
 AIX Operating System
 for the PS/2 and System/370
 Programming Tools and Interfaces
 Version 1.2.1

 Document Number SC23-2304-01

Copyright IBM Corp. 1985, 1991

 --
 AIX Operating System
 for the PS/2 and System/370

 Programming Tools and Interfaces

 Version 1.2.1

 Document Number SC23-2304-01

 --

Copyright IBM Corp. 1985, 1991

Edition Notice
 Third Edition (March 1991)

 This edition applies to Version 1.2.1 of the IBM Advanced Interactive
 Executive for Personal System/2 (AIX PS/2), Program Number 5713-AEQ,
 and to Version 1.2.1 of the IBM Advanced Interactive Executive for
 System/370 (AIX/370), Program Number 5713-AFL, and to all subsequent
 releases until otherwise indicated in new editions or technical
 newsletters. Make sure you are using the correct edition for the
 level of the product.

 Order publications through your IBM representative or the IBM branch
 office serving your locality. Publications are not stocked at the
 address given below.

 A form for reader's comments appears at the back of this publication.
 If the form has been removed, address your comments to:

 IBM Corporation, Department 52QA MS 911
 Neighborhood Road
 Kingston, NY 12401
 U.S.A.

 When you send information to IBM, you grant IBM a nonexclusive right
 to use or distribute the information in any way it believes
 appropriate without incurring any obligation to you.

 Portions of the code and documentation were developed at the
 Electrical Engineering and Computer Sciences Department at the
 Berkeley Campus of the University of California under the auspices of
 the Regents of the University of California.

 ¦ Copyright International Business Machines Corporation 1985, 1991.
 All rights reserved.
 ¦ Copyright AT&T Technologies 1984, 1987, 1988
 ¦ Copyright Locus Computing Corporation 1988
 ¦ Copyright Avalon Computer Systems l984, l988
 ¦ Copyright Graphics Software Systems, Inc., 1988
 ¦ Copyright Sun Microsystems, Inc., 1988
 ¦ Copyright INTERACTIVE Systems Corporation 1985, 1988
 Note to U.S. Government Users -- Documentation related to restricted
 rights -- Use, duplication or disclosure is subject to restrictions
 set forth in GSA ADP Schedule Contract with IBM Corp.

Programming Tools and Interfaces
Edition Notice

¦ Copyright IBM Corp. 1985, 1991
EDITION - 1

Notices
 References in this publication to IBM products, programs, or services do
 not imply that IBM intends to make these available in all countries in
 which IBM operates. Any reference to an IBM product, program, or service
 is not intended to state or imply that only IBM's product, program, or
 service may be used. Any functionally equivalent product, program, or
 service that does not infringe any of IBM's intellectual property rights
 or other legally protectible rights may be used instead of the IBM
 product, program, or service. Evaluation and verification of operation in
 conjunction with other products, programs, or services, except those
 expressly designated by IBM, are the user's responsibility.

 IBM may have patents or pending patent applications covering subject
 matter in this document. The furnishing of this document does not give
 you any license to these patents. You can send license inquiries, in
 writing, to the IBM Director of Commercial Relations, IBM Corporation,
 Purchase, NY 10577.

 Subtopics
Trademarks and Acknowledgments

Programming Tools and Interfaces
Notices

¦ Copyright IBM Corp. 1985, 1991
FRONT_1 - 1

Trademarks and Acknowledgments

 The following trademarks apply to this book:

 � IBM is a registered trademark of International Business Machine
 Corporation.

 � AIX is a registered trademark of International Business Machine
 Corporation.

 � Personal System/2 and PS/2 are registered trademarks of th
 International Business Machines Corporation.

 � System/370 is a trademark of International Business Machine
 Corporation.

 � Ined is a trademark of INTERACTIVE Systems Corporation

 � UNIX is a registered trademark of UNIX System Laboratories, Inc. i
 the USA and other countries.

 � The Remote Procedure Call interface was developed by Sun Microsystems
 Inc. RPC is a trademark of Sun Microsystems, Inc.

 � Remote Procedure Call Language and eXternal Date Representation wer
 developed by the Sun Microsystems, Inc.

Programming Tools and Interfaces
Trademarks and Acknowledgments

¦ Copyright IBM Corp. 1985, 1991
FRONT_1.1 - 1

About This Book

 This book describes the programming tools and services available for
 writing application programs that run on the IBM Advanced Interactive
 Executive (AIX) for the Personal System/2 and System/370. This book
 provides an overview of the programming process and describes how to use
 the programming tools and interfaces within that process. This book
 includes information you need to be able to:

 � Understand the structure of the syste

 � Design output for the displa

 � Use C language programming tool

 � Use system calls and library function

 � Install programs on the syste

 � Use the trace and error logging facilitie

 � Write messages

 Subtopics
Who Should Read This Book
What You Should Know
How to Use This Book
Related Publications

Programming Tools and Interfaces
About This Book

¦ Copyright IBM Corp. 1985, 1991
PREFACE - 1

Who Should Read This Book

 This book is written for programmers or application developers who want to
 write, develop, and debug application programs that run on the AIX
 Operating System for the PS/2 and System/370.

Programming Tools and Interfaces
Who Should Read This Book

¦ Copyright IBM Corp. 1985, 1991
PREFACE.1 - 1

What You Should Know

 The book uses the C programming language in many of the examples, and many
 of the tools work only with C language source files. Therefore, you
 should be familiar with the C programming language to get the most out of
 this book. However, programmers who use other high-level languages can
 also benefit from the information in this book. In addition to knowing C
 language, you should:

 � Have experience in writing application program

 � Be able to use the AIX Operating System to

 - Enter commands
 - Create and delete files
 - Edit files
 - Move around the file system.

Programming Tools and Interfaces
What You Should Know

¦ Copyright IBM Corp. 1985, 1991
PREFACE.2 - 1

How to Use This Book

 This book is a reference manual for application developers who are writing
 and testing programs that run under the AIX Operating System. For many
 topics, step-by-step instructions are given, but keep in mind that the
 book is not a tutorial. You can use the table of contents and the index
 to locate particular topics you want to review.

 Subtopics
Highlighting

Programming Tools and Interfaces
How to Use This Book

¦ Copyright IBM Corp. 1985, 1991
PREFACE.3 - 1

Highlighting

 This book observes the following highlighting conventions:

 � New terms introduced in the text are shown in boldface italic.
 � AIX commands, options, parameters, names of keys, keywords
 directives, and actual file names are in boldface type.
 � Structures are in UPPERCASE BOLDFACE.
 � Variable information is in italic type.
 � Anything users type is in monospace type.
 � Anything appearing on a display screen that is referred to in
 paragraph of text is in monospace type.
 � Instructions set off from a paragraph are printed in monospace type.

Programming Tools and Interfaces
Highlighting

¦ Copyright IBM Corp. 1985, 1991
PREFACE.3.1 - 1

Related Publications
 For additional information, you may want to refer to the following
 publications:

 � AIX C Language Reference, SC23-2058, describes the C programming
 language and contains reference information for writing programs in C
 language that run on the AIX Operating System.

 � AIX C Language User's Guide, SC23-2057, describes how to develop,
 link, and execute C language programs. This book also describes the
 operating dependencies of C language and shows how to use C
 language-related software utilities and other program development
 tools.

 � AIX Commands Reference, SC23-2292 (Vol. 1) and SC23-2184 (Vol. 2),
 lists and describes the AIX/370 and AIX PS/2 Operating System
 commands.

 � AIX Guide to Multibyte Character Set (MBCS) Support, GC23-2333,
 explains the basic concepts of AIX multibyte character set support and
 refers to other AIX books that contain more detailed information.

 � AIX Library Guide, Glossary, and Master Index, SC23-2324, describes
 the publications in the AIX Operating System library and contains a
 glossary of terms used throughout the library. This book also
 includes a master index to the contents of each of the publications in
 the library.

 � AIX Messages Reference, SC23-2294, lists messages displayed by the AIX
 Operating System and explains how to respond to them.

 � AIX TCP/IP User's Guide, SC23-2309, describes the features of TCP/IP
 and shows how to install and customize the program. It includes
 reference information on TCP/IP commands that are used to transfer
 files, manage the network, and log into remote systems.

 � AIX Technical Reference, SC23-2300 (Vol. 1) and SC23-2301 (Vol. 2),
 describes the system calls and subroutines a programmer uses to write
 application programs. This book also provides information about the
 AIX Operating System file system, special files, miscellaneous files,
 and the writing of device drivers.

 � AIX VS FORTRAN Reference, SC23-2050, describes the FORTRAN programming
 language as implemented on AIX RT, AIX PS/2, and AIX/370. This book
 describes all of the standard features of VS FORTRAN as well as the
 enhanced functions and capabilities incorporated into IBM AIX VS
 FORTRAN.

 � AIX VS FORTRAN User's Guide, SC23-2049, shows how to develop and
 execute FORTRAN programs on AIX RT, AIX PS/2, and AIX/370. This book
 also explains how to compile and execute programs that contain
 sections of code written in the VS Pascal and C programming languages.

 � AIX VS Pascal Reference, SC23-2054, describes the VS Pascal
 programming language as implemented on the IBM PS/2 or RT with the AIX
 Operating System installed. This book describes all of the standard
 features of Pascal as well as the enhanced functions and capabilities
 incorporated into IBM AIX VS Pascal.

 � AIX VS Pascal User's Guide, SC23-2053, shows how to develop and

Programming Tools and Interfaces
Related Publications

¦ Copyright IBM Corp. 1985, 1991
PREFACE.4 - 1

 execute Pascal programs on the IBM PS/2 and RT using the AIX Operating
 System. This book also explains how to compile and execute programs
 that contain sections of code written in the VS FORTRAN and C
 programming languages.

 � AIX X-Windows Programmer's Reference, SC23-2118, describes the
 X-Windows licensed program and provides information on X-Windows
 library functions, FORTRAN subroutines, protocols, and extensions.

 � AIX X-Windows User's Guide, SC23-2017, describes the X-Windows
 licensed program and shows how to start, run, install, and customize
 this program.

 � AIX PS/2 General Information, GC23-2055, describes the AIX PS/2
 Operating System's functions and capabilities and the product's
 position in the AIX family of products.

 � AIX PS/2 INed, SC23-2001, shows how to use the INed editor to create,
 access, and store files. This book also includes reference
 information on INed commands and a listing of INed error messages.

 � AIX PS/2 INmail/INnet/INftp User's Guide, SC23-2076, describes the
 INmail/INnet/INftp/Connect programs and shows how to use these
 programs to send mail to and receive mail from local and remote
 computer systems. This book also shows how to transfer files to and
 from other computer systems installed on the network.

 � AIX PS/2 Keyboard Description and Character Reference, SC23-2037,
 describes the characters and keyboards supported by the AIX PS/2
 Operating System. This book also provides information on keyboard
 position codes, keyboard states, control code points, code-sequence
 processing, and non-spacing character sequences.

 � AIX PS/2 Text Formatting Guide, SC23-2044, describes the text
 formatting utilities available on the PS/2 and shows how to format
 text with NROFF and TROFF. This book also shows how to use the vi
 editor to create, revise, and store files.

 � AIX/370 Administration Guide, SC23-2088, describes such administrative
 tasks as updating the file system, backing up files, and fine-tuning
 and monitoring the performance of the operating system.

 � AIX/370 Diagnosis Guide, SC23-2090, describes procedures and tools
 that can be used to define and categorize symptoms of problems that
 may occur during daily operation.

 � AIX/370 General Information, GC23-2062, describes the functions and
 capabilities of AIX/370 and its position in the AIX family of
 products.

 � AIX/370 Planning Guide, GC23-2065, describes the functions and
 capabilities of the AIX/370 Operating System and lists the
 requirements for all supported hardware and software. This book also
 includes information to assist with planning for installation and
 customization of the operating system.

 � Installing and Customizing the AIX PS/2 Operating System, SC23-2290,
 provides step-by-step instructions for installing the AIX PS/2
 Operating System and related programs. This book also shows how to
 customize the operating system to suit the user's specific needs and

Programming Tools and Interfaces
Related Publications

¦ Copyright IBM Corp. 1985, 1991
PREFACE.4 - 2

 work environment.

 � Installing and Customizing the AIX/370 Operating System, SC23-2066,
 provides step-by-step instructions for installing the AIX/370
 Operating System and related programs. This book also shows how to
 customize the operating system to suit the user's specific needs and
 work environment.

 � Managing the AIX Operating System, SC23-2293, describes such
 system-management tasks as adding and deleting user IDs, creating and
 mounting file systems, backing up the system, repairing file system
 damage, and setting up an electronic mail system and other networking
 facilities.

 � Using the AIX Operating System, SC23-2291, shows the beginning user
 how to use AIX Operating System commands to do such basic tasks as log
 in and out of the system, display and print files, and set and change
 passwords. It includes information for intermediate to advanced users
 about how to use communication and networking facilities and write
 shell procedures.

Programming Tools and Interfaces
Related Publications

¦ Copyright IBM Corp. 1985, 1991
PREFACE.4 - 3

Table of Contents
 TITLE Title Page
 COVER Book Cover
 EDITION Edition Notice
 FRONT_1 Notices
 FRONT_1.1 Trademarks and Acknowledgments
 PREFACE About This Book
 PREFACE.1 Who Should Read This Book
 PREFACE.2 What You Should Know
 PREFACE.3 How to Use This Book
 PREFACE.3.1 Highlighting
 PREFACE.4 Related Publications
 CONTENTS Table of Contents
 FIGURES Figures
 1.0 Chapter 1. Programming with AIX
 1.1 CONTENTS
 1.2 About This Chapter
 1.3 Programming Tools
 1.3.1 Entering a Program
 1.3.2 Checking a Program
 1.3.3 Compiling and Linking a Program
 1.3.4 Correcting Errors in a Program
 1.3.5 Building and Maintaining a Program
 1.4 Program Development in a Heterogeneous Environment
 1.4.1 Building Programs for Both AIX/370 and AIX PS/2
 1.5 Programming Interfaces
 1.5.1 Commands
 1.5.2 Library Routines
 1.5.3 System Calls
 2.0 Chapter 2. Compiling and Linking Programs
 2.1 CONTENTS
 2.2 About This Chapter
 2.3 Compiling A Program
 2.3.1 Choosing a Compiler
 2.3.2 Using the cc Program
 2.3.2.1 Examples of Commands
 2.4 Checking C Programs
 2.4.1 Operation
 2.4.2 Program Flow
 2.4.3 Data Type Checking
 2.4.3.1 Binary Operators and Implied Assignments
 2.4.3.2 Structures and Unions
 2.4.3.3 Function Definition and Uses
 2.4.3.4 Enumerators
 2.4.3.5 Type Checking Control
 2.4.3.6 Type Casts
 2.4.4 Variable and Function Checking
 2.4.4.1 Inconsistent Function Return
 2.4.4.2 Function Values That Are Not Used
 2.4.4.3 Disabling Function Related Error Messages
 2.4.5 Using Variables Before They Are Initialized
 2.4.6 Portability Checking
 2.4.6.1 Character Uses
 2.4.6.2 Bit Field Uses
 2.4.6.3 External Name Size
 2.4.6.4 Multiple Uses and Side Effects
 2.4.7 Coding Errors and Style Differences
 2.4.7.1 Assignments of Long Variables to Integer Variables
 2.4.7.2 Operator Precedence
 2.4.7.3 Conflicting Declarations

Programming Tools and Interfaces
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 1

 2.4.8 Creating A lint Library
 2.4.8.1 Creating the Input File
 2.4.8.2 Creating the lint Library File
 2.4.8.3 Checking a Program with the New Library
 2.5 Other C Programming Tools
 2.6 Processing Assembler Language Routines
 2.6.1 Using the as Program
 2.6.2 Using the ld Program
 2.6.3 Using the cc Program
 2.7 Building Programs with make
 2.7.1 Operation
 2.7.2 Using the make Program
 2.7.3 Description Files
 2.7.3.1 Format of a Description File Entry
 2.7.3.2 Using Commands in a Description File
 2.7.3.3 Calling the make Program from a Description File
 2.7.3.4 Preventing the make Program from Writing Commands
 2.7.3.5 Prevent Stopping on Errors
 2.7.3.6 Determining the Trigger
 2.7.3.7 Example of a Description File
 2.7.3.8 Making the Description File Simpler
 2.7.4 Internal Rules
 2.7.4.1 Example of Default Rules File
 2.7.4.2 Single Suffix Rules
 2.7.4.3 Using Make with Archive Libraries
 2.7.4.4 Changing Macros in the Rules File
 2.7.5 Defining Default Conditions
 2.7.6 Including Other Files
 2.7.7 Defining Macros
 2.7.8 Using Macros in a Description File
 2.7.9 Internal Macros
 2.7.9.1 Target File Name
 2.7.9.2 Label Name
 2.7.9.3 Younger Files
 2.7.9.4 First Out-of-date File
 2.7.9.5 Current File Name Prefix
 2.7.9.6 Archive Library Member
 2.7.10 Changing Macro Definitions in a Command
 2.7.11 Using Make with SCCS Files
 2.7.11.1 Description Files Stored in SCCS
 2.7.12 How make Uses the Environment Variables
 2.7.13 Tracking Dependencies
 2.7.13.1 ld options for use in make
 2.7.13.2 cpp options for use in make
 2.7.13.3 Using oinclude with make
 2.7.14 Example of a Description File
 3.0 Chapter 3. PS/2 Assembler
 3.1 CONTENTS
 3.2 About This Chapter
 3.3 Notational Conventions
 3.4 Compatibility
 3.5 80386 Architecture
 3.6 Source Statements
 3.6.1 Statement Format
 3.6.2 Character Set
 3.6.3 Identifiers
 3.6.4 Constants
 3.6.4.1 Numeric Constants
 3.6.4.2 Alphabetic Constants
 3.6.5 Comments

Programming Tools and Interfaces
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 2

 3.7 Program Segments
 3.7.1 Text Segment Assembly
 3.7.2 Data Segment Assembly
 3.7.3 Bss Segment Assembly
 3.8 Expressions
 3.8.1 Assignment Statements
 3.8.2 Scalar Expression Operators
 3.8.3 Operator Precedence
 3.8.4 Expression Types
 3.8.5 Type Combinations
 3.9 Statement Processing
 3.9.1 Statement Labels
 3.9.1.1 Named Labels
 3.9.1.2 Temporary Labels
 3.10 Instruction Set
 3.10.1 Notation and Terminology
 3.10.2 Registers
 3.10.3 Instructions
 3.11 Instructions for the 80387 Numeric Processor
 3.12 Assembler Directives
 3.12.1 Alignment Definition
 3.12.2 Program Section (Segment) Control
 3.12.3 Block Definition
 3.12.4 Comment Section
 3.12.5 Record Definition
 3.12.6 Storage Definition
 3.12.7 Enumeration
 3.12.8 Macro Definition
 3.12.9 Repeat Block
 3.12.10 Conditional Block
 3.12.11 External Definition
 3.12.12 Assignment
 3.12.13 Optimization
 3.13 Command Format
 4.0 Chapter 4. AIX/370 Assembler
 4.1 Contents
 4.2 About This Chapter
 4.3 Using the Assembler Language
 4.4 Differences
 4.4.1 Lowercase Support
 4.4.1.1 Implications
 4.4.2 Hex Numbers
 4.4.3 Segments
 4.4.4 Escapes
 4.4.5 Preprocessor Support
 4.4.6 Identifier Symbols
 4.4.7 Macro Definitions
 4.4.8 CSECT Symbols
 4.4.9 Free--form Input
 4.5 Restrictions
 4.5.1 Op-codes
 4.5.2 Pseudo-ops
 4.5.3 Attributes
 4.5.4 Assembler Symbols
 4.5.5 Macros
 4.5.6 Conditional Assembly Instructions
 5.0 Chapter 5. Linking Your Programs - Using the ld Command
 5.1 Contents
 5.2 About This Chapter
 5.3 Link Editor

Programming Tools and Interfaces
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 3

 5.4 Memory Configuration
 5.5 Section
 5.6 Addresses
 5.7 Binding
 5.8 Object File
 5.9 Using the Link Editor
 5.10 Link Editor Command Language
 5.10.1 Expressions
 5.10.1.1 Constants
 5.10.1.2 Global Symbols
 5.10.1.3 Operators
 5.10.2 Assignment Statements
 5.10.3 Specifying a Memory Configuration
 5.10.4 Section Definition Directives
 5.10.5 File Specifications
 5.10.6 Loading a Section at a Specified Address
 5.10.7 Aligning an Output Section
 5.10.8 Grouping Sections Together
 5.10.9 Creating Holes within Output Sections
 5.10.10 Creating and Defining Symbols at Link-Edit Time
 5.10.11 Allocating a Section into Named Memory
 5.10.12 Initialized Section Holes or .bss Sections
 5.11 Notes and Special Considerations
 5.11.1 Changing the Entry Point
 5.11.2 Use of Archive Libraries
 5.11.3 Dealing with Holes in Physical Memory
 5.11.4 Allocation Algorithm
 5.11.5 Incremental Link Editing
 5.11.6 DSECT, COPY, and NOLOAD Sections
 5.11.7 Output File Blocking
 5.11.8 Non-relocatable Input Files
 5.11.9 Syntax Diagram for Input Directives
 6.0 Chapter 6. PS/2 Disassembler
 6.1 CONTENTS
 6.2 About This Chapter
 6.3 Introduction
 6.3.1 Notational Conventions
 6.3.2 Preparation
 6.4 Using the Disassembler
 6.4.1 From the Command Line
 6.4.1.1 Example
 6.4.2 Using Menus
 6.4.3 VS Pascal Example
 6.4.4 VS FORTRAN Example
 7.0 Chapter 7. Using the Subroutine Libraries
 7.1 CONTENTS
 7.2 About This Chapter
 7.3 System Libraries
 7.3.1 Including Declarations
 7.3.2 Linking the Library Routines
 7.3.3 Library Descriptions
 7.4 The C Library
 7.4.1 Input/Output Control
 7.4.1.1 Using I/O Routines
 7.4.1.2 I/O Routines Descriptions
 7.4.1.3 File Access
 7.4.1.4 File Status
 7.4.1.5 Input
 7.4.1.6 Output
 7.4.1.7 Directory Access

Programming Tools and Interfaces
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 4

 7.4.1.8 Miscellaneous
 7.4.1.9 I/O Header File
 7.4.2 String Routines
 7.4.3 String Manipulation
 7.4.4 Memory Manipulation
 7.4.5 Character Manipulation
 7.4.5.1 Character Testing
 7.4.5.2 Character Translation
 7.4.5.3 Character Collation
 7.4.5.4 Character Header File
 7.4.6 Time
 7.4.6.1 Time Header File
 7.4.7 Numerical Conversion
 7.4.8 Group File Access
 7.4.9 Password File Access
 7.4.10 Parameter Access
 7.4.11 Hash Table Management
 7.4.12 Binary Tree Management
 7.4.13 Table Management
 7.4.14 Memory Allocation
 7.4.15 Pseudo-random Number Generation
 7.4.16 Signal Handling
 7.4.17 Miscellaneous
 7.5 Run Time Services Library
 7.6 Math Library
 7.6.1 Trigonometry
 7.6.2 Bessel
 7.6.3 Hyperbolic
 7.6.4 Miscellaneous
 7.7 Shared Libraries
 7.7.1 Comparing Shared and Archive Libraries
 7.7.2 Calls to a Shared Library
 7.7.3 Using a Shared Library
 7.7.4 Creating a Shared Library
 7.7.4.1 The Shared Library Specification File
 7.7.4.2 The shlib2 Command
 7.7.4.3 The shlibrpt Command
 7.7.4.4 A Sample Shared Library
 7.7.4.5 Guidelines
 7.7.4.6 Choosing Library Members
 7.7.4.7 Writing Code to a Shared Library
 7.7.4.8 Importing Symbols
 7.7.4.9 Tuning Shared Library Code
 7.7.4.10 Archive and Shared Library Compatibility
 7.7.4.11 Shared Library Upward Compatibility
 8.0 Chapter 8. Using System Calls
 8.1 CONTENTS
 8.2 About This Chapter
 8.3 Header Files Needed for Calls
 8.4 Process Calls
 8.4.1 Process Handling Calls
 8.4.2 Starting a Process
 8.4.2.1 Fork
 8.4.2.2 Rfork
 8.4.2.3 Exec
 8.4.2.4 Rexec
 8.4.2.5 Run
 8.4.2.6 Migrate
 8.4.2.7 Wait
 8.4.2.8 Example of Process Life Cycle

Programming Tools and Interfaces
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 5

 8.4.2.9 Special Processes
 8.4.2.10 Example of Fork and Wait System Calls
 8.4.2.11 Example of Exec System Call
 8.4.2.12 Example of Additional Process Handling System Calls
 8.4.2.13 Example of a Pipe System Call
 8.4.3 Process Identification
 8.4.3.1 Concurrent Groups
 8.4.4 Process Attribute Calls
 8.4.4.1 <LOCAL> Alias
 8.4.4.2 Cluster Site Number
 8.4.4.3 Cluster Site Path List
 8.4.4.4 Cluster Site Permission Mask
 8.4.4.5 Example of Process ID and Attribute Calls
 8.4.4.6 Changing the Controlling Terminal
 8.4.5 Process Tracking Calls
 8.5 Interprocess Communications
 8.5.1 Signal Calls
 8.5.1.1 How to React to a Signal
 8.5.1.2 Example of Trapping a Signal
 8.5.2 Enhanced Signal Facility
 8.5.2.1 Responding to Signals
 8.5.2.2 Using Enhanced Signals
 8.5.2.3 Waiting for a Signal
 8.5.2.4 Protecting Important Program Events
 8.5.2.5 Finding Out the Current Signal Mask
 8.5.2.6 Example Programs
 8.5.3 Semaphore Calls
 8.5.3.1 Structure of a Semaphore Set
 8.5.3.2 How to Use Semaphores
 8.5.3.3 Example of Semaphores
 8.5.3.4 Example of Semaphore Programming
 8.5.4 Message Calls
 8.5.4.1 Terms
 8.5.4.2 General Operation
 8.5.4.3 Controlling Bidirectional Queues
 8.5.4.4 Using Message Queues
 8.5.4.5 Example of Message Queue Calls
 8.5.5 TCP/IP Socket Communication
 8.5.6 Shared Memory Calls
 8.5.6.1 Terms
 8.5.6.2 Using Shared Segments
 8.5.7 Memory Management Calls
 8.6 File System Calls
 8.6.1 Data Handling Calls
 8.6.1.1 Using Files
 8.6.1.2 File Descriptors
 8.6.1.3 Opening and Closing Files
 8.6.1.4 Random Access to Files
 8.6.1.5 Reading and Writing to a File
 8.6.1.6 Using the Extended Calls
 8.6.1.7 Committing File Changes
 8.6.2 File Maintenance Calls
 8.6.2.1 Symbolic Links
 8.7 Time System Calls
 8.7.1 Using File Locking
 8.7.1.1 File Locking Example Program
 9.0 Chapter 9. Controlling the Terminal Screen
 9.1 CONTENTS
 9.2 About This Chapter
 9.3 Extended Curses

Programming Tools and Interfaces
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 6

 9.3.1 New Terms
 9.3.2 What You Need
 9.3.3 Using the Screen Update Routines
 9.3.4 What the Screen Looks Like
 9.3.5 Function Names
 9.3.6 Variables
 9.4 Using the Library Routines
 9.4.1 Setting Up the Environment
 9.4.2 Writing to a Window
 9.4.3 Getting Input from the Terminal
 9.4.4 Controlling the Screen
 9.5 Routines for Panels and Panes
 9.5.1 Defining Panels and Panes
 9.5.2 Creating Panels and Panes
 9.6 Display Attributes
 9.6.1 Changing the Defined Attributes
 9.6.2 Changing Screen Attributes
 9.7 Using Other Features
 9.7.1 Controlling Input with the keypad, extended, and trackloc Routines
 9.7.2 Scrolling Windows
 9.7.3 Improving Performance
 9.8 Example Program
 10.0 Chapter 10. Writing Messages and Help
 10.1 CONTENTS
 10.2 About This Chapter
 10.3 Messages
 10.3.1 Message Format
 10.4 Building a Message Table
 10.4.1 Copying the Standard Format File
 10.4.2 Naming the Message Table
 10.4.3 Adding Message Definitions
 10.4.4 Message Index
 10.4.5 Adding Text Insert Definitions
 10.5 Using Messages in a Program
 10.5.1 Including Header Files
 10.5.2 Using Routines to Display Messages
 10.5.2.1 Generating an Immediate Message
 10.5.2.2 Generating a Queued Message
 10.6 Using Variable Fields in Message Text
 10.6.1 Example of the Integer Symbol
 10.6.2 Example of the Long Integer Symbol
 10.6.3 Example of the Character String Symbol
 10.6.4 Example of Text Insert Symbol
 10.7 Help
 10.7.1 Help Format
 10.7.2 File Path Name
 10.7.3 Changing the File Path Name
 10.7.4 Changing the File Path Name for Debugging
 10.8 Building a Help File
 10.8.1 Content of the Help Text File
 10.9 Using Help in a Program
 10.9.1 Including Header Files
 10.9.2 Using Routines to Display Help
 10.9.2.1 Displaying a Help
 10.9.2.2 Putting Help in a Buffer
 11.0 Chapter 11. Monitoring Program Activities
 11.1 CONTENTS
 11.2 About This Chapter
 11.3 Monitoring Program Activities
 11.4 Using the Trace Facilities

Programming Tools and Interfaces
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 7

 11.4.1 Altering the Trace Configuration Files
 11.4.2 Using the Trace Commands
 11.4.3 Using the Trace Subroutines
 11.4.4 Creating Trace Templates
 11.4.4.1 Replacing Values in the Output Data
 11.4.4.2 Appearance of the Formatted Output Data
 11.4.4.3 Trace Template Example
 11.5 Using the Error Log Facilities
 11.5.1 Altering the Error Log Configuration File
 11.5.2 Using the Error Log Commands
 11.5.3 Using the Error Log Subroutines
 11.5.4 Creating Error Templates
 11.5.4.1 Replacing Values in the Output Data
 11.5.4.2 Appearance of the Formatted Output Data
 11.5.4.3 Error Template Example
 11.5.5 AIX Dump Facility
 11.5.5.1 Designating a Minidisk as the Dump Area
 11.5.5.2 Designating Diskette as the Dump Area
 11.5.5.3 Starting a Dump
 11.5.5.4 Analyzing a Dump
 12.0 Chapter 12. Debugging Programs
 12.1 CONTENTS
 12.2 About This Chapter
 12.3 Compiling Your Program for Debugging
 12.4 The dbx Symbolic Debugger
 12.4.1 Notational Conventions
 12.5 dbx Command Summary
 12.5.1 Starting dbx
 12.5.2 Setting and Deleting Breakpoints
 12.5.3 Running Your Program from dbx
 12.5.4 Tracing Program Execution
 12.5.5 Ending Program Execution
 12.5.6 Displaying the Source File
 12.5.7 Printing and Modifying Variables, Expressions, and Types
 12.5.8 Procedure Calling
 12.5.9 Signal Handling
 12.5.10 Machine Level Debugging
 12.5.11 Debugging Environment
 12.6 Invoking the dbx Debugger
 12.7 Other Invocation Options
 12.8 Controlling Program Execution
 12.9 Setting and Deleting Breakpoints
 12.10 Running Your Program
 12.11 Separating dbx Output From Program Output
 12.12 Tracing Execution
 12.13 Signal Handling
 12.14 Calling Procedures
 12.15 Displaying a Stack Trace
 12.16 Printing Variables and Expressions
 12.17 Displaying and Modifying Variables
 12.18 Scoping of Names
 12.19 Variables in Unnamed Blocks
 12.20 Expressions
 12.21 Operators Allowed in Expressions
 12.22 Type Checking in Expressions
 12.23 Folding Variables to Lower and Upper Case
 12.24 Special Debugger Variables to Change Print Output
 12.25 Displaying and Manipulating the Source File
 12.26 Changing the Source Directory Path
 12.27 Displaying the Current File

Programming Tools and Interfaces
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 8

 12.28 Changing the Current File or Procedure
 12.28.1 Debugging Programs Involving Multiple Processes
 12.29 The dbx Debugging Environment
 12.30 The Alias Facility
 12.31 Changing the dbx Prompt
 12.32 Customizing Your Environment With .dbxinit
 12.33 Reading dbx Commands From a File
 12.34 Running Shell Commands From dbx
 12.35 Getting Help
 12.36 References
 12.37 dbx Vector Processor Support
 12.37.1 dbx Vector Processor Support Commands
 12.37.2 Debugger Variables
 12.37.3 Error Handling
 13.0 Chapter 13. Installing and Updating an LPP
 13.1 CONTENTS
 13.2 About This Chapter
 13.3 Understanding System Guidelines
 13.3.1 System Directories
 13.3.2 Providing User Documentation
 13.4 Using Installation and Update Services
 13.4.1 Commands (installp, installt, updatep)
 13.4.2 Replicated and Non-replicated File Systems
 13.4.3 installp and updatep File Hierarchy
 13.4.4 Installation Files
 13.4.5 Update Files
 13.4.6 installp and updatep Script Considerations
 13.4.6.1 Executable File Considerations
 13.4.6.2 installp and updatep Script Descriptions
 13.5 Order of Execution
 13.5.1 installp Order of Execution
 13.5.2 updatep apply Phase Order of Execution
 13.5.3 updatep reject Phase Order of Execution
 13.6 What You Need to Install an LPP
 13.6.1 General Control Files
 13.6.2 Special Files for the Local
 13.6.3 General LPP Files
 13.6.4 Creating the Installation Script
 13.6.4.1 Special Script for the Local
 13.6.4.2 Restoring the LPP Media
 13.6.4.3 Allowing for Individual Needs
 13.6.4.4 Customizing the System for an LPP
 13.6.4.5 Installation and Update Procedure Return Codes
 13.6.5 Example of Files on installp Media
 13.6.6 Important Example Files
 13.7 What You Need to Update an LPP
 13.7.1 The Four Steps In the update Procedure
 13.7.2 Original
 13.7.3 Original to Applied
 13.7.4 Applied to Committed
 13.7.5 Committed to Applied
 13.7.6 Applied to Original
 13.7.6.1 Files for Updates
 13.7.7 Files For Updates to Local File Systems
 13.7.8 Example update Procedure
 13.7.9 Example of Update Files and Directories
 13.8 Allowing for Recovery
 13.9 File Formats and Description
 13.9.1 Creating the LPP History File
 13.9.2 The Global History File

Programming Tools and Interfaces
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 9

 13.9.3 The Local History File
 13.9.4 Creating the LPP Requirements File
 13.9.5 Using the Requirement String
 13.9.5.1 Requirements File Example Entry
 13.9.6 The LPP Name File
 13.9.7 Creating an Apply List File
 13.9.8 The Archive Control File
 13.10 The Local Information File
 13.10.1 The Special File
 13.11 The Save and Recover Directory
 13.12 Internal Commands
 14.0 Chapter 14. Maintaining Different Versions of a Program
 14.1 CONTENTS
 14.2 About This Chapter
 14.3 Introducing SCCS
 14.3.1 Features
 14.3.2 New Terms
 14.3.3 SCCS File Format
 14.3.3.1 The SCCS File Header
 14.3.3.2 The SCCS File Body
 14.3.4 Command Conventions
 14.3.5 Command Summary
 14.4 Using SCCS Commands
 14.4.1 Using the admin Command
 14.4.1.1 Locating Damaged SCCS Files
 14.4.2 Using the get Command
 14.4.2.1 Getting Read-Only File Versions
 14.4.2.2 Getting Editable File Versions
 14.4.2.3 Getting Duplicate File Versions
 14.4.3 Using the delta Command
 14.4.4 Using the sccshelp Command
 15.0 Chapter 15. Finding and Changing Strings
 15.1 CONTENTS
 15.2 About This Chapter
 15.3 Finding Strings
 15.3.1 Strings
 15.3.1.1 Literal Strings
 15.3.1.2 Regular Expressions
 15.3.2 Example of Commands
 15.4 Scanning Files
 15.4.1 Program File
 15.4.2 Variables
 15.4.3 BEGIN and END
 15.4.4 Using Regular Expressions as Patterns
 15.4.4.1 Character Class
 15.4.4.2 Special Characters
 15.4.5 Using Relational Expressions as Patterns
 15.4.5.1 Examples of Relational Expressions in a Pattern
 15.4.6 Using Combinations of Patterns
 15.4.7 Using Pattern Ranges
 15.4.8 Using Functions in an Action
 15.4.9 Using Variables in an Action
 15.4.10 Using Operators in an Action
 15.4.11 Using Field Variables in an Action
 15.4.12 Concatenating Strings
 15.4.13 Using Arrays
 15.4.14 Using Control Statements
 15.4.14.1 If-Else Statement
 15.4.14.2 While Statement
 15.4.14.3 For Statement

Programming Tools and Interfaces
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 10

 15.4.14.4 Break Statement
 15.4.14.5 Continue Statement
 15.4.14.6 Next Statement
 15.4.14.7 Exit Statement
 15.4.14.8 Comments
 15.5 Editing Files with sed
 15.5.1 Starting the Editor
 15.5.2 How sed Works
 15.5.3 Selecting Lines for Editing
 15.5.4 Regular Expressions
 15.5.5 sed Command Summary
 15.5.6 Text in Commands
 15.5.7 String Replacement
 16.0 Chapter 16. Using the Macro Processor (m4)
 16.1 CONTENTS
 16.2 About This Chapter
 16.3 The Macro Processor
 16.4 Using the Macro Preprocessor
 16.5 Defining Macros
 16.5.1 Using the Quote Characters
 16.5.2 Arguments
 16.6 Using Other m4 Macros
 16.6.1 Changing the Quote Characters
 16.6.2 Removing a Macro Definition
 16.6.3 Checking for A Defined Macro
 16.6.4 Using Integer Arithmetic
 16.6.5 Manipulating Files
 16.6.6 Redirecting Output
 16.6.7 Using System Programs in A Program
 16.6.8 Using Unique File Names
 16.6.9 Using Conditional Expressions
 16.6.10 Manipulating Strings
 16.6.11 Printing
 17.0 Chapter 17. Creating an Input Language
 17.1 CONTENTS
 17.2 About This Chapter
 17.3 Writing a Lexical Analyzer Program with lex
 17.3.1 What lex Does
 17.3.2 How the Lexical Analyzer Works
 17.4 The lex Specification File
 17.4.1 Rules
 17.5 Regular Expressions
 17.5.1 Operators
 17.5.2 Putting Blanks in an Expression
 17.5.3 Other Special Characters
 17.5.4 Character Classes
 17.5.5 Matching Rules
 17.5.5.1 Matching a String Using Wildcard Characters
 17.5.5.2 Finding Strings within Strings
 17.6 Actions
 17.6.1 Null Action
 17.6.2 Same as Next Action
 17.6.3 Printing a Matched String
 17.6.4 Finding the Length of a Matched String
 17.6.5 Getting More Input
 17.6.6 Putting Characters Back
 17.6.7 Input/Output Routines
 17.6.8 Character Set
 17.6.9 End of File Processing
 17.7 Passing Code to the Generated Program

Programming Tools and Interfaces
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 11

 17.8 Defining Substitution Strings
 17.9 Start Conditions
 17.10 Compiling the Lexical Analyzer
 17.11 Using lex with yacc
 17.12 Creating a Parser with yacc
 17.13 Grammar File
 17.13.1 main and yyerror
 17.13.2 yylex
 17.14 Using the Grammar File
 17.14.1 Using Comments
 17.14.2 Using Literal Strings
 17.14.3 How to Format the Grammar File
 17.14.4 Using Recursion in a Grammar File
 17.14.5 Errors in the Grammar File
 17.15 Declarations
 17.15.1 Defining Global Variables
 17.15.2 Start Conditions
 17.15.3 Token Numbers
 17.16 Rules
 17.16.1 Repeating Nonterminal Names
 17.16.2 Empty String
 17.16.3 End of Input Marker
 17.17 Actions
 17.17.1 Passing Values Between Actions
 17.17.2 Support for Arbitrary Value Types
 17.17.3 Putting Actions in the Middle of Rules
 17.18 Programs
 17.19 Error Handling
 17.19.1 Providing for Error Correcting
 17.19.2 Clearing the Look Ahead Token
 17.20 Lexical Analysis
 17.21 Parser Operation
 17.21.1 Shift
 17.21.2 Reduce
 17.22 Using Ambiguous Rules
 17.22.1 Understanding Parser Conflicts
 17.22.2 How the Parser Responds to Conflicts
 17.23 Turning On Debug Mode
 17.24 Creating a Simple Calculator Program - Example
 17.24.1 Compiling the Example Program
 17.24.2 The Parser Source Code
 17.24.2.1 Declarations Section
 17.24.2.2 Rules Section
 17.24.2.3 Programs Section
 17.24.3 The Lexical Analyzer Source Code
 18.0 Chapter 18. International Character Support
 18.1 CONTENTS
 18.2 About This Chapter
 18.3 Introduction
 18.4 Basic Concepts and Definitions
 18.5 History of AIX Character Support
 18.6 Version 1.2.1 Modifications
 18.7 Features
 18.8 Programming Language Support
 18.9 Kernel Modifications
 18.9.1 Code Point Support
 18.9.2 Multibyte Character File Names
 18.9.3 Terminal Maps
 18.10 Intersystem Compatibility
 18.10.1 Communications with Remote Systems

Programming Tools and Interfaces
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 12

 18.10.1.1 uucp between Systems
 18.10.1.2 Mail
 18.11 Limits to Support
 18.11.1 ASCII vs. Multibyte Character Entries
 18.12 Collation
 18.13 Modifications to Files and Directories
 18.13.1 Obtaining Character Information
 18.14 cron and /etc/openfiles
 18.14.1 Performance Tuning with cron and /etc/openfiles
 18.15 Multibyte Character Set Support
 18.16 Programming for an MBCS Environment
 18.17 How to Write Codeset-Independent Programs
 18.17.1 Character Set Design
 18.17.2 Codeset Independence
 18.17.3 Collation
 18.17.4 Input and Output
 18.17.5 Enhanced printf/scanf Format Strings
 18.17.6 wchar_t Oriented Input and Output
 18.17.7 Message Catalogs
 18.17.8 Non-Positional Format Parameters
 18.18 Message Catalog Generation
 18.18.1 The Message Text Source File
 18.18.2 Syntax of Messages Within a Catalog
 18.18.3 Arguments within Messages
 18.18.4 Using Symbolic Definitions
 18.18.5 Default Values and Limits
 18.18.6 Generation of a Message Catalog from a Message Text Source File
 18.18.7 gencat, runcat, mkcatdefs
 18.18.8 Displaying Messages from Message Catalogs
 18.18.8.1 dspcat, dspmsg
 18.18.9 Accessing Messages from Message Catalogs from User Programs
 18.19 Use of Regular Expressions with International Characters
 18.20 Using The C Language MBCS Interface
 18.20.1 Using The Library Routines
 18.20.1.1 Naming Conventions
 18.21 Getting Wide Characters (wchar_t's)
 18.21.1 Single Character Input
 18.21.2 Character Strings
 18.21.3 Formatted Input
 18.22 Processing Wide Characters
 18.22.1 ctype.h
 18.22.2 The String Library
 18.22.3 Conversion Routines
 18.22.4 Character Treatment Routines
 18.22.5 Printing Wide Characters
 18.22.6 Single Character Output
 18.22.7 Character Strings
 18.22.8 Formatted Output
 19.0 Chapter 19. Using Remote Procedure Call (RPC)
 19.1 CONTENTS
 19.2 About This Chapter
 19.3 Overview of RPC
 19.3.1 The RPC Communication Paradigm
 19.3.2 Data Transports and Semantics
 19.3.3 Binding and Rendezvous Independence
 19.3.4 Message Authentication
 19.3.5 The RPC Protocol
 19.3.6 Remote Procedure Call Language (RPCL)
 19.3.7 Defining Arbitrary Data Types with eXternal Data Representation (XDR)
 19.3.7.1 Allocating Memory With eXternal Data Representation (XDR)

Programming Tools and Interfaces
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 13

 19.4 Authenticating Remote Procedure Calls
 19.4.1 Authenticating the Client
 19.4.2 Authenticating the Server
 19.5 Special Topics
 19.5.1 The select Procedure on the Server Side
 19.5.2 Broadcast RPC
 19.5.3 Using Batching
 19.5.4 Using the inetd Daemon to Start a Server
 19.6 Example Applications
 19.6.1 Example of Using Version Numbers
 19.6.2 Example of Using Transmission Control Protocol/Internet Protocol (TCP/IP)
 19.6.3 Example of Using Callback Procedures
 19.7 RPC Programming Levels
 19.7.1 Using the Highest Level
 19.7.2 Using Intermediate-Level RPC
 19.7.2.1 Using the callrpc Routine
 19.7.2.2 Using the registerrpc Routine
 19.7.3 Using Low-Level RPC
 19.7.3.1 Using the svc_register Routine
 19.7.3.2 The Client Side of Low-Level RPC
 A.0 Appendix A. Extended curses Structures
 A.1 WINDOW Structure
 A.2 PANEL Structure
 A.3 PANE Structure
 B.0 Appendix B. PS/2 Printer Support Data Stream
 B.1 Using Printers from a Program
 C.0 Appendix C. ASCII Characters
 D.0 Appendix D. installt Command
 D.1 Menu Format
 D.2 Tape Format
 D.3 Table of Contents (TOC) Format
 D.3.1 Communication Method
 D.3.2 Changes to unix.std
 GLOSSARY Glossary
 INDEX Index

Programming Tools and Interfaces
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 14

Figures
 2-1. Example lint Library Input File 2.4.8.1
 2-2. Rules for Creating Files 2.7.4
 2-3. Example Default Rules File 2.7.4.1
 2-4. Example Description File 2.7.14
 3-1. Character Escape Sequence 3.6.4.2
 3-2. Addressing Mode Summary 3.8
 3-3. Scalar Expression Operators 3.8.2
 3-4. Special Purpose Registers 3.10.2
 3-5. Directive Summary 3.12
 5-1. Symbols and Functions of Operators 5.10.1.3
 5-2. Syntax Diagram for Input Directives 5.11.9
 7-1. Summary of System Libraries 7.3
 7-2. Comparison of I/O Operations 7.4.1.1
 8-1. Using the Fork System Call 8.4.2.8
 8-2. Fork and Wait System Calls - Sample Program 8.4.2.10
 8-3. Output from forktst2 Sample Program 8.4.2.10
 8-4. Exec System Call - Sample Program 8.4.2.11
 8-5. Output from forktst3 Sample Program 8.4.2.11
 8-6. Additional Process Handling System Calls - Sample
 Program 8.4.2.12
 8-7. Additional Process Handling System Calls - Sample
 Output 8.4.2.12
 8-8. Using the pipe System Call 8.4.2.13
 8-9. Relationship of IDs in the System 8.4.3
 8-10. Process ID and Attribute Calls Sample Program 8.4.4.5
 8-11. Process ID and Attribute Calls Sample Program 8.4.4.5
 8-12. User Controlled Signals 8.5.1
 8-13. Example of Signal Trapping 8.5.1.2
 8-14. Enhanced Signal Calls 8.5.2
 8-15. Sources of Signals 8.5.2.1
 8-16. sigvec Structure Members 8.5.2.2
 8-17. Enhanced Signals Example Program 8.5.2.6
 8-18. Semid Data Structure 8.5.3.1
 8-19. Semaphore Structure 8.5.3.1
 8-20. Semop System Call Parameters 8.5.3.2
 8-21. How Sem_op Specifies a Semaphore Operation 8.5.3.2
 8-22. Using Semaphores Concept Example 8.5.3.3
 8-23. Semop Call for Proca 8.5.3.3
 8-24. Semop Call for Procb 8.5.3.3
 8-25. Semaphore Usage 8.5.3.3
 8-26. Using Semaphore Calls 8.5.3.4
 8-27. Message Queue Terms 8.5.4.1
 8-28. Shared Memory Terms 8.5.6.1
 8-29. Example Program Listing for locktest.c 8.7.1.1
 8-30. Output from Example Program locktest.c 8.7.1.1
 9-1. Terms 9.3.1
 9-2. Screen Coordinate Boundaries 9.3.4
 9-3. Example Panel Final Appearance 9.5.2
 9-4. Creating Panes in the Panel 9.5.2
 9-5. Links in the Panel and Pane Structure 9.5.2
 9-6. Program to Create Example Panel 9.5.2
 9-7. Display Attributes 9.6
 9-8. Changing Screen Attributes Example Program 9.6.2
 9-9. Control Codes 9.7.1
 9-10. Example of Extended curses Program 9.8
 10-1. Message Fields 10.3.1
 10-2. System Identifiers 10.3.1
 10-3. Content of Message Standard Format File 10.4.1
 10-4. Header Files 10.5.1

Programming Tools and Interfaces
Figures

¦ Copyright IBM Corp. 1985, 1991
FIGURES - 1

 10-5. Standard Symbols 10.6
 10-6. Example of Integer Symbol Programming 10.6.1
 10-7. Example of Character String Symbol Programming 10.6.3
 10-8. Example of Text Insert Symbol Programming 10.6.4
 10-9. Content of Help Text Format File 10.8.1
 11-1. Trace Components 11.4
 11-2. Example Program Fragment Showing Use of trcunix
 Subroutine 11.4.3
 11-3. Example Program Fragment Showing Use of trsave Subroutine 11.4.3
 11-4. Trace Template Syntax 11.4.4
 11-5. Fields in a Trace Template 11.4.4
 11-6. Example of a Trace Template for hook ID 330 11.4.4.3
 11-7. Example of Output from the Trace Formatter 11.5
 11-8. Error Components 11.5
 11-9. Example Program Fragment Using errunix Subroutine 11.5.3
 11-10. Example of a Program Fragment Showing Use of errsave
 Subroutine 11.5.3
 11-11. Error Template Syntax 11.5.4
 11-12. Fields in an Error Template 11.5.4
 11-13. Example of an Error Template for Error Entries with Error ID
 613 11.5.4.3
 11-14. Example Output from the Error Formatter 11.5.4.3
 13-1. installp File Hierarchy - Fixes 13.4.3
 13-2. updatep File Hierarchy 13.4.3
 13-3. installp Files 13.4.4
 13-4. updatep: Files for an upgrade 13.4.5
 13-5. Scripts Used by the Service Tools 13.4.6.1
 13-6. Files for a local installation/update 13.6.4.1
 13-7. Return Codes from instal, and inst_updt.loc 13.6.4.5
 13-8. Four Steps in the update Procedure 13.7.1
 13-9. Example of update Shell Script 13.7.8
 13-10. Record Format for the History File 13.9.1
 13-11. Fields in a History Record 13.9.1
 13-12. Record Format for the Requirements File 13.9.4
 13-13. Fields in Requirements Record 13.9.4
 13-14. Format for the Requirement String 13.9.5
 13-15. Format for the LPP Name file 13.9.6
 13-16. Fields in LPP Name Entry 13.9.6
 13-17. Save/Restore Directory Content 13.11
 13-18. Internal Commands 13.12
 14-1. Parts of an SID 14.3.2
 14-2. Growth of an SCCS File with Branching 14.3.2
 14-3. Example of Using SCCS to Create and Update a File 14.4
 14-4. Growth of an SCCS File with Branching 14.4.2.2
 15-1. awk Special Characters 15.4.4.2
 15-2. sed Command Flags 15.5.2
 15-3. sed Block Diagram 15.5.2
 15-4. sed Wildcard Characters 15.5.4
 15-5. Syntax Symbols 15.5.5
 15-6. sed Command Summary 15.5.5
 16-1. m4 Built-in Macros 16.6
 17-1. Simple Finite State Model 17.3.2
 17-2. Regular Expression Operators 17.5.1
 17-3. Special Characters 17.5.3
 17-4. lex With yacc 17.11
 17-5. yacc Literal Strings 17.14.2
 17-6. yacc Grammar File for Calculator Program - calc.yacc 17.24.2
 17-7. lex Specification File for Calculator Program - calc.lex 17.24.3
 18-1. Sample Message Text Source File 18.18.1
 18-2. Message Text Source File with Symbolic Values 18.18.4

Programming Tools and Interfaces
Figures

¦ Copyright IBM Corp. 1985, 1991
FIGURES - 2

 18-3. Include File for Symbolic Message Catalog 18.18.4
 18-4. Sample C Source Code 18.18.9
 18-5. Error Values 18.19
 18-6. Naming Conventions 18.20.1.1
 19-1. How to Assign Program Numbers 19.3.5
 19-2. Example of Authentication Credentials Structure 19.4.1
 19-3. Remote Users Service Example 19.4.2
 19-4. Code for the Library Routine svc_run 19.5.1
 19-5. Example of broadcast RPC 19.5.2
 19-6. Constants for the WINDOWS example RPC program 19.5.3
 19-7. Example of a Client Using Batching to Create Strings Using RPC
 Batching with TCP/IP Delivery 19.5.3
 19-8. Example of a Client Using Batching to Create Strings 19.5.3
 19-9. A Server Supporting Two Versions of the Same Program 19.6.1
 19-10. C Procedure Handling Two Versions of the Same Program 19.6.1
 19-11. Example of Using Transmission Control Protocol/Internet Protocol
 (TCP/IP) 19.6.2
 19-12. Example of Using a Callback Procedure 19.6.3
 19-13. Using the gettransient Routine with a Client 19.6.3
 19-14. Using the gettransient Routine with a Server 19.6.3
 19-15. Using the rnusers Library Routine in a Program 19.7.1
 19-16. Using callrpc to Determine Number of Remote Users 19.7.2.1
 19-17. Using registerrpc to Register RPC Calls with a
 Portmapper 19.7.2.2
 19-18. Using svc_register, a Low-Level RPC Routine 19.7.3.1
 19-19. Low-Level RPC Client Passing an RPC Program using
 UDP/IP 19.7.3.2
 A-1. Structure Definition for WINDOW A.1
 A-2. Structure Definition for PANEL A.2
 A-3. Structure Definition for PANE A.3
 B-1. Printer Control Codes B.1
 C-1. Code Page 0 C.0
 C-2. Code Page 1 C.0
 C-3. Code Page 2 C.0
 D-1. Initial Menu Display D.1
 D-2. Updated Menu D.1
 D-3. Fstore Values D.1
 D-4. Changing Fstore Values D.1
 D-5. Menu Display D.1
 D-6. Tape Formats D.2
 D-7. Format of Entry in ./installt_toc File D.3

Programming Tools and Interfaces
Figures

¦ Copyright IBM Corp. 1985, 1991
FIGURES - 3

 1.0 Chapter 1. Programming with AIX

 Subtopics
 1.1 CONTENTS
 1.2 About This Chapter
 1.3 Programming Tools
 1.4 Program Development in a Heterogeneous Environment
 1.5 Programming Interfaces

Programming Tools and Interfaces
Chapter 1. Programming with AIX

¦ Copyright IBM Corp. 1985, 1991
1.0 - 1

 1.1 CONTENTS

Programming Tools and Interfaces
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
1.1 - 1

 1.2 About This Chapter

 This chapter describes the IBM AIX tools and services for developing
 application programs. In addition, it indicates where to get more
 information about these facilities, both in this book and in other AIX
 books.

Programming Tools and Interfaces
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
1.2 - 1

 1.3 Programming Tools

 The AIX system has many tools to help develop a C language program. These
 tools provide help in the following programming areas:

 � Entering a program into the syste

 � Checking a progra

 � Compiling and linking a progra

 � Correcting errors in a progra

 � Filing and maintaining a program

 Subtopics
 1.3.1 Entering a Program
 1.3.2 Checking a Program
 1.3.3 Compiling and Linking a Program
 1.3.4 Correcting Errors in a Program
 1.3.5 Building and Maintaining a Program

Programming Tools and Interfaces
Programming Tools

¦ Copyright IBM Corp. 1985, 1991
1.3 - 1

 1.3.1 Entering a Program

 The system has a line editor to help enter a program into a file to be
 compiled. The editor is called ed. Refer to Using the AIX Operating
 System for instructions about how to use this editor.

 In addition, the system has two full screen editors, INed and vi. These
 editors display a full screen of data and allow interactive editing of the
 file.

Programming Tools and Interfaces
Entering a Program

¦ Copyright IBM Corp. 1985, 1991
1.3.1 - 1

 1.3.2 Checking a Program

 The following programs help check the format of a program for consistency
 and accuracy:

 lint Checks for syntax, data type and other programming and usage
 errors. Refer to "Checking C Programs" in topic 2.4 for
 information about using this program.

 cflow Generates a flow diagram of a C language program. Refer to
 "Other C Programming Tools" in topic 2.5 for information about
 this program.

 cxref Generates a cross reference listing for a C language program.
 Refer to "Other C Programming Tools" in topic 2.5 for
 information about this program.

 cb Reformats a C language source program into a consistent,
 indented format. Refer to "Other C Programming Tools" in
 topic 2.5 for information about this program.

Programming Tools and Interfaces
Checking a Program

¦ Copyright IBM Corp. 1985, 1991
1.3.2 - 1

 1.3.3 Compiling and Linking a Program

 The cc command compiles and links C, VS Pascal, VS FORTRAN, and Assembler
 language programs with one command line entry. Refer to Chapter 2,
 "Compiling and Linking Programs" for information about using this program.

Programming Tools and Interfaces
Compiling and Linking a Program

¦ Copyright IBM Corp. 1985, 1991
1.3.3 - 1

 1.3.4 Correcting Errors in a Program

 The symbolic debug program, dbx, helps find logic errors in C, Pascal, and
 FORTRAN language programs. Refer to Chapter 12, "Debugging Programs" for
 information about using this program.

 In addition, string searching programs such as grep, sed and awk help
 locate and change character strings (such as parameter names and syntax
 problems) in program files. Refer to Chapter 15, "Finding and Changing
 Strings" for information about using these programs.

Programming Tools and Interfaces
Correcting Errors in a Program

¦ Copyright IBM Corp. 1985, 1991
1.3.4 - 1

 1.3.5 Building and Maintaining a Program

 Two programs help control changes to a program and build the final program
 module. These programs are:

 make A program that builds programs from several source modules. It
 compiles only those modules that have changed. Refer to
 "Building Programs with make" in topic 2.7 for information about
 using this program.

 sccs A set of programs that maintain separate versions of a program
 without storing separate copies of each version. Refer to
 Chapter 14, "Maintaining Different Versions of a Program" in
 topic 14.0 for information about using this program.

Programming Tools and Interfaces
Building and Maintaining a Program

¦ Copyright IBM Corp. 1985, 1991
1.3.5 - 1

 1.4 Program Development in a Heterogeneous Environment

 Subtopics
 1.4.1 Building Programs for Both AIX/370 and AIX PS/2

Programming Tools and Interfaces
Program Development in a Heterogeneous Environment

¦ Copyright IBM Corp. 1985, 1991
1.4 - 1

 1.4.1 Building Programs for Both AIX/370 and AIX PS/2

 It is possible to develop an AIX/370 LPP and an AIX PS/2 LPP from common
 source. If the programs are written in a machine independent language
 such as C, VS Pascal or VS Fortran, AIX with the Transparent Computing
 Facility (TCF) provides a means to develop both AIX/370 and AIX PS/2
 versions of the program concurrently. To do so, you will need to do the
 development in a TCF cluster consisting of at least one AIX/370 site and
 one AIX PS/2 site. You will probably also want to make use of the hidden
 directory mechanism and design or make slight changes to your makefiles to
 account for multiple compilations of the same source files.

 When designing your build method (both source directory layout and
 makefiles) the important thing is to arrange it so that object files for
 different CPU types (System/370 and 80386) are placed in separate
 directories. AIX doesn't provide tools to completely automate the
 building of programs for multiple CPU types, but the following simple
 approach describes one possible way to organize the source to accomplish
 this task conveniently. Large applications will require this approach to
 be extended to include placing source into an entire directory hierarchy.

 First, place the common files (i.e., those source files that are machine
 independent) and a makefile in one directory. Place source files specific
 to the AIX PS/2 version of your applications in a subdirectory named i386,
 and source files specific to the AIX/370 version in a subdirectory named
 i370.

 Then, build the AIX PS/2 version of the program by entering a command such
 as:

 cd i386; onsite i386 make -f ../makefile

 and build the AIX/370 version with a command as:

 cd i370; onsite i370 make -f ../makefile

 The makefile will need to access the common source files using a pathname
 such as ../filename.c, but the objects created will be placed into the
 i386 or i370 subdirectory, as appropriate.

 Makefile differences between AIX/370 and AIX PS/2 can be achieved by
 making use of the shell programs /bin/u370 and /bin/i386, which are
 programs which exit with the value 0 (meaning true) or the value 1
 (meaning false) depending on whether you are running on AIX/370 or
 AIX/PS/2.

 Hidden directories can be used to give both the AIX/370 and AIX PS/2
 versions of files the same name and make it so that the AIX/370 program is
 run by users on AIX/370 systems and the AIX PS/2 program is run by users
 on AIX PS/2 system. For example, if your application should be known as
 /usr/bin/newprog, you could install your program into a hidden directory
 with a sequence of commands such as the following:

 � mkdir -h /usr/bin/newprog
 � cp i386/newprog /usr/bin/newprog@/i386
 � chfstore i386 /usr/bin/newprog@/i386
 � cp i370/newprog /usr/bin/newprog@/i370
 � chfstore i370 /usr/bin/newprog@/i370

 This can also be done by using /etc/install with the -H and -v options.

Programming Tools and Interfaces
Building Programs for Both AIX/370 and AIX PS/2

¦ Copyright IBM Corp. 1985, 1991
1.4.1 - 1

 1.5 Programming Interfaces

 When writing an application program for AIX, use the following system
 services:

 � Command

 � Library routine

 � System calls

 These services are available from C, VS FORTRAN, and VS Pascal language
 programs.

 Subtopics
 1.5.1 Commands
 1.5.2 Library Routines
 1.5.3 System Calls

Programming Tools and Interfaces
Programming Interfaces

¦ Copyright IBM Corp. 1985, 1991
1.5 - 1

 1.5.1 Commands

 To include the functions of any of the commands in a program, use the fork
 and exec system calls to allow the command to run in a part of the system
 (called a process) that is separate from the program. The system library
 routine also runs a command in a program, and the popen library routine
 uses shell filters. When using commands in a program, ensure that these
 commands are also available on all systems that will use the program.
 Refer to AIX Operating System Commands Reference for details about
 commands.

Programming Tools and Interfaces
Commands

¦ Copyright IBM Corp. 1985, 1991
1.5.1 - 1

 1.5.2 Library Routines

 Routines from the system libraries handle many complex or repetitive
 programming situations so that you can concentrate programming efforts on
 the unique programming situations. Details of each library subroutine are
 in AIX Operating System Technical Reference.

 Some of the libraries on the system are:

 C library
 A collection of input/output formatting routines, system call
 interface routines and other functions. This library includes
 the library stdio, which is the standard input/output system.

 Run Time Services library
 A collection of routines that help a program use the following
 system services:

 � Configuration
 � Messages
 � Trace
 � Error log.

 Math library
 A collection of mathematics functions.

 Extended curses library
 A collection of routines for writing programs that help control
 display screen input and output without regard to the type of
 terminal that the system uses.

 See Chapter 7, "Using the Subroutine Libraries" in topic 7.0 for a summary
 of the functions available in some of the libraries. See Chapter 9,
 "Controlling the Terminal Screen" in topic 9.0 for a description of using
 the Extended curses library.

Programming Tools and Interfaces
Library Routines

¦ Copyright IBM Corp. 1985, 1991
1.5.2 - 1

 1.5.3 System Calls

 System calls are the lowest level of interaction between a program and the
 AIX operating system. System calls are called like library routines, and
 it is usually unnecessary for a programmer to know whether a particular
 routine is a system call or a library routine. In many cases, system
 calls provide a lower level service, while library routines make use of
 system calls to provide higher level services to an application. See
 Chapter 8, "Using System Calls" in topic 8.0 for examples of how to use
 many of the system calls.

Programming Tools and Interfaces
System Calls

¦ Copyright IBM Corp. 1985, 1991
1.5.3 - 1

 2.0 Chapter 2. Compiling and Linking Programs

 Subtopics
 2.1 CONTENTS
 2.2 About This Chapter
 2.3 Compiling A Program
 2.4 Checking C Programs
 2.5 Other C Programming Tools
 2.6 Processing Assembler Language Routines
 2.7 Building Programs with make

Programming Tools and Interfaces
Chapter 2. Compiling and Linking Programs

¦ Copyright IBM Corp. 1985, 1991
2.0 - 1

 2.1 CONTENTS

Programming Tools and Interfaces
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
2.1 - 1

 2.2 About This Chapter
 This chapter discusses the following programming processes:

 � Compiling the progra
 � Checking C program
 � Other C programming tool
 � Processing assembler language routine
 � Building the program using the make utility program.

 This chapter does not contain complete information about any of the
 programs. For complete information refer to the reference book for the
 language compiler or to AIX Operating System Commands Reference (for the C
 language compiler).

Programming Tools and Interfaces
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
2.2 - 1

 2.3 Compiling A Program

 A compiler is a program that reads program text from a file and changes
 the programming language statements in that file to a form that the system
 can understand. The following steps show how the system creates this
 final form of the program:

 1. Includes additional files specified with the #include directive, and
 expands macros into programming language statements. This applies to
 the C programming language only.

 2. Changes the programming language statements into object code (a form
 that the system can understand). This object code is stored in a file
 with a .o suffix. This form of the program cannot be executed.

 3. Links the object code (using the ld command) into a program that the
 system can execute. If you do not specify differently, the executable
 program is in the file a.out in the current directory.

 When you compile a program on an AIX/370 or AIX PS/2 system, it generates
 an object file for that particular system. You can use this resulting
 object file only on the type of system on which it was compiled. For
 programs consisting of more than one object file, all object files must be
 compiled on the same system type in order for them to link together.
 Refer to Using the AIX Operating System for additional information.

 If the program is written in the C language, use the cc program to perform
 these steps. See "Using the cc Program" in topic 2.3.2 and AIX Operating
 System Commands Reference for information about this program. If the
 program is written in assembler language, see "Processing Assembler
 Language Routines" in topic 2.6.

 Subtopics
 2.3.1 Choosing a Compiler
 2.3.2 Using the cc Program

Programming Tools and Interfaces
Compiling A Program

¦ Copyright IBM Corp. 1985, 1991
2.3 - 1

 2.3.1 Choosing a Compiler

 AIX PS/2 supports two C compilers. The C compiler released with AIX PS/2
 Version 1.2 and earlier is known as the VS C compiler. The vs command
 invokes this compiler, which can be used to compile C language source
 code. The other compiler available on AIX PS/2 is called the Extended C
 compiler.

 By default, if both AIX PS/2 C compilers are installed on a system, the cc
 command invokes the Extended C compiler. Only if the environment variable
 known as COMPILER is set to VSC does cc invoke the VS C compiler. If
 there is only one C compiler installed on the system, the cc command
 invokes that C compiler. The vs command always invokes the VS C compiler,
 if it is installed.

 AIX/370 supports a compiler, which is also called the Extended C compiler.
 When you compile a program using this compiler, it generates an object
 file for AIX/370 only.

 For information about invoking the compiler and the command-line options
 available for the cc command, see C Language User's Guide.

 The following list includes some of the programming languages that are
 available for use with the AIX Operating System:

 � VS FORTRA
 � VS Pasca
 �
 � Assembler

 The books that come with the compiler programs contain information for
 using those languages. The examples in this chapter use the C language.

 You can also write parts of the program in different languages and have
 one main routine call the separate routines to execute. To do this,
 however, follow the rules explained in the appropriate sections of the C,
 VS Pascal and VS FORTRAN Users Guides.

Programming Tools and Interfaces
Choosing a Compiler

¦ Copyright IBM Corp. 1985, 1991
2.3.1 - 1

 2.3.2 Using the cc Program

 The cc program calls the C language compiler, but it can do much more.
 The cc program can:

 � Process the input with a macro preprocesso

 � Compile a high-level language progra

 � Assemble an assembly language progra

 � Link program modules

 You can select any or all of these functions. In addition, you can
 replace the supplied programs for any of these steps with a program suited
 to special needs. AIX Operating System Commands Reference contains
 detailed reference information about the cc program.

 On the System/370 you can generate load modules in either 370 mode (24-bit
 addressing) or in XA mode (31-bit addressing). You can use the XA mode
 for very large programs. The default is 370 mode which runs on either 370
 machine type.

 Subtopics
 2.3.2.1 Examples of Commands

Programming Tools and Interfaces
Using the cc Program

¦ Copyright IBM Corp. 1985, 1991
2.3.2 - 1

 2.3.2.1 Examples of Commands

 The following examples show some operations with the cc program using
 command line flags.

 Compile source file testfile.c using the C library (libc.a). Link the
 resulting module and place the output in a.out:

 cc testfile.c

 Process source file testfile.c to produce assembler language output, and
 place the output in testfile.s:

 cc testfile.c -S

 Compile source file testfile.c using the C library (libc.a) and place the
 unlinked output in testfile.o:

 cc testfile.c -c

 Process source file testfile.c using the macro preprocessor only, and
 place the output in testfile.i:

 cc testfile.c -P

 Compile source file testfile.c using the C library (libc.a) but using the
 newcpp compiler program in the directory /u/jim. Place the unlinked
 output in testfile.o:

 cc testfile.c -c -B/u/jim/new

Programming Tools and Interfaces
Examples of Commands

¦ Copyright IBM Corp. 1985, 1991
2.3.2.1 - 1

 2.4 Checking C Programs

 Use the lint program to ensure that C programs do not contain syntax
 errors, as well as to verify that the programs do not contain data type
 errors. The lint program checks these areas of a program more carefully
 than the C compiler does, and displays many messages that point out
 possible problems. These messages may not require you to change the
 program if you decide to ignore the possible problems.

 Refer to the AIX Operating System Commands Reference for detailed
 information on using the lint command.

 The parameters for the lint command are in the following categories:

 flags Optional flags to control lint messages. This section
 contains examples of some useful flags. See AIX Operating
 System Commands Reference for a complete list of the flags
 for the system.

 file name The name of the C language source file for lint to check.
 The file name must end with .c.

 library-name The name of a library that lint uses when checking the
 program. The following libraries are included with the
 system:

 llib-lc.ln Checks standard function call syntax (included
 by default).

 llib-port.ln Checks portable function call syntax (included
 by using the -p flag).

 llib-lm.ln Checks math library call syntax (included by
 using the -lm flag).

 llib-lcurses.l Checks extended curses library call syntax.

 You can also create your own lint library. See "Creating A lint Library"
 in topic 2.4.8 for more information.

 With no flags specified on the command line, the lint program checks the C
 source files and writes messages about the following coding errors and
 programming style differences that it finds:

 � Data types that are not used correctl

 � Variables and functions that are not use

 � Functions that are not used correctl

 � Syntax error

 � Techniques that could cause problems in moving the program to othe
 systems.

 Subtopics
 2.4.1 Operation
 2.4.2 Program Flow
 2.4.3 Data Type Checking
 2.4.4 Variable and Function Checking

Programming Tools and Interfaces
Checking C Programs

¦ Copyright IBM Corp. 1985, 1991
2.4 - 1

 2.4.5 Using Variables Before They Are Initialized
 2.4.6 Portability Checking
 2.4.7 Coding Errors and Style Differences
 2.4.8 Creating A lint Library

Programming Tools and Interfaces
Checking C Programs

¦ Copyright IBM Corp. 1985, 1991
2.4 - 2

 2.4.1 Operation

 The lint program checks a group of files using the following procedure:

 1. Checks each file and writes messages for problems found in that file.

 2. Collects errors in included files and writes those messages.

 3. Checks for consistency of labels and data types among the group of
 files.

 4. Writes the source file name followed by a ? (question mark) if any
 errors remain that are not assigned to either a source file or an
 included file.

 If lint does not report any errors, the program has correct syntax and
 will compile without errors. Passing that test, however, does not mean
 that the program will operate correctly, or that the logic design of the
 program is accurate. The lint program does not check for design problems.
 It only checks language semantics and syntax.

Programming Tools and Interfaces
Operation

¦ Copyright IBM Corp. 1985, 1991
2.4.1 - 1

 2.4.2 Program Flow

 The lint program detects parts of the program that cannot be reached. It
 writes messages about statements that do not have a label, but immediately
 follow statements that change the program flow, such as:

 � got
 � brea
 � continu
 � return

 The lint program also detects and writes messages for the following
 conditions:

 � A loop that cannot be exited at the botto
 � A loop that cannot be entered at the to
 � Infinite loops such as
 - while(1)
 - for(;;)

 Some programs that work may have such loops. However, the loops can cause
 problems.

