does not work. | Verify that:
1. The option is designed for the server.
2. You followed the installation instructions that come with the option.
3. The option is installed correctly.
4. You have not loosened any other installed options or cables.
5. You updated the configuration information in the Configuration/Setup utility. Whenever memory or an option is changed, you must update the configuration. For information about using the configuration programs, see “Using the Configuration/Setup Utility Main Menu” on page 161. |

If the problem still exists, have the system serviced.

Parallel Port Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action</th>
</tr>
</thead>
</table>
| The number of parallel ports displayed is less than the number of parallel ports installed. | Verify that:
1. Each port is assigned a unique address.
2. The parallel-port adapter, if you installed one, is seated properly. |

If the problem still exists, have the system serviced.

Serial Port Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action</th>
</tr>
</thead>
</table>
| The number of serial ports identified by the operating system is less than the number of serial ports installed. | Verify that:
1. Each port is assigned a unique address by the Configuration/Setup utility program and none of the serial ports are disabled.
2. The serial-port adapter, if you installed one, is seated properly. |

Note: The management C connector is the same as a serial port connector, but it is used only by the integrated system management processor and is not available for use by the operating system. This port does not appear in the Configuration/Setup utility program menus; it can be configured using Netfinity Manager.

If the problem still exists, have the system serviced.
Troubleshooting

<table>
<thead>
<tr>
<th>Serial Port Problems</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A serial device does not work.</td>
<td>Verify that:</td>
</tr>
<tr>
<td></td>
<td>1. The serial port is enabled and is assigned a unique address.</td>
</tr>
<tr>
<td></td>
<td>2. Make sure that the device is not connected to the management port C.</td>
</tr>
<tr>
<td></td>
<td>Note: The management C connector is the same as a serial port connector, but it is used only by the integrated system management processor and is not available for use by the operating system. This port does not appear in the Configuration/Setup utility program menus; it can be configured using Netfinity Manager.</td>
</tr>
<tr>
<td></td>
<td>If the problem still exists, have the system serviced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Universal Serial Bus (USB) Port Problems</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A USB device does not work.</td>
<td>Verify that:</td>
</tr>
<tr>
<td></td>
<td>1. You are not trying to use a USB device during POST if you have a standard (non-USB) keyboard attached to the keyboard port.</td>
</tr>
<tr>
<td></td>
<td>Note: If a standard (non-USB) keyboard is attached to the keyboard port, then the USB is disabled and no USB device will work during POST.</td>
</tr>
<tr>
<td></td>
<td>2. The correct USB device driver is installed.</td>
</tr>
<tr>
<td></td>
<td>3. Your operating system supports USB devices.</td>
</tr>
<tr>
<td></td>
<td>If the problem still exists, have the system serviced.</td>
</tr>
</tbody>
</table>
Troubleshooting

Printer Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The printer does not work.</td>
<td>Verify that:</td>
</tr>
<tr>
<td></td>
<td>1. The printer is turned on and is online.</td>
</tr>
<tr>
<td></td>
<td>2. The printer signal cable is connected to the correct serial or parallel port on the server. For the location of the serial or parallel port, see “Input/Output Connectors and Expansion Slots” on page 14.</td>
</tr>
<tr>
<td></td>
<td>Note: Non-IBM printer cables might cause unpredictable problems.</td>
</tr>
<tr>
<td></td>
<td>3. You have assigned the printer port correctly in your operating system or application program.</td>
</tr>
<tr>
<td></td>
<td>4. You have assigned the printer port correctly using the configuration programs.</td>
</tr>
<tr>
<td></td>
<td>If the items above are correct and the printer still does not work, run the tests described in the documentation that comes with your printer. If the tests show that the printer is OK, have the system serviced.</td>
</tr>
</tbody>
</table>

Expansion Enclosure Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The SCSI expansion enclosure used to work, but does not work now.</td>
<td>Verify that all of the SCSI expansion enclosure hardware and cable connections are secure.</td>
</tr>
<tr>
<td></td>
<td>Verify that:</td>
</tr>
<tr>
<td></td>
<td>1. The cables for all external SCSI options are connected correctly.</td>
</tr>
<tr>
<td></td>
<td>2. The last option in each SCSI chain, or the end of the SCSI cable, is terminated correctly.</td>
</tr>
<tr>
<td></td>
<td>3. Any external SCSI option is turned on. You must turn on an external SCSI option before turning on the server.</td>
</tr>
<tr>
<td></td>
<td>For more information, see your SCSI and expansion enclosure documentation.</td>
</tr>
<tr>
<td></td>
<td>If the SCSI expansion enclosure comes with its own test instructions, use those instructions to test it. In addition, test the power supply.</td>
</tr>
<tr>
<td></td>
<td>If the items above are correct and the test programs found no problem, have the server and SCSI expansion enclosure serviced.</td>
</tr>
</tbody>
</table>
Troubleshooting

Software Problem	Action
Suspected software problem. | To determine if problems are caused by the software, verify that:
1. Your server has the minimum memory requirements needed to use the software. For memory requirements, refer to the information that comes with the software.

 Note: If you have just installed an adapter or memory, you might have a memory address conflict.
2. The software is designed to operate on your server.
3. Other software works on your server.
4. The software that you are using works on another system.

If you received any error messages when using the software program, refer to the information that comes with the software for a description of the messages and solutions to the problem.

If the items above are correct and the problem remains, contact your place of purchase.

<table>
<thead>
<tr>
<th>Netfinity Service Processor Manager Problems</th>
<th>Action</th>
</tr>
</thead>
</table>
| Netfinity Service Processor Manager reports a general monitor failure | If the Systems Management Processor Error LED (CR24) on the system board is on, have your system serviced. See “System Board Component Locations” on page 418 for the location of the LED.

If the Systems Management Processor Error LED (CR24) is not on, disconnect the server from all electrical sources, wait for 30 seconds, reconnect the server to the electrical sources, and restart the server.

If a problem still exists, have the system serviced.

Note: If you cannot find the problem in the troubleshooting charts, go to “Running Diagnostic Programs” on page 297 to test the server. If you have run the diagnostic test programs or if running the tests does not reveal the problem, have the system serviced.
Troubleshooting the Ethernet Controller

This section provides troubleshooting information for problems that might occur with the 10/100 Mbps Ethernet controller.

Network Connection Problems

If the Ethernet controller cannot connect to the network, check the following:

- Make sure that the cable is installed correctly.

 The network cable must be securely attached at all connections. If the cable is attached but the problem persists, try a different cable.

 If you set the Ethernet controller to operate at 100 Mbps, you must use Category 5 cabling.

 If you directly connect two workstations (without a hub), or if you are not using a hub with X ports, use a crossover cable.

 Note: To determine whether a hub has an X port, check the port label. If the label contains an X, the hub has an X port.

- Determine if the hub supports auto-negotiation. If not, try configuring the integrated Ethernet controller manually to match the speed and duplex mode of the hub.

- Check the Ethernet controller lights on the information panel.

 These lights indicate whether a problem exists with the connector, cable, or hub.

 - The Ethernet Link Status light illuminates when the Ethernet controller receives a LINK pulse from the hub. If the light is off, there might be a bad connector or cable, or a problem with the hub.

 - The Ethernet Transmit/Receive Activity light illuminates when the Ethernet controller sends or receives data over the Ethernet network. If the Ethernet Transmit/Receive Activity light is off, make sure that the hub and network are operating and that the correct device drivers are loaded.
Troubleshooting

- The Ethernet Speed 100 Mbps light illuminates when the Ethernet controller LAN speed is 100 Mbps.

- Make sure that you are using the correct device drivers, supplied with your server.

- Check for operating system-specific causes for the problem.

- Make sure that the device drivers on the client and server are using the same protocol.

- Test the Ethernet controller.

 How you test the Ethernet controller depends on which operating system you are using (see “Configuring the Ethernet Controller” on page 178).

Ethernet Controller Troubleshooting Chart

You can use the following troubleshooting chart to find solutions to 10/100 Mbps Ethernet controller problems that have definite symptoms.
<table>
<thead>
<tr>
<th>Controller Problem</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The server stops running when loading device drivers.</td>
<td>The PCI BIOS interrupt settings are incorrect. Check the following:</td>
</tr>
<tr>
<td></td>
<td>• Determine if the interrupt (IRQ) setting assigned to the Ethernet controller is also assigned to another device in the Configuration/Setup utility program. Although interrupt sharing is allowed for PCI devices, some devices do not function well when they share an interrupt with a dissimilar PCI device. Try changing the IRQ assigned to the Ethernet controller or the other device. (See “Resolving Configuration Conflicts” on page 376.)</td>
</tr>
<tr>
<td></td>
<td>• For NetWare and IntraNetware, do not use IRQ 14 or 15 for PCI devices. IRQ 14 is used for IDE devices (CD-ROM drive). If the IDE CD-ROM in your system is disabled, reserve IRQ 14 as ISA Legacy in the Plug and Play menu of the Configuration/Setup Utility. (See “Plug and Play” on page 172.) IRQ 15 should be reserved for ISA legacy devices.</td>
</tr>
<tr>
<td></td>
<td>• Make sure that you are using the most recent device driver available from the World Wide Web. (See Chapter 9, “Getting Help, Service, and Information” World Wide Web addresses.)</td>
</tr>
<tr>
<td></td>
<td>• Run the network diagnostic program. If the problem still exists, have the system serviced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ethernet Link Status light does not light.</th>
<th>Check the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Make sure that the hub is turned on.</td>
</tr>
<tr>
<td></td>
<td>• Check all connections at the Ethernet controller and the hub.</td>
</tr>
<tr>
<td></td>
<td>• Check the cable. A crossover cable is required unless the hub has an X designation.</td>
</tr>
<tr>
<td></td>
<td>• Use another port on the hub.</td>
</tr>
<tr>
<td></td>
<td>• If the hub does not support auto-negotiation, manually configure the Ethernet controller to match the hub.</td>
</tr>
<tr>
<td></td>
<td>• If you manually configured the duplex mode, make sure that you also manually configure the speed.</td>
</tr>
<tr>
<td></td>
<td>• Run diagnostics for the LEDs.</td>
</tr>
<tr>
<td></td>
<td>If the problem still exists, have the system serviced.</td>
</tr>
</tbody>
</table>
Troubleshooting

<table>
<thead>
<tr>
<th>Controller Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Ethernet Transmit/Receive Activity light does not light.</td>
</tr>
<tr>
<td>Action</td>
</tr>
<tr>
<td>Check the following:</td>
</tr>
<tr>
<td>Note: The Ethernet Transmit/Receive Activity LED illuminates only when data is</td>
</tr>
<tr>
<td>• Make sure that you have loaded the network device drivers.</td>
</tr>
<tr>
<td>• The network might be idle. Try sending data from this workstation.</td>
</tr>
<tr>
<td>• Run diagnostics on the LEDs.</td>
</tr>
<tr>
<td>• The function of this LED can be changed device driver load parameters. If necessary,</td>
</tr>
<tr>
<td>remove any LED parameter settings when you load the device drivers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data is incorrect or sporadic.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
</tr>
<tr>
<td>Check the following:</td>
</tr>
<tr>
<td>• Make sure that you are using Category 5 cabling when operating the server at 100</td>
</tr>
<tr>
<td>Mbps.</td>
</tr>
<tr>
<td>• Make sure that the cables do not run close to noise-inducing sources like</td>
</tr>
<tr>
<td>fluorescent lights.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The Ethernet controller stopped working when another adapter was added to the server.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
</tr>
<tr>
<td>Check the following:</td>
</tr>
<tr>
<td>• Make sure that the cable is connected to the Ethernet controller.</td>
</tr>
<tr>
<td>• Make sure that your PCI system BIOS is current.</td>
</tr>
<tr>
<td>• Reseat the adapter (see “Working with Adapters” on page 211).</td>
</tr>
<tr>
<td>• Determine if the interrupt (IRQ) setting assigned to the Ethernet adapter is also</td>
</tr>
<tr>
<td>assigned to another device in the Configuration/Setup utility program.</td>
</tr>
<tr>
<td>Although interrupt sharing is allowed for PCI devices, some devices do not function</td>
</tr>
<tr>
<td>well when they share an interrupt with a dissimilar PCI device. Try changing the</td>
</tr>
<tr>
<td>IRQ assigned to the Ethernet adapter or the other device. (See “Resolving</td>
</tr>
<tr>
<td>Configuration Conflicts” on page 376.)</td>
</tr>
<tr>
<td>If the problem still exists, have the system serviced.</td>
</tr>
</tbody>
</table>
Troubleshooting

Controller Problem

<table>
<thead>
<tr>
<th>Controller Problem</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Ethernet controller stopped working without apparent cause.</td>
<td>Check the following:</td>
</tr>
<tr>
<td></td>
<td>• Run diagnostics for the Ethernet controller.</td>
</tr>
<tr>
<td></td>
<td>• Try a different connector on the hub.</td>
</tr>
<tr>
<td></td>
<td>• Reinstall the device drivers (see your operating-system documentation and your ServerGuide instructions, if you used ServerGuide to install your operating system).</td>
</tr>
<tr>
<td></td>
<td>If the problem still exists, have the system serviced.</td>
</tr>
</tbody>
</table>
Resolving Configuration Conflicts

The Configuration/Setup utility program configures only the server hardware. It does not consider the requirements of the operating system or the application programs. For these reasons, memory-address configuration conflicts might occur.

Changing the Software Configuration Setup
The best way to resolve memory-address conflicts is to change the software configuration by changing the addresses that the EMS device driver defined. The SVGA video memory occupies 32 Kb (1 Kb = approximately 1000 bits) of space in the hex C0000 to C7FFF EMS memory area. EMS device drivers must use addresses different from those assigned to video read-only memory (ROM). You can use the Configuration/Setup utility program to view or change the current setting for video ROM. For information about using the configuration programs, see “Using the Configuration/Setup Utility Main Menu” on page 161.

Changing the Hardware Configuration Setup
An alternative way to resolve memory-address conflicts is to change the address of the conflicting hardware option. See “Plug and Play” on page 172 for information about reserving resources for ISA legacy adapters.
Identifying Problems Using Status LEDs

Your server has LEDs to help you identify problems with some server components. These LEDs are part of the light path diagnostics built into the server. By following the path of lights, you can quickly identify the type of system error that occurred. See “Light Path Diagnostics” on page 380 for more information.

Status LEDs are located on the following components:

- Information panel
 For more information, see “Information LED Panel” on page 12.
- Hard disk drive trays
 For more information, see “Controls and Indicators” on page 9.
- Power supply
 For more information, see “Power Supply LEDs.”
- Diagnostic panel
 For more information, see “Diagnostics Panel LEDs” on page 379.
- Processor board
 See “Processor Board Component Locations” on page 422 for locations of the LEDs on the processor board.
- System board
 See “System Board Component Locations” on page 418 for locations of the LEDs on the system board.

Power Supply LEDs

The AC and DC Power LEDs on the power supply provide status information about the power supply. See “Power Supplies” on page 17 for the location of these LEDs.

The following table describes the AC and DC Power LEDs.
Identifying Problems Using Status LEDs

<table>
<thead>
<tr>
<th>AC Power LED</th>
<th>DC Power LED</th>
<th>Description and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>On</td>
<td>The power supply is on and operating correctly.</td>
</tr>
</tbody>
</table>
| On | Off | There is a DC power problem. Possible causes:
| | | 1. The Power Control button on the front of the server is in the Off position.
| | | *Action*: Press the Power Control button to start the server.
| | | 2. The Power switch on the power supply is in the Off position.
| | | *Action*: Turn the Power switch to the On position.
| | | 3. The power supply has failed.
| | | *Action*: Replace the power supply.
| | | If the problem persists, have the system serviced. |
| Off | Off | There is an AC power problem. Possible causes:
| | | 1. There is no AC power to the power supply.
| | | *Actions*: Verify that:
| | | - The power cord is properly connected to the server.
| | | - The power outlet functions properly.
| | | 2. The power supply has failed.
| | | *Action*: Replace the power supply.
| | | If the problem persists, have the system serviced. |
Diagnostics Panel LEDs

The following illustration shows the LEDs on the diagnostics panel inside the server. See “Light Path Diagnostics” on page 380 for information on identifying problems using these LEDs.
Identifying Problems Using Status LEDs

Light Path Diagnostics
The light path diagnostics built into your server allow you to quickly identify the type of system error that occurred. The light path diagnostics begins with the System Error LED on the information LED panel. When this light is illuminated, use the following information to isolate the problem.

- If the System Error LED on the information LED panel on the front of the server is on, a system error was detected. Check to see which of the LEDs on the diagnostics panel inside the server are on.
 - SMI LED on
 A systems management event occurred.

 Action: Restart the server. If the problem persists, have the system serviced.
 - NMI LED on
 A non-maskable interrupt occurred. The PCI 1 or PCI 2 LED will probably also be on.

 Actions:
 1. If the PCI 1 or PCI 2 LED is on, follow the instructions for those LEDs.
 2. If the PCI 1 or PCI 2 LED is not on, restart the server. If the problem persists, have the system serviced.
 - PCI 1 LED on
 An error occurred on the primary PCI channel. An adapter in PCI slot 5 or 6 or the system board caused the error.

 Actions:
 1. Check the error log for additional information. If the error log indicates a problem with the integrated ServeRAID II controller or the Ethernet controller, have your system serviced.
 2. If you cannot isolate the failing adapter from the information in the error log, try to determine the
failing adapter by removing one adapter at a time from the primary PCI bus (PCI slots 5 and 6) and restarting the server after each adapter is removed.

If the problem persists, have the system serviced.

- PCI 2 LED on

An error occurred on the secondary PCI channel. An adapter in PCI slot 1, 2, 3, or 4 or the system board caused the error.

Actions:

1. Check the error log for additional information.
2. If you cannot correct the problem from the information in the error log, try to determine the failing adapter by removing one adapter at a time from the secondary PCI bus (PCI slots 1–4) and restarting the server after each adapter is removed.

 If the problem persists, have the system serviced.

- MEM LED on

A memory error occurred. Check the DIMM Error LEDs on the processor board.

- DIMM 1 Error LED on

The DIMM in DIMM slot 1 has failed.

Action: Replace the DIMM in DIMM slot 1.

- DIMM 2 Error LED on

The DIMM in DIMM slot 2 has failed.

Action: Replace the DIMM in DIMM slot 2.

- DIMM 3 Error LED on

The DIMM in DIMM slot 3 has failed.

Action: Replace the DIMM in DIMM slot 3.

- DIMM 4 Error LED on
Identifying Problems Using Status LEDs

The DIMM in DIMM slot 4 has failed.

Action: Replace the DIMM in DIMM slot 4.

- FAN 1 LED on

 Fan 1 has failed or is operating too slowly.

 Note: A failing fan can also cause the TEMP and DASD1 LEDs to be on.

 Action: Replace fan 1.

- FAN 2 LED on

 Fan 2 has failed or is operating too slowly.

 Note: A failing fan can also cause the TEMP and DASD1 LEDs to be on.

 Action: Replace fan 2.

- FAN 3 LED on

 Fan 3 has failed or is operating too slowly.