 The lint program does not detect functions that are called, but never
 return to the calling program. For example, a call to exit may result in
 code that cannot be reached, but lint does not detect it.

 Programs generated by yacc and lex may have hundreds of break statements
 that cannot be reached. The lint program normally writes an error message
 for each of these break statements. Use the -O flag for the cc command
 when compiling the program to eliminate the resulting object code
 inefficiency, so that these extra statements are not important. Use the
 -b flag with the lint program to prevent writing of these messages when
 checking yacc and lex output code.

Programming Tools and Interfaces
Program Flow

¦ Copyright IBM Corp. 1985, 1991
2.4.2 - 1

 2.4.3 Data Type Checking

 The lint program enforces the type checking rules of C language more
 strictly than the compiler does. In addition to the checks that the
 compiler makes, lint checks for the data type errors in the following
 areas:

 � Binary operators and implied assignment

 � Structures and union

 � Function definition and use

 � Enumerator

 � Type checking contro

 � Type casts

 Subtopics
 2.4.3.1 Binary Operators and Implied Assignments
 2.4.3.2 Structures and Unions
 2.4.3.3 Function Definition and Uses
 2.4.3.4 Enumerators
 2.4.3.5 Type Checking Control
 2.4.3.6 Type Casts

Programming Tools and Interfaces
Data Type Checking

¦ Copyright IBM Corp. 1985, 1991
2.4.3 - 1

 2.4.3.1 Binary Operators and Implied Assignments

 The C language allows mixing of the following data types in statements,
 and the compiler does not indicate an error when they are mixed:

 � cha
 � shor
 � in
 � lon
 � unsigne
 � floa
 � double

 The language converts data types within this group automatically to allow
 the programmer more flexibility in programming. This flexibility,
 however, means that the programmer, not the language, must ensure that the
 data type mixing produces the desired result.

 You can mix these data types when using them in the following ways (in the
 examples, alpha is type char, and num is type int):

 � Operands on both sides of an assignment operator, for example

 alpha = num;

 � Operands in a conditional expression, for example

 value = (alpha < num) ? alpha : num;

 � Operands on both sides of a relational operator, for example

 if(alpha != num)

 � The type of an argument in a return statement is converted to the type
 of the value that the function returns. For example:

 funct(x) /* returns an integer */
 {
 return(alpha);
 }

 The data types of pointers must agree exactly, except that you can mix
 arrays of x's with pointers to x's.

Programming Tools and Interfaces
Binary Operators and Implied Assignments

¦ Copyright IBM Corp. 1985, 1991
2.4.3.1 - 1

 2.4.3.2 Structures and Unions

 The lint program checks structure operations for the following
 requirements:

 � The left operand of the -> operator must be a pointer to a structure.

 � The left operand of the . operator must be a structure.

 � The right operand of these operators must be a member of the sam
 structure.

 The lint program makes similar checks for references to unions.

Programming Tools and Interfaces
Structures and Unions

¦ Copyright IBM Corp. 1985, 1991
2.4.3.2 - 1

 2.4.3.3 Function Definition and Uses

 The lint program applies strict rules to function argument and return
 value matching. Arguments and return values must agree in type with the
 following exceptions:

 � You can match arguments of type float with arguments of type double.

 � You can match arguments within the following types

 - char
 - short
 - int
 - unsigned.

 � You can match pointers with the associated arrays

Programming Tools and Interfaces
Function Definition and Uses

¦ Copyright IBM Corp. 1985, 1991
2.4.3.3 - 1

 2.4.3.4 Enumerators

 The lint program checks enumerated data type variables to ensure that:

 � Enumerator variables or members are not mixed with other types o
 other enumerators

 � The enumerated data type variables are only used in the followin
 areas:

 - Assignment (=)
 - Initialization
 - Equivalence (==)
 - Not equivalence (!=)
 - Function arguments
 - Return values.

Programming Tools and Interfaces
Enumerators

¦ Copyright IBM Corp. 1985, 1991
2.4.3.4 - 1

 2.4.3.5 Type Checking Control

 To turn off strict type checking for one expression in the program, add
 the directive:

 /*NOSTRICT*/

 to the program immediately before the expression. This directive prevents
 strict type checking for only the next line in the program.

Programming Tools and Interfaces
Type Checking Control

¦ Copyright IBM Corp. 1985, 1991
2.4.3.5 - 1

 2.4.3.6 Type Casts

 Type casts in the C language allows the program to treat data of one type
 as if it were data of another type. The lint program can check for type
 casts and write a message if it finds one.

 The -c flag for the lint program controls the writing of comments about
 casts. Without the -c flag, lint treats casts as though they were
 assignments subject to messages. The resulting messages indicate the
 casts that are in the program. With the -c flag, lint ignores all legal
 casts.

Programming Tools and Interfaces
Type Casts

¦ Copyright IBM Corp. 1985, 1991
2.4.3.6 - 1

 2.4.4 Variable and Function Checking

 The lint program detects variables and functions declared in the program,
 but not used. When it finds one of these cases, it writes a message.
 Variable and function errors that lint finds include the following:

 � Functions that return values inconsistentl

 � Variables and functions that are defined, but not use

 � Arguments to a function call that are not use

 � Functions that can return either with or without value

 � Functions that return values that are never use

 � Programs that use the value of a function when the function does no
 return a value.

 Subtopics
 2.4.4.1 Inconsistent Function Return
 2.4.4.2 Function Values That Are Not Used
 2.4.4.3 Disabling Function Related Error Messages

Programming Tools and Interfaces
Variable and Function Checking

¦ Copyright IBM Corp. 1985, 1991
2.4.4 - 1

 2.4.4.1 Inconsistent Function Return

 If a function returns a value under one set of conditions, but does not
 return a value under another set of conditions, you cannot predict the
 results of the program. The lint program detects this type of error. For
 example, if both of the following statements are in a function definition:

 return(expr);

 and

 return;

 The lint program writes the message:

 function name contains return(e); and return;

 When using this function, the program may or may not receive a return
 value. The error message points out that problem.

 The lint program also detects function returns caused by reaching the end
 of the function code (an implied return). For example, in the following
 part of a function:

 checkout (a)
 {
 if (a) return (3);
 fix_it ();
 }

 If a tests false, checkout calls fix_it and then returns with no defined
 return value. In this case, lint writes the message:

 function checkout contains return(e); and return;

 If fix_it, exits without returning, lint still writes the message even
 though nothing is wrong.

Programming Tools and Interfaces
Inconsistent Function Return

¦ Copyright IBM Corp. 1985, 1991
2.4.4.1 - 1

 2.4.4.2 Function Values That Are Not Used

 The lint program detects cases where a function returns a value and the
 calling program may not use the value. If the value is never used, the
 function definition may be inefficient and should be checked. If the
 value is sometimes used, the function may be returning an error code that
 the calling program does not check.

Programming Tools and Interfaces
Function Values That Are Not Used

¦ Copyright IBM Corp. 1985, 1991
2.4.4.2 - 1

 2.4.4.3 Disabling Function Related Error Messages

 To prevent lint from reporting these types of errors, specify one or more
 of the following flags to the lint command:

 -x Do not write messages about variables that are declared in an
 extern statement, but are never used.

 -v Do not write messages about arguments to functions that are not
 used (except those that are also declared as register
 arguments).

 -u Do not write messages about functions and external variables
 that are either used and not defined, or defined and not used.
 Use this flag to run lint on a subset of files of a larger
 program.

 To prevent lint from reporting errors about unused arguments for one
 function, add the directive:

 /*ARGSUSED*/

 to the program before the function.

 Add the following directive before the function definition to prevent the
 program from writing messages about variable numbers of arguments in calls
 to a function:

 /*VARARGS*/

 To check the first several arguments and leave the later arguments
 unchecked, add a digit to the end of the VARARGS directive to give the
 number of arguments that should be checked, such as:

 /*VARARGS2*/

 When lint reads this directive, it checks only the first two arguments.

 When using lint with some (but not all) files that operate together, many
 of the functions and variables defined in those files may not be used.
 Also, many functions and variables defined elsewhere may be used. Use the
 -u flag to prevent lint from writing these messages.

Programming Tools and Interfaces
Disabling Function Related Error Messages

¦ Copyright IBM Corp. 1985, 1991
2.4.4.3 - 1

 2.4.5 Using Variables Before They Are Initialized

 The lint program detects if a program uses a local variable (automatic and
 register storage classes) before assigning a value to it. In this case,
 using a variable also includes taking the address of the variable. This
 is because the program can use the variable (through its address) any time
 after it knows the address of the variable. Therefore, if the program
 does not assign a value to the variable before it finds the address of the
 variable, lint reports an error. Because lint only checks the physical
 order of the variables and their usage in the file, it may write messages
 about a program that actually does not contain errors.

 The lint program recognizes and writes messages about:

 � Initialized automatic variable
 � Variables that are used in the expression that first sets the
 � Local variables that are set and never used

 Note: The operating system initializes static and external variables to
 zero. Therefore, lint assumes that these variables are set (to zero) at
 the start of the program, and does not check to see if they have been
 assigned a value when they are used. When developing a program for a
 system that does not do this initialization, ensure that the program sets
 static and external variables to an initial value.

Programming Tools and Interfaces
Using Variables Before They Are Initialized

¦ Copyright IBM Corp. 1985, 1991
2.4.5 - 1

 2.4.6 Portability Checking

 Use lint to help ensure that you can compile and run the program on other
 systems that have a C language compiler that conforms to the UNIX System V
 requirements for a C compiler. The following paragraphs indicate areas to
 check before compiling the program on another system. Checking only these
 areas, however, does not guarantee that the program will run on any
 system.

 Subtopics
 2.4.6.1 Character Uses
 2.4.6.2 Bit Field Uses
 2.4.6.3 External Name Size
 2.4.6.4 Multiple Uses and Side Effects

Programming Tools and Interfaces
Portability Checking

¦ Copyright IBM Corp. 1985, 1991
2.4.6 - 1

 2.4.6.1 Character Uses

 Some systems define characters in a C language program as signed
 quantities with a range from -128 to 127; other systems define characters
 as positive values. The lint program writes messages when it finds
 character comparisons or assignments. The messages indicate that the use
 of characters may not be portable to other systems. For example, the
 fragment:

 char c;
 .

 .

 .

 if((c = getchar()) <0)...

 may work on one system but fail on systems like AIX where characters
 always take on positive values. The lint program writes the message:

 nonportable character comparison

 when it checks the program.

 To make the program work on systems that use positive values for
 characters, declare c as an integer because getchar returns integer
 values.

Programming Tools and Interfaces
Character Uses

¦ Copyright IBM Corp. 1985, 1991
2.4.6.1 - 1

 2.4.6.2 Bit Field Uses

 Bit fields may also produce problems when transferring a program to
 another system. When assigning constant values to bit fields, the field
 may be too small to hold the value, because bit fields may be signed
 quantities on the new system. To make this assignment work on all
 systems, declare the bit field to be of type unsigned before assigning
 values to it.

Programming Tools and Interfaces
Bit Field Uses

¦ Copyright IBM Corp. 1985, 1991
2.4.6.2 - 1

 2.4.6.3 External Name Size

 When changing from one type of system to another, be aware of differences
 in the information retained about external names during the loading
 process. The number of characters allowed for external names can vary.
 The AIX Operating System C language compiler considers at least the first
 64 characters in internal and external identifiers as significant. Some
 programs that the compiler command calls and some of the functions that
 your programs call may further limit the number of significant characters
 in identifiers. In addition, the compiler keeps uppercase and lowercase
 characters separate. On other systems, uppercase or lowercase may not be
 important or allowed. To avoid problems with loading the program when
 transferring from one system to another:

 1. Find out the requirements of each system.

 2. Run lint with the -p flag.

 The -p flag tells lint to change all external symbols to one case and
 limit them to six characters while checking the input files. The messages
 produced indicate the terms that may need to be changed.

Programming Tools and Interfaces
External Name Size

¦ Copyright IBM Corp. 1985, 1991
2.4.6.3 - 1

 2.4.6.4 Multiple Uses and Side Effects

 Be careful when using complicated expressions. Many C compilers evaluate
 complex expressions in different orders. Function calls that are
 arguments of other functions may or may not be treated the same as
 ordinary arguments. Also, operators such as assignment, increment, and
 decrement may cause problems when used on another system. For example, if
 any variable is changed by a side effect of one of the operators and is
 also used elsewhere in the same expression, the result is undefined. The
 evaluation of the variable years in the following example is confusing
 because on some machines years is incremented before the function call,
 while on other machines years is incremented after the function call:

 printf("%d %d\n", ++years, amort(interest, years));

 The lint program checks for simple scalar variables that may be affected
 by evaluation order problems. For example, the statement:

 a[i]=b[i++];

 causes lint to write the message:

 warning: i evaluation order undefined

Programming Tools and Interfaces
Multiple Uses and Side Effects

¦ Copyright IBM Corp. 1985, 1991
2.4.6.4 - 1

 2.4.7 Coding Errors and Style Differences

 Use lint to detect some coding errors and differences in coding style from
 the style that lint expects. Although coding style is mainly a matter of
 individual taste, examine each difference to ensure that the difference is
 both needed and accurate. The following paragraphs indicate the types of
 coding and style problems that lint can find.

 Subtopics
 2.4.7.1 Assignments of Long Variables to Integer Variables
 2.4.7.2 Operator Precedence
 2.4.7.3 Conflicting Declarations

Programming Tools and Interfaces
Coding Errors and Style Differences

¦ Copyright IBM Corp. 1985, 1991
2.4.7 - 1

 2.4.7.1 Assignments of Long Variables to Integer Variables

 If you assign variables of type long to variables of type int, the program
 may not work properly. The long variable is truncated to fit in the
 integer space and data may be lost. An error of this type occurs
 frequently when converting a program that uses typedef to run on a
 different system. When changing a typedef variable from int to long, the
 program can stop working because an intermediate result may be assigned to
 an integer variable, and the intermediate result is truncated.

 To assign a long variable to an integer variable and prevent lint from
 writing messages for these assignments, use the -a flag with the lint
 program.

Programming Tools and Interfaces
Assignments of Long Variables to Integer Variables

¦ Copyright IBM Corp. 1985, 1991
2.4.7.1 - 1

 2.4.7.2 Operator Precedence

 The lint program detects errors in operator precedence. Without
 parentheses to show order in complex sequences, these errors are hard to
 find by looking at the code. For example, the following statements are
 not clear:

 if(x&077==0)... /* actually: if(x & (077 == 0)) */
 /* should be: if((x & 077) == 0) */

 or

 x<<2+40 /* shift x left 42 positions */
 /* should be: (x<<2) + 40 */

 Use parentheses to make the operation more clearly understood. If you do
 not, lint writes a message.

Programming Tools and Interfaces
Operator Precedence

¦ Copyright IBM Corp. 1985, 1991
2.4.7.2 - 1

 2.4.7.3 Conflicting Declarations

 The lint program writes messages about variables that are declared in
 inner blocks in a way that conflicts with their use in outer blocks. This
 practice is allowed but may cause problems in the program. Use the -h
 flag with the lint program to prevent writing of messages about
 conflicting declarations.

Programming Tools and Interfaces
Conflicting Declarations

¦ Copyright IBM Corp. 1985, 1991
2.4.7.3 - 1

 2.4.8 Creating A lint Library

 For programming projects that define additional library routines, create
 an additional lint library to check the syntax of the programs. Using
 this library, the lint program can check the new functions in addition to
 the standard C language functions. Perform the following steps to create
 a new lint library (see the following paragraphs for more information
 about these steps).

 1. Create an input file that defines the new functions.

 2. Process the input file to create the lint library file.

 3. Run lint using the new library.

 Subtopics
 2.4.8.1 Creating the Input File
 2.4.8.2 Creating the lint Library File
 2.4.8.3 Checking a Program with the New Library

Programming Tools and Interfaces
Creating A lint Library

¦ Copyright IBM Corp. 1985, 1991
2.4.8 - 1

 2.4.8.1 Creating the Input File

 Figure 2-1 shows an input file that defines three additional functions for
 lint to check. This file is a text file that you create with an editor.
 It consists of:

 � A directive to tell the cpp program that the following information is
 to be made into a library of lint definitions:

 /*LINTLIBRARY*/

 � A series of function definitions that define

 - The type of the function (int in the example)
 - The name of the function
 - The parameters that the function expects
 - The types of the parameters
 - A placeholder for any value that the function returns.

 Name this file in the following format:

 llib-lpgm

 In this format, the letters pgm represent a unique name that indicates the
 functions contained in the input file. For example, in the example input
 file the name of this input file could be llib-ldms. When choosing the
 name of the file, ensure that it is not the same as any of the existing
 files in the /usr/lib directory.

 --

 /*LINTLIBRARY*/

 #include <dms.h>

 int dmsadd(rmsdes, recbuf, reclen)
 int rmsdes;
 char *recbuf;
 unsigned reclen;
 { return 0; }
 int dmsclos(rmsdes)
 int rmsdes;
 { return 0; }
 int dmscrea(path, mode, recfm, reclen)
 char *path;
 int mode;
 int recfm;
 unsigned reclen;
 { return 0; }

 --
 Figure 2-1. Example lint Library Input File

Programming Tools and Interfaces
Creating the Input File

¦ Copyright IBM Corp. 1985, 1991
2.4.8.1 - 1

 2.4.8.2 Creating the lint Library File

 To create a lint library file, process the input file using the following
 command:

 /lib/cpp -C -Dlint llib-lpgm | /usr/lib/lint1 -Htmpfile > \
 /usr/lib/llib-lpgm.ln

 This command tells the preprocessor program cpp and an intermediate
 program lint1 to create a lint library file, /usr/lib/llib-lpgm.ln using
 the input file llib-lpgm. In each of these cases, the pgm in the file
 name represents the identifier for the input file. The file name tmpfile
 can be any temporary file name. The lint1 program creates this file and
 uses it for intermediate storage. When the program completes, delete this
 file:

 rm tmpfile

Programming Tools and Interfaces
Creating the lint Library File

¦ Copyright IBM Corp. 1985, 1991
2.4.8.2 - 1

 2.4.8.3 Checking a Program with the New Library

 To check a program using the new library, use the command:

 lint -lpgm filename.c

 In this command, the letters pgm represent the identifier for the library,
 and filename.c represents the name of the file containing the C language
 source code to check. With no other flags, the lint program checks the C
 language source code against the standard lint library in addition to
 checking the indicated special lint library.

Programming Tools and Interfaces
Checking a Program with the New Library

¦ Copyright IBM Corp. 1985, 1991
2.4.8.3 - 1

 2.5 Other C Programming Tools

 The AIX Operating System provides tools to help format and check the
 structure of the C language program. These tools include:

 cb c beautifier: This program formats the C language source
 program into a form that uses indentation levels to show the
 structure of the program.

 cflow c flow diagram generator: This program produces an output
 diagram that shows the logic flow of the C language source
 program.

 cxref c cross reference list: This program produces a list of all
 external references for each module of the C language program,
 including where the reference is resolved (if it is).

Programming Tools and Interfaces
Other C Programming Tools

¦ Copyright IBM Corp. 1985, 1991
2.5 - 1

 2.6 Processing Assembler Language Routines

 To use program modules written in assembler language for the PS/2 and 370,
 assemble the source code and link the resulting output with any other
 modules in the program. To perform these steps, either:

 1. Use the as program on a site of the appropriate type to assemble the
 source code into an object module.

 2. Use the ld program to link the object modules with the other object
 modules that form the program.

 or

 � Use the cc program to both assemble and link the program.

 Subtopics
 2.6.1 Using the as Program
 2.6.2 Using the ld Program
 2.6.3 Using the cc Program

Programming Tools and Interfaces
Processing Assembler Language Routines

¦ Copyright IBM Corp. 1985, 1991
2.6 - 1

 2.6.1 Using the as Program

 The following command sequences show some uses of the as program to
 assemble an assembler language module into an object module:

 � Assemble source file asmtest.s and place the output in the default
 file, asmtest.o

 as asmtest.s

 � Assemble source file asmtest.s and place the output in the file
 myfile.o.

 as -o myfile.o asmtest.s

 The following command sequence shows how to use the as program to generate
 an assembler listing:

 � Assemble source file asmtest.s and write the assembler listing to the
 screen.

 as -l asmtest.s

 Note: An assembler listing written to standard output using the -l
 option is available only on AIX PS/2.

 � Assemble source file asmtest.s and place the assembler listing in the
 file myfile.

 as -lmyfile asmtest.s

 For more information about the as command, see as in AIX Operating System
 Commands Reference.

Programming Tools and Interfaces
Using the as Program

¦ Copyright IBM Corp. 1985, 1991
2.6.1 - 1

 2.6.2 Using the ld Program

 After assembling the source program with the as program, use the ld
 program to link that object module with other object modules, or to
 prepare it to run on the system.

Programming Tools and Interfaces
Using the ld Program

¦ Copyright IBM Corp. 1985, 1991
2.6.2 - 1

 2.6.3 Using the cc Program

 To use the cc program to process an assembly language file, the file name
 must end in .s to indicate that it is an assembler language source file.
 The following command sequences show some uses of the cc program to
 assemble an assembler language module into an object module, and link it
 with other object modules to form the program:

 � Assemble and link the file asmtest.s and place the resulting program
 in file a.out.

 cc asmtest.s

 � Assemble the file asmtest.s and place the resulting unlinked object
 code in file asmtest.o.

 cc asmtest.s -c

 � Assemble the file asmtest.s, link it with object files oldfile.o and
 otherfile.o, and place the resulting program in file a.out.

 cc asmtest.s oldfile.o otherfile.o

 You can also use the cc program to generate an assembler listing.

 � On the PS/2 assemble the file asmtest.s and place the assembler
 listing in asmtest.lst.

 cc -X asmtest.s

 � On AIX/370, assemble the file asmtest.s and place an annotated
 assembler listing in asmtest.lst.

 cc -Hasm asmtest.s > asmtest.lst

Programming Tools and Interfaces
Using the cc Program

¦ Copyright IBM Corp. 1985, 1991
2.6.3 - 1

 2.7 Building Programs with make

 The make program builds up-to-date versions of programs. It keeps track
 of the commands that are needed to create the files, and uses a list of
 files that must be current before the operations can be done. After
 changing any part of a program, enter the make command on the command
 line. The make program then creates only the files that are affected by
 the change, according to the rules in its rules file.

 Using the make program to maintain programs, you can:

 � Combine the instructions for creating a large program in a single fil

 � Define macros to use within the make description file

 � Define new flags to use with the make program

 � Create any file to use with the operating system, including SCCS file

 � Use shell commands to define the method of file creation, or use th
 make program to create many of the basic types of files

 � Create librarie

 � Include files from other programs when creating a file

 The make program is most useful for medium-sized programming projects. It
 does not solve the problems of maintaining more than one source version
 and describing huge programs (see Chapter 14, "Maintaining Different
 Versions of a Program" in topic 14.0).

 Subtopics
 2.7.1 Operation
 2.7.2 Using the make Program
 2.7.3 Description Files
 2.7.4 Internal Rules
 2.7.5 Defining Default Conditions
 2.7.6 Including Other Files
 2.7.7 Defining Macros
 2.7.8 Using Macros in a Description File
 2.7.9 Internal Macros
 2.7.10 Changing Macro Definitions in a Command
 2.7.11 Using Make with SCCS Files
 2.7.12 How make Uses the Environment Variables
 2.7.13 Tracking Dependencies
 2.7.14 Example of a Description File

Programming Tools and Interfaces
Building Programs with make

¦ Copyright IBM Corp. 1985, 1991
2.7 - 1

 2.7.1 Operation

 The make program uses the following sources of information:

 � A description file that you creat

 � File name

 � Time stamps of the files from the file syste

 � Rules in the make program that tell how to build many of the standard
 types of files.

 The file containing the completed program is called a target file. The
 make program creates a target file using a step-by-step procedure:

 1. Finds the name of the target file in the description file, or in the
 make command.

 2. Ensures that the files on which the target file depends exist and are
 up-to-date.

 3. Determines if the target file is up-to-date with the files it depends
 on.

 4. If the target file or one of the parent files is out of date, creates
 the target file using one of the following:

 a. Commands from the description file

 b. Internal rules to create the file (if they apply)

 c. Default rules from the description file.

 If all files in the procedure are up-to-date when running the make
 program, make displays a message to indicate that the file is up-to-date,
 and then stops. If some files have changed, make creates only those files
 that are out of date, and does not create files that are already current.

 When the make program runs commands to create a target file, it replaces
 macros with their values, writes each command line, and then passes the
 command to a new copy of the shell.

Programming Tools and Interfaces
Operation

¦ Copyright IBM Corp. 1985, 1991
2.7.1 - 1

 2.7.2 Using the make Program

 Start the make program from the directory that contains the description
 file for the file to create. The variable name desc-file represents the
 name of that description file. Then, enter the command:

 make -f desc-file

 on the command line. Enter macro definitions, flags, description file
 names, and target file names along with the make command on the command
 line as follows:

 make [flags] [macrodefinitions] [targets]

 The make program then examines the command line entries to determine what
 to do. First, it looks at all macro definitions on the command line
 (entries that are enclosed in quotes and have equal signs in them) and
 assigns values to them. If it finds a definition for a macro on the
 command line different from the definition for that macro in the
 description file, it chooses the command line definition for the macro.

 Next, the make program looks at the flags. See AIX Operating System
 Commands Reference for a list of the flags that make recognizes.

 The make program expects the remaining command line entries to be the
 names of target files to be created. The make program creates the target
 files in left to right order. Without a target file name, the make
 program creates the first target file named in the description file that
 does not begin with a period. With more than one description file
 specified, make searches the first description file for the name of the
 target file.

Programming Tools and Interfaces
Using the make Program

¦ Copyright IBM Corp. 1985, 1991
2.7.2 - 1

 2.7.3 Description Files

 The description file tells make how to build the target file, what files
 are involved, and what their relationships are to the other files in the
 procedure. The description file contains the following information:

 � Target file nam

 � Parent file names that make up the target fil

 � Commands that create the target file from the parent file

 � Definitions of macros in the description file

 The make program determines what files to create to get an up-to-date copy
 of the target file by checking the dates of the parent files. If any
 parent file was changed more recently than the target file, make creates
 the files that are affected by the change, including the target file.

 If you name the description file makefile or Makefile, and are working in
 the directory containing that description file, enter the command:

 make

 to bring the first target file and its parent files up-to-date, regardless
 of the number of files that were changed since the last time make created
 the target file. In most cases, the description file is easy to write and
 does not change often.

 To keep many different description files in the same directory, name them
 differently. Then, enter the command:

 make -f desc-file

 substituting the name of the description file to use in place of the
 variable name desc-file.

 Subtopics
 2.7.3.1 Format of a Description File Entry
 2.7.3.2 Using Commands in a Description File
 2.7.3.3 Calling the make Program from a Description File
 2.7.3.4 Preventing the make Program from Writing Commands
 2.7.3.5 Prevent Stopping on Errors
 2.7.3.6 Determining the Trigger
 2.7.3.7 Example of a Description File
 2.7.3.8 Making the Description File Simpler

Programming Tools and Interfaces
Description Files

¦ Copyright IBM Corp. 1985, 1991
2.7.3 - 1

 2.7.3.1 Format of a Description File Entry

 The general form of an entry is:

 target1 [target2..]:[:] [parent1..][; commands]
 [#..]
 [(TAB) commands] [#...]
 ...

 The items that are inside brackets are optional. Targets and parents are
 file names (strings of letters, numbers, periods, and slashes). make
 recognizes wildcard characters such as * (asterisk) and ? (question mark).
 Each line in the description file that contains a target file name is
 called a dependency line. Lines that contain commands must begin with a
 tab character.

 Note: Because make uses the dollar sign symbol ($) to designate a macro,
 do not use that symbol in file names of targets and parents, or in
 commands in the description file unless you are using a defined make
 macro.

 Put comments in the description file by using a # (number sign) to begin
 the comment phrase. The make program ignores the # and all characters on
 the same line after the #. The make program also ignores blank lines.

 If the line is not a comment line, you can enter lines that are longer
 than the line width of the input device. To continue a line on the next
 line, put a \ (backslash) at the end of the line that is to be continued.

Programming Tools and Interfaces
Format of a Description File Entry

¦ Copyright IBM Corp. 1985, 1991
2.7.3.1 - 1

 2.7.3.2 Using Commands in a Description File

 A command is any string of characters not including a # or a new line. A
 command can use a # if it is in quotes. Commands can appear either after
 a semicolon on a dependency line, or on lines beginning with a tab
 immediately following a dependency line.

 When defining the command sequence for a particular target, specify either
 one command sequence for each target in the description file, or specify
 separate command sequences for special sets of dependencies. Do not do
 both.

 To use one command sequence for every use of the target, use a single :
 (colon) following the target name on the dependency line. For example:

 test: dependency list1...;
 command list...
 .
 .
 .
 test: dependency list2...;

 defines a target name, test, with a set of parent files, and a set of
 commands to create the file. The target name, test, can appear in other
 places in the description file with another dependency list, but that name
 cannot have another command list in the description file. When one of the
 files that test depends on changes, make runs the commands in that one
 command list to create the file, test.

 To specify more than one set of commands to create a particular target
 file, enter more than one dependency definition. Each dependency line
 must have the target name, followed by :: (two colons), a dependency
 list, and a command list that make uses if any of the files in the
 dependency list changes. For example:

 test:: dependency list1...;
 command list1...

 test:: dependency list2...;
 command list2...

 defines two separate processes to create the target file, test. If any of
 the files in dependency list1 changes, make runs command list1; if any of
 the files in dependency list2 changes, make runs command list2. To avoid
 conflicts, a parent file cannot appear in both dependency list1 and
 dependency list2.

 Note: Because make passes the commands from each command line to a new
 shell, be careful when using certain commands (for example, cd and shell
 control commands) that have meaning only within a single shell process.
 The make program forgets these results before running the commands on the
 next line.

 To group commands together, use the \ (backslash) at the end of a command
 line. The make program continues that command line into the next line in
 the description file. The shell sends both of these lines to a single new
 shell.

Programming Tools and Interfaces
Using Commands in a Description File

¦ Copyright IBM Corp. 1985, 1991
2.7.3.2 - 1

 2.7.3.3 Calling the make Program from a Description File

 Nest calls to the make program within a make description file by including
 the $(MAKE) macro in one of the command lines in the file. If this macro
 is present, make calls another copy of make even if the -n flag (do not
 execute) is set. The make program passes the flags to the new copy of
 make through the MAKEFLAGS variable.

 If the -n flag is set when the $(MAKE) macro is found, the new copy of
 make does not do any of its commands, except another $(MAKE) macro. Use
 this characteristic to test a set of description files that describe a
 program. Enter the command:

 make -n

 For additional information on the make -n command, refer to the AIX
 Operating System Commands Reference.

 The make program does not do any of the operations, but it writes all of
 the steps needed to build the program, including output from lower level
 calls to make.

Programming Tools and Interfaces
Calling the make Program from a Description File

¦ Copyright IBM Corp. 1985, 1991
2.7.3.3 - 1

 2.7.3.4 Preventing the make Program from Writing Commands

 To prevent make from writing the commands while it runs, do any of the
 following:

 � Use the -s flag on the command line when using the make command.

 � Put the fake target name .SILENT on a dependency line by itself in the
 description file. Because .SILENT is not a real target file, it is
 called a fake target.

 � Put an @ in the first character position after the tab of each line in
 the description file that make should not write.

Programming Tools and Interfaces
Preventing the make Program from Writing Commands

¦ Copyright IBM Corp. 1985, 1991
2.7.3.4 - 1

 2.7.3.5 Prevent Stopping on Errors

 The make program normally stops if any program returns an error code that
 is not zero. Some programs return status that has no meaning.

 To prevent make from stopping on errors, do any of the following:

 � Use the -i flag on the command line when using the make command.

 � Put the fake target name .IGNORE on a dependency line by itself in the
 description file. Because .IGNORE is not a real target file, it is
 called a fake target.

 � Put a - (hyphen) in the first character position after the tab of each
 line in the description file where make should not stop on errors.

Programming Tools and Interfaces
Prevent Stopping on Errors

¦ Copyright IBM Corp. 1985, 1991
2.7.3.5 - 1

 2.7.3.6 Determining the Trigger

 As you build larger and larger software products, relationships among the
 files involved become increasingly complex. Occasionally you may find it
 difficult to determine exactly which file(s) have changed to trigger the
 remake of the program being made. Even more difficult to determine is
 exactly which routine(s) from a given library are being called by a
 certain object module. The make command can determine these relationships
 for you.

 Running make with the -T option causes trigger information to be printed
 to standard output. This gives the reason or the make rule by which make
 was activated.

 libc.a(printf.o)<-pgm

 The response above, for instance, indicates that printf.o was updated more
 recently than pgm so pgm was remade.

Programming Tools and Interfaces
Determining the Trigger

¦ Copyright IBM Corp. 1985, 1991
2.7.3.6 - 1

 2.7.3.7 Example of a Description File

 For example, a program named prog is made by compiling and loading three C
 language files x.c, y.c, and z.c with the C library (libc.a) and the run
 time library (librts.a). The files x.c and y.c share some declarations in
 a file named defs. The file z.c does not share those declarations. A
 description file to create prog looks like:

 # Make prog from 3 object files
 prog: x.o y.o z.o
 # Use the cc program to make prog
 cc x.o y.o z.o -o prog

 # Make x.o from 2 other files
 x.o: x.c defs
 # Use the cc program to make x.o
 cc -c x.c

 # Make y.o from 2 other files
 y.o: y.c defs
 # Use the cc program to make y.o
 cc -c y.c

 # Make z.o from z.c
 z.o: z.c
 # Use the cc program to make z.o
 cc -c z.c

 If this file is called makefile, just enter the command:

 make

 to make prog up-to-date after making changes to any of the four source
 files .x.c, y.c, z.c or defs.

Programming Tools and Interfaces
Example of a Description File

¦ Copyright IBM Corp. 1985, 1991
2.7.3.7 - 1

 2.7.3.8 Making the Description File Simpler

 To make this file simpler, use the internal rules of the make program.
 Using file system naming conventions, make knows that there are three .c
 files corresponding to the needed .o files. It also knows how to generate
 an object from a source file (that is, issue a cc -c command).

 By taking advantage of these internal rules, the description file becomes:

 # Make prog from 3 object files
 prog: x.o y.o z.o
 # Use the cc program to make prog
 cc x.o y.o z.o -o prog

 # Use the file defs and the .c file
 # when making x.o and y.o
 x.o y.o: defs

Programming Tools and Interfaces
Making the Description File Simpler

¦ Copyright IBM Corp. 1985, 1991
2.7.3.8 - 1

 2.7.4 Internal Rules

 The internal rules for the make program are in a file that looks like a
 description file. With the -r flag the make program does not use the
 internal rules file; you must supply the rules to create the files. The
 internal rules file contains a list of file name suffixes (such as, .o, or
 .a) that make understands, plus the rules that tell make how to create a
 file with one suffix from a file with another suffix. If you do not
 change the list, make understands the following suffixes:

 .o Object file

 .c C source file

 .e Efl source file

 .r Ratfor source file

 .f FORTRAN source file

 .s Assembler source file

 .y Yacc-c source grammar

 .yr Yacc-Ratfor source grammar

 .ye Yacc-Efl source grammar

 .l Lex source grammar.

 The list of suffixes is like a dependency list in a description file, and
 follows the fake target .SUFFIXES. Because make looks at the suffixes
 list in left to right order, the order of the entries is important. The
 make program uses the first entry in the list that satisfies two
 requirements:

 � The entry matches input and output suffix requirements

 � The entry has a rule assigned to it

 The make program creates the name of the rule from the two suffixes of the
 files that the rule defines. For example, the name of the rule to
 transform a .r file to a .o file is .r.o.

 To add more suffixes to the list, add an entry for .SUFFIXES in the
 description file. For a .SUFFIXES line without any suffixes following the
 target name in the description file, make erases the current list. To
 change the order of the names in the list, erase the current list and then
 assign a new set of values to .SUFFIXES.

 Figure 2-2 shows the paths that make uses to create a file. If two paths
 connect a pair of suffixes, make uses the longer one only if the
 intermediate file exists or is named in the description file.

 --

Programming Tools and Interfaces
Internal Rules

¦ Copyright IBM Corp. 1985, 1991
2.7.4 - 1

 --
 Figure 2-2. Rules for Creating Files

 Subtopics
 2.7.4.1 Example of Default Rules File
 2.7.4.2 Single Suffix Rules
 2.7.4.3 Using Make with Archive Libraries
 2.7.4.4 Changing Macros in the Rules File

Programming Tools and Interfaces
Internal Rules

¦ Copyright IBM Corp. 1985, 1991
2.7.4 - 2

 2.7.4.1 Example of Default Rules File

 Figure 2-3 shows a portion of the default rules file.

 --

 # Define suffixes that make knows
 .SUFFIXES: .o .c .e .r .f .y .yr .ye .l .s

 # Begin macro definitions for
 # internal macros
 YACC = yacc
 YACCR = yacc -r
 YACCE = yacc -e
 YFLAGS =
 LEX = lex
 LFLAGS =
 CC =cc
 AS = as
 CFLAGS =
 RC = rc
 RFLAGS =
 EC = ec
 EFLAGS =
 FFLAGS =
 # End macro definitions for
 # internal macros

 # Create a .o file from a .c
 # file with the cc program
 .c.o:
 $(CC) $(CFLAGS) -c $<

 # Create a .o file from either a
 # .e , a .r , or a .f
 # file with the efl compiler
 .e.o .r.o .f.o:
 $(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $<

 # Create a .o file from
 # a .s file with the assembler
 .s.o:
 $(AS) -o $@ $<

 .y.o:
 # Use yacc to create an intermediate file
 $(YACC) $(YFLAGS) $<
 # Use cc compiler
 $(CC) $(CFLAGS) -c y.tab.c
 # Erase the intermediate file
 rm y.tab.c
 # Move to target file
 mv y.tab.o $@

 .y.c:
 # Use yacc to create an intermediate file
 $(YACC) $(YFLAGS) $<
 # Move to target file

Programming Tools and Interfaces
Example of Default Rules File

¦ Copyright IBM Corp. 1985, 1991
2.7.4.1 - 1

 mv y.tab.c $@

 --
 Figure 2-3. Example Default Rules File

Programming Tools and Interfaces
Example of Default Rules File

¦ Copyright IBM Corp. 1985, 1991
2.7.4.1 - 2

 2.7.4.2 Single Suffix Rules

 The make program also has a set of single suffix rules to create files
 directly to a file name that does not have a suffix (command files for
 example). The make program has rules to change the following source files
 with a suffix to object files without a suffix:

 .c: From a C language source file

 .c~: From an SCCS C language source file

 .sh: From a shell file

 .sh~: From an SCCS shell file.

 Therefore, to maintain a program like cat, enter:

 make cat

 if all of the needed files are in the current directory.

Programming Tools and Interfaces
Single Suffix Rules

¦ Copyright IBM Corp. 1985, 1991
2.7.4.2 - 1

 2.7.4.3 Using Make with Archive Libraries

 Use make to build libraries and library files. The make program
 recognizes the suffix .a as a library file. The internal rules for
 changing source files to library files are:

 .c.a C source to archive

 .c~.a SCCS C source to archive

 .s~.a SCCS assembler source to archive.

Programming Tools and Interfaces
Using Make with Archive Libraries

¦ Copyright IBM Corp. 1985, 1991
2.7.4.3 - 1

 2.7.4.4 Changing Macros in the Rules File

 The make program uses macro definitions in the rules file. To change
 these macro definitions, enter new definitions for those macros on the
 command line or in the description file. The make program uses the
 following macro names to represent language processors that it uses:

 � AS for the Assemble
 � CC for the C compile
 � RC for the ratfor compile
 � EC for the efl compile
 � YACC for yacc
 � YACCR for yacc -r
 � YACCE for yacc -e
 � LEX for lex.

 The make program uses the following macro names to represent flags that it
 uses:

 � CFLAGS for C compiler flag
 � RFLAGS for ratfor compiler flag
 � EFLAGS for efl compiler flag
 � YFLAGS for yacc flags
 � LFLAGS for lex flags.

 Therefore, the command:

 make "CC=newcc"

 tells make to use the newcc program in place of the usual C language
 compiler. Similarly, the command:

 make "CFLAGS=-O"

 tells make to optimize the final object code produced by the C language
 compiler.

 To look at the internal rules (in rules.c) that make uses, enter the
 following command:

 make -p -f /dev/null 2>/dev/null

 The output appears on the standard output.

Programming Tools and Interfaces
Changing Macros in the Rules File

¦ Copyright IBM Corp. 1985, 1991
2.7.4.4 - 1

 2.7.5 Defining Default Conditions

 When make creates a target file and cannot find commands in the
 description file and internal rules to create a file, it looks at the
 description file for default conditions. To define the commands that make
 performs in this case, use the .DEFAULT target name in the description
 file:

 .DEFAULT:
 command
 command
 .
 .
 .

 Because .DEFAULT is not a real target file, it is called a fake target.
 Use the .DEFAULT fake target for an error recovery routine, or for a
 general procedure to create all files in the program that are not defined
 by an internal rule of the make program.

Programming Tools and Interfaces
Defining Default Conditions

¦ Copyright IBM Corp. 1985, 1991
2.7.5 - 1

 2.7.6 Including Other Files

 Include files other than the current description file by using the word
 include as the first word on any line in the description file. Follow the
 word with a blank or a tab, and then the set of file names for make to
 include in the operation. For example:

 include /u/tom/temp /u/tom/sample

 tells make to read the files temp, sample and the current description file
 to build the target file.

 If any of the files to be included are missing, make returns an error and
 exits. If this is not what you want, you can use an alternative keyword,
 oinclude. It uses the same format:

 oinclude /u/tom/temp /u/tom/sample

 If oinclude finds missing files, no error is reported and make continues
 as if the oinclude command had not been encountered.

 Do not use more than 16 levels of nesting with the include files feature.

Programming Tools and Interfaces
Including Other Files

¦ Copyright IBM Corp. 1985, 1991
2.7.6 - 1

 2.7.7 Defining Macros

 A macro is a name (or label) to use in place of several other names. It
 is a shorthand way of using the longer string of characters. To define a
 macro:

 1. Start a new line with the name of the macro.

 2. Follow the name with an = (equal sign).

 3. To the right of the =, enter the string of characters that the macro
 name represents.

 The macro definition can contain blanks before and after the = without
 affecting the result. The macro definition cannot contain a : (colon) or
 a tab before the =.

 The following are examples of macro definitions:

 # Macro "2" has a value of "xyz"
 2 = xyz

 # Macro "abc" has a value of "-ll -ly"
 abc = -ll -ly

 # Macro "LIBES" has a null value
 LIBES =

 A macro that is named but is not defined has a value of the null string.

Programming Tools and Interfaces
Defining Macros

¦ Copyright IBM Corp. 1985, 1991
2.7.7 - 1

 2.7.8 Using Macros in a Description File

 After defining a macro in a description file, use the macro in the
 description file commands by putting a $ (dollar sign) before the name of
 the macro. If the macro name is longer than one character, put ()
 (parentheses) or { } (braces) around it. The following are examples of
 using macros:

 $(CFLAGS)
 $2
 $(xy)
 $Z
 $(Z)

 The last two examples have the same effect.

 The following fragment shows how to define and use some macros:

 # OBJECTS is the 3 files x.o, y.o and
 # z.o (previously compiled)
 OBJECTS = x.o y.o z.o

 # LIBES is the standard library
 LIBES = -lc

 # prog depends on x.o y.o and z.o
 prog: $(OBJECTS)
 # Link and load the 3 files with
 # the standard library to make prog
 cc $(OBJECTS) $(LIBES) -o prog

 The make program that uses that description file loads the three object
 files with the libc.a library.

 A macro definition entered on the command line replaces any macro
 definitions in the description file that define the same macro label.
 Therefore, the command:

 make "LIBES= -ll"

 loads the files with the Lex (-ll) library.

 Note: When entering macros with blanks in them on the command line, put "
 (double quotes) around the macro. Without the double quotes, the shell
 interprets the blanks as parameter separators and not a part of the macro.

Programming Tools and Interfaces
Using Macros in a Description File

¦ Copyright IBM Corp. 1985, 1991
2.7.8 - 1

 2.7.9 Internal Macros

 The make program has built-in macro definitions for use in the description
 file. These macros help specify variables in the description file. The
 make program replaces the macros with one of the following values:

 $@ The name of the current target file

 $$@ The label name on the dependency line

 $? The names of the files that have changed more recently than the
 target

 $< The name of the out-of-date file that caused a target file to be
 created

 $* The name of the current parent file without the suffix

 $% The name of an archive library member.

 Subtopics
 2.7.9.1 Target File Name
 2.7.9.2 Label Name
 2.7.9.3 Younger Files
 2.7.9.4 First Out-of-date File
 2.7.9.5 Current File Name Prefix
 2.7.9.6 Archive Library Member

Programming Tools and Interfaces
Internal Macros

¦ Copyright IBM Corp. 1985, 1991
2.7.9 - 1

 2.7.9.1 Target File Name

 If the $@ macro is in the command sequence in the description file, make
 replaces the symbol with the full name of the current target file before
 passing the command to the shell to be run. The make program replaces the
 symbol only when it runs commands from the description file to create the
 target file.

Programming Tools and Interfaces
Target File Name

¦ Copyright IBM Corp. 1985, 1991
2.7.9.1 - 1

 2.7.9.2 Label Name

 If the $$@ macro is on the dependency line in a description file, make
 replaces this symbol with the label name that is on the left side of the
 colon in the dependency line. This name could be a target file name, the
 name of a new flag, or the name of another macro. For example, if the
 following is included in a dependency line:

 cat: $$@.c

 The make program translates it to:

 cat: cat.c

 when make evaluates the expression. Use this macro to build a group of
 files, each of which has only one source file. For example, to maintain a
 directory of system commands, use a description file like:

 # Define macro CMDS as a series
 # of command names
 CMDS = cat dd echo date cc cmp comm ar ld chown

 # Each command depends on a .c file
 $(CMDS): $$@.c
 # Create the new command set by compiling the out of
 # date files ($?) to the target file name ($@)
 $(CC) -O $? -o $@

 The make program changes the $$(@F) macro to the file part of $@ when it
 runs. For example, use this symbol when maintaining the /usr/include
 directory while using a description file in another directory. That
 description file would look like:

 # Define directory name macro INCDIR
 INCDIR = /usr/include

 # Define a group of files in the directory
 # with the macro name INCLUDES
 INCLUDES = \
 $(INCDIR)/stdio.h \
 $(INCDIR)/pwd.h \
 $(INCDIR)/dir.h

 # Each file in the list depends on a file
 # of the same name in the current directory
 $(INCLUDES): $$(@F)
 # Copy the younger files from the current
 # directory to /usr/include
 cp $? $@
 # Set the target files to read only status
 chmod 0444 $@

 This description file creates a file in the /usr/include directory when
 the corresponding file in the current directory has been changed.

Programming Tools and Interfaces
Label Name

¦ Copyright IBM Corp. 1985, 1991
2.7.9.2 - 1

 2.7.9.3 Younger Files

 If the $? macro is in the command sequence in the description file, make
 replaces the symbol with a list of parent files that have been changed
 since the target file was last changed. The make program replaces the
 symbol only when it runs commands from the description file to create the
 target file.

Programming Tools and Interfaces
Younger Files

¦ Copyright IBM Corp. 1985, 1991
2.7.9.3 - 1

 2.7.9.4 First Out-of-date File

 If the $< macro is in the command sequence in the description file, make
 replaces the symbol with the name of the file that started the file
 creation. The file name is the name of the parent file that was out of
 date with the target file, and therefore caused make to create the target
 file again.

 In addition, use a letter (D or F) after the < (less-than sign) to get
 either the directory name (D) or the file name (F) of the first
 out-of-date file. For example, if the first out-of-date file were:

 /u/tom/sample.c

 then make gives the following values:

 $(<D) = /u/tom
 $(<F) = sample
 $< = /u/tom/sample

 The make program replaces this symbol only when it runs commands from its
 internal rules or from the .DEFAULT list.

Programming Tools and Interfaces
First Out-of-date File

¦ Copyright IBM Corp. 1985, 1991
2.7.9.4 - 1

 2.7.9.5 Current File Name Prefix

 If the $* macro is in the command sequence in the description file, make
 replaces the symbol with the file name part (without the suffix) of the
 parent file that make is currently using to generate the target file. For
 example, if make is using the file:

 test.c

 then the $* represents the file name, test.

 In addition, use a letter (D or F) after the * (asterisk) to get either
 the directory name (D) or the file name (F) of the current file.

 For example, make uses many files (specified either in the description
 file or the internal rules) to create a target file. Only one of those
 files (the current file) is used at any moment. If that current file
 were:

 /u/tom/sample.c

 then make gives the following values for the macros:

 $(*D) = /u/tom
 $(*F) = sample
 $* = /u/tom/sample

 The make program replaces this symbol only when it runs commands from its
 internal rules (or from the .DEFAULT list), and not when running commands
 from a description file.

Programming Tools and Interfaces
Current File Name Prefix

¦ Copyright IBM Corp. 1985, 1991
2.7.9.5 - 1

 2.7.9.6 Archive Library Member

 If the $% macro is in a description file, and the target file is an
 archive library member, make replaces the macro symbol with the name of
 the library member. For example, if the target file is:

 lib(file.o)

 then make replaces the $% with the member name, file.o.

Programming Tools and Interfaces
Archive Library Member

¦ Copyright IBM Corp. 1985, 1991
2.7.9.6 - 1

 2.7.10 Changing Macro Definitions in a Command

 When macros in the shell commands are in the description file, you can
 change the values that make assigns to the macro. To change the
 assignment of the macro, put a : (colon) after the macro name, followed by
 a replacement string. The form is as follows:

 $(macro:string1=string2)

 When make reads the macro and begins to assign the values to the macro
 from the macro definition, it replaces each string1 in the macro
 definition with a value of string2. For example, if the description file
 contains the macro definition:

 FILES=test.o sample.o form.o defs

 you can replace the file form.o with a new file, input.o, by using the
 macro in the description file commands:

 cc -o $(FILES:form.o=input.o)

 Changing the value of a macro in this manner is useful when maintaining
 archive libraries (see the ar program in AIX Operating System Commands
 Reference).

Programming Tools and Interfaces
Changing Macro Definitions in a Command

¦ Copyright IBM Corp. 1985, 1991
2.7.10 - 1

 2.7.11 Using Make with SCCS Files

 The make program does not allow references to prefixes of file names.
 Because SCCS file names begin with an s., do not refer to them directly
 within a make description file. The make program uses a different suffix,
 the ~ (tilde), to represent SCCS files. Therefore, .c~.o refers to the
 rule that transforms an SCCS C language source file into an object. The
 internal rule is:

 .c~.o:
 $(GET) $(GFLAGS) -p $< >$*.c
 $(CC) $(CFLAGS) -c $*.c
 -rm -f $*.c

 The ~ added to any suffix changes the file search into an SCCS file name
 search with the actual suffix named by the . (period) and all characters
 up to (but not including) the ~. The GFLAGS macro passes flags to SCCS to
 determine the version of the SCCS files to be used.

 The make program recognizes the following SCCS suffixes:

 .c~ C source

 .y~ yacc source grammar

 .s~ Assembler source

 .sh~ shell

 .h~ header

 The make program has internal rules for changing the following SCCS files:

 .c~:
 .sh~:
 .c~.o:
 .s~.o:
 .y~.o:
 .l~.o:
 .y~.c:
 .c~.a:
 .s~.a:
 .h~.h:

 Subtopics
 2.7.11.1 Description Files Stored in SCCS

Programming Tools and Interfaces
Using Make with SCCS Files

¦ Copyright IBM Corp. 1985, 1991
2.7.11 - 1

 2.7.11.1 Description Files Stored in SCCS

 If you specify a description file, or a file named makefile is in the
 current directory, make does not look for a description file within SCCS.
 If a description file is not in the current directory and you enter the
 command make, without specifying a description file the make program looks
 for an SCCS file named either s.makefile or s.Makefile. If either of
 these files are present, make uses a get command to tell SCCS to build the
 description file from that source file. The value of the internal macro,
 GETFLAGS, determines the level of the file that SCCS creates. When SCCS
 creates the description file, make uses the file as a normal description
 file. When make finishes, it removes the created description file from
 the current directory.

Programming Tools and Interfaces
Description Files Stored in SCCS

¦ Copyright IBM Corp. 1985, 1991
2.7.11.1 - 1

 2.7.12 How make Uses the Environment Variables

 Each time make runs, it reads the current environment variables and adds
 them to its defined macros. In addition, it creates a new macro called
 MAKEFLAGS. This macro is a collection of all input flags to the make
 program (without the minus signs). Command line flags and assignments in
 the description file can also change the MAKEFLAGS macro. When make
 starts another process, it passes MAKEFLAGS to that process by using the
 export command.

 When make runs, it assigns macro definitions in the following order:

 1. Reads the MAKEFLAGS environment variable to set debug on, if it is
 needed.

 If MAKEFLAGS is not present or null, make sets its internal MAKEFLAGS
 variable to the null string. Otherwise, make assumes that each letter
 in MAKEFLAGS is an input flag. The make program uses these flags
 (except for the -f, -p, and -r flags) to determine its operating
 conditions.

 2. Reads and sets the input flags from the command line. The command
 line adds to the previous settings from the MAKEFLAGS environment
 variable.

 3. Reads macro definitions from the command line. Make ignores any
 further assignments to these names.

 4. Reads the internal macro definitions.

 5. Reads the environment, including the MAKEFLAGS macro. The make
 program treats the environment variables as macro definitions and
 passes them to other shell programs.

Programming Tools and Interfaces
How make Uses the Environment Variables

¦ Copyright IBM Corp. 1985, 1991
2.7.12 - 1

 2.7.13 Tracking Dependencies

 make was created to keep track of medium-to-large size software projects
 in which the build process is often complex. When many modules depend on
 a single section of code, a small change can have very broad consequences.
 A single change to /usr/include/stdio.h, for instance, could cause
 hundreds of object modules in a single project to be remade. The
 programmers in charge of such projects need to be kept aware of these
 dependencies and AIX provides a series of interlocking tools for doing so.

 make itself provides the -n and the -T options.

 make -n lists all the commands used to build a given program, without
 actually running them. Since a single run of make can call another make,
 this can sometimes be an overwhelming volume of information.

 make also provides the -T option, which displays just the dependency
 triggers for a given program. If the program needs to be remade, make -T
 displays the lowest level reason or make rule which would cause make to
 remake the file. If everything is up to date and the program does not
 need to be remade, make -T returns no output.

 When make is used for preparing a C program, cpp and ld will be included
 in the build process. cpp is responsible for inserting header files in
 the finished program. ld is responsible for incorporating library
 routines.

 Both of these programs offer options for dependency tracking. Some of
 these options produce output in a format suitable for use in make
 description files. When make runs ld and cpp with these options, the
 dependency information can be directed back into make's own description
 files. In this way, running make today will automatically record any new
 dependencies created. Then future invocations of make will automatically
 take those new dependencies into account.

 Subtopics
 2.7.13.1 ld options for use in make
 2.7.13.2 cpp options for use in make
 2.7.13.3 Using oinclude with make

Programming Tools and Interfaces
Tracking Dependencies

¦ Copyright IBM Corp. 1985, 1991
2.7.13 - 1

 2.7.13.1 ld options for use in make

 When you need to determine which archive members and object modules are
 used in creating a given target file, ld gives you a quick, convenient way
 to do this. ld -m writes to standard output the names of all the files
 and archive members being used in that link operation, along with a map of
 how they are arranged in memory. This output can be redirected to a file,
 yielding a record of the operation which can be examined afterward.

 ld -m -oexecutable file1.o file2.o mylib.a > logfile

 This command creates logfile. logfile records the fact that file1.o,
 file2.o, and specified members of mylib.a were used in the creation of a
 program named executable. It writes the data in a table format,
 unsuitable for use in make description files.

 The paired options, ld -q and ld -Q, allow you to specify the exact name
 of the description file into which the information is to be put and
 exactly how you want the file name to be reported on each dependency line
 in that file.

 ld -otarget file1.o file2.o libc.a -Qdesc-file

 The command above will build target and record the dependency information
 in desc-file. In certain situations the name of target may not be
 reported in exactly the format needed by make. When this happens, you can
 add the -qtarget option, which allows you to specify exactly how you want
 the name target reported.

 ld -otarget file1.o file2.o libc.a -qtarget -Qdesc-file

 By using -qtarget, the format of the name "target" is exactly what is
 needed in a make description file. The format of the lines in desc-file
 is:

 target: dependency

 dependency is determined by which library modules are referenced by target
 during the link operation. It has the form:

 full-pathname/libname(member)

 Notice that this output cites exactly which library routine is being
 called. If target references printf.o in libc.a, the line would look like
 this:

 target: /lib/libc.a(printf.o)

 desc-file is often used to guide further invocations of make. Thus the
 dependency lines being inserted must be added to the file rather than
 overwriting it. It is not created anew each time. ld preens the file of
 any prior entries for target and the new dependency lines are added. Then
 it is sorted with the -u option, which eliminates duplicate entries.

Programming Tools and Interfaces
ld options for use in make

¦ Copyright IBM Corp. 1985, 1991
2.7.13.1 - 1

 2.7.13.2 cpp options for use in make

 The cpp preprocessor offers dependency tracking facilities similar to
 those of ld.

 cpp -M generates makefile dependencies and sends the results to standard
 error. It automatically converts the filename.c given on the cc command
 line to filename.o filename.o is automatically the target file name for
 which dependencies are reported. This is not a format suitable for use in
 make description files.

 If you wish dependency information in a format suited to use by make, this
 can be obtained with two cpp options that function parallel to the ld
 options described above. These are the paired -t and -X options.

 cpp -ttarget allows you to specify the actual name to be reported on the
 dependency line. cpp -Xdesc-file gives the name of the file to which the
 information is to be written. desc-file is preened of any existing
 entries referring to target and the new entries are appended to the file.

Programming Tools and Interfaces
cpp options for use in make

¦ Copyright IBM Corp. 1985, 1991
2.7.13.2 - 1

 2.7.13.3 Using oinclude with make

 make normally reads its information from description files called makefile
 or Makefile, or from files specified on the command line with -f
 desc-file. As your project grows, you may need to break your description
 information into a number of small files with different names. This
 allows you to keep track of manageable amounts of dependency information.

 Trying to cite all these description files on the command line is a
 laborious and error-prone process. These small files can be accessed
 through the include statement, which is embedded in the main description
 file used by make. This allows the make statement itself to be relatively
 simple.

 Two parallel statements in the make rules section can create the
 description files for headers and library routines and channel dependency
 output into them:

 cpp -ttarget -Xdesc-file.hdr
 ld -qtarget -Qdesc-file.lib

 Then make can access the information in the description files by
 statements of the following form in makefile:

 include desc-file.hdr
 include desc-file.lib

 The problem with include is that it does not work for the first running of
 make. The make program itself is going to generate the two description
 files. Therefore desc-file.hdr and desc-file.lib do not yet exist on the
 first invocation of make. When include finds missing files, it returns an
 error code and exits. For this reason you should use the oinclude
 statement, which will proceed as if the statement had never been called.

Programming Tools and Interfaces
Using oinclude with make

¦ Copyright IBM Corp. 1985, 1991
2.7.13.3 - 1

 2.7.14 Example of a Description File

 Figure 2-4 shows the description file that maintains the make program.
 The source code for make is spread over a number of C language source
 files and a Yacc grammar.

 --

 # Description file for the Make program

 # Macro def: send to be printed
 P = und -3 | opr -r2

 # Macro def: source filenames used

 FILES = Makefile version.c defs main.c\
 doname.c misc.c files.c\
 dosys.c gram.y lex.c gcos.c

 # Macro def: object filenames used
 OBJECTS = version.o main.o doname.o\
 misc.o files.o dosys.o\
 gram.o

 # Macro def: lint program and flags
 LINT = lint -p

 # Macro def: c compiler flags
 CFLAGS = -O

 # make depends on the files specified
 # in the OBJECTS macro definition
 make: $(OBJECTS)
 # Build make with the cc program
 cc $(CFLAGS) $(OBJECTS) -o make
 # Show the file sizes
 size make

 # The object files depend on a file
 # named defs
 $(OBJECTS): defs

 # The file gram.o depends on lex.c
 # uses internal rules to build gram.o
 gram.o: lex.c

 # Clean up the intermediate files
 clean:
 -rm *.o gram.c
 -du

 # Copy the newly created program
 # to /usr/bin and deletes the program
 # from the current directory
 install:

Programming Tools and Interfaces
Example of a Description File

¦ Copyright IBM Corp. 1985, 1991
2.7.14 - 1

 @size make /usr/bin/make
 cp make /usr/bin/make ; rm make

 # Empty file "print" depends on the
 # files included in the macro FILES
 print: $(FILES)
 # Print the recently changed files
 pr $? | $P
 # Change the date on the empty file,
 # print, to show the date of the last
 # printing
 touch print

 # Check the date of the old
 # file against the date
 # of the newly created file
 test:
 make -dp | grep -v TIME >1zap
 /usr/bin/make -dp | grep -v TIME >2zap
 diff 1zap 2zap
 rm 1zap 2zap

 # The program, lint, depends on the
 # files that are listed
 lint: dosys.c doname.c files.c main.c misc.c
 version.c gram.c
 # Run lint on the files listed
 # LINT is an internal macro
 $(LINT) dosys.c doname.c files.c main.c \
 misc.c version.c gram.c
 rm gram.c

 # Archive the files that build make
 arch:
 ar uv /sys/source/s2/make.a $(FILES)

 --
 Figure 2-4. Example Description File

 The make program usually writes out each command before issuing it.

 The following output results from typing the simple command make in a
 directory containing only the source and description file:

 cc -O -c version.c
 cc -O -c main.c
 cc -O -c doname.c
 cc -O -c misc.c
 cc -O -c files.c
 cc -O -c dosys.c
 yacc gram.y
 mv y.tab.c gram.c
 cc -O -c gram.c
 cc version.o main.o doname.o misc.o files.o dosys.o
 gram.o -o make
 13188+3348+3044 = 19580b = 046174b

 Although none of the source files or grammars are specified in the
 description file, make uses its suffix rules to find them and issues the

Programming Tools and Interfaces
Example of a Description File

¦ Copyright IBM Corp. 1985, 1991
2.7.14 - 2

 needed commands. The string of digits is the result of the size make
 command. The @ (at sign) on the size command in the description file
 prevented writing of the command, so only the sizes are written.

 The output can be sent to a different printer or to a file by changing the
 definition of the P macro on the command line as follows:

 make print "P = print -sp"
 or
 make print "P = cat >zap"

Programming Tools and Interfaces
Example of a Description File

¦ Copyright IBM Corp. 1985, 1991
2.7.14 - 3

 3.0 Chapter 3. PS/2 Assembler

 Subtopics
 3.1 CONTENTS
 3.2 About This Chapter
 3.3 Notational Conventions
 3.4 Compatibility
 3.5 80386 Architecture
 3.6 Source Statements
 3.7 Program Segments
 3.8 Expressions
 3.9 Statement Processing
 3.10 Instruction Set
 3.11 Instructions for the 80387 Numeric Processor
 3.12 Assembler Directives
 3.13 Command Format

Programming Tools and Interfaces
Chapter 3. PS/2 Assembler

¦ Copyright IBM Corp. 1985, 1991
3.0 - 1

 3.1 CONTENTS

Programming Tools and Interfaces
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
3.1 - 1

 3.2 About This Chapter

 This chapter discusses the assembler for the 80386 microprocessor. It
 discusses:

 � The way statements and expressions are forme
 � How the assembler labels and processes instruction
 � The abbreviated instruction operands and symbols for the register
 � The assembler directive
 � The options used in assembling source files

Programming Tools and Interfaces
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
3.2 - 1

 3.3 Notational Conventions

 The following notational conventions are used in this chapter:

 ... Ellipsis indicate that the preceding item may be in a list. The
 list is a series of the items, each separated by a comma.

 . . . This notation alone on a line indicates that material not relevant
 to the example has been skipped.

 [] Items enclosed in brackets are optional. Brackets enclosed in
 quotation marks specify actual bracket characters.

 expr This specifies the appearance of an expression.

 id This specifies the appearance of a symbol identifier.

 The following terms which are defined in the 80386 Programmer's Reference
 Manual are used in the addressing mode component, sib byte; and the field
 names, ss, index, and base.

Programming Tools and Interfaces
Notational Conventions

¦ Copyright IBM Corp. 1985, 1991
3.3 - 1

 3.4 Compatibility

 The assembler is compatible with the UNIX System V Operating System.

 The assembler supports:

 � Common Object File Format (COFF) module
 � Span-dependent instruction optimization
 � Arbitrarily long identifiers (80 characters are significant
 � Completely relocatable object module
 � Optional source and generated code listing
 � Addressing mode expressions and variables, for example

 x=5(%ebx,%ecx,8)

 � .macro assembly, repeat block assembly, and conditional assembly
 directives
 � full floating-point suppor
 � very high speed assembly

 There are differences between the format of assembler instruction
 specifications and the instructions as described in the 80386 Programmer's
 Reference Manual that is published by Intel Corporation. The format
 published by Intel is labeled Intel format. The assembler format used
 here is also accepted by the UNIX assembler and is labeled UNIX format.

 There are two major differences between the Intel format and the UNIX
 format:

 � The Intel format places the source operand on the right; while th
 UNIX format places the source operand on the left.

 � Most of the instructions have either byte, word, and long word forms
 or word and long word forms. The Intel format operand size is
 specified when defining storage while the UNIX format operand size is
 part of the instruction. Therefore the Intel format assembly language
 has only one move instruction: mov. The UNIX format assembler defines
 each of the three possible move instructions:

 - movb (move byte)
 - movw (move word)
 - movl (move long).

 This assembler operates in a 32-bit segment environment where it
 automatically generates a 16 bit data prefix as needed for word
 instructions.

Programming Tools and Interfaces
Compatibility

¦ Copyright IBM Corp. 1985, 1991
3.4 - 1

 3.5 80386 Architecture

 As noted above, the assembler assumes that the program is intended for use
 in a 32-bit segment. The assembler automatically generates the data size
 prefix (66[16]) when a 16-bit instruction is generated. The address size
 prefix is never generated.

 A number of instructions have a short form. Many instructions have a form
 with no addressing mode and an implied destination of %al, %ax, or %eax.
 Some instructions have a short form where the size of the immediate
 constant or immediate address is shorter than the size of the destination.
 Generally, the assembler chooses the shortest instruction. When the
 assembler must choose between two different abbreviations for the same
 instruction, the assembler selects the instructions with the shorter
 abbreviation (fewest components), even if the generated instruction is
 larger. This produces faster code when the instruction is a branch
 target.

 The conditional branch instructions and the jump instruction have short
 and long forms. The assembler can process these instructions in one of
 three different modes. The modes are selected by specifying a command
 option, see Figure 3-5 in topic 3.12. The default mode tells the
 assembler to run one extra pass in which most of the forward references
 are reduced to the shortest possible form.

 In all modes, it is an error when a symbol used as a branch target is
 redefined at a different address.

Programming Tools and Interfaces
80386 Architecture

¦ Copyright IBM Corp. 1985, 1991
3.5 - 1

 3.6 Source Statements

 Subtopics
 3.6.1 Statement Format
 3.6.2 Character Set
 3.6.3 Identifiers
 3.6.4 Constants
 3.6.5 Comments

Programming Tools and Interfaces
Source Statements

¦ Copyright IBM Corp. 1985, 1991
3.6 - 1

 3.6.1 Statement Format

 An assembler statement is contained on one line of an input file. The
 statement may consist of a label part, an opcode or directive part, a
 parameter part, and a comment part. The general statement format is:

 label: operation parameters / comment

 A statement may contain more than one label. The operation is an
 instruction, an assembler directive, a macro call, or an assignment
 statement. Multiple statements may be typed on a single line by
 separating each statement from the previous statement with a semicolon
 (;). For example:

 .if not_terse; .string "Type exit to quit"; .endif

Programming Tools and Interfaces
Statement Format

¦ Copyright IBM Corp. 1985, 1991
3.6.1 - 1

 3.6.2 Character Set

 Spaces and tabs separate identifiers and constants in source statements.
 Spaces and tabs have no other significance unless quoted. The newline
 character (\n), separates source lines (statements).

Programming Tools and Interfaces
Character Set

¦ Copyright IBM Corp. 1985, 1991
3.6.2 - 1

 3.6.3 Identifiers

 Identifiers (or symbols) may be composed of a combination of letters,
 digits, and the following characters: periods (.), dollar signs ($), and
 underscores (_). The first character of a symbol can not be a digit or a
 dollar sign ($). Upper and lower case letters are accepted and remain
 distinct. That is, lowercase letters (for example, a)
 mean something different from uppercase letters (for example, A).
 Assembler directives and machine instructions are defined in lowercase
 only. Identifiers are significant up to 80 characters.

Programming Tools and Interfaces
Identifiers

¦ Copyright IBM Corp. 1985, 1991
3.6.3 - 1

 3.6.4 Constants

 Subtopics
 3.6.4.1 Numeric Constants
 3.6.4.2 Alphabetic Constants

Programming Tools and Interfaces
Constants

¦ Copyright IBM Corp. 1985, 1991
3.6.4 - 1

 3.6.4.1 Numeric Constants

 A sequence of digits is a decimal numeric constant. A hexadecimal
 constant begins with "0" followed by a lowercase "x" (that is, 0x). The
 hexadecimal digits include the decimal digits and the lowercase letters
 "a" though "f". An octal constant begins with an "0" followed by a
 lowercase "o" (that is, 0o). A long floating constant begins with an "0"
 followed by a lowercase "f" (that is, 0f). A long floating constant may
 have a decimal fraction and a signed exponent.

Programming Tools and Interfaces
Numeric Constants

¦ Copyright IBM Corp. 1985, 1991
3.6.4.1 - 1

 3.6.4.2 Alphabetic Constants

 There are two types of alphabetic constants: character constants and
 string constants.

 Character Constants: A character constant is treated as an integer
 numeric constant with the value of the ASCII character specified. The
 constant is typed with single quotes (') and must specify a single
 character. Character constants may be used in expressions and immediate
 operands.

 String Constants: A string constant supplies a sequence of values for the
 data storage directives. It consists of a sequence of character
 specifications enclosed in double quotes ("). String constants may
 contain the ASCII null character. A null character is appended to the
 string by the assembler. String constants may be used as parameters of
 storage definition instructions.

 Character Translation: Character and string constants may contain all of
 the ASCII character set except newline characters. The ASCII backslash
 (\) is used within character and string constants to escape the quote
 marks and to specify certain control characters symbolically. A backslash
 followed by any other character is equivalent to the other character; in
 this way quotation marks or a backslash may be specified. The symbolic
 character specifications are:

 +--+
 ¦ Figure 3-1. Character Escape Sequence ¦
 +--¦
 ¦ ESCAPE ¦ CHARACTER ¦ ASCII VALUE ¦
 +-----------+-----------------------------------+------------------------¦
 ¦ \0 ¦ null ¦ 0 ¦
 +-----------+-----------------------------------+------------------------¦
 ¦ \b ¦ backspace ¦ 8 ¦
 +-----------+-----------------------------------+------------------------¦
 ¦ \t ¦ tab ¦ 9 ¦
 +-----------+-----------------------------------+------------------------¦
 ¦ \n ¦ newline ¦ 10 ¦
 +-----------+-----------------------------------+------------------------¦
 ¦ \r ¦ return ¦ 13 ¦
 +-----------+-----------------------------------+------------------------¦
 ¦ "\"" ¦ a double quote in a string ¦ 34 ¦
 +-----------+-----------------------------------+------------------------¦
 ¦ '\'' ¦ a single quote in a character ¦ 39 ¦
 ¦ ¦ constant ¦ ¦
 +-----------+-----------------------------------+------------------------¦
 ¦ '\' ¦ a backslash ¦ 92 ¦
 +--+

Programming Tools and Interfaces
Alphabetic Constants

¦ Copyright IBM Corp. 1985, 1991
3.6.4.2 - 1

 3.6.5 Comments

 Comments begin with a slash (/) and extend to the end of the line. They
 can be placed at the end of a statement.

Programming Tools and Interfaces
Comments

¦ Copyright IBM Corp. 1985, 1991
3.6.5 - 1

 3.7 Program Segments

 The output of the assembler is an object module in three segments. The
 three segments are called: text, data, and bss. When the link editor is
 used to combine several object modules, the segments from each input
 module are concatenated to form a single output module consisting of the
 combined text segments followed by the combined data segments. The
 operating system makes distinctions between text and data memory; the
 assembler, however, treats both segments identically.

 Subtopics
 3.7.1 Text Segment Assembly
 3.7.2 Data Segment Assembly
 3.7.3 Bss Segment Assembly

Programming Tools and Interfaces
Program Segments

¦ Copyright IBM Corp. 1985, 1991
3.7 - 1

 3.7.1 Text Segment Assembly

 Assembly initially begins in the text segment. The type of the location
 counter is text relocatable.

Programming Tools and Interfaces
Text Segment Assembly

¦ Copyright IBM Corp. 1985, 1991
3.7.1 - 1

 3.7.2 Data Segment Assembly

 The .data directive is available to switch to the data segment. The type
 of the location counter is data relocatable. The directive .text returns
 to the text segment.

Programming Tools and Interfaces
Data Segment Assembly

¦ Copyright IBM Corp. 1985, 1991
3.7.2 - 1

 3.7.3 Bss Segment Assembly

 The .bss directive serves as a type for symbols which are assigned
 addresses in memory allocated when the image is loaded. This memory is
 initialized with zeroes. The .comm, .lcomm, or .bss directives allocate
 bss segment memory, and define symbols with the type .bss relocatable.
 The size of the bss segment is stored in the object and image files. No
 space (other than the space used to record the size information) is
 allocated for the bss segment in the object and image files.

Programming Tools and Interfaces
Bss Segment Assembly

¦ Copyright IBM Corp. 1985, 1991
3.7.3 - 1

 3.8 Expressions

 Expressions and symbols may be specified as integer expressions, or as
 more complex expressions which specify an entire addressing mode. The
 addressing mode expressions have the following general appearance:

 +---+
 ¦ Figure 3-2. Addressing Mode Summary ¦
 +---¦
 ¦ EXPRESSION ¦ TYPE ¦
 +---+---¦
 ¦ reg ¦ register mode ¦
 +---+---¦
 ¦ (reg) ¦ register indirect ¦
 +---+---¦
 ¦ disp(reg) ¦ register relative ¦
 +---+---¦
 ¦ addr ¦ absolute ¦
 +---+---¦
 ¦ (base[,index][,scale]) ¦ indexed ¦
 +---+---¦
 ¦ disp[(base[,index][,scale])] ¦ displacement indexed ¦
 +---+---¦
 ¦ [sreg:][disp][(base[,index][,scale])] ¦ segment register override prefix ¦
 ¦ ¦ displacement indexed ¦
 +---+

 A reference to a label or an imported symbol (see "External Definition" in
 topic 3.12.11) is made with the absolute memory mode unless the
 instruction is a jump or call that supports a relative reference. A
 forward reference is assumed to be a text segment reference and may not
 change later to a non-memory type if it was used in a span-dependent
 construct.

 Subtopics
 3.8.1 Assignment Statements
 3.8.2 Scalar Expression Operators
 3.8.3 Operator Precedence
 3.8.4 Expression Types
 3.8.5 Type Combinations

Programming Tools and Interfaces
Expressions

¦ Copyright IBM Corp. 1985, 1991
3.8 - 1

 3.8.1 Assignment Statements

 An expression may be assigned to a symbol by an assignment statement in
 the following general form:

 symbol=[:] expr ...

 An expression may specify any addressing mode and that mode is generated
 when the symbol is used as an instruction operand. An equal sign (=) in
 an assignment statement defines a local constant. An equal sign followed
 by a colon (=:), specifies that the symbol is global. An example of these
 assignments is shown below.

 a=1 / a constant
 xyz=: 123 / a global constant
 abc=4(%bx) /a register relative expression

Programming Tools and Interfaces
Assignment Statements

¦ Copyright IBM Corp. 1985, 1991
3.8.1 - 1

 3.8.2 Scalar Expression Operators

 A number of operators are available to form expressions. The operators
 are listed in the following table. The unary mode indicates that the
 function is recognized when the operator has only a right operand. The
 binary mode indicates the meaning applied when the operator has two
 operands.

 +--+
 ¦ Figure 3-3. Scalar Expression Operators ¦
 +--¦
 ¦ Operation ¦ Mode ¦ Function ¦
 +---------------+-----------------+--------------------------------------¦
 ¦ $ ¦ unary ¦ convert type to immediate ¦
 +---------------+-----------------+--------------------------------------¦
 ¦ - ¦ unary ¦ negation ¦
 +---------------+-----------------+--------------------------------------¦
 ¦ - ¦ binary ¦ subtraction ¦
 +---------------+-----------------+--------------------------------------¦
 ¦ & ¦ binary ¦ logical and ¦
 +---------------+-----------------+--------------------------------------¦
 ¦ ^ ¦ binary ¦ logical exclusive or ¦
 +---------------+-----------------+--------------------------------------¦
 ¦ | ¦ binary ¦ logical or ¦
 +---------------+-----------------+--------------------------------------¦
 ¦ ! ¦ binary ¦ logical and not (0 or 1) ¦
 +---------------+-----------------+--------------------------------------¦
 ¦ + ¦ binary ¦ addition ¦
 +---------------+-----------------+--------------------------------------¦
 ¦ * ¦ binary ¦ multiplication ¦
 +---------------+-----------------+--------------------------------------¦
 ¦ \/ ¦ binary ¦ division ¦
 +---------------+-----------------+--------------------------------------¦
 ¦ \% ¦ binary ¦ modulo ¦
 +---------------+-----------------+--------------------------------------¦
 ¦ < ¦ binary ¦ less than (0 or 1) ¦
 +---------------+-----------------+--------------------------------------¦
 ¦ > ¦ binary ¦ greater than (0 or 1) ¦
 +---------------+-----------------+--------------------------------------¦
 ¦ = ¦ binary ¦ equality (0 or1) ¦
 +---------------+-----------------+--------------------------------------¦
 ¦ << ¦ binary ¦ shift left ¦
 +---------------+-----------------+--------------------------------------¦
 ¦ >> ¦ binary ¦ shift right ¦
 +--+

Programming Tools and Interfaces
Scalar Expression Operators

¦ Copyright IBM Corp. 1985, 1991
3.8.2 - 1

 3.8.3 Operator Precedence

 All binary operators are implemented at the same priority. Unary
 operators have a higher priority than the binary operators except for the
 dollar sign ($) which has a lower priority than the binary operators.
 Expressions may be grouped with matching bracket characters.

Programming Tools and Interfaces
Operator Precedence

¦ Copyright IBM Corp. 1985, 1991
3.8.3 - 1

 3.8.4 Expression Types

 The primary expression types are:

 Constant
 Constant expressions are defined ultimately from a constant or
 the difference between two symbols with the same type of
 relocation mode. The values of constant expressions are never
 affected by the link editor.

 Immediate
 Immediate expressions are produced by the dollar sign ($)
 operator. These expressions are referenced with the immediate
 addressing mode when used as instruction operands. When a label
 or external symbol is made immediate by the use of the dollar
 sign ($) operator, a relocatable expression yielding an address
 is produced.

 Text Relocatable
 These expressions are generally defined with text segment
 labels. These expressions are referenced with the program
 counter relative address mode.

 Data Relocatable
 These expressions are generally defined with data segment
 labels.

 Bss Relocatable
 The .comm and .lcomm directive generates bss relocatable
 symbols.

 Undefined External
 Symbols (that are undefined except for their appearance) in a
 .globl statement have this type. See the discussion under
 "Block Definition" in topic 3.12.3.

 Register
 The following register symbols are predefined:

 +--+
 ¦ 8-bit ¦ 16-bit ¦ 32-bit ¦
 +------------------+------------------+------------------¦
 ¦ %al ¦ %ax ¦ %eax ¦
 +------------------+------------------+------------------¦
 ¦ %ah ¦ %bx ¦ %ebx ¦
 +------------------+------------------+------------------¦
 ¦ %bl ¦ %cx ¦ %ecx ¦
 +------------------+------------------+------------------¦
 ¦ %bh ¦ %dx ¦ %edx ¦
 +------------------+------------------+------------------¦
 ¦ %cl ¦ %si ¦ %esi ¦
 +------------------+------------------+------------------¦
 ¦ %ch ¦ %di ¦ %edi ¦
 +------------------+------------------+------------------¦
 ¦ %dl ¦ %bp ¦ %ebp ¦
 +------------------+------------------+------------------¦
 ¦ %dh ¦ %sp ¦ %esp ¦
 +------------------+------------------+------------------¦
 +--+

Programming Tools and Interfaces
Expression Types

¦ Copyright IBM Corp. 1985, 1991
3.8.4 - 1

 Complex Types
 A number of complex types are composed of multiple simple types
 when an instruction contains several displacements or
 indirection steps with separate addressing constructs.

Programming Tools and Interfaces
Expression Types

¦ Copyright IBM Corp. 1985, 1991
3.8.4 - 2

 3.8.5 Type Combinations

 The constant type may be combined with all operators, except where a
 relocatable type has been made immediate or absolute. These types and the
 relocatable types themselves may be combined only as follows:

 + If one operand is constant, the result is the type of the non-constant
 operand.

 - If the second operand is constant, the result is the type of the
 second operand. If both operands are selected from the same type
 (text, data, or bss relocatable), the result is a constant that is the
 difference between the addresses.

 (Relocatable types, constants and registers may be combined with the
 left parenthesis binary operator, "(", to form register indirect,
 register relative, or indexed expressions. A matching right
 parenthesis, ")", is required.

 (reg) register indirect expression
 disp(reg) register relative expression
 disp(base,index,scale)
 indexed expression.

 The displacement specifies an absolute offset or base address in
 memory. The base and index fields are 32-bit registers that specify
 the base and index fields of the sib byte. The scale field is the
 constant 1, 2, 4, or 8 from which the ss field is derived. All
 components are optional however, either a displacement or a base
 register must be specified. The default scale factor is 1.

 The following examples show some of the different expressions:

 4 / constant
 4*(5-4) / constant
 $4 / immediate
 $label / immediate relocatable
 %ebx / register
 4(%ebx) / register relative
 y=8(%ebp) / register relative
 (%ebx,%ebp,8) / indexed

Programming Tools and Interfaces
Type Combinations

¦ Copyright IBM Corp. 1985, 1991
3.8.5 - 1

 3.9 Statement Processing

 Subtopics
 3.9.1 Statement Labels

Programming Tools and Interfaces
Statement Processing

¦ Copyright IBM Corp. 1985, 1991
3.9 - 1

 3.9.1 Statement Labels

 A statement may begin with one or more labels. Each label can be either a
 named label or a temporary label.

 Subtopics
 3.9.1.1 Named Labels
 3.9.1.2 Temporary Labels

Programming Tools and Interfaces
Statement Labels

¦ Copyright IBM Corp. 1985, 1991
3.9.1 - 1

 3.9.1.1 Named Labels

 Named labels are identifiers followed by one or two colon characters.
 Labels defined with one colon can not be referenced outside the source
 module. A second colon specifies that the label is to be made external
 (see "External Definition" in topic 3.12.11).

 Label Examples:

 xyz:
 abc:: .byte 1 / a global label
 l1:l2:l3: .byte 1 / three labels on a line

Programming Tools and Interfaces
Named Labels

¦ Copyright IBM Corp. 1985, 1991
3.9.1.1 - 1

 3.9.1.2 Temporary Labels

 Temporary labels consists of a non-zero numeric constant followed by a
 single colon character. Any number of these labels may be present even if
 the value of the constant is repeated. A reference to a temporary label
 consists of the label's constant value expressed as a decimal number,
 followed immediately (that is, with no space) by a lowercase f or b. The
 trailing letter specifies that the reference is to the nearest temporary
 label with the same value. The f or b further specifies a forward or
 backwards reference (symbols with the same value but the wrong direction
 are not considered nearer).

 Temporary Label Examples:

 1: jmp 1f / skip the next instruction
 2: jmp 1b / select previous instruction
 1: / continue

Programming Tools and Interfaces
Temporary Labels

¦ Copyright IBM Corp. 1985, 1991
3.9.1.2 - 1

 3.10 Instruction Set

 Subtopics
 3.10.1 Notation and Terminology
 3.10.2 Registers
 3.10.3 Instructions

Programming Tools and Interfaces
Instruction Set

¦ Copyright IBM Corp. 1985, 1991
3.10 - 1

 3.10.1 Notation and Terminology

 The following abbreviations are used to describe instruction operands:

 reg A register name is required. The register name must correspond to
 the size of the instruction.

 mem An addressing mode for which a memory address is required.

 r/m An addressing mode for which a register or a memory address is
 required.

 addr A constant address is required.

 immed An immediate constant or immediate address is required.

 control A CPU control register.

 debug A CPU debug register.

 test A CPU test register.

 seg A segment/selector register.

 The 80386 has no memory-to-memory addressing modes. Instructions that use
 addressing modes have one operand in a register and one operand in either
 a register or memory. These instructions are either "to memory" or "to
 register" instructions. Some instructions are present in both the "to
 memory" and "to register" form.

Programming Tools and Interfaces
Notation and Terminology

¦ Copyright IBM Corp. 1985, 1991
3.10.1 - 1

 3.10.2 Registers

 The following general register symbols are defined:

 +--+
 ¦ 8-bit ¦ 16-bit ¦ 32-bit ¦
 +----------------------+----------------------+--------------------------¦
 ¦ %al ¦ %ax ¦ %eax ¦
 +----------------------+----------------------+--------------------------¦
 ¦ %ah ¦ %bx ¦ %ebx ¦
 +----------------------+----------------------+--------------------------¦
 ¦ %bl ¦ %cx ¦ %ecx ¦
 +----------------------+----------------------+--------------------------¦
 ¦ %bh ¦ %dx ¦ %edx ¦
 +----------------------+----------------------+--------------------------¦
 ¦ %cl ¦ %si ¦ %esi ¦
 +----------------------+----------------------+--------------------------¦
 ¦ %ch ¦ %di ¦ %edi ¦
 +----------------------+----------------------+--------------------------¦
 ¦ %dl ¦ %bp ¦ %ebp ¦
 +----------------------+----------------------+--------------------------¦
 ¦ %dh ¦ %sp ¦ %esp ¦
 +----------------------+----------------------+--------------------------¦
 +--+

 The 80387 Numeric Processor register stack is specified with an expression
 of the form:

 %st(expr)

 where expr is an integer expression with a value between 0 and 7. If
 %st(0) is specified, it means the top of the stack; %st(1) means the next
 item, and so on. Some instructions, requiring two operands, that
 implicitly operate on the top of the stack and on a specific stack
 location have a reverse form. These instructions specify the implicit
 operand simply with %st.

 The following special purpose register names are defined:

 +--+
 ¦ Figure 3-4. Special Purpose Registers ¦
 +--¦
 ¦ SYMBOL ¦ NAME ¦
 +----------------------+---¦
 ¦ %cs ¦ ¦
 ¦ %ds ¦ ¦
 ¦ %es ¦ Segment or Selector Register Names ¦
 ¦ %fs ¦ ¦
 ¦ %gs ¦ ¦
 ¦ %ss ¦ ¦
 +----------------------+---¦
 ¦ %cr0 ¦ ¦
 ¦ %cr2 ¦ Control Register Names ¦
 ¦ %cr3 ¦ ¦
 +----------------------+---¦
 ¦ %dr0 ¦ ¦
 ¦ %dr1 ¦ ¦
 ¦ %dr2 ¦ ¦
 ¦ %dr3 ¦ Debug Register Names ¦
 ¦ %dr6 ¦ ¦

Programming Tools and Interfaces
Registers

¦ Copyright IBM Corp. 1985, 1991
3.10.2 - 1

 ¦ %dr7 ¦ ¦
 +----------------------+---¦
 ¦ %tr6 ¦ ¦
 ¦ %tr7 ¦ Test Registers ¦
 +--+

Programming Tools and Interfaces
Registers

¦ Copyright IBM Corp. 1985, 1991
3.10.2 - 2

 3.10.3 Instructions

 Numeric instructions with general operands:

 left vbar
 "add" rabove "adc" rabove "and" rabove "xor"
 %%% "or" rabove "sbb" rabove "sub" rabove "cmp"
 right vbar
 %
 left vbar
 "b" rabove "w" rabove "l"
 right vbar
 %
 left vbar
 <immed,r/m> labove <reg,r/m> labove <r/m,reg>
 right vbar

 Increment and decrement instructions:

 left vbar
 "inc" rabove "dec"
 right vbar
 %
 left vbar
 "b" rabove "w" rabove "l"
 right vbar
 %
 left vbar
 <r/m>
 right vbar

 The push instruction accepts an immediate, register, segment register, or
 memory operand. Segment operands cannot be used with the push w
 instruction.

 "push"%
 left vbar "w" rabove "l"
 right vbar
 %
 left vbar
 <immed> labove <r/m> labove <seg>
 right vbar

 The exchange instruction swaps the constants of each operand:

 "xchg"%
 left vbar "b" rabove "w" rabove "l"
 right vbar
 %
 left vbar
 <reg,r/m> rabove <r/m,reg>
 right vbar

 Move instructions defined for register and memory operands:

 "mov"%
 left vbar
 "b" rabove "w" rabove "l"
 right vbar

Programming Tools and Interfaces
Instructions

¦ Copyright IBM Corp. 1985, 1991
3.10.3 - 1

 %
 left vbar
 <immed,r/m> labove <reg,r/m> labove <r/m,reg>
 right vbar

 Move instructions defined for the special CPU registers:

 "movl"%
 left vbar
 <debug,reg> labove <control,reg> labove <test,reg>
 %%%
 <reg,debug> labove <reg,control> labove <reg,test>
 right vbar

 Move instructions defined for the segment registers:

 "movw"%
 left vbar
 <seg,r/m> labove <r/m,seg>
 right vbar

 Move instructions defined for zero or sign extensions:

 left vbar
 "movzbw" labove "movzbl" labove "movzwl" labove "movsbw" labove "movsbl"
 labove "movswl"
 right vbar
 <r/m,reg>

 String instructions:

 left vbar
 "movs" labove "cmps" labove "stos" labove "lods" labove "scas"
 %%%
 "smov" labove "scmp" labove "ssto" labove "slod" labove "ssca"
 right vbar
 %
 left vbar
 "b" labove "w" labove "l"
 right vbar

 Set instructions:

 left vbar
 "seta" labove "setae" labove "setb" labove "setbe" labove "setc" labove
 "sete" labove "setg" labove "setge"
 %%%
 "setl" labove "setle" labove "setna" labove "setnae" labove "setnb"
 labove "setnbe" labove "setnc" labove "setne"
 %%%
 "setng" labove "setnge" labove "setnl" labove "setnle" labove
 "setno" labove "setnp" labove "setns" labove "setnz"
 %%%
 "seto" labove "setp" labove "setpe" labove "setpo" labove "sets" labove
 "setz"
 right vbar
 <r/m>

 Rotate and shift instructions:

Programming Tools and Interfaces
Instructions

¦ Copyright IBM Corp. 1985, 1991
3.10.3 - 2

 left vbar
 "rcl" rabove "rcr" rabove "rol" rabove "ror"
 ¬¬¬
 "sal" rabove "sar" rabove "shl" rabove "shr"
 right vbar
 ¬
 left vbar
 "b" rabove "w" rabove "l"
 right vbar
 ¬
 left vbar
 <"%"cl,r/m> labove <immed,r/m> labove <r/m>
 right vbar

 Signed integer multiply instructions:

 "imul"%
 left vbar
 "w" labove "l"
 right vbar
 %
 Left vbar
 <immed,reg> labove <immed,r/m,reg>
 right vbar

 "imul"%
 left vbar
 %
 "b" rabove "w" labove "l"
 right vbar
 %r/m

 "imul"%
 left vbar
 "w" labove "l"
 right vbar
 %
 r/m,reg

 Bitwise "and":

 "test"%
 left vbar
 "b" labove "w" labove "l"
 right vbar
 %
 left vbar
 <immed,r/m> labove <reg,r/m> labove <r/m,reg>
 right vbar

 I/O instructions:

 left vbar
 "in" labove "out"
 right vbar
 %
 left vbar
 "b" rabove "w" rabove "l"
 right vbar

Programming Tools and Interfaces
Instructions

¦ Copyright IBM Corp. 1985, 1991
3.10.3 - 3

 %
 left vbar
 <%> labove <immed> labove <("%dx")>
 right vbar

 Clear instructions:

 "clr"%
 left vbar
 "b" labove "w" labove "l"
 right vbar
 %
 <r/m>

 Unsigned (div) and signed (idiv) division, and unsigned multiply:

 left vbar
 "div" labove "idiv" labove "mul"
 %%%
 "not" labove "neg"
 right vbar
 %
 left vbar
 <reg,r/m> labove <r/m,reg>
 right vbar

 Stack pop instructions operate on a register, memory or segment register
 operand :

 "pop"%
 left vbar
 "w" rabove "l"
 right vbar
 %
 left vbar
 <seg> labove <r/m>
 right vbar

 A number of instructions require an operand to be in memory and do not
 accept a register as operand 1:

 left vbar
 "bound"%% "lea" rabove "lds" rabove "les"
 %%%
 "lfs" labove "lgs" labove "lss"
 right vbar
 %
 left vbar
 "w" rabove "l"
 right vbar
 %mem,r/m

 Note: The bound instruction generates a SIGPRE exception if the bound
 test fails.

 Bit scan instructions:

 left vbar
 "bsf" rabove "bsr"

Programming Tools and Interfaces
Instructions

¦ Copyright IBM Corp. 1985, 1991
3.10.3 - 4

 right vbar
 %
 left vbar
 "w" labove "l"
 right vbar
 %
 r/m, reg

 Bit test instructions:

 left vbar
 "btc" labove "bt"
 %%%
 "btr" labove "bts"
 right vbar
 %
 left vbar
 "w" labove "l"
 right vbar
 %
 left vbar
 <immed,r/m> labove <reg,r/m>
 right vbar

 Double-precision shift instructions:

 left vbar
 "shld" labove "shrd"
 right vbar
 %
 left vbar
 "w"labove "l"
 right vbar
 %
 left vbar
 <immed,reg,r/m> labove <reg,r/m>
 right vbar

 Instruction prefix bytes defined as one-byte instructions:

 left vbar
 "addr16" labove "data16" labove "lock" labove "rep"
 %%%
 "repe" labove "repne" labove "repz" labove "repnz"
 %%%
 "seg_cs" labove "seg_ds" labove "seg_es" labove "seg_fs"
 %%%
 "seg_gs" labove "seg_ss"
 right vbar

 Instructions with no operands:

 left vbar
 "aaa" labove "aad" labove "aam" labove "aas" labove "cbtw"
 labove "clc"
 %%%
 "cld" labove "cli cltd" labove "clts" labove "cmc"
 labove "cwtd" labove "cwtl"
 %%%

Programming Tools and Interfaces
Instructions

¦ Copyright IBM Corp. 1985, 1991
3.10.3 - 5

 "daa" labove "das" labove "fwait" labove "hlt"
 labove "into" labove "iret"
 %%%
 "lahf" labove "leave" labove "nop"
 labove "popa" labove "popal" labove"popaw"
 %%%
 "popf" labove "popfl" labove "popfw"
 labove "pusha" labove "pushal" labove "pushaw"
 %%%
 "pushf" labove "pushfl" labove "pushfw"
 labove "sahf" labove "stc" labove "std"
 %%%
 "sti" labove "wait" labove "xlat"
 right vbar

 Conditional jump instructions:

 left vbar
 "ja" labove "jae" labove "jb" labove "jbe"
 %%%
 "jc" labove "je" labove "jg" labove "jge"
 %%%
 "jl" labove "jle" labove "jna" labove "jnae"
 %%%
 "jnb" labove "jnbe" labove "jnc" labove "jne"
 %%%
 "jng" labove "jnge" labove "jnl" labove "jnle"
 %%%
 "jno" labove "jnp" labove "jns" labove "jnz"
 %%%
 "jo" labove "jp" labove "jpe jz" labove "jpo"
 %%%
 "js"
 right vbar
 %
 addr

 Jump and Call instructions:

 left vbar
 "call" labove "jmp"
 right vbar
 %
 left vbar
 <adjust(d 3) '*'%%r/m> labove <addr>
 right vbar

 Long jump and long call instructions. In the *r/m form, the operand is a
 far pointer. In the immediate form, the first operand is the selector for
 a descriptor and the second operand is the offset into the new segment.

 left vbar
 "lcall" labove "ljmp"
 right vbar
 %
 left vbar
 <adjust(d 3) '*'%%r/m> labove <immed,immed>
 right vbar

Programming Tools and Interfaces
Instructions

¦ Copyright IBM Corp. 1985, 1991
3.10.3 - 6

 3.11 Instructions for the 80387 Numeric Processor

 Multiply and add instructions with register stack operands:

 left vbar
 "fadd" labove "fmul"
 right vbar
 ¬
 left vbar
 <"%st,%st"(i)> labove <"%st,"(i),"%st">
 right vbar

 Multiply and add instructions with a memory operand and the pop option:

 left vbar
 "faddp" labove "fmulp"
 right vbar
 ¬
 "%st,%st"<(i)>

 Multiply and add instructions with a memory operand:

 "f"%
 left vbar
 "add" labove "mul"
 right vbar
 %
 left vbar
 "l" labove "s"
 right vbar
 %memop

 "fi"%
 left vbar
 "add" labove "mul"
 right vbar
 %
 left lbracket
 "l"
 right rbracket
 %memop

 Divide and subtract instructions with a single memory operand:

 left vbar
 "fidiv" labove "fisub"
 right vbar
 %
 left lbracket
 "r"
 right rbracket
 %
 left lbracket
 "l"
 right rbracket
 %memop

 left vbar
 "fdiv" labove "fsub"
 right vbar

Programming Tools and Interfaces
Instructions for the 80387 Numeric Processor

¦ Copyright IBM Corp. 1985, 1991
3.11 - 1

 %
 left lbracket
 "r"
 right rbracket
 %
 left vbar
 "l" labove "s"
 right vbar
 %memop

 Divide and subtract instructions with register stack operands:

 left vbar
 "fdiv" labove "fsub"
 right vbar
 ¬
 left lbracket
 "r"
 right rbracket
 ¬
 left vbar
 <"%st,%st"(i)> labove <"%st"(i),"%st">
 right vbar

 left vbar"
 "fdiv" labove "fsub"
 right vbar
 ¬
 left lbracket
 "r"
 right rbracket
 "p"¬¬
 "%st,%st"(i)

 Comparison instructions with a single register operand:

 "f"¬
 left lbracket
 "u"
 right rbracket
 ¬"com"¬
 left lbracket
 "p"
 right rbracket
 ¬"%st"(i)

 Numeric processor instructions with one register operand:

 "ffree"¬
 "%st"(i)

 Numeric processor instructions with no operands:

 left vbar
 "f2xm1" labove "fabs" labove "fchs" labove "fclex" labove "fcompp"
 %%
 "fcos" labove "fdecstp" labove "fincstp" labove "finit" labove "fld1"
 %%
 "fldl2e" labove "fldl2t" labove "fldlg2" labove "fldln2" labove "fldpi"

Programming Tools and Interfaces
Instructions for the 80387 Numeric Processor

¦ Copyright IBM Corp. 1985, 1991
3.11 - 2

 %%
 "fldz" labove "fnclex" labove "fninit" labove "fnop" labove "fpatan"
 %%
 "fprem" labove "fprem1" labove "fptan" labove "frndint" labove "fscale"
 %%
 "fsetpm" labove "fsin" labove "fsincos" labove "fsqrt" labove "ftst"
 %%
 "fucompp" labove "fwait" labove "fxam" labove "fxtract" labove
 "fyl2x"
 %%
 "fyl2xp1"
 right vbar

 Numeric processor instructions with one memory operand:

 left vbar
 "fld" labove "fstp"
 right vbar
 %
 left vbar
 "s" labove "l" labove "t"
 right vbar
 %memop

 Numeric processor instructions with short real and long real formats:

 left vbar
 "fst" labove "fcom" labove "fcomp"
 right vbar
 %
 left vbar
 "l" labove "s"
 right vbar
 %memop

 Numeric processor instructions with word, long word, and very long word
 formats:

 left vbar
 "fild" labove "fistp"
 right vbar
 %
 left vbar
 "-" labove "l" labove "ll"
 right vbar
 %memop

 Numeric processor Binary Coded Decimal load and store:

 left vbar
 "fbld" labove "fbstp"
 right vbar
 %memop

 Numeric processor word and long word integer instructions with one memory
 operand:

 left vbar
 "fist" labove "ficom" labove "ficomp"
 right vbar

Programming Tools and Interfaces
Instructions for the 80387 Numeric Processor

¦ Copyright IBM Corp. 1985, 1991
3.11 - 3

 %
 left lbracket
 "l"
 right rbracket
 %memop

 Other numeric processor instructions with one memory operand:

 left vbar
 "fsave" labove "fnsave" labove "fstcw" labove "fnstcw"
 %%
 "fstenv" labove "fnstenv" labove "fstsw" labove "fnstsw"
 %%
 "fldcw" labove "fldenv" labove "frstor"
 right vbar
 %memop

Programming Tools and Interfaces
Instructions for the 80387 Numeric Processor

¦ Copyright IBM Corp. 1985, 1991
3.11 - 4

 3.12 Assembler Directives

 Assembler directives are specified in a manner similar to the
 specification of instructions. Directives control options of the assembler
 or format and generate data for the code segments. Certain directives
 establish or alter the definitions of symbols.

 The directives themselves are symbols with the type of directive and a
 predefined value which specifies the particular directive. Both directives
 and instructions appear between labels and operands. The assembler
 assigns a specific type to such predefined symbols and searches only for
 this type between labels and operands. Therefore, labels can have the
 same names as instructions and directives.

 +--+
 ¦ Figure 3-5. Directive Summary ¦
 +--¦
 ¦ Directive¦ Function ¦ Additional Information ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .align ¦ Adjust location counter to ¦ "Alignment Definition" in ¦
 ¦ ¦ boundary. ¦ topic 3.12.1 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .bcd ¦ Defines a binary coded decimal ¦ "Storage Definition" in ¦
 ¦ ¦ value. ¦ topic 3.12.6 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .blkb ¦ Reserves a block of bytes. ¦ "Block Definition" in ¦
 ¦ ¦ ¦ topic 3.12.3 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .blkd ¦ Reserves a block of double ¦ "Block Definition" in ¦
 ¦ ¦ words. ¦ topic 3.12.3 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .blkf ¦ Reserves a block of real ¦ "Block Definition" in ¦
 ¦ ¦ numbers. ¦ topic 3.12.3 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .blkl ¦ Reserves a block of longs. ¦ "Block Definition" in ¦
 ¦ ¦ ¦ topic 3.12.3 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .blkw ¦ Reserves a block of words. ¦ "Block Definition" in ¦
 ¦ ¦ ¦ topic 3.12.3 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .bss ¦ Switches to the bss section. ¦ "Program Section (Segment) ¦
 ¦ ¦ ¦ Control" in topic 3.12.2 ¦
 ¦ ¦ ¦ and "Block Definition" in ¦
 ¦ ¦ ¦ topic 3.12.3 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .byte ¦ Defines bytes. ¦ "Storage Definition" in ¦
 ¦ ¦ ¦ topic 3.12.6 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .comm ¦ Defines a common block ¦ "Block Definition" in ¦
 ¦ ¦ ¦ topic 3.12.3 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .data ¦ Switches to the data section. ¦ "Program Section (Segment) ¦
 ¦ ¦ ¦ Control" in topic 3.12.2 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .double ¦ Defines double reals. ¦ "Storage Definition" in ¦
 ¦ ¦ ¦ topic 3.12.6 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .dsect ¦ Defines a record. ¦ "Record Definition" in ¦
 ¦ ¦ ¦ topic 3.12.5 ¦
 +----------+--------------------------------+----------------------------¦

Programming Tools and Interfaces
Assembler Directives

¦ Copyright IBM Corp. 1985, 1991
3.12 - 1

 ¦ .else ¦ Reverses condition to .if. ¦ "Conditional Block" in ¦
 ¦ ¦ ¦ topic 3.12.10 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .elseif ¦ Reverse condition to .if plus ¦ "Conditional Block" in ¦
 ¦ ¦ a new condition. ¦ topic 3.12.10 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .end ¦ Ends a record ¦ "Record Definition" in ¦
 ¦ ¦ ¦ topic 3.12.5 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .endif ¦ Ends .if block. ¦ "Conditional Block" in ¦
 ¦ ¦ ¦ topic 3.12.10 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .endm ¦ Ends a macro. ¦ "Macro Definition" in ¦
 ¦ ¦ ¦ topic 3.12.8 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .endr ¦ Ends a repeat block. ¦ "Repeat Block" in ¦
 ¦ ¦ ¦ topic 3.12.9 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .enum ¦ Defines a series of ¦ "Enumeration" in ¦
 ¦ ¦ identifiers. ¦ topic 3.12.7 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .even ¦ Adjusts the location counter ¦ "Alignment Definition" in ¦
 ¦ ¦ to an even boundary. ¦ topic 3.12.1 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .extern ¦ Imports or exports a symbol. ¦ "External Definition" in ¦
 ¦ ¦ ¦ topic 3.12.11 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .float ¦ Defines real numbers. ¦ "Storage Definition" in ¦
 ¦ ¦ ¦ topic 3.12.6 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .globl ¦ Alternate name for .extern. ¦ "External Definition" in ¦
 ¦ ¦ ¦ topic 3.12.11 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .ident ¦ Defines a string in the ¦ "Comment Section" in ¦
 ¦ ¦ comment section. ¦ topic 3.12.4 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .if ¦ Enters a conditional block. ¦ "Conditional Block" in ¦
 ¦ ¦ ¦ topic 3.12.10 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .lcomm ¦ Defines a local zero-filled ¦ "Block Definition" in ¦
 ¦ ¦ object. ¦ topic 3.12.3 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .list ¦ Enable the source listing. ¦ "External Definition" in ¦
 ¦ ¦ ¦ topic 3.12.11 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .long ¦ Defines long numbers. ¦ "Storage Definition" in ¦
 ¦ ¦ ¦ topic 3.12.6 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .macro ¦ Defines a macro. ¦ "Macro Definition" in ¦
 ¦ ¦ ¦ topic 3.12.8 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .nlist ¦ Disables the source listing. ¦ "External Definition" in ¦
 ¦ ¦ ¦ topic 3.12.11 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .noopt ¦ Turns off the span ¦ "Optimization" in ¦
 ¦ ¦ optimization. ¦ topic 3.12.13 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .optim ¦ Turns on the span ¦ "Optimization" in ¦
 ¦ ¦ optimization. ¦ topic 3.12.13 ¦
 +----------+--------------------------------+----------------------------¦

Programming Tools and Interfaces
Assembler Directives

¦ Copyright IBM Corp. 1985, 1991
3.12 - 2

 ¦ .rept ¦ Repeats the following ¦ "Repeat Block" in ¦
 ¦ ¦ statements. ¦ topic 3.12.9 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .set ¦ Assigns a value. ¦ "Assignment" in ¦
 ¦ ¦ ¦ topic 3.12.12 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .string ¦ Defines a string. ¦ "Storage Definition" in ¦
 ¦ ¦ ¦ topic 3.12.6 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .text ¦ Switches to the text section. ¦ "Program Section (Segment) ¦
 ¦ ¦ ¦ Control" in topic 3.12.2 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .value ¦ Defines words. ¦ "Storage Definition" in ¦
 ¦ ¦ ¦ topic 3.12.6 ¦
 +----------+--------------------------------+----------------------------¦
 ¦ .version ¦ Defines version strings. ¦ "Comment Section" in ¦
 ¦ ¦ ¦ topic 3.12.4 ¦
 +--+

 Subtopics
 3.12.1 Alignment Definition
 3.12.2 Program Section (Segment) Control
 3.12.3 Block Definition
 3.12.4 Comment Section
 3.12.5 Record Definition
 3.12.6 Storage Definition
 3.12.7 Enumeration
 3.12.8 Macro Definition
 3.12.9 Repeat Block
 3.12.10 Conditional Block
 3.12.11 External Definition
 3.12.12 Assignment
 3.12.13 Optimization

Programming Tools and Interfaces
Assembler Directives

¦ Copyright IBM Corp. 1985, 1991
3.12 - 3

 3.12.1 Alignment Definition

 +--+
 ¦ .align .byte ¦ These directives advance the location ¦
 ¦ .align .value ¦ counter to an addressing boundary ¦
 ¦ .align .long ¦ specified by the keyword or constant ¦
 ¦ .align .float ¦ expression. The boundary is such that the ¦
 ¦ .align .double ¦ location counter is evenly divisible by ¦
 ¦ .even ¦ the first expression or the size of the ¦
 ¦ .align expr [,expr] ¦ object referred to by the keyword. ¦
 +---------------------------+--¦
 +--+

 The location counter is advanced to the boundary specified by the first
 parameter. As the location counter is advanced, the segment is normally
 filled with nop instructions. A second expr parameter is optionally
 accepted and is then used as the fill value.

 All expressions must be constant and must be defined in pass one.

 The .even directive is equivalent to a .align 2 directive.

Programming Tools and Interfaces
Alignment Definition

¦ Copyright IBM Corp. 1985, 1991
3.12.1 - 1

 3.12.2 Program Section (Segment) Control

 +--+
 ¦ .text ¦ These directives divert generated object ¦
 ¦ .data ¦ code into the specified program section. ¦
 ¦ .bss ¦ ¦
 +---------------------------+--¦
 +--+

 The assembler supports two program sections for initialized object code.
 These sections are named text and data. The bss section, the third
 program section, contains only space that has not been initialized. Each
 program section is assembled separately and the final object contains all
 the text section object code followed by all of the data section code.

 .text Assembly continues in the text segment.
 .data Assembly continues in the data segment.

 Note: The -R option suppresses the .data directive and assembles all
 statements in the text segment. (See "Command Format" in topic 3.13 for
 additional information).

Programming Tools and Interfaces
Program Section (Segment) Control

¦ Copyright IBM Corp. 1985, 1991
3.12.2 - 1

 3.12.3 Block Definition

 +--+
 ¦ .blkb expr ¦ These directives reserve space for expr ¦
 ¦ .blkw expr ¦ objects of the indicated size. If no ¦
 ¦ .blkl expr ¦ expression is present, one such location ¦
 ¦ .blkf expr ¦ is reserved. In the text or data sections, ¦
 ¦ .blkd expr ¦ bytes of zeros are generated. ¦
 +---------------------------+--¦
 +--+

 The block directives reserve space for objects of the indicated size.
 When a block directive is used within a .dsect (record definition), the
 location counter is advanced by the required amount of space. In the text
 and data sections, bytes of zeros are assembled in the object module.

 When independent and uninitialized or zero-initialized variables are
 specified with the block directives (or with directives such as .byte O)
 the object file must contain the actual bytes of clear data. The
 following directives are more appropriate for the definition of
 zero-filled object.

 +--+
 ¦ .comm id,expr ¦ These directives reserve space in the ¦
 ¦ .lcomm id,expr ¦ memory image without requiring space in ¦
 ¦ .bss id,expr ¦ the object file. ¦
 +---------------------------+--¦
 +--+

 The type of the symbol is set to an undefined external type and the value
 is set to expr. Such symbols may be redefined as program section symbols
 in the module where they appear or in other modules that will be combined
 with the link editor. If no such program section symbols appear, the
 linker defines undefined symbols with non-zero values as common blocks in
 the final image file's bss segment. The length of the common block is
 taken from the symbol's values (which would normally be the symbol's
 address). When many identically named common blocks are present, the
 linker defines a single block with the size of the highest valued common
 symbol.

 This processing makes it possible to declare a common block in many
 different modules, and to initialize that block (optionally) in only one
 module. When a module initializes a symbol that is a common block in
 another module, the symbol is defined in the text or data segment, and the
 common references select the text or data object after link editing.

 The cost in space and time of using a common block is similar to a
 reference to any other type of symbol. It is reasonable to declare every
 external variable (even integers and characters) as a separate common
 block.

 The symbol is defined as a local bss location and expr bytes are reserved.
 This directive is useful for allocating objects which are not initialized
 (or initialized to zero) and not exported.

Programming Tools and Interfaces
Block Definition

¦ Copyright IBM Corp. 1985, 1991
3.12.3 - 1

 3.12.4 Comment Section

 +--+
 ¦ .version string ¦ These directives put the string values in ¦
 ¦ .ident string ¦ the comment section. ¦
 +---------------------------+--¦
 +--+

 The assembler supports an optional comment section.

Programming Tools and Interfaces
Comment Section

¦ Copyright IBM Corp. 1985, 1991
3.12.4 - 1

 3.12.5 Record Definition

 +--+
 ¦ .dsect ¦ This directive is used to define records ¦
 ¦ (labels) (directives) ¦ and structures. The location counter ¦
 ¦ (labels) (assignments) ¦ begins at zero in each dsect, and is ¦
 ¦ . . . ¦ incremented according to block directives. ¦
 ¦ .end ¦ ¦
 +---------------------------+--¦
 +--+

 The purpose of the dsect directive is to assign increasing constant values
 to the labels. The dsect is a dummy program section where code may not be
 generated. The only tasks allowed are: assigning labels, aligning
 directives and blocking directives. A dsect begins with the .dsect
 directive and ends with the .end directive. It is useful for defining
 records, stacks, and frame structures.

Programming Tools and Interfaces
Record Definition

¦ Copyright IBM Corp. 1985, 1991
3.12.5 - 1

 3.12.6 Storage Definition

 +--+
 ¦ .byte ¦ These directives initialize bytes of the ¦
 ¦ .string ¦ text or data segments. The directives ¦
 ¦ .value ¦ accept a list of expressions or string ¦
 ¦ .long ¦ constants. Each expression may be ¦
 ¦ .float ¦ preceded by a repeat count. ¦
 ¦ .double ¦ ¦
 +---------------------------+--¦
 +--+

 The general format of a storage definition directive is:

 directive [[(expr)] expr] ...

 The repeat count is an optional expression enclosed in parenthesis (). A
 list of expressions follows. Each expression allocates a location of the
 specified size. A string constant may appear in an expression. In this
 case, each character specification within the string constant generates an
 object of the size specified by the directive.

 When a repeat count is present, it must be constant and defined when in
 pass one. The next expression is assembled the indicated number of times.

 .byte Assemble bytes
 .string Equivalent to .byte plus a final zero byte
 .value Assemble 16-bit short words
 .long Assemble 32-bit long words
 .float assemble 32-bit floating constants
 .double assemble 64-bit floating constants

 +--+
 ¦ .bcd expr ¦ This directive generates a 10-byte ¦
 ¦ ¦ (80-bit) decimal string in the current ¦
 ¦ ¦ section. This directive is not valid for ¦
 ¦ ¦ the .bss section. ¦
 +---------------------------+--¦
 +--+

 Examples using the storage directives follow.

 .byte '*','*','*' / store three stars
 .byte (3)'*' / store three stars
 .byte "***" / store three stars
 .byte (3)"***" / store three stars
 .double 1 / store double 1
 .value 1,2,3 / store three words
 .value (3)1,(3)2,(3)3 / store nine words
 .float Of3.14159 / store a 4 byte real
 .double Of3.14159265 / store an 8 byte real
 .string "hello" / store a 6 byte string

Programming Tools and Interfaces
Storage Definition

¦ Copyright IBM Corp. 1985, 1991
3.12.6 - 1

 3.12.7 Enumeration

 +--+
 ¦ .enum id... ¦ This directive is used to define a list of ¦
 ¦ ¦ symbols with scalar values beginning at ¦
 ¦ ¦ zero and increasing by one over the list. ¦
 +---------------------------+--¦
 +--+

 The general format of the .enum directive is:

 .enum[symbol [=expr]] ...

 The directive defines symbols as constants with increasing values.
 Normally, the first symbol's value is zero with subsequent values each
 greater by one. Any symbol may be followed by an assignment to reset the
 sequence to an arbitrary expression.

 Examples using the .enum directives follow.

 .enum a,b,c ; define a=O,b=1,c=2
 .enum x=5,y,z ; define x=5,y=6,z=7

Programming Tools and Interfaces
Enumeration

¦ Copyright IBM Corp. 1985, 1991
3.12.7 - 1

 3.12.8 Macro Definition

 +--+
 ¦ .macro name [list] ¦ This directive enters a macro definition. ¦
 ¦ . . . ¦ Assembler statements are collected until a ¦
 ¦ .endm ¦ matching .endm directive is processed. ¦
 +---------------------------+--¦
 +--+

 The .macro directive assigns a name and a local parameter list to a
 sequence of assembler statements. The parameter list consists of
 identifiers separated by commas or white space.

 After a matching .endm directive is processed, the assembler recognizes
 the name of the macro and substitutes the saved assembler statements.
 This procedure is said to invoke the macro and is known as .macro
 expansion. Actual parameters are supplied when the macro is invoked, and
 there must be the same number of actual parameters as there are
 identifiers in the parameter list of the macro definition.

 Actual parameters are separated by commas.

 The .endm directive must be the first symbol on its line; no labels are
 permitted.

 During macro expansion, all references to a parameter of the definition
 are replaced by the corresponding actual parameter. The resulting
 assembler statement is not scanned for further parameter matches. If one
 macro calls another, the parameters of the first invocation are hidden
 from that of the inner.

 A macro may itself contain macro definitions. In this case the inner
 definition is processed only when the macro is later expanded.

 When a macro is invoked, the name of the macro appears in the listing.
 The expansion of the macro and the correspondingly generated object code
 are then listed. The directives, .nlist and .macro, can be used to
 disable the listing of the macro expansion. (See "External Definition" in
 topic 3.12.11).

 Examples using the .macro directives follow.

 .macro checkvalue value errormsg
 cmpl $0, value /if value is zero,
 jnz $cv4
 pushl $msg
 call error /print error message
 jmp cv4 /and continue
 msg: string errormsg
 cv4:
 endm
 . . .
 checkvalue %-0X8(%ebp), "second value must not be zero-n"
 . . .

Programming Tools and Interfaces
Macro Definition

¦ Copyright IBM Corp. 1985, 1991
3.12.8 - 1

 3.12.9 Repeat Block

 +--+
 ¦ .rept expr ¦ This directive specifies a block of ¦
 ¦ . . . ¦ assembly statements which are to be ¦
 ¦ .endr ¦ repeated the number of times specified by ¦
 ¦ ¦ expr. ¦
 +---------------------------+--¦
 +--+

 The expression must be constant and must be defined during pass one.
 Repeat blocks may occur within repeat blocks. In this case, the inner
 repeat block is expanded once for each expansion of the next outer block.
 The repeat count of an inner block is evaluated at each expansion of the
 inner block.

 The .endr directive must be the first symbol on its line; no labels are
 permitted.

 Repeat blocks may be contained within macro definitions, or definitions
 may be contained within blocks, but no other overlap is possible.

 Object code resulting from the assembly of a repeat block never appears in
 the listing. The source text of a repeat block appears in the listing no
 more than once.

 Examples using the .rept directives follow.

 .macro factorial num
 subl %esi, %esi /fact = 0
 movl $num, %ebx /tmp = num
 .rept num
 leal (%ebx, %esi), %esi /fact = fact + tmp
 leal -0x1 (%ebx), %eax
 movl %eax, %ebx /tmp = tmp - 1
 .endr
 .endm
 ...
 factorial 20
 ...

Programming Tools and Interfaces
Repeat Block

¦ Copyright IBM Corp. 1985, 1991
3.12.9 - 1

 3.12.10 Conditional Block

 +--+
 ¦ .if expr ¦ The .if directive specifies a block of ¦
 ¦ .else ¦ assembly statements which are to be ¦
 ¦ .endif ¦ assembled only if expr is non-zero. The ¦
 ¦ .if expr ¦ reverse condition to the .else block, and ¦
 ¦ .elseif expr ¦ the reverse of the condition plus a new ¦
 ¦ .endif ¦ condition applies to an .elseif block. ¦
 +---------------------------+--¦
 +--+

 The expr is evaluated. It must be constant and defined within pass one.
 If its value is non-zero, the block of statements is assembled normally.
 Otherwise, the generation of code, the definition of symbols and labels,
 and the processing of directives are suppressed until a matching .endif is
 processed. The .else directive may be used to reverse the condition and
 begin assembling statements only if the matching .if was false. The
 .elseif directive is equivalent to a .else followed by a second .if,
 except that only one .endif is required to terminate the block.

 Conditional blocks may occur within conditional blocks.

 The conditional block is always listed, but no object code listing appears
 for blocks which are not assembled.

Programming Tools and Interfaces
Conditional Block

¦ Copyright IBM Corp. 1985, 1991
3.12.10 - 1

 3.12.11 External Definition

 +--+
 ¦ .extern id ... ¦ These directives are used to import ¦
 ¦ .globl id... ¦ symbols defined in other modules and to ¦
 ¦ ¦ export symbols defined within the assembly ¦
 ¦ ¦ module. ¦
 +---------------------------+--¦
 +--+

 The .extern directive defines a list of symbols as external. If such a
 symbol is defined within the module as a constant or program section
 symbol, the effect is to make the value and type available to the link
 editor. Otherwise, the symbol is an undefined-external, and the linker is
 instructed to import the symbol and relocate any references to it.

 The list of symbols may be separated with commas, spaces, or tabs.

 The .extern and .globl directives are equivalent.

 Examples using the .extern directives follow.

 .extern start
 .extern sin,cos,fun
 .extern proc1 proc2

Programming Tools and Interfaces
External Definition

¦ Copyright IBM Corp. 1985, 1991
3.12.11 - 1

 3.12.12 Assignment

 +--+
 ¦ .set id,expr ¦ This directive sets the value of the ¦
 ¦ ¦ symbol id to expr. This is equivalent to ¦
 ¦ ¦ an assignment. ¦
 +---------------------------+--¦
 +--+

 Use the .set directive as shown below:

 .set mysymb, 4

 This will set the value of the symbol, mysymb, to 4 in that file's symbol
 table. It is equivalent to specifying the assignment:

 mysymb=4

Programming Tools and Interfaces
Assignment

¦ Copyright IBM Corp. 1985, 1991
3.12.12 - 1

 3.12.13 Optimization

 +--+
 ¦ .noopt ¦ These directives are used to turn off and ¦
 ¦ .optim ¦ on span optimizations. ¦
 +---------------------------+--¦
 +--+

 Note: The assembler passes these directives in pass1 and uses the last
 one specified for assembling the entire module. Span optimizations cannot
 be selectively turned on and off for sections of a module.

Programming Tools and Interfaces
Optimization

¦ Copyright IBM Corp. 1985, 1991
3.12.13 - 1

 3.13 Command Format

 +--- Syntax ---+
 ¦ ¦
 ¦ ¦
 ¦ as[[option...] [input_file...]]... ¦
 ¦ ¦
 ¦ ¦
 +--+

 The assembler combines each specified input file and produces a single
 output object module. The name of the output file is based on the last
 input file name. If the input file name ends in a ".s," the output file
 name is created by replacing the ".s" with a ".o" extension. Otherwise
 the ".o" extension is appended to the input file name. If the input file
 name is greater than 12 characters, the file name is truncated to 12
 characters and the ".o" extension is appended.

 A number of options may be specified.

 -a Does not automatically import any symbols that are referenced
 in but are otherwise undefined. Issues an error message for
 this case.

 -R Suppresses any .data directives; all code is assembled in the
 text segment.

 -l [file] Generates a source listing. If the optional file is specified,
 the source listing is written to that file. Do not leave a
 space between the -l and the file name.

 -o file Sets the name of the output module to file.

 -sO Generates the long form for all forward references and the
 short form, where possible, for backward references.

 -s1 Runs one extra pass, in which most of the forward references
 are reduced to the shortest possible form.

 -s2 Runs as many passes as are necessary to generate the short form
 for all qualifying forward references.

Programming Tools and Interfaces
Command Format

¦ Copyright IBM Corp. 1985, 1991
3.13 - 1

 4.0 Chapter 4. AIX/370 Assembler

 Subtopics
 4.1 Contents
 4.2 About This Chapter
 4.3 Using the Assembler Language
 4.4 Differences
 4.5 Restrictions

Programming Tools and Interfaces
Chapter 4. AIX/370 Assembler

¦ Copyright IBM Corp. 1985, 1991
4.0 - 1

 4.1 Contents

Programming Tools and Interfaces
Contents

¦ Copyright IBM Corp. 1985, 1991
4.1 - 1

 4.2 About This Chapter

 This chapter explains the differences that exist between the Basic
 Assembler Language for System/370 and the Basic Assembler Language for
 AIX/370. Refer to the OS/VS-DOS/VS-VM/370 Assembler Language for
 additional information.

Programming Tools and Interfaces
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
4.2 - 1

 4.3 Using the Assembler Language

 The as (assembler) has the form:

 as [-options] filename

 The following table shows the options that are valid for the AIX/370
 Assembler Language:

 +--+
 ¦ Option ¦ Description ¦ Default ¦
 +---------------+--+---------------¦
 ¦ -o objfile ¦ The object of the assembly is left in ¦ filename.o ¦
 ¦ ¦ the file objfile. ¦ ¦
 +---------------+--+---------------¦
 ¦ -1 listfile ¦ Creates a file listing. ¦ none ¦
 +---------------+--+---------------¦
 ¦ -T dnu ¦ Sets the origin of the text segment to ¦ 10 000 ¦
 ¦ ¦ the decimal number dnu. ¦ ¦
 +---------------+--+---------------¦
 ¦ -D ¦ Uses different version of the line and ¦ none ¦
 ¦ ¦ bcall built-in macros. ¦ ¦
 +---------------+--+---------------¦
 ¦ -i int n ¦ Prints every nth line. ¦ none ¦
 +---------------+--+---------------¦
 ¦ -n n ¦ Size of the symbol table in "buckets." ¦ none ¦
 +---------------+--+---------------¦
 ¦ -t ¦ Times the assembler. Also counts and ¦ none ¦
 ¦ ¦ prints the number of lines processed ¦ ¦
 ¦ ¦ and the number of lines expanded from ¦ ¦
 ¦ ¦ macros. ¦ ¦
 +---------------+--+---------------¦
 ¦ -V ¦ Causes the version number of the ¦ none ¦
 ¦ ¦ assembler being run to be written on ¦ ¦
 ¦ ¦ standard error. ¦ ¦
 +---------------+--+---------------¦
 ¦ -Xa ¦ Uses the xa instruction set. ¦ none ¦
 +---------------+--+---------------¦
 ¦ -b ¦ Specifies base register. ¦ none ¦
 +---------------+--+---------------¦
 ¦ -C ¦ Fixed format inspection (for example, ¦ none ¦
 ¦ ¦ card format). ¦ ¦
 +---------------+--+---------------¦
 ¦ -s n ¦ Tab size. Used only with the -C ¦ none ¦
 ¦ ¦ option. ¦ ¦
 +---------------+--+---------------¦
 ¦ -dl ¦ Removes line number entries from the ¦ none. ¦
 ¦ ¦ symbol table. ¦ ¦
 +---------------+--+---------------¦
 ¦ -m ¦ Recognized but not supported. ¦ none ¦
 +--+

 In addition, you can use cc command (compiler) to compile assembler
 language files.

 Note: The AIX Assemblers are intended simply to support the compilers.
 They do not support all the functions of assemblers specifically
 designed for assembly language programming. dbx can disassemble
 compiler generated code, but it uses the AIX assembler to do this.
 Therefore, some restrictions apply to assembly code generated by

Programming Tools and Interfaces
Using the Assembler Language

¦ Copyright IBM Corp. 1985, 1991
4.3 - 1

 this method.

Programming Tools and Interfaces
Using the Assembler Language

¦ Copyright IBM Corp. 1985, 1991
4.3 - 2

 4.4 Differences

 Subtopics
 4.4.1 Lowercase Support
 4.4.2 Hex Numbers
 4.4.3 Segments
 4.4.4 Escapes
 4.4.5 Preprocessor Support
 4.4.6 Identifier Symbols
 4.4.7 Macro Definitions
 4.4.8 CSECT Symbols
 4.4.9 Free--form Input

Programming Tools and Interfaces
Differences

¦ Copyright IBM Corp. 1985, 1991
4.4 - 1

 4.4.1 Lowercase Support

 The lowercase support allows any uppercase program to be mapped in its
 entirety to lowercase with minimal effect on the resulting program. The
 differences that are detectable in the a.out file are:

 � Literals where lowercase letters are represented as C' . . .

 � Symbols in the symbol table are in the same case as they were in th
 source program.

 Subtopics
 4.4.1.1 Implications

Programming Tools and Interfaces
Lowercase Support

¦ Copyright IBM Corp. 1985, 1991
4.4.1 - 1

 4.4.1.1 Implications

 � Operation codes: All operation codes are mapped arbitrarily to
 uppercase before recognition search begins. For example, you cannot
 define two macros with the same name (one in lowercase and one in
 uppercase; such as BILL and bill).

 � Symbols: Symbols are entered into the symbol table as they are found
 in the source program. Therefore, you can have two distinct symbols
 with BILL and bill.

 � Attributes: Attributes may appear in lowercase. The attribute t'
 returns the lowercase equivalent of the attribute T'. For example,

 AIF (T'&X EQ 'U'). . .

 works as well as

 aif (t'&x eq 'u'). . .

 � System variable symbols: When a variable symbol such as &SYSLIST is
 supported, then &syslist is also supported. Only one version of the
 variable actually exists (uppercase); however, the lookup procedure
 searches for variable symbols beginning with sys twice (raw form and
 once after mapping to uppercase).

 � Miscellany: Lowercase may also be used in self-defining terms, DC
 constants (such as c'#'), and in hex constants (such as X'a0') with
 the same meaning as its uppercase equivalent.

Programming Tools and Interfaces
Implications

¦ Copyright IBM Corp. 1985, 1991
4.4.1.1 - 1

 4.4.2 Hex Numbers
 The '0x' convention is not honored because its effect can be obtained with
 the standard x'...' convention.

Programming Tools and Interfaces
Hex Numbers

¦ Copyright IBM Corp. 1985, 1991
4.4.2 - 1

 4.4.3 Segments

 An AIX/370 a.out file is partitioned into three segments: text, data, and
 bss.

 The segments and their associated pseudo-ops are as follows:

 Segment 'Labeled pseudo-ops'

 text CSECT

 data PSECT

 bss ZSECT

 These pseudo-ops can be used to provide the effect of multiple location
 counters (as they can be in the standard Basic Assembler Language). Thus:

 A CSECT
 .
 . code A1
 .
 B PSECT
 .
 . code B1
 .
 C CSECT
 .
 . code C1
 .
 A CSECT
 .
 . code A2
 .
 END

 places A2 after A1 and before C1 in the text region and places B1 in the
 data region.

 The Dsect pseudo-op is also implemented. The same label may appear on
 only one SECT-type pseudo-op (CSECT, PSECT, ZSECT, or DSECT). By default
 the null label is associated with the CSECT at the start of the program.
 Therefore, a null-labeled PSECT, ZSECT, OR DSECT is in error.

Programming Tools and Interfaces
Segments

¦ Copyright IBM Corp. 1985, 1991
4.4.3 - 1

 4.4.4 Escapes

 Within character literals (for example, tokens of the form C'...') the
 backslash (\) character is treated as an escape and the usual C escapes
 are honored (such as, \n, \b, \t, etc.). Note that the only two escape
 mechanisms are the double quote ('') for compatibility with BAL, and the C
 escapes.

Programming Tools and Interfaces
Escapes

¦ Copyright IBM Corp. 1985, 1991
4.4.4 - 1

 4.4.5 Preprocessor Support

 The output of the preprocessor normally contains #'s identifying original
 source line numbers. These are understood by the assembler. However, a
 symbol may not consist of the # character alone.

Programming Tools and Interfaces
Preprocessor Support

¦ Copyright IBM Corp. 1985, 1991
4.4.5 - 1

 4.4.6 Identifier Symbols

 In addition to lower and uppercase letters, numerics, and national
 characters ($, @, #), identifiers may contain the underscore (_)
 character.

Programming Tools and Interfaces
Identifier Symbols

¦ Copyright IBM Corp. 1985, 1991
4.4.6 - 1

 4.4.7 Macro Definitions

 Macros need not appear before the first CSECT (as is required in BAL) but
 only before their first use. Their names may conflict with and override
 existing instructions and pseudo-ops.

Programming Tools and Interfaces
Macro Definitions

¦ Copyright IBM Corp. 1985, 1991
4.4.7 - 1

 4.4.8 CSECT Symbols

 CSECTs do not automatically become externally known, so the function of
 multiple location counter usage and external identification can be
 separated. This can always be done with an ENTRY statement.

Programming Tools and Interfaces
CSECT Symbols

¦ Copyright IBM Corp. 1985, 1991
4.4.8 - 1

 4.4.9 Free--form Input

 Except for the -C and -s options, a complete break is made from the card
 image processing. Therefore, a continuation is not indicated by a
 non-blank in column 72, and columns 73 - 80 are not used for sequence
 identification. In addition, blank lines are permitted and a new line
 terminates a statement.

Programming Tools and Interfaces
Free--form Input

¦ Copyright IBM Corp. 1985, 1991
4.4.9 - 1

 4.5 Restrictions

 Subtopics
 4.5.1 Op-codes
 4.5.2 Pseudo-ops
 4.5.3 Attributes
 4.5.4 Assembler Symbols
 4.5.5 Macros
 4.5.6 Conditional Assembly Instructions

Programming Tools and Interfaces
Restrictions

¦ Copyright IBM Corp. 1985, 1991
4.5 - 1

 4.5.1 Op-codes

 The AIX/370 Assembler Language does not recognize the following op-codes:

 CFC
 LAB
 MVCIN
 SIE
 STAM
 UPT

Programming Tools and Interfaces
Op-codes

¦ Copyright IBM Corp. 1985, 1991
4.5.1 - 1

 4.5.2 Pseudo-ops

 The AIX/370 Assembler Language does not recognize the following
 pseudo-ops:

 AMODE
 ACTR
 AREAD
 CCW0
 CCW1
 COM
 COPY
 CXD
 DXD
 ICTL
 ISEQ
 LOCTR
 MHELP
 OPSYN
 POP
 PUNCH
 PUSH
 REPRO
 RMODE
 START

 The following pseudo-ops are recognized but no action is taken:

 EJECT
 PRINT
 SPACE
 TITLE

 The following pseudo-ops have restrictions:

 DC Modifiers S and E are not supported; nor are types L, P, Z, S, or Q

 EQU The optional length and type arguments are ignored.

 MEND Cannot contain a sequence symbol.

 MNOTE The severity number, if present, is ignored.

 WXTRN Is treated as EXTRN.

Programming Tools and Interfaces
Pseudo-ops

¦ Copyright IBM Corp. 1985, 1991
4.5.2 - 1

 4.5.3 Attributes

 The following attributes are not supported:

 S'
 I'

 The following attributes are partially supported:

 K'
 N'
 T'

 Note: These three attributes can only be applied to variable symbols
 (&-symbols).

 The following two attributes can only be applied to symbols previously
 encountered when used in a conditional assembly statement:

 T'
 L'

Programming Tools and Interfaces
Attributes

¦ Copyright IBM Corp. 1985, 1991
4.5.3 - 1

 4.5.4 Assembler Symbols

 Set Symbols: Arrays of set symbols are not allowed.

 System Variable Symbols: The following system variable symbols are
 supported:

 &SYSECT
 &SYSLIST
 &SYSNDX

Programming Tools and Interfaces
Assembler Symbols

¦ Copyright IBM Corp. 1985, 1991
4.5.4 - 1

 4.5.5 Macros

 An operation field within a macro may not contain a variable symbol.

Programming Tools and Interfaces
Macros

¦ Copyright IBM Corp. 1985, 1991
4.5.5 - 1

 4.5.6 Conditional Assembly Instructions

 Branching backwards via conditional assembly instructions (AGO and AIF) is
 not permitted in open code.

Programming Tools and Interfaces
Conditional Assembly Instructions

¦ Copyright IBM Corp. 1985, 1991
4.5.6 - 1

 5.0 Chapter 5. Linking Your Programs - Using the ld Command

 Subtopics
 5.1 Contents
 5.2 About This Chapter
 5.3 Link Editor
 5.4 Memory Configuration
 5.5 Section
 5.6 Addresses
 5.7 Binding
 5.8 Object File
 5.9 Using the Link Editor
 5.10 Link Editor Command Language
 5.11 Notes and Special Considerations

Programming Tools and Interfaces
Chapter 5. Linking Your Programs - Using the ld Command

¦ Copyright IBM Corp. 1985, 1991
5.0 - 1

 5.1 Contents

Programming Tools and Interfaces
Contents

¦ Copyright IBM Corp. 1985, 1991
5.1 - 1

 5.2 About This Chapter

 This chapter describes how the link editor creates executable object files
 and processes symbolic debugging information. It also contains information
 on how to use the link editor and the link editor command language.

Programming Tools and Interfaces
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
5.2 - 1

 5.3 Link Editor

 The link editor creates executable object files by combining object files,
 performing relocation, and resolving external references.

 It also processes symbolic debugging information. The inputs to the link
 editor are relocatable object files produced by any of the following:

 � The C compiler cc
 � The assembler as
 � The previous link editor run

 The link editor combines these object files to form either a relocatable
 or an absolute (executable) object file.

 Although you can control the link-edit process as described in "Link
 Editor Command Language" in topic 5.10 you may not require this degree of
 flexibility. The ld command language and the description in AIX/370
 Command Reference manual are sufficient to understand how to use the
 command.

 The ld command language allows you to:

 � Specify the memory configuration of the machine

 � Combine object file sections in particular fashions

 � Specify the files to be bound to specific addresses or within specifi
 portions of memory.

 � Define or redefine global symbols at link edit time

Programming Tools and Interfaces
Link Editor

¦ Copyright IBM Corp. 1985, 1991
5.3 - 1

 5.4 Memory Configuration

 Virtual memory is partitioned into configured and non-configured memory.
 The default is to treat all memory as configured. Non-configured memory
 is treated as "reserved" or "unusable" by the link editor. Nothing can
 ever be linked into non-configured memory. Therefore, specifying a
 certain memory range to be non-configured is one way of marking the
 addresses (in that range) "illegal" or "nonexistent" with respect to the
 linking process. You must explicitly specify memory configurations other
 than the default.

 Note: Unless otherwise specified, all information is this chapter is
 described with respect to the configured address space.

Programming Tools and Interfaces
Memory Configuration

¦ Copyright IBM Corp. 1985, 1991
5.4 - 1

 5.5 Section

 A section of an object file is the smallest unit of relocation and must be
 a contiguous block of memory. A section is identified by starting address
 and a size. Information describing all the sections in a file is stored
 in "section headers" at the start of the file. Sections from input files
 are combined to form output sections that contain executable text, data,
 or a mixture of both. Although there may be holes or gaps between input
 sections and between output sections, storage is allocated contiguously
 within each output section and may not overlap a hole in memory.

Programming Tools and Interfaces
Section

¦ Copyright IBM Corp. 1985, 1991
5.5 - 1

 5.6 Addresses

 The physical address of a section or symbol is the relative offset from
 address zero of the address space. The physical address of an object is
 not necessarily the location at which it is placed when the process is
 executed; because of paging, the address is with respect to address zero
 of the virtual space, and the system performs another address translation.

Programming Tools and Interfaces
Addresses

¦ Copyright IBM Corp. 1985, 1991
5.6 - 1

 5.7 Binding

 It is often necessary to have a section begin at a specific, predefined
 address in the address space. The process of specifying this starting
 address is called binding, and the section in question is said to be
 "bound to" or "bound at" the required address. While binding is most
 relevant to output sections, it is also possible to bind global symbols
 with an assignment statement in the ld command language.

Programming Tools and Interfaces
Binding

¦ Copyright IBM Corp. 1985, 1991
5.7 - 1

 5.8 Object File

 Object files are produced both by the assembler (typically as a result of
 calling the compiler) and by the link editor. The link editor accepts
 relocatable object files as input and produces an output object file that
 may or may not be relocatable. Under special circumstances, the input
 object files given to the link editor can also be absolute files.

 Files produced from the compiler/assembler always contain the following
 three sections:

 .text Contains the instruction text (for example, executable
 instructions).
 .data Contains initialized data variables.
 .bss Contains non-initialized data variables.

 Global non-initialized data is treated as common and the section (.bss or
 .data) is not bound until link-time.

Programming Tools and Interfaces
Object File

¦ Copyright IBM Corp. 1985, 1991
5.8 - 1

 5.9 Using the Link Editor

 To invoke the link editor, issue the command:

 ld [options] filename1 filename2...

 Files passed to the link editor must be one of the following:

 � Object file

 � Archive libraries containing object file

 � Text source files containing ld directives.

 The link editor uses the "magic number" (in the first two bytes of the
 file) to determine which type of file is encountered. If the link editor
 does not recognize the magic number, it assumes the file is a text file
 containing link editor directives and attempts to parse it.

 Input object files and archive libraries of object files are linked
 together to form an output object file. If there are no unresolved
 references, this file is executable.

 Note: In this chapter, an input file containing directives is referred to
 as an ifile, while object files have the following form:

 name.o

 The names of actual input object files need not follow this convention.

 If you want to link the object files file1.o and file2.o, enter the
 following command:

 ld file1.o file2.o

 No directives to the link editor are needed. If no errors are encountered
 during the link edit, the output is placed in the default file a.out. The
 sections of the input files are combined in order. That is, if file1.o
 and file2.o each contains the standard sections .text, .data, and .bss,
 the output object file will contain them as well. The output .text
 section is a concatenation of .text from file1.o and .text from file2.o.
 The .data and .bss sections are formed similarly. On AIX/370, the output
 .text section is then bound at address 0x0000a8 except with option -ss.
 The output .data and .bss sections are link-edited together into
 contiguous addresses (the particular address depending on the particular
 processor).

 Instead of entering the names of files to be link edited (as well as ld
 options on the command line), this information can be placed into an
 ifile. The ifile can be passed to ld. For example, if you frequently link
 the object files file 1.o, file 2.o, and file3.o with the same options f1
 and f2 by entering the command:

 ld -m -r file 1.o file2.o file3.o

 you can alternatively create an ifile containing the statements:

 -m
 -r
 file1.o

Programming Tools and Interfaces
Using the Link Editor

¦ Copyright IBM Corp. 1985, 1991
5.9 - 1

 file2.o
 file3.o

 Then you only need to issue the command:

 ld ifile

 You can specify some of the object files to be link-edited in the ifile
 and others on the command line and/or some options in the ifile and others
 on the command line. Input object files are link edited in the order they
 are encountered, whether this occurs on the command line or in an ifile.
 As an example, if a command line were:

 ld file1.o ifile file2.o

 and the ifile contained:

 file3.o
 file4.o

 then the order of link editing would be: file1.o, file3.o, file4.o, and
 file2.o. Note from this example that an ifile is read and processed
 immediately upon being encountered in the command line.

 Options may be interspersed with file names both on the command line and
 in an ifile. The ordering of options is only significant for the -l and
 -L options when specifying libraries. The -l option is a shorthand
 notation for specifying an archive library (an archive library is a
 collection of object files). As with object files, libraries are searched
 as they are encountered. The -L option specifies an alternative directory
 for searching for libraries. Therefore, to be effective, a -L option must
 appear before any -l options.

 All ld options must be preceded by a hyphen (-) whether in the ifile or on
 the ld command line. Options that have an argument (except for the -l
 option) are separated from the argument by white space (blanks or tabs).
 The following ld flags may be specific on AIX/370.

 -e sym Defines the primary entry point of the output file to be the
 symbol given by the argument sym. See "Changing the Entry Point"
 in topic 5.11.1 for a discussion on how the option is used.

 -f fill Sets the default fill value. This value is used to fill holes
 formed within output sections. Also, it is used to initialize
 input .bss sections when they are combined with other non-.bss
 input sections. The argument fill is a 2-byte constant. If this
 option is not used, the default fill-value is zero.

 -l [key] Specifies an archive library file as input. The optional
 argument is a character string (less than 7 characters)
 immediately following the -l without any intervening white space.
 By default, libraries are located /lib and /usr/lib. If the
 argument is omitted, the standard system library libc.a is
 selected. Because a library is searched when its name is
 encountered, the placement of this option on the command line is
 important. The given archive library must contain valid object
 files as its members.

 -m Produces a map or listing of the input/output sections (including
 holes) on the standard output.

Programming Tools and Interfaces
Using the Link Editor

¦ Copyright IBM Corp. 1985, 1991
5.9 - 2

 -o name Names the output object file. The argument name is the name of
 the file to be used as the output file. The default output object
 file name is a.out. The name can be a full or partial system
 pathname.