 Note: A failing fan can also cause the TEMP and DASD1 LEDs to be on.

 Action: Replace fan 3.

- TEMP LED on

 The system temperature has exceeded the maximum rating.

 Actions:

 1. Check to see if a fan has failed. If it has, replace the fan.

 2. Make sure the room temperature is not too hot.

 (See “Specifications” on page 412)

 If the problem persists, have the system serviced.

- VRM LED on

 One of the voltage regulator modules on the processor board has failed. Check the VRM Error LEDs on the processor board.

 - Primary Processor VRM Error LED on
Identifying Problems Using Status LEDs

The VRM for the primary microprocessor slot has failed.

Actions:

1. Turn the server off, reseat the VRM, and restart the server.
2. If the problem persists, replace the VRM.
 If the problem persists, have the system serviced.

- Secondary Processor VRM Error LED on

The VRM for the secondary microprocessor slot has failed.

Actions:

1. Turn the server off, reseat the VRM, and restart the server.
2. If the problem persists, replace the VRM.
 If the problem persists, have the system serviced.

- CPU LED on

One of the microprocessors has failed. Check the Microprocessor Error LEDs on the processor board.

- Primary Microprocessor Error LED on

The microprocessor in the primary microprocessor slot has failed.

Actions:

1. Turn the server off, reseat the microprocessor, and restart the server.
2. If the problem persists, replace the microprocessor.
 If the problem persists, have the system serviced.

- Secondary Microprocessor Error LED on

The microprocessor in the secondary microprocessor slot has failed.

Actions:

Identifying Problems Using Status LEDs

1. Turn the server off, reseat the microprocessor, and restart the server.

2. If the problem persists, replace the microprocessor.

If the problem persists, have the system serviced.

- **PS1 LED on**
 The primary power supply has failed.

 Action: Replace the primary power supply.

- **PS2 LED on**
 The secondary power supply has failed.

 Action: Replace the secondary power supply.

- **DASD 1 LED on**
 A hot-swap hard disk drive has failed.

Actions:

1. Check the error log for additional information. If the error log indicates a temperature problem and the fans are working correctly, have the system serviced.

2. If the amber Hard Disk Status LED on one of the hot-swap hard disk drives is on, see “Replacing a Faulty Drive” on page 86 for more information.

- System Error LED on the information LED panel on the front of the server is off. The light path diagnostics have not detected a system error.
Checking the System for Damage

This section provides instructions on what to do if your server might be damaged.

After Dropping It
Look for loose cables and obvious damage. If any cables are loose, reconnect them securely. If there is obvious damage to the server, have it serviced.

If you see no damage, turn on the server. If it works correctly, the server probably did not suffer any damage.

Attention:
Observe all electrostatic precautions listed in this book to avoid damage to your server.

If the server does not work correctly, turn it off and check the adapters and memory modules to ensure that they are connected correctly. Go to “Electrical Safety” on page 200 and follow the instructions for opening your server; then, reseat all adapters and memory modules.

If the server still does not work correctly, run the diagnostic tests from diagnostic utility menu. For information about running tests, see “Running Diagnostic Programs” on page 297.
Checking the System for Damage

After Spilling Liquid on It
If liquid gets on the keyboard:

1. Turn off the server.
2. Unplug the keyboard from the back of the server.
3. Turn the keyboard upside down to drain excess liquid.
4. Dry off the keyboard with a lint-free cloth.

After the keyboard is completely dry, plug it in and turn on the server. If it does not work correctly, have the keyboard serviced.

If liquid gets inside the monitor:

1. Turn off the monitor.
2. Turn off the server.
3. Unplug the monitor from the server and the electrical outlet.
4. Have the monitor serviced immediately.

If liquid gets inside the server:

1. Turn off the server and all attached devices.
2. Unplug the server from the electrical outlet and all attached devices.
3. Have the server serviced immediately.
Replacing the Battery

IBM has designed this product with your safety in mind. The lithium battery must be handled correctly to avoid possible danger. If you replace the battery, you must adhere to the following instructions.

2

⚠️ CAUTION:
When replacing the battery, use only IBM Part Number 33F8354 or an equivalent type battery recommended by the manufacturer. If your system has a module containing a lithium battery, replace it only with the same module type made by the same manufacturer. The battery contains lithium and can explode if not properly used, handled, or disposed of.

Do not:

- Throw or immerse into water
- Heat to more than 100°C (212°F)
- Repair or disassemble

Dispose of the battery as required by local ordinances or regulations.

Note: In the U.S., call 1-800-IBM-4333 for information about battery disposal.

If you replace the original lithium battery with a heavy-metal battery or a battery with heavy-metal components, be aware of the following environmental consideration. Batteries and accumulators that contain heavy metals must not be disposed of with normal domestic waste. They will be taken back free of charge by the manufacturer, distributor, or representative, to be recycled or disposed of in a proper manner.
Replacing the Battery

To order replacement batteries, call 1-800-772-2227 within the United States, and 1-800-465-7999 or 1-800-465-6666 within Canada. Outside the U.S. and Canada, call your IBM reseller or IBM marketing representative.

Before you begin, be sure you have:

- Read “Electrical Safety” on page 200 and “Handling Static-Sensitive Devices” on page 202.
- Followed any special handling and installation instructions supplied with the replacement battery.

Note: After you replace the battery, you must reconfigure your server and reset the system date and time.

To replace the battery:

1. Turn off the server and peripheral devices and disconnect all external cables and power cords (see “Preparing to Install Options” on page 205); then remove the top cover (see “Removing the Top Cover” on page 207).

2. Locate the battery on the system board (see “System Board Component Locations” on page 418).

3. Remove any adapters that are installed in PCI slots 1 and 2, so you can access the battery. (See “Installing a Hot-Plug PCI Adapter” on page 216 for information about installing and removing adapters from the hot-plug PCI slots.)

4. Lift and remove the plastic dividers between PCI slot 1 and the ISA slot and between PCI slot 1 and PCI slot 2 by pressing the latches on the top ends of the dividers toward the dividers and lifting the dividers from the server.
5. Remove the battery:
 a. Use one finger to lift the battery clip over the battery.
 b. Use one finger to slightly slide the battery toward the rear of the server. The spring mechanism behind the battery will push it out toward you as you slide it forward.
 c. Use your thumb and index finger to pull the battery from under the battery clip.
 d. Ensure that the battery clip is touching the base of the battery socket by pressing gently on the clip.

6. Insert the new battery:
 a. Tilt the battery so that you can insert it into the front of the socket, under the battery clip.
 b. As you slide it under the battery clip, press the battery down into the socket.

7. Reinstall any adapters you removed. (See “Installing a Hot-Plug PCI Adapter” on page 216 for information about installing and removing adapters from the hot-plug PCI slots.)
Replacing the Battery

8. Insert the plastic dividers into the divider guides beside PCI slots 1 and 2.

9. Reinstall the top cover and complete the installation (see “Completing the Installation” on page 258).

 Note: You will have to wait approximately 20 seconds after you plug the power cord of your server into an electrical outlet for the Power Control button to become active.

10. Start the Configuration/Setup utility program and reset configuration parameters as needed.

 • To reset the system date and time, go to “Date and Time” on page 164.

 • To reset the power-on password, go to “Using the Power-On Password Menu” on page 167.

 • To reconfigure your server, follow the instructions given in “The Configuration/Setup Utility Program” on page 160 (all models).
If you need help, service, technical assistance, or just want more information about IBM products, you will find a wide variety of sources available from IBM to assist you.

For example, IBM maintains pages on the World Wide Web where you can get information about IBM products and services, find the latest technical information, and download device drivers and updates. Some of these pages are:

- http://www.ibm.com - Main IBM home page

You can select a country-specific Web site from these pages.

Help is also available from bulletin boards and online services, as well as by fax and telephone. This section provides information about these sources.

Services available and telephone numbers listed are subject to change without notice.

Service Support

With the original purchase of an IBM hardware product, you have access to extensive support coverage. During the IBM hardware product warranty period, you may call the IBM Personal Computer HelpCenter (1-800-772-2227 in the U.S.) for hardware product assistance covered under the terms of the IBM Statement of Limited Warranty.

The following services are available during the warranty period:
• Problem Determination - Trained personnel are available to assist you with determining if you have a hardware problem and deciding what action is necessary to fix the problem.

• IBM Hardware Repair - If the problem is determined to be caused by IBM hardware under warranty, trained service personnel are available to provide the applicable level of service.

• Engineering Change Management - Occasionally, there might be changes that are required after a product has been sold. IBM or your reseller, if authorized by IBM, will make Engineering Changes (ECs) available that apply to your hardware.

Be sure to retain your proof of purchase to obtain warranty service.

Please have the following information ready when you call:

• Serial numbers of your IBM hardware products
• Description of the problem
• Exact wording of any error messages
• Hardware and software configuration information

If possible, be at your computer when you call.

The following items are not covered:

• Replacement or use of non-IBM parts or nonwarranted IBM parts

 Note: All warranted parts contain a 7-character identification in the format IBM FRU XXXXXXX.

• Identification of software problem sources
• Configuration of BIOS as part of an installation or upgrade
• Changes, modifications, or upgrades to device drivers
• Installation and maintenance of network operating systems (NOS)
• Installation and maintenance of application programs

Refer to the IBM Statement of Limited Warranty for a full explanation of IBM's warranty terms.
Before You Call for Service

Many computer problems can be solved without outside assistance, by using the online help or by looking in the online or printed documentation that comes with your computer or software. Also, be sure to read the information in any README files that come with your software.

Most computers, operating systems, and application programs come with documentation that contains troubleshooting procedures and explanations of error messages. The documentation that comes with your computer also contains information about the diagnostic tests you can perform.

If you receive a POST error code when you turn on your computer, refer to the POST error-message charts in your hardware documentation. If you do not receive a POST error code, but suspect a hardware problem, refer to the troubleshooting information in your hardware documentation or run the diagnostic tests.

If you suspect a software problem, consult the documentation (including README files) for the operating system or application program.

Getting Customer Support and Service

Purchasing an IBM PC hardware product entitles you to standard help and support during the warranty period. If you need additional support and services, a wide variety of extended services are available for purchase that address almost any need.

Using Electronic Support Services

If you have a modem, you can get help from several popular services. Bulletin boards and online information services provide assistance through question-and-answer message areas, live chat rooms, searchable databases, and more.

Technical information is available on a wide range of topics, such as:

- Hardware setup and configuration
• Preinstalled software
• OS/2, DOS, and Windows
• Networking
• Communications
• Multimedia

In addition, the latest device driver updates are available.

The IBM Bulletin Board System (BBS) can be reached 24 hours a day, 7 days a week. Modem speeds of up to 14 400 baud are supported. Long distance telephone charges might apply. To access the IBM BBS:

• In the U.S., call 1-919-517-0001.
• In Canada:
 – In Montreal, call 514-938-3022.
 – In Toronto, call 905-316-4255 or 416-956-7877.
 – In Vancouver, call 604-664-6464.

Commercial online services that contain information about IBM products include:

• CompuServe
 Use the following GO words: APTIVA, IBMPS2, ThinkPad, PowerPC, ValuePoint, IBMSVR, or IBMOBI.

• PRODIGY
 Use the Jump command; type IBM and select PC Product Support.

• America Online
 Use the “Go to” keyword IBM Connect.

Using the World Wide Web
On the World Wide Web, the IBM Personal Computing home page has information about IBM Personal Computer products and support. The address for the IBM Personal Computing home page is:

 http://www.pc.ibm.com
For information about specific Personal Computer products, visit the following pages:

You can select a country-specific Web site from these pages.

Getting Information by Fax

If you have a touch-tone telephone and access to a fax machine, in the U.S. and Canada you can receive by fax marketing and technical information on many topics, including hardware, operating systems, and local area networks (LANs). You can call the IBM Automated Fax System 24 hours a day, 7 days a week. Follow the recorded instructions, and the requested information will be sent to your fax machine.

To access the IBM Automated Fax System, do the following:

- In the U.S., call 1-800-426-3395.
- In Canada, call 1-800-465-3299.

Getting Help Online

Online Housecall is a remote communication tool that allows an IBM technical-support representative to access your PC by modem. Many problems can be remotely diagnosed and corrected quickly and easily. In addition to a modem, a remote-access application program is required. This service is not available for servers. There might be a charge for this service, depending on the request.

For more information about configuring your PC for Online Housecall:
Getting Help by Telephone
During the warranty period, you can get help and information by telephone through the IBM PC HelpCenter. Expert technical-support representatives are available to assist you with questions you might have on the following:

- Setting up your computer and IBM monitor
- Installing and setting up IBM options purchased from IBM or an IBM reseller
- 30-day, preinstalled-operating-system support
- Arranging for service (on-site or carry-in)
- Arranging for overnight shipment of customer-replaceable parts

In addition, if you purchased an IBM PC Server or IBM Netfinity Server, you are eligible for IBM Start Up Support for 90 days after installation. This service provides assistance for:

- Setting up your network operating system
- Installing and configuring interface cards
- Installing and configuring network adapters

Please have the following information ready when you call:

- Serial numbers of your computer, monitor, and other components, or your proof of purchase
- Description of the problem
- Exact wording of any error messages
- Hardware and software configuration information for your system

If possible, be at your computer when you call.

These services are available 24 hours a day, 7 days a week.6

6 Response time will vary depending on the number and complexity of incoming calls.
• In the U.S. and Puerto Rico, call 1-800-772-2227.
• In Canada, call 1-800-565-3344.

In all other countries, contact your IBM reseller or IBM marketing representative.

Getting Help Around the World
If you travel with your computer or need to move it to another country, you can register for International Warranty Service. When you register with the International Warranty Service Office, you will receive an International Warranty Service Certificate that is honored virtually worldwide, wherever IBM or IBM resellers sell and service IBM PC products.

For more information or to register for International Warranty Service in the U.S. or Canada, call 1-800-497-7426.

Purchasing Additional Services
During and after the warranty period, you can purchase additional services, such as support for IBM and non-IBM hardware, operating systems, and application programs; network setup and configuration; upgraded or extended hardware repair services; and custom installations. Service availability and name might vary by country.

Enhanced PC Support Line
Enhanced PC Support is available for desktop and mobile IBM computers that are not connected to a network. Technical support is provided for IBM computers and IBM or non-IBM options, operating systems, and application programs on the Supported Products list.

This service includes technical support for:
• Installing and configuring your out-of-warranty IBM computer
• Installing and configuring non-IBM options in IBM computers
• Using IBM operating systems in IBM and non-IBM computers
• Using application programs and games
• Tuning performance
• Installing device drivers remotely
• Setting up and using multimedia devices
• Identifying system problems
• Interpreting documentation

You can purchase this service on a per-call basis, as a multiple-incident package, or as an annual contract with a 10-incident limit. For more information about purchasing Enhanced PC Support, see “Ordering Support Line Services” on page 399.

900-Number Operating System and Hardware Support Line
In the U.S., if you prefer to obtain technical support on a pay-as-you go basis, you can use the 900-number support line. The 900-number support line provides support for IBM PC products that are out of the warranty period.

To access this support, call 1-900-555-CLUB (2582). You will be notified of the charge per minute.

Network and Server Support Line
Network and Server Support is available for simple or complex networks made up of IBM servers and workstations using major network operating systems. In addition, many popular non-IBM adapters and network interface cards are supported.

This service includes all of the features of the Enhanced PC Support Line, plus:
• Installing and configuring client workstations and servers
• Identifying system problems and correcting problems on the client or the server
• Using IBM and non-IBM network operating systems
• Interpreting documentation

You can purchase this service on a per-call basis, as a multiple-incident package, or as an annual contract with a 10-incident limit. For more information about purchasing Network and Server Support, see “Ordering Support Line Services” on page 399.
Ordering Support Line Services
Enhanced PC Support Line and Network and Server Support Line services are available for products on the Supported Products list. To receive a Supported Products list:

- In the U.S.:
 1. Call 1-800-426-3395.
 2. Select document number 11683 for Network and Server support.
 3. Select document number 11682 for Enhanced PC support.

- In Canada, contact IBM Direct at 1-800-465-7999, or:
 1. Call 1-800-465-3299.
 2. Select the HelpWare catalog.

- In all other countries, contact your IBM reseller or IBM marketing representative.

For more information or to purchase these services:

- In the U.S., call 1-800-772-2227.
- In Canada, call 1-800-465-7999.
- In all other countries, contact your IBM reseller or IBM marketing representative.

Warranty and Repair Services
You can upgrade your standard hardware warranty service or extend the service beyond the warranty period.

Warranty upgrades in the U.S. include:

- Carry-in service to on-site service

 If your warranty provides carry-in repair service, you can upgrade to on-site repair service, either standard or premium. The standard upgrade provides a trained servicer within the next business day (9 a.m. to 5 p.m., local time, Monday through Friday). The premium upgrade provides 4-hour average response, 24 hours a day, 7 days a week.

- On-site service to premium on-site service
If your warranty provides for on-site service, you can upgrade to premium on-site service (4-hour average on-site response, 24 hours a day, 7 days a week).

You also can extend your warranty. Warranty and Repair Services offers a variety of post-warranty maintenance options, including ThinkPad EasyServ Maintenance Agreements. Availability of the services varies by product.

For more information about warranty upgrades and extensions:

- In the U.S., call 1-800-426-4968.
- In Canada, call 1-800-465-7999.
- In all other countries, contact your IBM reseller or IBM marketing representative.

Ordering Publications

Additional publications are available for purchase from IBM. For a list of publications available in your country:

- In the U.S., Canada, and Puerto Rico, call 1-800-879-2755.
- In other countries, contact your IBM reseller or IBM marketing representative.
Whenever you add options to your server, be sure to update the information in this chapter. Accurate, up-to-date records make it easier to add other options and, if the need should arise, to report a hardware problem.

In addition to server records, this chapter contains specifications. These specifications include product dimensions, environmental operating requirements, system and processor board layouts, and jumper settings.

Record the Identification Numbers .. 402
Installed Device Records ... 403
Specifications ... 412
Changing Jumper Positions .. 415
 Two-Pin Jumper Blocks .. 415
 Three-Pin Jumper Blocks .. 417
System Board Component Locations .. 418
System Board Jumpers .. 420
 Bypassing an Unknown Power-on Password 421
Processor Board Component Locations 422
Processor Board Jumpers ... 424
SCSI Backplane Component Locations 426
SCSI Backplane Option Jumpers ... 427
Record the Identification Numbers

Record and retain the following information.

<table>
<thead>
<tr>
<th>Product Name</th>
<th>IBM Netfinity 5500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Type</td>
<td>_______________</td>
</tr>
<tr>
<td>Model</td>
<td>_______________</td>
</tr>
<tr>
<td>Serial Number</td>
<td>_______________</td>
</tr>
<tr>
<td>Key Serial Number</td>
<td>_______________</td>
</tr>
</tbody>
</table>

The server serial number and other identification numbers are located on a label under the media-bay trim bezel on the front of the server.