 -r Retains relocation entries in the output object file. Relocation
 entries must be saved if the output file is to be used as an input
 file in a subsequent ld call. When this option is used,
 unresolved references do not prevent the creation of an output
 object file.

 -s Strips line number entries and symbol table information from the
 output object file. Relocation entries (-r option) are
 meaningless without the symbol table, hence use of -s precludes
 the use of -r. All symbols are stripped, including global and
 undefined symbols.

 -ss Generates an executable aligned in 64k byte segments. The default
 segmentation is 1MB.

 -u sym Introduces an unresolved external symbol into the output file's
 symbol table. The argument sym is the name of the symbol. This
 is useful for linking entirely from a library because initially
 the symbol table is empty and an unresolved reference is needed to
 force the linking of an initial routine from the library.

 -x Does not preserve any local (non-global) symbols in the output
 symbol table; enters external and static symbols only. This
 option saves some space in the output file.

 -L dir Changes the algorithm for searching for libraries. Looks in dir
 before looking in the default location. This option is useful for
 finding libraries that are not in the standard library directory.
 To be effective, this option must appear before the -l option.

 -N Places the data section immediately following the text section in
 memory and stores the magic number 0407 in the system header.
 This prevents the text from being shared (the default).

 -V Prints on the standard error output a " version id" identifying
 the link editor being run.

 -VS num Takes num as a decimal version number identifying the a.out file
 that is produced. The version stamp is stored in the system
 header.

 -xa Produces an XA/370 executable.

 The following ld flags may be specified on AIX PS/2:

 -Bnum Makes num the starting address for the uninitialized data (bss)
 segment of the output file. The default starting address is the
 first storage unit after the end of the data segment. Not all
 architectures support the separation of data and bss segments.

 -d Defines common storage, even if you have specified the -r flag.

 -Dnum Makes num the starting address for the initialized data segment of
 the output file. The default starting address begins at location

Programming Tools and Interfaces
Using the Link Editor

¦ Copyright IBM Corp. 1985, 1991
5.9 - 3

 0 (if the i flag is in effect), at the first storage unit after
 the end of the text segment, or, if the -n flag is in effect, at
 the next page or segment boundary.

 -elabel Makes label the entry point of the executable output file.

 Note: The cc command on AIX/370 prepends an underscore to symbol
 names, while AIX PS/2 does not.

 -Hnum Makes num the boundary, usually the page size, to which the text
 segment must be padded if it has a different protection than does
 the data segment. Specify this parameter only to override the
 default value for the given architecture.

 -i Assigns text and data segments to separate address spaces in
 memory, with the text segment read-only (if the architecture
 supports read-only memory) and shared among all users. The data
 segment starts at location 0 unless set with the -D flag. If the
 architecture does not support separate
 instruction and data space, this flag is treated as if it were the
 -n flag. (This option cannot be used with the -K flag.) The -i
 flag is useful primarily when you are linking executables
 (cross-compiling) on different machines.

 -K Loads the a.out header into the first bytes of the text segment,
 followed by the text segments from the object modules. This flag
 causes pages of executable files to be aligned on pages in the
 filesystem so that they can be demand paged on systems that
 support paging. This flag provides mapped file support for the
 text and data segments.

 Note: This flag is required for programs to execute on the PS/2
 and is normally set by the cc command.

 -n Makes the text segment read-only--if the architecture supports
 read-only memory--and shared among all users running the file.
 The data segment starts at the first segment boundary following
 the end of the text unless set with the -D flag. On architectures
 which only permit read-only text with separate text and data
 spaces, the -n flag is treated as if it were the -i flag. (This
 option cannot be used with the -i flag.)

 -Tnum Makes num the starting address for the text segment of the output
 file. If not specified, the text segment begins at location zero.

 -Zstr Prefixes with str the names specified by the -l key. For example,
 with -Z/test and -lxyz, the ld command looks for the file
 /test/lib/llbxyz.a or, if that file does not exist,
 /text/usr/lib/libxyz.a. The ordinary directories are not
 searched. This flag is most useful when cross-compiling.

Programming Tools and Interfaces
Using the Link Editor

¦ Copyright IBM Corp. 1985, 1991
5.9 - 4

 5.10 Link Editor Command Language

 Subtopics
 5.10.1 Expressions
 5.10.2 Assignment Statements
 5.10.3 Specifying a Memory Configuration
 5.10.4 Section Definition Directives
 5.10.5 File Specifications
 5.10.6 Loading a Section at a Specified Address
 5.10.7 Aligning an Output Section
 5.10.8 Grouping Sections Together
 5.10.9 Creating Holes within Output Sections
 5.10.10 Creating and Defining Symbols at Link-Edit Time
 5.10.11 Allocating a Section into Named Memory
 5.10.12 Initialized Section Holes or .bss Sections

Programming Tools and Interfaces
Link Editor Command Language

¦ Copyright IBM Corp. 1985, 1991
5.10 - 1

 5.10.1 Expressions

 In the AIX/370 Assembler Language, expressions may contain:

 � Constant
 � Global symbol
 � Most of the basic C language operators

 Subtopics
 5.10.1.1 Constants
 5.10.1.2 Global Symbols
 5.10.1.3 Operators

Programming Tools and Interfaces
Expressions

¦ Copyright IBM Corp. 1985, 1991
5.10.1 - 1

 5.10.1.1 Constants
 Constants are as in C. Therefore, a number is recognized as a decimal
 unless it is preceded by one of the following:

 0 octal
 0x hexadecimal
 0X hexadecimal

 Note: 0 is the digit zero.

 All numbers are treated as long integers.

Programming Tools and Interfaces
Constants

¦ Copyright IBM Corp. 1985, 1991
5.10.1.1 - 1

 5.10.1.2 Global Symbols
 Symbols names may contain uppercase or lowercase letters, digits, and the
 underscore (_). Symbols within an expression have the value of the
 address of the symbol only. The link editor does not perform any of the
 following:

 � Symbol table lookup to find the contents of a symbo
 � The dimensionality of an arra
 � Structure elements declared in a C program

 A lex-generated input scanner is used by the link editor to identify
 symbols, numbers, operators, and so on. Therefore, the following names
 are reserved and unavailable as symbol names or section names:

 align ALIGN
 assign ASSIGN
 block BLOCK
 DSECT
 group GROUP
 l
 len
 length LENGTH
 MEMORY
 NOLOAD
 o
 org
 origin ORIGIN
 phy PHY
 range RANGE
 REGION
 SECTIONS
 spare SPARE
 TV

Programming Tools and Interfaces
Global Symbols

¦ Copyright IBM Corp. 1985, 1991
5.10.1.2 - 1

 5.10.1.3 Operators

 Figure 5-1 shows the operators that are supported, in order of precedence
 from high to low.

 +-------------------------------------+
 ¦ Figure 5-1. Symbols and Functions ¦
 ¦ of Operators ¦
 +-------------------------------------¦
 ¦ symbol ¦
 +-------------------------------------¦
 ¦ !~--(UNARYMinus) ¦
 +-------------------------------------¦
 ¦ * / % ¦
 +-------------------------------------¦
 ¦ + -(BINARY Minus) ¦
 +-------------------------------------¦
 ¦ > > < < ¦
 +-------------------------------------¦
 ¦ = = != > < < = > = ¦
 +-------------------------------------¦
 ¦ & ¦
 +-------------------------------------¦
 ¦ | ¦
 +-------------------------------------¦
 ¦ && ¦
 +-------------------------------------¦
 ¦ || ¦
 +-------------------------------------¦
 ¦ = + = _=*= /= ¦
 +-------------------------------------+

 These operators have the same meaning as in the C language. Refer to
 AIX/370 C Language Reference for additional information. Operators on the
 same line have the same precedence.

Programming Tools and Interfaces
Operators

¦ Copyright IBM Corp. 1985, 1991
5.10.1.3 - 1

 5.10.2 Assignment Statements

 External symbols may be defined and assigned addresses via the assignment
 statement. The syntax of the assignment statements is

 symbol = expression;

 or

 symbol op= expression;

 where op is one of the operators +, -, *, or /.

 Assignment statements must be terminated by a semicolon.

 All assignment statements (with the exception of the one case described in
 the following paragraph) are evaluated after allocation has been
 performed. This occurs after all input-file-defined symbols are relocated
 but before the actual relocation of the text and data itself. Therefore,
 if an assignment statement expression contains any symbol name, the
 address used for that symbol in the evaluation of the expression reflects
 the symbol address in the output object file. References within text and
 data (to symbols given a value through an assignment statement) access
 this latest assigned value. Assignment statements are processed in the
 same order in which they are received by the link editor.

 Assignment statements are normally placed outside the scope of
 section-definition directives (see "Section Definition Directives" in
 topic 5.10.4). However, the special symbol ".", can occur only within a
 section-definition directive. This symbol refers to the current R address
 of the link editor location counter. Thus, assignment expressions
 involving "." are evaluated during the allocation phase of link editing.
 Assigning a value to the "." symbol within a section-definition directive
 increments/resets the link editor location counter and can create "holes"
 within the section, as described in "Section Definition Directives" in
 topic 5.10.4. Assigning the value of the "." symbol to a conventional
 symbol permits the final allocated address (of a particular point within
 the link-edit run) to be saved.

 align is provided as a shorthand notation to allow alignment of a symbol
 to an n-byte boundary within an output section, where n is a power of 2.
 For example, the expression

 align (n)

 is equivalent to

 (. + n - 1) &~(n - 1)

 Link editor expressions may have either an absolute or a relocatable
 value. When the link editor creates a symbol through an assignment
 statement, the symbol's value takes on that type of expression according
 to the following rules:

 � An expression with a single relocatable symbol (and zero or mor
 constants or absolute symbols) is relocatable. The value is in
 relation to the section of the referenced symbol.

 � All other expressions have absolute values

Programming Tools and Interfaces
Assignment Statements

¦ Copyright IBM Corp. 1985, 1991
5.10.2 - 1

 5.10.3 Specifying a Memory Configuration

 MEMORY directives are used to specify:

 � The total size of the virtual space of the target machin

 � The configured and non-configured areas of the virtual space

 If no directives are supplied, the link editor assumes that all memory is
 configured. The size of the default memory is dependent upon the target
 machine.

 By means of MEMORY directives, an arbitrary name of up to eight characters
 is assigned to a virtual address range. Output sections can then be
 forced to be bound to virtual addresses within specifically named memory
 areas. Memory names may contain uppercase or lowercase letters, digits,
 and the special characters $, ., or _. These memory-range names are used
 only by the link editor and are not carried in the output file symbol
 table or headers.

 When MEMORY directives are used, all virtual memory not described in those
 directives is considered to be non-configured. Non-configured memory is
 not used in the link editor's allocation process; therefore, nothing can
 be link-edited, bound, or assigned to any address within non-configured
 memory.

 As an option on the MEMORY directive, attributes may be associated with a
 named memory area. This restricts the memory areas (with specific
 attributes) to which an output section can be bound. The attributes
 assigned to output sections in this manner are recorded in the appropriate
 sections in the appropriate section headers in the output file. The
 supported attributes are:

 R: readable memory
 W: writable memory
 X: executable, (instructions may reside in this memory)
 I: initializable, (stack areas are typically not initialized).

 If no attributes are specified on a MEMORY directive or if no MEMORY
 directives are supplied, memory areas assume the attributes of W, R, I,
 and X.

 The syntax of the MEMORY directive is:

 MEMORY
 {
 name1 (attr): origin = n1, length = n2
 name2 (attr): origin = n3, length = n4
 }

 The keyword origin (or org or o) must precede the origin of a memory
 range, and length (or len or l) must precede the length as shown in the
 preceding example. The origin operand refers to the virtual address of
 the memory range. Origin and length are entered as long integer constants
 in either decimal, octal, or hexadecimal (standard C syntax). Origin and
 length specifications, as well as individual MEMORY directives, may be
 separated by white space or a comma.

 By specifying MEMORY directives, the link editor is informed that memory
 is configured in some manner other than the default. For example, if it

Programming Tools and Interfaces
Specifying a Memory Configuration

¦ Copyright IBM Corp. 1985, 1991
5.10.3 - 1

 is necessary to prevent anything from being linked to the first 0X10000
 words of memory, use a MEMORY directive similar to the following:

 MEMORY
 {
 valid : org = 0x10000, len = 0xFE0000
 }

Programming Tools and Interfaces
Specifying a Memory Configuration

¦ Copyright IBM Corp. 1985, 1991
5.10.3 - 2

 5.10.4 Section Definition Directives

 The purpose of the SECTIONS directive is to:

 � Describe how input sections are to be combine

 � Direct where to place output sections (both in relation to each othe
 and the entire virtual memory space)

 � Permit the renaming of output sections

 When no SECTIONS directives are given (default), all input sections of the
 same name appear in an output section of that name. For example, if a
 number of object files from the compiler are linked, each containing the
 three sections

 � .text
 � .data
 � .bss

 the output object file also contains three sections

 � .text
 � .data
 � .bss

 If two object files are linked (one that contains sections s1 and s2 and
 the other containing sections s3 and s4), the output object file contains
 the four sections s1, s2, s3, and s4. The order of these sections would
 depend on the order in which the link editor sees the input files.

 The basic syntax of the SECTIONS directive is:

 SECTIONS
 {
 secname1:
 {
 file_specifications,
 assignment_statements
 }
 secname2:
 {
 file_specifications,
 assignment_statements
 }
 and so on
 }

 The various types of section-definition directives are explained in the
 remainder of this chapter.

Programming Tools and Interfaces
Section Definition Directives

¦ Copyright IBM Corp. 1985, 1991
5.10.4 - 1

 5.10.5 File Specifications

 Within a section-definition, the files and sections of files to be
 included in the output section are listed in the order in which they are
 to appear in the output section. Sections from an input file are
 specified by:

 filename (secname)

 or

 filename (secnam1 secnam2...)

 Sections of an input file are separated either by white space or commas,
 as are the file specifications.

 If a file name appears with no sections listed, then all sections from the
 file are linked into the current output section. For example:

 SECTIONS
 {
 outsec1:
 {
 file1.o (sec1)
 file2.o
 file3.o (sec1,sec2)
 }
 }

 The input sections appear in the output section in the sequence given by
 outsec1:

 1. Section sec1 from file file1.o

 2. All sections from file2.0 (in the order they appear in the file)

 3. Section sec1 from file file3.p

 4. Section sec2 from file file3.o.

 If there are additional input files that contain input sections also named
 outsec1, these sections are linked following the last section named in the
 section-definition outsec1. If there are any other input sections in
 file1.o or file3.o they will be placed in output sections with the same
 names as the input sections.

Programming Tools and Interfaces
File Specifications

¦ Copyright IBM Corp. 1985, 1991
5.10.5 - 1

 5.10.6 Loading a Section at a Specified Address

 Binding of an output section to a specific virtual address is done by
 using a link editor option as shown in the following example:

 SECTIONS
 {
 outsec addr:
 {
 ...
 }
 and so on
 }

 The addr is the binding address expressed a a C constant. If outsec does
 not fit at addr (perhaps because of holes in the memory configuration or
 because outsec is too large to fit without overlapping some other output
 section), the link editor issues an appropriate error message.

 So long as output sections do not overlap and there is enough space, they
 can be bound anywhere in configured memory. The SECTIONS directives
 defining output sections need not be given to the link editor in any
 particular order.

 The link editor does not ensure that each section's size consists of an
 even number of bytes, or that each section starts on an even byte
 boundary.

 However, the assembler ensures that the size (in bytes) of a section is
 evenly divisible by 4. You can use the link editor directives to force a
 section to start on an odd byte boundary. But this is not recommended
 because when a section starts on an odd byte boundary, the section's
 contents are either accessed incorrectly or are not executed properly.
 When you specify an odd byte boundary, the link editor issues a warning
 message.

Programming Tools and Interfaces
Loading a Section at a Specified Address

¦ Copyright IBM Corp. 1985, 1991
5.10.6 - 1

 5.10.7 Aligning an Output Section

 You can request that an output section be bound to a virtual address that
 falls on an n-byte boundary (where n is a power of 2) by using the ALIGN
 option:

 ALIGN(n)

 is equivalent to specifying a bonding address of

 (.+ n - 1) &~(n - 1)

 For example,

 SECTIONS
 {
 outsec ALIGN(0x20000):
 {
 ...
 }
 and so on
 }

 The output section outsec is not bound to any given addresses but is
 linked so some virtual address that is a multiple of 0x20000 (for example,
 at address 0x0, 0x20000, 0x40000, 0x60000, and so on).

Programming Tools and Interfaces
Aligning an Output Section

¦ Copyright IBM Corp. 1985, 1991
5.10.7 - 1

 5.10.8 Grouping Sections Together

 The link editor default allocation algorithm performs the following
 processes:

 1. Links all input .text sections together into one output section. This
 output section is called .text and is bound to an address of 0x0.

 2. Links all input .data sections together into one output section. This
 output section is called .data and is bound to an address aligned to a
 machine dependent constant. If the magic number (octal) is:

 0407 The text segment is not shared. The data segment is contiguous
 to the text segment.
 0410 The data segment begins at the next segment boundary.

 A segment in AIX/370 is 256 4k pages (0x100000). Using ld with the
 -ss option, a segment is 16 4k pages (0x10000).

 3. Links all input .bss sections together into one output section. This
 output section is called .bss and is allocated so it immediately
 follows the output section .data.

 Note: The output section .bss is not given any particular address
 alignment.

 If you specify a SECTIONS directive, this default allocation will not be
 performed.

 The default allocation of the link editor is equivalent to supplying the
 following directive:

 SECTIONS
 {
 .text : { }
 GROUP ALIGN(align_value):
 {
 .data : { }
 .bss : { }
 }
 }

 where align_value is a machine dependent constant; in AIX/370 a segment
 size is 0x100000. GROUP ensures that the two output sections, .data and
 .bss, are allocated (grouped) together. Bonding or alignment information
 is supplied only for the group and not for the output sections contained
 within the group. The sections making up the group are allocated in the
 order listed in the directive.

 If .text, .data, and .bss are to be placed in the same segment, the
 following SECTIONS directive is used:

 SECTIONS
 {
 GROUP :
 {
 .text : { }
 .data : { }
 .bss : { }
 }

Programming Tools and Interfaces
Grouping Sections Together

¦ Copyright IBM Corp. 1985, 1991
5.10.8 - 1

 }

 Note that the three output sections (.text, .data, and .bss) still exist,
 but they are now allocated into consecutive virtual memory.

 To bind to 0xC0000, use:

 GROUP 0xC0000 : {

 To align to 0x10000, use

 GROUP ALIGN(0x10000) : {

 With this addition, first the output section .text is bound at 0xC0000 (or
 is aligned to 0x10000); then the remaining members of the group are
 allocated in order of their appearance into the next available memory
 locations.

 When the GROUP directive is not used, each output section is treated as an
 independent entity.

 SECTIONS
 {
 .text : { }
 .data ALIGN(0x20000): { }
 .bss : { }
 }

 The .text section starts at virtual address 0x0 and the .data section at a
 virtual address aligned to 0x20000. The .bss section follows immediately
 after the .text section if there is enough space. If there is not, it
 follows the.data section.

 The order in which output sections are defined to the link editor cannot
 be used to force a certain allocation order in the output file.

Programming Tools and Interfaces
Grouping Sections Together

¦ Copyright IBM Corp. 1985, 1991
5.10.8 - 2

 5.10.9 Creating Holes within Output Sections

 The special symbol . (dot) appears only within section definitions and
 assignment statements. When it appears on the left side of an assignment
 statement, the link editor's location counter is incremented or reset and
 a hole is left in the output section. Holes built into output sections in
 this manner take up physical space in the output file and are initialized
 using a fill character (either the default fill character (0x00) or a
 supplied fill character). See the definition of the -f option in "Link
 Editor Command Language" in topic 5.10 and the discussion of filling holes
 in "Initialized Section Holes or .bss Sections" in topic 5.10.12.

 Consider the following section-definition:

 Outsec:
 {
 .+=0x1000;
 f1.o(.text)
 .+=0x100;
 f2.o(.text)
 . = align (4);
 f3.o (.text).
 {

 The effect of this definition is:

 � A 0x1000 byte hole, filled with the default fill character, is left a
 the beginning of the section. Input file f1.o(.text) is linked after
 this hole.

 � The text of input file f2.o begins at 0x100 bytes following the end of
 f1.o(.text).

 � The text f3.o is linked to start at the next full word boundary
 following the text of f2.o with respect to the beginning of outsec.

 For the purposes of allocating and aligning addresses within an output
 section, the link editor treats the output section as if it began at
 address zero. As a result, in the previous example, if outsec is linked
 to start at an odd address, then the part of outsec built from f3.o (text)
 text also starts at an odd address. This occurs even though f3.o (.text)
 is aligned to a full word boundary. This is prevented by specifying an
 alignment factor for the entire output section.

 outsec ALIGN(4) : {...

 Note: The assembler always pads the sections it generates to a full word
 length making explicit alignment specifications unnecessary. This also
 holds true for the compilers.

 Expressions that decrement "." are illegal. For example, subtracting a
 value from the location counter is not allowed because overwrites are not
 allowed. The most common operators in expressions that assign a value to
 "." are += and align.

Programming Tools and Interfaces
Creating Holes within Output Sections

¦ Copyright IBM Corp. 1985, 1991
5.10.9 - 1

 5.10.10 Creating and Defining Symbols at Link-Edit Time

 The assignment statement of the link editor can be used to give symbols a
 value that is link-edit dependent. There are three types of assignments:

 � Use of "." to adjust link editor's location counter during allocatio
 (refer to "Assignment Statements" in topic 5.10.2 and "Creating Holes
 within Output Sections" in topic 5.10.9).

 � Use of "." to assign an allocation-dependent value to a symbol

 � Assignment of an allocation-dependent value to a symbol

 Using "." to assign an allocation-dependent value to a symbol provides a
 means to assign addresses (known only after allocation) to symbols. For
 example:

 SECTIONS
 {
 outsec1: {...}
 outsec2:
 {
 file1.o (s1)
 s2_start = .;
 file2.o (s2)
 s2_end = .- 1;
 }
 }

 The symbol s2_start is defined to be the address of file2.o (s2) and
 s2_end is the address of the last byte of file2.o (s2).

 Consider the following example:

 SECTIONS
 {
 outsec1:
 {
 file1.o (.data)
 mark = .;
 . += 4;
 file2.o (.data)
 }
 }

 In this example, the symbol mark is created and is equal to the address of
 the first byte beyond the end of file2.o's .data section. Four bytes are
 reserved for a future run-time initialization of the symbol mark. The
 type of the symbol is integer (32 bits).

 Assignment instructions involving "." must appear within SECTIONS
 definitions because they are evaluated during allocation. Assignment
 instructions that do not involve "." can appear within SECTIONS
 definitions but typically do not. Such instructions are evaluated after
 allocation is complete. Reassignment of a defined symbol to a different
 address is dangerous.

 For example, if a symbol within .data is defined, initialized, and
 referenced within a set of object files being link-edited, the symbol
 table entry for that symbol is changed to reflect the new, reassigned

Programming Tools and Interfaces
Creating and Defining Symbols at Link-Edit Time

¦ Copyright IBM Corp. 1985, 1991
5.10.10 - 1

 physical address. However, the associated initialized data is not moved
 to the new address. The link editor issues warning messages for each
 defined symbol that is being redefined within an ifile. However,
 assignments of absolute values to new symbols are safe because there are
 no references or initialized data associated the symbol.

Programming Tools and Interfaces
Creating and Defining Symbols at Link-Edit Time

¦ Copyright IBM Corp. 1985, 1991
5.10.10 - 2

 5.10.11 Allocating a Section into Named Memory

 It is possible to specify that a section be linked (somewhere) within a
 specific named memory (as previously specified on a MEMORY directive.)
 The > notation is borrowed from the redirected output concept.

 For example,

 MEMORY
 {
 mem1: o=0x000000 1=0x10000
 mem2 (RW): o=0x020000 1=0x40000
 mem3 (RW): o=0x070000 1=0x40000
 mem1: o=0x120000 1=0x04000
 }

 SECTIONS

 {
 outsec1: { f1.o(.data) } > mem1
 outsec2: { f2.o(.data) } > mem3
 }

 This directs the link editor to place outsec1 anywhere within the memory
 area named mem1 (somewhere within the address range 0x0-0FFFF or
 0x120000-0x123FF). The outsec2 is to be placed somewhere in the address
 range 0x70000-0xAFFFF.

Programming Tools and Interfaces
Allocating a Section into Named Memory

¦ Copyright IBM Corp. 1985, 1991
5.10.11 - 1

 5.10.12 Initialized Section Holes or .bss Sections

 When holes are created within a section (as in the example in "Link Editor
 Command Language" in topic 5.10), the link editor normally puts bytes of
 zero as fill. By default, .bss sections are not initialized at all; that
 is, no initialized data (not even zeroes) is generated for any .bss
 section by the assembler nor supplied by the link editor.

 Initialization options can be used in a SECTIONS directive to set such
 holes or output .bss sections to an arbitrary 2-byte pattern. Such
 initialization options apply only to .bss sections or holes. As an
 example, an application might want a non-initialized data table to be
 initialized to a constant value without recompiling the .o file or a hole
 in the text area to be filled with a transfer to an error routine.

 Either specific areas within an output section or the entire output
 section may be specified as being initialized. However, because no text
 is generated for a non-initialized .bss section, if part of such a section
 is initialized, then the entire section is initialized. Therefore, if a
 .bss section is to be combined with a .text or data section (both of which
 are initialized) or if part of an output .bss section is to be
 initialized, then one of the following will be true:

 � Explicit initialization options must be used to initialize all .bss
 sections in the output section.

 � The link editor will use the default fill value to initialize all .bss
 sections in the output section.

 Consider the following link editor ifile:

 SECTIONS
 {
 secl:
 {
 fl.o
 .=+0x200;
 f2.o (.text)
 } =0xDFFF
 sec2:
 {
 f1.o (.bss)
 f2.o (.bss) = 0x1234
 }
 sec3:
 {
 f3.o (.bss)
 ...
 } = 0xFFFF
 sec4:
 {
 f4.o (.bss)
 }
 }

 In the preceding example, the 0x200 byte hole in section sec1 is filled
 with the value 0xDFFF. In section sec2 f1.o(.bss) is initialized to the
 default fill value of 0x00, and f2.o(.bss) is initialized to 0x1234. All
 .bss sections within sec3 as well as all holes are initialized to 0xFFFF.
 Section sec4 is not initialized; that is, no data is written to the object

Programming Tools and Interfaces
Initialized Section Holes or .bss Sections

¦ Copyright IBM Corp. 1985, 1991
5.10.12 - 1

 file for this section.

Programming Tools and Interfaces
Initialized Section Holes or .bss Sections

¦ Copyright IBM Corp. 1985, 1991
5.10.12 - 2

 5.11 Notes and Special Considerations

 Subtopics
 5.11.1 Changing the Entry Point
 5.11.2 Use of Archive Libraries
 5.11.3 Dealing with Holes in Physical Memory
 5.11.4 Allocation Algorithm
 5.11.5 Incremental Link Editing
 5.11.6 DSECT, COPY, and NOLOAD Sections
 5.11.7 Output File Blocking
 5.11.8 Non-relocatable Input Files
 5.11.9 Syntax Diagram for Input Directives

Programming Tools and Interfaces
Notes and Special Considerations

¦ Copyright IBM Corp. 1985, 1991
5.11 - 1

 5.11.1 Changing the Entry Point

 The a.out header contains a field for the (primary) entry point of the
 file. This field is set using one of the following rules (listed in the
 order they are applied):

 1. The value of the symbol "_start", if present, is used.

 2. The value of the symbol "_main", if present, is used.

 3. The value zero is used.

 Thus, an explicit entry point can be assigned to this a.out header field
 by using an assignment instruction in an ifile of the form:

 _start = expression;

 If the link editor is called through cc, a startup routine is
 automatically linked in. Then, when the program is executed, the exit
 system call is called after the main routine finishes to close file
 descriptors and do other cleanup. Therefore, you must be careful when
 calling the link editor directly or when changing the entry point. You
 must supply the startup routine or make certain that the program always
 calls exit rather than falling through the end. Otherwise, the program
 will dump core.

Programming Tools and Interfaces
Changing the Entry Point

¦ Copyright IBM Corp. 1985, 1991
5.11.1 - 1

 5.11.2 Use of Archive Libraries

 Each member of an archive library (such as, libc.a) is a complete object
 file and usually consists of the standard three sections:

 � .text
 � .data
 � .bss

 Archive libraries are created through the use of the ar command from
 object files generated by running cc or as.

 An archive library is always processed using selective inclusion; only
 those members that resolve existing undefined symbol references are taken
 from the library for link editing.

 Libraries can be placed both inside and outside section definitions. In
 both cases, a member of the library is included for linking whenever:

 � There exists a reference to a symbol defined in that member

 � The reference is found by the link editor prior to the actual scannin
 of the library.

 When a library member is included by searching the library inside a
 SECTIONS directive, all input sections from the member are included in the
 output section being defined. When a library member is included by
 searching the library outside of a SECTIONS directive, all input sections
 from the member are included into the output section with the same name.
 That is, the .text section of the member goes into .data, the .bss section
 of the member into .bss, and so on. If necessary, new output sections are
 defined to provide a place to put the input sections.

 It is important to note the following:

 1. Specific members of a library cannot be referenced explicitly in an
 ifile.

 2. The default rules for the placement of members and sections cannot be
 overridden when they apply to archive library members.

 The -l option is a shorthand notation for specifying an input file coming
 from a predefined set of directories and having a predefined name. By
 convention, such files are archive libraries but they do no have to be.
 Furthermore, archive libraries can be specified without using the -l
 option by simply giving the full or relative path name.

 The ordering of archive libraries is important because to extract a member
 from the library it must satisfy a reference that is known to be
 unresolved at the time the library is searched. Archive libraries can be
 specified more than once and are searched every time they are encountered.
 Archive files have a symbol table at the beginning of the archive. The
 link editor will cycle through this symbol table until it has determined
 that it cannot resolve any more references from that library.

 Consider the following example:

 1. The input file file1.o and file2.o each contain a reference to the
 external function FCN.

Programming Tools and Interfaces
Use of Archive Libraries

¦ Copyright IBM Corp. 1985, 1991
5.11.2 - 1

 2. Input file1.o contains a reference to symbol ABC.

 3. Input file2.o contains a reference to symbol XYZ.

 4. Library liba.a, member 0, contains a definition of XYZ.

 5. Library libc.a, member 0, contains a definition of ABC.

 6. Both libraries have a member 1 that defines FCN.

 If you enter the ld command this way:

 ld file1.o -la file2.o -lc

 then the FCN references are satisfied by liba.a, member 1, ABC is obtained
 from libc.a, member 0, and XYZ is obtained from liba.a, member 0.

 If you enter the ld command this way:

 ld file1.o file2.o -lc -la

 then the FCN references are satisfied by libc.a, member 1, ABC is obtained
 from libc.a, member 0, and XYZ is obtained from liba.a, member 0.

 The -u option is used to force the linking of library members when the
 link-edit run does not contain an actual external reference to the
 members. For example,

 ld -u rout1 -la

 creates an undefined symbol called rout1 in the link editor's global
 symbol table. If any member of library liba.a defines this symbol, that
 member (and perhaps other members as well) is extracted. Without the -u
 option, there would have been no trigger to cause the link editor to
 search the archive library.

Programming Tools and Interfaces
Use of Archive Libraries

¦ Copyright IBM Corp. 1985, 1991
5.11.2 - 2

 5.11.3 Dealing with Holes in Physical Memory

 When memory configurations are defined such that non-configured areas
 exist in the virtual memory, each application or user must assume the
 responsibility of forming output sections that will fit into memory. For
 example, assume that memory is configured as follows:

 MEMORY
 {
 mem1: o = 0x00000 1 = 0x02000
 mem2: o = 0x40000 1 = 0x05000
 mem3: o = 0x20000 1 = 0x10000
 }

 The files f1.o, f2.o, . . .fn.o each contain the standard three sections
 .text, .data, and .bss. Now suppose the combined .text section is 0x12000
 bytes. There is no configured area of memory in which this section can be
 placed. Appropriate directives must be supplied to break up the .text
 output section so the link editor may do allocation. For example:

 SECTIONS
 {
 txt1:
 {
 f1.o (.text)
 f2.o (.text)
 f3.o (.text)
 }
 txt2:
 {
 f4.o (.text)
 f5.o (.text)
 f6.o (.text)
 }
 etc.
 }

Programming Tools and Interfaces
Dealing with Holes in Physical Memory

¦ Copyright IBM Corp. 1985, 1991
5.11.3 - 1

 5.11.4 Allocation Algorithm

 An output section is formed either as a result of a SECTIONS directive or
 by combining input sections of the same name. An output section can have
 zero or more input sections comprising it. After the composition of an
 output section is determined, it must then be allocated into configured
 virtual memory. The link editor uses an algorithm that attempts to
 minimize fragmentation of memory thereby increasing the possibility that a
 link-edit run will be able to allocate all output sections within the
 specified virtual memory configuration. The algorithm proceeds as
 follows:

 1. Any output sections for which explicit binding addresses were
 specified are allocated.

 2. Any output sections to be included in a specific named memory are
 allocated. In both this and the succeeding step, each output section
 is placed into the first available space within the (named) memory
 with alignment taken into consideration.

 3. Output sections not handled by one of the above steps are allocated.

 If all memory is contiguous and configured (the default case), and no
 SECTIONS directives are given, then output sections are allocated in the
 order they appear to the link editor, normally .text. .data, .bss.
 Otherwise, output sections are allocated in the order they were defined or
 made known to the link editor into the first available space they fit.

Programming Tools and Interfaces
Allocation Algorithm

¦ Copyright IBM Corp. 1985, 1991
5.11.4 - 1

 5.11.5 Incremental Link Editing

 As previously mentioned, the output of the link editor can be used as an
 input file to subsequent link-edit runs provided that the relocation
 information is retained (-2 option). Large applications may find it
 desirable to partition their C programs into subunits, link each subunit
 independently, and then link edit the entire application. This is shown
 in the following example.

 Step 1
 ld -r -o outfile1 ifile1

 /* ifile1 */
 SECTIONS
 {
 sul:
 {
 f1.o
 f2.o
 ...
 fn.o
 }
 }

 Step 2:
 ld -r -o outfile2 ifile2

 /* ifile2 */
 SECTIONS
 {
 su2
 {
 g1.o
 g2.o
 ...
 gn.o
 }
 }

 Step 3:
 ld -m -o final.out outfile1 outfile2

 By judiciously forming subunits, applications may achieve a form of
 incremental link editing whereby it is necessary to re-link only a portion
 of the total link edit when a few programs are recompiled.

 To apply this technique, there are two rules that you must adhere to:

 Intermediate link edits should contain only SECTIONS declarations and
 be concerned only with the formation of output sections from input
 files and input sections. No binding of output sections should be
 done in these runs.

 � All allocation and memory directives, as well as any assignmen
 statements, are included only in the final link-edit run.

Programming Tools and Interfaces
Incremental Link Editing

¦ Copyright IBM Corp. 1985, 1991
5.11.5 - 1

 5.11.6 DSECT, COPY, and NOLOAD Sections

 Sections may be given a type in a section definition shown in the
 following example:

 SECTIONS
 { name1 0x200000 (DSECT) : {filel.o}
 name2 0x400000 (COPY) : {file1.o}
 names 0x600000 (NOLOAD) : {file1.o}
 }

 The DSECT option creates what is called a dummy section. A dummy section
 has the following properties:

 � It does not participate in the memory allocation for output sections
 As a result, it does not take up any memory and does not show up in
 the memory map (the -m option) generated by the link editor.

 � It may overlay other output sections and even non-configured memory
 DSECTs may overlay other DSECTs.

 � The global symbols defined within the dummy section are relocate
 normally. That is, they appear in the output file's symbol table with
 the same value they would have had it the DSECT were actually loaded
 at its virtual address. DSECT-defined symbols may be referenced by
 other input sections. Undefined external symbols found within a DSECT
 cause specified archive libraries to be searched and any members which
 define such symbols are link edited normally (not in the DSECT or as a
 DSECT).

 � None of the section contents, relocation information, or line numbe
 information associated with the section is written to the output file.

 In the preceding example, none of the sections from file1.o are
 allocated, but all symbols are relocated as though the sections were
 link edited at the specific address. Other sections could refer to
 any of the global symbols and they are resolved correctly.

 A copy section created by the COPY option is similar to a dummy section.
 The only difference between the two is that the contents of a copy section
 and all associated information is written to the output file.

 A section with the type of NOLOAD differs in only one respect from a
 normal output section:

 � Its text and/or data is not written to the output file

 A NOLOAD section is allocated virtual space, appears in the memory map,
 and so on.

Programming Tools and Interfaces
DSECT, COPY, and NOLOAD Sections

¦ Copyright IBM Corp. 1985, 1991
5.11.6 - 1

 5.11.7 Output File Blocking

 The BLOCK option (applied to any output section or GROUP directive) is
 used to direct the link editor to align a section at a specified byte
 offset in the output file. It has no effect on the address at which the
 section is allocated nor on any part of the link-edit process. It is only
 used to adjust the physical position of the section in the output file.

 SECTIONS
 {
 .text BLOCK(0x200) : { }
 .data ALIGN(0x20000) BLOCK(0x200) : { }
 }

 With this SECTIONS directive, the link editor ensures that each section,
 .text and .data is physically written at a file offset which is a multiple
 of 0x200 (at an offset of 0, 0x200, 0x400,..., and so on in the file).

Programming Tools and Interfaces
Output File Blocking

¦ Copyright IBM Corp. 1985, 1991
5.11.7 - 1

 5.11.8 Non-relocatable Input Files

 If a file produced by the link editor is intended to be used in a
 subsequent link-edit run, the first link-edit run must have the -r option
 set. This preserves relocation information and permits the sections of
 the file to be relocated by the subsequent link-edit run.

 When the link editor detects an input file that does not have relocation
 or symbol table information, a warning message is given. Such information
 can be removed by the link editor (see the -s option in the part "Link
 Editor Command Language" in topic 5.10) or by the strip command. However,
 the link-edit run continues using the non-relocatable input file.

 For such a link edit to be successful (to actually and correctly link edit
 all input files, relocate all symbols, resolve unresolved references, and
 so on), two conditions on the non-relocatable input files must be met:

 � Each input file must have no unresolved external references

 � Each input file must be bound to the exact same virtual address as i
 was bound to in the link-edit run that created it.

 Note: If these two conditions are not met for all non-relocatable input
 files, no error messages are issued. Therefore, you must use extreme care
 when supplying such input files to the link editor.

Programming Tools and Interfaces
Non-relocatable Input Files

¦ Copyright IBM Corp. 1985, 1991
5.11.8 - 1

 5.11.9 Syntax Diagram for Input Directives

 +--+
 ¦ Figure 5-2. Syntax Diagram for Input Directives ¦
 +--¦
 ¦ Directives ¦ -> ¦ Expanded Directives ¦
 +--------------------+--------+--¦
 ¦ <file> ¦ -> ¦ { <cmd> } ¦
 +--------------------+--------+--¦
 ¦ <cmd> ¦ -> ¦ <memory> ¦
 ¦ ¦ -> ¦ <sections> ¦
 ¦ ¦ -> ¦ <assignment> ¦
 ¦ ¦ -> ¦ <filename> ¦
 ¦ ¦ -> ¦ <flags> ¦
 +--------------------+--------+--¦
 ¦ <memory> ¦ -> ¦ MEMORY { <memory_spec> ¦
 ¦ ¦ ¦ {[,] <memory_spec> }} ¦
 +--------------------+--------+--¦
 ¦ <memory_spec> ¦ -> ¦ <name> [<attributes>] : ¦
 ¦ ¦ ¦ <origin_spec> [,] <length_spec> ¦
 +--------------------+--------+--¦
 ¦ <attributes> ¦ -> ¦ ({ R|W |X|I }) ¦
 +--------------------+--------+--¦
 ¦ <origin_spec> ¦ -> ¦ <origin> = <long> ¦
 +--------------------+--------+--¦
 ¦ <lenth_spec> ¦ -> ¦ <length> = <long> ¦
 +--------------------+--------+--¦
 ¦ <origin> ¦ -> ¦ ORIGIN|o|org|origin ¦
 +--------------------+--------+--¦
 ¦ <length> ¦ -> ¦ LENGTH|l|len|length ¦
 +--------------------+--------+--¦
 ¦ <sections> ¦ -> ¦ SECTIONS { { <sec_or_group> } } ¦
 +--------------------+--------+--¦
 ¦ <sec_or_group> ¦ -> ¦ <section>|<group>|<library> ¦
 +--------------------+--------+--¦
 ¦ <group> ¦ -> ¦ GROUP <group_options> : { ¦
 ¦ ¦ ¦ <section_list> } [<mem_spec>] ¦
 +--------------------+--------+--¦
 ¦ <section_list> ¦ -> ¦ <section> { [,] <section> } ¦
 +--------------------+--------+--¦
 ¦ <section> ¦ -> ¦ <name> <sec_options> : { ¦
 ¦ ¦ ¦ <statement_list> } ¦
 ¦ ¦ ¦ [<fill>] [<mem_spec>] ¦
 +--------------------+--------+--¦
 ¦ <group_options> ¦ -> ¦ [<addr>] [<align_option>] ¦
 +--------------------+--------+--¦
 ¦ <sec_options> ¦ -> ¦ [<addr>] [<align_option>] ¦
 ¦ ¦ ¦ [<block_option>] [<type_option>] ¦
 +--------------------+--------+--¦
 ¦ <addr> ¦ -> ¦ <long> ¦
 +--------------------+--------+--¦
 ¦ <align_option> ¦ -> ¦ <align> (<long>) ¦
 +--------------------+--------+--¦
 ¦ <align> ¦ -> ¦ ALIGN|align ¦
 +--------------------+--------+--¦
 ¦ <block_option> ¦ -> ¦ <block> (<long>) ¦
 +--------------------+--------+--¦
 ¦ <block> ¦ -> ¦ BLOCK|block ¦
 +--------------------+--------+--¦
 ¦ <type_option> ¦ -> ¦ (DSECT)|(NOLOAD)|(COPY) ¦

Programming Tools and Interfaces
Syntax Diagram for Input Directives

¦ Copyright IBM Corp. 1985, 1991
5.11.9 - 1

 +--------------------+--------+--¦
 ¦ <fill> ¦ -> ¦ =<long> ¦
 +--------------------+--------+--¦
 ¦ <mem_spec> ¦ -> ¦ > <name> ¦
 ¦ ¦ -> ¦ > <attributes> ¦
 +--------------------+--------+--¦
 ¦ <statement> ¦ -> ¦ <file_name> [(<name_list>)] ¦
 ¦ ¦ ¦ [<fill>] ¦
 ¦ ¦ -> ¦ <library> ¦
 ¦ ¦ -> ¦ <assignment> ¦
 +--------------------+--------+--¦
 ¦ <name_list> ¦ -> ¦ <name> { [,] <name> } ¦
 +--------------------+--------+--¦
 ¦ <library> ¦ -> ¦ -l<name> ¦
 +--------------------+--------+--¦
 ¦ <assignment> ¦ -> ¦ <lside> <assign_op> <expr> ¦
 ¦ ¦ ¦ <end> ¦
 +--------------------+--------+--¦
 ¦ <lside> ¦ -> ¦ <name>|. ¦
 +--------------------+--------+--¦
 ¦ <assign_op> ¦ -> ¦ =|+=|-=|*=|/ = ¦
 +--------------------+--------+--¦
 ¦ <end> ¦ -> ¦ ;|. ¦
 +--------------------+--------+--¦
 ¦ <expr> ¦ -> ¦ <expr> <binary_op> <expr> ¦
 ¦ ¦ -> ¦ <term> ¦
 +--------------------+--------+--¦
 ¦ <binary_op> ¦ -> ¦ *|/|% ¦
 ¦ ¦ -> ¦ +|- ¦
 ¦ ¦ -> ¦ >>|<< ¦
 ¦ ¦ -> ¦ = =|!=|>|<|<=|>= ¦
 ¦ ¦ -> ¦ & ¦
 ¦ ¦ -> ¦ | ¦
 ¦ ¦ -> ¦ && ¦
 ¦ ¦ -> ¦ || ¦
 +--------------------+--------+--¦
 ¦ <term> ¦ -> ¦ <long> ¦
 ¦ ¦ -> ¦ <name> ¦
 ¦ ¦ -> ¦ <align> (<term>) ¦
 ¦ ¦ -> ¦ (<expr) ¦
 ¦ ¦ -> ¦ <unary_op> <term> ¦
 +--------------------+--------+--¦
 ¦ <unary_op> ¦ -> ¦ !|- ¦
 +--------------------+--------+--¦
 ¦ <flags> ¦ -> ¦ -e<wht_space> <name> ¦
 ¦ ¦ -> ¦ -f<wht_space> <long> ¦
 ¦ ¦ -> ¦ -h<wht_space> <long> ¦
 ¦ ¦ -> ¦ -l<name> ¦
 ¦ ¦ -> ¦ -m ¦
 ¦ ¦ -> ¦ -o<wht_space> <name> ¦
 ¦ ¦ -> ¦ -r ¦
 ¦ ¦ -> ¦ -s ¦
 ¦ ¦ -> ¦ -t ¦
 ¦ ¦ -> ¦ -u<wht_space> <name> ¦
 ¦ ¦ -> ¦ -z ¦
 ¦ ¦ -> ¦ -H ¦
 ¦ ¦ -> ¦ -F ¦
 ¦ ¦ -> ¦ -L<pathname> ¦
 ¦ ¦ -> ¦ -M ¦
 ¦ ¦ -> ¦ -N ¦

Programming Tools and Interfaces
Syntax Diagram for Input Directives

¦ Copyright IBM Corp. 1985, 1991
5.11.9 - 2

 ¦ ¦ -> ¦ -S ¦
 ¦ ¦ -> ¦ -V ¦
 ¦ ¦ -> ¦ -VS<wht_space> <long> ¦
 ¦ ¦ -> ¦ -a ¦
 ¦ ¦ -> ¦ -x ¦
 +--------------------+--------+--¦
 ¦ <name> ¦ -> ¦ Any valid symbol name. ¦
 +--------------------+--------+--¦
 ¦ <long> ¦ -> ¦ Any valid long integer constant. ¦
 +--------------------+--------+--¦
 ¦ <wht_space> ¦ -> ¦ Blanks, tabs, and new-lines. ¦
 +--------------------+--------+--¦
 ¦ <filename> ¦ -> ¦ Any valid AIX/370 filename. This may ¦
 ¦ ¦ ¦ include a full or partial pathname. ¦
 +--------------------+--------+--¦
 ¦ <pathname> ¦ -> ¦ Any valid AIX/370 pathname (full or ¦
 ¦ ¦ ¦ partial). linking ld command ¦
 +--+

Programming Tools and Interfaces
Syntax Diagram for Input Directives

¦ Copyright IBM Corp. 1985, 1991
5.11.9 - 3

 6.0 Chapter 6. PS/2 Disassembler

 Subtopics
 6.1 CONTENTS
 6.2 About This Chapter
 6.3 Introduction
 6.4 Using the Disassembler

Programming Tools and Interfaces
Chapter 6. PS/2 Disassembler

¦ Copyright IBM Corp. 1985, 1991
6.0 - 1

 6.1 CONTENTS

Programming Tools and Interfaces
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
6.1 - 1

 6.2 About This Chapter

 This chapter discusses how to invoke the disassembler and how to
 disassemble previously compiled AIX PS/2 C, VS Pascal, or VS FORTRAN
 programs. This chapter also discusses the menus that can be used to
 define options for the disassembler. The examples shown in this chapter
 use AIX PS/2 C programs.

Programming Tools and Interfaces
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
6.2 - 1

 6.3 Introduction

 Note: The disassembler only works with 80386 object files compiled on a
 PS/2. It does not read or process 370 object files.

 The disassembler produces assembly language listings for programs
 previously compiled by AIX PS/2 C, VS Pascal, or VS FORTRAN. With the
 disassembler, binary code modules created by high-level languages can be
 translated into their assembly language equivalents, with symbolic
 references to external entry points.

 The assembly language output may optionally include:

 � Absolute address listin

 � Hex code listin

 � User types listin

 � User variable listin

 � Assembly language source format accepted by the assembler (se
 Chapter 3, "PS/2 Assembler").

 � Labels indicating high-level language statement numbers

 Note: These labels are not generated when compile-time optimization
 is used. For more information on command line options, refer to the
 appropriate language Users Guide.

 The disassembler is flexible and easy to use. It can be executed in a
 variety of ways to suit your needs.

 Subtopics
 6.3.1 Notational Conventions
 6.3.2 Preparation

Programming Tools and Interfaces
Introduction

¦ Copyright IBM Corp. 1985, 1991
6.3 - 1

 6.3.1 Notational Conventions

 The following notational conventions are used in this chapter:

 � Information that is optional is enclosed in brackets ([]). Bracket
 enclosed in quotation marks specify actual bracket characters.

 � Items in bold print must be typed exactly as shown.

 � Variable information that the user must supply is in italic.

Programming Tools and Interfaces
Notational Conventions

¦ Copyright IBM Corp. 1985, 1991
6.3.1 - 1

 6.3.2 Preparation

 The AIX PS/2 compilers can optionally generate additional symbolic
 information. To generate this symbolic information for a AIX PS/2 C
 program, compile the program's source code as follows:

 cc -c d+ Cmain.c

 This will produce a file called Cmain.o, which will consist of object code
 resulting from Cmain.c, plus additional symbolic information generated
 from Cmain.c as a result of the d+ option.

Programming Tools and Interfaces
Preparation

¦ Copyright IBM Corp. 1985, 1991
6.3.2 - 1

 6.4 Using the Disassembler

 The disassembler can be executed in the following ways:

 � With options supplied on the command line, o

 � With options supplied via the menu system

 The disassembler can operate on either the object file (Cmain.o) or the
 executable file (Cmain). Although the symbolic information generated as a
 result of the d+ option is not necessary, the function of the disassembler
 becomes limited without it. The disassembler uses this information to:

 � Generate the user type declarations

 � Generate the user variable location information

 � Generate labels at the start of each user statement

 � Allow the user to disassemble a single entry point (as well as th
 entire file).

 � Produce unique symbol names so that the output from the disassemble
 can optionally be reassembled.

 If an executable file is made up from two or more separately compiled
 units, the following situations are possible:

 � Each compilation unit was compiled with d+ and each .o includes
 associated symbolic information. This is the normal case. Full
 symbolic information is supported for all entry points.

 � Not every o file includes associated d+ symbolic information. This
 could occur when some module was not complied with d+. In this case,
 full symbolic information is limited to the entry points contained in
 the modules which have associated d+ information.

 Subtopics
 6.4.1 From the Command Line
 6.4.2 Using Menus
 6.4.3 VS Pascal Example
 6.4.4 VS FORTRAN Example

Programming Tools and Interfaces
Using the Disassembler

¦ Copyright IBM Corp. 1985, 1991
6.4 - 1

 6.4.1 From the Command Line

 The disassembler is invoked from the command line using one or more
 options. The defaults for the disassembler are as follows:

 � Output is displayed to the scree

 � All user entry points are disassemble

 � The output cannot be reassemble

 � Address listing is generate

 � Hex code listing is generate

 � User type listing is generate

 � User variable listing is generate

 � Warning messages are printed

 If you do not want to use the defaults, you must specify options.

 The format for running the disassembler with options supplied on the
 command line is:

 +--- syntax ---+
 ¦ ¦
 ¦ dis [options] filename[.o] ¦
 ¦ ¦
 +--+

 where:

 filename[.o] Specifies the file to be disassembled. The file to be
 disassembled can be either the executable file
 (filename) or the object file (filename.o). A
 directory path may be specified with either a filename
 or a filename[.o] as shown below:

 /usr/bin/filename

 option May be any of the following:

 -e entry-point name Specifies the entry point to be disassembled. An
 entry point is the name of a function, procedure,
 subroutine, program, or FORTRAN entry statement in the
 user's program. The entry point name is case
 sensitive. All Pascal and FORTRAN entry point names
 must be specified in lower case. If you use this
 option, you cannot use the -r option to reassemble the
 code.

 -r The output of the disassembled program can be
 assembled using the Assembler. Only object files are
 accepted with this switch. An executable file will be
 rejected with the error message:

 CANNOT DISASSEMBLE AN EXECUTABLE FOR REASSEMBLY

Programming Tools and Interfaces
From the Command Line

¦ Copyright IBM Corp. 1985, 1991
6.4.1 - 1

 The entire file is always disassembled (the -e switch
 is ignored). The output does not contain:

 � Address listing

 � Hex code listing

 � User type listing

 � User variable listing.

 Disassembled program instructions can be modified in
 any way, but disassembled data can only be modified
 with no addition or deletion.

 You cannot use this option with the -e options.

 This option is not available through the menu system.

 -o filename Specifies the output file for disassembled code.

 -w Suppresses the displaying of warning messages. This
 option is not available through the menu system.

 Note: When the disassembler is invoked from the command line, it by
 default will write to standard output. Therefore, if you wish the the
 output to go to a file, you must redirect standard output as shown in the
 following example:

 dis -r myfile.o > myfile.s

 Or, you can use the -o option as shown in this example:

 dis -r myfile.o -o myfile.s

 In the above examples, the commands will disassemble all the user entry
 points in myfile.o and write the output to myfile.s. The myfile.s file
 can be reassembled.

 Subtopics
 6.4.1.1 Example

Programming Tools and Interfaces
From the Command Line

¦ Copyright IBM Corp. 1985, 1991
6.4.1 - 2

 6.4.1.1 Example

 The following code is contained in file Cmain.c:

 void sub1 ()
 {
 printf (\%s "n", "Entered sub1");
 }

 void sub2 ()
 {
 printf (\%s "n", "Entered sub2");
 }

 int main (argc, argv)
 int argc;
 char *argv[];
 {
 if (*argv[1]== '1')
 sub1 ();
 else
 sub2 ();
 exit (0);
 }

 To compile the C program contained in the file Cmain.c, enter:

 cc -c d+ Cmain.c

 To disassemble the object file, enter:

 dis Cmain.o

 The disassembled output will resemble:

 ENTRY POINT: Cmain.sub1

 TYPE LIST:
 NONE.

 VARIABLE LIST:
 NONE.

 sub1:
 %_sub1_1:
 0x0: 55 pushl %ebp
 0x1: 8b ec movl %esp, %ebp
 %_sub1_2:
 0x3: 68 5c 00 00 00 pushl $%_DohrcR
 0x8: 68 6a 00 00 00 pushl $%_DohrcR + 0xe
 0xd: e8 ee ff ff ff call printf
 0x12: 83 c4 08 addl $8, %esp
 %_sub1_3:
 %_sub1_exit:
 0x15: c9 leave
 0x16: c3 ret

 ENTRY POINT: Cmain.sub2

Programming Tools and Interfaces
Example

¦ Copyright IBM Corp. 1985, 1991
6.4.1.1 - 1

 TYPE LIST:
 NONE.

 VARIABLE LIST:
 NONE.

 sub2:
 %_sub2_1:
 0x18: 55 pushl %ebp
 0x19: 8b ec movl %esp, %ebp
 %_sub2_2:
 0x1b: 68 70 00 00 00 pushl $%_DohrcR + 0x14
 0x20: 68 7e 00 00 00 pushl $%_DohrcR + 0x22
 0x25: e8 d6 ff ff ff call printf
 0x2a: 83 c4 08 addl $8, %esp
 %_sub2_3:
 %_sub2_exit:
 0x2d: c9 leave
 0x2e: c3 ret

 ENTRY POINT: Cmain.main -- returns: signed 4 byte INT

 TYPE LIST:
 10 = POINTER to 8
 8 = POINTER to unsigned 1 byte CHARACTER

 VARIABLE LIST:
 argc : signed 4 byte INT
 located in %ebp+0x8
 argv : 10
 located in %ebp+0xc

 main:
 %_main_1:
 0x30: 55 pushl %ebp
 0x31: 8b ec movl %esp, %ebp
 %_main_2:
 0x33: 8b 45 0c movl 0xc(%ebp), %eax
 0x36: 8b 40 04 movl 0x4(%eax), %eax
 0x39: 0f b6 00 movzbl (%eax), %eax
 0x3c: 83 f8 31 cmpl $49, %eax
 0x3f: 75 07 jnz %_main_4
 %_main_3:
 0x41: e8 ba ff ff ff call sub1
 0x46: eb 05 jmp %_main_5
 %_main_4:
 0x48: e8 cb ff ff ff call sub2
 %_main_5:
 0x4d: 68 00 00 00 00 pushl $0
 0x52: e8 a9 ff ff ff call exit
 0x57: 83 c4 04 addl $4, %esp
 %_main_6:
 %_main_exit:
 0x5a: c9 leave
 0x5b: c3 ret

 GLOBAL's OWNER: Cmain

Programming Tools and Interfaces
Example

¦ Copyright IBM Corp. 1985, 1991
6.4.1.1 - 2

 TYPE LIST:
 NONE.

 VARIABLE LIST:
 NONE.

 If the previous example was disassembled using the -e option, that is:

 dis -e sub1 Cmain.o

 only the sub1 subroutine would be disassembled. The disassembled output
 cannot be reassembled when this option is used.

 Note: When the optimization option is used, statement number labels are
 not printed.

Programming Tools and Interfaces
Example

¦ Copyright IBM Corp. 1985, 1991
6.4.1.1 - 3

 6.4.2 Using Menus

 The disassembler can be invoked by the command:

 dis

 The disassembler prompts you through the possible options using a series
 of screens. These screens allow the user to utilize many functions of the
 disassembler in a simplified form.

 +--+
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ *** INPUT FILE *** ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ Enter the name of the file you want to disassemble ¦
 ¦ (or q to quit): ¦
 ¦ ==>_ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+

 The disassembler verifies that the submitted program is a valid binary
 file. It then reads the corresponding d+ information. If no
 corresponding d+ information is found, the disassembler issues a warning
 message and prompts for the output destination. Without d+ information,
 the disassembled file will have very limited symbolic capabilities and the
 result cannot be reassembled. When valid d+ information is found, the
 next menu displayed is:

 +--+
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ Do you want to reassemble the output (y or n): ¦
 ¦ ==>_ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+

 If the input file is an object file (.o file), answering "yes" in the
 above screen causes the entire file to to be disassembled. A "no" answer
 will display the following menu.

 +--+
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ *** ENTRY POINT *** ¦
 ¦ ¦

Programming Tools and Interfaces
Using Menus

¦ Copyright IBM Corp. 1985, 1991
6.4.2 - 1

 ¦ Enter the number corresponding to the entry point you want to disassemble ¦
 ¦ (or q to quit). ¦
 ¦ ¦
 ¦ 0 ... ALL USER ENTRY POINTS in Cmain.o ¦
 ¦ 1 ... Cmain.main ¦
 ¦ 2 ... Cmain.sub1 ¦
 ¦ 3 ... Cmain.sub2 ¦
 ¦ ¦
 ¦ ¦
 ¦ ==>_ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+

 Note: Only the entry points defined in modules compiled with the d+ flag
 will be displayed.

 Select an Entry Point to start disassembling the submitted program. The
 final menu is displayed:

 +--+
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ Enter the name of the output file, or press Enter to display the output ¦
 ¦ on the screen. ¦
 ¦ ==>_ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+

 After you have completed the disassembling, you will not be returned to
 the main menu screen. You can either disassemble another file, or you can
 enter q (Quit) to exit.

Programming Tools and Interfaces
Using Menus

¦ Copyright IBM Corp. 1985, 1991
6.4.2 - 2

 6.4.3 VS Pascal Example

 The following code is contained in the file Pmain.p:

 PROGRAM example (input,output);

 PROCEDURE sub1;

 BEGIN
 WRITELN ('entered sub1');
 END;

 PROCEDURE sub2;

 BEGIN
 WRITELN ('entered sub2');
 END;

 BEGIN
 IF (argv [1]^[1] = '1')
 THEN
 sub1
 ELSE
 sub2;
 END.

 To compile the VS Pascal program contained in the file Pmain.p, enter:

 cc d+ Pmain.p -o Pmain

 To disassemble the executable file, enter:

 dis Pmain

 The disassembled output will resemble:

 ENTRY POINT: example.sub1

 TYPE LIST:
 NONE.

 VARIABLE LIST:
 NONE.

 sub1:
 %_sub1_1:
 0x110: 55 pushl %ebp
 0x111: 8b ec movl %esp, %ebp
 %_sub1_2:
 0x113: 68 fe ff ff ff pushl $-2
 0x118: ff 35 a4 34 40 00 pushl 0x4034a4
 0x11e: 68 c9 0d 40 00 pushl $4197833
 0x123: e8 f4 11 00 00 call r_openw
 0x128: 83 c4 0c addl $12, %esp
 0x12b: e8 38 01 00 00 call r_iochk
 0x130: ff 35 a4 34 40 00 pushl 0x4034a4
 0x136: 68 b8 0d 40 00 pushl $4197816
 0x13b: 68 00 00 00 00 pushl $0

Programming Tools and Interfaces
VS Pascal Example

¦ Copyright IBM Corp. 1985, 1991
6.4.3 - 1

 0x140: e8 83 01 00 00 call r_wsv
 0x145: 83 c4 0c addl $12, %esp
 0x148: e8 1b 01 00 00 call r_iochk
 0x14d: ff 35 a4 34 40 00 pushl 0x4034a4
 0x153: e8 d4 06 00 00 call r_wln
 0x158: 83 c4 04 addl $4, %esp
 0x15b: e8 08 01 00 00 call r_iochk
 %_sub1_3:
 %_sub1_exit:
 0x160: c9 leave
 0x161: c3 ret

 ENTRY POINT: example.sub2

 TYPE LIST:
 NONE.

 VARIABLE LIST:
 NONE.

 sub2:
 %_sub2_1:
 0x164: 55 pushl %ebp
 0x165: 8b ec movl %esp, %ebp
 %_sub2_2:
 0x167: 68 fe ff ff ff pushl $-2
 0x16c: ff 35 a4 34 40 00 pushl 0x4034a4
 0x172: 68 e9 0d 40 00 pushl $4197865
 0x177: e8 a0 11 00 00 call r_openw
 0x17c: 83 c4 0c addl $12, %esp
 0x17f: e8 e4 00 00 00 call r_iochk
 0x184: ff 35 a4 34 40 00 pushl 0x4034a4
 0x18a: 68 d8 0d 40 00 pushl $4197848
 0x18f: 68 00 00 00 00 pushl $0
 0x194: e8 2f 01 00 00 call r_wsv
 0x199: 83 c4 0c addl $12, %esp
 0x19c: e8 c7 00 00 00 call r_iochk
 0x1a1: ff 35 a4 34 40 00 pushl 0x4034a4
 0x1a7: e8 80 06 00 00 call r_wln
 0x1ac: 83 c4 04 addl $4, %esp
 0x1af: e8 b4 00 00 00 call r_iochk
 %_sub2_3:
 %_sub2_exit:
 0x1b4: c9 leave
 0x1b5: c3 ret

 ENTRY POINT: example

 TYPE LIST:
 NONE.

 VARIABLE LIST:
 NONE.

 example:
 %_example_1:
 0x1b8: e8 33 00 00 00 call .P860421

Programming Tools and Interfaces
VS Pascal Example

¦ Copyright IBM Corp. 1985, 1991
6.4.3 - 2

 0x1bd: 55 pushl %ebp
 0x1be: 8d 2d 50 40 40 00 leal 0x404050, %ebp
 %_example_2:
 0x1c4: a1 a8 34 40 00 movl 0x4034a8, %eax
 0x1c9: 8b 00 movl (%eax), %eax
 0x1cb: 66 0f b6 48 04 movzbw 0x4(%eax), %cx
 0x1d0: 66 83 f9 31 cmpw $49, %cx
 0x1d4: 75 07 jnz %_example_4
 %_example_3:
 0x1d6: e8 35 ff ff ff call sub1
 0x1db: eb 05 jmp %_example_5
 %_example_4:
 0x1dd: e8 82 ff ff ff call sub2
 %_example_5:
 %_example_exit:
 0x1e2: e8 4b 00 00 00 call r_term
 0x1e7: 5d popl %ebp
 0x1e8: e8 46 00 00 00 call r_end
 0x1ed: c3 ret

Programming Tools and Interfaces
VS Pascal Example

¦ Copyright IBM Corp. 1985, 1991
6.4.3 - 3

 6.4.4 VS FORTRAN Example

 The following code is contained in the file Fmain.f:

 subroutine test (i)

 i = i + 2
 entry xyz
 i = i**2
 return
 end

 program example

 integer month, day, year
 common /date/ month,day, year

 month = day + year
 call test(month)
 end

 To compile the VS FORTRAN program contained in the file Fmain.f, enter:

 cc d+ Fmain.f -o Fmain

 To disassemble the executable file, enter:

 dis Fmain

 The disassembled output will resemble:

 ENTRY POINT: test -- returns: signed 4 byte INTEGER

 TYPE LIST:
 NONE.

 VARIABLE LIST:
 i : signed 4 byte INTEGER
 located indirectly in %ebp+0x8

 test:
 0x110: 83 ec 08 subl $8, %esp
 0x113: 66 c7 44 24 02 00 00 movw $0, 0x2(%esp)
 0x11a: 8b 54 24 0c movl 0xc(%esp), %edx
 %_test_1:
 0x11e: 8b 02 movl (%edx), %eax
 0x120: 83 c0 02 addl $2, %eax
 0x123: 89 02 movl %eax, (%edx)
 0x125: eb 0e jmp %_test_3
 xyz:
 %_test_2:
 0x127: 83 ec 08 subl $8, %esp
 0x12a: 8b 54 24 0c movl 0xc(%esp), %edx
 0x12e: 66 c7 44 24 02 01 00 movw $1, 0x2(%esp)
 %_test_3:
 0x135: 8b 02 movl (%edx), %eax
 0x137: 0f af c0 imull %eax, %eax
 0x13a: 89 02 movl %eax, (%edx)

Programming Tools and Interfaces
VS FORTRAN Example

¦ Copyright IBM Corp. 1985, 1991
6.4.4 - 1

 %_test_4:
 %_test_exit:
 0x13c: 66 8b 44 24 02 movw 0x2(%esp), %ax
 0x141: 66 0b c0 orw %ax, %ax
 0x144: 74 0a jz %_label_4
 0x146: 66 83 c0 ff addw $-1, %ax
 0x14a: 75 04 jnz %_label_4
 0x14c: 83 c4 08 addl $8, %esp
 0x14f: c3 ret
 %_label_4:
 0x150: 83 c4 08 addl $8, %esp
 0x153: c3 ret

 ENTRY POINT: example -- returns: 4 byte REAL*4

 TYPE LIST:
 NONE.

 VARIABLE LIST:
 day : signed 4 byte INTEGER
 located in _date_ +0x4
 month : signed 4 byte INTEGER
 located in _date_ +0x0
 year : signed 4 byte INTEGER
 located in _date_ +0x8

 example:
 0x154: e8 57 2c 00 00 call .P860421
 0x159: 55 pushl %ebp
 0x15a: 8b ec movl %esp, %ebp
 0x15c: 68 01 00 00 00 pushl $1
 0x161: e8 3a 09 00 00 call f_8541
 0x166: 83 c4 04 addl $4, %esp
 %_example_1:
 0x169: a1 5c 2d 40 00 movl 0x402d5c, %eax
 0x16e: 03 05 58 2d 40 00 addl 0x402d58, %eax
 0x174: a3 54 2d 40 00 movl %eax, 0x402d54
 %_example_2:
 0x179: 68 54 2d 40 00 pushl $4205908
 0x17e: e8 8d ff ff ff call test
 0x183: 83 c4 04 addl $4, %esp
 %_example_3:
 %_example_exit:
 0x186: e8 41 0b 00 00 call f_rtsfn
 0x18b: e8 62 2c 00 00 call r_term
 0x190: c9 leave
 0x191: e8 5d 2c 00 00 call r_end
 0x196: c3 ret

Programming Tools and Interfaces
VS FORTRAN Example

¦ Copyright IBM Corp. 1985, 1991
6.4.4 - 2

 7.0 Chapter 7. Using the Subroutine Libraries

 Subtopics
 7.1 CONTENTS
 7.2 About This Chapter
 7.3 System Libraries
 7.4 The C Library
 7.5 Run Time Services Library
 7.6 Math Library
 7.7 Shared Libraries

Programming Tools and Interfaces
Chapter 7. Using the Subroutine Libraries

¦ Copyright IBM Corp. 1985, 1991
7.0 - 1

 7.1 CONTENTS

Programming Tools and Interfaces
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
7.1 - 1

 7.2 About This Chapter

 This chapter describes the subroutine libraries that are included with the
 AIX Operating System. It describes the following commonly used libraries:

 � C librar
 � Math librar
 � Run time services librar
 � Shared library

 Refer to AIX Operating System Technical Reference for complete technical
 information about by function within the library.

Programming Tools and Interfaces
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
7.2 - 1

 7.3 System Libraries

 The system libraries are collections of commonly used functions and
 declarations. You can use them in a program to avoid creating the
 functions for each new program. Figure 7-1 lists the system libraries.

 To use the library functions:

 � Include any declarations for the variables that the library routine
 use in the program

 � Link the library routines with the program files after the program i
 compiled, or in the same process using the cc command.

 Note: You should not store your files in the following system libraries
 because you could lose the files if you reinstall or update the AIX
 Operating System. You should instead keep your files in your own separate
 library.

 Figure 7-1. Summary of System Libraries
 Name Path Name cc flag Function

 General C Libraries:

 C library /lib/libc.a Not Common C
 required language
 subroutines for
 file access,
 string
 operations,
 character
 operations,
 memory
 allocation and
 other
 functions.

 Run Time Services /usr/lib/librts.a Not Support system
 library Required services such
 as system
 configuration,
 messages, trace
 and error log
 support.

 Math library /lib/libm.a -lm Mathematical
 functions using
 software
 routines to
 perform
 floating-point
 arithmetic.

 Programmer Workbench /lib/libPW.a -lPW Miscellaneous
 library operating
 system
 functions.

 Terminal I/O Libraries:

Programming Tools and Interfaces
System Libraries

¦ Copyright IBM Corp. 1985, 1991
7.3 - 1

 curses library /usr/lib/libcurses.a -lcurses Control
 functions for
 writing data to
 and getting
 data from the
 terminal
 screen.

 Extended curses /usr/lib/libcur.a -lcur Control
 library functions for
 writing data to
 and getting
 data from the
 terminal screen
 that support
 color, multiple
 windows, and an
 enhanced
 character set.

 Other Libraries:

 Data Base Subroutine /usr/lib/libdbm.a -ldbm Data base
 library subroutines.

 Queue Backend /usr/lib/libqb.a -lqb Subroutines for
 Subroutine library queue backends.

 lex library /usr/lib/libl.a -ll Subroutines for
 programs
 created by the
 lex program
 generator.

 yacc library /usr/lib/liby.a -ly Subroutines for
 programs
 created by the
 yacc program
 generator.

 BSD compatibility /usr/lib/libsd.a -lbsd Refer to the
 library discussion of
 BSD libraries
 in the AIX
 Operating
 System
 Technical
 Reference.

 Graphics libraries /usr/lib/libplot.a -lplot Refer to plot
 /usr/lib/libprint.a -lprint in the AIX
 /usr/lib/libgsl.a -lgsl Technical
 /usr/lib/libld.a -lld Reference.
 Also see
 Chapter 6 of
 the same book.

 Subtopics
 7.3.1 Including Declarations

Programming Tools and Interfaces
System Libraries

¦ Copyright IBM Corp. 1985, 1991
7.3 - 2

 7.3.2 Linking the Library Routines
 7.3.3 Library Descriptions

Programming Tools and Interfaces
System Libraries

¦ Copyright IBM Corp. 1985, 1991
7.3 - 3

 7.3.1 Including Declarations

 Some functions require a set of declarations to operate properly. You
 must specifically request that these declarations be included in a
 program. The system stores some declaration files, called header files,
 in the /usr/include directory. To include a header file, use the
 following directive within a C language program:

 #include <file.h>

 where file is the name of one of the header files. Put all header file
 directives at the beginning of all files being compiled that use the
 header file.

Programming Tools and Interfaces
Including Declarations

¦ Copyright IBM Corp. 1985, 1991
7.3.1 - 1

 7.3.2 Linking the Library Routines

 When you compile a program, the cc program uses the ld program to search
 the C language library to locate and include functions that are used in
 the program. To locate and include functions from other libraries,
 specify these libraries on the command line when starting the cc command.
 For example, when using functions of the math library, request that the
 math library be searched by including the argument:

 -lm

 on the command line, such as:

 cc file.c -lm

 Use this method for all functions that are not part of the C language
 library. Using this method, the compiler searches the C library after
 searching the specified libraries. Refer to the description of the ld
 command in AIX Operating System Commands Reference for information about
 linking other libraries to a program.