Note: Two keys are provided with your server. Store the keys in a safe place. If you lose the keys, you must order a replacement lock mechanism and keys from IBM.
Installed Device Records

Use the following tables to keep a record of the options installed in, or attached to, your system. You can also record your system's default configuration settings. This information can be helpful when you install additional options in your server or if you ever need to have your server serviced. Copy these tables before recording information in them, in case you need extra space to write new values later, when you update your system's configuration.

Note: If necessary, you can also refer to the system-board layout in “System Board Component Locations” on page 418 for connector locations.
In the following table record the types and SCSI IDs for drives or devices attached to your server. If you attach a drive or other device to an adapter, be sure to record the descriptive information properly.

<table>
<thead>
<tr>
<th>Location</th>
<th>Drive or Device Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Devices</td>
<td></td>
</tr>
<tr>
<td>Diskette Drive</td>
<td></td>
</tr>
<tr>
<td>Bay</td>
<td></td>
</tr>
<tr>
<td>CD-ROM Drive</td>
<td></td>
</tr>
<tr>
<td>Bay</td>
<td></td>
</tr>
<tr>
<td>Bay A</td>
<td></td>
</tr>
<tr>
<td>Bay B</td>
<td></td>
</tr>
<tr>
<td>Bay 1</td>
<td></td>
</tr>
<tr>
<td>Bay 2</td>
<td></td>
</tr>
<tr>
<td>Bay 3</td>
<td></td>
</tr>
<tr>
<td>Bay 4</td>
<td></td>
</tr>
<tr>
<td>Bay 5</td>
<td></td>
</tr>
<tr>
<td>Bay 6</td>
<td></td>
</tr>
<tr>
<td>External Devices</td>
<td></td>
</tr>
<tr>
<td>SCSI ID</td>
<td></td>
</tr>
</tbody>
</table>

Table 10. Internal and External Drives and Devices
Table 11 shows the Configuration/Setup utility program defaults. In the table, record any configuration changes you make.

<table>
<thead>
<tr>
<th>Option</th>
<th>Default Value</th>
<th>New Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Summary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processor 1</td>
<td>Pentium II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processor 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processor Speed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Coprocessor</td>
<td>Internal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Memory</td>
<td>640 KB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended Memory</td>
<td>127 MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processor 1 Cache Size</td>
<td>512 KB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processor 2 Cache Size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shadow RAM</td>
<td>384 KB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System ROM</td>
<td>F000h — FFFFh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diskette Drive A</td>
<td>1.44 MB 3.5"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Master Device</td>
<td>CD-ROM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse</td>
<td>Installed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Both microprocessors must have the same cache size and type, and the same clock speed.

System Information			
Product Data			
Machine Type/Model			
Flash EEPROM Revision Level			
System Board Identifier			
System Serial Number			
BIOS Date			
BIOS Revision Number			
SP ROM Date			
SP ROM Revision Level			
Diagnostics Revision Level			
Diagnostics Date			
Diagnostics Version			
ServeRAID BIOS Version			
Table 11 (Page 2 of 6). Configuration/Setup Utility Program Defaults and Changes

<table>
<thead>
<tr>
<th>Option</th>
<th>Default Value</th>
<th>New Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Card Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submodel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRU Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unique Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mfg ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRU Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unique Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mfg ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DASD Backplane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRU Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unique Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mfg ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Backplane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRU Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unique Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mfg ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRU Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unique Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mfg ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRU Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unique Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mfg ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI Routing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planar SCSI RAID</td>
<td>IRQ 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planar Ethernet</td>
<td>IRQ 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planar Video(^2)</td>
<td>IRQ 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planar USB</td>
<td>IRQ 9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^2\)The screen also displays Int_A, Int_B, Int_C, and Int_D for each PCI slot. You can list the values for the PCI and ISA slots in Table 13 on page 411.
Device Records

Table 11 (Page 3 of 6). Configuration/Setup Utility Program Defaults and Changes

<table>
<thead>
<tr>
<th>Option</th>
<th>Default Value</th>
<th>New Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devices and I/O Ports</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial Port A</td>
<td>Port 3F8, IRQ 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial Port B</td>
<td>Port 2F8, IRQ 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel Port</td>
<td>Port 378</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel Port Mode</td>
<td>Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel Port IRQ</td>
<td>IRQ 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel Port DMA</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse</td>
<td>Installed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diskette Controller</td>
<td>Installed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diskette Drive A</td>
<td>1.44 MB 3.5"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video Controller</td>
<td>S3 Incorporated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video Memory</td>
<td>1024 KB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDE Configuration Menu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary IDE Channel</td>
<td>Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master Device</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device Type</td>
<td>CD-ROM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>650 MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer Selection:</td>
<td>Autoconfigure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer Mode</td>
<td>PIO Mode 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LBA Mode</td>
<td>Supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Security</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power-On Password</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allow for Unattended</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boot with Password</td>
<td>On</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administrator Password</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power-on Password</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changeable by User</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Options</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keyboard NumLock State</td>
<td>On</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keyboard Speed</td>
<td>Fast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disketteless Operation Mode</td>
<td>Disabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displayless Operation Mode</td>
<td>Disabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keyboardless Operation Mode</td>
<td>Disabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Startup Device</td>
<td>CD-ROM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Startup Device</td>
<td>Diskette Drive 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third Startup Device</td>
<td>Hard Drive 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth Startup Device</td>
<td>Network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power-On Self-Test</td>
<td>Quick</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virus Detection³</td>
<td>Enabled</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3The Virus Detection test checks for changes to the boot sector.
Table 11 (Page 4 of 6). Configuration/Setup Utility Program Defaults and Changes

<table>
<thead>
<tr>
<th>Option</th>
<th>Default Value</th>
<th>New Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Setup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACPI Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACPI BIOS</td>
<td>[Disabled/Not Present]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACPI Hardware Signature</td>
<td>[Auto]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACPI Hardware Interrupt (IRQ)</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cache Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processor Cache Type</td>
<td>[Write-Back]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processor 1 Cache State</td>
<td>[Enabled]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processor 1 Cache Size</td>
<td>512 KB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processor 2 Cache State</td>
<td>[Enabled]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processor 2 Cache Size</td>
<td>0 KB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI Bus Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI-PCI Bridge Pre-fetching</td>
<td>[Enabled]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI Primary Bus MLT</td>
<td>[30h]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI Secondary Bus MLT</td>
<td>[90h]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI Interrupt Routing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planar RAID IRQ</td>
<td>[Autoconfigure]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planar Enet IRQ</td>
<td>[Autoconfigure]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planar Video IRQ</td>
<td>[Autoconfigure]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planar USB IRQ</td>
<td>[Autoconfigure]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot 6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4The screen displays IntA, IntB, IntC, and IntD for each slot. The default value for each is **Enabled**, if an adapter is installed in the slot. If no adapter is installed, the screen displays **No Iirq Requested**.

Memory Settings			
Bank1: Row0	[Row Is Enabled]		
Bank1: Row1	[Row Is Enabled]		
Bank2: Row0	[Row Is Enabled]		
Bank2: Row1	[Row Is Enabled]		
Bank3: Row0	[Row Is Enabled]		
Bank3: Row1	[Row Is Enabled]		
Bank4: Row0	[Row Is Enabled]		
Bank4: Row1	[Row Is Enabled]		
Table 11 (Page 5 of 6). Configuration/Setup Utility Program Defaults and Changes

<table>
<thead>
<tr>
<th>Option</th>
<th>Default Value</th>
<th>New Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced ISA Setup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Bit I/O Recovery Timer Delay</td>
<td>[1 SysClk]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Bit I/O Recovery Timer Delay</td>
<td>[1 SysClk]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 11 (Page 6 of 6). Configuration/Setup Utility Program Defaults and Changes

<table>
<thead>
<tr>
<th>Option</th>
<th>Default Value</th>
<th>New Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sys. Service Proc. Hw. Int. (IRQ)</td>
<td>[Autoconfigure]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plug and Play</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory Resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A0000h - A3FFFh(^5)</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O Port Resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108h - 10Bh(^6)</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMA Resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 0</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 1</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 2</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 3</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 4</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 5</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 6</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 7</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interrupt Requests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0:</td>
<td>Not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:</td>
<td>Not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:</td>
<td>Not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:</td>
<td>Not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:</td>
<td>Not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:</td>
<td>[Plug and Play]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^5\)The screen displays multiple address ranges. The default value for each is Plug and Play, except for E0000h - FFFFFh which is Not applicable.

\(^6\)The screen displays multiple address ranges. The default value for each is Plug and Play.
Device Records

Record the system memory (DIMMs) installed in your server in the following table.

Table 12. System Memory

<table>
<thead>
<tr>
<th>Memory Connector</th>
<th>DIMM Size</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector J1</td>
<td>64 MB Kit □, 128 MB Kit □, 256 MB Kit □</td>
<td></td>
</tr>
<tr>
<td>Connector J2</td>
<td>64 MB Kit □, 128 MB Kit □, 256 MB Kit □</td>
<td></td>
</tr>
<tr>
<td>Connector J3</td>
<td>64 MB Kit □, 128 MB Kit □, 256 MB Kit □</td>
<td></td>
</tr>
<tr>
<td>Connector J4</td>
<td>64 MB Kit □, 128 MB Kit □, 256 MB Kit □</td>
<td></td>
</tr>
<tr>
<td>Total Memory (MB)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Record expansion slot configuration information for your server in the following table.

Table 13. Expansion Slot Configuration Information

<table>
<thead>
<tr>
<th>Expansion Slot</th>
<th>IRQ</th>
<th>DMA</th>
<th>I/O Port</th>
<th>Memory Resources</th>
<th>Option Description and Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISA slot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI slot 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI slot 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI slot 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI slot 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI slot 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI slot 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. PCI slots 1–4 are hot-plug slots.
2. Before setting values, review “Resolving Configuration Conflicts” on page 176 and follow the instructions for avoiding configuration conflicts.
Specifications

The following list contains the specifications for the Netfinity 5500.

Size (Tower Model)

- Depth: 700 mm (27.6 in.)
- Height with NetBAY3: 530 mm (20.9 in.)
- Height without NetBAY3: 356 mm (14 in.)
- Width: 483 mm (19 in.)
- Front clearance: 305 mm (12 in.)
- Rear clearance: 100 mm (4 in.)
- Side clearance: 50 mm (2 in.)

Size (Rack Model)

- Depth: 650 mm (25.6 in.)
- Height: 356 mm (14 in.) (8 U)
- Width: 440 mm (17.3 in.)

Weight

- Unpacked, minimum configuration (with empty NetBAY3): 39 kg (85 lb.)
- Unpacked, maximum configuration: 55 kg (120 lb.)

Heat Output

- Approximate heat output in British thermal units (Btu) per hour:
 - Minimum configuration: 1023.9 Btu
 - Maximum configuration: 2764.6 Btu

Environment

- Air temperature
 - System on: 10° to 35° C (50° to 95° F)
 Altitude: 0 to 914 m (3000 ft.)
 - System on: 10° to 32° C (50° to 89.6° F)
 Altitude: 914 m (3000 ft.) to 2133 m (7000 ft.)
 - System off: 10° to 43° C (50° to 110° F)
 Maximum altitude: 2133 m (7000 ft.)
• Humidity
 – System on: 8% to 80%; maximum wetbulb, 23° C (73.4° F)
 – System off: 8% to 80%; maximum wetbulb, 27° C (80.6° F)
• Altitude: 0 to 2133 m (0 to 7000 ft.)

Acoustical Noise Emissions Values

• Sound power, idling
 – 6.2 bel for open bay system (no hard disk drives installed)
 – 6.2 bel for typical system configuration (3 hard disk drives installed)
• Sound power, operating
 – 6.2 bel for open bay system (no hard disk drives installed)
 – 6.4 bel for typical system configuration (3 hard disk drives installed)
• Sound pressure, idling
 – 45 dBA for open bay system (no hard disk drives installed)
 – 45 dBA for typical system configuration (3 hard disk drives installed)
• Sound pressure, operating
 – 45 dBA for open bay system (no hard disk drives installed)
 – 46 dBA for typical system configuration (3 hard disk drives installed)

These levels are measured in controlled acoustical environments according to ISO 7779, and are reported in accordance with ISO 9296. The declared sound power levels indicate an upper limit, below which a large portion of machines operate. Sound pressure levels in your location might exceed the average values stated because of room reflections and other nearby noise.

Electrical Input

• Sine-wave input (50± or 60± Hz) is required
• Input voltage
 – Low range
 - Minimum: 90 V ac
 - Maximum: 137 V ac
 – High range
 - Minimum: 180 V ac
 - Maximum: 265 V ac
 – Input kilovolt-amperes (KVA) approximately
 - Minimum configuration as shipped: 0.2 KVA
 - Maximum configuration: 0.78 KVA
Electrostatic Discharge
- Tested to 14 KV

Immunity
- Verified to comply with EN 50082-2

Safety Standards
- UL 1950
- CSA C22.2 No. 950-M93
- EN 60950 and countries deviations
- IEC 950
- NOM-019
Changing Jumper Positions
Jumpers located on the system board and the processor board help you to customize the way your server operates.

Your system board, processor board, and SCSI backplane contain two-pin and three-pin jumper blocks.

In some cases, groups of jumpers might combine to define a function.

Two-Pin Jumper Blocks
Covering both pins with a jumper defines one function of the jumper block. To change the function of the jumper block, cover one pin only or remove the jumper entirely.

The following illustration identifies pins 1 and 2 on a two-pin jumper block.
Changing Jumper Positions

To change a jumper's position for a two-pin jumper block:

1. Turn off the server; then, disconnect the server power cords.

2. Remove the server cover (see “Preparing to Install Options” on page 205).

3. Do one of the following:
 - Lift the jumper straight off the pin block.
 - Align the holes in the bottom of the jumper with the two pins on the pin block, and then slide the jumper onto these pins.
 - Align one of the holes in the bottom of the jumper with one of the pins on the pin block, and then slide the jumper onto that pin only.

4. Reinstall the server cover and connect the cables (see “Completing the Installation” on page 258).
Three-Pin Jumper Blocks
With the three-pin jumper blocks, each jumper covers two of the three pins on a pin block. You can position the jumper to fit over the center pin and either of the other two pins.

The following illustration identifies pins 1, 2, and 3 on a three-pin jumper block.

![Diagram of pins 1, 2, and 3]

To change a jumper's position for a three-pin jumper block:
1. Turn off the server; then, disconnect the server power cords.
2. Remove the server cover (see “Preparing to Install Options” on page 205).
3. Lift the jumper straight off the pin block.
4. Align the holes in the bottom of the jumper with the center pin and the pin that was not covered previously.
5. Slide the jumper fully onto these pins.
6. Reinstall the server cover and connect the cables (see “Completing the Installation” on page 258).
System Board Component Locations

The following illustration shows a layout of the system board and identifies system-board components. You might need to refer to this figure before you install hardware in your server, or when you record information in the tables in this chapter. You might also need to refer to this figure when you set configuration jumpers on the system board.

1. Processor board connector (J19)
2. System management processor error LED (CR24)
3. RAID channel 1 connector (J7)
4. RAID channel 1 error LED (CR30)
5. RAID channel 2 error LED (CR31)
Reserved (J54)
Reserved (J64)
Disable RAID controller jumper block (J11)
Reserved (J45)
Power on control jumper block (J32)
Reserved (J25)
Reserved (J9)
Power backplane cable connector (J8)
RAID channel 2 connector (to backplane) (J3)
RAID system error LED (CR32)
Reserved (J27)
Reserved (J35)
SCSI activity LED connector (J52)
Reserved (J34)
Reserved (J29)
Reserved (J26)
IDE connector (J33)
System reset jumper block (J51)
Fan connector (J36)
Diskette drive connector (J22)
Power on password override jumper block (J24)
Flash ROM page swap jumper block (J30)
Control panel connector (J20)
Battery
Reserved (J46)
Hot-plug PCI controller programmer interface connector (J53)
ISA expansion slot
Hot-plug switch connector (J16)
PCI slot LEDs (four are on the side of the board)
PCI slots 1–4 (hot-plug)
PCI slots 5 and 6
Parallel port connector (J56) (Serial port A and B connectors are below the parallel port connector.)
Video port connector (J2)
Management port C connector (J42)
USB 1 and USB 2 port connectors (USB 2 is below USB 1.) (J31)
Mouse and keyboard connectors (J1) (The mouse connector is above the keyboard connector.)
System Board Jumpers

Table 14 describes the jumpers on the system board. The numbers in the table correspond to the highlighted numbers on the illustration in “System Board Component Locations” on page 418.

Note: Turn off the server, and disconnect the power cords before moving any jumpers.

<table>
<thead>
<tr>
<th>Jumper Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S J11</td>
<td>Disable RAID controller The default position is Enabled (jumper on pins 1 and 2). Move the jumper to pins 2 and 3 to disable the RAID controller.</td>
</tr>
<tr>
<td>9 J45</td>
<td>Reserved The default position is a jumper on pins 2 and 3.</td>
</tr>
<tr>
<td>10 J32</td>
<td>Power on control The default position is normal operation (jumper on pins 1 and 2). Moving the jumper to pins 2 and 3 allows the power supply to be turned on without a control panel or system management processor.</td>
</tr>
<tr>
<td>11 J25</td>
<td>Reserved The default position is a jumper on pins 1 and 2.</td>
</tr>
<tr>
<td>12 J9</td>
<td>Reserved The default position is a jumper on pins 1 and 2.</td>
</tr>
<tr>
<td>13 J34</td>
<td>Reserved The default is no jumper installed on J34.</td>
</tr>
<tr>
<td>19 J29</td>
<td>Reserved The default is no jumper installed on J29.</td>
</tr>
<tr>
<td>21 J26</td>
<td>Reserved The default is a jumper on pins 2 and 3.</td>
</tr>
<tr>
<td>23 J51</td>
<td>System reset In normal operation, there is no jumper on J51. Installing a jumper on J51 resets the system logic.</td>
</tr>
<tr>
<td>26 J24</td>
<td>Power on password override Changing the position of this jumper bypasses the power-on password check if the jumper has been moved since the server was last powered on. You do not need to move the jumper back to the default position after the password is overridden. Changing the position of this jumper does not affect the administrator password check if an administrator password is set.</td>
</tr>
</tbody>
</table>
Bypassing an Unknown Power-on Password

When a power-on password is set, POST does not complete until you enter the password. If you forget the power-on password, you can regain access to the server through either of the following methods:

- Enter the administrator password at the power-on prompt, if an administrator password has been set. (If necessary, see “Using the Administrator Password Menu” on page 169 for details.)
 - Start the Configuration/Setup utility programs and change the power-on password. See “Using the Power-On Password Menu” on page 167.

- Change the position of the jumper on J24 as described in Table 14 on page 420 to bypass the power-on password check. You can then start the Configuration/Setup utility programs and change the power-on password. See “Using the Power-On Password Menu” on page 167.

<table>
<thead>
<tr>
<th>Jumper Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J30 Flash ROM page swap</td>
<td>The default position is a jumper installed on pins 2 and 3. Changing the position of this jumper will change which of the two pages of Flash ROM is used when the system is started.</td>
</tr>
<tr>
<td>J5 Disable Ethernet controller</td>
<td>The default position is Enabled (jumper on pins 1 and 2). Move the jumper to pins 2 and 3 to disable the Ethernet controller.</td>
</tr>
<tr>
<td>J14 Disable video controller</td>
<td>The default position is Enabled (jumper on pins 1 and 2). Move the jumper to pins 2 and 3 to disable the video controller.</td>
</tr>
</tbody>
</table>
Processor Board Component Locations

A layout of the processor board is shown in the following illustration.

1 – 4 Microprocessor core-frequency-selection jumper block (J27–J30)
5 Primary microprocessor VRM error LED (CR17)
6 Reserved (J20)
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>System-board interface connector (J9) (on reverse side of processor board)</td>
</tr>
<tr>
<td>8</td>
<td>Reserved (J5)</td>
</tr>
<tr>
<td>9</td>
<td>Primary microprocessor card connector (U5)</td>
</tr>
<tr>
<td>10</td>
<td>Primary microprocessor error LED (CR12)</td>
</tr>
<tr>
<td>11</td>
<td>DIMM 1 error LED (CR8)</td>
</tr>
<tr>
<td>12</td>
<td>DIMM 2 error LED (CR9)</td>
</tr>
<tr>
<td>13</td>
<td>DIMM 3 error LED (CR10)</td>
</tr>
<tr>
<td>14</td>
<td>DIMM 4 error LED (CR11)</td>
</tr>
<tr>
<td>15</td>
<td>Reserved (J12)</td>
</tr>
<tr>
<td>16</td>
<td>Reserved (J13)</td>
</tr>
<tr>
<td>17</td>
<td>Reserved (J8)</td>
</tr>
<tr>
<td>18</td>
<td>DIMM socket 4 (J1)</td>
</tr>
<tr>
<td>19</td>
<td>DIMM socket 3 (J2)</td>
</tr>
<tr>
<td>20</td>
<td>DIMM socket 2 (J3)</td>
</tr>
<tr>
<td>21</td>
<td>DIMM socket 1 (J4)</td>
</tr>
<tr>
<td>22</td>
<td>Secondary microprocessor error LED (CR13)</td>
</tr>
<tr>
<td>23</td>
<td>Reserved (J7)</td>
</tr>
<tr>
<td>24</td>
<td>Reserved (J24)</td>
</tr>
<tr>
<td>25</td>
<td>Reserved (J6)</td>
</tr>
<tr>
<td>26</td>
<td>Reserved (J16)</td>
</tr>
<tr>
<td>27</td>
<td>Secondary microprocessor card connector (U6)</td>
</tr>
<tr>
<td>28</td>
<td>Reset-system jumper block (J23)</td>
</tr>
<tr>
<td>29</td>
<td>Reserved (J15)</td>
</tr>
<tr>
<td>30</td>
<td>Reserved (J14)</td>
</tr>
<tr>
<td>31</td>
<td>Reserved (J11)</td>
</tr>
<tr>
<td>32</td>
<td>Secondary microprocessor VRM error LED (CR19)</td>
</tr>
<tr>
<td>33</td>
<td>Reserved (J18)</td>
</tr>
<tr>
<td>34</td>
<td>Secondary microprocessor VRM connector (U22)</td>
</tr>
<tr>
<td>35</td>
<td>Power control connector (J17)</td>
</tr>
<tr>
<td>36</td>
<td>Primary microprocessor VRM connector (U15)</td>
</tr>
<tr>
<td>37</td>
<td>Power supply connector (J10)</td>
</tr>
</tbody>
</table>
Processor Board Jumpers

Table 15 contains the names and descriptions of the jumper blocks located on the processor board. The highlighted numbers in the table refer to the highlighted numbers in the illustration in “Processor Board Component Locations” on page 422.

Notes:

1. Turn off the server, and disconnect the power cords before moving any jumpers.

2. Be sure the microprocessor bus-to-core ratio is set correctly. For example, if you have a 350 MHz microprocessor installed and the system bus speed is 100 MHz (the default), be sure that the jumpers are set to a bus-to-core ratio of 3.5 (350/100). Refer to jumpers J27–J30 in Table 15 and Table 16 on page 425.

MHz denotes internal clock speed of the microprocessor only; other factors also affect application performance.

Attention:
If the microprocessor bus-to-core ratio is incorrect, system-board components will overheat and component damage might occur. Be sure that the microprocessor core-frequency selection is properly set.

<table>
<thead>
<tr>
<th>Jumper Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - A</td>
<td>Microprocessor core frequency selection (J27–J30) The default core/bus fraction is 3.5 (350/100 MHz). Jumpers are installed on pins 1 and 2 of J27 and J30; either jumpers are installed on pins 2 and 3 of J28 and J29 or no jumper is installed on J28 or J29. For the core/bus fraction 4 (400/100 MHz), the jumpers are installed on pins 1 and 2 of J28, J29, and J30; either a jumper is installed on pins 2 and 3 of J27 or no jumper is installed on J27. For the core/bus fraction 4.5, jumpers are installed on pins 1 and 2 of J28 and J30; and either jumpers are installed on pins 2 and 3 of J27 and J29 or no jumpers are installed on J28 or J30.</td>
</tr>
<tr>
<td>B</td>
<td>J5 Reserved The default position is a jumper on pins 1 and 2.</td>
</tr>
<tr>
<td>Jumper Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>J12</td>
<td>If your server has unbuffered SDRAM, a jumper should be on pins 1 and 2. If your server has registered SDRAM, a jumper should be on pins 2 and 3.</td>
</tr>
<tr>
<td>J13</td>
<td>The default position is a jumper on pins 1 and 2.</td>
</tr>
<tr>
<td>J8</td>
<td>The default position is no jumper on J8.</td>
</tr>
<tr>
<td>J7</td>
<td>The default position is a jumper on pins 1 and 2.</td>
</tr>
<tr>
<td>J24</td>
<td>The default position is a jumper on pins 2 and 3.</td>
</tr>
<tr>
<td>J6</td>
<td>The default position is a jumper on pins 1 and 2.</td>
</tr>
<tr>
<td>J16</td>
<td>The default position is a jumper on pins 1 and 2.</td>
</tr>
<tr>
<td>J23</td>
<td>In normal operation, there is either a jumper on pins 2 and 3 of J23 or no jumper on J23. Installing a jumper on pins 1 and 2 of J23 forces the system into the reset state.</td>
</tr>
<tr>
<td>J15</td>
<td>The default position is a jumper on pins 1 and 2.</td>
</tr>
<tr>
<td>J14</td>
<td>The default position is a jumper on pins 2 and 3.</td>
</tr>
<tr>
<td>J11</td>
<td>The default position is a jumper on pins 1 and 2.</td>
</tr>
</tbody>
</table>

Table 16. Microprocessor Core Frequency Selection

<table>
<thead>
<tr>
<th>Core/Bus Ratio</th>
<th>J27 Jumper</th>
<th>J28 Jumper</th>
<th>J29 Jumper</th>
<th>J30 Jumper</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Pins 1 and 2</td>
<td>Pins 2 and 3</td>
<td>Pins 2 and 3</td>
<td>Pins 1 and 2</td>
</tr>
<tr>
<td>4</td>
<td>Pins 2 and 3</td>
<td>Pins 1 and 2</td>
<td>Pins 1 and 2</td>
<td>Pins 1 and 2</td>
</tr>
<tr>
<td>4.5</td>
<td>Pins 2 and 3</td>
<td>Pins 1 and 2</td>
<td>Pins 2 and 3</td>
<td>Pins 1 and 2</td>
</tr>
</tbody>
</table>
SCSI Backplane Component Locations

The following simplified layout of the SCSI backplane identifies the components. Refer to this figure when you set the jumpers on the backplane.

1. Wide (16-bit) SCSI connector
2. Option jumper block (J10)
3. SCSI hot-swap drive connectors (on reverse side of backplane)
4. Repeater card connector
5. Power connector
SCSI Backplane Option Jumpers

The option jumper block on the SCSI backplane defines the SCSI IDs for hot-swap drives. See the illustration in “SCSI Backplane Component Locations” on page 426 for the location of the option jumper block.

Table 17 summarizes the settings for the SCSI backplane option jumper block (J10).

<table>
<thead>
<tr>
<th>Pins</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Reserved.</td>
</tr>
<tr>
<td>3-4</td>
<td>Reserved.</td>
</tr>
<tr>
<td>5-6</td>
<td>Placing a jumper on these two pins enables SCSI IDs 8-13</td>
</tr>
<tr>
<td>7-8</td>
<td>Reserved.</td>
</tr>
<tr>
<td>9-10</td>
<td>Reserved.</td>
</tr>
<tr>
<td>11-12</td>
<td>Placing a jumper on these two pins reverses the SCSI IDs on the backplane.</td>
</tr>
</tbody>
</table>

Note: The default is no jumpers installed on the J10 jumper block.

Table 18 shows the SCSI IDs that you can use for hot-swap drives.

<table>
<thead>
<tr>
<th>J10 Pins 5-6</th>
<th>J10 Pins 11-12</th>
<th>Bay 1</th>
<th>Bay 2</th>
<th>Bay 3</th>
<th>Bay 4</th>
<th>Bay 5</th>
<th>Bay 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>No jumper</td>
<td>No jumper</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>No jumper</td>
<td>Jumper</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Jumper</td>
<td>No jumper</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

Notes:
1. No jumper on pins 5-6 and 11-12 is the default.
2. Jumpers on pins 5-6 and 11-12 is not supported.
This appendix contains information about installing devices in the NetBAY3.

Note: The illustrations in this appendix do not show the server on top of the NetBAY3, however, you do not need to remove the NetBAY3 to install devices.

This appendix contains:
General Considerations 430
Removing the Rear Panel 431
Installing Devices on Side Rails 432
Removing Cage Nuts 434
Installing Cage Nuts 435
Installing Cantilevered Devices 436
Installing Devices on the NetBAY3 Base Plate 437
General Considerations

You can install three types of devices in the NetBAY3:

- Devices, such as the IBM EXP10, that sit on side rails
- Cantilevered devices, such as a power distribution unit (PDU), that are screwed to the front or rear of the NetBAY3
- Devices that sit on the NetBAY3 base plate

Notes:

1. To allow the NetBAY3 front bezel to close, devices with handles must not protrude out more than 56 cm (2.2 in.). The following illustration of the front bezel top-view cross section shows the clearances.

2. All device cables must exit from the rear of the NetBAY3.
Removing the Rear Panel

Note: Do not remove the rear panel if you are not installing a device in the NetBAY3.

1. Remove the NetBAY3 rear panel.
 a. Remove the four screws.
 b. Lift the rear panel off.

2. After you remove the rear panel, do one of the following:
 • Install a device on rails in the NetBAY3. (Go to “Installing Devices on Side Rails” on page 432.)
 • Install a cantilevered device in the NetBAY3. (Go to “Installing Cantilevered Devices” on page 436.)
 • Install a device on the NetBAY3 base plate. (Go to “Installing Devices on the NetBAY3 Base Plate” on page 437.)
Installing Devices on Side Rails

Installing devices that sit on side rails in a NetBAY3 is similar to installing these devices in a rack enclosure. The device side rails must be screwed to the NetBAY3 vertical mounting rails. Follow the instructions in the documentation that comes with the device and use the following illustrations as a guide.

If you need to remove or move the cage nuts at the rear of the NetBAY3 to hold the rails, go to “Removing Cage Nuts” on page 434.
Installing Devices on Side Rails
Removing Cage Nuts

Device installation might require the removal or moving of the rear-pane cage nuts. If you need to move the cage nuts, follow this procedure to move them and then go to “Installing Cage Nuts” on page 435 to install them in the correct position.

1. Hold the cage nut in place and compress the cage-nut clip with a flat screwdriver blade.

![Diagram showing how to compress the cage nut clip](image)

2. With the cage nut-clip compressed, push the cage nut-clip out of the square hole.

3. Release the screwdriver pressure on the clip. The cage nut is now loose and can be removed from the square hole.
Installing Cage Nuts

The nuts go toward the inside of the NetBAY3. Make sure you install all the cage nuts at the same level on the mounting rails.

1. Hook one side of the cage-nut clip into the rack-mounting-rail square hole.

2. Hold the cage nut in place and compress the cage-nut clip with a flat screwdriver blade.

3. With the cage-nut clip compressed, push the cage-nut clip into the square hole.

4. Release the screwdriver pressure on the clip. The cage nut is now locked in the square hole.
Installing Cantilevered Devices

Installing cantilevered devices in a NetBAY3 is similar to installing these devices in a rack enclosure. Cantilevered devices can be installed in the front or rear of the NetBAY3. The devices must be screwed to the NetBAY3 vertical mounting rails. Follow the instructions in the documentation that comes with the device and use the following figure as a guide.
Installing Devices on the NetBAY3 Base Plate

Some devices rest on the NetBAY3 base plate. These devices must be screwed to the NetBAY3 vertical mounting rails.
Installing Devices on the NetBAY3 Base Plate
This appendix contains the Year 2000-ready statement, the I2O-ready statement, and information about unsupported S3 video modes.

Year-2000-Ready Statement
The Netfinity 5500 system BIOS is Year-2000 ready. It contains a century checking and maintenance feature (INT hex 1A; Get Date, Set Date, Get Time, Set Time) that reads and updates the century byte automatically. This feature enables the operating system and applications using the BIOS date/time services to reliably manipulate the year as a four-digit value. However, an application that bypasses the BIOS INT hex 1A service also bypasses the century checking and maintenance features; this might result in an error when reading the century byte. To prevent possible problems, either restart the system or enter the new date and time on or after January 1, 2000 for the update to occur. Reading the date will not cause the update to occur.

I2O-Ready Statement
The Netfinity 5500 is intended to support I2O deep adapters as listed in the Server Proven program. A deep adapter is a PCI card that has an embedded IOP (input/output processor). For the deep adapter to function correctly, the following items are needed:

- An operating system vendor-provided OSM (operating system service module) that supports the class of adapter (such as, storage) that is being installed in the server.
- A PCI card vendor-provided HDM (hardware device module).

Unsupported S3 Video Modes
The S3 VGA BIOS does not directly support display modes hex 1F and hex 10 (15 and 16). When using DOS or and OS/2 DOS session in the modes, the last two lines of text will be unviewable. The 8X14TSR.EXE program is available on the Netfinity World Wide Web site to restore full visibility for DOS applications requiring these modes.
This appendix contains warranty and emission notices for the United States, Puerto Rico, Canada, and the United Kingdom. In addition, this appendix contains trademarks and general-information notices.

This appendix contains:

Warranty Statements .. 442
United States, Puerto Rico, and Canada 442
United Kingdom .. 444

Notices .. 448

Trademarks .. 448

Important Notes ... 449

Industry Canada Class A Emission Compliance Statement 450
Australia and New Zealand Class A Statement 451
United Kingdom Telecommunications Safety Requirements 451
European Community Directive Conformance Statement 451
Power Cords .. 452
Warranty Statements

United States, Puerto Rico, and Canada

The following is the statement of limited warranty for the United States, Canada, and Puerto Rico.

International Business Machines Corporation Armonk, New York, 10504

Statement of Limited Warranty

The warranties provided by IBM in this Statement of Limited Warranty apply only to Machines you originally purchase for your use, and not for resale, from IBM or your reseller. The term “Machine” means an IBM machine, its features, conversions, upgrades, elements, or accessories, or any combination of them. Unless IBM specifies otherwise, the following warranties apply only in the country where you acquire the Machine. If you have any questions, contact IBM or your reseller.

Machine: IBM Netfinity 5500
Warranty Period*: Three Years

*Contact your place of purchase for warranty service information.

Production Status

Each Machine is manufactured from new parts, or new and used parts. In some cases, the Machine may not be new and may have been previously installed. Regardless of the Machine’s production status, IBM’s warranty terms apply.

The IBM Warranty for Machines

IBM warrants that each Machine 1) is free from defects in materials and workmanship and 2) conforms to IBM’s Official Published Specifications. The warranty period for a Machine is a specified, fixed period commencing on its Date of Installation. The date on your receipt is the Date of Installation, unless IBM or your reseller informs you otherwise.

During the warranty period IBM or your reseller, if authorized by IBM, will provide warranty service under the type of service designated for the Machine and will manage and install engineering changes that apply to the Machine.

For IBM or your reseller to provide warranty service for a feature, conversion, or upgrade, IBM or your reseller may require that the Machine on which it is installed be 1) for certain Machines, the designated, serial-numbered Machine and 2) at an engineering-change level compatible with the feature, conversion, or upgrade. Many of these transactions involve the removal of parts and their return to IBM. You represent that all removed parts are genuine and unaltered. A part that replaces a removed part will assume the warranty service status of the replaced part.
If a Machine does not function as warranted during the warranty period, IBM or your reseller will repair it or replace it with one that is at least functionally equivalent, without charge. The replacement may not be new, but will be in good working order. If IBM or your reseller is unable to repair or replace the Machine, you may return it to your place of purchase and your money will be refunded.

If you transfer a Machine to another user, warranty service is available to that user for the remainder of the warranty period. You should give your proof of purchase and this Statement to that user. However, for Machines which have a life-time warranty, this warranty is not transferable.

Warranty Service

To obtain warranty service for the Machine, you should contact your reseller or call IBM. In the United States, call IBM at 1-800-772-2227. In Canada, call IBM at 1-800-565-3344. You may be required to present proof of purchase.

IBM or your reseller will provide certain types of repair and exchange service, either at your location or at IBM's or your reseller's service center, to restore a Machine to good working order.

When a type of service involves the exchange of a Machine or part, the item IBM or your reseller replaces becomes its property and the replacement becomes yours. You represent that all removed items are genuine and unaltered. The replacement may not be new, but will be in good working order and at least functionally equivalent to the item replaced. The replacement assumes the warranty service status of the replaced item. Before IBM or your reseller exchanges a Machine or part, you agree to remove all features, parts, options, alterations, and attachments not under warranty service. You also agree to ensure that the Machine is free of any legal obligations or restrictions that prevent its exchange.

You agree to:

1. obtain authorization from the owner to have IBM or your reseller service a Machine that you do not own; and
2. where applicable, before service is provided —
 a. follow the problem determination, problem analysis, and service request procedures that IBM or your reseller provide,
 b. secure all programs, data, and funds contained in a Machine, and
 c. inform IBM or your reseller of changes in a Machine's location.

IBM is responsible for loss of, or damage to, your Machine while it is 1) in IBM's possession or 2) in transit in those cases where IBM is responsible for the transportation charges.

Extent of Warranty

IBM does not warrant uninterrupted or error-free operation of a Machine.

The warranties may be voided by misuse, accident, modification, unsuitable physical or operating environment, improper maintenance by you, removal or alteration of Machine or parts identification labels, or failure caused by a product for which IBM is not responsible.
THESE WARRANTIES REPLACE ALL OTHER WARRANTIES OR CONDITIONS, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THESE WARRANTIES GIVE YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM JURISDICTION TO JURISDICTION. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF EXPRESS OR IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION OR LIMITATION MAY NOT APPLY TO YOU. IN THAT EVENT SUCH WARRANTIES ARE LIMITED IN DURATION TO THE WARRANTY PERIOD. NO WARRANTIES APPLY AFTER THAT PERIOD.