Programming Tools and Interfaces
Linking the Library Routines

¦ Copyright IBM Corp. 1985, 1991
7.3.2 - 1

 7.3.3 Library Descriptions

 The rest of this chapter describes the functions and header files of the
 libraries. Each library description begins with how to include the
 functions and/or header files in a program. Then, each function is listed
 and briefly described. Following the listing are descriptions of the
 header files associated with these functions (if any).

Programming Tools and Interfaces
Library Descriptions

¦ Copyright IBM Corp. 1985, 1991
7.3.3 - 1

 7.4 The C Library

 The C library routines perform the following types of services:

 � Input/output contro

 � String manipulatio

 � Character manipulatio

 � Time function

 � Miscellaneous functions

 The compiler loads the functions of the C library automatically. However,
 you must include any required declarations in the program.

 Subtopics
 7.4.1 Input/Output Control
 7.4.2 String Routines
 7.4.3 String Manipulation
 7.4.4 Memory Manipulation
 7.4.5 Character Manipulation
 7.4.6 Time
 7.4.7 Numerical Conversion
 7.4.8 Group File Access
 7.4.9 Password File Access
 7.4.10 Parameter Access
 7.4.11 Hash Table Management
 7.4.12 Binary Tree Management
 7.4.13 Table Management
 7.4.14 Memory Allocation
 7.4.15 Pseudo-random Number Generation
 7.4.16 Signal Handling
 7.4.17 Miscellaneous

Programming Tools and Interfaces
The C Library

¦ Copyright IBM Corp. 1985, 1991
7.4 - 1

 7.4.1 Input/Output Control

 The input and output (I/O) functions provide buffered I/O for a program
 that is easier to use than using the read and write system calls (see
 Chapter 8, "Using System Calls"). Do not specify any special flag to the
 compiler to use the I/O control functions.

 Include the header file for these functions in the program. To include a
 header file, use the following statement:

 #include <stdio.h>

 All include statements should be near the beginning of the first file
 being compiled, usually in the declarations section before main(), and
 must occur before using any library functions.

 Subtopics
 7.4.1.1 Using I/O Routines
 7.4.1.2 I/O Routines Descriptions
 7.4.1.3 File Access
 7.4.1.4 File Status
 7.4.1.5 Input
 7.4.1.6 Output
 7.4.1.7 Directory Access
 7.4.1.8 Miscellaneous
 7.4.1.9 I/O Header File

Programming Tools and Interfaces
Input/Output Control

¦ Copyright IBM Corp. 1985, 1991
7.4.1 - 1

 7.4.1.1 Using I/O Routines

 The system treats devices as if they were files for input and output. Any
 of the I/O system calls or library routines can send data to or from
 either a device or a file. You must also open and close a device the same
 as a file.

 Some of the I/O library routines are actually macros defined in a header
 file, and some are object modules of functions. In many cases the library
 contains a function and a macro that do the same type of operation.
 Consider the following points when deciding which to use:

 � You cannot set a breakpoint for a macro using the debug program

 � Functions may have side effects to avoid

 � Macros usually are faster than the functions because the preprocesso
 replaces the macros with actual lines of code in the program.

 � Macros result in larger object code after being compiled

 Some of the I/O routines use stdin and stdout as their input and output
 channel. Most of the routines, however, allow you to specify a file for
 the source or destination of the data transfer. Some specify the file
 using a file pointer (which points to a structure containing the file
 name); others accept a file descriptor (a positive integer assigned to the
 file when it is opened).

 Figure 7-2 summarizes some important characteristics of the input and
 output routines. The column headings mean:

 Operation The name of the I/O routine or system call.

 Macro/Function System Call indicates that the operation is a system call.
 Function indicates that the operation is a library function.
 Macro indicates that the operation is available as a macro,
 though ANSI requires that all macros be available as
 functions too.

 Input/Output The source and/or destination of the operation is either a
 file that you can Specify or it uses stdio (standard input
 and output).

 Formatted The resulting data stream is formatted (Yes) or not
 formatted (No).

 Operation Type The data type of the information being transferred: byte,
 character (1-byte char), extended character (4-byte
 wchar_t), word (4-bytes) or string. Some conversion
 operations accept one type of information as input and then
 output a different type of information.

 Figure 7-2. Comparison of I/O Operations
 Operation Macro/Function Input/Output Formatted Operation Type

 read System Call Specify No Byte
 write System Call Specify No Byte
 fread Function Specify No Byte
 fwrite Function Specify No Byte

Programming Tools and Interfaces
Using I/O Routines

¦ Copyright IBM Corp. 1985, 1991
7.4.1.1 - 1

 printf Function stdio Yes Byte
 fprintf Function Specify Yes Byte
 sprintf Function Specify Yes Byte
 scanf Function stdio Yes Byte
 fscanf Function Specify Yes Byte

 wcprintf Function stdio Yes wchar_t
 wcfprintf Function Specify Yes wchar_t
 wcsprintf Function Specify Yes wchar_t
 wcscanf Function stdio Yes wchar_t
 wcfscanf Function Specify Yes wchar_t

 ungetc Function Specify No Byte
 ugetwx Function Specify No wchar_t
 getc Macro Specify No Byte
 getwc Macro Specify No wchar_t
 getchar Macro stdio No Byte
 getwchar Macro stdio No wchar_t
 fgetc Function Specify No Byte
 fgetwc Function Specify No wchar_t
 putc Macro Specify No Byte
 putwc Macro Specify No wchar_t
 putchar Macro stdio No Byte
 putwchar Macro stdio No wchar_t
 fputc Function Specify No Byte
 fputwc Function Specify No wchar_t

 getw Function Specify No Word
 putw Function Specify No Word

 gets Function stdio No String
 getws Function stdio No wchar_t string
 fgets Function Specify No String
 fgetws Function Specify No wchar_t string
 puts Function stdio No String
 putws Function stdio No wchar_t string
 fputs Function Specify No String
 fputws Function Specify No wchar_t string
 sscanf Function Specify Yes String

 wcsscanf Function Specify Yes wchar_t string

Programming Tools and Interfaces
Using I/O Routines

¦ Copyright IBM Corp. 1985, 1991
7.4.1.1 - 2

 7.4.1.2 I/O Routines Descriptions

 The I/O routine descriptions are grouped into the following categories:

 � File acces

 � File statu

 � Inpu

 � Outpu

 � Miscellaneous

 In the following descriptions, stream input and output refers to
 sequential input and output using open file pointers. The terms stdin and
 stdout refer to the device or file that is currently assigned as standard
 input or standard output.

Programming Tools and Interfaces
I/O Routines Descriptions

¦ Copyright IBM Corp. 1985, 1991
7.4.1.2 - 1

 7.4.1.3 File Access

 fclose Closes an open stream.

 fdopen Associates stream with an opened file.

 fileno Returns a file descriptor associated with an open stream.

 fopen Opens a stream with specified permissions. A stream is what
 fopen returns.

 freopen Substitutes named file in place of open stream.

 fseek Repositions stream pointer.

 pclose Closes a stream opened by popen.

 popen Creates a pipe as a stream between two processes.

 remove Deletes a file.

 rewind Repositions stream pointer at beginning of file.

 setbuf Turns buffering to stream on and off.

Programming Tools and Interfaces
File Access

¦ Copyright IBM Corp. 1985, 1991
7.4.1.3 - 1

 7.4.1.4 File Status

 clearerr Resets error condition on stream.

 feof Tests for end of file on stream.

 ferror Tests for error condition on stream.

 ftell Returns current stream pointer.

Programming Tools and Interfaces
File Status

¦ Copyright IBM Corp. 1985, 1991
7.4.1.4 - 1

 7.4.1.5 Input

 fgetc Reads next character from stream (function for the macro getc).

 fgetwc Reads next wide character from stream (function for the macro
 getwc).

 fgets Reads string from stream.

 fgetws Reads string of wide characters from stream.

 fread Reads from stream, buffered.

 fscanf Reads using format from stream.

 getc Returns next character from stream.

 getwc Returns next wide character from stream.

 getchar Returns next character from stdin.

 getwchar Returns next wide character from stdin.

 gets Reads string from stdin.

 getws Reads string of wide characters from stdin.

 getw Reads word from stream.

 scanf Reads using format from stdin.

 sscanf Reads using format from string.

 ungetc Puts one character back to stream.

 ungetwc Puts one wide character back to stream.

Programming Tools and Interfaces
Input

¦ Copyright IBM Corp. 1985, 1991
7.4.1.5 - 1

 7.4.1.6 Output

 fflush Writes all currently buffered characters from stream.

 fprintf Writes using format to stream.

 fputc Writes next character to stream (function for the macro putc).

 fputwc Writes next wide character to stream (function for the macro
 putwc).

 fputs Writes string to stream.

 fputws Writes string of wide characters to stream.

 fwrite Writes to stream, buffered.

 printf Writes using format to stdout.

 putc Writes next character to stream.

 putwc Writes next wide character to stream.

 putchar Writes next character to stdout.

 putwchar Writes next wide character to stdout.

 puts Writes string to stdout.

 putws Writes string of wide characters to stdout.

 putw Writes word to stream.

 sprintf Writes using format to string.

Programming Tools and Interfaces
Output

¦ Copyright IBM Corp. 1985, 1991
7.4.1.6 - 1

 7.4.1.7 Directory Access

 These functions provide access to directories. Use these routines to scan
 or read directories.

 Function Description

 opendir Open a directory for reading.

 readdir Read a directory entry.

 rewinddir Start scanning the directory again.

 scandir Review a directory.

 seekdir Seek to a location in a directory.

 telldir Find the offset in the directory.

Programming Tools and Interfaces
Directory Access

¦ Copyright IBM Corp. 1985, 1991
7.4.1.7 - 1

 7.4.1.8 Miscellaneous

 These functions perform services that do not appear in any of the previous
 categories.

 You do not need to specify any special option to the compiler to use these
 functions. There is no header file for these functions.

 Function Description

 abort Causes an IOT signal to be sent to the process.

 abs Returns the absolute integer value.

 assert Verifies a program assertion (place diagnostics into a
 program).

 In addition, the following list contains miscellaneous functions:

 ctermid Returns file name for controlling terminal.

 getlogin Returns login name for owner of current process.

 getuinfo Finds the value associated with a user information name.

 logname Returns the login name of the user.

 system Executes system command.

 tmpfile Creates temporary file using node considerations.

Programming Tools and Interfaces
Miscellaneous

¦ Copyright IBM Corp. 1985, 1991
7.4.1.8 - 1

 7.4.1.9 I/O Header File

 The I/O header file is stdio.h in the /usr/include directory. This file
 contains macro definitions and parameters that the I/O library routines
 use. The shell automatically opens the following files:

 stdin Standard input file

 stdout Standard output file

 stderr Standard error file.

Programming Tools and Interfaces
I/O Header File

¦ Copyright IBM Corp. 1985, 1991
7.4.1.9 - 1

 7.4.2 String Routines

 The string routines include the following:

 mbdwidth Gets display width of a multibyte character.

 mblen Gets length of a multibyte character.

 mbsadvance Advances pointer to next character.

 mbscat Appends multibyte character string to multibyte character
 string.

 mbschr Finds multibyte character in string.

 mbscmp Compares multibyte characters in strings based on the binary
 ordering of the characters.

 mbscpy Copies multibyte character string multibyte character string.

 mbscspn Returns the length in bytes of the initial segment of the string
 pointed to by the s1 parameter that does NOT consist entirely of
 characters from the string pointed to by the s2 parameter.

 mbslen Returns number of characters in string s.

 mbsmbs Locates strings.

 mbsncat Concatenates string pointed to by s2 to the end of string
 pointed to by s1. Copies a maximum of nchar multibyte
 characters.

 mbsncmp Compares multibyte characters in strings based on the binary
 ordering of the characters.

 mbsncpy Copies string on to string up to a maximum number of characters.

 mbspbrk Locates the first occurrence in the string pointed to by s1 of
 any character from the string pointed to by s2.

 mbsrchr Return pointer to the last occurrence of the multibyte char 'c'
 in string 's'.

 mbsspn Returns the bytes in length of the initial segment of the string
 pointed to by s1 parameter that consists entirely of characters
 from the string pointed to by parameter s2.

 mbstok Parses a string of multibyte characters into tokens.

 mbstomb Converts a multibyte character into an mbchar_t.

 mbstowcs Converts a string of multibyte chars into string of wchar_t.

 mbtowc Converts a multibyte character into a wchar_t.

 wcindx Returns an index value for a wide character.

 wcscat Appends widecharacter string to a widecharacter string.

 wcschr Searches for the first occurrence of widecharacter c in string

Programming Tools and Interfaces
String Routines

¦ Copyright IBM Corp. 1985, 1991
7.4.2 - 1

 sp.

 wcscmp Compares two widecharacter strings based on the binary ordering
 of the characters.

 wcscpy Copies widecharacter string to widecharacter string.

 wcscspn Finds the length of the initial portion of widecharacter string
 s1 of wide characters not in widecharacter string s2.

 wcsspn Determines the number of widecharacters in a widecharacter
 string.

 wcsncat Appends a count of widecharacters of one string to another
 string.

 wcsncmp Compares a specific number of wide characters in one
 widecharacter string to another widecharacter string. The
 comparison is based on the binary ordering of the characters.

 wcsncpy Copies a specific number of wide characters from one
 widecharacter string to another widecharacter string.

 wcspbrk Returns pointer to the first occurrence in the string pointed to
 by the s1 parameter of any character from the string pointed to
 by the s2 parameter.

 wcsrchr Locates a wide character in a widecharacter string.

 wcsspn Returns number of wide characters in the initial segment of a
 string.

 wcstok Returns a pointer to an occurrence of a text token in the string
 pointed to by the s1 parameter. The s2 parameter specifies a
 set of token delimiters. At the found character in s1, a NULL
 character is replaced and a pointer to the first wide character
 of the text token is returned.

 wcstombs Converts a string of wide chars into string of multibyte chars.

 wcswcs Locates strings.

 wctomb Converts a wide character into a multibyte character.

 wcxcol Finds unique collating value or replacement string for
 character.

Programming Tools and Interfaces
String Routines

¦ Copyright IBM Corp. 1985, 1991
7.4.2 - 2

 7.4.3 String Manipulation

 The string manipulation functions include:

 � Locate a character position within a strin

 � Copy a strin

 � Concatenate string

 � Compare string

 � Translate a strin

 � Measure a string

 The first group of functions require that header files be included in your
 program and that particular libraries be referenced. The regexp
 functions, compile, step, and advance, require the inclusion of header
 files. regexp.h provides standard singlebyte character functionality;
 NLregexp.h must be included for international character support. The
 regcmp and regex functions are in libPW.a.

 compile Compiles a regular expression for use by advance and step.
 Output is encoded in a locale-independent manner.

 step Using a variable set by compile, matches a regular expression
 to the beginning of a string. Supports compiling a number of
 regular expressions (using compile) before attempting a
 match.

 advance Advances recursively to match the rest of the string to the
 rest of the expression, supporting metacharacters in a
 regular expression. The advance function consults the locale
 and uses the current collating sequence. Its use is purely
 for support of the compile and step functions.

 regcmp Compiles a regular expression for use by regex. Output is
 encoded in a locale-independent manner.

 regex Executes a compiled regular expression against a string. The
 locale is consulted and the current collating sequence is
 used.

 Note that these functions are to be used in matched sets:

 compile produces locale-independent output. This is processed by step
 and advance, which consults the locale and adjust their processing
 accordingly.

 regcmp produces locale-independent output which is exclusively for use
 by regex. regex consults the locale and processes the expressions
 passed to it according to the current collating sequence.

 All of the following functions are in libc.a. To use these string
 routines you do not need to specify any special flag to the compiler or
 include any particular header file in your program. If you want the
 compiler to check your usage, however, you should include string.h in your
 program; it contains the prototypes for these functions.

Programming Tools and Interfaces
String Manipulation

¦ Copyright IBM Corp. 1985, 1991
7.4.3 - 1

 mbstowcs Converts a string of chars to whcar_t's.

 wcstombs Converts a string of wchar_t's to chars.

 strcat Concatenates two strings.

 wcscat Concatenates two strings of wchar_t's.

 mbscat Concatenates two strings of chars.

 strchr Searches string for character.

 wcschr Searches string for wchar_t's.

 mbschr Searches string for char.

 strcmp Compares two strings using internal representations.

 wcscmp Compares two strings of wchar_t's using the current collation
 sequence.

 mbscmp Compares two strings of chars using the current collation
 sequence.

 strcpy Copies string over string.

 wcscpy Copies wchar_t string over wchar_t string.

 mbscpy Copies string over string.

 strcspn Returns the length of initial string not containing the
 compared set of characters.

 wcscspn Returns the length in characters of initial string not
 containing the compared set of wchar_t's.

 NLstrcspn Returns the length in bytes of initial string not containing
 the compared set of code points.

 strstr Locates a substring.

 strlen Returns the length of string.

 wcslen Returns the length in characters of string of wchar_t's.

 mbslen Returns the length of string in bytes.

 mbsdlen Returns the number of display columns occupied by a string.

 wcsdlen Returns the number of display columns occupied by a string of
 wchar_ts.

 strncat Concatenates up to a specified number of bytes from one
 string to another string.

 wsncat Concatenates up to a specified number of wchar_t's from one
 string to another string.

 mbsncat Concatenates up to a specified number of bytes from one
 string to another string.

Programming Tools and Interfaces
String Manipulation

¦ Copyright IBM Corp. 1985, 1991
7.4.3 - 2

 strncmp Compares up to a specified number of bytes from one string
 with another string.

 wcsncmp Compares up to a specified number of wchar_t's from one
 string with another string.

 mbsncmp Compares up to a specified number of bytes from one string
 with another string.

 strncpy Copies up to a specified number of bytes from one string to
 another string.

 wcsncpy Copies up to a specified number of wchar_t's from one string
 to another string.

 mbsncpy Copies up to a specified number of bytes from one string to
 another string.

 strpbrk Searches string for any of a set of bytes.

 wcspbrk Searches code point string for the first occurrence of any of
 a set of chars.

 mbspbrk Searches string for the first occurrence of any of a set of
 code points.

 strrchr Searches string backwards for character.

 wcsrchr Searches string for the last occurrence of an wchar_t.

 mbsrchr Searches string for the last occurrence of a code point.

 strspn Returns the length of an initial string containing a set of
 bytes.

 wcsspn Returns the length of an initial string of wchar_t's
 containing the set of code points.

 mbsspn Returns the length in bytes of an initial string containing
 the set of code points.

 strtok Searches string for a token separated by any of a set of
 bytes.

 wcstok Searches string for a token separated by any of a set of wide
 characters.

 mbstok Searches string for a token separated by any of a set of
 mbchar_ts.

 NLescstr Converts a string possibly containing extended characters
 into ASCII bytes, preserving character information by
 converting each NLchar into a mnemonic string of ASCII bytes.

 NLunescstr Converts a string of ASCII bytes, possibly containing escape
 sequences representing extended characters, into a string in
 which any escape sequences are converted to NLchars.

 NLflatstr Converts a character string possibly containing extended

Programming Tools and Interfaces
String Manipulation

¦ Copyright IBM Corp. 1985, 1991
7.4.3 - 3

 characters into ASCII bytes, preserving character appearance
 by converting each code point to an ASCII character it
 resembles.

Programming Tools and Interfaces
String Manipulation

¦ Copyright IBM Corp. 1985, 1991
7.4.3 - 4

 7.4.4 Memory Manipulation

 The memory functions operate on arrays of characters in memory called
 memory areas. The memory manipulation functions include:

 � Locating a character within a memory are

 � Copying characters between memory area

 � Comparing contents of memory area

 � Setting a memory area to a value

 You do not need to specify any special flag to the compiler to use the
 memory functions.

 Include the header file for these functions in the program. To include a
 header file, use the following statement:

 #include <memory.h>

 All include statements should be near the beginning of the first file
 being compiled, usually in the declarations section before main(), and
 must occur before using any library functions.

 The memory routines perform the following functions:

 memccpy Copies characters from one memory area to another, stopping at
 the first occurrence of a specified character or after a
 specified number of characters are copied.

 memcpy Copies a specified number of characters from one memory area to
 another.

 memchr Finds the first occurrence of a specified character in a memory
 area, and returns a pointer to that character.

 memcmp Compares the contents of two memory areas up to a specified
 maximum number of characters.

 memset Sets the contents of a memory area to a specified value.

Programming Tools and Interfaces
Memory Manipulation

¦ Copyright IBM Corp. 1985, 1991
7.4.4 - 1

 7.4.5 Character Manipulation

 The character manipulation functions and macros test and translate ASCII
 characters.

 The character manipulation functions and macros are grouped into the
 following categories:

 � Character testin

 � Character translatio

 � Character collation

 Subtopics
 7.4.5.1 Character Testing
 7.4.5.2 Character Translation
 7.4.5.3 Character Collation
 7.4.5.4 Character Header File

Programming Tools and Interfaces
Character Manipulation

¦ Copyright IBM Corp. 1985, 1991
7.4.5 - 1

 7.4.5.1 Character Testing

 Use the following functions and macros to find out the type of a
 character; punctuation, alphabetical and case querying functions for
 wchar_t values may vary depending on the current collation table:

 isalnum Is character alphanumeric?

 isalpha Is character alphabetic?

 isascii Is character ASCII?

 iscntrl Is character a control character?

 isdigit Is character a digit?

 isgraph Is character a printing character (not including space)?

 islower Is character a lowercase letter?

 isprint Is character a printing character (including space)?

 ispunct Is character a punctuation character?

 isspace Is character a white space character?

 isupper Is character an uppercase character?

 isxdigit Is character a hexadecimal digit?

 iswalnum Is wchar_t alphanumeric?

 iswalpha Is wchar_t alphabetic?

 iswcntrl Is wchar_t a control character?

 iswdigit Is wchar_t a digit?

 iswgraph Is wchar_t a printing character (not including space)?

 iswlower Is wchar_t a lowercase letter?

 iswprint Is wchar_t a printing character (including space)?

 iswpunct Is wchar_t a punctuation character?

 iswspace Is wchar_t a white space character?

 iswupper Is wchar_t an uppercase character?

 iswxdigit Is wchar_t a hexadecimal digit?

 NCisalpha Is NLchar an alphabetical character?

 NCisupper Is NLchar an uppercase alphabetical character?

 NCislower Is NLchar a lowercase alphabetical character?

 NCisdigit Is NLchar a decimal digit?

Programming Tools and Interfaces
Character Testing

¦ Copyright IBM Corp. 1985, 1991
7.4.5.1 - 1

 NCisxdigit Is NLchar a hexadecimal digit?

 NCisalnum Is NLchar an alphabetical character or digit?

 NCisspace Is NLchar a space, tab, carriage return, newline, vertical
 tab, or form-feed character?

 NCispunct Is NLchar a punctuation character?

 NCisprint Is NLchar a printing character (including the space
 character)?

 NCisgraph Is NLchar a printing character (excluding the space
 character)?

 NCiscntrl Is char or wchar_t an ASCII delete character (0177) or an
 ordinary ASCII control character other than the single-shift
 characters that indicate an extended character.

 wc_eqvmap Is the character an wchar_t that begins an (collation value)
 equivalence class? (Returns non-zero if it is, and 0 if it
 is not.) (The character must be processed by wc_coluniq
 first. See below.)

Programming Tools and Interfaces
Character Testing

¦ Copyright IBM Corp. 1985, 1991
7.4.5.1 - 2

 7.4.5.2 Character Translation

 Use these functions to translate characters from one form to another:

 toascii Converts integer to ASCII character.

 tolower Converts character to lowercase.

 toupper Converts character to uppercase.

 wctolower Converts wchar_t to lowercase.

 wctoupper Converts wchar_t to uppercase.

Programming Tools and Interfaces
Character Translation

¦ Copyright IBM Corp. 1985, 1991
7.4.5.2 - 1

 7.4.5.3 Character Collation

 Redefinable character collation is a feature provided for international
 character support. Collation is performed by macros using a collation
 file created from a collation table by ctab command.

 wc_collate Returns the collating value of the character for which it is
 called.

 wc_coluniq Assigns a unique sequential value to characters in
 equivalence classes, so that all characters have a unique
 value for use by wc_eqvmap.

 wc_eqvmap Returns a non-zero value if the unique collation value
 produced by wc_coluniq begins an equivalence class, which is
 a set of characters that can be treated as identical in some
 collating contexts. Otherwise, it returns 0.

Programming Tools and Interfaces
Character Collation

¦ Copyright IBM Corp. 1985, 1991
7.4.5.3 - 1

 7.4.5.4 Character Header File

 The character header file is ctype.h in the /usr/include directory. It
 contains macro definitions and data declarations that the string functions
 use.

Programming Tools and Interfaces
Character Header File

¦ Copyright IBM Corp. 1985, 1991
7.4.5.4 - 1

 7.4.6 Time
 The time functions access and reformat the current system date and time.
 You do not need to specify any special flag to the compiler to use the
 time functions.

 Include the header file for these functions in the program. To include a
 header file, use the following statement:

 #include <time.h>

 All include statements should be near the beginning of the first file
 being compiled, usually in the declarations section before main(), and
 must occur before using any library functions.

 These functions (except tzset) convert a time such as the time returned by
 the time system call:

 asctime Returns string representation of date and time.

 ctime Returns string representation of date and time, given integer
 form.

 difftime Computes time difference.

 gmtime Returns Greenwich Mean Time.

 localtime Returns local time.

 tzset Sets time zone field from environment variable.

 Subtopics
 7.4.6.1 Time Header File

Programming Tools and Interfaces
Time

¦ Copyright IBM Corp. 1985, 1991
7.4.6 - 1

 7.4.6.1 Time Header File

 The header file for the time functions is time.h in the /usr/include
 directory. It includes declarations for variables that the time functions
 use, such as:

 tm A structure that the gmtime and localtime functions return.

 daylight An integer that is nonzero to use Daylight Savings Time
 conversions.

 tzname A character that defines the name of time zones. The system
 overrides this variable if the TZ variables are defined in the
 system environment. Setting the TZ variable changes the values
 defined in the header file for daylight, timezone and tzname.

 Functions that define a large number of time-related variables are also
 supported in the time.h header file. For example:

 ctime Converts the structure for time (a value in seconds since
 00:00:00 Greenwich Mean Time, January 1, 1970) into a
 character string for day, date, and time.

 NLstrtime Using the structures of ctime, formats time and date data into
 strings using an international character support format
 established by environment variables.

 NLtmtime Takes a string and sets a time structure. The string data is
 handled in formats established by environment variables for
 international character support.

Programming Tools and Interfaces
Time Header File

¦ Copyright IBM Corp. 1985, 1991
7.4.6.1 - 1

 7.4.7 Numerical Conversion

 These functions perform numerical conversion. You do not need to specify
 any special flag to the compiler or include a header file to use these
 functions.

 a64l Converts string to base 64 ASCII.

 atof Converts string to floating.

 atoi Converts string to integer.

 atol Converts string to long.

 frexp Splits floating into mantissa and exponent.

 l3tol Converts 3-byte integer to long.

 ltol3 Converts long to 3-byte integer.

 ldexp Combines mantissa and exponent.

 l64a Converts base 64 ASCII to string.

 modf Splits mantissa into integer and fraction.

Programming Tools and Interfaces
Numerical Conversion

¦ Copyright IBM Corp. 1985, 1991
7.4.7 - 1

 7.4.8 Group File Access

 These functions access the group file. You do not need to specify any
 special flag to the compiler to use these functions.

 Include the header file for these functions in the program. To include a
 header file, use the following statement:

 #include <grp.h>

 All include statements should be near the beginning of the first file
 being compiled, usually in the declarations section before main(), and
 must occur before using any library functions.

 endgrent Closes group file being processed.

 getgrent Gets next group file entry.

 getgrgid Returns next group with matching gid.

 getgrnam Returns next group with matching name.

 setgrent Rewinds group file being processed.

Programming Tools and Interfaces
Group File Access

¦ Copyright IBM Corp. 1985, 1991
7.4.8 - 1

 7.4.9 Password File Access

 These functions search and access information stored in the password file
 /etc/passwd.

 Include the header file for these functions in the program. To include a
 header file, use the following statement:

 #include <pwd.h>

 All include statements should be near the beginning of the first file
 being compiled, usually in the declarations section before main(), and
 must occur before using any library functions.

 endpwent Closes password file being processed.

 getpw Searches password file for user ID.

 getpwent Gets next password file entry.

 getpwnam Returns next entry with matching name.

 getpwuid Returns next entry with matching user ID.

 putpwent Writes entry on stream.

 setpwent Rewinds password file being accessed.

Programming Tools and Interfaces
Password File Access

¦ Copyright IBM Corp. 1985, 1991
7.4.9 - 1

 7.4.10 Parameter Access

 These functions get several different types of parameters from the system.
 You do not need to specify any special flag to the compiler or include any
 header file to use these functions.

 getopt Gets next option from option list in command.

 getcwd Returns string representation of current directory.

 getenv Returns string value associated with environment variable.

 NLgetenv Returns string value associated with international character
 support environment variable.

 getpass Reads string from terminal without echoing.

Programming Tools and Interfaces
Parameter Access

¦ Copyright IBM Corp. 1985, 1991
7.4.10 - 1

 7.4.11 Hash Table Management

 These functions manage hash search tables. You do not need to specify any
 special flag to the compiler or include any header file to use these
 functions.

 hcreate Creates hash table.

 hdestroy Destroys hash table.

 hsearch Searches hash table for entry.

Programming Tools and Interfaces
Hash Table Management

¦ Copyright IBM Corp. 1985, 1991
7.4.11 - 1

 7.4.12 Binary Tree Management

 These functions manage a binary tree. You do not need to specify any
 special flag to the compiler or include any header file to use these
 functions.

 tdelete Deletes nodes from binary tree.

 tsearch Searches binary tree.

 twalk Walks through a binary tree to a specified level, and performs a
 specified action at each node of the tree.

Programming Tools and Interfaces
Binary Tree Management

¦ Copyright IBM Corp. 1985, 1991
7.4.12 - 1

 7.4.13 Table Management

 These functions manage a table. The table is a two-dimensional character
 array. The first subscript defines the maximum number of entries in the
 table. The second subscript defines the width (or length) of a single
 entry. These functions do not allocate storage. Be sure to allocate
 sufficient memory before using these functions.

 You do not need to specify any special flag to the compiler or include any
 header file to use these functions.

 bsearch Searches table using binary search.

 lsearch Searches table using linear search.

 qsort Sorts table using quicker-sort algorithm.

Programming Tools and Interfaces
Table Management

¦ Copyright IBM Corp. 1985, 1991
7.4.13 - 1

 7.4.14 Memory Allocation

 These functions allocate or free memory from the program.

 You do not need to specify any special flag to the compiler or include any
 header file to use these functions.

 calloc Allocates zeroed storage.

 free Frees previously allocated storage.

 malloc Allocates storage.

 realloc Changes size of allocated storage.

Programming Tools and Interfaces
Memory Allocation

¦ Copyright IBM Corp. 1985, 1991
7.4.14 - 1

 7.4.15 Pseudo-random Number Generation

 These functions generate pseudo-random numbers. The functions that end
 with 48 use a pseudo-random number generator based upon the linear
 congruential algorithm and 48-bit integer arithmetic. The rand and srand
 functions use a multiplicative congruential random number generator with
 period of 2(32).

 You do not need to specify any special flag to the compiler or include any
 header file to use these functions.

 drand48 Returns a random double , n, in the interval:

 0 = n < 1.

 lcong48 Sets parameters for drand48, lrand48, and mrand48.

 lrand48 Returns a random long, n, in the interval:

 0 = n < 2(31)

 nrand48 Returns a random long, n, in the interval:

 -2(31) = n < 2(31)

 rand Returns a random integer, n, in the interval:

 0 = n < 2(15)

 seed48 Seeds the generator for drand48, lrand48, and mrand48.

 srand Seeds the generator for rand.

 srand48 Seeds the generator for drand48, lrand48, and mrand48.

Programming Tools and Interfaces
Pseudo-random Number Generation

¦ Copyright IBM Corp. 1985, 1991
7.4.15 - 1

 7.4.16 Signal Handling

 These functions simulate the functions available from the signal handling
 functions provided by the system calls for signals described in "Signal
 Calls" in topic 8.5.1. These functions indicate error handling to other
 processes, and communicate with other cooperating processes.

 You do not need to specify any special flag to the compiler to use these
 functions.

 Include the header file for these functions in the program. To include a
 header file, use the following statement:

 #include <signal.h>

 All include statements should be near the beginning of the first file
 being compiled, usually in the declarations section before main(), and
 must occur before using any library functions.

 These declarations define ASCII names for each of the software signals.

 gsignal Sends a software signal.

 raise Sends a signal.

 ssignal Arranges for handling of software signals.

Programming Tools and Interfaces
Signal Handling

¦ Copyright IBM Corp. 1985, 1991
7.4.16 - 1

 7.4.17 Miscellaneous

 These functions perform services that do not appear in any of the previous
 categories.

 You do not need to specify any special flag to the compiler or include any
 header file to use these functions.

 abort Sends an IOT (I/O terminate) signal to the process.

 abs Returns the absolute integer value.

 ecvt Converts double to string.

 fcvt Converts double to string using FORTRAN format.

 gcvt Converts double to string using FORTRAN F or E format.

 isatty Tests whether integer file descriptor is associated with a
 terminal.

 labs Returns the absolute long integer value.

 monitor Causes process to record a histogram of program counter
 location.

 swab Swaps and copies bytes.

 ttyname Returns the path name of terminal associated with integer file
 descriptor.

 ttysite Finds the site number of the terminal associated with integer
 file descriptor.

Programming Tools and Interfaces
Miscellaneous

¦ Copyright IBM Corp. 1985, 1991
7.4.17 - 1

 7.5 Run Time Services Library

 The run time services library routines allow you to access the following
 system functions from your program:

 � Configuration service

 � Message service

 � Trac

 � Error logging

 The functions are in the file /usr/lib/librts.a which is one of the
 default libraries, so you can use the following command line entry to load
 the needed functions when linking a C language program:

 cc file.c

 Include header files, as needed, when using these routines. See AIX
 Operating System Technical Reference for the header files needed with each
 routine, as well as detailed information about their use.

 cfgadev Adds a device.

 cfgamni Adds a minidisk.

 cfgaply Applies configuration information.

 cfgcadsz Adds or replaces a stanza in an attribute file.

 cfgcclsf Closes an attribute file.

 cfgcdlsz Deletes a stanza from an attribute file.

 cfgcopsf Opens an attribute file.

 cfgcrdsz Reads an attribute file stanza.

 cfgddev Deletes a device.

 cfgdmni Deletes a minidisk.

 errunix Logs errors that occur when running a program.

 mdverify Controls write-verify operation for a minidisk.

 msghelp Retrieves and displays a predefined help message.

 msgimed Retrieves and outputs a predefined immediate message.

 msgqued Retrieves and outputs a predefined queued message.

 msgrtrv Retrieves text for a message, insert or help.

 trace_on Checks whether trace channel is enabled.

 trc_start Lets a process start a trace daemon.

Programming Tools and Interfaces
Run Time Services Library

¦ Copyright IBM Corp. 1985, 1991
7.5 - 1

 trc_stop Lets a process stop a trace daemon.

 trcunix Records trace log entries for a program.

 The library also contains other routines that these routines use to
 perform their functions.

Programming Tools and Interfaces
Run Time Services Library

¦ Copyright IBM Corp. 1985, 1991
7.5 - 2

 7.6 Math Library

 The math library consists of functions and a header file. Use the
 following command line entry to tell the cc command to locate and load the
 needed functions when it links a C language program:

 cc file.c -lm

 Include the header file for these functions in the program. To include a
 header file, use the following statement:

 #include <math.h>

 All include statements should be near the beginning of the first file
 being compiled, usually in the declarations section before main(), and
 must occur before using any library functions.

 The math header file is math.h in the /usr/include directory. This file
 contains definitions for functions and macros that the math library
 routines use. All functions in the math library return double precision
 values.

 The functions are grouped into the following categories:

 � Trigonometric function
 � Bessel function
 � Hyperbolic function
 � Miscellaneous functions

 Subtopics
 7.6.1 Trigonometry
 7.6.2 Bessel
 7.6.3 Hyperbolic
 7.6.4 Miscellaneous

Programming Tools and Interfaces
Math Library

¦ Copyright IBM Corp. 1985, 1991
7.6 - 1

 7.6.1 Trigonometry

 These functions compute angles (in decimal radian measure), sines,
 cosines, and tangents. All of these values are expressed in double
 precision. The file math.h declares the values as double.

 acos Returns arc cosine.

 asin Returns arc sine.

 atan Returns arc tangent.

 atan2 Returns arc tangent of a ratio.

 cos Returns cosine.

 hypot Returns the square root of the sum of the squares of two
 numbers.

 sin Returns sine.

 tan Returns tangent.

Programming Tools and Interfaces
Trigonometry

¦ Copyright IBM Corp. 1985, 1991
7.6.1 - 1

 7.6.2 Bessel

 These functions calculate bessel functions of the first and second kinds
 of several orders for real values. The bessel functions are:

 j0, j1, jn, y0, y1, and yn

 For descriptions of the functions, see bessel in AIX Operating System
 Technical Reference.

Programming Tools and Interfaces
Bessel

¦ Copyright IBM Corp. 1985, 1991
7.6.2 - 1

 7.6.3 Hyperbolic

 These functions compute the hyperbolic sine, cosine, and tangent for real
 values.

 cosh Returns hyperbolic cosine.

 sinh Returns hyperbolic tangent.

 tanh Returns hyperbolic tangent.

Programming Tools and Interfaces
Hyperbolic

¦ Copyright IBM Corp. 1985, 1991
7.6.3 - 1

 7.6.4 Miscellaneous

 These functions do not fall into any of the previously defined categories.

 ceil Returns the smallest integer not less than a given value.

 exp Returns the exponential function of a given value.

 fabs Returns the absolute value of a given value.

 floor Returns the largest integer not greater than a given value.

 fmod Returns the remainder produced by the division of two given
 values.

 gamma Returns the natural log of gamma as a function of the absolute
 value of a given value.

 log Returns the natural logarithm of a given value.

 pow Returns the result of a given value raised to another given
 value.

 sqrt Returns the square root of a given value.

Programming Tools and Interfaces
Miscellaneous

¦ Copyright IBM Corp. 1985, 1991
7.6.4 - 1

 7.7 Shared Libraries

 With traditional libraries, each program has a private copy of the library
 code linked into the program. The AIX shared library facility lets
 multiple processes share the same copy of library code mapped into main
 memory. This facility is available on PS/2 only. The programs are linked
 as before, but instead of including the library code, a special section
 (.lib) is added to the program. It contains the names of the shared
 libraries to be used during program execution.

 Shared libraries offer the following benefits:

 � Programs that use shared libraries may use less disk space because th
 library code is not linked into each executable program.

 � Processes that use shared libraries may require less main memor
 because the shared library code is only mapped into main memory once.

 � The system may require less time to load programs that use share
 libraries because the shared library code may already be in main
 memory.

 � Fewer page faults may be generated when shared libraries are use
 because the shared library code may already be in main memory. This
 can result in reduced disk activity which in turn can sometimes result
 in better response time.

 A shared library is divided into the following two parts:

 � A host library fil

 � A target library file

 The host library resembles an archive file that is used during the link
 edit of a program. The target library resembles an a.out file. It is
 used during the execution of a program. The AIX Operating System ensures
 that the required target libraries are in the address space of the
 executing program.

 Subtopics
 7.7.1 Comparing Shared and Archive Libraries
 7.7.2 Calls to a Shared Library
 7.7.3 Using a Shared Library
 7.7.4 Creating a Shared Library

Programming Tools and Interfaces
Shared Libraries

¦ Copyright IBM Corp. 1985, 1991
7.7 - 1

 7.7.1 Comparing Shared and Archive Libraries

 A host-shared library is similar to an archive library in several ways.
 Each of them are archive files. This means that they contain text and
 data symbols that are either defined and exported, or referenced and
 imported. When linking a program, the link editor searches the library
 for symbol definitions that resolve the program's external references.
 When all these references have been resolved, the program can be made
 executable. This is referred to as static linking.

 The differences between a shared library and an archive library are how
 the symbolic references are resolved. To produce an a.out file using an
 archive library, the link editor copies the library into appropriate .text
 and .data sections in the program's object file. In contrast, to produce
 an a.out file using a shared library, the link editor does not copy any
 code from the library into the program's object file. Instead, it creates
 a special section called .lib in the program's object file. This section
 identifies the target-shared library code needed at run time to resolve
 the external references. When the AIX Operating System executes the
 resulting a.out file, it uses the information in the .lib section to load
 the required shared library code into memory.

 To demonstrate how space is saved, consider what happens when several
 a.out files need the same code from a library. When static linking with an
 archive library, each program gets its own copy of the library. This
 results in duplication of the same code on the disk for each a.out file,
 and in memory when the programs are executed. In contrast, when a shared
 library is used, only the .lib section is added to the program, thus
 saving disk space. When executed, the target library is loaded in memory,
 where several programs can share the library code, thus saving memory.

 Note: In some cases, a shared library could add space to an executable,
 and require more memory. When linking to a host shared library, all the
 library routines are included. This means that a routine that is not
 referenced by the program will be included, and any additional references
 made by that routine must be included. If a program requires a data
 region for a particular target library routine, it gets a copy of the data
 region for the entire shared library. Each process gets a private copy of
 those pages of the shared library's data region which are referenced by
 that process. Only the text section is shared among processes.
 Therefore, if a program only references a few library members, it may be
 better to link with an archive library that copies only those routines.

Programming Tools and Interfaces
Comparing Shared and Archive Libraries

¦ Copyright IBM Corp. 1985, 1991
7.7.1 - 1

 7.7.2 Calls to a Shared Library

 Shared libraries allow you to update the shared library code without
 having to link the programs already using it. This is implemented by use
 of a branch table. For an archive library, the link editor resolves
 external references by binding the address of the symbol to the reference.
 For a shared library, each symbol is associated with an absolute address
 of a branch table. These addresses do not change when the shared library
 code is updated. An external reference is bound to that address by the
 link editor. Each branch table address labels a jump instruction to the
 actual code for the symbol. This indirect reference allows for
 flexibility in shared library support.

Programming Tools and Interfaces
Calls to a Shared Library

¦ Copyright IBM Corp. 1985, 1991
7.7.2 - 1

 7.7.3 Using a Shared Library

 Linking a file with a shared library is the same process as linking to an
 archive library. The only difference is the name of the library
 referenced. To determine whether a program has been linked to a shared
 library, use the dump command (refer to the AIX Operating System Commands
 Reference Manual for additional information on this command). The -h flag
 displays all the program section headers. If a .lib section is defined,
 then a shared library has been linked to the program. The -L flag
 displays the contents of the .lib section, giving you the name of the
 target shared library.

 Using the dbx command, you can debug a program that has been linked to a
 shared library; however, you cannot debug the routines in the shared
 library. You may find debugging easier if you re-link your program with
 an archive version of the shared library.

Programming Tools and Interfaces
Using a Shared Library

¦ Copyright IBM Corp. 1985, 1991
7.7.3 - 1

 7.7.4 Creating a Shared Library

 To create a shared library, you must first create a shared library
 specification file. Next, you run the shlib2 command to build the host
 and target libraries.

 Note: This section assumes you are familiar with building an archive
 library.

 Subtopics
 7.7.4.1 The Shared Library Specification File
 7.7.4.2 The shlib2 Command
 7.7.4.3 The shlibrpt Command
 7.7.4.4 A Sample Shared Library
 7.7.4.5 Guidelines
 7.7.4.6 Choosing Library Members
 7.7.4.7 Writing Code to a Shared Library
 7.7.4.8 Importing Symbols
 7.7.4.9 Tuning Shared Library Code
 7.7.4.10 Archive and Shared Library Compatibility
 7.7.4.11 Shared Library Upward Compatibility

Programming Tools and Interfaces
Creating a Shared Library

¦ Copyright IBM Corp. 1985, 1991
7.7.4 - 1

 7.7.4.1 The Shared Library Specification File

 The shared library specification file is required by the shlib2 command.
 It is a user created file that defines the necessary information to build
 a shared library. The following directives are defined in the shared
 library specification file:

 #address section address
 Specifies the start address of the given target file section.
 The start address of the .text and .data sections are defined
 with this directive.

 The following shows the defined address ranges for AIX:

 +--+
 ¦ 0xD0000000 - 0xD7FFFFFF ¦ Available for Users ¦
 +-------------------------------+------------------------------¦
 ¦ 0xD8000000 - 0xDFFFFFFF ¦ Reserved for AIX libraries ¦
 +--+

 Note: Several shared libraries can define the same virtual
 addresses as long as they are not linked in the same program.
 Conflicts occur only within a single process, not among separate
 processes.

 #target path
 Specifies the path name of the target shared library. This is
 the location where the operating system looks for the shared
 library during execution. Normally, path will be an absolute
 path name, but it does not have to be.

 Note: Only use this directive once.

 #branch
 Specifies the beginning of the branch table specifications.
 They are in the following format:

 symbol position

 where symbol is the name of an externally defined function, and
 position is the position of the symbol's branch table entry.
 position is an integer (i.e. 1), or range of integers (i.e.
 2-10). All positions must be specified from 1 to the highest
 position, and no position can be duplicated.

 A symbol that has more than one position associated with it, is
 defined as the highest position given. The other positions are
 considered empty slots that can be replaced by new symbols.

 Note: Only use this directive once.

 #objects
 Specifies the names and order of the object files put into the
 target shared library.

 Note: Only use this directive once.

 #init object
 Specifies that the given object file requires initialization
 code, as defined by initialization specifications. They are in

Programming Tools and Interfaces
The Shared Library Specification File

¦ Copyright IBM Corp. 1985, 1991
7.7.4.1 - 1

 the following format:

 pointer symbol

 where pointer is a pointer to the imported symbol and must be
 defined in the object file. Each initialization sets the
 pointer to its default value. The generated initialization code
 is similar to the following format:

 pointer=&symbol;

 Any initialization specifications for a given object file must
 be defined together. Multiple specifications of the same object
 file are not allowed.

 #ident string
 Specifies a string to be included in the .comment section of the
 target library and each member of the host library.

 Note: Only use this directive once.

 ##
 Specifies a comment line.

Programming Tools and Interfaces
The Shared Library Specification File

¦ Copyright IBM Corp. 1985, 1991
7.7.4.1 - 2

 7.7.4.2 The shlib2 Command

 The shlib2 command is used to build both the host and target libraries.
 This command invokes the assembler, as, and link editor, ld, as part of
 its processing. See the AIX Operating System Commands Reference Manual
 for more information on these commands. The syntax of the shlib2 command
 is as follows:

 shlib2 -s file -t target [-h host] [-n] [-q]

 -s file Specifies the shared library specification file. This required
 file contains all the information necessary to create a shared
 library. Its contains the branch table specifications for the
 target, the path name in which the target should be installed,
 the start addresses of text and data for the target, the
 initialization specifications for the host, and the list of
 object files to be included in the shared library. See "The
 Shared Library Specification File" above.

 -t target Specifies the name of the target shared library. When target is
 moved to the target machine, it should be installed at the
 location given in the specification file (see the #target
 directive in the section "The Shared Library Specification
 File").

 Note: A new target shared library will not be generated if the
 -n option is specified.

 -h host Specifies the name of the host shared library. If this option
 is not given, then the host shared library will not be produced.

 -n Prevents a new target shared library from being generated. This
 option is useful when producing only a new host shared library.
 The -t option must still be supplied since a version of the
 target shared library is needed to build the host shared
 library.

 -q Suppresses the printing of certain warning messages.

Programming Tools and Interfaces
The shlib2 Command

¦ Copyright IBM Corp. 1985, 1991
7.7.4.2 - 1

 7.7.4.3 The shlibrpt Command

 The shlibrpt command is a tool to help you create a shared library
 specification file. The input required is a list of .o files that are to
 comprise a shared library. shlibrpt generates the following:

 � A shared library specification file templat

 � An import.c file templat

 � An import.h file templat

 � A complete cross reference

 The output of the shlibrpt command must be edited to create the final
 versions of required files for input to the shlib2 command. The template
 files contain token items enclosed by angle brackets < > that need to be
 replaced. These include the type of a variable and the level of
 indirection. These two items cannot be determined from the object files.
 The token for the level of indirection is [*]. The rule is that the use
 of imported variables/routines adds one extra level of indirection. This
 extra level is taken care of in the template. You must fill in the
 original level of indirection.

 The shlibrpt command requires that all .o files have a symbol table. If
 they are assembly files, the assembler source code must contain the .file
 assembly directive; otherwise, the cross reference may fail.

Programming Tools and Interfaces
The shlibrpt Command

¦ Copyright IBM Corp. 1985, 1991
7.7.4.3 - 1

 7.7.4.4 A Sample Shared Library

 In the following example, we will build a shared library to show the
 procedure that you should follow, and point out certain problem areas. The
 example we have chosen is that of a message queue manager. The example
 consists of three files queue.h, global.c, and queue.c.

 /* queue.h - definition of the queue structure used in the queue manager */

 struct queue {
 struct queue *next ;
 char *qmsg ;
 } ;

 typedef struct queue QUEUE ;

 /* global.c - global variables used in the message queue manager */

 #include "queue.h"

 QUEUE *qhead = 0 ;
 QUEUE *qtail = 0 ;
 unsigned int qcount = 0 ;

 /* queue.c - queue manager example */

 #include <stdio.h>
 #include "queue.h"

 #define SUCCESS 1
 #define FAILURE 0

 /* external routines */
 extern char *calloc() ,
 *malloc() ,
 *strcpy() ;

 extern int fprintf() ,
 strlen() ;

 extern void free() ;

 /* external variables */
 QUEUEe*qhead, *qtail ;
 intxqcount ;

 /* add a message to the tail of the queue */

 addq(message)
 *message ;
 {
 register QUEUE *newmembr ;

 newmembr = (QUEUE *) calloc(1, sizeof(QUEUE));
 if (newmembr == NULL) {
 fprintf(stderr, "Out of memory\n") ;
 return(FAILURE) ;
 }

Programming Tools and Interfaces
A Sample Shared Library

¦ Copyright IBM Corp. 1985, 1991
7.7.4.4 - 1

 if (qhead == NULL) {/* initial - no members */
 qhead = /* update head & tail */
 qtail = newmembr ;
 }
 else {
 qtail->next = newmembr ; /* forge link */
 qtail = newmembr ; /* advance tail ptr */
 }

 newmembr->qmsg = malloc(strlen(message) + 1) ;
 if (newmembr->qmsg == NULL) {
 fprintf(stderr, "Out of memory\n") ;
 return(FAILURE) ;
 }

 ++qcount ;

 return((int) strcpy(newmembr->qmsg, message)) ;

 }

 /* remove a message from the head of the queue */

 rmq()
 {
 register QUEUE *qcur ;

 if ((qcur = qhead) == NULL)
 return(FAILURE) ; /* empty queue */

 qhead = qhead->next ; /* new queue head */
 free(qcur->qmsg) ; /* free space for queue member */
 free(qcur) ;
 --qcount ; /* new queue count */

 return(SUCCESS) ;
 }

 /* flush the entire message queue */

 flushq(fdes)
 FILE *fdes ;
 {

 while (qcount) {
 fprintf(fdes, qhead->qmsg) ;
 rmq() ;
 }
 }

 Note: The global.c file is suggested for ease of maintenance. If any new
 global variables are needed as part of an update to the shared library,
 they can be added to the end of the old definitions. This preserves the
 old symbols' addresses.

 To aid in the building of a shared library, we can use the shlibrpt
 command. First we compile the source files to produce the object files
 global.o and queue.o:

Programming Tools and Interfaces
A Sample Shared Library

¦ Copyright IBM Corp. 1985, 1991
7.7.4.4 - 2

 cc -c queue.c global.c

 Then use shlibrpt to get a report file for editing:

 shlibrpt queue.o global.o > REPORT

 The report file consists of four sections:

 � A shared library specification fil

 � An import.h templat

 � An import.c templat

 � A cross reference

 Note: For this small example, the cross reference is not needed and will
 not be shown here. However, for a large collection of files it is very
 useful.

 After editing the report file, the three files we will be using in
 creating the sample shared library are shown in the following example.

 ## <spec filename> - specification file for shared library <name>

 #address .text <start of text>
 #address .data <start of data>

 #target <target library name>
 ## object files in library:
 #objects
 import.o
 global.o
 queue.o
 ## Branch Table Entries :
 #branch
 addq 1
 flushq 2
 rmq 3

 ## Imported Symbols:
 import.o
 <lib name> _iob
 _<lib name>_calloc calloc
 _<lib name>_fprintf fprintf
 _<lib name>_free free
 _<lib name>_malloc malloc
 _<lib name>_strcpy strcpy
 _<lib name>_strlen strlen

 ## ** END OF SPEC FILE TEMPLATE **

 /* import.h - template for macro re-definitions */

 #define _iob (*_<lib name>_ _iob)
 #define calloc (*_<lib name>_calloc)
 #define fprintf (*_<lib name>_fprintf)
 #define free (*_<lib name>_free)

Programming Tools and Interfaces
A Sample Shared Library

¦ Copyright IBM Corp. 1985, 1991
7.7.4.4 - 3

 #define malloc (*_<lib name>_malloc)
 #define strcpy (*_<lib name>_strcpy)
 #define strlen (*_<lib name>_strlen)

 extern <type> [*]_iob();
 extern <type> [*]calloc();
 extern <type> [*]fprintf();
 extern <type> [*]free();
 extern <type> [*]malloc();
 extern <type> [*]strcpy();
 extern <type> [*]strlen();

 /*** END OF IMPORT.H FILE TEMPLATE ***/
 /* import.c - template for imported symbol initialization */

 <type> [*](*_<lib name>_ _iob)() = 0 ;
 <type> [*](*_<lib name>_calloc)() = 0 ;
 <type> [*](*_<lib name>_fprintf)() = 0 ;
 <type> [*](*_<lib name>_free)() = 0 ;
 <type> [*](*_<lib name>_malloc)() = 0 ;
 <type> [*](*_<lib name>_strcpy)() = 0 ;
 <type> [*](*_<lib name>_strlen)() = 0 ;

 /*** END OF IMPORT.C FILE TEMPLATE ***/

 Further editing is needed to get these three files into the final form
 needed to build a shared library. Beginning with the specification file,
 we must choose the addresses for the library's .text and .data sections.
 From the segments reserved for private use we choose the following:

 text: 0xD0000000
 data: 0xD0400000

 Note: These region addresses must be on a page table boundary, which is
 0x400000 for AIX on the PS/2.

 Next, we choose the full path name for our target shared library. In this
 example, we will choose the current directory with the library name of
 libq_s so the full path name for the target is ./libq_s.

 Finally, we replace the <lib name> tokens in the #init directive of the
 specification file with our chosen library name, libq. Using the library
 name as a prefix to the imported symbol pointers reduces the chance of a
 name conflict occurring. With these changes, the final specification file
 appears as shown below:

 Note: In the list of object files (#objects), import.o is first. This is
 because imported data files should be defined first to preserve future
 compatibility. Otherwise, a change in the size of static data in queue.o
 would change the addresses of the external data symbols.

 ## libq.sl - specification file for shared library libq_s

 #address .text 0xD0000000
 #address .data 0xD0400000

 #target ./libq_s

 ## object files in library:

Programming Tools and Interfaces
A Sample Shared Library

¦ Copyright IBM Corp. 1985, 1991
7.7.4.4 - 4

 #objects
 import.o
 global.o
 queue.o
 ## Branch Table Entries :
 #branch
 addq 1
 flushq 2
 rmq 3

 ## Imported Symbols:
 import.o
 libq _iob
 _libq_calloc calloc
 _libq_fprintf fprintf
 _libq_free free
 _libq_malloc malloc
 _libq_strcpy strcpy
 _libq_strlen strlen

 Since it is convenient to have a common source base for both shared and
 unshared versions of a library, we have the import.h file. We change the
 original source code to add a conditional statement that includes the
 import.h file when a shared library version is to be made.

 Following the same procedure as in the specification file, we will replace
 all occurrences of the token <lib name> with the library name libq. The
 shlibrpt command analyzed the object files of the library to produce the
 import.h file. Since there is no information in the object file that
 indicates the type of an imported variable, we must check the source file
 or AIX documentation to determine the type. We then replace the <type>
 token with the appropriate type of the imported variable. Next, we must
 determine the level of indirection of the imported variable. For example,
 the routine calloc() returns a pointer to a char, so in the import.h file,
 we have the declaration:

 extern char *calloc() ;

 The shlibrpt command also cannot determine if an external reference is
 made to a function or to a variable in the .data section. Therefore,
 shlibrtp assumes that all references external to the shared library are to
 external functions. This is true for the majority of external references.
 In our example; however, we have one exception to this rule. The variable
 _iob is actually a reference to an array defined in stdio.h. This makes
 the declaration in import.h redundant. Therefore, in the edited file
 import.h which appears below, we have removed the extern declaration for
 _iob.

 /* import.h - macro re-definitions for libq */

 #define _iob (*_libq_ _iob)
 #define calloc (*_libq_calloc)
 #define fprintf (*_libq_fprintf)
 #define free (*_libq_free)
 #define malloc (*_libq_malloc)
 #define strcpy (*_libq_strcpy)
 #define strlen (*_libq_strlen)

 extern char *calloc();
 extern int fprintf();

Programming Tools and Interfaces
A Sample Shared Library

¦ Copyright IBM Corp. 1985, 1991
7.7.4.4 - 5

 extern void free();
 extern char *malloc();
 extern char *strcpy();
 extern int strlen();

 Finally, we need a source file to hold the definitions of the imported
 symbol pointers. This is the purpose of the import.c file which appears
 in edited form below. Note the correction to the declaration of the
 pointer to _iob. Also note the inclusion of stdio.h. This is necessary
 since the type FILE is defined in this include file.

 /* import.c - imported symbol initialization for libq */

 #include <stdio.h>

 FILE (*_libq_ _ iob)[]= 0 ;
 char *(*_libq_calloc)() = 0 ;
 int (*_libq_fprintf)() = 0 ;
 void (*_libq_free)() = 0 ;
 char *(*_libq_malloc)() = 0 ;
 char *(*_libq_strcpy)() = 0 ;
 int (*_libq_strlen)() = 0 ;

 A fragment of the modified source file queue.c appears below. For this
 example, the only difference between it and the original is the inclusion
 of the new include file import.h which must be included before stdio.h.

 /* queue.c - modified queue manager example */

 #include "import.h"

 #include <stdio.h>
 #include "queue.h"
 .
 .
 .

 Now we are ready to build the sample shared library. First, we will
 compile the source files:

 cc -c import.c global.c queue.c

 Then we use shlib2 to build both our host and target libraries:

 shlib2 -s libq.sl -t libq_s -h libq_s.a

 Presuming all of the source files compile correctly, the shlib2 command
 line shown above will create both the host library, libq_s.a, and the
 target library, libq_s.

 In order to test the correct operation of the libq shared library, we
 created the following test program:

 /* qtest.c - test program using example lib libq */

 #include <stdio.h>

 main()
 {
 char msgbuf[256];

Programming Tools and Interfaces
A Sample Shared Library

¦ Copyright IBM Corp. 1985, 1991
7.7.4.4 - 6

 register int i ;

 addq("This is test 0\n") ;
 flushq(stderr) ;

 for (i=1 ; i<11 ; ++i) "
 sprintf(msgbuf, "This is test %d\n", i) ;
 addq(msgbuf) ;
 }

 flushq(stderr) ;

 }

 The following command compiles and links the test program with the shared
 library, giving it the name qtest.

 cc -o qtest qtest.c libq_s.a

 Finally we run the test program by using the command:

 /qtest

Programming Tools and Interfaces
A Sample Shared Library

¦ Copyright IBM Corp. 1985, 1991
7.7.4.4 - 7

 7.7.4.5 Guidelines

 The guidelines described here stress ways to increase sharing code while
 avoiding the disadvantages of a shared library. The guidelines also stress
 upward compatibility.

 You should keep in mind the following restrictions to building a shared
 library. These restrictions involve static linking.

 � Exported symbols have fixed addresses. Therefore, if an exporte
 symbol moves, you have to re-link all programs that use the shared
 library and data.

 � If the library's text changes for one process at run time, it change
 for all processes. Only the data can change because each process has
 a private copy of the shared libraries data section.

 � If the library uses a symbol directly, that symbol's run time valu
 (address) must be known when the library is built.

 � Imported symbols cannot be referenced directly. Their addresses ar
 not known when you build the library, and they can be different for
 different processes. You can use imported symbols by adding an
 indirection through a pointer in the library's data.

Programming Tools and Interfaces
Guidelines

¦ Copyright IBM Corp. 1985, 1991
7.7.4.5 - 1

 7.7.4.6 Choosing Library Members

 The members of a shared library determine the efficiency of the library.
 Each routine should be considered to see if it is best used in a shared or
 archive library. The following guidelines may help you in creating the
 list of objects for a shared library:

 � Include large, frequently used routine

 � Exclude infrequently used routine

 � Exclude routines that use too much static dat

 � Exclude routines that complicate maintenanc

 � Include routines the library itself needs

 The large, frequently used routines are best used in a shared library.
 They save disk space for individual programs, and save memory when
 concurrent processes share the same code.

 Infrequently referenced routines in a shared library can degrade
 performance, especially on paging systems. Because all the routines in a
 shared library are loaded in memory, a page fault may be more likely to
 occur if a called function is surrounded by unrelated library code. If a
 shared library has unrelated functions, and unrelated processes make
 random calls to those functions, the locality of reference may be
 decreased, causing more paging activity.

 Routines that define static data increase the size of processes. Each
 process that uses a shared library gets its own private copy of all the
 library's data, regardless of how much of the data is actually needed.
 Therefore, you should not include routines that require a lot of static
 data. You can import global data, if necessary, but not local, static
 data.

 All exported symbols must remain at constant addresses. The branch table
 makes this easy for text symbols, but data symbols do not have an
 equivalent mechanism. The more data a library has, the more likely some of
 them will have to change size. Any change in the size of exported data may
 affect symbol addresses and break compatibility. Avoid such routines as
 they complicate maintenance.

 You may wish to consider including all the routines referenced by existing
 library routines. This would make the shared library self-contained. You
 should, however, take into consideration the previously mentioned
 guidelines first.

Programming Tools and Interfaces
Choosing Library Members

¦ Copyright IBM Corp. 1985, 1991
7.7.4.6 - 1

 7.7.4.7 Writing Code to a Shared Library

 Code written to work in a shared library will also work in an archive
 library. However, the reverse is not true because a shared library must
 explicitly handle imported symbols. Code should be written to be
 compatible between the two types of libraries, and to be compatible
 between different versions of shared libraries.

 Note: An archive version may be slightly bigger and slower.

 The following guidelines will help you attain this goal:

 � Minimize global dat

 � Define text and global data in separate source file

 � Initialize global dat

 � Preserve branch table order

 In a shared library, all external data symbols are global; meaning they
 are visible to applications. This can complicate maintenance because the
 addresses of external variables must remain constant. Therefore, you
 should try to reduce the use of global data.

 One way to reduce the use of global data is to use automatic (stack)
 variables instead of permanent storage. You can also use static data,
 which is not visible outside the library.

 Data buffers can be allocated at run time instead of defined at compile
 time. This reduces the size of the library's data region for all
 processes, and saves memory so that only the processes that actually need
 the buffers get them. It also allows the size of the buffer to change
 without affecting compatibility. Statically allocated buffers cannot
 change size without affecting the addresses of other symbols and, perhaps,
 breaking compatibility.

 Static data can affect compatibility when mixed with global data. When
 the size of static data changes, it shifts the addresses of any global
 variables declared after it. This can be within the same object file, or
 in any object files linked after it.

 To prevent data symbol addresses from moving, you can separate text from
 global data. If new exported variables are needed, they can be added at
 the end of the old definitions to preserve the old symbols addresses. It
 helps to group all exported data symbols and place them at lower addresses
 than the static data. This is controlled by the order of the list of
 object files in the shared library specification file. Place the object
 files containing the global data definitions at at the top of the list.

 Note: There is no penalty for a shared library to define all globals in a
 single file. There is however, an impact to an archive library version
 using the same code.

 Initializing variables is another way to prevent their address from
 changing. The order of uninitialized variables may not be consistent from
 one link edit to the next. However, the link editor will not change the
 order of the initialized variables, thus allowing a library developer to
 preserve compatibility. Therefore, you should initialize exported
 variables, including the pointers for imported symbols. Even though this

Programming Tools and Interfaces
Writing Code to a Shared Library

¦ Copyright IBM Corp. 1985, 1991
7.7.4.7 - 1

 uses more disk space in the target shared library, the expansion is
 limited to a single file.

 The order of the specification file branch table should be maintained with
 previous versions of the shared library. You should add any new function
 only at the end of the branch table. As long as previous assignments are
 not changed, existing programs do not have to be re-linked with the new
 version of the shared library.

Programming Tools and Interfaces
Writing Code to a Shared Library

¦ Copyright IBM Corp. 1985, 1991
7.7.4.7 - 2

 7.7.4.8 Importing Symbols

 Symbols defined outside a shared library cannot be directly accessed by
 the shared library routines. However, a mechanism exists where you can
 define pointers in the data area and have them initialized to the address
 of the imported symbols. This allows you to access imported symbols
 indirectly, delaying symbol binding until run time. Both text and data
 symbols can be imported. A shared library cannot contain unresolved
 references. Therefore, any undefined symbols must be imported. The
 imported symbols can come from the user's code, another library, or even
 the shared library itself.

 Having a shared library import its own symbols is useful if you wish to
 allow redefinition of these symbols. A routine can be re-defined outside
 the shared library and still be used by other routines within the shared
 library. This provides full compatibility between a shared and equivalent
 archive library.

 Shared library code is different from archive library code because of
 importing symbols. The references to external symbols would change to
 become an indirect reference to the import symbol pointers. This
 difference in the source code can be hidden through the use of macro
 definitions. You could define different versions of a header file; one
 for a shared library that contains the macro definitions, and one for an
 archive library that would be empty. The -I flag to the cpp command would
 specify the appropriate directory from which to get the header file.
 Another way to keep common source code is to only define the shared
 library header file, and conditionally include it in the source code. In
 this case, you would use the -D flag to cpp to define the conditional
 variable when you make the shared library version. To complete the
 transformation to shared library code, the pointer to the import symbol
 must be defined and initialized to zero. This can be done in a separate C
 source file to maintain source compatibility. "A Sample Shared Library"
 in topic 7.7.4.4 shows you the mechanics of importing symbols.

 All imported symbol pointers should have initialization code defined in
 the specification file. shlib2 adds relocatable code that performs the
 import initialization to the specified object file in the host shared
 library. It creates an unresolved reference to make sure the symbol being
 imported gets resolved. When the link editor extracts the object file
 from the host library, the relocatable code goes into the executable file.
 It resolves the unresolved references and collects all initialization
 code. When the file is executed, the system startup routine executes the
 initialization code which sets the library pointers to their appropriate
 values. This is done before the process calls main.

 You may wish to consider writing C source files that define imported
 symbol pointers singly or in related groups to reduce unnecessary loading.
 This will give the link editor a finer granularity to use when it resolves
 the symbols. Otherwise, the link editor may resolve symbols that are not
 required.

Programming Tools and Interfaces
Importing Symbols

¦ Copyright IBM Corp. 1985, 1991
7.7.4.8 - 1

 7.7.4.9 Tuning Shared Library Code

 Shared library code can be tuned by grouping routines so they share the
 same page in memory. To get information on the static and dynamic calling
 dependencies, you can use some system commands.

 With the prof command, you can profile an archive version of the library
 to decide which routines should be included in the shared library. Note
 that the program size is a static property, and paging is a dynamic
 property. These static and dynamic characteristics may conflict, so you
 have to decide whether the performance lost is worth the disk space
 gained.

 You can improve the locality of references by grouping dynamically related
 functions. The cflow command generates this static dependency
 information. Combine it with profiling to see what things actually are
 called, as opposed to what things might be called.

 You can also arrange the shared library target's object files so that
 frequently used functions do not cross page boundaries unnecessarily.
 Using the dis (disassembler) command, you can look at the code, grouping
 related function and then dividing the them into page size chunks. When
 arranging object files within the target library, be sure to keep the text
 and data files separate. You can reorder text object files without
 breaking compatibility; the same is not true for object files that define
 global data. The infrequently called functions can be used as glue
 between the chunks. Because the glue between pages is referenced less
 frequently than the page contents, the probability of a page fault is
 decreased.

 Finally, you may have to consider the hardware you are using to obtain
 better performance. You get better performance by arranging the typical
 process to avoid cache entry conflicts. If a heavily used library had both
 its text and its data segment mapped to the same cache entry, the
 performance penalty would be particularly severe. Every library
 instruction would bring the text segment information into the cache.
 Instructions that referenced data would flush the entry to load the data
 segment. Of course, the next instruction would reference text and flush
 the cache entry again.

Programming Tools and Interfaces
Tuning Shared Library Code

¦ Copyright IBM Corp. 1985, 1991
7.7.4.9 - 1

 7.7.4.10 Archive and Shared Library Compatibility

 It is suggested that you create both compatible archive and shared
 libraries. This allows you to easily substitute one for the other. For
 various reasons, you may not wish to include all the routines from an
 archive library in the target shared library version. Compatibility can
 still be maintained by first building the host and target library to
 include only the selected routines. Then you can add the missing
 relocatable objects to the host library. See the -n flag of the shlib2
 command.

Programming Tools and Interfaces
Archive and Shared Library Compatibility

¦ Copyright IBM Corp. 1985, 1991
7.7.4.10 - 1

 7.7.4.11 Shared Library Upward Compatibility

 If a shared library is updated and compatibility is not maintained, all
 the programs that were linked with the old shared library must be
 re-linked with the new version. If they are not re-linked, these programs
 will not execute properly.

 Libraries are incompatible if their exported symbols have different
 addresses. Shared library developers normally want newer versions One way
 to compare the exported symbol addresses is by using the nm command and a
 sed script. The nm command displays the symbol table information and the
 sed script filters out unnecessary information. Only the external symbol
 names and addresses are required for comparison. The output for the old
 and new shared libraries is compared using the diff command. No
 differences indicated compatibility of the exported symbols. See the AIX
 Operating System Commands Reference Manual for information on nm, sed, and
 diff.

 sed command file:
 /|extern|.*/!d
 s///
 /^.bt/d
 /^etext /d
 /^edata /d
 /^end /d

 Note: A library can also be incompatible if the number of arguments to a
 function changes. A change of this sort is not reflected by the above
 process.

 Command lines to execute comparison:

 nm oldsl ¦ sed -f cmdfile >old.nm

 nm newsl ¦ sed -f cmdfile >new.nm

 diff old.nm new.nm

 If two versions of a shared library are incompatible and it is not
 possible to re-link all the programs, then a new target path name can be
 used. Since the host and target path names are independent, you do not
 have to change the host library path name. New programs being linked will
 use the new target library. Old programs will continue to access the old
 target library.

 Note: Maintaining multiple library versions may use more disk space and
 memory than the equivalent archive library.

Programming Tools and Interfaces
Shared Library Upward Compatibility

¦ Copyright IBM Corp. 1985, 1991
7.7.4.11 - 1

 8.0 Chapter 8. Using System Calls

 Subtopics
 8.1 CONTENTS
 8.2 About This Chapter
 8.3 Header Files Needed for Calls
 8.4 Process Calls
 8.5 Interprocess Communications
 8.6 File System Calls
 8.7 Time System Calls

Programming Tools and Interfaces
Chapter 8. Using System Calls

¦ Copyright IBM Corp. 1985, 1991
8.0 - 1

 8.1 CONTENTS

Programming Tools and Interfaces
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
8.1 - 1

 8.2 About This Chapter

 This chapter discusses how to access the services of the operating system
 from a program through system calls. It also contains information on
 process calls, interprocess communications, file system calls, and time
 system calls. See AIX Operating System Technical Reference for reference
 information about a system call described in this chapter.

Programming Tools and Interfaces
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
8.2 - 1

 8.3 Header Files Needed for Calls

 Some system calls depend on special macro definitions and declarations for
 the values that they return. The system provides this information in
 files called header files that are in the directory /usr/include.
 Therefore, when using system calls, be sure to include any header files
 that the system call needs. To include a file in a program, use the
 following statement in the program:

 #include <file.h>

 where the parameter, file.h, represents the name of the header file to
 use.