Limitation of Liability
Circumstances may arise where, because of a default on IBM's part or other liability you are entitled to recover damages from IBM. In each such instance, regardless of the basis on which you are entitled to claim damages from IBM (including fundamental breach, negligence, misrepresentation, or other contract or tort claim), IBM is liable only for:

1. damages for bodily injury (including death) and damage to real property and tangible personal property; and
2. the amount of any other actual direct damages or loss, up to the greater of U.S. $100,000 or the charges (if recurring, 12 months' charges apply) for the Machine that is the subject of the claim.

UNDER NO CIRCUMSTANCES IS IBM LIABLE FOR ANY OF THE FOLLOWING: 1) THIRD-PARTY CLAIMS AGAINST YOU FOR LOSSES OR DAMAGES (OTHER THAN THOSE UNDER THE FIRST ITEM LISTED ABOVE); 2) LOSS OF, OR DAMAGE TO, YOUR RECORDS OR DATA; OR 3) SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES OR FOR ANY ECONOMIC CONSEQUENTIAL DAMAGES (INCLUDING LOST PROFITS OR SAVINGS), EVEN IF IBM OR YOUR RESELLER IS INFORMED OF THEIR POSSIBILITY. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE EXCLUSION OR LIMITATION MAY NOT APPLY TO YOU.

United Kingdom
This section contains warranty notices for the United Kingdom.

IBM warrants this IBM product to be in good working order and conforms to its officially published IBM specifications for a period of three years from the date of first purchase by an end-user customer.

Note: Batteries for Mobile products are limited to 1 year warranty.
Your sales receipt or authorised dated and stamped warranty service certificate is proof of your entitlement to warranty service.

If this product is not in good working order, IBM will, at its option, repair or replace this product at no additional charge except as set forth below. Repair parts and replacement products will be provided on an exchange basis and will be either new, equivalent to new or reconditioned. All replaced parts and products become the property of IBM. This warranty does not cover the repair of damage to the product resulting from:

- Accident, disaster, misuse and abuse
- Use of parts not manufactured or sold by IBM
- Modification of the product
- Service provided by anyone other than IBM or an authorised IBM service provider.

IBM does not warrant that the functions in any preloaded program will meet your requirements or that the operations of the preloaded program will be uninterrupted or error free.

There is no other warranty whether express or implied. In case the exclusion of certain warranties would be precluded by applicable law, such warranties would be limited in duration to the warranty period stated above.

Warranty Performance

Warranty service may be obtained by returning the product during warranty period to an authorised IBM service provider and by providing proof of your warranty service entitlement. You are responsible for any associated transportation charges and insurance during shipment and return.

For a product purchased in a group A country (as defined), warranty service may be obtained from any authorised IBM service provider in any group A country; similarly for a product purchased in a group B country, warranty service may be obtained from any authorised IBM service provider in any group B country.
Group A Countries
Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland Italy, Ireland, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom.

Group B Countries
Albania, Bosnia-Herzegovina, Bulgaria, Croatia, Czechia, Russia, Armenia, Bellarus, Georgia, Kirghizia, Hungary, Kazakhstan, Macedonia, Moldova, Poland, Romania, Slovakia, Serbia-Montenegro, Slovenia, Ukraine.

On-Site Service
Some IBM products are sold with a service entitlement which is delivered on the customers premises (on-site). If the product you have purchased carries with it an entitlement to IBM on-site service, this service is provided during the warranty period subject to the following terms and conditions:

- The product must have been announced as qualifying for On-Site Service in the country in which Warranty Service is being claimed.
- You must contact a local authorised IBM service provider and be prepared to supply proof of warranty entitlement. The authorised IBM service provider will attempt to resolve your problem over the telephone. If this is not possible, a trained service engineer will be dispatched to your location to repair the IBM product.
- The service representative must be provided with full access to the equipment reported as faulty.
- The equipment must be located within 50 kilometers (or more depending on country) of the authorised IBM service provider.

Liability
IBM shall have no liability for lost profits or other consequential damages, even if advised of the possibility of such damages, or for any claim by any third party. IBM’s total liability for a breach or breaches of this warranty by IBM is limited to 100,000 US Dollars of direct damages. This financial limitation of liability will not apply
to claims for death or personal injury or damage to real or personal property caused by IBM negligence.

General
No statements contained herein shall affect the statutory rights of consumers.

International Warranty Service
IBM International hardware warranty service is available for those customers, travelling to countries in which their PC products are announced and sold by IBM or IBM resellers, upon registering with IBM International Warranty Service Office. IBM International Warranty Service is provided subject to the terms and conditions of the IBM Warranty Statement provided with the product in the country of purchase. Service outside the country of purchase will be provided under local service procedures. Customers who wish to relocate their machine to another country and wish to obtain warranty service must first register with the International Warranty Service Office based in Greenock. The I.W.S.O. will offer advice on the warranty service available in the country or countries where the customer wishes to relocate and will issue an International Warranty Service Certificate upon proof of warranty status of the customers machine. Contact the I.W.S.O. on

Tel + 44 1475 893638
Fax + 44 1475 893732

Alternatively customers may register for International Warranty Service via their local IBM Office.

Notes:
1. International Warranty Service is not available on IBM Options unless they are installed in or connected to an IBM System Unit which is registered for International Warranty Service.
2. Customers are not required to register their machine for International Warranty Service if relocation is within the countries of Group A or Group B.
Trademarks

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Subject to IBM’s valid intellectual property or other legally protectable rights, any functionally equivalent product, program, or service may be used instead of the IBM product, program, or service. The evaluation and verification of operation in conjunction with other products, except those expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

This section contains trademarks, electronic emission notices, and other important information.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

- HelpCenter
- HelpWare
- IBM
- IntelliStation
- Netfinity
- OS/2
- Predictive Failure Analysis
- ServeRAID
- ServerGuide
- ThinkPad
- ValuePoint
Intel, MMX, and Pentium are trademarks or registered trademarks of Intel Corporation.

Microsoft, Windows, and Windows NT are trademarks or registered trademarks of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks of others.

Important Notes
Processor speeds indicate the internal clock speed of the microprocessor; other factors also affect application performance.

When referring to hard disk drive capacity, MB stands for 1,000,000,000 bytes and GB stands for 1,000,000,000,000 bytes. Total user-accessible capacity may vary depending on operating environments.

Maximum internal hard disk drive capacities assume the replacement of any standard hard disk drives and population of all hard disk drive bays with the largest currently supported drives available from IBM.

Unless otherwise stated, IBM makes no representations or warranties with respect to non-IBM products. Support (if any) for the non-IBM products is provided by the third party, not IBM.

Some software may differ from its retail version (if available), and may not include user manuals or all program functionality.
Federal Communications Commission (FCC) Statement

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

Properly shielded and grounded cables and connectors must be used in order to meet FCC emission limits. IBM is not responsible for any radio or television interference caused by using other than recommended cables and connectors or by unauthorized changes or modifications to this equipment. Unauthorized changes or modifications could void the user's authority to operate the equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Industry Canada Class A Emission Compliance Statement
This Class A digital apparatus complies with Canadian ICES-003.

Avis de conformité à la réglementation d'Industrie Canada
Cet appareil numérique de la classe A est conforme à la norme NMB-003 du Canada.
Australia and New Zealand Class A Statement

Attention: This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

United Kingdom Telecommunications Safety Requirements

Notice to Customers

This apparatus is approved under approval number NS/G/1234/J/100003 for indirect connection to public telecommunication systems in the United Kingdom.

European Community Directive Conformance Statement

This product is in conformity with the protection requirements of EC Council Directive 89/336/EEC on the approximation of the laws of the Member States relating to electro-magnetic compatibility.

A declaration of Conformity with the requirements of the Directive has been signed by IBM United Kingdom Limited, PO BOX 30 Spango Valley Greenock Scotland PA160AH.

Attention:
This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.
Power Cords

For your safety, IBM provides a power cord with a grounded attachment plug to use with this IBM product. To avoid electrical shock, always use the power cord and plug with a properly grounded outlet.

IBM power cords used in the United States and Canada are listed by Underwriter's Laboratories (UL) and certified by the Canadian Standards Association (CSA).

For units intended to be operated at 115 volts: Use a UL-listed and CSA-certified cord set consisting of a minimum 18 AWG, Type SVT or SJT, three-conductor cord, a maximum of 15 feet in length and a parallel blade, grounding-type attachment plug rated 15 amperes, 125 volts.

For units intended to be operated at 230 volts (U.S. use): Use a UL-listed and CSA-certified cord set consisting of a minimum 18 AWG, Type SVT or SJT, three-conductor cord, a maximum of 15 feet in length and a tandem blade, grounding-type attachment plug rated 15 amperes, 250 volts.

For units intended to be operated at 230 volts (outside the U.S.): Use a cord set with a grounding-type attachment plug. The cord set should have the appropriate safety approvals for the country in which the equipment will be installed.
IBM power cords for a specific country are usually available only in that country:

<table>
<thead>
<tr>
<th>IBM Power Cord Part Number</th>
<th>Used in These Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>13F9940</td>
<td>Argentina, Australia, China (PRC), New Zealand, Papua New Guinea, Paraguay, Uruguay, Western Samoa</td>
</tr>
<tr>
<td>13F9979</td>
<td>Afghanistan, Algeria, Andorra, Angola, Austria, Belgium, Benin, Bulgaria, Burkina Faso, Burundi, Cameroon, Central African Rep., Chad, Czech Republic, Egypt, Finland, France, French Guiana, Germany, Greece, Guinea, Hungary, Iceland, Indonesia, Iran, Ivory Coast, Jordan, Lebanon, Luxembourg, Macau, Malagasy, Mali, Martinique, Mauritania, Mauritius, Monaco, Morocco, Mozambique, Netherlands, New Caledonia, Niger, Norway, Poland, Portugal, Romania, Senegal, Slovakia, Spain, Sudan, Sweden, Syria, Togo, Tunisia, Turkey, former USSR, Vietnam, former Yugoslavia, Zaire, Zimbabwe</td>
</tr>
<tr>
<td>13F9997</td>
<td>Denmark</td>
</tr>
<tr>
<td>14F0015</td>
<td>Bangladesh, Burma, Pakistan, South Africa, Sri Lanka</td>
</tr>
<tr>
<td>14F0033</td>
<td>Antigua, Bahrain, Brunei, Channel Islands, Cyprus, Dubai, Fiji, Ghana, Hong Kong, India, Iraq, Ireland, Kenya, Kuwait, Malawi, Malaysia, Malta, Nepal, Nigeria, Polynesia, Qatar, Sierra Leone, Singapore, Tanzania, Uganda, United Kingdom, Yemen, Zambia</td>
</tr>
<tr>
<td>14F0051</td>
<td>Liechtenstein, Switzerland</td>
</tr>
<tr>
<td>14F0069</td>
<td>Chile, Ethiopia, Italy, Libya, Somalia</td>
</tr>
<tr>
<td>14F0087</td>
<td>Israel</td>
</tr>
<tr>
<td>1838574</td>
<td>Thailand</td>
</tr>
<tr>
<td>62X1045</td>
<td>Bahamas, Barbados, Bermuda, Bolivia, Brazil, Canada, Cayman Islands, Colombia, Costa Rica, Dominican Republic, Ecuador, El Salvador, Guatemala, Guyana, Haiti, Honduras, Jamaica, Japan, Korea (South), Liberia, Mexico, Netherlands Antilles, Nicaragua, Panama, Peru, Philippines, Saudi Arabia, Suriname, Taiwan, Trinidad (West Indies), United States of America, Venezuela</td>
</tr>
</tbody>
</table>
This glossary includes terms and definitions from the following publications.

The *American National Dictionary for Information Systems*, ANSI X3.172-1990, copyright 1990 by the American National Standards Institute (ANSI). Copies may be purchased from the American National Standards Institute, 11 West 42 Street, New York, NY 10036. Definitions are identified by the symbol (A).

The ANSI/EIA Standard 440-A: *Fiber Optic Terminology*. Copies may be purchased from the Electronic Industries Association, 2001 Pennsylvania Avenue, N.W., Washington DC 20006. Definitions are identified by the symbol (E).

The *Information Technology Vocabulary*, developed by Subcommittee 1, Joint Technical Committee 1, of the International Organization for Standardization and the International Electrotechnical Commission (ISO/IEC JTC1/SC1). These definitions are identified by the symbol (I). Definitions from draft international standards, committee drafts, and working papers being developed by ISO/IEC JTC1/SC1 are identified by the symbol (T), indicating that final agreement has not yet been reached among the participating National Bodies of SC1.

A

ACPI. Advanced configuration and power management interface.

adapter. A printed circuit board that modifies the system unit to allow it to operate in a particular way.

address. (1) A value that identifies a register or a particular part of storage. The value is represented by one or more characters. (2) The location in the storage of a computer where data is stored. (3) To refer to a specific storage location by specifying the value that identifies the location.

analog. (1) Pertaining to data consisting of continuously variable physical quantities. (T) (2) Contrast with digital, discrete.

ANSI. American National Standards Institute. An organization consisting of producers, consumers, and general interest groups, that establishes the procedures by which accredited organizations create and maintain voluntary industry standards in the United States.

application. The use to which an information processing system is put; for example, a payroll application, an airline reservation application, a network application.

application program. (1) A program that is specific to the solution of an application problem.
Synonymous with application software. (T) (2) A program written for or by a user that applies to the user's work, such as a program that does inventory control or payroll. (3) A program used to connect and communicate with stations on a network, enabling users to perform application-oriented activities.

architecture. See computer architecture.

ASCII. American National Standard Code for Information Interchange.

AWG. American Wire Gauge.

B

backplane. In personal computers, a printed circuit board that sets the SCSI ID and termination for hot-swap hard disk drives.

back up. To copy information, usually to diskette or tape, for safekeeping.

backup. Pertaining to a system, device, file, or facility that can be used in the event of a malfunction or loss of data.

bank. An aggregation of similar devices, such as single inline memory modules, connected to each other and used cooperatively.

baud rate. In remote communications, the transmission rate that is synonymous with signal events. The baud rate is usually expressed in bits per second.

BBS. Bulletin board system.

BIOS (Basic Input/Output System). Code that controls basic hardware operations such as interactions with diskette drives, hard disk drives, and the keyboard.

bit. Either of the digits 0 or 1 when used in the binary numeration system. Synonymous with binary digit. (T)

buffer. (1) A routine or storage used to compensate for a difference in rate of flow of data, or time of occurrence of events, when transferring data from one device to another. (A) (2) A portion of storage used to hold input or output data temporarily.

bus. One or more conductors used for transmitting signals, data, or power. See also address bus and data bus.

bus master. A device or subsystem that controls data transfers between itself and a subordinate.

byte. A string that consists of a number of bits, usually 8, that are treated as a unit and represent a character.
cable. The physical medium for transmitting signals; it includes copper conductors and optical fibers.

cache. A buffer storage that contains frequently accessed instructions and data; it is used to reduce access time.

CD-ROM. Compact disc read only memory. High-capacity read-only memory in the form of an optically read compact disc. See also CD.

client. A functional unit that receives shared services from a server. (T)

clock. A device that generates periodic, accurately spaced signals used for purposes such as timing, regulation of the operations of a processor, or generation of interrupts. (T)

code. A collection of instructions that is in a form that can be read and processed by a computer.

compatibility. The capability of a hardware or software component to conform to the interface requirements of a given computer without adversely affecting its functions.

configuration. The manner in which the hardware and software of an information processing system are organized and interconnected. (T)

configure. To set up a computer for operation by describing to the system the devices, optional features, and programs installed in the computer.

connector. An electrical part used to join two or more other electrical parts. (Contrast with port.)

control. The determination of the time and order in which the parts of a computer and the devices that contain those parts perform the input, processing, storage, and output functions.

controller. A device that coordinates and controls the operation of one or more input/output devices, such as workstations, and synchronizes the operation of such devices with the operation of the system as a whole.

cycle. (1) An interval of space or time in which one set of events or phenomena is completed. (A) (2) A complete vibration, electric oscillation, or alternation of current.
representations such as characters or analog quantities to which meaning is or might be assigned. (A)

device. A mechanical, electrical, or electronic piece of equipment designed to serve a special purpose or perform a special function.

device driver. A file that contains the code needed to use an attached device.

diagnostic. Pertaining to the detection and isolation of errors in programs and faults in equipment.

digital. (1) Pertaining to data in the form of digits. (A) (2) Contrast with analog.

DIMM. Dual inline memory module.

direct access storage device (DASD). A nonvolatile storage device, such as a diskette drive, hard disk drive, or CD-ROM drive, in which access time is effectively independent of the location of the data on the storage medium.

direct memory access (DMA). The transfer of data between memory and input/output devices without microprocessor intervention.

disk array. Two or more hard disks interconnected to increase security, performance, or reliability.

diskette. A small magnetic disk enclosed in a jacket. (T)

diskette drive. The mechanism used to seek, read, and write data on diskettes. It can be installed in, or attached to, a computer.

display. A component capable of displaying information on a viewing surface; for example, a cathode ray tube or a gas panel.

DMA. Direct memory access.

E

ECC. Error correcting code.

ECP. Extended Capability Port

EEPROM. Electrically erasable programmable read-only memory.

EISA. Extended industry standard architecture.

electrically erasable programmable read-only memory (EEPROM). EPROM that can be reprogrammed while it is in the computer.

EPP. Enhanced Parallel Port

extended industry standard architecture (EISA). An expansion bus architecture used in a network server that provides compatibility among hardware components.
F

file. A named set of records stored or processed as a unit. (T)

flash memory. See electrically erasable programmable read-only memory (EEPROM).

frame. (1) A data structure that consists of fields, predetermined by a protocol, for the transmission of user data and control data. The composition of a frame, especially the number and types of fields, may vary according to the type of protocol. (T)

G

GB. Gigabyte.

gigabyte. (1) For processor storage and real and virtual memory, 2^{30} or 1,073,741,824 bytes. (2) For disk storage capacity, 1,000,000 KB. (3) For transmission rates, 1,000,000,000 bytes.

H

hard disk. A rigid magnetic disk such as the internal disks used in the system units of personal-computer systems and in external hard disk drives.

hard disk drive. A disk drive that reads and writes data on rigid disks and can be installed in or connected to a computer.

hardware. (1) All or part of the physical components of an information processing system, such as computers or peripheral devices. (T) (2) The equipment, as opposed to the programming, of a computer. (3) Contrast with software.

hot add. Refers to a hardware component that can be installed without disturbing the operation of any other resource which is not connected to, or dependant upon, this component.

hot plug. Refers to a hardware component that can be installed or removed without disturbing the operation of any other resource which is not connected to, or dependant on, this component.

hot swap. (1) A hard disk subsystem feature of servers and storage enclosures that enables you to remove and replace hard disk drives without turning off the system. (2) To replace a hard disk drive while the system is turned on.

I

input/output. Pertaining to a device, process, or channel involved in data input, data output, or both.

instruction. A statement that specifies an operation to be performed by a microprocessor, and that identifies data involved in the operation.

I/O. Input/output.
IRQ. Interrupt request.

ISA. Industry standard architecture

J

jumper. A connector between two pins on a network adapter that enables or disables an adapter option, feature, or parameter value.

L

LED. Light-emitting diode.

load. To bring all or part of a computer program into memory from auxiliary storage so that the computer can run the program.

logical. (1) Pertaining to content or meaning as opposed to location or actual implementation. (A) (2) Pertaining to a view or description of data that does not depend on the characteristics of the computer system or the physical storage. (A) (3) Contrast with physical. (A)

LUN. Logical unit number.

M

math coprocessor. In personal-computer systems, a microprocessor that supplements the operations of the system microprocessor, enabling the computer to perform complex mathematical operations in parallel with other operations.

MB. Megabyte

megabyte. (1) For processor storage and real and virtual memory, \(2^{20}\) or 1,048,576 bytes. (2) For disk storage capacity and transmission rates, 1,000,000 bytes.

memory. Addressable storage space in the computer that is used for temporary storage of instructions and data while a program is running, or for permanent storage of microcode. Contrast with auxiliary storage.

menu. A list of options displayed to the user by a data processing system, from which the user can select an action to be initiated. (T)

microprocessor. A processor whose elements have been miniaturized into one or a few integrated circuits. (T)

modem (modulator/demodulator). (1) A functional unit that modulates and demodulates signals. One of the functions of a modem is to enable digital data to be transmitted over analog transmission facilities. (T) (A) (2) A device that converts digital data from a computer to an analog signal that can be transmitted on a telecommunication line, and converts the analog signal received to data for the computer.
nanosecond (ns). One thousand millionth (10^{-9}) of a second.

network. (1) An arrangement of nodes and connecting branches. (T) (2) A configuration of data processing devices and software connected for information interchange.

nonvolatile. (1) Pertaining to a storage device whose contents are not lost when power is cut off. (T) (2) Contrast with volatile.

ns. Nanosecond.

O

OBI. Options by IBM.

operating system. Software that controls the execution of programs and that may provide services such as resource allocation, scheduling, input/output control, and data management. Although operating systems are predominantly software, partial hardware implementations are possible. (T)

P

pack. Two or more hard disks interconnected to increase security, performance, or reliability. Commonly referred to as a disk array.

packet. In data communication, a sequence of binary digits, including data and control signals, that is transmitted and switched as a composite whole. The data, control signals, and possibly error control information are arranged in a specific format. (I)

parallel port. An access point through which a computer transmits or receives data that consists of several bits sent simultaneously on separate wires. Contrast with serial port.

PCI. Peripheral component interconnect.

performance. One of the two major factors, together with facility, on which the total productivity of a system depends. Performance is largely determined by a combination of throughput, response time, and availability.

PFA. Predictive Failure Analysis

physical. (1) Pertaining to actual implementation or location as opposed to conceptual content or meaning. (A) (2) Contrast with logical. (A)

pin. One of the conducting contacts of an electrical connector.

port. An access point for data entry or exit. (Contrast with connector.)

POST. Power-on self-test.

power-on self-test (POST). A series of diagnostic tests that are run
automatically by a device when the power is turned on.

processing. The performance of logical operations and calculations on data, including temporary retention of data in microprocessor storage while the data is being operated on.

processor. A functional unit that interprets and executes instructions. A processor consists of at least an instruction control unit and an arithmetic and logic unit. (T) See microprocessor and central processing unit.

program. (1) A sequence of instructions that a computer can interpret and execute. (2) To design, write, modify, and test computer programs. (I) (A)

prompt. A visual or audible message sent by a program to request the user's response. (T)

read. To acquire or interpret data from a storage device, from a data medium, or from another source.

read-only memory (ROM). Memory in which stored data cannot be modified by the user except under special conditions. See also EEPROM, EPROM, and PROM.

record. (1) A set of data treated as a unit. (2) A set of one or more related data items grouped for processing.

refresh. (1) To recharge a memory location in volatile memory with an electric current so that it retains a state or binary value. (2) In computer graphics, the process of repeatedly producing a display image on a display surface so that the image remains visible.

register. (1) An integrated circuit that contains 8, 16, or 32 storage locations, each of which can store 1 bit of binary data. See also binary. (2) An area that stores binary data while it is being processed by the computer.

repeater. A device used to amplify or reshape signals.

resolution. In video monitors, a measure of the sharpness of an image, expressed as the number of lines and columns on the monitor screen or the number of pels per unit of area.

ROM. Read-only memory.
SCSI. Small computer system interface.

segment. A section of cable between components or devices. A segment may consist of a single patch cable, several patch cables that are connected, or a combination of building cable and patch cables that are connected.

serial port. An access point through which a computer transmits or receives data, one bit at a time. Contrast with parallel port.

server. (1) A functional unit that provides shared services to workstations over a network. (2) In a network, a data station that provides facilities to other stations.

slot. (1) A position in a device used for removable storage media. (2) One of several receptacles in the rear panel of the system unit into which a user can install an adapter.

small computer system interface (SCSI). A standard input/output interface used by personal computers.

SMI. Systems management interrupt.

SMP. symmetric multiprocessing.

socket. A receptacle for a microchip.

software. (1) All or part of the programs, procedures, rules, and associated documentation of a computer. Software is an intellectual creation that is independent of the medium on which it is recorded. (2) Contrast with hardware.

SPP. Standard Parallel Port

startup sequence. In personal computers, the order that the computer uses to search the direct access storage devices for an operating system.

storage. A functional unit into which data can be placed, in which it can be retained, and from which it can be retrieved.

striping. In a disk array, the process of storing data across all the disks assigned to an array.

subsystem. In computers, a secondary or subordinate system, usually capable of operating independently of a controlling system, and usually having a single purpose, such as displaying video or reading from and writing to hard disks. A subsystem can be integrated into the system board or on an adapter.

SVGA. Super video graphics array.

symmetric multiprocessing. In personal-computer systems, a multiprocessing design that enables two or more microprocessors to run concurrently and work independently, with each
microprocessor capable of performing any task.

system board. In a system unit, the main circuit board that supports a variety of basic system devices, such as a keyboard or a mouse, and provides other basic system functions.

system unit. In personal-computer systems, the part of the computer that contains the processor circuitry, read-only memory (ROM), random access memory (RAM), and the I/O channel.

T

transaction. An exchange between a workstation and another device that accomplishes a particular action or result.

transmit. To send information from one place for reception elsewhere. (A)

U

universal serial bus (USB). A serial interface standard for telephony and multimedia connections to personal computers.

USB. Universal serial bus.

utility program. (1) A computer program in general support of computer processes; for example, a diagnostic program, a trace program, a sort program. (2) A program designed to perform an everyday task such as copying data from one storage device to another.

V

VFD. Vacuum fluorescent display.

VPD. Vital product data.

VRM. Voltage regulator module.

W

workstation. (1) A functional unit at which a user works. A workstation often has some processing capability. (2) A terminal or microcomputer, usually one that is connected to a mainframe or to a network, at which a user can perform applications.

write. To make a permanent or transient recording of data in a storage device or on a data medium.
Numerics
1-800 telephone assistance 387, 396
100BASE-TX transceiver 270
10BASE-T transceiver 270
16-bit
cable required 235, 263
connector on SCSI
backplane 235
SCSI IDs supported 236
25-pin parallel port 3, 14
9-pin serial port 3, 14
9-pin-to-25-pin adapter 14, 15
900 number support 398

A
about this book xxvii
AC inlet box 201
AC Power light 17
accessing
Configuration/Setup
program 160, 169
POST using remote video
mode 194
acoustical noise emission
values 413
activity light, hard disk 11
adapter
automatic configuration 211, 214
bus-master 211
compatibility 3, 213
considerations 213
deactivated 177
Ethernet, configuring 179
hot-plug 211
installation sequence 174
installing
genral information 211
hot-plug 216
non-hot-plug 221
adapter (continued)
IRQ settings 163
ISA slot 212, 411
legacy 172, 215
locations 405
network, compatibility with
device drivers 225
PCI locations 212
PCI slots 411
Plug and Play 214
requirements 211
slot locations 212
startup from 170
types 212
using, with external devices 263
video 211, 376
working with 211
adding
adapter
genral information 211
hot-plug 216
non-hot-plug 221
external options 263, 264
hot-swap fan assembly 255
internal drive 233, 234
memory 230
physical drive 136
power supply 249
address
COM port 266
parallel port 268
USB 271
adjusting
chair 30
controls 31
lighting 31
monitor 30
Administration and Monitoring
utilities
device event log 150
Administration and Monitoring utilities (continued)
 hard event log 151
 installing 116
 monitoring event logs 148
 monitoring logical drive information 152
 monitoring physical device information 154
 monitoring status information 146
 soft event log 152
 using 117
 using ServeRAID administration functions 125
administration, ServeRAID
 array
 creating disk arrays 125
 deleting disk arrays 127
 using ServeRAID administration functions 125
 controller
 copying drive configuration to the ServeRAID II controller 143
 copying ServeRAID II controller configuration to drives 144
 initializing 144
 scanning for new drives 145
 logical drive
 creating 128
 initializing 58, 130
 synchronizing 58, 131
 unblocking 133
administration, ServeRAID (continued)
 logical drive migration
 adding a physical drive 136
 changing RAID levels 135
 increasing free space in disk array 136
 increasing size of logical drives 137
 physical device
 rebuilding 140
 setting physical device states 139
 administrator password
 deleting 170
 features 165
 forgotten 169
 purpose 169
 setting 169
 advanced functions
 configuration 102
 restoring the disk-array configuration 83
 ServeRAID II main menu
 backing up to diskette 82
 description 40
 screens and pop-up windows 42
Advanced Setup
 cache control 171
 ROM shadowing 171
 advantages of product 1, 233
 air circulation
 around server 30, 31
 rack guidelines 274
 air temperature range 412
 air vents 31
 alarm
 disabling 121
 enabling 121
alarm (continued)
 resetting 121
alert options 122
alerts 186
allocating system resources 172
allocation table 56
altitude, maximum 413
America Online 394
antiglare filter 31
AFCI control 171
architecture
 ISA
 advanced settings 172
 configuring ISA adapters 175
 expansion slot 211
 legacy adapters 172
 supported by server 158
PCI 175, 211
arranging workspace 30
array
 administration 125
 alarm
 disabling 121
 enabling 121
 resetting 121
 backing up the configuration 82
 controller
 copying drive configuration to
 the ServeRAID II
 controller 143
 copying ServeRAID II
 controller configuration to
 drives 144
 initializing 144
 scanning for new drives 145
 creating 53, 125
 deleting 127
 increasing free space 136
 list 43
 logical drive
 creating disk arrays 50
array (continued)
 logical drive (continued)
 creating logical drives 128
 initializing logical drives 58,
 130
 synchronizing logical
 drives 58, 131
 unblocking logical drives 133
 logical drive migration
 adding a physical drive 136
 changing RAID levels 135
 increasing free space in disk
 array 136
 increasing size of logical
 drives 137
 physical device
 rebuilding 140
 setting physical device
 states 139
 restoring the disk-array
 configuration 83
 using ServeRAID administration
 functions 125
 with one hard disk drive 55
array/bay selection list 43
attention 391
Attention LEDs for hot-plug PCI
 slots 212
Attention lights for hot-plug PCI
 slots 15
Australian electronic emission Class
 A notice 451
automatic configuration
 Plug and Play devices 214
 automatic configuration, Plug and
 Play devices 211
 automatic synchronization of logical
 drives
 Administration and Monitoring
 program 131
automatic synchronization of logical drives (continued)
 ServeRAID Configuration
 program 57, 58
auxiliary-device connector 14, 15
availability 7

B
back view 14
backing up disk-array configuration 82
backplane
 power 201
SCSI
 connections to bays 235
 IDs 235
 jumpers 427
 layout 426
bad stripes 100
bandwidth 179
banks, memory 230
battery
 disposal xi, 387
 failure error message 301
 handling precautions xi, 387
 heavy metal 387
 installing 389
 location 388
 ordering replacements 387
 removing 388
 replacing 387
baud rate
 cable requirements 178, 270
bay number 43
bays
 drive types and sizes 234
 expansion 233
 general information
 installing drives 234, 237
 preinstallation steps 237
 hot-swap 241
 identification 233
 installing a drive in a
 hot-swap 241
 internal drive locations 233, 234, 404
 locations 233
 removable-media
 installing a drive in 237
 preinstalled CD-ROM drive 234
beep codes
 description 315
 during POST 294, 315
 list 318
 table 318
before you begin 199
bezel, NetBAY3 21
bezels
 installing 260
 removing 209
BIOS (basic input/output system)
 adapter configuration 215
 blank screen 362
 blocked logical drive 90, 133
 blocked state 100
 boot
 See startup
 Boot menu 192
 broken cover lock 363
 bulletin boards 393
 bus
 universal serial 3, 164
 bus master
 adapters 211
 capability 14, 15
bypassing power-on password 167, 421
Cables

Category 5 178, 270, 371

Connecting

Before installing adapter 219, 223
To a removable-media drive 240
To an adapter 220, 225
To server xi

Connector on SCSI backplane 235

Crossover 371

Disconnecting

From back of server 200, 206
From electrical outlets 200, 206
From external receptacles 200
From server xi
Telephone line 200, 206

For bidirectional parallel ports 164
Lengths 32

Maximum lengths for SCSI devices 263

Power

Available, list of 452
Removing xi, 200, 206

Requirements for attaching external devices 263

Safety ix

SCSI 263

Calculating maximum SCSI cable lengths 263

Canadian electronic emission Class A notice 450

Canadian warranty statement 442

Capacities, hard disk drive 35
card

See adapter

Category 5 cables 178, 270, 371

Caution

Battery handling xi, 387
Handling static-sensitive devices 202
Laser compliance statement xii

Lifting the server 1
Removing covers 201
Removing wrong disk drive 244

CD

Cleaning 361
Eject/load button 11
Handling 27
Loading 27

CD-ROM drive

In-use light 11
Laser compliance statement xii
Locations 233
Preinstalled 233, 234
Problems 361
Sizes 234
Using 26

CDR (CD-ROM) state 44

Chair adjustments 30
Change list 93

Changing

Configuration settings 161
Hardware configuration 376
Jumper positions 415
Memory addresses 177
Memory-module speed 172
Port assignments 163, 266, 268
changing (continued)
 RAID parameters 71
 software configuration 376
 system management processor
 username and password 188
 termination on SCSI devices 236
 write policy 74
changing RAID levels 135
channels, SCSI 263
channels, ServeRAID II 43, 263
circulation, air 31
Class A electronic emission
 notice 450—451
cleaning the monitor 31
client/server mode, setting 119
clock
 frequency (microprocessor) 227
 real-time 301
comfort 30
common tasks 52
communication
 modem and fax requirements for
 the United Kingdom 200, 260
 requirements ix
communication port 266
compatibility
 adapter 211, 213
 video controller 3
completing the installation 258
CompuServe 394
configuration
 adapter conflicts 376
 adapter installation
 sequence 174
 adapter locations 405
 automatic, for Plug and Play
 devices 211, 214
 changing hardware 376
 changing software 376
 Configuration/Setup
 program 160
configuration (continued)
 conflicts 176, 376
 default settings
 device records 405
 load settings 174
 device change 302
 device records 405, 411
disk array 33, 40, 46
ersors 160
Ethernet adapter 179
Ethernet controller 178
Ethernet failover
 IntraNetware 182
 OS/2 180
 Windows NT 181
EZ-RAID 51
functions, advanced 102
hardware change 319
industry standard architecture
 (ISA)
 adapter locations 212
 interrupts 175
 legacy adapters 172
ISA adapters 172
memory change 303
memory-address conflicts 376
NVRAM 160
option conflicts 376
peripheral component
 interconnect (PCI) 175
 adapter locations 212
Plug and Play 172
power-on self-test (POST) 158
RAID 82
records, ISA expansion slot 411
restoring 162, 174
ServeRAID II 33, 46
universal serial bus (USB) 164
utility programs 158
viewing ServeRAID 64
configuration synchronization 93
Configuration/Setup program
 administrator password 169
 configuring devices 163
 configuring I/O ports 163
 controlling access to 169
 defining system security 165
 main menu 161
 menu description 161
 power-on password 167
 setting date and time 164
 setting passwords 165, 169
 starting 160
 configuring your server 158, 262
confirm pop-up window 42
conflicts, configuration 176, 376
connecting
 adapter 211
 cables ix
 requirements for external devices 263
 safety requirements 260
 external options 263, 264
 internal drives, all bays 233, 234
 telephone line 260
connectors
 auxiliary device 269
 dedicated systems management
 I/O 14
 descriptions 15
 device records 405
 Ethernet 14, 270
 expansion slots 211
 input/output 265
 input/output locations 14
 keyboard 3, 14, 269
 list of 3
 management C 15
 management port C 266
 memory 230, 231
 controllers (continued)
 monitor 3, 14
 mouse 3, 14
 parallel device 3, 14, 407
 parallel port 267
 pointing device 3, 14
 printer 14
 rear view of server 14
 resources 172
 SCSI 14
 cable requirements 235
 rules for using 263
 serial device 3, 14
 serial port 265
 systems management port 266
 universal serial bus 14
 universal serial bus (USB) 3, 164, 271
 USB 14
 video 14, 268
considerations
 cable requirements 263
 environmental 387
installing
 adapters 213
 external SCSI devices 263
 internal drives 233, 234
controller
 copying configuration to drives 144
 copying drive configuration 143
 Ethernet 178, 270, 334
 Ethernet, problems 371
 failure 83
 firmware 99, 100
 initializing 144
 IRQ settings 163
 monitoring event logs 148
 network 270
 ServeRAID 4, 33
controller (continued)
status information,
 monitoring 146
status, viewing 99
video 211, 376
controls
devices supported 263
front panel 9
monitor 23
server 9
copying drive configuration to the
 ServeRAID II controller 143
cord, power 452
cover lock, broken 363
cover, top
 installing 259
 removing 207
creating
 create/delete array 41
creating
 creating
 customized icon 111
disk arrays 50, 53, 125
CRM (critical) state 45
CRS (critical) state 46
CRT (critical) state 46
customer assistance
 error messages 295
 ordering publications xxx
 telephone numbers xxx
deleted
 customized icon, creating 111