 The header files needed for each system call are:

 Header File Calls That Use The Header File

 fcntl.h open, fcntl

 grp.h getgroups, setgroups

 mon.h profil

 signal.h kill, sigaction, sigprocmask

 uinfo.h usrinfo

 unistd.h access, utime

 ustat.h ustat

 sys/chownx.h chownx

 sys/devinfo.h ioctl

 sys/ioctl.h ioctl

 sys/ipc.h msgxrcv, msgctl, msgget, msgsnd, msgrcv, semctl, semget,
 semop, shmat, shmctl, shmdt, shmget

 sys/lockf.h lockf

 sys/lock.h plock

 sys/msg.h msgxrcv, msgctl, msgget, msgsnd, msgrcv

 sys/ptrace.h ptrace

 sys/select.h select

 sys/sem.h semctl, semget, semop

 sys/shm.h disclaim, shmctl, shmget, shmat, shmdt

 sys/dustat.h dustat

 sys/stat.h stat, fstat, statx, fstatx, creat, chmod, msgget, mknod,
 shmget, semget

Programming Tools and Interfaces
Header Files Needed for Calls

¦ Copyright IBM Corp. 1985, 1991
8.3 - 1

 sys/times.h times

 sys/types.h Most system calls including but not limited to fstat,
 fstatx, seek, msgxrcv, msgctl, msgget, msgrcv, msgsnd,
 semctl, semget, semop, shmat, shmctl, shmdt, shmget,
 stat, statx, times, ulimit, ustat

 sys/utsname.h uname

 sys/wait.h wait, wait3

Programming Tools and Interfaces
Header Files Needed for Calls

¦ Copyright IBM Corp. 1985, 1991
8.3 - 2

 8.4 Process Calls

 When a program runs in the system, that program, together with the
 environment that it runs in, is a process Many processes are running in
 the system: some running system programs (like init) and some running
 application programs. When each process begins, the system assigns it an
 identification number (process ID) that is a positive integer. Except for
 certain system processes, the process ID of a process is the site number
 multiplied by 100,000 plus an integer between 0 and 99,999. For example,
 site 25 has process IDs between 2,500,000 and 2,599,999. As long as the
 process remains active, the system uses this number to identify that
 process. When the process ends, the system can assign the number to a new
 process.

 Subtopics
 8.4.1 Process Handling Calls
 8.4.2 Starting a Process
 8.4.3 Process Identification
 8.4.4 Process Attribute Calls
 8.4.5 Process Tracking Calls

Programming Tools and Interfaces
Process Calls

¦ Copyright IBM Corp. 1985, 1991
8.4 - 1

 8.4.1 Process Handling Calls

 Use the following calls to control creating, operating and stopping
 processes (see AIX Operating System Technical Reference for more
 information about these calls):

 Call Description

 brk, sbrk Changes data segment space allocation.
 exec Runs a new program in the currently running process.
 exit Causes a process to finish execution.
 fork Creates a new process.
 migrate Moves a process to another cluster site.
 getpriority Changes or determines priority.
 setpriority Changes or determines priority.
 pipe Creates an inter-process channel.
 plock Locks process, text, or data in memory.
 profil Starts and stops execution profiling.
 ptrace Traces the execution of another process.
 rexec Runs a program at a specified cluster site.
 rfork Creates a new process at a specified cluster site.
 run Creates a new process and runs a program at a specified
 cluster site.
 wait, wait3, waitpid
 Waits for a child process to stop or terminate.

Programming Tools and Interfaces
Process Handling Calls

¦ Copyright IBM Corp. 1985, 1991
8.4.1 - 1

 8.4.2 Starting a Process

 A new process can be started only with one of the system calls fork,
 rfork, or run. The other system calls described below are used to control
 process execution.

 Subtopics
 8.4.2.1 Fork
 8.4.2.2 Rfork
 8.4.2.3 Exec
 8.4.2.4 Rexec
 8.4.2.5 Run
 8.4.2.6 Migrate
 8.4.2.7 Wait
 8.4.2.8 Example of Process Life Cycle
 8.4.2.9 Special Processes
 8.4.2.10 Example of Fork and Wait System Calls
 8.4.2.11 Example of Exec System Call
 8.4.2.12 Example of Additional Process Handling System Calls
 8.4.2.13 Example of a Pipe System Call

Programming Tools and Interfaces
Starting a Process

¦ Copyright IBM Corp. 1985, 1991
8.4.2 - 1

 8.4.2.1 Fork
 To split the currently running process into two that execute
 independently, the fork call does the following:

 1. Gets a new process id from the system.

 2. Places a copy of the current image in the new process space.

 3. Returns to the fork call with a 0 in child and process id in parent.

 The original process called the parent, and the new process called the
 child have independent copies of the original process data image but share
 all open files. If the parent process was running a shared text load
 module, a single copy of the text will be shared by both the parent and
 child.

 The two processes differ only in the values returned by the fork call.
 The value returned to the parent process is either the nonzero process id
 of the newly created child, or -1 if an error occurred. The child process
 always receives a value of zero.

 Use the following conditional statement to determine whether the process
 making the call is the parent or child:

 int status;
 if((procid = fork()) == 0)
 {
 execv(path, arguments); /* executed by child */
 }
 wait(&status) /* executed by parent */

Programming Tools and Interfaces
Fork

¦ Copyright IBM Corp. 1985, 1991
8.4.2.1 - 1

 8.4.2.2 Rfork
 The rfork system call is an extended version of the fork system call.
 Rfork takes a single argument, which is the number of the cluster site
 where the child is to be created. If the local cluster site number is
 specified, it is equivalent to fork. The use of rfork in the following
 conditional statement lets you specify the site on which the new process
 is to be created:

 int status;
 if((procid = rfork(site_number)) == 0)
 {
 execv(path, arguments);
 }
 wait(&status);

Programming Tools and Interfaces
Rfork

¦ Copyright IBM Corp. 1985, 1991
8.4.2.2 - 1

 8.4.2.3 Exec
 If the fork or rfork call is successful, the next system call that the
 child process executes is usually an exec system call or one of its
 derivatives. This call replaces the program currently running in the
 child process with a new program and starts executing it. One form of
 this call, shown in the previous conditional statement, is execv(path,
 arguments). All forms of exec replace the text and data of the calling
 process with the contents of the file path but leave unaltered the status
 of open files and current working directory. The new program is then
 executed with the specified arguments.

 If the file specified by path cannot be executed on the cluster site of
 the process performing the exec system call, then the system will look for
 a cluster site that can. Refer to the discussion of getspath, setspath in
 the AIX Operating System Technical Reference.

Programming Tools and Interfaces
Exec

¦ Copyright IBM Corp. 1985, 1991
8.4.2.3 - 1

 8.4.2.4 Rexec
 The rexec system call is an extended version of the exec system call.
 Rexec takes a single argument, which is the number of the cluster site
 where the child is to be created. If the local cluster site number is
 specified, it is equivalent to exec.

 if((procid = fork()) == 0)
 {
 rexecv(path, arguments, site_number);
 }
 wait(&status);

Programming Tools and Interfaces
Rexec

¦ Copyright IBM Corp. 1985, 1991
8.4.2.4 - 1

 8.4.2.5 Run
 This call behaves like a fork call followed by a call to rexec but
 executes much more efficiently. A new process is created on the indicated
 site and then overlaid by the contents of the specified file with control
 transferred to the new entry point. Run does not return a value to the
 child, so the construction is now slightly different:

 if((procid = runv(path, arguments, site_number, fdmapsize, fdmap)) != -1)
 {
 wait(&status);
 }

Programming Tools and Interfaces
Run

¦ Copyright IBM Corp. 1985, 1991
8.4.2.5 - 1

 8.4.2.6 Migrate
 The call migrate (site_number) moves the calling process to the specified
 site, if possible. Migration (and, in general, remote tasking within the
 cluster) is not permitted under certain conditions, such as when the
 calling process uses semaphores, messages, or shared memory.

Programming Tools and Interfaces
Migrate

¦ Copyright IBM Corp. 1985, 1991
8.4.2.6 - 1

 8.4.2.7 Wait
 The wait system call suspends a parent process until any of its child
 processes complete execution. Wait returns the child process ID. The
 exit status of the child process is stored in the status parameter.

Programming Tools and Interfaces
Wait

¦ Copyright IBM Corp. 1985, 1991
8.4.2.7 - 1

 8.4.2.8 Example of Process Life Cycle

 When the shell executes a command, it performs the fork and wait process
 just described. See Figure 8-1 for an illustration of the following
 process. For example, the command:

 pr

 tells the shell to execute a program called pr. To do this:

 1. The shell issues a fork system call to get a new process.

 2. The system marks the shell data and stack space for the new process
 space in such a way as to avoid unnecessary system overhead. On the
 PS/2 (386), the system marks this information as copy on write. On
 the System/370, the system marks this information as copy on
 reference.

 3. The system schedules the new process to be run.

 4. The first shell issues a wait to wait for the new process (child) to
 complete.

 The new process (also a shell) then:

 1. Issues an exec system call to load and run the pr program in the new
 process.

 2. Issues an exit system call with a completion code when it is done.

 When the parent shell process receives the completion code from the exit
 system call in the child, it starts running again. You can then enter
 another command on the command line.

 --

 PROCESS 1
 |-----------------|
 Program 1
 { .
 .
 . +
 if(x=fork0); +-+ PROCESS 2
 ¦ + ¦ |----------------|
 ¦ ¦ [1] Program 1
 ¦ +------------ {
 ¦ execv(newprog); [2]
 � newprog {
 [3]wait(x); �-----------+ .
 . ¦ .
 . ¦ .
 . +---- exit(0); [4]
 [5]Program 1 }
 continues |----------------|

 |-----------------|

 [1] Process 1 forks to get Process 2.
 [2] Process 2 executes next instruction in Program 1

Programming Tools and Interfaces
Example of Process Life Cycle

¦ Copyright IBM Corp. 1985, 1991
8.4.2.8 - 1

 which copies newprog into Process 2.
 [3] Process 1 executes a wait() call.
 [4] Newprog completes with an exit() call, which
 returns a value to Process 1; Process 2 stops.
 [5] Program 1 starts running again.

 --
 Figure 8-1. Using the Fork System Call

Programming Tools and Interfaces
Example of Process Life Cycle

¦ Copyright IBM Corp. 1985, 1991
8.4.2.8 - 2

 8.4.2.9 Special Processes

 Special processes have process IDs less than 100,000. The special process
 INIT (the initialization process, which has a process ID of 1) is
 initially created to initialize the system and is the ancestor process to
 all others in the system. Other special processes swap processes out to
 disk, maintain a minimum amount of free memory on the system free page
 list, service network requests, manage the dynamic inclusion and exclusion
 of cluster sites, and propagate committed updates for replicated files.

Programming Tools and Interfaces
Special Processes

¦ Copyright IBM Corp. 1985, 1991
8.4.2.9 - 1

 8.4.2.10 Example of Fork and Wait System Calls

 The program in Figure 8-2 uses the fork and wait system calls in a simple
 program that runs. Compile the program using the cc command:

 cc -o forktst2 forktst2.c

 To run the program, enter the command:

 forktst2

 When the program runs, it writes output to the screen. The two processes
 that the program creates both write to the screen, but this time the
 parent waits for the child to complete before it writes to the screen.
 Therefore, the result that appears on the screen is much more predictable
 than the previous example. The output looks like Figure 8-3.

 --

 #include <stdio.h>
 #define PR(value) fprintf(stdout,"%s\n",(value))
 #define PD(value) fprintf(stdout,"%d\n",(value))

 main()
 {
 int c_count;
 int p_count;
 int status;
 int frkpid;
 int chldpd;

 PR("starting main process");
 if((frkpid = fork()) == 0)
 {
 PR("starting child process");
 for(c_count = 0; c_count <= 4; c_count++)
 PR("child");
 PR("ending child process");
 PD(frkpid);
 exit(0);
 }
 chldpd = wait(&status);
 PR("starting parent process");
 for(p_count = 0; p_count <= 4; p_count++)
 PR("parent");
 PR("ending parent process");
 PD(frkpid);
 PD(chldpd);
 PD(status);
 }

 --
 Figure 8-2. Fork and Wait System Calls - Sample Program

 --

 starting main process
 starting child process
 child

Programming Tools and Interfaces
Example of Fork and Wait System Calls

¦ Copyright IBM Corp. 1985, 1991
8.4.2.10 - 1

 child
 child
 child
 child
 ending child process
 0
 starting parent process
 parent
 parent
 parent
 parent
 parent
 ending parent process
 100096
 100096
 0
 $

 --
 Figure 8-3. Output from forktst2 Sample Program

Programming Tools and Interfaces
Example of Fork and Wait System Calls

¦ Copyright IBM Corp. 1985, 1991
8.4.2.10 - 2

 8.4.2.11 Example of Exec System Call

 The program in Figure 8-4 uses exec system call together with the fork and
 wait system calls in a simple program that runs. Compile the program
 using the cc command and copy it to its own file, forktst3, as in the
 previous fork example.

 To run the program, enter the command:

 forktst3

 When the program runs, it writes output to the screen. The two processes
 that the program creates both write to the screen; the parent waits for
 the child to complete before it writes to the screen. The output looks
 like Figure 8-5.

 --

 #include <stdio.h>
 #define PR(value) fprintf(stdout,"%s\n",(value))

 main()
 {
 int p_count;
 int status;
 int frkpid;
 int chldpd;

 PR("starting main process");
 if((frkpid = fork()) == 0)
 {
 PR("starting child process");
 execl("/bin/"date", "date", (char*)0);
 }
 chldpd = wait(&status);
 PR("starting parent process");
 for(p_count = 0; p_count <= 4; p_count++)
 PR("parent");
 PR("ending parent process");
 }

 --
 Figure 8-4. Exec System Call - Sample Program

 --

 starting main process
 starting child process
 Wed May 15 15:26:25 CDT 1985
 starting parent process
 parent
 parent
 parent
 parent
 parent
 ending parent process
 $

Programming Tools and Interfaces
Example of Exec System Call

¦ Copyright IBM Corp. 1985, 1991
8.4.2.11 - 1

 --
 Figure 8-5. Output from forktst3 Sample Program

 The child portion of this program does not contain an exit call because
 when it performs the execl call, the new program, date loads on top of the
 program in the child process (destroying any program code that is there).
 When the new program ends, it stops the child process and returns a
 completion code to the waiting parent process.

Programming Tools and Interfaces
Example of Exec System Call

¦ Copyright IBM Corp. 1985, 1991
8.4.2.11 - 2

 8.4.2.12 Example of Additional Process Handling System Calls

 The program in Figure 8-6 uses the rfork(), rexec(), run(), and migrate()
 system calls. You can enter the program as forktst4.c. Compile it using
 the cc command:

 cc -o forktst4 forkts4t.c

 The resulting command, forktst4, can take an optional argument to specify
 the target cluster site.

 To run the program for this example, enter the command:

 forktst4 site_number

 When you run the program shown in Figure 8-6, it displays output that
 looks like Figure 8-7. The sample output shown resulted from entering the
 command forktst4 30 from a shell running on site number 29.

 --

 #include <stdio.h>
 #include <sys/types.h>
 #define PR(value) {fprintf(stdout, "%s\n", (value)); fflush(stdout);}

 main(argc, argv)
 int argc; char *argv[];
 {
 siteno_t siteno;
 int status;

 if (argc > 1)

 siteno = (siteno_t) atoi(argv[1]);

 else
 siteno = (siteno_t) 0;

 PR("starting parent process");
 if (fork() == 0)
 {

 PR("starting child process");
 if (fork() == 0) {
 PR("starting grandchild process");
 migrate(siteno);
 execl("/usr/bin/sitenum", "sitenum", (char *)0);
 }
 wait(&status);
 PR("resuming child process");
 if (fork() == 0)
 {
 PR("starting grandchild process");
 rexecl("/usr/bin/sitenum", "sitenum",(char *)0,siteno);
 }
 wait(&status);
 PR("resuming child process");
 if (rfork(siteno) == 0)
 {
 PR("starting grandchild process");

Programming Tools and Interfaces
Example of Additional Process Handling System Calls

¦ Copyright IBM Corp. 1985, 1991
8.4.2.12 - 1

 execl("/usr/bin/sitenum", "sitenum", (char *)0);
 }
 wait(&status);
 PR("resuming child process");
 PR("starting grandchild process");
 runl("/usr/bin/sitenum", "sitenum", (char *)0, siteno, 0,(char*)0);
 wait(&status);
 PR("resuming child process");
 execl("/usr/bin/sitenum", "sitenum", (char *)0);
 }
 wait(&status);
 PR("resuming parent process");
 execl("/usr/bin/sitenum", "sitenum", (char *)0);
 }

 --
 Figure 8-6. Additional Process Handling System Calls - Sample Program

 --

 starting parent process
 starting child process
 starting grandchild process
 30
 resuming child process
 starting grandchild process
 30
 resuming child process
 starting grandchild process
 30
 resuming child process
 starting grandchild process
 30
 resuming child process
 29
 resuming parent process
 29

 --
 Figure 8-7. Additional Process Handling System Calls - Sample Output

Programming Tools and Interfaces
Example of Additional Process Handling System Calls

¦ Copyright IBM Corp. 1985, 1991
8.4.2.12 - 2

 8.4.2.13 Example of a Pipe System Call

 The program in Figure 8-8 uses the pipe system call in a simple, but
 operating program. Compile the program using the cc command and copy it
 to its own file, pipetst, as in the previous fork example. This example
 implements functions similar to the popen and pclose subroutines which are
 described in the AIX Operating System Technical Reference.

 --

 /* pipetst.c -- sample program using the pipe system call. The
 * routines openp and closep, defined below, are similar (but not
 * identical) in function to the popen and pclose library routines
 * provided by AIX.
 */
 #include <sys/types.h> /* for pid_t */
 #include <stdio.h> /* for printf() function */
 #include <string.h> /* for strlen() function */
 #include <fcntl.h> /* for constants O_RDONLY, O_WRONLY */

 pid_t childpid, fork(), wait();

 main()
 {
 int w_fdesc;
 char *message = "Writing piped message.";
 int mesg_len;

 mesg_len = strlen(message);

 w_fdesc = openp("pr", O_WRONLY);
 if (w_fdesc == -1) {
 printf("error creating pipe");
 exit(1);
 }
 if (write(w_fdesc, message, mesg_len) != mesg_len) {
 printf("error writing to pipe");
 exit(1);
 }

 closep(w_fdesc);
 exit (0);
 }

 int
 openp(cmd, mode)
 char *cmd;
 int mode;
 {
 int p_fdesc[2];

 if (pipe(p_fdesc) < 0)
 return -1;

 /* Create child process to be on the other end of the pipe */
 if ((childpid = fork()) == 0) {
 if (mode == O_RDONLY) {
 /* If caller is going to be the reader, the child
 * is the writer so close the read end of the pipe,
 * and move the write end of the pipe to stdout

Programming Tools and Interfaces
Example of a Pipe System Call

¦ Copyright IBM Corp. 1985, 1991
8.4.2.13 - 1

 * (file descriptor 1) by calling close, dup, close */
 close(p_fdesc[O_RDONLY]);
 close(1);
 dup(p_fdesc[O_WRONLY]);
 close(p_fdesc[O_WRONLY]);
 } else {
 /* If caller is going to be the writer, the child
 * is the reader so close the write end of the pipe,
 * and move the read end of the pipe to stdin
 * (file descriptor 0) by calling close, dup, close */
 close(p_fdesc[O_WRONLY]);
 close(0);
 dup(p_fdesc[O_RDONLY]);
 close(p_fdesc[O_RDONLY]);
 }
 execl("/bin/sh", "sh", "-c", cmd, 0);
 _exit(1);
 }
 if (childpid == -1)
 return -1;

 if (mode == O_RDONLY) {
 close(p_fdesc[O_WRONLY]);
 return p_fdesc[O_RDONLY];
 } else {
 close (p_fdesc[O_RDONLY]);
 return p_fdesc[O_WRONLY];
 }
 }

 int
 closep(fd)
 int fd;
 {
 pid_t retpid;
 int status;

 close(fd);
 while ((retpid = wait(&status)) != childpid) {
 if (retpid == -1)
 return -1;
 }
 return status;
 }

 --
 Figure 8-8. Using the pipe System Call

 To run the program, enter the command:

 pipetst

 This program shows how to handle pipe file descriptors to use pipe for
 interprocess communication. It creates a pipe, forks another process, and
 writes a simple message to the pipe. The child process writes the message
 to the screen after receiving the message through the pipe.

 When the program runs, it calls openp to open a pipe and fork to create a

Programming Tools and Interfaces
Example of a Pipe System Call

¦ Copyright IBM Corp. 1985, 1991
8.4.2.13 - 2

 new process. The pipe call returns two file descriptors to the calling
 program: the first describes the end of the pipe to use for writing; the
 second describes the end of the pipe to use for reading. Both processes
 must cooperate to use the pipe. If one process writes to the pipe, the
 other process should not write to the same pipe at the same time.
 Similarly, if one process reads from the pipe, the other process should
 write something into the pipe to be read. Therefore, after the fork in
 this program, the child process closes the write file descriptor for the
 pipe and the parent process closes the read file descriptor for the pipe.
 The parent can then write into the pipe and the child can read from the
 pipe, using the remaining open file descriptors.

 Note: To have two-way data transfer between processes, open two different
 pipes: one for reading and one for writing. Do not use one pipe for
 two-way data transfer.

 After the child process closes the read end of the pipe, it also closes
 the file descriptor for standard input that belongs to that process (file
 descriptor 0). Then it uses a dup system call to copy the read file
 descriptor for the pipe. Because the system assigns file descriptors
 starting at the lowest number available and file descriptors 0 and 1 are
 now available, the copy of the read end of the pipe becomes standard input
 for the child process. The child then closes the original read file
 descriptor for the pipe, leaving only the file descriptor for standard
 input assigned to the pipe in the child process.

 Having set up the pipe as standard input, the child process loads and
 executes (execl) the shell and the command that is passed to it from the
 parent process (pr). The new program in the child process then waits for
 input from its standard input, the read end of the pipe.

 The parent process closes the read file descriptor for the pipe and
 returns the write file descriptor to the calling process (pipetst).
 Pipetst writes a message into the pipe, which is written out by the pr
 command running in the child process.

 Because the pr command writes a formatted page output to the screen
 (standard output), the output may flash on the screen too fast to see it
 happen. If this occurs, use the command:

 stty page length 24

 to set the terminal to paging mode. The output fills the screen and then
 waits for you to press Enter before it displays another screen of data.

Programming Tools and Interfaces
Example of a Pipe System Call

¦ Copyright IBM Corp. 1985, 1991
8.4.2.13 - 3

 8.4.3 Process Identification

 Each process in the system has a unique number (process ID) that the
 system uses to control the activities in the system. In addition to the
 process ID, the system also assigns the following identifiers to a process
 (see Figure 8-9):

 Effective Group ID
 The group ID that determines what files the program can access.
 In most cases this is the same as the real group ID; however,
 you can create a process that has access permission that is
 different from your own, and the effective group ID would be
 different. Refer to the exec system call in AIX Operating
 System Technical Reference for information about setting the set
 group ID bit.

 Effective User ID
 The user ID that determines what files the program can access.
 In most cases this is the same as the real user ID; however, you
 can create a process that has access permission that is
 different from your own, and the effective user ID would be
 different. Refer to the exec system call in AIX Operating
 System Technical Reference for information about setting the set
 user ID bit.

 Parent Process ID
 The process ID of the parent process that issued a fork call to
 create the process.

 Process Group ID
 A process ID value assigned to a collection of related processes
 so that they may be signalled as a group. For additional
 information, refer to the discussion of setpgid and kill in the
 AIX Operating System Technical Reference.

 Real Group ID
 The group ID of the user who started the process.

 Real User ID
 The user ID of the user who started the process.

 Saved-Set Group ID
 The value of a process' effective group ID saved when the
 process starts. This affects a process' ability to send and
 receive signals. For additional information, refer to the
 discussion of kill in the AIX Operating System Technical
 Reference.

 Saved-Set User ID
 The value of a process' effective user ID saved when the process
 starts. This affects a process' ability to send and receive
 signals. For additional information, refer to the discussion of
 kill in the AIX Operating System Technical Reference.

 Session ID
 A process ID that identifies all processes that started from a
 particular terminal.

 Terminal Process Group ID
 The process ID of the foreground process group for a particular

Programming Tools and Interfaces
Process Identification

¦ Copyright IBM Corp. 1985, 1991
8.4.3 - 1

 terminal. The foreground process group contains all processes
 that can read from the terminal.

 A program can determine or change process identifiers with the following
 system calls:

 Call Description

 getegid Gets effective group ID of the calling process.
 geteuid Gets effective user ID of the calling process.
 getgid Gets real group ID of the calling process.
 getpgrp Gets process group ID.
 getpid Gets process ID.
 getppid Gets parent process ID.
 getsid Gets session ID.
 getuid Gets real and effective, user and group IDs.
 setgid Sets group ID.
 setpgrp Sets process group ID.
 setpgid Sets process group ID of another process.
 setsid Sets session ID.
 setuid Sets user ID.
 tcgetpgrp Gets terminal process group ID.
 tcsetpgrp Sets terminal process group ID.
 ulimit Gets and sets user limits.
 uname Gets name of current system.
 unamex Gets information about current system.
 usrinfo Gets and sets user information about the owner of a process.

 See AIX Operating System Technical Reference for complete information
 about any of these system calls.

 --

 Session ID is the same for all processes
 started from this terminal.

 +--+ . . .
 +---------------+
 ¦ Your Terminal ¦
 +---------------+
 +--------+ +-------------------- . . .
 +------------+ +------------+ -+
 ¦ Process 20 ¦ ¦ Process 10 ¦ ¦
 +------------+ +------------¦ ¦ Process
 -+ +----+ ¦ ¦ +-----+ ¦ Group
 Parent Process ID = ¦ ¦ . . ¦ ¦ ¦ ID = 10
 10 for processes +---- P17 P16 . . P13 P12 +- for all
 at this level. ¦ . . +---+ ¦ processes
 -+ -+ ¦ ¦ ¦ in this
 Parent Process ID = 12 +- P14 P15 ¦ leg.
 for these processes. ¦ ¦
 -+ -+

 Real User ID = Your ID number for all processes.
 Effective User ID = Your ID number or an ID number that gives special
 access permissions to the process.
 Real Group ID = Your group ID number for all processes.
 Effective Group ID = Your group ID number or an ID number that gives
 special access permissions to the process.

Programming Tools and Interfaces
Process Identification

¦ Copyright IBM Corp. 1985, 1991
8.4.3 - 2

 --
 Figure 8-9. Relationship of IDs in the System

 Subtopics
 8.4.3.1 Concurrent Groups

Programming Tools and Interfaces
Process Identification

¦ Copyright IBM Corp. 1985, 1991
8.4.3 - 3

 8.4.3.1 Concurrent Groups

 The operating system allows you to belong to many different groups. Being
 a member of a group, you can access the files whose permission bits allow
 access to members of that group. If you belong to more than one group,
 you can access the files that are available to all of those groups at any
 time. The ability to access files from many groups at the same time is
 called concurrent groups.

 When you log in to the system, the login program checks /etc/passwd and
 /etc/group to determine group membership. The login program then sets up
 access to the files of those groups, and assigns a group ID to indicate
 which of the groups is the primary group. When you create files, those
 files become available to other members of the primary group. To change
 the primary group, use the newgrp command to change the group ID to that
 of another group to which you belong.

 You can run a program only if you own it and have user execute permission,
 if it is available to one of your groups, or if the others permission of
 the program allows you to execute it. When the program runs, it behaves
 much like a user with respect to groups. It normally takes on the group
 memberships of the person running the program. For example, if you run a
 program, that program can access all files that you can access; if another
 user runs the same program, the program no longer can access your files,
 but can access the files that the new user can access. You can change
 this behavior by using the chmod command to set the program to always run
 under its own set of user and group IDs. See AIX Operating System
 Commands Reference for information about the chmod command.

 Programs can determine or change a process' concurrent groups using
 getgroups and setgroups. Refer to the AIX Operating System Technical
 Reference.

Programming Tools and Interfaces
Concurrent Groups

¦ Copyright IBM Corp. 1985, 1991
8.4.3.1 - 1

 8.4.4 Process Attribute Calls

 The following describes additional attributes in the environment.

 Subtopics
 8.4.4.1 <LOCAL> Alias
 8.4.4.2 Cluster Site Number
 8.4.4.3 Cluster Site Path List
 8.4.4.4 Cluster Site Permission Mask
 8.4.4.5 Example of Process ID and Attribute Calls
 8.4.4.6 Changing the Controlling Terminal

Programming Tools and Interfaces
Process Attribute Calls

¦ Copyright IBM Corp. 1985, 1991
8.4.4 - 1

 8.4.4.1 <LOCAL> Alias
 This attribute is evaluated whenever the system encounters a symbolic link
 beginning with <LOCAL>. The alias is then substituted for the token
 "<LOCAL>" during path name resolution. This allows the same symbolic link
 to refer to different files for processes running on different sites in a
 TCF cluster.

Programming Tools and Interfaces
<LOCAL> Alias

¦ Copyright IBM Corp. 1985, 1991
8.4.4.1 - 1

 8.4.4.2 Cluster Site Number
 This number uniquely identifies the cluster site within the cluster.

Programming Tools and Interfaces
Cluster Site Number

¦ Copyright IBM Corp. 1985, 1991
8.4.4.2 - 1

 8.4.4.3 Cluster Site Path List
 The site path list is used to resolve file names that refer to hidden
 directories. When the system encounters a hidden directory while
 resolving a path name, it extracts elements of the site path until it
 finds a match between a list element and a file in the hidden directory.
 If the system finds such a match, it selects that file and finishes
 resolving the path name. The site path list is especially useful for
 selecting executables in an environment of heterogeneous machine types.

Programming Tools and Interfaces
Cluster Site Path List

¦ Copyright IBM Corp. 1985, 1991
8.4.4.3 - 1

 8.4.4.4 Cluster Site Permission Mask
 The site permission mask identifies the cluster sites to which a process
 can move or create new processes.

 The following calls deal with process attributes:

 Call Description

 getlocal Gets the <LOCAL> alias.
 getspath Gets the site path list.
 getxperm Gets the site permission mask.
 setlocal Sets the <LOCAL> alias.
 setspath Sets the site path list.
 setxperm Sets the site permission mask.
 site Gets the site number of the specified process.

Programming Tools and Interfaces
Cluster Site Permission Mask

¦ Copyright IBM Corp. 1985, 1991
8.4.4.4 - 1

 8.4.4.5 Example of Process ID and Attribute Calls

 The code in Figure 8-10 uses some of the process ID and attribute system
 calls in a simple program. You can enter the program as ppidtst.c.
 Compile the program using the cc command:

 cc -o ppidtst ppidtst.c

 To run the program, enter the command:

 ppidtst site_number

 Figure 8-11 shows the output for the program when run as:

 ppidtst 10

 from a C-shell on site number 3.

 When the program runs, it writes output to the display. The program
 creates two processes: a child and a grandchild. Each process writes
 messages to the display to indicate the following:

 � Child process ID (except for the grandchild process

 � Process I

 � Process group I

 � Parent process I

 � Site number on which the process is running

 The processes cooperate so that the output to the display is orderly. The
 ps (process status) command reports the process id of active processes.
 Use the ps command to verify that the shell is the parent process of the
 parent process when you run the example.

 --

 #include <stdio.h>
 #include <sys/types.h>
 #include <sys/wait.h>
 #include <unistd.h>
 #define PR(value) fprintf(stdout, "%s\n", (value))
 #define PRT(s1, v1) fprintf(stdout, "%s %d.\n", (s1), (v1))

 main(argc, argv)
 int argc; char *argv[];
 {
 int status1;
 int status2;
 pid_t frkpid1;
 pid_t frkpid2;
 pid_t chldpd;
 pid_t g_chldpd;
 siteno_t siteno;
 if (argc > 1) {

 siteno = (siteno_t) atoi(argv[1]);

Programming Tools and Interfaces
Example of Process ID and Attribute Calls

¦ Copyright IBM Corp. 1985, 1991
8.4.4.5 - 1

 }
 else
 siteno = (siteno_t) 0;

 PR("starting main process");
 fflush (stdout);
 if ((frkpid1 = fork()) == 0) {
 if ((frkpid2 = rfork(siteno)) == 0) {

 PRT("grandchild: my process id is ", getpid());
 PRT("grandchild: my parent process id is ", getppid());
 PRT("grandchild: my process group id is ", getpgrp());
 PRT("grandchild: my site is ", site(getpid()));
 PR("ending grandchild process");
 exit(0);
 }
 g_chldpd = wait(&status2);
 PRT("child: my child's process id is ", g_chldpd);
 PRT("child: my process id is ", getpid());
 PRT("child: my parent process id is ", getppid());
 PRT("child: my process group id is ", getpgrp());
 PRT("child: my site is ", site(getpid()));
 PR("ending child process");
 exit(0);
 }
 chldpd = wait(&status1);
 PRT("parent: my child's process id is ", chldpd);
 PRT("parent: my process id is ", getpid());
 PRT("parent: my parent process id is ", getppid());
 PRT("parent: my process group id is ", getpgrp());
 PRT("parent: my site is ", site(getpid()));
 PR("ending parent process");
 }

 --
 Figure 8-10. Process ID and Attribute Calls Sample Program

 --

 starting main process
 grandchild: my process id is 321134
 grandchild: my parent process id is 321133
 grandchild: my process group id is 321132
 grandchild: my site is 10
 ending grandchild process
 child: my child's process id is 321134
 child: my process id is 321133
 child: my parent process id is 321132
 child: my process group id is 321132
 child: my site is 3
 ending child process
 parent: my child's process id is 321133
 parent: my process id is 321132
 parent: my parent's process id is 320321
 parent: my process group id is 321132
 parent: my site is 3
 ending parent process

Programming Tools and Interfaces
Example of Process ID and Attribute Calls

¦ Copyright IBM Corp. 1985, 1991
8.4.4.5 - 2

 --
 Figure 8-11. Process ID and Attribute Calls Sample Program

Programming Tools and Interfaces
Example of Process ID and Attribute Calls

¦ Copyright IBM Corp. 1985, 1991
8.4.4.5 - 3

 8.4.4.6 Changing the Controlling Terminal

 Typically, each process is associated with a process group and has a
 controlling terminal. Each process group has a group leader process. For
 example, when you log in, the shell process is the process group leader
 and any process descendants are in that process group. The terminal you
 are typing on is the controlling terminal.

 However, it is sometimes necessary for a program to establish the
 controlling terminal on its own or to disassociate itself from the process
 group and not have a controlling terminal. You use the setpgrp system
 call in both cases, and in both cases it is important that you perform a
 series of steps completely and in the correct order. If you do not follow
 the correct procedures, problems can occur that are sometimes intermittent
 and always very difficult to diagnose.

 Establishing a Controlling Terminal: To establish a controlling terminal,
 perform the following steps in the following order:

 1. Close all the file descriptors of the controlling terminal for the
 current process, if there are any.

 2. Issue the setpgrp system call. This makes the current process the
 group leader.

 3. Open the desired terminal. If this terminal is not already a
 controlling terminal for some other process group, it becomes the
 controlling terminal for this process group. The rule is as follows:
 The first group leader process to open a terminal that is not already
 a controlling terminal, acquires that terminal as a controlling
 terminal for that process group.

 4. Issue the dup system call so that additional file descriptors also
 refer to that terminal. File descriptors 0, 1, and 2 refer to the
 terminal as the default.

 The following program fragment illustrates these steps:

 #include <fcntl.h>

 close(0);
 close(1);
 close(2);

 setpgrp();

 if (open("/dev/tty0",O_RDWR) == -1)
 return(errno);
 else
 {
 dup(0);
 dup(0);
 }

 If you fail to establish the process group correctly, some functions
 behave improperly. For example, the SIGINT signal is sent to all
 processes in the process group and if the process group is incorrect for a
 particular terminal, the signal is not sent or is sent to the wrong group

Programming Tools and Interfaces
Changing the Controlling Terminal

¦ Copyright IBM Corp. 1985, 1991
8.4.4.6 - 1

 of processes. The SIGHUP signal is sent to all processes in the process
 group when the group leader exits and if the process group is incorrect,
 the signal behaves incorrectly.

 Eliminating the Controlling Terminal: It is sometimes necessary that a
 program not have a process group and a controlling terminal. For example,
 a program that runs in the background might want to write error or
 information messages to a terminal (such as the system console) but not
 accept information from the terminal.

 To eliminate the controlling terminal, perform the following steps in the
 following order:

 1. Close all the file descriptors for the controlling terminal for the
 current process if there are any. Do this even if the inherited files
 are for the same terminal as the desired output terminal.

 2. Open the desired output terminal.

 3. Issue the setpgrp system call. This makes the current process the
 group leader. This also means that the terminal opened in the
 previous step is not the controlling terminal. In fact, this process
 group has no controlling terminal.

 The following program fragment illustrates these steps:

 #include <fcntl.h>

 close(0);
 close(1);
 close(2);

 if (open("/dev/console",O_RDWR) == -1)
 return(errno);

 setpgrp();
 dup(0);
 dup(0);

 In this situation, the program can write to the terminal (system console)
 but should not read from it. The interrupt key from the terminal does not
 affect the program because the terminal is not the controlling terminal
 for that process group. It is not normally possible for another process
 to obtain the system console as a controlling terminal.

 A typical scenario would be where you invoke a background program from the
 /etc/rc shell and the background program, traditionally called a daemon,
 uses /dev/console as an output device for messages. /dev/console is
 enabled to allow another user to log into it.

 Failure to observe the above rules could cause the following undesirable
 behavior for the user who managed to log into terminal /dev/console:

 � The interrupt key might not work as expected because the terminal i
 not the controlling terminal for the proper group.

 � Many commands would fail because /dev/tty could not be opened.
 /dev/tty is a pseudo device that is the controlling terminal for some

Programming Tools and Interfaces
Changing the Controlling Terminal

¦ Copyright IBM Corp. 1985, 1991
8.4.4.6 - 2

 command processes. If the process has no controlling terminal, the
 open for /dev/tty fails.

Programming Tools and Interfaces
Changing the Controlling Terminal

¦ Copyright IBM Corp. 1985, 1991
8.4.4.6 - 3

 8.4.5 Process Tracking Calls

 The system provides the following calls to monitor the operation of a
 process or group of processes in the system. These calls are the means by
 which the system commands of similar names are created. Use these calls
 within a program to gain information about how the program runs in each
 section of the program. They are primarily tools for use during
 development which would not be included in the final version of the
 program. See AIX Operating System Technical Reference for information
 about the syntax and flags of these calls.

 Call Description

 acct Enables/disables process accounting.

 getrusage Gets information about resource utilization.

 profil Provides an execution time profile.

 ptrace Provides a process trace.

 times Gets process and child process times.

Programming Tools and Interfaces
Process Tracking Calls

¦ Copyright IBM Corp. 1985, 1991
8.4.5 - 1

 8.5 Interprocess Communications

 In addition to pipes previously described in "Example of a Pipe System
 Call" in topic 8.4.2.13, the system provides many methods for two or more
 processes to communicate with each other. It provides system calls for:

 � Sending and receiving signal

 � Setting and reading semaphore

 � Sending and receiving messages via UNIX System V message queue

 � Sending packets via TCP/IP socket communication

 Each of these sets of calls provides one method of sending small pieces of
 information between processes. For larger blocks of data, use the shared
 memory facility described in "Shared Memory Calls" in topic 8.5.6.

 Subtopics
 8.5.1 Signal Calls
 8.5.2 Enhanced Signal Facility
 8.5.3 Semaphore Calls
 8.5.4 Message Calls
 8.5.5 TCP/IP Socket Communication
 8.5.6 Shared Memory Calls
 8.5.7 Memory Management Calls

Programming Tools and Interfaces
Interprocess Communications

¦ Copyright IBM Corp. 1985, 1991
8.5 - 1

 8.5.1 Signal Calls

 Signals provide a simple method of communication between two processes.
 Using signals, one process can inform another process of status conditions
 that occur during the process, or can tell the other process when an event
 occurs. Use signals to activate a process for error recovery, or to help
 control access to shared resources (see "Semaphore Calls" in topic 8.5.3
 and "Shared Memory Calls" in topic 8.5.6 for more advanced control of
 shared resources). The signals that a program can use are defined in the
 system file, /usr/include/signal.h (see sigaction in AIX Operating System
 Technical Reference). The system calls that allow a program to use
 signals are:

 Call Description

 alarm Sets a process alarm clock.

 kill Sends signal to process(es).

 kill, kill3 Sends signal to process or process
 group. The variant kill3 (pid, sig,
 arg) allows an additional argument to be
 passed to a signal handler.

 pause Suspends process until signal.

 Call Description

 signal, sigvec, sigaction Specifies what to do when the process
 receives a signal.

 sigpending Examines pending signals.

 sigprocmask, sigsetmask, sigblock Sets the current signal mask.

 sigstack Sets and gets signal stack context.

 sigsuspend, sigpause Automatically changes the set of blocked
 signals and waits for an interrupt.

 sigemptyset, sigfillset, sigaddset,
 Creates and manipulates signal masks.

 sigdelset, sigismember

 The signal is an integer value. The meanings of these values are defined
 in the header file /usr/include/signal.h. The system generates most of
 these signals to tell a program of error or status conditions in the
 system. A program should be able to respond to these conditions. The
 program can, however, use a few of the signals for its own purposes.
 Figure 8-12 lists the user signals.

 Figure 8-12. User Controlled Signals
 Signal Definition

 SIGALRM Use the alarm system call to set a time value. The system
 sends SIGALRM to the program when that time is up.

 SIGUSR1 A signal defined by cooperating processes to mean the same
 thing to those processes. One process can generate this

Programming Tools and Interfaces
Signal Calls

¦ Copyright IBM Corp. 1985, 1991
8.5.1 - 1

 signal using the kill system call. The other cooperating
 processes that receive the signal can then react to the
 condition indicated by that signal.

 SIGUSR2 Another signal defined by cooperating processes.

 Subtopics
 8.5.1.1 How to React to a Signal
 8.5.1.2 Example of Trapping a Signal

Programming Tools and Interfaces
Signal Calls

¦ Copyright IBM Corp. 1985, 1991
8.5.1 - 2

 8.5.1.1 How to React to a Signal

 If a program does not have code to handle signals that it could receive,
 it may end when it receives a signal. Therefore, include enough code to
 recognize all signals that the program might receive (including system
 error signals). Use the signal system call to define the actions to be
 performed when the program receives a particular signal. The format of
 the signal call is:

 signal(sig,func);

 where:

 sig Is the integer signal number or the system macro name that
 represents that value (defined in /usr/include/signal.h).

 func Is a function code to indicate what action to take when you
 receive the signal.

 The following are the codes that can be received and the
 appropriate actions for each code:

 Code Action

 SIG_DFL Performs the default action when the signal is
 received. This is generally process
 termination. For some signals, the default
 action is one of the following:

 � Ignore the signal

 � Stop the process

 � Terminate the process with a core dump

 � Migrate the process to another cluster
 site.

 SIG_IGN Ignores the indicated signal.

 Function Address Executes the signal-catching function pointed
 to by func when the signal is received.

 For example,

 signal(SIGPIPE,SIG_IGN);

 tells your program to ignore a signal that indicates a pipe error.

Programming Tools and Interfaces
How to React to a Signal

¦ Copyright IBM Corp. 1985, 1991
8.5.1.1 - 1

 8.5.1.2 Example of Trapping a Signal

 The program in Figure 8-13 uses the signal system call in a simple program
 that runs. Compile the program using the cc command with the output going
 to the file, sigtst, as in the previous fork example.

 To run the program, enter the command:

 sigtst

 When the program runs, it asks you to press any letter key (the e letter
 key to exit the program). Whatever letter you enter, the program echoes
 to the screen. That is the main part of the program, but it does not use
 signal processing.

 You can generate an interrupt signal to the program (SIGINT) by pressing
 the key that the driver program for the terminal defines as sending that
 signal. This key is DEL on System V, Ctrl-C on 4.3BSD, and the Ctrl-Bksp
 key sequence on HFT-supported systems. When the program receives this
 signal, it branches to a routine that writes a message to the screen. The
 program then returns to its main program operation.

 Although this function is not very useful, it shows how to build interrupt
 handling routines into a program. The program first tests whether
 interrupts (SIGINT) are ignored, and creates the jump to the interrupt
 trap routine only if interrupts are not ignored.

 --

 /* assign the previous value of */
 /* SIGINT to istat/*
 istat = signal(SIGINT, SIG_IGN);
 .
 .
 .
 /* check previous condition of SIGINT */
 if(istat != SIG_IGN)
 signal(SIGINT,onintr);
 /* jump to onintr when an */
 /* interrupt signal occurs */

 --

 The program makes this check because, if the program is run in the
 background from the Bourne shell, the shell sets SIGINT to be ignored.
 Therefore, the system only passes the interrupt signal to foreground
 processes. Testing this signal condition ensures the program will not get
 an interrupt signal when running in background. Note that the shell sets
 SIGQUIT to be ignored for background processes as well, so that the same
 signal testing algorithm would apply to SIGQUIT. The C shell has job
 control and signals are not delivered to background processes.

 The program also uses the setjmp and longjmp library functions to handle
 the return to the main program. Before the program begins running the
 main loop, it stores the machine status in a structure sjbuf. The
 structure type, jmp_buf is defined in the system file setjmp.h. When the
 interrupt occurs, the system transfers control to the onintr routine.
 This routine is a dummy interrupt handling routine. When it finishes, it
 uses the longjmp function to set the machine status to the conditions

Programming Tools and Interfaces
Example of Trapping a Signal

¦ Copyright IBM Corp. 1985, 1991
8.5.1.2 - 1

 stored in the sjbuf structure. The main routine begins running again as
 if an interrupt had not occurred.

 Each time the program returns from the onintr routine, it sets up the
 interrupt signal condition again. If it did not do this, it would not
 receive any more interrupt signals. The system sends only one interrupt
 signal for each request it receives. Once it sends that signal, the
 program must request another. If another interrupt signal occurs before
 the program sets up to catch the interrupt signal, the program stops. The
 enhanced signal facility (see "Enhanced Signal Facility" in topic 8.5.2)
 provides a way to avoid this problem.

 --

 #include <sys/signal.h>
 #include <setjmp.h>
 #include <stdio.h>
 #include <errno.h>

 jmp_buf sjbuf;

 void
 onintr(signum)
 {
 printf("SIGNAL %d received\n", signum);
 longjmp(sjbuf, 1);
 }

 main()
 {
 void (*istat) ();
 int c = 0;

 /* Assign previous value of SIGINT to istat */
 istat = signal(SIGINT, SIG_IGN);

 /* Return here after processing interrupt */
 (void) setjmp(sjbuf);

 /* check previous condition of SIGINT */
 if (istat != SIG_IGN)
 signal(SIGINT, onintr);
 /* jump to onintr when an interrupt signal occurs */

 printf("Please enter a letter (e to exit)\n");

 while (c != 'e') {
 c = fgetc(stdin);
 if (c == -1) {
 fprintf(stderr, "main: fgetc() encountered an error %d\n", errno);
 exit(1);
 }
 if (c != '\n' && c != 'e') {
 printf("You typed the following letter: %c\n", c);
 printf("Please enter a letter (e to exit)\n");
 }
 }
 }

Programming Tools and Interfaces
Example of Trapping a Signal

¦ Copyright IBM Corp. 1985, 1991
8.5.1.2 - 2

 --
 Figure 8-13. Example of Signal Trapping

Programming Tools and Interfaces
Example of Trapping a Signal

¦ Copyright IBM Corp. 1985, 1991
8.5.1.2 - 3

 8.5.2 Enhanced Signal Facility

 In addition to the standard signal facilities described in "Signal Calls"
 in topic 8.5.1, the system provides an enhanced signal facility. The
 enhanced facility treats signals received from the system in a way similar
 to the handling of hardware interrupts, allowing a program to mask each
 type of signal while it is processing. The facility allows for up to 64
 different signals, but only those defined in the file
 /usr/include/signal.h can be used. These are the same signals that the
 standard signal facility uses. You can choose to use either facility in a
 program, but the enhanced signal facility is recommended for new
 applications, with the standard signal facility being provided as a
 compatibility interface for old programs.

 The system calls that comprise the enhanced signal facility are listed in
 Figure 8-14. AIX Operating System Technical Reference provides complete
 information for each of these calls.

 Figure 8-14. Enhanced Signal Calls
 Call Function

 sigprocmask Sets the signal mask to a new value.

 sigsuspend Sets the signal mask to a new value, waits for a signal
 allowed by the new mask and restores the old mask value
 when a signal is received.

 sigaction Establishes conditions to handle a specified signal.

 execve Starts a new program in the current process, resets all
 signals that are being caught by the old program to
 terminate the new program, resets signal stack state, and
 retains the current signal mask value.

 sigemptyset Initializes a signal mask variable so that all signals
 are excluded (unmasked).

 sigfillset Initializes a signal mask variable so that all signals
 are included (masked).

 sigaddset Adds a signal to a signal mask variable.

 sigdelset Deletes a signal from a signal mask variable.

 sigismember Tests whether a specific signal is masked within a given
 signal mask variable.

 Subtopics
 8.5.2.1 Responding to Signals
 8.5.2.2 Using Enhanced Signals
 8.5.2.3 Waiting for a Signal
 8.5.2.4 Protecting Important Program Events
 8.5.2.5 Finding Out the Current Signal Mask
 8.5.2.6 Example Programs

Programming Tools and Interfaces
Enhanced Signal Facility

¦ Copyright IBM Corp. 1985, 1991
8.5.2 - 1

 8.5.2.1 Responding to Signals

 A program can receive signals from the sources shown in Figure 8-15.

 Figure 8-15. Sources of Signals
 Source Description

 Program faults A programming error such as an illegal instruction or
 memory reference produces this type of message.

 Terminal keys Special key sequences generate signals to running
 processes in the system that belong to the terminal
 group of the terminal. These signals include
 INTERRUPT, QUIT, HANGUP, STOP, or KILL (the KILL signal
 cannot be masked).

 Hardware Hardware faults generate signals to running processes.
 exceptions

 System The system can generate signals, such as the death of a
 child process, to aid in process control.

 Other processes Other processes can send signals to a process to
 coordinate system activities.

 The description of func in "How to React to a Signal" in topic 8.5.1.1
 contains the defined responses for responding to a signal once a program
 receives it. Each of these responses is defined in the header file
 signal.h as a constant-valued pointer that indicates a special action for
 the signal. If a pointer to a function is supplied instead of one of
 these constant pointers, that function will be invoked when the signal is
 received. For example, signal.h defines SIG_DFL as follows:

 #define SIG_DFL ((VOID (*) ()) 0)

 Defining the responses as pointers to functions allows you to use them in
 the sigaction structure (see "Using Enhanced Signals" in topic 8.5.2.2) as
 the pointer to the handler routine. See "Example Programs" in
 topic 8.5.2.6 for a sample of using the responses in the structure.

Programming Tools and Interfaces
Responding to Signals

¦ Copyright IBM Corp. 1985, 1991
8.5.2.1 - 1

 8.5.2.2 Using Enhanced Signals

 When a process receives a signal, the system automatically:

 1. Blocks another signal of that type from being sent to the process.

 2. Saves the environment of the process.

 3. Builds a new environment for the process to respond to the signal.

 4. Transfers control to the signal handler routine in the process.

 The signal handler is a routine that you provide to respond to the receipt
 of a signal. It may be a complex error recovery routine, or it may be
 SIG_DFL or SIG_IGN. You choose how the program responds to each of the
 signals. Once you have created the handler routines for all of the
 signals that you expect to receive, tell the system how to handle each of
 the signals. First, include the header file signal.h with the following
 statement:

 #include <signal.h>

 This file contains definitions for all the constant names used by the
 signal handling facility. In addition, this file contains the following
 structure definition:

 struct sigaction
 {
 VOID (*sa_handler) ();
 int sa_flags;
 sigset_t sa_mask;
 };

 This is the structure type that passes information to the system when
 using the sigaction system call. It contains three members as shown in
 Figure 8-16.

 Figure 8-16. sigvec Structure Members
 Name Description

 sa_handler A pointer to the routine that you have created to
 handle the signal processing for a particular signal,
 or one of SIG_DFL or SIG_IGN defined in signal.h.

 sa_flags A set of flags which determine special options to how
 the signals should work (primarily provided so that
 compatibility modes may be implemented). The possible
 flag bits which may be OR'd together and set in
 sa_flags include SA_RESTART, SA_ONSTACK, SA_OLDSTYLE,
 and SA_NOCLDSTOP which are defined in signal.h.

 sa_mask A signal mask variable which specifies which signals
 (in addition to those in the process' signal mask)
 should be blocked from being delivered when the signal
 handler function specified in sa_handler is executing.
 The sa_mask field should be set, cleared and tested
 using the sigemptyset, sigfillset, sigaddset,
 sigdelset, and sigismember functions.

Programming Tools and Interfaces
Using Enhanced Signals

¦ Copyright IBM Corp. 1985, 1991
8.5.2.2 - 1

 For example, to set up a routine to receive the SIGALRM signal, use the
 following system call:

 sigaction (SIGALRM , new_act , old_act);

 The parameters for this call have the following meaning:

 Parameter Meaning

 SIGALRM The name of the signal, SIGALRM, which is the alarm clock.

 new_act A pointer to the structure of type sigaction that defines the
 information for the signal handler.

 old_act A pointer to a structure of type sigaction where the system
 returns the values it is using for the specified signal. If
 this pointer is NULL, the system ignores it.

Programming Tools and Interfaces
Using Enhanced Signals

¦ Copyright IBM Corp. 1985, 1991
8.5.2.2 - 2

 8.5.2.3 Waiting for a Signal

 The sigsuspend system call stops processing in a program to wait for the
 occurrence of any or all of the signals, and then resume processing
 without altering the signal mask (sv_mask) with which the program normally
 operates. The following sequence illustrates how to stop program
 operation, wait for any signal to occur, and then resume program
 operation:

 1. Program begins.

 2. Program issues sigsuspend call with a mask value of zero to enable
 catching all signals:

 sigset_t nomask;

 sigemptyset (&nomask);
 sigsuspend (&nomask);

 3. A signal occurs for the process.

 4. The sigsuspend call returns with a -1 return code, and errno set to
 EINTR.

 5. The system restores the previous signal mask value.

 6. The program continues.

Programming Tools and Interfaces
Waiting for a Signal

¦ Copyright IBM Corp. 1985, 1991
8.5.2.3 - 1

 8.5.2.4 Protecting Important Program Events

 During some parts of a program, you may want to continue processing in
 spite of any signals that the program may receive. Some activities, such
 as processing a linked list, could be difficult or impossible to recover
 from if the program were interrupted at that point. To protect sections
 of the program from interruption from all but the most serious signals
 (SIGKILL cannot be masked), use the sigprocmask system call as shown in
 the following sequence:

 1. At the beginning of the important section of the program, use the
 sigblock system call with a mask value that, when ORed with the
 current mask, blocks all expected signals. Provide a variable of type
 sigset_t to hold the returned value (the old mask value) for later
 use:

 sigprocmask (SIG_BLOCK, &block_mask, &old_mask);

 2. Process the important section of the program.

 3. Restore the program to normal operation with the sigprocmask system
 call with the SIG_SETMASK option this time. Restore the signal mask
 value from the mask saved in step 1.

 sigprocmask (SIG_SETMASK, &old_mask, NULL);

 4. Continue normal program operation.

Programming Tools and Interfaces
Protecting Important Program Events

¦ Copyright IBM Corp. 1985, 1991
8.5.2.4 - 1

 8.5.2.5 Finding Out the Current Signal Mask

 Each process running in the system has its own signal mask, regardless of
 whether or not the process uses signals. If the program does not use the
 signal calls to change this mask, the system assigns a value of zero to
 the signal mask (no signals blocked).

 Two system calls provide information about the signal conditions that a
 program is using for a specified signal. The first call, sigaction,
 requires a defined structure of type sigaction where the system can write
 the current information. The following example tells the system to store
 the current information for the signal SIGINT in the structure old_act.
 Because the second parameter that normally points to the new signal
 structure is NULL, the current signal structure for SIGINT does not
 change, but it is copied to the structure old_act.

 sigaction (SIGINT , NULL , &old_act);

 You can use the sigprocmask system call to get only the value of the
 current mask:

 sigprocmask (SIG_BLOCK, NULL, &old_mask);

 As with sigaction, since the second parameter which usually points to the
 new mask is NULL, the current process mask is unchanged. However, it is
 copied into old_mask.

Programming Tools and Interfaces
Finding Out the Current Signal Mask

¦ Copyright IBM Corp. 1985, 1991
8.5.2.5 - 1

 8.5.2.6 Example Programs

 Figure 8-17 shows an example program using enhanced signals. This program
 performs the same function as the example program used for signals in
 "Example of Trapping a Signal" in topic 8.5.1.2. Refer to the program
 description in that section. This program is stored as newsig.c in the
 example program directory.

 --

 #include <stdio.h>
 #include <signal.h>
 #include <setjmp.h>
 int c;
 int i;
 jmp_buf sjbuf;

 main()
 {
 void onintr();
 int fgetc();
 struct sigaction oldact, newact;
 newact.sa_handler = SIG_IGN;
 newact.sa_flags = 0;
 sigemptyset (&newact.sa_mask);
 sigaction (SIGINT, NULL, &oldact);
 if(oldact.sa_handler != SIG_IGN)
 {
 newact.sa_handler = onintr;
 sigaction (SIGINT, &newact, NULL);
 }

 setjmp(sjbuf);
 printf("%s\n", "Please enter a letter (e to exit).");
 do
 {
 c = fgetc(stdin);
 if(c != '\n' && c != 'e')
 {
 printf("%s%c\n", "You typed the following letter: ", c);
 i++;
 printf("%d\n", i);
 printf("%s\n", "Please enter a letter (e to exit).");
 }
 } while (c != 'e');
 } /* End Main */

 void
 onintr()
 {
 printf("%s\n", "Performing processing upon interrupt.");
 printf("%s\n", "Finished interrupt processing; returning to main.");
 longjmp(sjbuf, 1);
 } /* End onintr */

 --
 Figure 8-17. Enhanced Signals Example Program

Programming Tools and Interfaces
Example Programs

¦ Copyright IBM Corp. 1985, 1991
8.5.2.6 - 1

 8.5.3 Semaphore Calls

 Semaphores provide a general method of communication between two processes
 that is an extension of the features of signals. Use semaphores in much
 the same way as signals, except that semaphores are:

 More flexible: Processes can define a semaphore to mean what they
 want it to mean.

 More controllable: Programs have direct control over semaphores and
 do not need to depend on the system to generate them.

 Broader in scope: A semaphore can be any integer value, not just 1 or
 0. Use them for counting as well as process coordination (see program
 example).

 The system calls that allow a program to use semaphores are:

 Call Description

 semctl Semaphore control operations.
 semget Get set of semaphores.
 semop Semaphore operations.

 Subtopics
 8.5.3.1 Structure of a Semaphore Set
 8.5.3.2 How to Use Semaphores
 8.5.3.3 Example of Semaphores
 8.5.3.4 Example of Semaphore Programming

Programming Tools and Interfaces
Semaphore Calls

¦ Copyright IBM Corp. 1985, 1991
8.5.3 - 1

 8.5.3.1 Structure of a Semaphore Set

 When using the semget system call to create a set of semaphores, the
 system returns an integer that is the semid, or semaphore ID, for the set
 of semaphores that were created. Each semid points to a set of semaphores
 and a data structure that contains information about the semaphores. The
 data structure for semid is shown in Figure 8-18. See Figure 8-19 for the
 data structure of a semaphore.

 +--+
 ¦ Figure 8-18. Semid Data Structure ¦
 +--¦
 ¦ Name ¦ Function ¦
 +------------+---¦
 ¦ ¦ ¦
 ¦ sem_perm ¦ Operation Permission Struct ¦
 ¦ cuid ¦ creator user ID ¦
 ¦ cgid ¦ creator group ID ¦
 ¦ uid ¦ user ID ¦
 ¦ gid ¦ group ID ¦
 ¦ mode ¦ read and alter permission ¦
 ¦ ¦ ¦
 +------------+---¦
 ¦ sem_nsems ¦ Number of Semaphores in the Set ¦
 +------------+---¦
 ¦ sem_otime ¦ Time of the Last Operation (seconds since 1/1/1970) ¦
 +------------+---¦
 ¦ sem_ctime ¦ Time of the Last Change (seconds since 1/1/1970) ¦
 +--+

 +--+
 ¦ Figure 8-19. Semaphore Structure ¦
 +--¦
 ¦ Name ¦ Function ¦
 +--------------+---¦
 ¦ semval ¦ Value of the semaphore (0 or positive) ¦
 +--------------+---¦
 ¦ sempid ¦ Process ID of the Last Operation ¦
 +--------------+---¦
 ¦ semncnt ¦ The number of processes that are waiting for semval to ¦
 ¦ ¦ be > current value of its last semop() call ¦
 +--------------+---¦
 ¦ semzcnt ¦ The number of processes that are waiting for semval to ¦
 ¦ ¦ be = 0. ¦
 +--+

Programming Tools and Interfaces
Structure of a Semaphore Set

¦ Copyright IBM Corp. 1985, 1991
8.5.3.1 - 1

 8.5.3.2 How to Use Semaphores

 Semaphores are counters that a program can test and change with a single
 system call (semop). Specify the amount of the change in the semop call
 using the sem_op variable within the sops structure as shown in
 Figure 8-20. When using this call, the system tests the value of sem_op
 against the value of the semaphore indicated by sem_num. If (sem_flg &
 IPC_NOWAIT) is true, the call returns without further action. If it is
 false, the table in Figure 8-21 summarizes the actions that occur.

 Use semaphores for passing data between processes and for other one time
 data transfers. You can also use them to control access to a limited
 resource, such as a shared buffer.

 --

 semop(semid, *sops, nsops)
 � � �
 Number of the -----+ ¦ +--- How many structures
 semaphore to ¦ in the sops structure
 be changed ¦ set (* sops)
 ¦
 ¦ Points to a set of structures
 ¦ that define the operation to
 ¦ be done
 +--+
 +---+ +---+ +---+
 ¦ ¦ ¦ ¦ . . . ¦ ¦ Set of
 ¦ ¦ ¦ ¦ ¦ ¦ Structures
 +---+ +---+ +---+
 +---+
 �
 One Typical Structure:
 +--+
 ¦ Name ¦ Function ¦
 +----------+---¦
 ¦ sem_num ¦ Number of the semaphore to be changed ¦
 +----------+---¦
 ¦ sem_op ¦ The semaphore operation ¦
 +----------+---¦
 ¦ sem_fig ¦ Operation flags ¦
 +--+

 --
 Figure 8-20. Semop System Call Parameters

 +--+
 ¦ Figure 8-21. How Sem_op Specifies a Semaphore Operation ¦
 +--¦
 ¦ Value of ¦ Relationship ¦ ¦
 ¦ sem_op ¦ to semval ¦ Actions ¦
 +------------+----------------+--¦
 ¦ < 0 ¦ ¦ 1. semval = semval - |sem_op| ¦
 ¦ ¦ |sem_op| <= ¦ ¦
 ¦ ¦ semval ¦ ¦
 ¦ ¦ ¦ ¦
 ¦ +----------------+--¦
 ¦ ¦ |sem_op| > ¦ 1. semncnt = semncnt + 1 ¦
 ¦ ¦ semval ¦ 2. wait for semval >=|sem_op|; then ¦

Programming Tools and Interfaces
How to Use Semaphores

¦ Copyright IBM Corp. 1985, 1991
8.5.3.2 - 1

 ¦ ¦ ¦ semval = semval - |sem_op| ¦
 ¦ ¦ ¦ semncnt = semncnt -1 ¦
 +------------+----------------+--¦
 ¦ < 0 ¦ ¦ 1. semval = semval + sem_op ¦
 +------------+----------------+--¦
 ¦ 0 ¦ semval==0 ¦ 1. return ¦
 ¦ +----------------+--¦
 ¦ ¦ semval !=0 ¦ 1. semzcnt = semzcnt + 1 ¦
 ¦ ¦ ¦ 2. wait for semval = 0; then ¦
 ¦ ¦ ¦ semzcnt = semzcnt -1 ¦
 ¦ ¦ ¦ return ¦
 +--+

Programming Tools and Interfaces
How to Use Semaphores

¦ Copyright IBM Corp. 1985, 1991
8.5.3.2 - 2

 8.5.3.3 Example of Semaphores

 For example, two processes proca and procb share a buffer bufr. proca
 produces data packages and places each package in the buffer as it
 produces that package. procb uses the data packages from the buffer in
 its operation, but does not use them at the same rate that proca puts them
 in the buffer. The buffer can hold only three data packages. The
 processes use two semaphores to ensure that:

 � proca does not try to put a package in a full buffer

 � procb does not try to take a package from an empty buffer.

 The processes agree that the semaphores have the following meanings:

 sem1 The number of empty slots in the buffer. If sem1 is greater
 than zero, then proca can put a package in the buffer.

 sem2 The number of data packages in the buffer. If sem2 is greater
 than zero, then procb can take a package from the buffer.

 Figure 8-22 shows the relation of the processes to the buffer and
 semaphores. When the processes start, sem1 has a value of 3 (empty slots)
 and sem2 has a value of 0 (packages in bufr).

 --

Programming Tools and Interfaces
Example of Semaphores

¦ Copyright IBM Corp. 1985, 1991
8.5.3.3 - 1

 --
 Figure 8-22. Using Semaphores Concept Example

 proca: proca puts items into the buffer. Before it can put an item in
 the buffer, it tests sem1 to find out if there is room in the buffer for
 the item. If sem1 is greater than, or equal to 1 (the number of items to
 be put into bufr), then it:

 1. Decrements sem1 by 1.
 2. Puts an item in the buffer.
 3. Increments sem2 by 1.

 If sem1 is less than 1, proca waits until there is room in the buffer
 (sem1 >= 1), and then performs the preceding steps. If proca has to wait,
 it increments the semncnt flag for sem1 to indicate that it is waiting.
 It decrements this flag when it continues. Figure 8-23 shows the semop
 call and structure that handles all of the semaphore operations for proca.

 --

 semop(xx , *sops, 2)
 � � �

Programming Tools and Interfaces
Example of Semaphores

¦ Copyright IBM Corp. 1985, 1991
8.5.3.3 - 2

 Number of the -----------+ ¦ +-- Number of structures
 semaphore set ¦ in the call structure
 for sem1 and ¦ set (*sops)
 sem2 ¦
 ¦ Points to a set of structures that
 ¦ define the operation to be done
 ¦
 +---+
 ¦ semop [0] semop [1] ¦
 +-----------------------------+ +-----------------------------+
 ¦ 0 ¦ sem ID ¦ ¦ 1 ¦ sem ID ¦
 +-----+-----------------------¦ +-----+-----------------------¦
 ¦ -1 ¦ semop (test/decrement)¦ ¦ 1 ¦ semop (increment) ¦
 +-----+-----------------------¦ +-----+-----------------------¦
 ¦ 0 ¦ flag (enable wait) ¦ ¦ 0 ¦ flag (enable wait) ¦
 +-----------------------------+ +-----------------------------+

 --
 Figure 8-23. Semop Call for Proca

 procb: procb takes items from the buffer. Before it can take an item, it
 tests sem2 to find out if there is anything in the buffer. If sem2 is
 greater than, or equal to 1 (the number of items to be taken), then it:

 1. Decrements sem2 by 1
 2. Takes an item from the buffer.
 3. Increments sem1 by 1.

 If sem2 is less than 1, procb waits until there is something in the buffer
 (sem2 >= 1), and then performs the preceding steps. If procb has to wait,
 it increments the semncnt flag for sem2 to indicate that it is waiting.
 It decrements this flag when it continues. Figure 8-24 shows the semop
 call and structure that handles all of the semaphore operations for procb.

 --

 semop(xx , *sops, 2)
 � � �
 Number of the -----------+ ¦ +-- Number of structures
 semaphore set ¦ in the call structure
 for sem1 and ¦ set (*sops)
 sem2 ¦
 ¦ Points to a set of structures that
 ¦ define the operation to be done
 ¦
 +---+
 ¦ semop [0] semop [1] ¦
 +-----------------------------+ +-----------------------------+
 ¦ 2 ¦ sem ID ¦ ¦ 1 ¦ sem ID ¦
 +-----+-----------------------¦ +-----+-----------------------¦
 ¦ -1 ¦ semop (test/decrement)¦ ¦ 1 ¦ semop (increment) ¦
 +-----+-----------------------¦ +-----+-----------------------¦
 ¦ 0 ¦ flag (enable wait) ¦ ¦ 0 ¦ flag (enable wait) ¦
 +-----------------------------+ +-----------------------------+

 --
 Figure 8-24. Semop Call for Procb

 Operation: The chart in Figure 8-25 shows the operation of the semaphores

Programming Tools and Interfaces
Example of Semaphores

¦ Copyright IBM Corp. 1985, 1991
8.5.3.3 - 3

 to control access to the buffer.

 +--+
 ¦ Figure 8-25. Semaphore Usage ¦
 +--¦
 ¦ ¦ sem1 ¦ sem2 ¦
 ¦ +----------------+-----------------¦
 ¦ Event ¦ Value ¦ semncnt¦ Value ¦ semncnt¦
 +-------------------------------------+-------+--------+--------+--------¦
 ¦ 1. Start: ¦ ¦ ¦ ¦ ¦
 ¦ The initial state of the ¦ 3 ¦ 0 ¦ 0 ¦ 0 ¦
 ¦ parameters ¦ ¦ ¦ ¦ ¦
 +-------------------------------------+-------+--------+--------+--------¦
 ¦ 2. Procb tries to get item: ¦ 3 ¦ 0 ¦ 0 ¦ 1 ¦
 +-------------------------------------+-------+--------+--------+--------¦
 ¦ 3. Proca puts item in bufr. ¦ 2 ¦ 0 ¦ 1 ¦ 1 ¦
 +-------------------------------------+-------+--------+--------+--------¦
 ¦ 4. Procb can now get item. ¦ 3 ¦ 0 ¦ 0 ¦ 0 ¦
 +-------------------------------------+-------+--------+--------+--------¦
 ¦ 5. Proca puts item in bufr. ¦ 2 ¦ 0 ¦ 1 ¦ 0 ¦
 +-------------------------------------+-------+--------+--------+--------¦
 ¦ 6. Proca puts item in bufr. ¦ 1 ¦ 0 ¦ 2 ¦ 0 ¦
 +-------------------------------------+-------+--------+--------+--------¦
 ¦ 7. Proca puts item in bufr. ¦ 0 ¦ 0 ¦ 3 ¦ 0 ¦
 +-------------------------------------+-------+--------+--------+--------¦
 ¦ 8. Proca tries to put item in ¦ 0 ¦ 1 ¦ 3 ¦ 0 ¦
 ¦ bufr. ¦ ¦ ¦ ¦ ¦
 +-------------------------------------+-------+--------+--------+--------¦
 ¦ 9. Procb gets item from bufr. ¦ 1 ¦ 1 ¦ 2 ¦ 0 ¦
 +-------------------------------------+-------+--------+--------+--------¦
 ¦ 10. Proca can now put item in ¦ 0 ¦ 0 ¦ 3 ¦ 0 ¦
 ¦ bufr. ¦ ¦ ¦ ¦ ¦
 +--+

Programming Tools and Interfaces
Example of Semaphores

¦ Copyright IBM Corp. 1985, 1991
8.5.3.3 - 4

 8.5.3.4 Example of Semaphore Programming

 The program in Figure 8-26 shows the use of semaphores in a situation
 similar to the example concept described previously. This program also
 uses some shared memory calls as described in "Shared Memory Calls" in
 topic 8.5.6. You can compile and run this program to see the effects of
 the system calls.

 --

 /* sem_test.c -- sample semaphore test program */

 #include <stdio.h>
 #include <string.h>
 #include <sys/stat.h>
 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/sem.h>
 #include <sys/shm.h>

 /* The following structure, STACK, will be placed in a shared memory
 * segment and access to it will be controlled by two semaphores:
 * SN_FREE -- a count of the number of free stack frames, and
 * SN_USED -- a count of the number of used stack frames.
 *
 * Each stack entry will be a string of up to MESSAGE_LEN characters.
 */

 #define STACK_SIZE 2
 #define MESSAGE_LEN 100
 struct STACK {
 struct STACK_ITEM {
 char message[MESSAGE_LEN];
 } stk[STACK_SIZE];
 int sp;
 } *stack;

 /* Semaphore numbers */
 #define SN_FREE 0
 #define SN_USED 1

 /* Shared Memory Address (0 means let the system pick) */
 #define MADDR 0

 int semid;
 int shmid;

 main ()
 {
 char *pop_item();
 int semget();
 pid_t pid_1, pid_2, retpid, fork(), wait();
 int stts_1, stts_2, status;
 key_t key, ftok();
 char *shmat();
 int shmdt();
 int nsems;

Programming Tools and Interfaces
Example of Semaphore Programming

¦ Copyright IBM Corp. 1985, 1991
8.5.3.4 - 1

 /* Create a semaphore set with 2 semaphores */
 key = ftok("sem_test", 's');
 nsems = 2;
 semid = semget(key, nsems, IPC_CREAT ¦ S_IRUSR ¦ S_IWUSR);
 semctl(semid, SN_FREE, SETVAL, STACK_SIZE);
 semctl(semid, SN_USED, SETVAL, 0);

 /* Create a shared memory segment */
 shmid = shmget(key, sizeof(struct STACK), IPC_CREAT¦S_IRUSR¦S_IWUSR);
 stack = (struct STACK *) shmat(shmid, MADDR, 0);
 stack-> sp = 0; /* stack starts off empty */

 /* First child, the producer, will add messages to the stack */
 if ((pid_1 = fork()) == 0) {
 int i;

 for (i = 0; i <= 5; i++) {
 p(SN_FREE); /* reserve a spot in the stack */
 printf("Producer: Sending item number %d\n", i);
 push_item("Test Item");
 v(SN_USED); /* announce availability of the item */
 }
 exit(0);
 }

 /* Second child, the consumer, will remove messages from the stack */
 if ((pid_2 = fork()) == 0) {
 int i;
 char *item_ptr;

 for (i = 0; i <= 5; i++) {
 p(SN_USED); /* get permission to take an item */
 item_ptr = pop_item();
 printf("Consumer: Got item number %d; item is '%s'\n",
 i, item_ptr);
 v(SN_FREE); /* announce that item is removed */
 }
 exit(0);

 }

 /* Wait for child processes to finish */
 stts_1 = stts_2 = -1;
 while ((retpid = wait(&status)) != -1) {
 if (retpid == pid_1)
 stts_1 = status;
 else if (retpid == pid_2)
 stts_2 = status;
 }

 printf("Producer process ended with status = %d\n", stts_1);
 printf("Consumer process ended with status = %d\n", stts_2);

 /* delete the IPC objects now that we're done. */
 (void) semctl(semid, 0, IPC_RMID, 0);
 (void) shmdt((char *) stack);
 (void) shmctl(shmid, 0, IPC_RMID);

Programming Tools and Interfaces
Example of Semaphore Programming

¦ Copyright IBM Corp. 1985, 1991
8.5.3.4 - 2

 exit(0);
 }

 /* Decrement semaphore count -- waiting if already 0 */
 p(s)
 int s;
 {
 struct sembuf sops;
 int nsops = 1;

 sops.sem_num = s;
 sops.sem_flg = 0;
 sops.sem_op = -1;
 (void) semop(semid, &sops, nsops);
 }

 /* Increment semaphore count */
 v(s)
 int s;
 {
 struct sembuf sops;
 int nsops = 1;

 sops.sem_num = s;
 sops.sem_flg = 0;
 sops.sem_op = 1;
 (void) semop(semid, &sops, nsops);
 }

 /* pop_item -- take item from the stack */
 char *

 pop_item()
 {
 static char retstr[MESSAGE_LEN];
 if (stack->sp > 0) {
 strncpy(retstr, stack->stk[--stack->sp].message, MESSAGE_LEN);
 printf("pop: stack pointer = %d\n", stack->sp);
 return retstr;
 }
 return NULL;
 }

 /* push_item -- copy item into the next stack frame */
 push_item(item)
 char *item;
 {
 strncpy(stack->stk[stack->sp++].message, item, MESSAGE_LEN);
 printf("push: stack pointer = %d\n", stack->sp);
 }

 --
 Figure 8-26. Using Semaphore Calls

Programming Tools and Interfaces
Example of Semaphore Programming

¦ Copyright IBM Corp. 1985, 1991
8.5.3.4 - 3

 8.5.4 Message Calls

 Messages provide a general method of communication between two processes.
 Using messages one process can pass information of any kind to another
 process. The information may be data that is produced by one process and
 used in another, or it could be flags that indicate when events occur. To
 use the message process, perform the following steps:

 1. Use ftok to get a key assigned to a message queue.

 2. Use the msgget call to get a message queue assigned to the processes.

 3. Use the msgsnd call to send a message to a queue that is assigned to
 another process.

 4. Use the msgrcv or msgxrcv call to receive a message from the message
 queue.

 Use the following system calls to create and use message queues:

 Call Description

 msgctl Gets status, changes permissions, or removes a queue.
 msgget Gets message queue.
 msgrcv Receives a message.
 msgsnd Sends a message.
 msgxrcv Receives a message with additional information.

 Include the following header files when using message queue calls:

 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/msg.h>

 Subtopics
 8.5.4.1 Terms
 8.5.4.2 General Operation
 8.5.4.3 Controlling Bidirectional Queues
 8.5.4.4 Using Message Queues
 8.5.4.5 Example of Message Queue Calls

Programming Tools and Interfaces
Message Calls

¦ Copyright IBM Corp. 1985, 1991
8.5.4 - 1

 8.5.4.1 Terms

 The use of message queue elements is similar in structure to the way the
 system creates and uses files. Defining the terms used for message queues
 with respect to the more familiar file terms provides a framework to build
 an understanding of message queues. Figure 8-27 shows the new terms and
 how they relate to terms used with files. The first three terms (key,
 msqid and permissions) pertain to how the kernel handles queues. The last
 term (queue name) is used in profiles (above the kernel).

 Figure 8-27. Message Queue Terms
 Term Definition

 key The key is a unique identifier (of type key_t) that names
 the particular message queue. It is always associated
 with the message queue as long as the message queue
 exists. In this respect, it is similar to the filename
 of a file.

 msqid The msqid is an identifier assigned to the message queue
 for use within a particular process. It is similar in
 use to a file descriptor of a file.

 permissions The message queue structure also contains information
 that describes the access permissions for the message
 queue. These permissions are similar in function to the
 access permission bits for a file (owner, group and
 others).

 queue name The queue name is a 14-character, alphanumeric name that
 applies to a specific queue. The programmer or
 administrator chooses the name so that it does not
 conflict with other queue names on the system. Programs
 use the queue name to create or access the queue and get
 a key for that queue. Subsequent operations use the key
 value to refer to the queue.

 In effect, message queues are a more general form of the pipe system call.
 Either method passes information between two processes. For message
 queues, however, you do not need to perform the steps of opening a pipe,
 forking, and then closing two of the ends of the pipe as described in
 "Example of a Pipe System Call" in topic 8.4.2.13. In fact, the two
 processes using message queues to communicate do not need to be created
 from the same ancestor process; they only need to cooperate by using the
 same name for the queue, and agreeing about what the messages mean.

Programming Tools and Interfaces
Terms

¦ Copyright IBM Corp. 1985, 1991
8.5.4.1 - 1

 8.5.4.2 General Operation

 When a process gets a message queue, it uses an internal name (key) to
 apply to the queue. Any other programs that use that key can access that
 queue, subject to the read/write access permissions set up for the queue.
 The process can either send messages to the queue or receive messages from
 the queue (or both if it wants to send messages to itself).

 After opening the queue, the process continues operating until it reaches
 the point that it needs input from the other cooperating process. The
 first process checks its message queue using the msgrcv call. Using the
 parameter, msgtype, in the msgrcv call, the process can specify which type
 of message it wants to receive. If a message that satisfies the request is
 not in the queue, the first process halts until something is put into the
 queue that does satisfy the request. If there is a message of the
 requested type in the queue, the system gives the process the first
 message of that type that was put into the queue (first-in-first-out).

 Similarly, after opening the queue, the other process can send messages to
 the queue of the first process. If the queue is full, the system returns
 an error indication and the process must wait until the first process
 empties the queue enough to add the new message.

 Because either of these wait conditions could halt the process
 indefinitely, the program should include a timeout loop to end the stalled
 condition.

 Sending messages to a queue is completely independent from receiving
 messages from that queue. The amount of data that one process can put
 into the message queue of the other process depends on the queue size and
 the speed that the other process takes the data from the queue. More than
 one process can put messages into a queue. The receiving process must
 take them out of the queue in the order that they were put into the queue,
 modified only by selecting a message type.

 The receiving process can also use the msgxrcv call instead of the msgrcv
 call to get messages. This call provides more information to the
 receiving process about the nature of the message.

Programming Tools and Interfaces
General Operation

¦ Copyright IBM Corp. 1985, 1991
8.5.4.2 - 1

 8.5.4.3 Controlling Bidirectional Queues

 When using a queue for a system service daemon, the requesting process can
 send a message to that queue and wait for a reply. In many cases, these
 queues can be set up for bidirectional communication; that is, both the
 daemon and the requesting process can get messages from the same queue. A
 bidirectional queue saves the overhead associated with creating and
 deleting a queue for the requesting process while it waits for the reply.

 Use of a bidirectional queue requires cooperation among the processes.
 Routing the reply messages to the correct requesting process requires that
 each process generate and use a unique mtype parameter (message type) with
 all its messages to that queue. When sending messages to the queue,
 requesting processes send messages to the mtype of the daemon program. In
 each message they specify the mtype to which the daemon program must send
 the reply. The daemon program, being set up to receive messages of all
 types from the queue, gets all the messages. The daemon responds by
 generating a message of a type corresponding to the process for which the
 message is intended; the requesting process specifies in its msgrcv call
 that it will receive messages only of its unique type, and only receives
 the reply from the daemon that was intended for it.

 To help assign unique mtype values, each message queue header includes a
 32-bit value that contains the most recently used mtype value. A new
 command for msgctl, IPC_MTYP, returns the current value of the mtype of a
 queue. The mtype of the queue is incremented after it is returned to a
 process, but is not allowed to become negative.

 Use the following guidelines when setting up bidirectional queues that use
 mtype for routing messages:

 � Reserve the mtype value of 0 for requests to the daemon program.

 � The requesting program uses msgctl with a command type of IPC_MTYP to
 get an mtype value from the queue header when the program gets a
 message queue ID. The kernel returns a unique mtype for each msgctl
 call.

 � The requesting program includes its mtype value as part of the data
 for each request sent to the queue.

 � When the daemon program replies, it uses the mtype value sent by the
 requesting program as the mtype of the reply message.

 � The requesting program waits for its reply by issuing a msgrcv that
 specifies only a message type that matches the mtype value sent to the
 queue.

Programming Tools and Interfaces
Controlling Bidirectional Queues

¦ Copyright IBM Corp. 1985, 1991
8.5.4.3 - 1

 8.5.4.4 Using Message Queues

 The following sequence shows how to create and use a message queue:

 1. Create a key to uniquely identify the message queue. Use the ftok
 subroutine to create the key. For example, to create a key mykey
 using a project ID of X contained in the char variable proj and a file
 name of null_file, use a statement like:

 mykey = ftok(null_file, proj);

 2. Either:

 � Create a new message queue with the msgget system call. For
 example, to create a message queue and assign the msqid to an
 integer variable msg_qid, use a statement like:

 msg_qid = msgget(mykey, IPC_CREAT);

 or

 � Get a previously created message queue with the msgget system
 call. For example, to get a message queue that is already
 associated with the key mykey and assign the msqid to an integer
 variable msg_qid, use a statement like:

 msg_qid = msgget(mykey, IPC_ACCESS);

 3. Use the queue to send or receive messages with other processes.

 4. If the queue is no longer needed, eliminate it from the system using
 the msgctl system call:

 msgctl(msg_qid, IPC_RMID);

 See AIX Operating System Technical Reference for specific information
 about parameters for the calls and subroutines.

Programming Tools and Interfaces
Using Message Queues

¦ Copyright IBM Corp. 1985, 1991
8.5.4.4 - 1

 8.5.4.5 Example of Message Queue Calls

 The program on pages 8.5.4.5 through 8.5.4.5 shows the use of message
 queues in a simple producer-consumer relationship. One process produces
 an item for the other process and passes it to the other process on a
 message queue.

 You can compile and run this program to see the effects of the system
 calls with the following command:

 cc -o msgqtst msgqtst.c

 --

 /* msgq_test.c -- sample message queue test program */

 #include <stdio.h>
 #include <string.h>
 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/msg.h>
 #include <sys/stat.h>

 #define MSGSIZ 15 /* common size */
 #define MSGRTYP 0 /* receive first message on queue */
 #define MTYPE 1 /* common message type */

 static char *msg[11] = {
 "this is item 0", "this is item 1",
 "this is item 2", "this is item 3",
 "this is item 4", "this is item 5",
 "this is item 6", "this is item 7",
 "this is item 8", "this is item 9",
 "this is item 10"
 };
 int msgqid;
 struct msgbuf *msgp1; /* pointer to producer mgsbuf */
 struct msgbuf *msgp2; /* pointer to comsumer msgbuf */

 main()
 {
 pid_t pid_1, pid_2, retpid, fork(), wait();
 key_t key, ftok();
 char *receive ();
 int send();
 int stts_1, stts_2, status;

 /* Allocate msgbuf buffers */
 if ((msgp1 = (struct msgbuf *) malloc(MSGSIZ+sizeof(*msgp1))) == NULL){
 perror("malloc of msgp1");
 exit (1);
 }

 if ((msgp2 = (struct msgbuf *) malloc(MSGSIZ+sizeof(*msgp2))) == NULL){
 perror("malloc of msgp2");
 exit (1);
 }

 /* Create a message queue */
 key = ftok("msgq_test", 'm');

Programming Tools and Interfaces
Example of Message Queue Calls

¦ Copyright IBM Corp. 1985, 1991
8.5.4.5 - 1

 if ((msgqid = msgget(key, IPC_CREAT ¦ S_IRUSR ¦ S_IWUSR)) < 0) {
 perror("msgq_test cannot open message queue");
 exit(1);
 }
 printf("msgqid = %d\n", msgqid);
 /* First child, the producer, will send messages */
 if ((pid_1 = fork()) == 0) {
 int i;

 printf("Starting producer process (Child 1). \n");
 for (i = 0; i <= 10; i++) {
 printf("Producer: Sending messages number %d\n", i);
 send(msg[i]); /* produce item */
 }
 exit(0);
 }

 /* Second child, the consumer, will receive messages */
 if ((pid_2 = fork()) == 0) {

 int i;
 char *message;

 printf("Starting consumer process (Child 2).\n");
 for (i = 0; i <= 10; i++) {
 message = receive (); /* consume item */
 printf("Consumer process: message number %d is: %s\n",
 i, message);
 }
 exit(0);
 }

 /* Wait for child processes to finish */
 stts_1 = stts_2 = -1;
 while ((retpid = wait(&status)) != -1) {
 if (retpid == pid_1)
 stts_1 = status;
 else if (retpid == pid_2)
 stts_2 = status;
 }

 printf("Producer process ended with status = %d\n", stts_1);
 printf("Consumer process ended with status = %d\n", stts_2);

 /* delete the message queue now that we're done */
 (void) msgctl(msgqid, IPC_RMID, 0);

 exit(0);
 }

 send(item)
 char *item;
 {
 msgp1->mtype =MTYPE;
 strncpy(msgp1->mtext, item, MSGSIZ);
 if (msgsnd(msgqid, msgp1, MSGSIZ, 0) == -1)
 perror("msgsnd");
 }
 char *
 receive()

Programming Tools and Interfaces
Example of Message Queue Calls

¦ Copyright IBM Corp. 1985, 1991
8.5.4.5 - 2

 {
 if (msgrcv(msgqid, msgp2, MSGSIZ, MSGRTYP, 0) == -1)
 perror("msgrcv");
 return msgp2->mtext;
 }

 --

Programming Tools and Interfaces
Example of Message Queue Calls

¦ Copyright IBM Corp. 1985, 1991
8.5.4.5 - 3

 8.5.5 TCP/IP Socket Communication

 For detailed information on TCP/IP Socket Communication, refer to AIX
 TCP/IP User's Guide.

Programming Tools and Interfaces
TCP/IP Socket Communication

¦ Copyright IBM Corp. 1985, 1991
8.5.5 - 1

 8.5.6 Shared Memory Calls

 The shared memory calls set aside an area of memory that cooperating
 processes can access. This area can serve as a large pool for exchanging
 data among the processes. The shared memory calls do not provide locks or
 access control among the processes. Therefore, processes using the shared
 memory area must set up a signal or semaphore control method to prevent
 access conflicts and to keep one process from changing data that another
 process is using. Use shared memory when the amount of data to be
 exchanged between processes is too large to transfer with messages, or
 when many processes maintain a common large data base.

 Use the following calls to create and use shared memory segments from a
 program:

 Call Description

 shmctl Controls shared memory operations.
 shmget Gets or creates a shared memory segment.
 shmat Attaches a shared memory segment to a process.
 shmdt Detaches a shared memory segment from a process.
 disclaim Removes mapping from a specified address range within a shared
 memory segment.

 In addition, the ftok subroutine provides the key that the shmget call
 uses to create the shared segment. Include the following header files
 when using shared memory calls:

 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/shm.h>

 Subtopics
 8.5.6.1 Terms
 8.5.6.2 Using Shared Segments

Programming Tools and Interfaces
Shared Memory Calls

¦ Copyright IBM Corp. 1985, 1991
8.5.6 - 1

 8.5.6.1 Terms

 The use of shared memory segments is similar in structure to the way the
 system creates and uses files. Defining the terms used for shared memory
 with respect to the more familiar file terms provides a framework to build
 an understanding of shared memory. Figure 8-28 shows the new terms and
 how they relate to terms used with files.

 Figure 8-28. Shared Memory Terms
 Term Definition

 key The key is a unique identifier that names the particular
 shared segment. It is always associated with the shared
 segment as long as the shared segment exists. In this
 respect it is similar to the filename of a file.

 shmid The shmid is an identifier assigned to the shared segment
 for use within a particular process. It is similar in
 use to a file descriptor of a file.

 attach A process must attach a shared segment to use the shared
 segment. Attaching a shared segment is similar to
 opening a file.

 detach A process must detach a shared segment once it is
 finished with the shared segment. Detaching a shared
 segment is similar to closing a file.

Programming Tools and Interfaces
Terms

¦ Copyright IBM Corp. 1985, 1991
8.5.6.1 - 1

 8.5.6.2 Using Shared Segments

 The following sequence describes the life cycle of a shared segment from
 initial creation to final removal from the system:

 1. Create a key to uniquely identify the shared segment. Use the ftok
 subroutine to create the key. For example, to create a key mykey
 using a project ID of R contained in the variable proj (type char) and
 a file name of null_file, use a statement like:

 mykey = ftok(null_file, proj);

 2. Either:

 � Create the shared memory segment with the shmget system call. For
 example, to create a shared segment that contains 4096 bytes and
 assign the shmid to an integer variable mem_id, use a statement
 like:

 mem_id = shmget(mykey, 4096, IPC_CREATE or 0666);

 or

 � Get a previously created shared segment with the shmget system
 call. For example, to get a shared segment that is already
 associated with the key mykey and assign the shmid to an integer
 variable mem_id, use a statement like:

 mem_id = shmget(mykey, 4096, IPC_ACCESS);

 3. Attach the shared segment to the process with the shmat system call.
 For example, to attach the previously created segment, use a statement
 like:

 ptr = shmat(mem_id);

 In this example, the variable ptr is a pointer to a structure that
 defines the fields in the shared segment. Use this template structure
 to store and retrieve data in the shared segment. This template
 should be the same for all processes using the segment.

 4. Work with the data in the segment using the template structure.

 5. Detach from the segment using the shmdt system call:

 shmdt(mem_id);

 6. If the shared segment is no longer needed, remove it from the system
 using the shmctl system call:

 shmctl(mem_id, IPC_RMID, ptr) ;

 See AIX Operating System Technical Reference for specific information
 about parameters for the calls and subroutines. You can also use the
 commands ipcs to get information about a segment and ipcrm to remove a
 segment. See AIX Operating System Commands Reference for information
 about these commands.

Programming Tools and Interfaces
Using Shared Segments

¦ Copyright IBM Corp. 1985, 1991
8.5.6.2 - 1

 8.5.7 Memory Management Calls

 Use the following calls to control a program's use of memory during
 execution:

 Call Description

 brk, sbrk Change data segment space allocation.

Programming Tools and Interfaces
Memory Management Calls

¦ Copyright IBM Corp. 1985, 1991
8.5.7 - 1

 8.6 File System Calls

 The system provides calls to create files, move data into and out of
 files, close files, and describe the restrictions and structure of the
 file system. Because the system treats input and output to all devices
 the same as input and output to files, you can use many of the file system
 calls for control of devices in the system also. The system calls do not
 provide the data formatting and housekeeping services that the C library
 subroutines for input and output do. See Chapter 7, "Using the Subroutine
 Libraries" for information about the library calls.

 Subtopics
 8.6.1 Data Handling Calls
 8.6.2 File Maintenance Calls

Programming Tools and Interfaces
File System Calls

¦ Copyright IBM Corp. 1985, 1991
8.6 - 1

 8.6.1 Data Handling Calls
 Use the following system calls to control data handling in the system.
 These calls create files, open and close files, and move data into and out
 of them.

 Call Description

 fcommit Makes permanent all changes to a file since the last commit
 operation.

 fsync Equivalent to fcommit.

 close Closes a file descriptor.

 closex Closes a file descriptor and uses an extra parameter for
 communication with the device driver.

 creat Creates a new file or rewrite an existing one.

 dup Duplicates an open file descriptor.

 ioctl Controls device.

 ioctlx Controls device and uses an extra parameter for
 communication with the device driver.

 lseek Moves read/write file pointer.

 mknod Makes a special file that provides an interface to a device
 for input and output.

 mknodx Make a special file that provides an interface to a device
 for input and output and uses an extra parameter to specify
 the cluster site to which the device is attached.

 open Opens a file or device for reading or writing.

 openx Opens a file or device for reading or writing and uses an
 extra parameter for communication with the device driver or
 controlling how directories appear.

 read Reads from a file or device.

 readx Reads from a file or device and uses an extra parameter for
 communication with the device driver or for controlling how
 directories appear.

 fabort Aborts file changes that have occurred since the last
 commit operation.

 write Writes on a file or device.

 writex Writes on a file or device and uses an extra parameter for
 communication with the device driver.

 Subtopics
 8.6.1.1 Using Files
 8.6.1.2 File Descriptors
 8.6.1.3 Opening and Closing Files
 8.6.1.4 Random Access to Files

Programming Tools and Interfaces
Data Handling Calls

¦ Copyright IBM Corp. 1985, 1991
8.6.1 - 1

 8.6.1.5 Reading and Writing to a File
 8.6.1.6 Using the Extended Calls
 8.6.1.7 Committing File Changes

Programming Tools and Interfaces
Data Handling Calls

¦ Copyright IBM Corp. 1985, 1991
8.6.1 - 2

 8.6.1.1 Using Files

 When transferring data on the system, ensure that the files are created,
 opened and closed at the proper times so that data is not lost. The
 following sequence of events describes the actions to perform when using
 files for data storage:

 1. Use the creat system call to create the file or Use the open system
 call to open the file if it already exists (the creat call leaves the
 file open).

 2. Use the write and read system calls to transfer data into and out of
 the file.

 3. Use the close system call to close the file.

Programming Tools and Interfaces
Using Files

¦ Copyright IBM Corp. 1985, 1991
8.6.1.1 - 1

 8.6.1.2 File Descriptors

 The system performs all input and output by reading or writing files. It
 uses special files to form the interface between a device and the
 operating system. When you open a file, the system checks to see if you
 can access it. If you have access to the file, the system returns a small
 positive integer called a file descriptor. The system uses this file
 descriptor instead of the name to identify the file. Therefore, programs
 must use the file descriptor when doing input and output with system
 calls.

 The system assigns the file descriptor number on an as available basis.
 Normally, when a program begins, the system establishes three numbers for
 special functions:

 0 standard input: This file normally handles input from the keyboard
 of the terminal.

 1 standard output: This file normally handles output to the terminal
 screen.

 2 standard error: This file normally handles error messages to the
 terminal screen.

 These file descriptors are normally always open, so that a program can get
 input from the standard input and send output to standard output or error
 without opening a file.

Programming Tools and Interfaces
File Descriptors

¦ Copyright IBM Corp. 1985, 1991
8.6.1.2 - 1

 8.6.1.3 Opening and Closing Files

 To use input and output other than stdin, stdout, or stderr, either open
 or creat a file. The open system call sets up an existing file for
 access, and returns a file descriptor to the calling program:

 int fildes;
 fildes = open (filename,oflag[,mode]);

 In this call, the parameters have the following meaning:

 filename The character string that corresponds to the external file name
 of the file to be opened.

 oflag A flag that indicates the conditions of the access for the file.

 mode The optional access permission bits for the file. These bits
 are used only if the file must first be created before it can be
 opened. See the chmod command in AIX Operating System Commands
 Reference for an explanation of the access permission bits.

 If an error occurs, open returns -1 as the file descriptor. Trying to
 open a file that does not exist is an error.

 To create a new file, use the creat system call:

 fildes = creat(filename,mode);

 In this call, the parameters have the following meaning:

 filename The character string that corresponds to the external file name
 of the file to be opened.

 mode The access permission bits for the file to be created as
 described for the chmod command in AIX Operating System Commands
 Reference.

 The creat call returns -1 as the file descriptor if it cannot create the
 file. If the file exists, this call truncates that file to zero length
 and returns the file descriptor for that file.

 To free up a file descriptor for use with another file, use the close
 system call when access to the file is complete:

 close(fildes);

 When the program stops using an exit call, or a return from main, the
 system closes all file descriptors associated with the program.

Programming Tools and Interfaces
Opening and Closing Files

¦ Copyright IBM Corp. 1985, 1991
8.6.1.3 - 1

 8.6.1.4 Random Access to Files

 Normal access to files is sequential. Each read or write occurs in the
 file position directly following the previous operation. To perform
 random access I/O, use the lseek system call to move around in the file.
 This system call does not read or write to the file, it only changes the
 position where the next read or write will occur. The format of this call
 is:

 lseek(fildes, offset, whence);

 In this call, the parameters have the following meaning:

 fildes The file descriptor for the file.

 offset The number of bytes to move, or an absolute address as specified
 by the whence parameter.

 whence Determines how to use offset to move in the file:

 SEEK_SET Moves to the address contained in offset.

 SEEK_CUR Moves to the address that is the current location plus
 the value contained in offset.

 SEEK_END Moves to the address that is the number of bytes
 contained in offset plus the address of the end of the
 file.

 The symbolic names described above are defined in /usr/include/unistd.h.

 For example, to append to a file when it is not positioned at the end,
 seek to the end before writing:

 lseek(fildes, 0, SEEK_END);

 To get back to the beginning of the file:

 lseek(fildes, 0, SEEK_SET);

 To create sparse files, or files with holes in them to allow for relative
 record access within the file, create a new file and then use the lseek
 call to move to selected places in the file before writing. The spaces
 between the data (holes) become part of the file, but do not take up disk
 space until they are actually filled with data.

Programming Tools and Interfaces
Random Access to Files

¦ Copyright IBM Corp. 1985, 1991
8.6.1.4 - 1

 8.6.1.5 Reading and Writing to a File

 The read and the write system calls perform input and output for the
 system. These calls require three arguments:

 File descriptor The integer assigned to the file involved in the read or
 write.

 Buffer An area in the program that supplies or receives the data.

 Byte count The number of bytes to be transferred.

 Each call returns the number of bytes actually transferred. For a read,
 this number may be less than the number requested in the byte count
 parameter. For a write, if this number is not the number requested, an
 error occurred. A returned value of 0 indicates the end of file; a
 returned value of -1 indicates an error occurred during the operation.

 The number of bytes to transfer is the programmer's choice. Some useful
 values are:

 1 One character at a time, or unbuffered transfer.

 512 The block size for many peripheral devices.

 4096 The internal block size for the operating system. This size, or
 a multiple of this size, is efficient for normal operations.

Programming Tools and Interfaces
Reading and Writing to a File

¦ Copyright IBM Corp. 1985, 1991
8.6.1.5 - 1

 8.6.1.6 Using the Extended Calls

 The system provides extended versions of the following system calls:

 closex
 ioctlx
 openx
 readx
 writex.

 These calls perform the same functions as their original versions, but
 they also provide an extra parameter to pass information to the device
 driver. How the parameter is used depends on the device driver with which
 the calls are used. The parameter can be used either as a value or a
 pointer to a buffer area containing additional information. Use them only
 with device drivers that understand the additional information.

Programming Tools and Interfaces
Using the Extended Calls

¦ Copyright IBM Corp. 1985, 1991
8.6.1.6 - 1

 8.6.1.7 Committing File Changes

 In most cases, closing the file after writing to it is enough to ensure
 that changes to it are permanent. The call fcommit(fildes) incorporates
 all data changes specified by the given file descriptor into a new version
 of the file. The file remains open after the commit; a subsequent call of
 the form fabort(fildes) will roll the file back to the most recent commit
 checkpoint.

 A program which uses fcommit and fabort to control when changes are
 incorporated in a file should first open the file with the O_DEFERC open
 flag. This flag prevents the system from automatically committing the
 file at intermediate times. fsync is equivalent to fcommit and is
 included for system compatibility. Refer to the discussion of fsync and
 fabort in the AIX Operating System Technical Reference.

Programming Tools and Interfaces
Committing File Changes

¦ Copyright IBM Corp. 1985, 1991
8.6.1.7 - 1

 8.6.2 File Maintenance Calls

 Use the file maintenance calls for programs that change protection of
 files in the file system, access many different files, or provide control
 of files for the user of the program. Many of these calls are the base
 for the system commands that have similar names. You can, however, use
 these calls to write new commands or utilities to help in the program
 development process, or to include in an application program. The file
 maintenance calls on the system include:

 Call Description

 access Determines accessibility of a file.

 chdir Changes working directory.

 chhidden Marks an existing directory as a hidden directory.

 chmod Changes mode of a file.

 chown Changes owner and group of a file.

 chroot Changes root directory.

 dirstat Returns statistical information on a block of files in a
 directory.

 fchmod Changes mode of an open file.

 fchown Changes owner and group of an open file.

 fclear Clears space in a file.

 fcntl Controls file operations.

 fstat, fstatx
 Gets attributes of an open file.

 link Links to a file.

 lockf Locks a region of a file, or provides exclusive regions in a
 file.

 mount Mounts a file system.

 mkdir Makes a directory

 readlink Reads value of symbolic link.

 rename Renames a file.

 rmdir Removes a directory.

 rmslink Removes a symbolic link.

 select Control multiple open files at once.

 stat, statx
 Gets attributes of a file.

Programming Tools and Interfaces
File Maintenance Calls

¦ Copyright IBM Corp. 1985, 1991
8.6.2 - 1

 symlink Makes a symbolic link to a file.

 sync Updates superblock.

 truncate, ftruncate
 Makes file shorter.

 umask Sets and gets file creation mask.

 unlink Removes a directory entry.

 Call Description

 umount Unmounts a file system.

 ustat,dustat
 Gets file system statistics.

 utime Sets file access and modification times.

 Subtopics
 8.6.2.1 Symbolic Links

Programming Tools and Interfaces
File Maintenance Calls

¦ Copyright IBM Corp. 1985, 1991
8.6.2 - 2

 8.6.2.1 Symbolic Links

 Ordinarily, there is a one-to-one correspondence between a file system
 pathname and the file system object to which it is bound. A link is a
 mechanism by which more than one name is bound to the same object. There
 are two types of links:

 � hard links

 � symbolic links.

 The link and symlink system calls bind new path names to existing objects,
 creating hard link and symbolic links, respectively. These links can
 later be removed by the unlink and rmslink system calls. Each type of
 link has certain advantages over the other. For additional information
 regarding hard links and symbolic links, refer to Using the AIX Operating
 System.

Programming Tools and Interfaces
Symbolic Links

¦ Copyright IBM Corp. 1985, 1991
8.6.2.1 - 1

 8.7 Time System Calls

 The system provides the following calls to set the system time and to find
 out what the system time is. See the description for the ctime library
 routine in AIX Operating System Technical Reference to get formatted time
 data from the system.

 Call Description

 stime Sets time.
 time Gets time.

 Both calls use a value of time that is the number of seconds since
 00:00:00 Greenwich Mean Time (GMT) on January 1, 1970. Therefore, the
 program must be able to calculate the date using that starting date and
 the elapsed time value used by the time calls, total seconds. For
 convenience, some of the common time units converted to seconds are:

 Unit Value in Seconds

 minute 60
 hour 3600
 day 86,400
 week 604,800
 month 2,419,200 (28 days)
 2,505,600 (29 days)
 2,592,000 (30 days)
 2,678,400 (31 days)
 year 31,536,000 (365 days)
 31,622,400 (366 days)

 Subtopics
 8.7.1 Using File Locking

Programming Tools and Interfaces
Time System Calls

¦ Copyright IBM Corp. 1985, 1991
8.7 - 1

 8.7.1 Using File Locking

 AIX Operating System allows many processes to synchronize simultaneous
 access to a file through the use of the fcntl and lockf system calls.
 These system calls allow a program to lock and unlock portions of an open
 file. The program can use either a read lock or a write lock.

 A read lock prevents any other process from setting a write lock on any
 portion of the protected area. When a read lock is set on a segment of a
 file, other processes can also set read locks on that segment or a portion
 of it. The file descriptor on which a read lock is being placed must have
 been opened with read access. Use the fcntl system call to set a read
 lock on a file.

 A write lock prevents any other process from setting a read lock or a
 write lock on any portion of the protected area. Only one write lock and
 no read locks can exist for a given segment of a file at a given time.
 The file descriptor on which a write lock is being placed must have been
 opened with write access. Use the fcntl system call or the lockf system
 call to set write locks.

 All locks associated with a file for a given process are removed when the
 file descriptor for that file is closed by that process or when the
 process holding the file descriptor ends. Locks are not passed to a child
 process after executing a fork system call.

 File locks can operate as either enforced or advisory locks. Enforced
 locks prevent other processes from accessing the locked area of the file.
 Advisory locks are not enforced by the operating system and require
 cooperating processes that check the lock bits of files to ensure data
 integrity. To select enforced locking, the S_ENFMT code must be set in
 the access permission bits (or mode) of the file. Using the chmod system
 call on a file that has locks can change the type of lock between forced
 and advisory. Otherwise, locking is advisory. Thus, a particular file
 can have advisory or enforced locks, but not both. Use advisory locks
 instead of enforced locks whenever possible.

 A process cannot use a write system call on any region of a file that is
 protected by an enforced read lock or an enforced write lock that is held
 by another process. A process cannot use a read system call on any region
 of a file that is protected by an enforced write lock that is held by
 another process. In addition, the creat, open, truncate, ftruncate,
 fabort, and fclear system calls cannot truncate or change a file protected
 by any enforced lock that is held by another process.

 When an area of a file is protected by an enforced lock and another
 process attempts to access that area of the file, the attempt is not
 successful but the result varies with other process conditions. A read or
 write system call that is blocked may either sleep until the area is
 unlocked or, if the O_NDELAY flag for that file descriptor is set, return
 with an error. However, if the system detects that sleeping would cause
 deadlock, then the system call fails with errno set to EDEADLK. If
 another process attempts to truncate the file with either the creat or
 open system call, that system call fails with errno set to EACCES.

 The read, write, creat and open system calls are not affected by advisory
 locking. Processes must voluntarily call lockf to make advisory locks
 effective.

 File and record locking helps preserve data integrity when multiple

Programming Tools and Interfaces
Using File Locking

¦ Copyright IBM Corp. 1985, 1991
8.7.1 - 1

 processes are using the same file. When using Transparent Computing
 Facility (TCF) or Network File Service (NFS), this protection applies to
 both local and remote files. Processes that use record and file locking
 in a local area network must be careful not to introduce permanent
 deadlocks when they wait for locks. Before waiting for a lock, these
 processes should set a timer so that they will be awakened by a signal if
 there is the possibility of a deadlock.

 Subtopics
 8.7.1.1 File Locking Example Program

Programming Tools and Interfaces
Using File Locking

¦ Copyright IBM Corp. 1985, 1991
8.7.1 - 2

 8.7.1.1 File Locking Example Program

 The following example program shows how to use locking system calls.
 Compile the program to an executable file named locktest with the
 following command:

 cc locktest.c -o locktest

 You can then run the program by entering the command:

 locktest filename

 In this format, filename is the name of a temporary file that the program
 creates. Ensure that this name is not the name of any file in the current
 directory. For example, to start the program and allow it to create a
 file named testfile, enter the command:

 locktest testfile

 When the program runs, it:

 1. Creates a signal handler to catch SIGALRM if it occurs.

 2. Creates the test file with enforced locking enabled using the open
 system call.

 3. Uses the lockf system call to enforce lock the whole file from the
 parent process.

 4. Uses the fork system call to create a child process.

 5. Writes 15 records to the file from the parent process while the child
 process tries to lock one record in the file.

 6. The child process sleeps until the parent process unlocks the file.

 7. The parent process unlocks the file.

 8. The child process wakes up and completes its record lock.

 9. The child process reads one record from the file.

 10. The child process removes its record lock from the file and then
 exits.

 11. The parent process detects the end of the child process and exits.

 Figure 8-29 shows the program listing for locktest.c. Figure 8-30 shows
 the output produced when the program runs. When the program completes
 successfully, it creates a test file that contains a string of test
 patterns containing 40 characters and a new line. When you are done with
 the program, erase the test file.

 --

 #include <stdio.h>
 #include <unistd.h>
 #include <fcntl.h>
 #include <sys/lockf.h>

Programming Tools and Interfaces
File Locking Example Program

¦ Copyright IBM Corp. 1985, 1991
8.7.1.1 - 1

 #include <sys/stat.h>
 #include <sys/signal.h>
 #include <errno.h>

 #define TIMEOUT 10
 #define RECORDSIZE 40
 #define RECORD(x) (((x)-1)*RECORDSIZE)

 static char record[] = "This string has 40 characters w/newline\n";
 void
 salrm() /* signal handler for receiving SIGALRM */
 {
 printf("SIGALRM signal received.\n");
 }

 main(argc, argv)
 int argc;
 char **argv;

 {
 int fildes; /* file descriptor */
 int i, rc; /* for loop index and return code */
 char buf[RECORDSIZE]; /* read buffer */
 static struct sigaction alrmvec;
 alrmvec.sa_handler = salrm;
 alrmvec.sa_flags = 0;
 sigemptyset (&alrmvec.sa_mask);

 if(argc != 2)
 {
 usage();
 exit(1);
 }

 if(sigaction(SIGALRM, &alrmvec, NULL) == -1)
 {
 perror("sigaction(2) failed ");
 exit(1);
 }

 if((fildes=open(argv[1], O_RDWR | O_CREAT | O_TRUNC,
 S_ENFMT | S_IRUSR | S_IWUSR))== -1)
 {
 perror("open(2) failed ");
 exit(1);
 }

 alarm(TIMEOUT);
 printf("Parent process tries to lock the entire file.\n");
 if(lockf(fildes, F_LOCK, 0) == -1)
 {
 perror("parent process lockf(2) failed ");
 exit(1);
 }

Programming Tools and Interfaces
File Locking Example Program

¦ Copyright IBM Corp. 1985, 1991
8.7.1.1 - 2

 alarm(0);
 printf("Fork the child process.\n");
 fflush (stdout);
 switch(fork())

 {
 case -1: /* fork error */
 perror("fork(2) failed ");
 exit(1);

 case 0: /* child process */
 printf("Child process tries to lock the 5th record in the file.\n");
 lseek(fildes, RECORD(5), SEEK_SET);
 alarm(TIMEOUT);
 if(lockf(fildes, F_LOCK, RECORDSIZE) == -1)

 {
 perror("child process lockf(2) failed ");
 exit();
 }

 alarm(0);
 if((rc = read(fildes, buf, RECORDSIZE)) == -1)
 {
 perror("child process read(2) failed ");
 exit();
 }

 printf("Child process read record 5 from the file.\n");
 printf("Child process tries to unlock the 5th record in the file.\n");
 lseek(fildes, RECORD(5), SEEK_SET);

 if(lockf(fildes, F_ULOCK, RECORDSIZE) == -1)
 {
 perror("child process lockf(2) failed ");
 exit();
 }

 close(fildes);
 exit(0);

 default: /* parent process */
 for(i=1; i<=15; i++)
 {
 if((rc = write(fildes, record, RECORDSIZE)) == -1)
 {
 perror("parent process write(2) failed ");
 exit();
 }

 printf("Parent process wrote record %d to the file.\n" , i);
 }

Programming Tools and Interfaces
File Locking Example Program

¦ Copyright IBM Corp. 1985, 1991
8.7.1.1 - 3

 printf("Parent process tries to unlock the entire file.\n");
 lseek(fildes,0,SEEK_SET);

 if(lockf(fildes, F_ULOCK, 0) == -1)
 {
 perror("parent process lockf(2) failed ");
 exit(1);
 }

 printf("Parent process waits for the child to end.\n");
 wait(0);
 printf("Child process has ended; Parent process ends.\n");
 close(fildes);
 exit(0);
 }
 }
 usage()
 {
 printf("usage: locktest <file>\n");
 }

 --
 Figure 8-29. Example Program Listing for locktest.c

 --

 Parent process tries to lock the entire file.
 Fork the child process.
 Child process tries to lock the 5th record in the file.
 Parent process wrote record 1 to the file.
 Parent process wrote record 2 to the file.
 Parent process wrote record 3 to the file.
 Parent process wrote record 4 to the file.
 Parent process wrote record 5 to the file.
 Parent process wrote record 6 to the file.
 Parent process wrote record 7 to the file.
 Parent process wrote record 8 to the file.
 Parent process wrote record 9 to the file.
 Parent process wrote record 10 to the file.
 Parent process wrote record 11 to the file.
 Parent process wrote record 12 to the file.
 Parent process wrote record 13 to the file.
 Parent process wrote record 14 to the file.
 Parent process wrote record 15 to the file.
 Parent process tries to unlock the entire file.
 Child process read record 5 from the file.
 Child process tries to unlock the 5th record in the file.
 Parent process waits for the child to end.
 Child process has ended; Parent process ends.

 --
 Figure 8-30. Output from Example Program locktest.c

Programming Tools and Interfaces
File Locking Example Program

¦ Copyright IBM Corp. 1985, 1991
8.7.1.1 - 4

 9.0 Chapter 9. Controlling the Terminal Screen

 Subtopics
 9.1 CONTENTS
 9.2 About This Chapter
 9.3 Extended Curses
 9.4 Using the Library Routines
 9.5 Routines for Panels and Panes
 9.6 Display Attributes
 9.7 Using Other Features
 9.8 Example Program

Programming Tools and Interfaces
Chapter 9. Controlling the Terminal Screen

¦ Copyright IBM Corp. 1985, 1991
9.0 - 1

 9.1 CONTENTS

Programming Tools and Interfaces
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
9.1 - 1

 9.2 About This Chapter

 This chapter discusses the Extended curses library, which contains
 routines to support input and output to the terminal screen. It also
 contains information on using the library routines for panels and panes.
 In addition, it describes attributes that a program can use on a terminal.

Programming Tools and Interfaces
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
9.2 - 1

 9.3 Extended Curses

 The system contains two libraries of routines to support input and output
 to the terminal screen. These libraries are:

 curses A set of screen control routines. This library is
 included for compatibility with existing application
 programs.

 Extended curses An enhancement to the curses set of routines for IBM
 PS/2 that provides extended function for:

 � Expanded character set
 � Color
 � Multiple character attributes
 � Error detection and handling
 � Efficient handling of a window-oriented screen
 presentation, including:
 - Window stacking and layers
 - Linked scrolling of windows
 - Scrolling data in windows that are partially
 covered
 - Automatic tracking of active panes.
 � 2-byte characters for international character
 support
 � locator input support.

 Use these routines for new program development or to
 increase the function of existing programs.

 This chapter discusses only the Extended curses library. Information
 about both libraries is in AIX Operating System Technical Reference.

 The Extended curses library contains a set of C language routines that:

 � Updates a scree

 � Gets input from the terminal in a screen-oriented fashio

 � Moves the cursor from one point to another independent of other scree
 activities

 � Creates and manages a screen containing windows, panels and panes

 The routines do the most common type of terminal-dependent functions. The
 routines use the file /usr/lib/terminfo to describe what the terminal can
 do.

 The routines are in the following categories:

 � Screen updatin

 � Screen updating with user inpu

 � Cursor motion optimization

 You can use motion optimization by itself. You can use screen updating
 and input without knowing about either motion optimization or the data.

Programming Tools and Interfaces
Extended Curses

¦ Copyright IBM Corp. 1985, 1991
9.3 - 1

 Subtopics
 9.3.1 New Terms
 9.3.2 What You Need
 9.3.3 Using the Screen Update Routines
 9.3.4 What the Screen Looks Like
 9.3.5 Function Names
 9.3.6 Variables

Programming Tools and Interfaces
Extended Curses

¦ Copyright IBM Corp. 1985, 1991
9.3 - 2

 9.3.1 New Terms

 The Extended curses routines use the concepts and terms listed in
 Figure 9-1.

 Figure 9-1. Terms
 Term Definition

 terminal Sometimes called terminal screen, the terminal is a
 memory image of what the terminal screen currently looks
 like. This is a special screen.

 screen A screen is a special type of window that is as large as
 the terminal screen. You can define screens for a
 program. The Extended curses routines define two screens
 for their use:

 stdscr The standard screen is a memory image of the
 screen that the routines make changes to.
 curscr The current screen is the actual image that is
 currently on the terminal.

 window A memory image of what a section of the terminal screen
 looks like at some point in time. A window can be either
 the entire terminal screen, or any smaller portion down
 to a single character.

 Presentation The data and attribute array associated with a window.
 Space

 Pane An area of the display that shows all or a part of the
 data contained in a presentation space associated with
 that pane. A pane is a subdivision of a panel.

 Panel A rectangular area on the display consisting of one or
 more panes that a program can treat as a unit. That is,
 the panes in a panel are displayed together, erased
 together and represent a unit to the operator. The
 routines stack or overlap panels on the screen, and
 remember the order of the stack and the contents of each
 panel.

 Field An area in a presentation space where the program can
 accept operator input.

 extended A character from a code page that is represented in 2
 character bytes.

Programming Tools and Interfaces
New Terms

¦ Copyright IBM Corp. 1985, 1991
9.3.1 - 1

 9.3.2 What You Need

 To use the library, define the types and variables that the routines use.
 The file cur01.h contains all of the definitions that are needed for the
 library routines for most common uses. Include this file in the program
 by putting the statement:

 #include <cur01.h>

 at the top of the program source. When using the library routines for
 panel and pane management (those routines begin with the letters ec), use
 the statement:

 #include <cur05.h>

 in the program source to include a larger set of definitions.

 Use an additional header file cur00.h in the program if the program uses
 the global variables defined to represent the information taken from the
 terminal file. This header file also contains include statements for the
 following header files:

 � stdio.
 � sgtty.
 � cur01.

 You do not need to include those files separately in the program.

 To compile a program with the cc command, specify the two additional
 libraries shown in the following example on the command line. This
 example compiles the program, myprog.c, with the linked output going to
 a.out, by using the following command:

 cc myprog.c -lcur -lcurses

 See Chapter 7, "Using the Subroutine Libraries" for information about
 using libraries in a program.

Programming Tools and Interfaces
What You Need

¦ Copyright IBM Corp. 1985, 1991
9.3.2 - 1

 9.3.3 Using the Screen Update Routines

 To update the screen, the routines must know what the screen currently
 looks like and what it should be changed to. The routines define a data
 type, WINDOW, to hold this information. This data type is a structure
 that describes a window image to the routines, including the starting
 position on the screen (the (line, col) coordinates of the upper left
 corner) and size. See Appendix A, "Extended curses Structures" for a
 definition of the WINDOW structure.

 A window is like an array of characters on which to make changes. Using
 the window, a program builds and stores an image of a portion of the
 terminal that it later transfers to the actual screen. When the window is
 complete, use one of the following routines to transfer the window to the
 terminal:

 refresh Transfers the contents of stdscr to the terminal.

 wrefresh Transfers the contents of a named window (not stdscr) to the
 terminal.

 ecrfpl Transfers the contents of a named panel to the terminal.

 ecrfpn Transfers the contents of a named pane to the terminal.

 This two-step process maintains several different copies of a window in
 memory and selects the proper one to display at any time. In addition,
 the program can change the contents of the screen in any order. When it
 has made all of the changes, the library routines update the terminal in
 an efficient manner.

Programming Tools and Interfaces
Using the Screen Update Routines

¦ Copyright IBM Corp. 1985, 1991
9.3.3 - 1

 9.3.4 What the Screen Looks Like

 The screen is a matrix of character positions that can contain any
 character from the character set (see Appendix C, "ASCII Characters") that
 can be displayed. Do not use control characters except when the
 descriptions of the library indicate that you can. The actual dimensions
 of the matrix are different for each type of terminal. These dimensions
 are defined when the initscr routine calls the terminfo initialization
 subroutine, setupterm. For more information about setupterm, see AIX
 Operating System Technical Reference. However, the routines enforce the
 following limits on the terminal:

 Coordinate Description

 lines If the terminal specification defines less than 5 lines,
 the routines use a value of 24 lines.

 columns If the terminal specification defines less than 5
 columns, the routines use a value of 80 columns.

 Line 0 is at the top of the screen. Line values in the routine syntax are
 represented by line. Column 0 is at the left side of the screen. Column
 values in the routine syntax are represented by col. When used in calls
 to the library routines, the line value comes first.

 move(line, col);

 Figure 9-2 shows the coordinate boundaries for a screen with 48 lines and
 1000 columns.

 --

Programming Tools and Interfaces
What the Screen Looks Like

¦ Copyright IBM Corp. 1985, 1991
9.3.4 - 1

 --
 Figure 9-2. Screen Coordinate Boundaries

Programming Tools and Interfaces
What the Screen Looks Like

¦ Copyright IBM Corp. 1985, 1991
9.3.4 - 2

 9.3.5 Function Names

 Functions that change the contents of a specified window other than stdscr
 usually begin with the letter w, indicating an operation for a specific
 window. Deleting the leading w provides the name of the same function
 that uses stdscr. For example, the function addch adds a character to
 stdscr, but the function waddch adds a character to a specified window.
 If a function does not have a form that operates only on stdscr, the
 function does not have a form that begins with the letter w. Always
 indicate a window name when using these functions.

 Use the routines move and wmove to change the current (line, col)
 coordinates from one point to another. To move and then write to or read
 from the new position, use the following shorthand method for most
 routines:

 1. Add the letters mv to the front of the routine name.

 2. The first two arguments of the routine must be the (line, col)
 coordinates of the destination of the move.

 For example, the following call sequence:

 move(line, col);
 addch(ch);
 .
 .
 .
 wmove(win, line, col);
 waddch(win, ch);

 is the same as the following call sequence:

 mvaddch(line, col, ch);
 .
 .
 .
 mvwaddch(win, line, col, ch);

 Note that the window description pointer win comes before the added (line,
 col) coordinates.

Programming Tools and Interfaces
Function Names

¦ Copyright IBM Corp. 1985, 1991
9.3.5 - 1

 9.3.6 Variables

 The following system variables defined in the header files describe the
 terminal environment. Use these variables in a program.

 Name Type Description

 My_term bool If this value is TRUE, the routines use the
 terminal type specified by Def_term as the
 terminal type being used. If this value is
 FALSE, the routines first check the
 terminal type specified in the $TERM for
 the system environment. If $TERM is not
 specified, the routines use the value in
 Def_term.

 Def_term char* Default terminal type if $TERM is not
 specified in the system environment.

 COLS int Number of columns on the terminal.

 ERR int Flag that the routines return when a
 failure occurs.

 LINES int Number of lines on the terminal.

 OK int Flag that the routines return when the
 function completes successfully.

 curscr WINDOW* Current version of the terminal screen.

 stdscr WINDOW* Standard screen.

 The routines also define the following #define constants and types:

 bool A type of boolean used as:

 bool doneit; /* defines variable doneit */

 reg A type with storage class register used as:

 reg int i; /* defines i */

 FALSE The value of boolean false (0).

 TRUE The value of boolean true (1).

 NLSCHAR A data type defined as unsigned short.

 ATTR A data type defined as unsigned short.

Programming Tools and Interfaces
Variables

¦ Copyright IBM Corp. 1985, 1991
9.3.6 - 1

 9.4 Using the Library Routines

 The following paragraphs outline the steps to follow when building a
 program to use these routines. The description uses routines that change
 stdscr, but the same concepts work with any window when using the w form
 of the routine as described in "Function Names" in topic 9.3.5. See AIX
 Operating System Technical Reference for complete descriptions of these
 library routines, and their w forms.

 Subtopics
 9.4.1 Setting Up the Environment
 9.4.2 Writing to a Window
 9.4.3 Getting Input from the Terminal
 9.4.4 Controlling the Screen

Programming Tools and Interfaces
Using the Library Routines

¦ Copyright IBM Corp. 1985, 1991
9.4 - 1

 9.4.1 Setting Up the Environment

 To use these routines, the program must set up the operating conditions
 for the program. Perform the following actions in the program, if they
 apply, in the order that they appear in the following procedure:

 1. Perform all necessary actions to load the program and make sure that
 it is operating successfully.

 2. To change the defined size of the terminal, set the variables LINES
 and COLS to new values.

 3. Use the routine initscr to get information about terminal
 characteristics, and to allocate memory for stdscr and curscr. Call
 initscr before calling any routines that affect windows. If the
 program uses a window routine before initscr, the program will not
 run.

 4. Check the value that initscr returns to see if the screen setup was
 successful. If this value is 0 (FALSE or ERR), then initscr could not
 get enough memory for the needed windows.

 5. Use any needed terminal status changing routine, such as nl or crmode.

 6. Create any new windows with the newwin or subwin routine.

 7. Create panels using ecbpls, ecbpns, ecdvpl or ecdfpl.

 8. Define or change the characteristics of the windows as needed. For
 example, the routine scrollok allows the window to scroll, or the
 routine leaveok leaves the cursor at the position of the last change.

 The program can now work with the windows that it has defined. When the
 program is done, use the routine endwin to clean up before exiting the
 program. This routine restores terminal modes to what they were when the
 program first started.

Programming Tools and Interfaces
Setting Up the Environment

¦ Copyright IBM Corp. 1985, 1991
9.4.1 - 1

 9.4.2 Writing to a Window

 Use the following functions to change the contents of a window. Refer to
 AIX Operating System Technical Reference for complete information about
 each routine.

 Routine Description

 addch(c)
 Adds the character c on the window at the current (line, col)
 coordinates.

 waddfld (win, string, length, numlines, numcols, mode, xc)
 Adds a string to the window within a specified area (field)
 starting at the current coordinates.

 addstr(str)
 Adds the string pointed to by str on the window at the current
 (line, col) coordinates.

 box(win, vert, hor)
 Draws a box around the window using vert as the character for
 drawing the vertical sides, and hor for drawing the horizontal
 lines. See also fullbox and cbox.

 cbox(win)
 Draws a box around the window using the box characters defined
 in /usr/lib/terminfo (BX[]). If no box characters are defined,
 it uses or for vertical lines, - for horizontal lines, and + for
 corners. See also box and fullbox.

 chgat(num_chars, mode)
 Changes the attributes of the next num_chars characters,
 starting at the current (line, col) coordinates to the
 attribute(s) specified by mode (one or more of the attributes
 defined in "Display Attributes" in topic 9.6). See also pchgat.

 clear ()
 Resets the entire window to blanks.

 clearok(scr, boolf)
 Sets the clear flag for the screen scr to the value of boolf.

 clrtobot ()
 Clears the window from the current (line, col) coordinates to
 the bottom.

 clrtoeol ()
 Clears the window from the current (line, col) coordinates to
 the end of the line.

 colorend ()
 Returns the terminal to normal attributes following a colorout
 call.

 colorout(mode)
 Sets the current standout bit pattern (_csbp in the window
 structure) to the value of mode (one or more of the attributes
 defined in "Display Attributes" in topic 9.6) and turns on
 _STANDOUT. All characters following this call are displayed

Programming Tools and Interfaces
Writing to a Window

¦ Copyright IBM Corp. 1985, 1991
9.4.2 - 1

 with mode as the attribute. Multiple attributes are set by
 OR-ing them together.

 delch ()
 Deletes the character at the current (line, col) coordinates.

 Routine Description

 deleteln ()
 Deletes the current line.

 ecactp (pane, boolt)
 Specifies the active pane.

 ecshpl (panel)
 Shows a specified panel by bringing it to the top of the stack
 of panels.

 ecrfpl (panel)
 Refreshes the panel on the display.

 ecrfpn (pane)
 Refreshes the pane on the display.

 ecrmpl (panel)
 Removes a panel from the display.

 ecscpn (pane, numlines, numcols)
 Scrolls a specified pane.

 erase ()
 Erases the window to blanks without setting the clear flag. See
 also perase.

 fullbox(win, vert, hor, topl, topr, botl, botr)
 Draws a box around the window using vert as the character for
 vertical sides, hor for horizontal, and topl, topr, botl and
 botr as the corner characters. See also box and cbox.

 insch(c)
 Inserts character c at the current (line, col) coordinates.

 insertln ()
 Inserts a line above the current line.

 move(line, col)
 Changes the current (line, col) coordinates of the window to
 (line, col).

 overlay(win1, win2)
 Overlays win1 on win2. Windows need not be the same size.

 overwrite(win1, win2)
 Overwrites win1 on win2. Windows need not be the same size.

 printw(fmt, arg1, arg2, ...)
 Performs a printf on the window starting at the current (line,
 col) coordinates.

 refresh ()

Programming Tools and Interfaces
Writing to a Window

¦ Copyright IBM Corp. 1985, 1991
9.4.2 - 2

 Writes the contents of the specified window to the terminal.

 standend ()
 Stops putting characters onto win in standout mode.

 standout ()
 Starts putting characters onto win in standout mode.

 Use the refresh routine to transfer the contents of the current window to
 the screen after all changes to the window are complete. The refresh
 routine does not rewrite any part of the window that has not changed since
 the last refresh call. To force the whole window to be rewritten, use the
 touchwin routine before the refresh routine. Also use ecrfpn to refresh a
 pane, and ecrfpl to refresh a panel.

Programming Tools and Interfaces
Writing to a Window

¦ Copyright IBM Corp. 1985, 1991
9.4.2 - 3

 9.4.3 Getting Input from the Terminal

 Input is the complementary function to output. The screen package needs
 to know what is on the terminal at all times. Therefore, if a program
 echoes input characters, the terminal must be in a mode that passes
 characters immediately to the program, rather than waiting for a carriage
 return to send input to the program. The getch routine sets the terminal
 to the character input mode and then reads in the character.

 Use the following routines for input from the terminal:

 Routine Description

 crmode ()
 Sets the terminal to allow character by character input and not
 wait for a carriage return to send input to the process.

 nocrmode ()
 Sets the terminal to wait for a carrier return to send input to
 the process.

 echo ()
 Sets the terminal to echo characters.

 noecho ()
 Sets the terminal to not echo characters.

 ecflin (pane, firstline, firstcol, numlines, numcols, pat, xc, buf, mask)
 Gets input from the screen as long as the cursor is in a
 specified area (field) of the screen.

 ecpnin (pane, boolt, xc)
 Gets input from the screen in a specified pane, and scrolls the
 pane as needed to keep the cursor in the field.

 extended ()
 Controls international character support input processing.

 getch ()
 Gets a character from the terminal and (if necessary) echoes it
 on the window.

 getstr(str)
 Gets a string through the window and puts it in the location
 pointed to by str. The location must be large enough to hold
 the string. The string is terminated by \n (new-line).

 keypad (boolf)
 Controls the mapping of input from the keyboard. See
 "Controlling Input with the keypad, extended, and trackloc
 Routines" in topic 9.7.1 for more information.

 raw ()
 Sets the terminal to raw mode.

 noraw ()
 Resets the terminal from raw mode.

 scanw(fmt, arg1, arg2, ...)
 Performs a scanf through the window using fmt.

Programming Tools and Interfaces
Getting Input from the Terminal

¦ Copyright IBM Corp. 1985, 1991
9.4.3 - 1

 9.4.4 Controlling the Screen

 Use the following library routines to control and manipulate the windows,
 panes, and panels on the screen.

 Routine Description

 delwin(win)
 Deletes the window and frees the resources assigned to the
 window.

 ecadpn (pane, win)
 Adds the specified window to the list of windows that can be
 displayed in a pane, but does not display it.

 ecaspn (pane, win)
 Specifies a window to be displayed in the specified pane, but
 requires a refresh call to display it.

 ecbpls (numlines, numcols, firstline, firstcol, title, divdim,
 border,pane)
 Builds a panel structure.

 ecbpns (numlines, numcols, ln, ld, divdim, ds, du, border, lh, lv)
 Builds a pane structure.

 ecdfpl (panel, boolf)
 Creates WINDOW structures to define a panel.

 ecdppn (pane, oldwin, newwin)
 Removes the specified window from the list of windows that can
 be displayed in the pane.

 ecdspl (panel)
 Returns all structures associated with a panel to the storage
 pool, including structures for panes linked to the panel.

 ecdvpl (panel)
 Divides a panel into panes. All panes must be defined, and be
 linked to the panel.

 ecrlpl (panel)
 Returns structures associated with a panel to the storage pool,
 but not those that define the panel or the panes linked to the
 panel.

 endwin ()
 Restores the terminal to the state it was before initscr was
 called. Always use endwin before exiting.

 gettmode ()
 Gets the information about the terminal. This routine is called
 by initscr.

 getyx(win, line, col)
 Puts the current (line, col) coordinates of win in the variables
 line and col.

 inch ()
 Returns the character at the current (line, col) coordinates on

Programming Tools and Interfaces
Controlling the Screen

¦ Copyright IBM Corp. 1985, 1991
9.4.4 - 1

 the specified window.

 initscr ()
 Initializes the screen routines. Call this routine before using
 any of the screen routines. Use the endwin before exiting the
 screen routines.

 Routine Description

 leaveok(win, boolf)
 Sets the boolean flag _leave to the value specified by boolf.
 This flag indicates that the cursor should be positioned after
 the last change.

 longname ()
 Return the long (full) name of the terminal described by the
 terminfo entry.

 mvcur(lastline, lastcol, newline, newcol)
 Moves the terminal cursor from (lastline, lastcol) to (newline,
 newcol).

 Note: Each window and the terminal have a cursor. The terminal
 cursor becomes the cursor on the active window or pane.

 mvwin(win, line, col)
 Moves the home position of the window win from its current
 starting coordinates to (line, col).

 newview(orig_win, num_lines, num_cols)
 Creates a new window that is num_lines lines and num_cols
 columns. The window is a viewport of the orig_win starting at
 the current (line, col) coordinates of orig_win.

 newwin(lines, cols, begin_line, begin_col)
 Creates a new window with lines lines and cols columns starting
 at position (begin_line, begin_col).

 nl ()
 Sets new-line mode so that the system starts changing return
 characters to linefeed characters.

 nonl ()
 Resets new-line mode so that the system does not change return
 characters. This setting helps the refresh routine perform
 optimization.

 resetty (boolf)
 Restores the tty characteristic flags to what savetty stored.

 savetty ()
 Saves the current tty characteristic flags.

 scroll(win)
 Scrolls the window upward one line.

 scrollok(win, boolf)
 Sets the scroll flag for the given window to the value specified
 by boolf. A value of FALSE (disable scrolling) is the default
 setting.

Programming Tools and Interfaces
Controlling the Screen

¦ Copyright IBM Corp. 1985, 1991
9.4.4 - 2

 setterm(name)
 Sets the terminal characteristics to be those of the terminal
 name name.

 subwin(win, lines, cols, begin_line, begin_col)
 Creates a new window with lines lines and cols columns starting
 at position (begin_line, begin_col) in the window win.

 touchwin(win)
 Forces the refresh routine to write all of the specified window,
 instead of just the parts that have changed.

 trackloc (boolf)
 Controls the tracking of the locator cursor.

 Routine Description

 tstp ()
 When using the tty driver, this function saves the current tty
 state and then puts the process to sleep. When the process is
 started again, the process restores the tty state and then calls
 wrefresh(curscr) to redraw the screen. The initscr routine sets
 the signal SIGTSTP to trap to this routine.

 unctrl(ch)
 Returns a string which is a representation of ch. To use
 unctrl, put the statement:

 #include <cur04.h>

 in the program file.

 vscroll(view_win, deltaline, deltacol)
 Scrolls the viewport window (see newview) down deltaline lines
 and right deltacol columns. If the numbers are negative, the
 directions are up and left, respectively.

Programming Tools and Interfaces
Controlling the Screen

¦ Copyright IBM Corp. 1985, 1991
9.4.4 - 3

 9.5 Routines for Panels and Panes

 The Extended curses library contains routines to help create a screen
 appearance similar to that used for Usability Services. The following
 paragraphs describe the concept of the panel and pane interface, and list
 the routines for creating a panel and pane interface. Refer to AIX
 Operating System Technical Reference for detailed information about each
 routine.

 Subtopics
 9.5.1 Defining Panels and Panes
 9.5.2 Creating Panels and Panes

Programming Tools and Interfaces
Routines for Panels and Panes

¦ Copyright IBM Corp. 1985, 1991
9.5 - 1

 9.5.1 Defining Panels and Panes

 To define a panel, provide the following information about the panel:

 � The size of the panel as it appears on the displa

 � The location on the display of the upper left corner of the pane

 � Whether the panel is to have a border or no

 � How the panel is to be divided into panes

 In addition, provide the following information for each pane within the
 panel:

 � The size of the presentation space associated with the pan

 � The relative size of the pane within the pane

 � Whether the pane is to have a borde

 � If and how the pane is to be further divided into smaller panes

 To divide panels and panes into smaller panes, follow a few simple rules.
 These rules ensure that a program can access all areas on the panel or
 pane that it creates:

 � You can divide a panel or pane either horizontally (using a horizonta
 dividing line) or vertically (using a vertical dividing line)

 � Panes created by a horizontal division must be linked together fro
 top to bottom

 � Panes created by a vertical division must be linked together from lef
 to right

 � Panes that are divided again must be linked to the first pane of it
 sub-panes. The original pane in this case is not a part of the
 presented panel, but it is needed to define the structure of the panel

 � Panes created by a horizontal division have a fixed horizonta
 dimension that is the same as its parent pane

 � Panes created by a vertical division have a fixed vertical dimensio
 that is the same as its parent pane

 � Specify the variable dimension for a pane as being in one of thre
 categories:

 Fixed For a fixed pane, specify the number of rows or
 columns, including any border, to assign to the pane.

 Fractional For a fractional pane, specify the percentage of the
 available space to assign to the pane.

 Floating For a floating pane, do not specify a size. The
 floating pane shares the available space equally with
 any other floating panes that the program creates.

 The linkage of the panes forms a tree structure. The root of the tree is

Programming Tools and Interfaces
Defining Panels and Panes

¦ Copyright IBM Corp. 1985, 1991
9.5.1 - 1

 a panel description. All other elements in the tree are pane
 descriptions.

Programming Tools and Interfaces
Defining Panels and Panes

¦ Copyright IBM Corp. 1985, 1991
9.5.1 - 2

 9.5.2 Creating Panels and Panes

 To create a panel that looks like the outline shown in Figure 9-3, perform
 the following steps (following the rules for dividing panels and panes) as
 shown in Figure 9-4.

 1. Define panel P using the ecbpls routine with a link to pane A.

 2. Divide the panel (P) with two horizontal splits into three panes. Use
 the ecbpns routine to define the three panes with the following links:

 A No links
 B Linked to A and D
 C Linked to B and F

 3. Divide pane B with a single vertical split into two panes. Use the
 ecbpns routine to define the two panes with the following links:

 D No links
 E Linked to D

 4. Divide pane C with two vertical splits into three panes. Use the
 ecbpns routine to define the three panes with the following links:

 F No links
 G Linked to F
 H Linked to G

 Although the program must create panes B and C to get the smaller panes,
 those two panes do not appear as panes in the final display.

 Figure 9-5 shows how the panel and pane descriptions for the final
 structure are linked. Horizontal lines show the links within a pane;
 vertical lines show links to the parent panel or pane.

 The program in Figure 9-6 creates the panel shown in Figure 9-3.

 --

 +-------------------+ +
 ¦ ¦ ¦
 ¦ A ¦ ¦
 ¦ ¦ ¦
 +-------------------¦ ¦
 ¦ ¦ ¦ + ¦
 ¦ D ¦ E ¦ +-B ¦
 ¦ ¦ ¦ + +-P
 +-------------------¦ ¦
 ¦ ¦ ¦ ¦ + ¦
 ¦ ¦ ¦ ¦ ¦ ¦
 ¦ F ¦ G ¦ H ¦ +-C ¦
 ¦ ¦ ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ + ¦
 +-------------------+ +

 --
 Figure 9-3. Example Panel Final Appearance

 --

Programming Tools and Interfaces
Creating Panels and Panes

¦ Copyright IBM Corp. 1985, 1991
9.5.2 - 1

 --
 Figure 9-4. Creating Panes in the Panel

 --

 --
 Figure 9-5. Links in the Panel and Pane Structure

 --

 #include <cur01.h>
 #include <cur05.h>

 main()

 {

Programming Tools and Interfaces
Creating Panels and Panes

¦ Copyright IBM Corp. 1985, 1991
9.5.2 - 2

 PANE *A, *B, *C, *D, *E, *F, *G, *H ;
 PANEL *P ;

 initscr () ;

 A = ecbpns (24, 80, NULL, NULL, 0, 2500, Pdivszp, Pbordry, NULL, NULL);

 D = ecbpns (24, 80, NULL, NULL, 0, 0, Pdivszf, Pbordry, NULL, NULL);
 E = ecbpns (24, 80, D, NULL, 0, 0, Pdivszf, Pbordry, NULL, NULL);

 B = ecbpns (24, 80, A, D, Pdivtyh, 3000, Pdivszp, Pbordry, NULL, NULL);

 F = ecbpns (24, 80, NULL, NULL, 0, 0, Pdivszf, Pbordry, NULL, NULL);
 G = ecbpns (24, 80, F, NULL, 0, 5000, Pdivszp, Pbordry, NULL, NULL);
 H = ecbpns (24, 80, G, NULL, 0, 3000, Pdivszp, Pbordry, NULL, NULL);

 C = ecbpns (24, 80, B, F, Pdivtyh, 0, Pdivszf, Pbordry, NULL, NULL);

 P = ecbpls (24, 80, 0, 0, NULL, Pdivtyv, Pbordry, A);

 ecdvpl (P);
 ecdfpl (P, FALSE);
 ecshpl (P);
 ecrfpl (P);

 endwin();
 } /* end main program */

 --
 Figure 9-6. Program to Create Example Panel

Programming Tools and Interfaces
Creating Panels and Panes

¦ Copyright IBM Corp. 1985, 1991
9.5.2 - 3

 9.6 Display Attributes

 Use the color and display characteristics defined in Figure 9-7. These
 names are external variables that define the attributes that a program can
 use on the current terminal. The values of these variables depend on the
 capabilities of the current terminal and the priorities that you assign to
 the attributes. Change the values of these variables with the sel_attr
 routine as explained in "Changing the Defined Attributes" in topic 9.6.1.

 The characteristics that a program selects for the terminal are loaded
 into the attribute variable (of data type ATTR) associated with the data
 being displayed. Select as many of the attributes as needed, but those
 selected are packed into the attribute variable (of data type ATTR) in the
 following order:

 1. REVERSE,
 2. INVISIBLE,
 3. F_WHITE,
 4. F_RED,
 5. F_BLUE,
 6. F_GREEN,
 7. F_BROWN,
 8. F_MAGENTA,
 9. F_CYAN,
 10. F_BLACK,
 11. B_BLACK,
 12. B_RED,
 13. B_BLUE,
 14. B_GREEN,
 15. B_BROWN,
 16. B_MAGENTA,
 17. B_CYAN,
 18. B_WHITE,
 19. BOLD,
 20. UNDERSCORE, (only works with a terminal emulating an ega terminal)
 21. BLINK,
 22. DIM, (only works with a terminal emulating an ega terminal)
 23. STANDOUT,
 24. PROTECTED, (not supported on all terminal types)
 25. FONT0, (not supported on all terminal types)
 26. FONT1, (not supported on all terminal types)
 27. FONT2, (not supported on all terminal types)
 28. FONT3, (not supported on all terminal types)
 29. FONT4, (not supported on all terminal types)
 30. FONT5, (not supported on all terminal types)
 31. FONT6, (not supported on all terminal types)
 32. FONT7, (not supported on all terminal types)
 33. NULL.