D

DASD (direct access storage device)
 backplane 234
data scrubbing 61, 131
data stripes 37, 38
Date and Time 164
date, setting 164
DC Power light 17
DDD (defunct disk drive) state 44
deactivated adapters 177
dedicated systems management
 connector 15
deep adapters 439
default
 configuration values 405
 settings, default 174
 values for Configuration/Setup
 Utility 405
defective hard disk drive 244
defining
 drive state 70
 hot-spare drive 61
 logical drives 54
definition of terms, glossary 455
deleting
 administrator password 169
disk arrays 80, 127
 logical drive 79
 power-on password 167, 421
description
 device events 150
drive 233
 hot-swap drive 233
 integrated video controller 211
 logical drive 36
 RAID level 0 37
 RAID level 1 37
 RAID level 5 39
 screens and pop-up windows 42
 SCSI IDs 235
 ServeRAID Configuration
 program menu 40
design considerations 1
device
 adapter locations 405
 and I/O ports 163, 164, 172
 configuration error 302
drivers, compatibility with
 network adapters 225
external 263
ISA adapter location 411
legacy 215
locations 404, 405, 411
mouse problems 365
number supported 263
PCI routing 163
Plug and Play 211, 214
pointing device problems 365
preinstalled 233
records 405
resources 172
SCSI 235
states, physical 44
states, setting 70
static-sensitive, handling 202
device event log 86, 150
device records, updating 262
DHS (defunct hot spare) state 44
diagnosing server problems 360
Diagnostic Log, viewing 299
diagnostic utility programs
 equipment 297
 error messages 319
 messages, error 319
 running 297
 starting 297
diagnostics
 description, test programs 293
 error messages 295
 for IBM ServeRAID II Controller
 controller 84
 light path 380
diagnostics (continued)
 POST (power-on self-test) 293
 POST beep codes 294
tools overview 293
DIMM 230
disable Ethernet controller jumper
 block 418
disable RAID controller jumper
 block 418
disabling
 alarm 121
 hot-plug PCI slot 216
 row of memory 172
disconnecting
cables ix
 before installing options 206
electrical safety
 requirements 200
 from system management
 processor session 189
 hot-swap drives 244
 power supply 253
 telephone line 206
disk array
 backing up the configuration
 information 82
 configuration 33, 46
 creating 50, 53, 125
 deleting 80, 127
 description 35
 increasing free space 136
 maintaining 81
 restoring the configuration 83
 saving the configuration 82
diskette drives
 eject button 11
 in-use light 11
 installing 237
 preinstalled 233
 problems 176, 361
diskette drives (continued)
sizes 234

diskettes
option 296
RAID Configuration Program, starting 48
display
See monitor
disposing of batteries xi, 387
DMA (direct memory access)
resources 172
system resources 215
door
installing 260
removing 209
door lock 3, 9
drive
bays 233
CD-ROM 26
copying configuration to the ServeRAID II controller 143
copying ServeRAID II controller configuration 144
description 233
full-high 234
half-high 234
hot-swap 233, 234
identification 233
installation hardware for 234
installation requirements 233, 234
installing
all bays 233, 237
hot-swap 241
removable media 237
location
by drive type 234
device records 404
illustration 233
maintenance 81

drive (continued)
non-hot-swap 237
position 237
preinstalled 233
removing a hot-swap 244
scanning for new 145
SCSI 235, 236
setting switches and jumpers 237
sizes 234
status indicators 11
status information 87
types 233, 234
drive media test 84
drivers
compatibility with network adapters 225
dropped server 385
dual inline memory module (DIMM)
See memory-module kits
dual-inline memory module (DIMM) 230
duplicate keys 402

E
EEPROM 82
EEPROM configuration 92
EEPROM firmware 100
eject switch
CD-ROM 11
diskette drive 11
electrical
safety ix
electrical input 413
electrical outlets 32
electrical safety 200
electromagnetic interference (EMI) 234
electronic emission Class A notice 450, 451
electronic support 393
electrostatic discharge 414
EMP (empty) state 44
enable/disable hot-swap rebuild 63
enabling
alarm 121
row of memory 172
Enhanced Parallel Port (EPP) 164
environmental considerations 387
environmental specifications 412
erase device event log 86
error descriptions 150
error information, RAID controller 66
error logs 173, 296
error messages
battery failure 301
CD-ROM diagnostic (215) 327
core system diagnostic (001) 321
description 295
device configuration 302
diagnostic 295, 319
disk array 344
diskette drive diagnostic (206) 327
Ethernet 334
ethernet diagnostic (301) 328
ethernet diagnostic (302) 328
ethernet diagnostic (405) 329
hard disk drive diagnostic (217) 328
memory configuration 303
microprocessor diagnostic (089) 324, 329
NDIS 2.01 (OS/2) driver 338
NDIS 4.0 driver 340
NetWare or IntraNetware ODI driver 334
error messages (continued)
numeric 299
parallel port diagnostic (014) 321
PCI interface diagnostic (020) 322
POST 299
POST messages 295
power supply diagnostic (075) 324
RAID diagnostic (035) 323, 329
SCO UNIX driver 341
SCSI interface diagnostic (030) 323
serial port diagnostic (011) 321
ServeRAID II controller 344
software-generated 295
status display diagnostic (180) 325
system cache diagnostic (202) 327, 332
system management processor diagnostic (165) 324
system memory diagnostic (201) 326, 331
thermal system diagnostic (175) 325
types 295
USB port interface diagnostic (015) 322
video system diagnostic (005) 321
Ethernet adapter
configuring 179
redundant 179
Ethernet controller
configuration 178
connector (RJ-45) 270
error messages 334
failover feature 179
Ethernet controller (continued)
 IRQ settings 163
 NIC 179
 primary controller 180
 redundant adapter 179
 SCO UNIX driver messages 341
 secondary controller 180
 troubleshooting 371
Ethernet Link Status light 12, 371, 373
Ethernet Speed 100 Mbps light 12, 372
Ethernet Transmit/Receive Activity light 12, 371, 374
European Community electronic emission Class A notice 451
European Community warranty statement 447
event descriptions 150
event logs
 hard 151
 monitoring 148
 soft 152
 exiting from the Configuration/Setup Utility program 162, 174
 exiting from the ServeRAID main menu 41
expansion bays 233
expansion enclosure problems 369
expansion slots
 adapter installation 221
 adapter locations 212, 405, 411
 description 211
 hot-swap PCI adapter installation 216
 location 14, 15
Extended Capabilities Port (ECP) 164
extended data output (EDO)
 memory 3
extension cords 32
external
 device records 404, 405
 options, connecting 263, 264
 SCSI 14
 SCSI cable
 maximum lengths 263
 using 263
 SCSI connector
 rules for using 263
 SCSI device IDs 263, 264
 views 14, 233
EZ-RAID configuration 50, 51

failed hard disk drive 86, 244
failover for Ethernet
 configuration for 180
 description 179
 NIC adapter 179
 primary controller 180
 secondary controller 180
fan assembly, hot-swap
 hot-swap 255
Fast Ethernet 178
fatigue 30
fax, getting information by 395
FCC Class A notice 450
features
 administrator password 169
 at a glance 3
 front view 233
 hot-swap drives 233
 internal 404, 405, 411
 ISA, configuring 172, 175
 PCI, configuring 175
 rear view 14
features (continued)
 records 403
fee services 397
firmware, RAID controller 99, 100
fixed disk
 See hard disk drives
Flash ROM page swap jumper
 block 418
flickering monitor 362
forgotten administrator
 password 169
forgotten power-on password 167
format, low-level, RAID drives 84
FRE (free) state 46
front panel controls 9
front view 233
full-high drives 234

general information
 before installing options 199
 controls 9
 expansion bays 233
 input/output connectors 14
 installing drives 234, 237
 status indicators 12
 using CD-ROM drive 26
general problems 363
glare 31
glossary 455
guidelines for working inside a
 Netfinity 5500 with the power on 204

H
half-high drives 234
handling
 CD 27
 static-sensitive devices 202

hard disk drives
 activity light 11
 arrays, reconfiguring after
 installing hard disk drives 243
 capacity 35
 configuration 93
 consequences of removing wrong
 drive 244
 failure results 86
 Fault light 11
 formatting 84
 hot-swap 233, 234
 ID, SCSI 236
 information 66
 installing 241
 one in an array 55
 order of deleting 80
 preinstalled 233
 rebuilding data on 88, 90
 removing 244
 replacing 244
 results of failure 86
 scenario of a hard disk drive
 failure 86
 SCSI 236
 sizes 234
 status 44
 status indicators 11
 types 234
 Hard Drive Activity light 12
 hard event log 151

hardfile
 See hard disk drives

hardware installation 237
heat output 412
heavy-metal batteries 387
help 391
 See also customer assistance
help, online 40, 68, 92
in-use lights
 diskette drive 361
 problems 363
increasing free space in disk
 array 136
increasing size of all logical
 drives 137
indicator lights
 See lights
Industry Canada electronic emission
 Class A notice 450
industry standard architecture (ISA)
 See ISA (industry standard
 architecture)
information area 43
information LED panel 11, 12
information, drive 66, 81
initializing configuration 92
initializing logical drives 59
 Administration and Monitoring
 program 130
 ServeRAID Configuration
 program 57, 58
 ServeRAID main menu 41
input/output (I/O) connectors
 See connectors
installation
 completing 258
 hardware 199, 234, 237
 preparation 199
 preparing for 205
 requirements 234
 sequence, for adapters 174
installation overview 20
installing
 adapters
 general information 211
 hot-plug 216
 non-hot-plug 221
installing (continued)
 Administration and Monitoring
 utility programs 116
 battery 389
 cables 260
 cage nuts 435
 cover 258
 devices in NetBAY3
 cantilevered devices 436
 clearances 430
 on side rails 432
 on the NetBAY3 base plate 437
 types of devices 430
 door 260
 external options 263, 264
 hard disk drives 53, 237, 241
 hot-swap drives 233, 234
 hot-swap fan assembly 255
 internal drives
 all bays 233
 considerations 234
 general information 233
 hot-swap 241
 left front bay 237
 locations 233
 preinstallation steps 237
 SCSI 235
 types and sizes for each bay 234
 internal options 197
 media-bay trim bezel 260
 memory-module kits 230
 microprocessor kit 226
 NetBAY3 bezel 260
 network adapters 225
 Novell NetWare/IntraNetware
 server utility program 112
 Option Diskettes 296
 OS/2 server utility 109
installing (continued)
 power supply 249
 removable-media drives 237
 SCO OpenServer utility program 113
 SCSI drives 236
 server door 260
 top cover 259
 Windows NT Server 108
 Windows NT Server 4.x utility program 110
 intermittent problems 364
 internal
 device records 404, 405, 411
 drives
 considerations 234
 installing (all bays) 233
 installing (general information) 233
 installing (hot-swap) 241
 installing (removable media) 237
 locations 233, 234
 removing (hot-swap) 244
 replacing (hot-swap) 244
 SCSI 235
 sizes 233, 234
 maximum SCSI cable lengths 263
 options, installed 405
 preinstalled 233
 SCSI devices, terminating 236
 setting jumpers 237
 international warranty service 397
 Internet home page 391, 394
 interrupt 172
 interrupt levels, assigning
 (PCI) 175
 interrupt request (IRQ)
 ISA legacy resources 215
interrupt request (IRQ) (continued)
 recording PCI 408
 recording serial 407

introduction 1
ISA (industry standard architecture) adapter
 installation 216, 221
 location 212
 adapter configuration 174
 interrupts 175
 legacy adapters 172
 slot number 418
ISA legacy resources 215
ISA settings, advanced 172

jumper
 backplane requirements 235
 changing 415
 disable Ethernet controller 418
 disable RAID controller 418
 disable video controller 418
 Flash ROM page swap 418
 locations
 on processor board 422
 on SCSI backplane 426
 on system board 418
 microprocessor
 core-frequency-selection 422
 on internal drives 237
 on processor board 422, 424
 on SCSI backplane 426, 427
 on system board 418, 420
 power on control 418
 power on password
 override 418
 system reset 418, 422

K
 keyboard
 angle of 30
 arm and wrist position 30
 connector 3, 14, 15, 269
 number lock 170
 port 14, 269
 problems 365
 speed 170
 keyboardless operation 407
 keys
 replacing 402
 serial number 402

L
 laser compliance statement xii
 LDM (logical-drive migration)
 state 46
 LEDs (light-emitting diode)
 Attention lights for hot-plug PCI slots 15, 212
 diagnostics panel 379
 Ethernet Link Status 12, 371, 373
 Ethernet Speed 100 Mbps 12, 372
 Ethernet Transmit/Receive Activity 12, 371, 374
 for hot-plug PCI slots 212
 for hot-swap drives 87, 244
 identifying problems 377
 information panel 11
 Power lights for hot-plug PCI slots 212
 power supply 377
 Processor 1 Activity 12
 Processor 2 Activity 12
 processor board 422
 SCSI Hard Drive Activity 12
LEDs (light-emitting diode)
(continued)
Security 12
system board 418
System Error 12
System POST Complete 12
System Power 12
legacy adapters 172
legacy resources 215
levels, logical drive
0 37
1 37
5 39
changing 135
level 0 drive 46, 55, 56, 86
level 1 drive 46, 61, 89
level 5 drive 46, 60, 61
lifting the server, caution 1
light path diagnostics 380
lighting 31
lights
Attention for hot-plug PCI
slots 15, 212
diagnostics panel 379
Ethernet Link Status 12, 371, 373
Ethernet Speed 100 Mbps 12, 372
Ethernet Transmit/Receive
Activity 12, 371, 374
hard disk drive status 11
identifying problems 377
information LED panel 12
not working 363
power supply 377
power-supply status 17
Processor 1 Activity 12
Processor 2 Activity 12
SCSI Hard Drive Activity 12
Security 12
lights (continued)
System Error 12
System POST Complete 12
System Power 12, 25
liquid spilled on server 386
Load Default Settings 174
loading a CD 27
locations
adapters 211, 212
battery 388
bays 233
devices 404
drives 404
expansion slots 211
features 14, 233
internal drives 233, 234
jumper
processor board 422
SCSI backplane 426
system board 418
memory 230
memory-module kits 230
Power On/Off switch on
monitor 23
processor board jumpers 424
server identification
numbers 402
server records 404, 405, 411
system board jumpers 420
System Power light 12, 25
termination 236
lock, cover 363
log in to system management
processor 188
logical drive
allocation table 56
blocked 100
creating logical drives 128
defining 54
description 36
logical drive (continued)
guidelines for rebuilding 89
increasing size 136, 137
information, monitoring 152
initializing 41, 57, 58, 59, 130
maximum number 55
one hard disk drive 55
rebuilding 140
states 45
synchronizing 41, 58, 60, 131
unblocking 133
with bad stripes 100
logical drive size pop-up 43
logical drives 128
loss of data 244
Low-Level Format program
using 84

memory (continued)
configuration error 303
default 3
device records 405
disabled 172
enabling a row of 172
list of features 3
problems 366
resources 172
specifications 230
memory modules
speed settings 172
memory-module kits
compatibility requirements 230
connector locations 230
installing 230
purpose 230
sizes 230
speed 230
menus
Administration and Monitoring utility program 118
screens and pop-up windows 42
ServeRAID Configuration program 40
System Configuration Utility program 161
messages
battery failure 301
CD-ROM diagnostic (215) 327
core system diagnostic (001) 321
device configuration error 302
diagnostic 319
disk array 344
diskette drive diagnostic (206) 327
error 319
ethernet diagnostic (301) 328
ethernet diagnostic (302) 328
ethernet diagnostic (405) 329

M
Main Menu
Administration and Monitoring utility program 118
Configuration/Setup Utility program 161
mini-configuration program 96
ServeRAID, configuration program 40
management connectors 15
management port C 266
maximum SCSI cable lengths 263
mechanical loading, rack 274
media types 234
media-bay trim bezel
installing 260
removing 209
memory
address conflicts 376
bank 230
board 230
messages (continued)
hard disk drive diagnostic (217) 328
memory configuration error 303
microprocessor diagnostic (089) 324, 329
parallel port diagnostic (014) 321
PCI interface diagnostic (020) 322
POST 299
power supply diagnostic (075) 324
RAID diagnostic (035) 323, 329
SCSI interface diagnostic (030) 323
serial port diagnostic (011) 321
ServeRAID II controller 344
status display diagnostic (180) 325
system cache diagnostic (202) 327, 332
system management processor diagnostic (165) 324
system memory diagnostic (201) 326, 331
thermal system diagnostic (175) 325
USB port interface diagnostic (015) 322
video system diagnostic (005) 321
microprocessor installing 226
problems 365
startup 365
microprocessor core-frequency selection-jumper block 422
Mini-Configuration Menu importing configuration from drives 102
Mini-Configuration Menu (continued)
initializing configuration 102
resetting ServeRAID II controller 102
viewing ServeRAID II controller status 99
viewing the configuration 101
mirrored data 38
model features 3
model number 402
modem 266
monitor adjusting of 30
connector 3, 14, 15
controller 211
controls 23
dusting of 31
placement of 31
problems 362
signal cable 15
monitoring event logs 148
monitoring logical drive information 152
monitoring physical device information 154
monitoring the ServeRAID II controller status information 146
monitoring, ServeRAID creating a customized icon 111
event logs 148
installing Administration and Monitoring utility program 116
logical drive information 152
Novell NetWare/IntraNetware server utility program 112
physical device information 154
SCO OpenServer utility program 113
server security file 115
monitoring, ServeRAID (continued)
ServeRAID II controller status information 146
using Administration and Monitoring utility program 117
mouse
 connector 3, 14, 269
 port 269
 problems 365
moving the server 1
multiple drive failure 86
multiple function PCI adapters 175

N
NDIS driver messages 340
NetBAY3
 bezel
 installing 21, 260
 lock 3
 removing 209
installing devices
cantilevered devices 436
clearances 430
on side rails 432
on the NetBAY3 base plate 437
types of devices 430
not included with rack model 197
removing rear panel 431
tower model 197
Netfinity alerts 122, 186
Netfinity Service Processor Manager
description 185, 186
problems 370
system requirements 187
network
 adapter, startup from 170
 (continued)
connection problems 371
 Ethernet 178
 Ethernet connector 270
 Ethernet driver 334
 settings 119
network adapter compatibility with device drivers 225
network and server startup support 396
network and server support services, fee 398
network interface card 3, 179
NIC adapter 179
noise emission values 413
non-hot-swappable drives
 installing 237
 setting jumpers 237
nonremovable media 233, 234
nonvolatile random-access memory (NVRAM)
 configuration 92, 160
 power-on change list 94
notices
 battery xi
 electronic emission, Class A 450, 451
 electronic emission, Class A, Australian 451
 FCC, Class A 450
 laser compliance statement xii
 miscellaneous 449
 product 448
 safety information ix, 200
 trademarks 448, 449
Novell Netware/IntraNetware messages 334
Server utility program 112
occasional problems 364
office space, arranging 30
OFL (offline) state 46
OKY (good) state 46
ONL (online) state 45
Online Housecall 395
online information services 393
operating system
Novell NetWare/IntraNetware server utility program 112
RAID Configuration Program, starting 47
SCO OpenServer utility program 113
Windows NT Server 4.x utility program 110
Option Diskettes
 copying 296
options
 alert 122
 device records 405
 diskettes 296
 external, connecting 263, 264
 installation preparation 205
 installing 197
 internal
 adapter 211
 drives 233
 memory-module kits 230
 ISA, configuring 172, 175
 locations 404, 405, 411
 PCI, configuring 175
 problems 366
 start 170
ordering
 installing adapters 174
 publications xxix, xxx
 replacement batteries 387
 replacement keys 402
ordering (continued)
 SCSI cable 263
ordering support line services 399
OS/2
 See also operating system
 server utility 109
output ports 14
overview
 adapter installation considerations 213
 diagnostic programs 293, 296
 diagnostic tools 293
 electrical safety 200
 installing
 external options 263
 internal drives 233, 234
 microprocessors 226
 POST (power-on self-test) 293
 preparing to install options 205
 problems, solving 291
 server features 3
 solving problems 291
 troubleshooting charts 296
overview, installation 20
parallel port
 assignment 163
 bidirectional 163
 configuration 163, 407
 connector 267
 description
 Enhanced Parallel Port (EPP) 163
 Extended Capabilities Port (ECP) 163
 feature 3
 location 14
 port 267
parallel port (continued)
problems 367
part numbers
 keys 402
 publications xxx
 serial 402
password
 administrator 165, 169
 forgotten administrator 169
 general information 165
 not set 165
 power-on 167, 421
 setting 169
PC support services, fee 397
PCI (peripheral component interconnect) architecture
 adapters
 configuration 174
 routing 163
 assigning interrupt levels 175
 expansion slot numbers 212
 features and options 175
 installation 216, 221
 locations 212
 routing 163
 slot numbers 418
PCI bus control 171
Pentium II microprocessor 226
performance 179
peripheral component interconnect (PCI) architecture
 See PCI (peripheral component interconnect) architecture
phone numbers
 See telephone numbers, IBM
phone, warranty service 442
physical device states 44
physical drives
 adding 136
 information, monitoring 154
physical drives (continued)
 maximum number 55
 rebuilding 140
 setting states 139
pin-number assignments
 auxiliary-device port 269
 Ethernet connector 270
 keyboard port 269
 parallel port 267
 serial port 266
 universal serial bus connectors 271
 video port 268
planning considerations 22
planning workspace 30
Plug and Play
 adapters 214
 configuration 172
 description 214
 Ethernet controller 179
pointing device
 See also mouse
 problems 365
ports, input/output
 See also connectors
 assignments, changing 163
 dedicated systems management
 I/O 14
 Ethernet 14
 keyboard 14
 monitor 14
 mouse 14
 parallel 14
 See also parallel port
 printer 14
 SCSI 14, 263
 serial 14
 See also serial port
 universal serial bus 14
 USB 14
ports, input/output (continued)
 video 14
POST
 See power-on self-test (POST)
POST Complete light 12
POST error log 173
power
 AC Power light 17
 backplane 201
 connectors 15
 Control button 10
 DC Power light 17
 good light 17
 supplies 17
 switch on power supply 17, 251, 254
power cables
 See power cords
Power Control button 10
power cords
 available, list of 452
 lengths 32
 location 32
Power LED for hot-plug PCI
 slot 212
power on control jumper block 418
power on password override jumper block 418
power supply 3
power supply, hot-swap
 hot-swap 249, 253
 installing 249
 removing 253
power-cord strain-relief bracket
 caution 22
 installing 22, 252
 removing 254
power-on
 hot-swap drives 233
 light 12, 25
power-on (continued)
 Power control button 10
 Power On/Off switch on monitor 23
 System Power light 25
power-on change list 93
power-on password
 bypassing 167, 421
 changing 167
 deleting 167
 features 165
 forgotten 167, 421
 on boot 167
 setting or changing 167
power-on self-test (POST)
 battery failure 301
 beep codes 294, 315
 during configuration 158
 during setup 25
 enhanced 170
 error messages 299
 forgotten power-on password 167
 message table 300
 overview 293
 quick 170
 table, message 300
precautions
 electrical safety ix
predictive failure analysis 3, 67
preface xxvii
preinstallation
 steps 237
 video controller 211
preinstalled devices 233
preparing
 for installation 199
 for setup 199
 internal drives for installation 237
preparing (continued)

to install
 external options 263, 264
 options 205

to remove internal drives 244

primary microprocessor 228

printer
 port 14
 problems 369
 SCSI 235

privileged-access password
 See administrator password

problems, solving (continued)
 configuration conflicts 376
 diagnostic programs 293
 diagnostic tools 293
 error messages 295, 319
 Ethernet controller 372
 expansion enclosure 369
 keyboard 365
 memory 366
 microprocessor 365
 mouse 365
 network adapter 225
 network connection 371
 option 366
 overview 291
 parallel port 367
 pointing device 365
 POST (power-on self-test) 293
 POST beep codes 294, 315
 POST messages 299
 printer 369
 running diagnostic programs 297
 serial bus, universal 368
 serial port 367
 software 370
 starting diagnostic programs 297

problems, solving (continued)
 tests 293
 troubleshooting charts 296, 360
 USB 368

processor
 See microprocessor
 Processor 1 Activity light 12
 Processor 2 Activity light 12

processor board
 data 163
 jumper blocks 422
 jumpers 424
 layout 422

PRODIGY 394

product
 advantages 1, 179, 233
 identification numbers 402
 internal and external options 405
 name 402
 notices 448

product data 163

programs
 Administration and Monitoring 105
 Configuration/Setup 160
 diagnostic 296
 ServeRAID Configuration 46
 ServeRAID Mini-Configuration 96

protecting
 data 169
 the server 22, 199

publications
 ordering xxix, xxx
 part numbers xxx
 related xxix

publications, ordering 400
Rack

installing the server in 281
preparing 275
removing server from 287

Rack model

preparing for installation 273
removing from rack 287

RAID (redundant array of independent disks)

adding a physical drive 136
Administration and Monitoring program 116
Administration and Monitoring utility program 117
changing parameters 71
configuration program
backing up 82
creating disk arrays 50
logical drive states 45
Main Menu 40
physical device states 44
screens and pop-up windows 42
starting 47, 48
using 48
copying drive configuration 143
copying ServeRAID II controller configuration 144
creating disk arrays 50
device event log 150
EZ-RAID 51
firmware 99, 100
hard event log 151
initializing logical drives 58, 130
initializing the ServeRAID II controller 144
level 0 37
level 0 drive 46, 86, 89
level 1 37

RAID (redundant array of independent disks) (continued)
level 1 drive 46, 61, 89
level 5 39
level 5 drive 46, 57, 60
level 5 not selectable 55
levels 36
logical drive administration 128
logical drives 36
monitoring event logs 148
monitoring logical drive information 152
monitoring physical device information 154
monitoring RAID controller status information 146
rebuilding logical drives 140
resetting the default values 91
scanning for new drives 145
setting physical device states 139
soft event log 152
synchronizing logical drives 58, 131
technology 33
unblocking logical drives 133
using ServeRAID administration functions 125

RAS 7

RBL (rebuild) state 45
RDY (ready) state 45
read-only memory (ROM)
See ROM (read-only memory)
rear panel of NetBAY3 431
rear view 14
rebuild device management 41
rebuild priority 73
rebuilding a device 140
rebuilding a logical drive guidelines 89
rebuilding a logical drive (continued)
RBL 45
reconfiguring the server after
replacing the battery 390
reconfiguring your server 262
records, device 403
reducing glare 31
redundant Ethernet 179
refresh rate 362
related publications xxix
reliability 7
remote monitoring 186
remote monitoring (ServeRAID II)
unattended mode 73
unattended mode of operation 73
remote technical support 395
remote video mode 187, 194
removable media
bays 234
drives 234, 237
removable media, installing 237
removing
administrator password 169
battery 388
cage nuts 434
door 209
hard disk drives 244
media-bay trim bezel 209
NetBAY3 bezel 209
NetBAY3 rear panel 431
power supply 253
power-on password 167, 421
server cables 200, 206
server door 209
top cover 207
trim bezels 209
wrong disk drive, consequences of 244
replacement batteries, ordering 387
replacing
battery 387
faulty drive 86
hot-swap fan assembly 255
hot-swap power supply 253
keys 402
requirements for terminating SCSI devices 236
Reset button 11
reset system jumper block 422
resetting ServeRAID II
controller 102
resetting the alarm 121
resetting the ServeRAID II controller configuration 91
resources, allocating 172
Restore Settings 174
restoring
configuration settings 174
RAID configuration 83
results of a hard disk drive failure 86
RJ-45 connector 270
ROM (read-only memory)
address conflicts 376
shadowing 171
S
S3 video modes, unsupported 439
safety requirements
Australian electronic emission
Class A notice 451
battery handling xi, 387
electrical ix, 200
electronic emission Class A notice 450, 451
FCC Class A notice 450
general information 22
safety requirements (continued)
 handling static-sensitive devices 202
 laser compliance statement xii
 safety standards, compliance 414
Save Settings 174
SBY (standby) state 45
scanners, SCSI 235
scanning new drives 145
SCO OpenServer utility program 113
SCO UNIX messages 341
screen filter 31
screens
 blank 362
 Configuration/Setup utility main menu 161
 flicker 362
SCSI (small computer system interface) (continued)
 backplane layout 426
 cable requirements 235, 263
 connector 14
 controller
 See ServeRAID II controller
description 235
devices 233, 235, 263
drives
 external 263
 location 233
 termination 236
IRQ settings 163
maximum SCSI cable lengths 263
purpose 235
SCSI IDs
 assignments 263, 264
description 235
device records 404
for devices 235
purpose 236
SCSI (small computer system interface) (continued)
 termination requirements 236
 SCSI cable for bays A and B 235
 SCSI Hard Drive Activity light 12
 secondary microprocessor 228
 Security light 12
 security procedures
 See also password
door lock 9
genral information 3
list of features 3
power-on password 167
server security file 115
self-tests, internal 293
sequence for installing
 adapters 174
serial number
 keys 402
 server 402
serial port
 address 407
 assignment 163
 bus, universal 3, 368
 connector 265
 feature 3
 location 14
 pin assignments 265
 problems 367
 universal bus 164
server
 adding drives 233
 adding memory 230
 advantages 233
 consequences of removing wrong
disk drive 244
 controls 9
 cover
 installing 259
 removing 207
server (continued)
disk arrays 243

door
cautions 24
installing 260
lock 9
removing 209
unlocking 205

external options 263
features at a glance 3
identification numbers 402

illustrated views
front 233
rear 14

installing drives 233, 237, 241
internal options 211, 230
ISA adapter expansion slot 212
PCI adapter expansion slots 212

preparing, for installation of
options 205
problems 296
records 404, 405, 411
removing drives 244
replacing drives 244
security features
list of 3
passwords 165, 169
starting 23

server damage 385

server startup support 396
server support 396

ServeRAID configuration screen 42

ServeRAID II controller (continued)
advanced functions (continued)
changing the write policy 74
description 41
changing parameters 68
changing RAID levels 135
configuration information 40
configuration program,
starting 47, 48
configuring 46
copying drive configuration 143
copying ServeRAID II controller configuration 144
create/delete/copy log drive 41
creating an array 53
defining the host ID 69
device event log 150
diagnostic 84
error information 66
EZ-RAID 51
firmware 99
hard event log 151
initialize/synchronize logical drive 41, 58
initializing 144
initializing logical drives 58, 130
logical drive administration 128
low-level format 84

Main Menu 40

monitoring
creating a customized
icon 111
event logs 148
installing Administration and Monitoring utility program 116, 117

advanced functions
backing up to diskette 82
changing RAID parameters 71
changing ServeRAID II controller parameters 68

Netfinity 5500 User's Handbook
ServeRAID II controller (continued)
monitoring (continued)
SCO OpenServer utility
program 113
server security file 115
ServeRAID II controller status
information 146
using Administration and
Monitoring utility
program 117
monitoring event logs 148
monitoring logical drive
information 152
monitoring physical device
information 154
monitoring status
information 146
number of microcode
updates 100
problems 360
rebuilding a logical drive 41, 140
rebuilding a physical drive 88, 90
replacing a faulty drive 86
scanning for new drives 145
setting physical device
states 139
soft event log 152
synchronizing logical drives 58, 131
troubleshooting 344
unblocking logical drives 133
using ServeRAID administration
functions 125
using the mini-configuration
program 96
view configuration 64
ServerGuide
RAID Configuration Program,
starting 47
service processor
See system management
processor
Service Processor Manager
See Netfinity Service Processor
Manager
service summary 391
service, warranty
See telephone numbers, IBM
serviceability 7
services, fee 397
setting
administrator password 169
device states 44, 70
jumpers 415
memory-module speed 172
passwords 165, 169
physical device states 139
power-on password 167
SCSI IDs 263, 264
switches and jumpers 237
Setup program
See Configuration/Setup program
shadowing, ROM 171
SHS (standby hot-spare) state 45
sine-wave input 413
size of server 412
sizes
internal drives 234
memory 230
slots, expansion 15
soft event log 152
software
error 295, 370
problems 370
solving problems 393
configuration conflicts 376
diagnostic programs 293
diagnostic tools 293
error messages 295, 319
solving problems (continued)
 Ethernet controller 372
 expansion enclosure 369
 keyboard 365
 memory 366
 microprocessor 365
 mouse 365
 network adapter 225
 network connection 371
 option 366
 overview 291
 parallel port 367
 pointing device 365
 POST (power-on self-test) 293
 POST beep codes 294, 315
 POST messages 299
 printer 369
 running diagnostic programs 297
 serial bus, universal 368
 serial port 367
 software 370
 starting diagnostic programs 297
 tests 293
 troubleshooting charts 296, 360
 USB 368
 specifications, Netfinity 5500 412
 speed
 Ethernet controller 178
 keyboard 170
 memory 230
 spilled liquid on server 386
 Start Options
 enhanced POST 170
 keyboard speed 170
 number lock 170
 startup sequence 170
 SureTest 170
 Start Up Support 20
 starting
 Administration and Monitoring utility program 117
 Configuration/Setup program 160
 diagnostic programs 298
 server 23
 ServeRAID Configuration program 47, 48
 without operating system 25
 startup
 drive 170
 logical drive 36
 microprocessor 365
 password 167
 sequence 170
 state, drive
 changing 70
 defining 44, 70
 definitions 44
 logical drive 45
 static-sensitive devices, handling 202
 status
 indicators
 See lights
 lights
 See lights
 ServeRAID II controller, viewing 99
 storage
 See memory-module kits
 storage capacity
 disk array 35
 hard disk drive 35
 storage devices 233
 stripe-unit size 73
 summary of features 3
super video graphics array (SVGA) controller 3, 376
supervisor password
See administrator password
supplies, power 17
support line services, ordering 399
SVGA video controller 211, 268
switches
See also jumper
Power Control 10
Power On/Off 10
power switch on power supply 17, 251, 254
Reset 11
symmetric multiprocessing (SMP) 4, 226
synchronizing
controller configuration information 93
logical drives 61
Administration and Monitoring program 131
automatic 57, 58
ServeRAID Configuration program 57, 58, 60
ServeRAID main menu 41
SYS (system) state 46
system board
adapters 211
battery failure 301
data 163
device PCI routing 163
jumper locations 420
jumpers 418
layout 418
memory connectors 231
system card data 163
System Error light 12
system error log 173, 296
system information 162
system management processor
accessing with a terminal program 187, 188
Boot menu 192
capabilities 5
disconnecting from a session 189
integrated in server 3
remote video mode 187, 194
settings 172
System Power menu 190
use with Netfinity Manager 186
use without Netfinity Manager 187
System POST Complete light 12
System Power light 12, 25
System Power menu 190
system requirements for Advanced System Management 187
system reset jumper block 418
system resources 172, 215
System Security menu
administrator password 169
power-on password 167
System Summary 162
systems management connector 15
systems management port 266

T
TAP (tape) state 45
tape drive 234, 235
tasks, common 52
tasks, EZ-RAID configuration 51
technical directory, publications
See telephone numbers, IBM
technical support, fee 397
technical support, remote 395
technical support, warranty 396
telephone assistance 396
telephone line requirements for the
United Kingdom xi, 200, 260
telephone numbers, IBM
 ordering batteries 387
 ordering publications xxx
terminal program 187, 188
termination 236
terminator card 228
terms, glossary of 455
Test Log, viewing 299
testing
 error messages 295
 monitor 362
 overview 293
 POST (power-on self-test) 293
 POST beep codes 294
 programs
 description 293
 running 297
 starting 297
three-pin jumper blocks 417
time, setting 164
tools 199, 273
trademarks 448, 449
transmit and receive data 265
trim bezels, removing 209
troubleshooting
 CD-ROM drive problems 361
 charts 360
 disk array 344
 Ethernet controller 371, 372
 integrated ServeRAID II
 controller problems 360
 Netfinity Service Processor
 Manager problems 370
 overview 296
 ServeRAID II controller 344
turning on the server
 problems 364
two-pin jumper blocks 415
types of media 234

U
unattended mode, ServeRAID 73
unattended startup with
 password 165, 168
unattended-start mode 165
unblocking logical drives 133
understanding
 disk array technology 35
 hard disk drive capacity 35
 logical drives 36, 54
unidentified drive list 93
United Kingdom's telephone line
 requirements 200, 260
United Kingdom electronic emission
 Class A notice 451
United Kingdom safety
 information xi
United Kingdom telephone line
 requirements xi
United Kingdom warranty
 statement 447
United States electronic emission
 Class A notice 450
United States FCC Class A
 notice 450
United States safety information xi
United States warranty
 statement 442
universal serial bus (USB)
 See USB (universal serial bus)
unknown power-on password
 bypassing 167, 421
 changing 167
 removing 167
unlocking the server door 205
updating
server configuration 174
system management processor microcode 188
upgrading device records 262
upgrading the microprocessor 226
USB (universal serial bus)
configuration 164
 connectors 3, 164, 271
problems 368
using
Administration and Monitoring utility program 117
advanced configuration functions 102
Configuration/Setup Utility main menu 161
diskettes to start ServeRAID Configuration Program 48
remote video mode 194
server utility programs 114
ServeRAID administration functions 125
ServeRAID Configuration program 48
ServerGuide to start ServeRAID Configuration Program 47
utility programs
configuration 158
Configuration/Setup 160
Configuration/Setup main menu 161
diagnostic programs 296
Novell NetWare/IntraNetware Server 112
SCO OpenServer utility program 113
server, security 115
server, using 114
utility programs (continued)
Windows NT Server 4.x utility program 110
venting of hot air 31
video
See also monitor
dapter requirements 211
 connector 14, 15, 268
 connector location 418
controller 3, 211
port 268
ROM address conflicts 376
SVGA 211
video modes, unsupported S3 439
view
configuration 40
Diagnostic Log 299
disk-array configuration 64
front 233
IRQ settings 163
power-on change list 93
rear 14
ServeRAID II configuration 64
ServeRAID II controller status 99
Test Log 299
unidentified drive list 93
wrong SCSI ID list 93
viewing the Diagnostic Log 299
viewing the Test Log 299
virus checking 170
voltage regulator module 228
voltage, input 413
VRM 228
W

warranty extensions and upgrades 399
warranty information
 Canada 442
 service 442, 447
 United Kingdom 447
 United States 442
warranty service 396
warranty statement 442, 447
weight of server 412
welcome 1
Windows NT Server 4.x utility program 110
work area, arranging 30
World Wide Web 20
World Wide Web home page 391, 394
wrap connector 297
write policy
 changing 74
 description 41
 display 43
 WB (write-back) mode 74
 WT (write-through) mode 74
write-back, microprocessor cache 171
write-through, microprocessor cache 171
wrong SCSI ID list 93

Y

Year-2000-ready statement 439