 To change the order, see "Changing the Defined Attributes" in topic 9.6.1.
 Once the attribute variable (of data type ATTR) is full, the routines
 ignore the remaining lower priority attributes. If an attribute does not
 work with the current display, the routines ignore that attribute.
 Therefore, you can specify color attributes and still be able to use the
 program with a monochrome display. Figure 9-7 defines the external
 variable names that the routines use to set the display attributes.

 Figure 9-7. Display Attributes
 Name Attribute

Programming Tools and Interfaces
Display Attributes

¦ Copyright IBM Corp. 1985, 1991
9.6 - 1

 UNDERSCORE Display characters with underline. (Only works with a
 terminal emulating an ega terminal).
 REVERSE Display characters in reverse video.
 NORMAL Display characters without highlighting (return to
 normal).
 INVISIBLE Do not display characters.
 STANDOUT Display characters in high intensity (can be used with
 other attribute colors). On many terminals, this is
 the same as REVERSE.
 BOLD Display characters in bold font (or high intensity on
 some terminals).
 BLINK Display blinking characters (can be used with other
 attribute colors).
 DIM Display characters in reduced intensity. (Only works
 with a terminal emulating an ega terminal).
 PROTECTED Protected display field. (This command is not
 supported on all terminal types.)
 F_BLACK Set foreground color to black.
 F_BLUE Set foreground color to blue.
 F_GREEN Set foreground color to green.
 F_CYAN Set foreground color to cyan.
 F_RED Set foreground color to red.
 F_MAGENTA Set foreground color to magenta.
 F_BROWN Set foreground color to brown.
 F_WHITE Set foreground color to white.
 B_BLACK Set background color to black.
 B_BLUE Set background color to blue.
 B_GREEN Set background color to green.
 B_CYAN Set background color to cyan.
 B_RED Set background color to red.
 B_MAGENTA Set background color to magenta.
 B_BROWN Set background color to brown.
 B_WHITE Set background color to white.
 FONT0 Select defined character font 0.
 FONT1 Select defined character font 1.
 FONT2 Select defined character font 2.
 FONT3 Select defined character font 3.
 FONT4 Select defined character font 4.
 FONT5 Select defined character font 5.
 FONT6 Select defined character font 6.
 FONT7 Select defined character font 7.

 Subtopics
 9.6.1 Changing the Defined Attributes
 9.6.2 Changing Screen Attributes

Programming Tools and Interfaces
Display Attributes

¦ Copyright IBM Corp. 1985, 1991
9.6 - 2

 9.6.1 Changing the Defined Attributes

 To change the characteristics assigned to the external variables listed in
 Figure 9-7 in topic 9.6, use the sel_attr routine. This routine uses a
 set of defined constants contained in the header file cur03. To use this
 routine, put the following statement at the beginning of the program file:

 #include <cur03.h>

 The file cur03.h defines the following constants:

 _dNORMAL
 _dREVERSE
 _dBOLD
 _dBLINK
 _dUNDERSCORE (only works with a terminal emulating an ega terminal)
 _dDIM (only works with a terminal emulating an ega terminal)
 _dINVISIBLE
 _dPROTECTED (not supported on all terminal types)
 _dSTANDOUT
 _dF_BLACK
 _dF_RED
 _dF_GREEN
 _dF_BROWN
 _dF_BLUE
 _dF_MAGENTA
 _dF_CYAN
 _dF_WHITE
 _dB_BLACK
 _dB_RED
 _dB_GREEN
 _dB_BROWN
 _dB_BLUE
 _dB_MAGENTA
 _dB_CYAN
 _dB_WHITE
 _dFONT0
 _dFONT1
 _dFONT2
 _dFONT3
 _dFONT4
 _dFONT5
 _dFONT6
 _dFONT7

 These constants are only valid when using the sel_attr routine. They
 cannot be used with any other routine.

Programming Tools and Interfaces
Changing the Defined Attributes

¦ Copyright IBM Corp. 1985, 1991
9.6.1 - 1

 9.6.2 Changing Screen Attributes

 The code fragment in Figure 9-8 shows how to use these constants to change
 the default set of attributes. Note that the _dDIM and _dUNDERSCORE
 commands only work with terminals emulating an ega terminal.

 --

 #include <cur00.h>
 #include <cur03.h>

 int attrs[] =
 {
 _dBOLD, _dBLINK,
 _dF_WHITE, _dF_RED, _dF_BLUE, _dF_GREEN,
 _dF_BROWN, _dF_MAGENTA, _dF_CYAN, _dF_BLACK,
 _dB_BLACK, _dB_RED, _dB_BLUE, _dB_GREEN,
 _dB_BROWN, _dB_MAGENTA, _dB_CYAN, _dB_WHITE,
 _dREVERSE, _dINVISIBLE, _dDIM, _dUNDERSCORE,
 NULL
 };

 main()
 {

 sel_attr(attrs);
 initscr();
 if(REVERSE == NORMAL) REVERSE = F_BLACK | B_WHITE;
 if(INVISIBLE == NORMAL) INVISIBLE = F_BLACK | B_BLACK;
 if(DIM == NORMAL) DIM = F_BLACK | BOLD;
 if(UNDERSCORE == NORMAL) UNDERSCORE = F_WHITE | B_RED;
 STANDOUT = REVERSE;

 <rest of program>

 endwin();
 } /* end main */

 --
 Figure 9-8. Changing Screen Attributes Example Program

 The routines define 16 bits of unique attribute information. Selecting
 foreground color, background color or font requires either 1, 2 or 3 bits
 depending upon the number of colors or fonts in the list: 1 bit for 2 or
 fewer, 2 bits for 3 or 4, and 3 bits for 5 to 8. Each character attribute
 takes 1 bit. However, the attribute names passed to wcolorout are
 variables, so that you can make combinations from the other attributes as
 shown in the last part of the previous example. If a requested attribute
 (that is not the terminal default) is equal to NORMAL, then it is either
 not supported by the terminal, or there is not enough space in the
 attribute variable (of data type ATTR) for its mask.

Programming Tools and Interfaces
Changing Screen Attributes

¦ Copyright IBM Corp. 1985, 1991
9.6.2 - 1

 9.7 Using Other Features

 Subtopics
 9.7.1 Controlling Input with the keypad, extended, and trackloc Routines
 9.7.2 Scrolling Windows
 9.7.3 Improving Performance

Programming Tools and Interfaces
Using Other Features

¦ Copyright IBM Corp. 1985, 1991
9.7 - 1

 9.7.1 Controlling Input with the keypad, extended, and trackloc Routines

 The keypad routine allows a program to recognize control sequences in the
 input without searching the input or introducing device dependencies. If
 keypad is active, it scans all input data for control sequences. If it
 finds a control sequence, it returns the associated code to the program
 instead of the actual control sequence. The control codes are shown in
 Figure 9-9. These codes are defined in the file cur02.h with values
 greater than 0x100.

 To get international character support processing on input, extended must
 be active. If extended is turned off, shift codes and data codes input
 separately.

 To get tracking of the locator cursor on the screen, trackloc must be
 active. If trackloc is turned off, the application has to handle the
 tracking of the locator cursor. For information about locator input, see
 AIX Operating System Technical Reference.

 Figure 9-9. Control Codes
 Name Description

 KEY_NOKEY No keyboard data and no delay on
 KEY_BREAK Break
 KEY_DOWN Cursor down
 KEY_UP Cursor up
 KEY_LEFT Cursor left
 KEY_RIGHT Cursor right
 KEY_HOME Home - top left
 KEY_BACKSPACE Backspace
 KEY_DL Delete line
 KEY_IL Insert line
 KEY_DC Delete character
 KEY_IC Insert character mode start
 KEY_EIC Exit insert character mode
 KEY_CLEAR Clear screen
 KEY_EOS Clear to end of screen
 KEY_EOL Clear to end of line
 KEY_SF Scroll forward
 KEY_SR Scroll backward (reverse)
 KEY_NPAGE Next page
 KEY_PPAGE Previous page
 KEY_STAB Set tab stop
 KEY_CTAB Clear tab stop
 KEY_CATAB Clear all tab stops
 KEY_ENTER Enter key
 KEY_SRESET Soft reset key
 KEY_RESET Hard reset key
 KEY_PRINT Print or copy
 KEY_LL Lower left (last line)
 KEY_A1 Pad upper left
 KEY_A3 Pad upper right
 KEY_B2 Pad center
 KEY_C1 Pad lower left
 KEY_C3 Pad lower right
 KEY_DO DO key
 KEY_QUIT QUIT key
 KEY_CMD Command key
 KEY_PCMD Previous command key
 KEY_NPN Next pane key

Programming Tools and Interfaces
Controlling Input with the keypad, extended, and trackloc Routines

¦ Copyright IBM Corp. 1985, 1991
9.7.1 - 1

 KEY_PPN Previous pane key
 KEY_CPN Command pane key
 KEY_END End key
 KEY_HLP Help key
 KEY_SEL Select key
 KEY_SCR Scroll right key
 KEY_SCL Scroll left key
 KEY_TAB Tab key
 KEY_BTAB Back tab key
 KEY_NEWL New-line key
 KEY_F0 Function key - 128 values
 KEY_F(n) Not used
 KEY_ESC1 Added to the ending character code for ESC
 sequences in the form ESC c with c in the range
 0x30 - 0x7f. The value sent is in the range 0x200
 to 0x24f.
 KEY_ESC2 Added to the ending character code for ESC
 sequences in the form ESC [s c with c in the range
 0x40 - 0x7f. The value sent is in the range 0x250
 to 0x28f.

 To use the control sequences in a program, first use a call to the keypad
 routine:

 keypad(TRUE);

Programming Tools and Interfaces
Controlling Input with the keypad, extended, and trackloc Routines

¦ Copyright IBM Corp. 1985, 1991
9.7.1 - 2

 9.7.2 Scrolling Windows

 If a program defines a window with scrollok, scrolling is allowed for that
 window. When the program writes a character to the lower right corner of
 the window (or adds \n to the last row of the window), the routines
 automatically call the scroll routine.

 If a program does not define the window with scrollok, scrolling is not
 allowed for that window. When the program writes a character to the lower
 right corner of the window (or adds \n to the last row of the window), the
 routines reset the current col coordinate to zero (beginning of line) and
 the window does not scroll.

 If a window includes the lower right corner of the terminal screen, the
 flag byte bit, _SCROLLWIN, in the WINDOW structure for that window is set.
 This bit indicates that if a character is written to the lower right
 corner of the window, the terminal (not the routines) inserts a blank line
 at the bottom of the screen (scrolls) to make room for more information.
 To avoid this hardware scroll, the routines operate differently for a
 window that includes the lower right corner of the terminal screen and is
 not defined with scrollok. When a program writes a character to the lower
 right corner of such a window (and screen), the character is added to the
 data array for the window but the character is not written to the window
 when the window is refreshed.

 To move a window to the lower right corner, use the mvwin routine. The
 _SCROLLWIN flag bit for that window is not automatically set. However,
 the wrefresh routine handles that window as if the _SCROLLWIN flag bit
 were set.

Programming Tools and Interfaces
Scrolling Windows

¦ Copyright IBM Corp. 1985, 1991
9.7.2 - 1

 9.7.3 Improving Performance

 To speed up output, create an output buffer using statements similar to
 the following program fragment:

 #include <stdio.h>

 char obuf[BUFSIZ];

 main()
 {
 setbuf (stdout, obuf);
 .
 .
 .
 /* rest of program */
 }

Programming Tools and Interfaces
Improving Performance

¦ Copyright IBM Corp. 1985, 1991
9.7.3 - 1

 9.8 Example Program

 Figure 9-10 shows the use of some of the routines to create a series of
 displays on the screen. Compile and run the program to see the effects of
 the Extended curses functions. To compile the example program, use the
 following command:

 cc twinkle.c -lcur -lcurses

 --

 #include <cur00.h>
 #include <signal.h>

 #define NCOLS 80
 #define NLINES 24
 #define MAXPATTERNS 11

 struct locs
 {
 char y, x;
 };

 typedef struct locs LOCS;

 LOCS layout[NCOLS * NLINES]; /* current board layout */

 int pattern, /* current pattern number */
 numstars; /* numbers of stars in ptern */

 main()
 {
 char *getenv();
 int die();

 srand(getpid()); /* initialize random sequence */
 initscr();
 signal(SIGINT, die);
 noecho();
 leaveok(stdscr, TRUE);
 scrollok(stdscr, FALSE);

 for(;;)
 {
 makeboard(); /* make the board setup */
 puton('*'); /* put on '*'s */
 system("sleep 2");
 erase();
 refresh();
 }
 }

 die()
 {
 signal(SIGINT, SIG_IGN);
 mvcur(LINES/2, COLS/2, 0, 0);

Programming Tools and Interfaces
Example Program

¦ Copyright IBM Corp. 1985, 1991
9.8 - 1

 wclear(curscr);
 wrefresh(curscr);
 endwin();
 exit(0);
 }
 makeboard()
 {
 reg int y, x;
 reg LOCS *lp;
 pattern = rand() % MAXPATTERNS;
 lp = layout;
 for(y = 0; y < NLINES; y++)
 {
 for(x = 0; x < NCOLS; x++)
 {
 if(ison(y, x))
 {
 lp -> y = y;
 lp++ -> x = x;
 }
 }
 }
 numstars = lp - layout;
 }
 ison(y, x)

 reg int y, x;

 {
 switch(pattern)
 {
 /*
 ** Alternating lines:
 */
 case 0:
 return !(y & 01);
 /*
 ** Box:
 */

 case 1:
 if(y < 3 || y >= NLINES - 3)
 return TRUE;
 return(x < 4 || x >= NCOLS - 4);
 /*
 ** Cross:
 */

 case 2:
 return((x + y) & 01);
 /*
 ** Bar across center:
 */

 case 3:
 return(y >= 9 && y <= 15);
 /*
 ** Alternating columns:
 */

Programming Tools and Interfaces
Example Program

¦ Copyright IBM Corp. 1985, 1991
9.8 - 2

 case 4:
 return !(x & 02);
 /*
 ** Bar down center:
 */

 case 5:
 return(x >= 36 && x <= 44);
 /*
 ** Bar across and down center:
 */

 case 6:
 return((y >= 9 && y <= 15) || (x >= 37 && x <= 43));
 /*
 ** Bar across and down center, in a box:
 */

 case 7:
 if(y < 3 || y >= NLINES - 3)
 return TRUE;
 if(x < 4 || x >= NCOLS - 4)
 return TRUE;
 return((y >= 10 && y <= 14) || (x >= 36 && x <= 44));
 /*
 ** Asterisk:
 */

 case 8:
 if(abs(x - y) <= 2 || abs(NLINES - (x + y)) <= 2)
 return TRUE;
 if(abs((NLINES/2) - x) <= 2)
 return TRUE;
 return(abs((NLINES/2) - y) <= 1 && x <= NLINES);
 /*
 ** Ellipse:
 */

 case 9:
 return
 (
 (
 ((float) ((x-40) * (x-40))) / 1521 +
 ((float) ((y-12) * (y-12))) / 121
) <= 1
);
 /* Circle: */

 case 10:
 return
 (
 (
 ((float) ((x-28) * (x-28))) / 729 +
 ((float) ((y-12) * (y-12))) / 121
) <= 1
);
 } /* end of switch(pattern) */
 } /* not reached */

Programming Tools and Interfaces
Example Program

¦ Copyright IBM Corp. 1985, 1991
9.8 - 3

 puton(ch)
 reg char ch;
 {
 reg LOCS *lp;
 reg LOCS *end;
 LOCS temp;
 reg int r;

 end = &layout[numstars];
 for(lp = layout; lp < end; lp++)
 {
 r = rand() % numstars;
 temp = *lp;
 *lp = layout[r];
 layout[r] = temp;
 }
 for(lp = layout; lp < end; lp++)
 {
 mvaddch(lp -> y, lp -> x, (NLSCHAR) ch);
 refresh();
 }
 } /* end of twinkle */

 --
 Figure 9-10. Example of Extended curses Program

Programming Tools and Interfaces
Example Program

¦ Copyright IBM Corp. 1985, 1991
9.8 - 4

 10.0 Chapter 10. Writing Messages and Help

 Subtopics
 10.1 CONTENTS
 10.2 About This Chapter
 10.3 Messages
 10.4 Building a Message Table
 10.5 Using Messages in a Program
 10.6 Using Variable Fields in Message Text
 10.7 Help
 10.8 Building a Help File
 10.9 Using Help in a Program

Programming Tools and Interfaces
Chapter 10. Writing Messages and Help

¦ Copyright IBM Corp. 1985, 1991
10.0 - 1

 10.1 CONTENTS

Programming Tools and Interfaces
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
10.1 - 1

 10.2 About This Chapter

 This chapter explains how to use the operating system services to provide
 both messages and help from a program. It describes the message and help
 text files, how to make them, and how to incorporate them into a program.
 The chapter also describes the format of messages.

Programming Tools and Interfaces
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
10.2 - 1

 10.3 Messages

 A message is information that the program generates to inform the person
 using the program, or /dev/console of conditions in the program. If the
 conditions require steps to recover, the message provides those steps. A
 program can generate two types of messages:

 Immediate message
 The message appears on the screen associated with the program.
 The message is usually in response to something that the person
 using the program did.

 Queued message
 The message appears in the message queue file /qmsg and can only
 be seen by listing or editing the message queue file. When a
 message enters the queue file, a beep tone notifies
 /dev/console. Programs that operate directly with the user
 usually do not produce queued messages. Background processes,
 such as daemons, produce queued messages.

 The operating system provides a set of routines, called message services
 to help create, update and display messages from a program. The routines
 are in the library file /usr/lib/librts.a. The services for generating
 messages include:

 � A standard message format that matches the format of the operatin
 system messages

 � A file containing a template to use to create message

 � Two routines that help to generate either immediate or queued message
 from a program

 � Header files to simplify declarations needed to use message service

 � Variable field symbols in the messages. When message service
 displays the message, it replaces these symbols with values that you
 specify.

 Subtopics
 10.3.1 Message Format

Programming Tools and Interfaces
Messages

¦ Copyright IBM Corp. 1985, 1991
10.3 - 1

 10.3.1 Message Format

 Each of the two types of messages has a different format. When displayed,
 queued messages are in the following format:

 MM/DD HH:mm y z pgm-nnn
 This is a sample queued message.

 Immediate messages have the following format.

 pgm-nnn This is a sample immediate message:
 a. Short line.
 b. This is a long line. Note that
 the message is presented
 as you format it. It is not
 reformatted before being displayed.
 Time = HH:mm. Severity = y. Error Number = z.

 The symbols have the following meaning. See "Using Routines to Display
 Messages" in topic 10.5.2 for a description of the library routines for
 generating messages.

 Figure 10-1. Message Fields
 Field Description

 pgm A 3-character program identifier that is unique to the
 program. To ensure that these characters do not conflict
 with numbers already assigned to system programs, choose
 a number that is larger than 500. You can also use
 alphabetic characters for the program identifier.
 Figure 10-2 shows some of the identifiers that the system
 programs use. To match the style of the system messages,
 choose three digits for the program identifier. Message
 services displays this identifier to help the operator
 know what program generated the message. Message
 services do not use the identifier as an index into the
 messages.

 nnn A 3-digit sequence number for the message within the set
 of messages for the program identifier specified by pgm.
 This number allows looking up a description of the
 message in a book. Message services do not use the
 number.

 text The words that explain the condition associated with the
 message.

 MM/DD The month and day that the message was generated.

 HH:mm Time (24 hour format) that the message was issued. When
 a program generates an immediate message with the msgimed
 function and uses the msgfltim flag, message services
 supplies the time. Message services automatically
 provides the time for queued messages.

 y Severity code is the severity code specified when using
 the message services routines to write the message. If
 you do not specify a severity code, this field does not
 appear.

Programming Tools and Interfaces
Message Format

¦ Copyright IBM Corp. 1985, 1991
10.3.1 - 1

 z Error number is the error code specified when using the
 message services routines to write the message. If you
 do not specify an error code, this field does not appear.

 For example, if the operator makes a mistake when entering the date, the
 program could generate the following message:

 345-007 The system cannot recognize the date that you
 entered. Please enter the date again.

 The optional information (time, severity or error code) does not appear in
 this message because the program did not specify that they be displayed
 when it called for the message. The book for this program should include
 an entry for error number 345-007 that contains information about the
 correct date format, or other information to help correct this problem.

 Figure 10-2. System Identifiers
 ID System Program

 000 Common
 001- 007 Not Available
 008 Operating System Extension Install
 009 - 012 Not Available
 013 Operating System Install and Maintenance
 014 - 020 Not Available
 021 Operating System Trace Points
 022 - 033 Not Available
 040 - 041 Operating System Configuration
 042 - 044 Not Available
 046 Install and Update Services
 047 Not Available
 048 Install and Update Services
 049 - 060 Not Available
 061 Dialog Manager
 062 Application Developers Toolkit
 063 - 068 Not Available
 069 Activity Manager
 070 - 074 Not Available
 075 Hardware Access Support
 076 Base LAN Install
 077 Pascal Compiler
 078 Not Available
 079 Device Drivers - ports
 080 - 081 Not Available
 082 Print I/O Services
 083 - 089 Not Available
 090 Message Services
 091 Tools Application
 092 - 094 Not Available
 095 Operating System
 096 Dialog Definition Statements
 097 Files Application
 098 - 102 Not Available
 103 Operating System
 104 - 105 Not Available
 106 Not Available
 107 Not Available
 108 dumpfmt Command
 109 Error Log

Programming Tools and Interfaces
Message Format

¦ Copyright IBM Corp. 1985, 1991
10.3.1 - 2

 110 Trace
 111 - 499 Not Available
 500 + Available for new programs

Programming Tools and Interfaces
Message Format

¦ Copyright IBM Corp. 1985, 1991
10.3.1 - 3

 10.4 Building a Message Table

 The services of the operating system can help to build a table of messages
 that is separate from the source code of the program. To build the table
 of messages, first get a file containing the standard message format from
 the file system. Then add messages to that file, compile the table of
 messages (using cc), and link the messages with the compiled program
 (object modules) and the messages library /lib/librts.a. This method
 keeps the messages in memory when the program is in memory. Do not use
 this method for long text, such as help (see "Help" in topic 10.7).

 Having a separate table of messages makes it easier to change messages,
 add messages, and translate the messages to another language.

 Perform the following steps to build a message table and incorporate it in
 the program. Refer to the following paragraphs for additional explanation
 for some of the steps:

 1. Copy the example message table file msg07.h into the current
 directory:

 cp /usr/include/msg07.h .

 2. Rename the example file to the name of the message source file. Use a
 .c file extension.

 mv msg07.h mymsgs.c

 3. Replace the name of the table, tablename in the example file, with the
 external name of the table.

 4. Use an editor to add the message definitions and text to the message
 table source file.

 5. Compile the message table and program source files using the cc
 command.

 cc program-files.c mymsgs.c -o myname

 In this command, program-files.c can be any number of C language
 source files each with a .c extension. The resulting executable
 program is in the file myname.

 Subtopics
 10.4.1 Copying the Standard Format File
 10.4.2 Naming the Message Table
 10.4.3 Adding Message Definitions
 10.4.4 Message Index
 10.4.5 Adding Text Insert Definitions

Programming Tools and Interfaces
Building a Message Table

¦ Copyright IBM Corp. 1985, 1991
10.4 - 1

 10.4.1 Copying the Standard Format File

 In the directory /usr/include is a file called msg07.h. This file is an
 ASCII file that contains the framework for building a message table.
 Figure 10-3 shows the major parts of this file.

 --

 /*******************/
 #define TABLE_NAME /***/ tablename /***/
 /*******************/

 #include <msg08.h>
 /* structure declarations */
 /*
 ** ** MESSAGE DEFINITIONS **
 */
 static msg__msg msg_defs[] = {

 0, "345", "007",
 "The system cannot recognize the date that you \n\
 entered. Please enter the date again.",
 /* message 001 */
 } ;
 /*
 ** ** TEXT INSERT DEFINITIONS **
 */
 static msg__ins ins_defs[] = {

 "month", /* insert 001 */
 "day", /* insert 002 */
 "year", /* insert 003 */
 } ;

 #include <msg09.h> /* pointers table */

 --
 Figure 10-3. Content of Message Standard Format File

Programming Tools and Interfaces
Copying the Standard Format File

¦ Copyright IBM Corp. 1985, 1991
10.4.1 - 1

 10.4.2 Naming the Message Table

 The name of the table is the name assigned to it in the first line of the
 table file. The following line defines a table name of xyztab1.

 #define TABLE_NAME xyztab1

 For consistency with system table conventions, use the following
 guidelines when naming the table:

 � The first three characters should be the program identifier xyz in
 the example).

 � The next three characters should be the letters tab to indicate a
 table.

 � The last character should be an identifier to set this table apar
 from other tables in the program (1 in the example).

Programming Tools and Interfaces
Naming the Message Table

¦ Copyright IBM Corp. 1985, 1991
10.4.2 - 1

 10.4.3 Adding Message Definitions

 The message definition is the entry in the message table that describes
 the message. For example, in the previous standard format file, the
 entry:

 0,"345","007",
 "The system cannot recognize the date that you \n\
 entered. Please enter the date again.",

 is a message definition.

 The message definition has the following parts:

 0 The first number should be the index number for the help for the
 message. In the example, the number 0 indicates that help is
 not available for the message. A positive number in this
 position is the index number for help. A negative number in
 this position is the index number for help contained in the
 common help file. This number can only be used by the dialog
 manager.

 program identifier
 The second field (345 in the example) is a 3-character field
 that identifies the program. It must not conflict with
 identifiers already used by the system programs. Figure 10-2 in
 topic 10.3.1 shows the identifiers that the system programs use.
 The identifier is enclosed in quotes.

 message number
 The third field (007 in the example) is a 3-digit field that
 indicates the number of the message within all messages for the
 program identifier. This number helps to find the message in
 the documentation. Message services does not use it.

 message text
 Messages can be any length, but must include \n (new-line)
 characters as appropriate to keep the final output line length,
 including expanded variable fields (see "Using Variable Fields
 in Message Text" in topic 10.6), to no longer than 71
 characters. Message text is enclosed in quotes.

 , A comma that is not enclosed in a set of quotes marks the parts
 and the end of a message definition.

 }; A right brace followed by a semicolon that is not enclosed in a
 set of quotes indicates the end of all message definitions.

Programming Tools and Interfaces
Adding Message Definitions

¦ Copyright IBM Corp. 1985, 1991
10.4.3 - 1

 10.4.4 Message Index

 The message index is the position of the message definition within all
 message definitions in the table. The first definition is number 1; the
 second definition is number 2. The index does not depend on any number in
 the table file, only on the order of the message definitions in the file.
 Therefore, to delete a message definition, replace it with a null
 definition. If you remove a definition without providing a place-holding
 null definition (or a new definition in that position), the index to all
 message definitions that occur later in the file will change.

Programming Tools and Interfaces
Message Index

¦ Copyright IBM Corp. 1985, 1991
10.4.4 - 1

 10.4.5 Adding Text Insert Definitions

 The text insert definition is the entry in the message table that
 describes the fixed text strings to insert into messages in place of the
 symbols @T1, @T2 or @T3. If one or more of these symbols is in the
 message definition, the program can select any text insert string from the
 message table to replace that symbol. The method for doing that is
 described in "Using Variable Fields in Message Text" in topic 10.6.

 The requirements of the text insert definition section of the message
 table are that it:

 � Follows the message definitions sectio

 � Begins with the statement

 static msg__ins ins_defs[] = {

 � Contains a series of text strings that are

 - Enclosed in quotes
 - Separated by commas

 � Ends with a }; (right brace and semicolon).

 The example message table in Figure 10-3 in topic 10.4.1 shows an example
 of the text insert definition section. That example contains the
 following text strings:

 "month",
 "day",
 "year",
 };

Programming Tools and Interfaces
Adding Text Insert Definitions

¦ Copyright IBM Corp. 1985, 1991
10.4.5 - 1

 10.5 Using Messages in a Program

 To use the operating system message services to display messages from a
 message table, the program should:

 1. Include the correct header files in the program.

 2. Pass needed values to message services by setting system external
 variables (see "Using Variable Fields in Message Text" in topic 10.6).

 3. Use the message services routines to generate the messages.

 Subtopics
 10.5.1 Including Header Files
 10.5.2 Using Routines to Display Messages

Programming Tools and Interfaces
Using Messages in a Program

¦ Copyright IBM Corp. 1985, 1991
10.5 - 1

 10.5.1 Including Header Files

 Message services uses the header files shown in Figure 10-4. Include
 these files in the program when using message services. These header
 files are in the directory /usr/include. Display these files (using the
 pg command) to see the exact content.

 Figure 10-4. Header Files
 File Name Function

 msg00.h Contains #include statements for the following main
 header files to make including those files easier:

 � msg01.h
 � msg02.h
 � msg03.h
 � msg04.h
 � msg05.h
 � msg06.h
 � msg08.h

 msg01.h Defines the bits of the flags argument to message
 routines.

 msg02.h Defines severity codes displayed in messages.

 msg03.h Defines origin codes that indicate where the error was
 detected.

 msg04.h Defines error return codes.

 msg05.h Defines a structure for the msgrtrv function when a zero
 value is specified for the nbyte argument.

 msg06.h Defines the external variables that pass values to
 message services.

 msg08.h Defines structures to be used when compiling a message
 table.

Programming Tools and Interfaces
Including Header Files

¦ Copyright IBM Corp. 1985, 1991
10.5.1 - 1

 10.5.2 Using Routines to Display Messages

 After including the needed header files and setting any needed values in
 the message services external variables, use one of the following routines
 to display the message. The message can be either immediate or queued.

 Subtopics
 10.5.2.1 Generating an Immediate Message
 10.5.2.2 Generating a Queued Message

Programming Tools and Interfaces
Using Routines to Display Messages

¦ Copyright IBM Corp. 1985, 1991
10.5.2 - 1

 10.5.2.1 Generating an Immediate Message

 The msgimed routine performs the following functions:

 1. Gets message text from the message table.

 2. Expands standard symbols in the message text.

 3. Outputs the message to either stderr or to a specified file.

 Refer to AIX Operating System Technical Reference for information about
 the format and syntax of this routine.

Programming Tools and Interfaces
Generating an Immediate Message

¦ Copyright IBM Corp. 1985, 1991
10.5.2.1 - 1

 10.5.2.2 Generating a Queued Message

 The msgqued routine performs the following functions:

 1. Gets message text from the message table.

 2. Expands standard symbols in the message text.

 3. Outputs the message to the queued message file /qmsg.

 Note: Queued messages are sent to /qmsg and generate a beep tone at the
 system console. They are not directed at the person using the program.

 Refer to AIX Operating System Technical Reference for information about
 the format and syntax of this routine.

Programming Tools and Interfaces
Generating a Queued Message

¦ Copyright IBM Corp. 1985, 1991
10.5.2.2 - 1

 10.6 Using Variable Fields in Message Text

 A variable field is a standard symbol in the text of the message that is
 replaced with a value when message services displays the message. The
 value can be either a static (unchanging) text string or a new value each
 time, depending on the type of variable field used. The program passes
 values to message services by setting external variables. Use the
 following standard symbols in message definitions:

 Figure 10-5. Standard Symbols
 Symbol Definition

 @I1 Message services replaces this symbol with the character form
 of the integer value in the external variable msgvi1.

 @I2 Message services replaces this symbol with the character form
 of the integer value in the external variable msgvi2.

 @L1 Message services replaces this symbol with the character form
 of the long integer value in the external variable msgvl1.

 @L2 Message services replaces this symbol with the character form
 of the long integer value in the external variable msgvl2.

 @C1 Message services replaces this symbol with the null-terminated
 character string pointed to by the external variable *msgvc1.

 @C2 Message services replaces this symbol with the null-terminated
 character string pointed to by the external variable *msgvc2.

 @C3 Message services replaces this symbol with the null-terminated
 character string pointed to by the external variable *msgvc3.

 @T1 Message services replaces this symbol with the text insert
 (from the text insert definitions section of the message table)
 selected by using the external variable msgvt1 as an index
 value.

 @T2 Message services replaces this symbol with the text insert
 (from the text insert definitions section of the message table)
 selected by using the external variable msgvt2 as an index
 value.

 @T3 Message services replaces this symbol with the text insert
 (from the text insert definitions section of the message table)
 selected by using the external variable msgvt3 as an index
 value.

 Subtopics
 10.6.1 Example of the Integer Symbol
 10.6.2 Example of the Long Integer Symbol
 10.6.3 Example of the Character String Symbol
 10.6.4 Example of Text Insert Symbol

Programming Tools and Interfaces
Using Variable Fields in Message Text

¦ Copyright IBM Corp. 1985, 1991
10.6 - 1

 10.6.1 Example of the Integer Symbol

 If a message definition contains the message:

 "Your value of @I1 is out of range."

 To display the value that the operator entered, assign that value to the
 external variable msgvi1 in the program before calling for the message to
 be displayed.

 Figure 10-6 shows an outline of a program to display that message. In
 this program, if index 3 of xyztab1 contains the message definition of the
 previous example, and the value of val is 14, message services displays
 the following message:

 Your value of 14 is out of range.

 --

 /* Define integer to hold operator input */
 int val;
 /* Define integer for return code */
 int i;
 /* Include required files to use message services */
 #include <msg00.h>

 {
 extern msg__table xyztab1;

 /*
 ** Code that handles input and determines
 ** that the value is out of range.
 */

 /*
 ** Assign bad value to external variable, and
 ** call the routine to display an immediate message
 ** to standard error, using message index 3
 ** and message table, xyztab1.
 */
 msgvi1 = val;
 i = msgimed(MSGFLTAB,&xyztab1,3);
 /*
 ** Rest of program
 */
 }

 --
 Figure 10-6. Example of Integer Symbol Programming

Programming Tools and Interfaces
Example of the Integer Symbol

¦ Copyright IBM Corp. 1985, 1991
10.6.1 - 1

 10.6.2 Example of the Long Integer Symbol

 Inserting a long integer value into a message is the same as inserting an
 integer value, except it uses the external variable msgvl1 to assign a
 value to the symbol @L1, and the variable assigned to the msgvl1 must be
 of type long. With those exceptions, use the example for integer values
 as a framework to use a long integer value.

Programming Tools and Interfaces
Example of the Long Integer Symbol

¦ Copyright IBM Corp. 1985, 1991
10.6.2 - 1

 10.6.3 Example of the Character String Symbol

 If the message definition contains the message:

 "The day that you entered, @C1, is not\n\
 a correct day of the week. Please try again."

 To display the string that the operator entered, assign a pointer to that
 string to the external variable msgvc1 in the program. Then call for the
 message to be displayed. The string must end with a \0 (null character).

 Figure 10-7 shows the outline of a program to display that message. In
 this program, if index 4 of xyztab1 contains the message definition of the
 previous example and the string entered is munday, message services
 displays the following message:

 The day that you entered, munday, is not
 a correct day of the week. Please try again.

 --

 /* Define pointer to operator input. */
 char *inp;
 /* define integer for return code. */
 int i;
 /* Include required files to use message services. */
 #include <msg00.h>

 {
 extern msg__table xyztab1;

 /*
 ** Code that handles input and determines
 ** that the string entered is not correct.
 ** Code sets inp to point to the null
 ** terminated string received from the user.
 */

 /*
 ** Assign pointer inp to external variable, and
 ** call the routine to display an immediate message
 ** to standard error, using message index 4
 ** and message table, xyztab1.
 */
 msgvc1 = inp;
 i = msgimed(MSGFLTAB,&xyztab1,4);

 /*
 rest of program
 */
 }

 --
 Figure 10-7. Example of Character String Symbol Programming

Programming Tools and Interfaces
Example of the Character String Symbol

¦ Copyright IBM Corp. 1985, 1991
10.6.3 - 1

 10.6.4 Example of Text Insert Symbol

 If the message definition contains the message:

 "The @T1 that you entered is not\n\
 a correct @T1. Please try again."

 Use this message to indicate errors in many areas of the program. First
 create a text insert definition section in the message table. See "Adding
 Text Insert Definitions" in topic 10.4.5 for the format of a text insert
 definition section. If the text insert definition section contains the
 following few entries at the beginning of the table:

 "day", /* index 1 */
 "week", /* index 2 */
 "month", /* index 3 */
 "year" /* index 4 */

 you can insert any of the strings day, week, month or year in place of the
 symbol @T1 in the message by setting the external variable msgvt1 to the
 index value (1, 2, 3 or 4) that selects the string to insert. When
 displaying the message, message services looks up the text string in the
 message table and inserts it in place of the symbol @T1.

 Figure 10-8 shows the outline of a program that displays this message. In
 this example, if index 3 of xyztab1 contains the message definition of the
 previous example and the value of i_text is 3, message services displays
 the following message:

 The month that you entered is not
 a correct month. Please try again.

 --

 /* Define integer for return code. */
 int i;
 /* Define integer to select insert text. */
 int i_text;
 /* Include required files to use message services. */
 #include <msg00.h>

 {
 extern msg__table xyztab1;

 /*
 ** Code that handles input and determines
 ** that a field entered is not correct.
 ** Code sets i_text to the index value to
 ** select the name of the field in error.
 */

 /*
 ** Assign i_text to external variable, and
 ** call the routine to display an immediate message
 ** to standard error, using message index 3
 ** and message table, xyztab1.
 */
 msgvt1 = i_text;
 i = msgimed(MSGFLTAB,&xyztab1,3);

Programming Tools and Interfaces
Example of Text Insert Symbol

¦ Copyright IBM Corp. 1985, 1991
10.6.4 - 1

 /*
 rest of program
 */
 }

 --
 Figure 10-8. Example of Text Insert Symbol Programming

Programming Tools and Interfaces
Example of Text Insert Symbol

¦ Copyright IBM Corp. 1985, 1991
10.6.4 - 2

 10.7 Help

 Help is text that explains difficult concepts, quick procedure steps, or
 other information to make it easier to use the program. You determine
 when to display the help from the program, and what information to include
 in the help. Message services provides a way to incorporate help into the
 program while lowering memory usage.

 You can use help in the program with all of the variable symbols used with
 messages, including text inserts. Define text inserts in the same file
 that defines the help text.

 Because help usually contains a lot of text, help is not compiled into the
 program like messages are. Instead, help is in a specially formatted help
 file that is not kept in memory unless it is being used. Overlaying the
 help file in this manner helps lower memory requirements for the program.

 Note: The method for storing and displaying help described in this part
 of the book can also be used for messages that are not kept in memory with
 the program. You can put both help definitions and message definitions in
 the same file.

 Message services provides a routine to help display help from the program.
 The routine is in the library file /usr/lib/librts.a. When using message
 services, link this library file with the program. In addition, two
 programs gettext and puttext help to change or create information in the
 help files. The services include:

 � A routine that displays help from the program

 � Header files to simplify declarations needed to use message services

 � Variable field symbols in the help that message services replaces wit
 values that you specify when it displays the help.

 Subtopics
 10.7.1 Help Format
 10.7.2 File Path Name
 10.7.3 Changing the File Path Name
 10.7.4 Changing the File Path Name for Debugging

Programming Tools and Interfaces
Help

¦ Copyright IBM Corp. 1985, 1991
10.7 - 1

 10.7.1 Help Format

 Choose any format for the help text that fits the program. You can use
 the format described for messages (see "Message Format" in topic 10.3.1),
 you can change that format, or you can define a different format.
 However, follow the format defined for the help file.

Programming Tools and Interfaces
Help Format

¦ Copyright IBM Corp. 1985, 1991
10.7.1 - 1

 10.7.2 File Path Name

 If you do not change the default path, the file that contains the help
 text must have the path name of:

 /usr/lib/msg/program_EN.m

 where the file name parts are:

 program
 A program identifier that is unique.

 _EN.m
 The ending sequence that message services requires of all help
 (and message) files that are not linked with the program.

Programming Tools and Interfaces
File Path Name

¦ Copyright IBM Corp. 1985, 1991
10.7.2 - 1

 10.7.3 Changing the File Path Name

 You can specify an alternative directory to contain the help and message
 file for the program. Use the rules for naming the help file as described
 in "File Path Name" in topic 10.7.2. To specify the alternative
 directory, assign a pointer to the new path name prefix to the external
 variable msgpath in your program. For example:

 msgpath = "/u/myprog/";

 This statement tells message services to look in directory /u/myprog for
 the new help file. Message services looks in the default directory only
 if it cannot find the file in the directory you specify with the msgpath
 variable. If msgpath contains a null value, message services looks only
 in the default directory. To specify the current directory as the
 directory that contains the help file, set the msgpath variable to a
 pointer to a null string.

 The msgpath variable is declared in msg06.h.

Programming Tools and Interfaces
Changing the File Path Name

¦ Copyright IBM Corp. 1985, 1991
10.7.3 - 1

 10.7.4 Changing the File Path Name for Debugging

 You can also specify an alternative path name to use for the help file
 when testing help definitions. An alternative path name allows you to
 test new or changed help definitions without affecting the existing help
 file that is installed on the system. You can also use the alternative
 path name to test a new help file before installing it on the system. Use
 the rules for naming the help file as described in "File Path Name" in
 topic 10.7.2.

 To specify the alternative directory, assign the new path name prefix to
 the environment variable MSGPATH from the command line. For example:

 MSGPATH=/u/mytest/

 assigns the path name prefix /u/mytest/ to the MSGPATH variable. Then,
 export the variable with the export command on the command line:

 export MSGPATH

 This operation tells message services to look in directory /u/mytest for
 the help file. Message services looks in the default directory only if it
 cannot find the file in the directory specified with the MSGPATH variable.

Programming Tools and Interfaces
Changing the File Path Name for Debugging

¦ Copyright IBM Corp. 1985, 1991
10.7.4 - 1

 10.8 Building a Help File

 Message services can help to build a file of help text that is separate
 from the source code of the program. To build the help file, first get a
 file containing the standard help format from the file system. Then add
 help definitions to that file, and, using a program from message services,
 format that file for use as a help file. This method puts the help text
 in a file that message services can read.

 Having a separate help file makes it easier to change the help text, add
 help text, and translate the text to another language.

 Perform the following steps to build a help file and format it for use by
 message services. Descriptions of the commands gettext and puttext are in
 AIX Operating System Commands Reference. Refer to the following for
 additional explanation.

 1. Use the gettext command to create a file containing the input format
 for a help file. This file contains formats to fill in for including
 messages and text inserts, as well as help text, in the help file.
 For example:

 gettext myhelps

 creates a file myhelps that contains the framework for a help file.

 2. Add help text to the proper places in the file.

 3. Use the puttext command to format the help file. For example:

 puttext myhelps myprog_EN.m

 uses the help text in the file myhelps to create the help file
 myprog_EN.m. See "File Path Name" in topic 10.7.2 for information
 about naming the help file.

 Subtopics
 10.8.1 Content of the Help Text File

Programming Tools and Interfaces
Building a Help File

¦ Copyright IBM Corp. 1985, 1991
10.8 - 1

 10.8.1 Content of the Help Text File

 When the gettext command gets a help file format to fill in, the file that
 the command creates contains entries like those in Figure 10-9.

 --

 COMPONENT ID = prgxxx

 (((Start message)))*********************************
 INDEX#:
 COMPSRC:
 MSGSRC:
 DCOMPID:
 DMSGID:
 STATUS:
 HELP#:
 TEXT:

 (((Start insert)))**********************************
 INDEX#:
 COMPSRC:
 MSGSRC:
 DCOMPID:
 DMSGID:
 STATUS:
 TEXT:

 (((Start help)))************************************
 INDEX#:
 COMPSRC:
 MSGSRC:
 DCOMPID:
 DMSGID:
 STATUS:
 TITLE:
 TEXT:

 --
 Figure 10-9. Content of Help Text Format File

 The fields shown in the figure have the following meaning:

 COMPONENT ID = prgxxx
 Replace prgxxx with a 6-character identifier to indicate which
 program uses this help file. Do not use the characters:
 * ? [] and blank.

 (((Start typename)))******************
 This line is a delimiter that starts each new message and must
 be in the format indicated. Replace typename with either
 message, insert or help, as appropriate.

 INDEX#:
 A 3-digit field that indicates the number of the message within
 each type (message, insert or help). Numbers start with 001 at
 the beginning of the definitions for each type. Message
 services uses this index number to locate the text to be
 displayed.

Programming Tools and Interfaces
Content of the Help Text File

¦ Copyright IBM Corp. 1985, 1991
10.8.1 - 1

 COMPSRC:
 Component source - Defines where the text definition for this
 message is located. Enter ====== for in this file.

 MSGSRC:
 Message source - A 3-digit field that defines the index number
 to use to display text for this message. Enter either === to
 indicate the current INDEX#, or a number to get text from a
 different message in this file.

 DCOMPID:
 Component ID - A 3-character field that identifies the program.
 It must not conflict with identifiers already used by the system
 programs.

 DMSGID:
 Message ID - A 3-digit field that indicates the number of the
 message within all messages for the program identifier. This
 number helps to find the message in the documentation. Message
 services does not use it.

 STATUS:
 Status of the message - Enter null to indicate the message is
 not used. Enter current to indicate the message is an active
 message.

 HELP#:
 A 3-digit index number to locate the help text for a message.
 This field is not required. Access this field using the msgrtrv
 call.

 TITLE:
 A character field of up to 79 characters that can provide a
 title for help text displayed on the screen. You can access
 this field only with the msgrtrv call, not with the msghelp
 call.

 TEXT:
 Enter the text for the message, insert or help, formatted as it
 appears on the screen.

 Help text, like immediate messages, can be as long as needed to cover the
 information. Do not include any message ID for help text unless it refers
 to the book supplied with the program. You can also use variable fields
 in the help text. Refer to "Using Variable Fields in Message Text" in
 topic 10.6 for information about using variable fields.

Programming Tools and Interfaces
Content of the Help Text File

¦ Copyright IBM Corp. 1985, 1991
10.8.1 - 2

 10.9 Using Help in a Program

 To use the operating system message services to display help from the help
 file, the program must:

 1. Include the correct header files in the program.

 2. Pass needed values to the message services by setting system external
 variables (see "Using Variable Fields in Message Text" in topic 10.6).

 3. Use the message services routines to display the help text.

 Subtopics
 10.9.1 Including Header Files
 10.9.2 Using Routines to Display Help

Programming Tools and Interfaces
Using Help in a Program

¦ Copyright IBM Corp. 1985, 1991
10.9 - 1

 10.9.1 Including Header Files

 The operating system message services uses header files. Include these
 files in the program when using message services. These header files are
 described in "Including Header Files" in topic 10.5.1.

Programming Tools and Interfaces
Including Header Files

¦ Copyright IBM Corp. 1985, 1991
10.9.1 - 1

 10.9.2 Using Routines to Display Help

 After including the needed header files and setting any needed values in
 the message services external variables, use the following routines to
 generate the help.

 Subtopics
 10.9.2.1 Displaying a Help
 10.9.2.2 Putting Help in a Buffer

Programming Tools and Interfaces
Using Routines to Display Help

¦ Copyright IBM Corp. 1985, 1991
10.9.2 - 1

 10.9.2.1 Displaying a Help

 The msghelp routine performs the following functions:

 1. Gets help text from the help file.

 2. Expands standard symbols in the help text.

 3. Outputs the help to either stderr or to a specified file.

 Refer to AIX Operating System Technical Reference for information about
 the format and syntax of this routine.

Programming Tools and Interfaces
Displaying a Help

¦ Copyright IBM Corp. 1985, 1991
10.9.2.1 - 1

 10.9.2.2 Putting Help in a Buffer

 The msgrtrv routine performs the following functions:

 1. Gets help text from the help file.

 2. Expands standard symbols in the help text.

 3. Outputs the help to a specified buffer.

 Refer to AIX Operating System Technical Reference for information about
 the format and syntax of this routine.

Programming Tools and Interfaces
Putting Help in a Buffer

¦ Copyright IBM Corp. 1985, 1991
10.9.2.2 - 1

 11.0 Chapter 11. Monitoring Program Activities

 Subtopics
 11.1 CONTENTS
 11.2 About This Chapter
 11.3 Monitoring Program Activities
 11.4 Using the Trace Facilities
 11.5 Using the Error Log Facilities

Programming Tools and Interfaces
Chapter 11. Monitoring Program Activities

¦ Copyright IBM Corp. 1985, 1991
11.0 - 1

 11.1 CONTENTS

Programming Tools and Interfaces
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
11.1 - 1

 11.2 About This Chapter

 This chapter contains information on monitoring software. It includes
 information on the following:

 � Trace facilities - The trace facilities allow you to log and forma
 trace data. This includes a functional definition of the trace
 components and information on using the trace commands and
 subroutines.

 � Error log facilities - These facilities are similar to the trac
 facilities except that you log error data rather than trace data.

 � Dump facilities - The dump facilities are used to analyze data store
 that was stored in memory at the time of a system failure.

Programming Tools and Interfaces
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
11.2 - 1

 11.3 Monitoring Program Activities

 The system provides several software components that enable you to monitor
 program activities. These components can be grouped into three basic
 categories:

 � Trac

 You use the trace facilities to monitor system performance or to aid
 in debugging programs. The system programs have several event
 classes, each of which can be turned on or off depending on your
 needs. For each event class, several trace points have been defined
 in various system software components. When a component containing a
 trace point is processed, the trace point generates a trace entry.

 You can also generate trace entries from your own programs using the
 three subroutines provided with the system. These subroutines allow
 you to generate trace entries from applications or AIX Operating
 System kernel components. All trace entries are stored in a trace log
 file. The trace log can be formatted into a readable trace report and
 sent to the display screen, a printer, or another file.

 � Error Loggin

 Error logging is automatically enabled when you initialize the system.
 It can be disabled if necessary, but it usually runs as a background
 process, collecting error entries generated by software components.
 The error entries are stored in an error log that can be formatted
 into a readable error report. As with the trace facilities, you can
 use special subroutines to generate error entries from your own
 programs.

 � Dum

 The system supports a dump facility that allows you to dump data onto
 a dump diskette in the event of a system failure. In order to start a
 dump operation, you need to learn how to use the dump key sequence. To
 examine the contents of a dump diskette, use the crash command. For
 additional information on the crash command, refer to the AIX
 Operating System Commands Reference.

Programming Tools and Interfaces
Monitoring Program Activities

¦ Copyright IBM Corp. 1985, 1991
11.3 - 1

 11.4 Using the Trace Facilities

 The trace facilities are used to monitor changes to variable data within
 software components. Tracing can be used as a debugging aid and to check
 the performance of various sections of code. Some of the basic trace
 terms are defined below:

 trace entry A data structure containing a header of identifying
 information plus up to 20 bytes of defined data. Trace
 entries are generated by trace points and written to a
 trace log file that can be formatted by the trace
 formatter.

 trace point A group of code statements that generates a trace entry
 from within a software component. Trace points are
 assigned to an event class which can be active or inactive.
 Trace points within active event classes are able to
 generate trace entries.

 event class A number assigned to a group of trace points that relate to
 a specific subject or system component. The defined event
 classes are listed in the trace profile, /etc/trcprofile.

 hook ID A unique number assigned to a specific trace point. All
 trace entries include the hook ID of the originating trace
 point in the trace entry header. Pre-defined trace points
 use assigned hook IDs ranging from 0 to 299. User-defined
 trace points can choose hook IDs ranging from 300 to 399.

 How you use the trace facilities depends on what you want to accomplish:

 � To choose the event classes that you want to trace, you should lear
 how to alter the default trace profile, /etc/trcprofile, and how to
 create your own trace profile.

 � To start a trace session, you should use the trace command.

 � To end a trace session, you should use the trcstop command.

 � To format a trace log file, you should learn how to use the trcrpt
 command.

 � To change the name or size of the default trace log file, you shoul
 learn how to alter the /etc/rasconf file.

 � To create trace points that generate trace entries, you should lear
 how to use the trace subroutines: trcunix, trsave, and _trcgen.

 � If you create your own trace entries, you should learn how to create
 trace template for each type of trace entry. You also need to learn
 how to use the trcupdate command to add trace templates to the
 template file, /etc/trcfmt.

 --

 +--+
 +------------------+ ¦ +----------------------+ +-------------------------+ ¦ +-----------------+
 ¦ /etc/rasconf +--- ¦ ¦ ¦ /usr/adm/ras/trcfile +-+- ¦ Trace Formatter ¦

Programming Tools and Interfaces
Using the Trace Facilities

¦ Copyright IBM Corp. 1985, 1991
11.4 - 1

 +------------------+ ¦ ¦ +-------------------------+ ¦ +-----------------+
 ¦ Trace Daemon ¦ ¦ �
 +------------------+ ¦ ¦ +-------------------------+ ¦ +-----------------+
 ¦ /etc/trcprofile +--- ¦ ¦ ¦ /usr/adm/ras/.trcevents +-¦ ¦ standard output ¦
 +------------------+ +----------------------+ +-------------------------+ ¦ +-----------------+
 � ¦
 +------------------+ ¦ +-------------------------+ ¦
 ¦ User Application +-+ ¦ ¦ /etc/trcfmt +-+
 +------------------+ ¦ ¦ +-------------------------+
 API------------------¦-------------¦--
 ¦ +----------------------+
 ¦ ¦ Trace Device Drivers ¦
 +------------------+ ¦ ¦ and ¦
 ¦ Kernel Component +--- ¦ Interrupt Handler ¦
 +------------------+ ¦ +---------------+ ¦
 ¦ ¦ Trace Buffers ¦ ¦
 +----------------------+

 --
 Figure 11-1. Trace Components

 Figure 11-1 shows how data is passed between the various files and
 components that constitute the trace facilities. The lines labeled API,
 which stands for Application Program Interface, shows the logical
 distinction between application programs and kernel components.

 The components and files in Figure 11-1 are described on the next page.
 They are explained in more detail elsewhere in this chapter in the
 appropriate sections.

 The following descriptions start at the point where the trace entries are
 first generated and end where the trace entries are formatted and sent to
 standard output.

 � Applications and kernel components generate trace entries using trac
 points placed at strategic places in the execution path. The system
 programs contain several pre-defined trace points relating to various
 event classes.

 � The trace device drivers collect the trace entries in trace buffers
 There is one trace buffer for each of the three trace subroutines.

 � The /etc/rasconf file contains configuration data. For the trace
 daemon, it defines the name and size of the trace log file to be
 opened to receive trace entries. For the trace formatter, it defines
 the default trace log file if none is specified when it is invoked.

 � The default trace profile is /etc/trcprofile. This file contains a
 list of the defined event classes. An event class is either active or
 inactive. If an event class is active, the trace points related to
 that event class will generate trace entries. You can use the default
 trace profile, or create your own trace profile.

 � The trace daemon is an important part of the trace facilities. Whe
 it is initialized, it performs three major tasks:

 - Reads the trace profile to determine which event classes should be
 active.

 - Opens the file specified in the trace stanza in /etc/rasconf as

Programming Tools and Interfaces
Using the Trace Facilities

¦ Copyright IBM Corp. 1985, 1991
11.4 - 2

 the trace log file.

 - Begins reading the trace buffers as they become full and writes
 them out to the trace log file.

 � The default trace log file is /usr/adm/ras/trcfile. This file stores
 all of the trace entries generated by software programs. If the trace
 log file becomes full, the newest trace entry overwrites the oldest
 trace entry.

 � The /usr/adm/ras/.trcevents file contains lists of event classes and
 the hook IDs associated with those event classes. The hook ID is a
 specific number associated with a particular trace point. The trace
 formatter uses information in this file to count the trace entries
 that occur for each event class. You do not edit this file directly.
 It is automatically updated when you use the trcupdate command.

 � The trace format file, /etc/trcfmt, contains trace templates that
 determine how each trace entry appears when it is formatted. The
 pre-defined trace entries also have pre-defined templates. If you
 generate trace entries from your own programs, you need to define
 trace templates for those entries.

 � The trace formatter formats the trace entries in a trace log file int
 a readable format. If a trace log file is not specified when the
 trace formatter is invoked, it uses the file specified in
 /etc/rasconf. The formatted trace entries are sent to standard output
 and can therefore be sent to the display screen, a file, or a printer.

 Subtopics
 11.4.1 Altering the Trace Configuration Files
 11.4.2 Using the Trace Commands
 11.4.3 Using the Trace Subroutines
 11.4.4 Creating Trace Templates

Programming Tools and Interfaces
Using the Trace Facilities

¦ Copyright IBM Corp. 1985, 1991
11.4 - 3

 11.4.1 Altering the Trace Configuration Files

 There are two basic files that you can alter to change the operation of
 the trace facilities. The first is the trace profile, which is used by
 the trace daemon to set up three bit masks that show which event classes
 are active. The trace daemon reads the trace profile when it is
 initialized. A trace profile contains a single line entry for each
 defined event class. Each line entry begins with a * (asterisk). Only
 those event classes that have had the * removed will be able to generate
 trace entries during a trace session.

 You edit a trace profile using a standard text editor. You can create
 several trace profiles, each designed for different tracing needs. When
 you run trace, you can specify which trace profile it should use. If you
 do not specify a trace profile, it uses the default trace profile,
 /etc/trcprofile. To create your own trace profile, copy the default trace
 profile into your current directory and edit the new copy.

 If you have defined trace points in your own programs, you need to have
 the trace daemon activate the User-defined Events event class. It appears
 in the trace profile as:

 * 150 User-defined Events

 To have the trace daemon activate this event class, remove the * from the
 beginning of that line in the trace profile. It should now appear as:

 150 User-defined Events

 If you do not enable this event class, your trace points will not be able
 to generate trace entries in the trace log file.

 The other file that you can alter is the /etc/rasconf file. This is a
 configuration file that is read by the trace daemon and the trace
 formatter. It contains various types of information, but the information
 you are interested in is the stanza that defines the name and maximum
 block size of the default trace log file. It appears in /etc/rasconf as:

 /dev/trace:
 file = /usr/adm/ras/trcfile
 size = 80

 Other users may change the contents of this file. You may want to change
 the trace log file name if the current trace log is full, or if you want
 to keep different logs for different trace sessions.

 Each time trace is invoked, the trace daemon checks /etc/rasconf to see
 which file it should open to receive trace entries. All trace entries
 generated during the trace session are directed to that file. When you
 use the trace formatter, it uses the file name in /etc/rasconf as the
 default trace log file if a trace log file is not specified. If you have
 several trace log files, you can format up to 10 at a time by invoking the
 trace formatter with a list of file names.

Programming Tools and Interfaces
Altering the Trace Configuration Files

¦ Copyright IBM Corp. 1985, 1991
11.4.1 - 1

 11.4.2 Using the Trace Commands

 There are four commands associated with the trace facilities. They each
 perform one basic task:

 trace Starts a trace session. This command accepts a trace
 profile as an input file name parameter. Once a trace
 session is initiated, all trace points with active event
 classes will generate trace entries if their particular
 component is run.

 If you do not specify a trace profile, the default trace
 profile, /etc/trcprofile, is used. The following example
 invokes trace with a user-defined trace profile Note that
 an & (ampersand) is required at the end of the command
 line. This causes trace to run as a background process:

 trace /u/myfile/myprof &

 trcstop Stops a trace session. Any trace entries remaining in the
 trace buffers are written out to the trace log file. Any
 open files are closed and the trace daemon is terminated.
 This command does not require any input parameters.

 trcrpt Formats trace entries contained in trace log files. This
 command accepts 1 to 10 trace log file names as input
 parameters. If you do not specify a trace log file, it
 uses the default trace log file specified in /etc/rasconf.
 The formatted trace entries are sent to standard output.

 The following example formats two trace log files named
 trace1 and trace2 and sends the output to the printer:

 trcrpt trace1 trace2 | print

 Because all trace entries are time-stamped, the trace
 formatter can also format a subset of a trace log file
 consisting of trace entries that fall within a certain time
 interval. You specify a starting time and end time using
 the -s and -e flags. The time is specified as MMddhhmmyy
 (month, day, hour, minute, year).

 The following example formats the default trace log entries
 ranging from January 3, 1985 at 11 a.m. to 11:06 a.m. of
 the same day:

 trcrpt -s0103110085 -e0103110685

 trcupdate Adds, updates, or deletes trace templates in the
 /etc/trcfmt file. Also updates the /etc/.trcevents file.
 Before using this command to add or update trace templates,
 you need to create an input file with the extension .trc.
 This file will contain two types of entries:

 � Template definitions. These contain a + (plus sign) in
 the first column to specify that the template is to be
 merged into the master template file. A single
 template definition may require several lines. The +
 is only required on the first line of each template.

Programming Tools and Interfaces
Using the Trace Commands

¦ Copyright IBM Corp. 1985, 1991
11.4.2 - 1

 � Template deletions. These contain a - (minus sign) in
 the first column, one blank, and the hook ID of the
 template you want to delete.

 Note: Do not delete the pre-defined trace templates
 (hook IDs 0 to 299). These are required to format the
 pre-defined trace points imbedded in the system
 programs.

 The following example shows a file that will add trace
 template 330 to the master template file and delete
 templates 320 and 321. Note that the first line in the
 file must be entered as shown. It is used by the trcupdate
 command to verify that this file contains template
 information.

 * /etc/trcfmt
 + 330 1.0 InitPtr Printer PtrNode A8: \n: \t: \
 PtrType D4: PtrActv B0.1, 1 Yes, 0 No:
 - 320
 - 321

 To update a trace template, you need to create a new
 template with the same hook ID but with a version and
 release number (VV.RR field) greater than the version and
 release number of the trace template that you want to
 update. When trcupdate merges the .trc file into the
 master template file, it will replace the old template with
 the updated one.

 The trace formatter writes the total number of trace
 entries attributed to each event class at the end of a
 trace report. If you want trace entries generated by new
 trace points to be counted under the User-defined Events
 event class, you must also create a file with an extension
 of .evt.

 The .evt file contains entries that specify an event class
 number and any new hook IDs that you want to associate with
 that event class. It is merged into the /etc/.trcevents
 file when you use the trcupdate command. For user-defined
 trace entries, the event number is always 150. Thus, to
 add hook ID 330 to the User-defined Events event class, you
 would create a file as shown below. Note that the first
 line in the file must be entered as shown:

 * /ras/.trcevents
 150 330

 Once you create a file containing new or updated template
 definitions and/or template deletions, you can use
 trcupdate to process it. In the following example, the
 template definitions and deletions are contained in a file
 called newtemps.trc. The event class and hook ID lists are
 contained in a file called newtemps.evt:

 trcupdate newtemps

Programming Tools and Interfaces
Using the Trace Commands

¦ Copyright IBM Corp. 1985, 1991
11.4.2 - 2

 11.4.3 Using the Trace Subroutines

 Before using the trace subroutines, you need to understand how the trace
 daemon uses the trace profile and how event classes are represented as
 active or inactive in the system.

 After the trace daemon reads the trace profile, it sets up two tables in
 memory. Each table consists of a one-word array of flag bits. Each bit
 is called a channel and is named after the bit position it occupies. The
 most significant bit is called channel 0 and the least significant bit is
 called channel 31. Each event class is represented by one or more of
 these channels. When the trace daemon reads the trace profile and sees
 that an event class should be active, it sets the appropriate channels in
 each channel table.

 When the trace daemon has read the entire trace profile, it sends one
 channel table to each of the two trace device drivers. When one of these
 drivers is called by a trace subroutine, the device driver compares the
 channel number, which is a required part of the trace entry, against its
 own channel table. If the channel is active, it puts the trace entry in a
 trace buffer. If not, it does nothing; however, in each case it returns a
 successful return code unless there is a problem in the calling procedure.

 With 32 bits available for each channel table, it is possible to have 48
 different event classes. However, an event class may use the same channel
 in more than one table. Thus, the actual number of event classes is less
 than 96. The User-Defined Events event class uses channel 31 in each of
 the two channel tables. This allows you to create user-defined trace
 entries using any of the two trace subroutines. User applications can use
 the trace_on subroutine to see if a specific channel is enabled.

 Note: If you look at the trace profile, you will see a number placed
 before each event class. This number identifies a specific event class;
 however, it is not a channel number. Channel numbers can only be in the
 range from 0 to 31.

 When you use a trace subroutine, one of the input parameters contains a
 channel number and hook ID to identify which event class that trace entry
 belongs to and which trace point generated the call. This is called the
 trace ID. Bits 0 through 4 of the trace ID contain the binary
 representation of the channel number. Bits 5 through 15 contain the
 binary representation of the hook ID. Thus, for user trace entries, bits
 0 through 4 should always be set to 31 (channel 31) and the hook ID should
 be a number ranging from 300 to 399.

 The parameters used by the trace subroutines are briefly explained in the
 following:

 trcunix Generates a trace entry from an AIX Operating System
 application and requires two input parameters. The first
 is the address of a buffer containing the 2-byte trace ID
 and up to 20 bytes of trace data. The second is the length
 of the buffer.

 trsave Generates a trace entry from an AIX Operating System kernel
 component and requires 3 input parameters. The first is a
 2-byte trace ID. The second is the length of the data
 buffer. The third is the address of the data buffer.

 trc_start Starts the trace daemon from a process and requires the

Programming Tools and Interfaces
Using the Trace Subroutines

¦ Copyright IBM Corp. 1985, 1991
11.4.3 - 1

 following parameters:

 outpath Specifies the file name that the trace daemon
 uses to store the trace data. This file name
 must be different from the default file name
 in /etc/rasconf.

 entsize Specifies the size in bytes for the entries
 that the application logs. If the value is
 0, the default size is used.

 numents Specifies the number of entries the kernel
 buffer will hold. If numents is not used,
 the buffer size is taken from /etc/rasconf.
 If the value of numents is 0, or if an
 invalid (non-numeric) argument is supplied,
 the trace daemon calculates the buffer size
 using the entry size and a default of 1024
 entries.

 last_only Specifies whether the trace daemon should log
 data continuously or only save the last
 buffer filled before the daemon stops. A
 value of 0 indicates that the trace daemon
 should log data continuously. A value of 1
 indicates that the daemon should only save
 the last buffer filled before the daemon
 stops.

 structure t_struct
 Contains the following control values
 returned by the daemon:

 � Process ID of the daemon

 � Address of the trace buffer

 � Length of the trace buffer

 � Channel mask used by the process when
 logging trace data. The channel mask is
 the decimal number of the bit position
 assigned to the trace channel, shifted
 left 11 bits.

 trc_stop Stops the trace daemon from the process ID started by
 trc_start.

 When you create your own trace points, remember that each trace point
 should use a unique hook ID in the range from 300 to 399. You must also
 create trace templates for your trace points. Here are some general
 guidelines:

 � Put a trace point at the beginning or end of an important function
 The trace data should show the values of any important data structures
 or I/O parameters.

 � If a function takes a significant amount of processing time, you ma
 want to put a trace point at its entry and exit points. This will

Programming Tools and Interfaces
Using the Trace Subroutines

¦ Copyright IBM Corp. 1985, 1991
11.4.3 - 2

 allow you to trace how long it takes to process different types of
 input parameters.

 � Put a trace point at a critical junction in the logic flow of
 component.

 � Do not put a trace point inside a loop that is repeated many times i
 you can catch the important data before the loop begins.

 � Try to limit the trace entry data to four variables or less

 The trace device drivers have access to the channel tables, so they know
 whether or not to put a trace entry in the trace buffers. However, you
 may want to explicitly check to see if your channel is active before you
 call a trace subroutine so you can design the trace point to skip around
 data collection code if the channel is not on. For kernel components, the
 usual procedure is to perform the subroutine call without checking for an
 active channel because kernel trace points do not contain much data.

 A sample trace point for application level components is shown in
 Figure 11-2. Notice how it uses the trace_on subroutine to see if the
 User-Defined Events channel (31) is on before calling the trcunix
 subroutine. Also, notice how the trace ID is created. First, you shift
 the variable containing the channel number left 11 bits so that it is in
 bits 0 through 4. Then you perform an OR operation on that variable with
 the variable containing the hook ID. The result is a trace ID containing
 the channel number in bits 1 through 4 and the hook ID in bits 5
 through 15.

 --

 #include <sys/trace.h>
 #include <trcdefs.h>
 #include <stdio.h>

 main(argc, argv)
 int argc;
 char **argv;
 {
 extern int trace_on();
 extern int trcunix();
 int chan_no = 31;
 long channel = 0x1; /* Set bit 31 (user-defined channel) to 1 */
 long hookid = 300; /* Define the hook ID for this trace point */
 int tracing;
 int rc = 0;
 struct
 { unsigned short traceid;
 char data[20];
 } trcstruct;

 /* See if channel 31 is active. */

 if ((tracing = trace_on(channel)) < 0)
 {
 fprintf(stderr,"trace_on failed\n");
 return(-1);
 }

 /* Imbed this trace point anywhere in your program code. */

Programming Tools and Interfaces
Using the Trace Subroutines

¦ Copyright IBM Corp. 1985, 1991
11.4.3 - 3

 if (tracing)
 {
 trcstruct.traceid = ((chan_no<<11) | hookid);
 sprintf(trcstruct.data, "This is trace data.");
 if (trcunix(&trcstruct, sizeof(trcstruct)) < 0)
 {
 fprintf(stderr,"trcunix failed\n");
 rc = -1;
 }
 }
 exit(rc);
 } /* end main */

 --
 Figure 11-2. Example Program Fragment Showing Use of trcunix Subroutine

 Figure 11-3 creates a trace entry from within an AIX Operating System
 kernel component. Notice how it uses a defined constant (TR_USER) to set
 the channel number in the trace ID parameter. TR_USER contains channel
 number 31 in bits 0 through 4. This is only available for kernel
 components using the trsave routine.

 --

 #include <sys/trace.h>
 #define TRACEDATA 1

 function()
 {
 long hookid = 310;
 int t_data;

 /* The following trace point can appear anywhere in your function. */

 t_data = TRACEDATA;
 trsave((TR_USER | hookid), sizeof(int), &t_data);
 } /* end function */

 --
 Figure 11-3. Example Program Fragment Showing Use of trsave Subroutine

Programming Tools and Interfaces
Using the Trace Subroutines

¦ Copyright IBM Corp. 1985, 1991
11.4.3 - 4

 11.4.4 Creating Trace Templates

 The trace formatter uses trace templates to determine how the data
 contained in trace entries should be formatted. All trace templates are
 stored in the master template file, /etc/trcfmt. After you create some
 new or updated trace templates, place them in a file that can then be
 merged into the master template file using the trcupdate command. The
 trcupdate command requires that trace templates identify themselves by
 placing a + and a blank in the first two columns of the first line of the
 trace template.

 Trace templates contain four required fields and zero or more data
 description fields. The required fields identify the template hook ID,
 the version and release number, the hook ID label, and the event class
 label. The data description fields contain formatting information for the
 trace entry data and can be repeated as many times as is necessary to
 format all of the trace data in the trace entry.

 Trace entries are formatted and written to standard output one entry at a
 time. For each entry, the trace formatter performs the following
 operations:

 1. Locates the trace template corresponding to the hook ID in the trace
 entry.

 2. Writes the time the entry was generated. It also writes a sequence
 number that shows when the entry was generated as an interval within a
 second. This sequence number allows the formatter to sort trace
 entries that are generated during the same second. They can then be
 formatted and written in the order in which they occurred. These
 fields are placed in the trace entry header by the trace subroutine.

 3. Writes the PID contained in the trace entry header. These fields are
 placed in the trace entry header by the trace subroutine.

 4. Writes the hook ID and event class. You can use the actual numbers
 that equate to the hook ID and event class, or you can create a name
 up to eight characters for each field. The trace formatter will write
 whatever is placed in the field.

 5. Writes up to 20 bytes of data according to the data_descriptors in the
 trace template, if any are present. Any data that occurs after the
 last data_descriptor in the template is ignored. A data_descriptor
 does the following:

 a. Writes the data label (d_label), if it is specified.

 b. Writes the actual data according to the format field and the
 optional match fields. You can define match fields that will
 replace data values with descriptive labels or change to a
 different data_descriptor depending on the current data value.

 Figure 11-4 shows the syntax used to define a trace template. Figure 11-5
 defines each of the fields in a trace template.

 Trace template lines can be as long as you need. You can continue a trace
 template on another line by adding the \ (backslash) character to the end
 of the line where the split occurs. Note that \ is not a substitute for a
 required blank. A blank is also required after a colon or comma.

Programming Tools and Interfaces
Creating Trace Templates

¦ Copyright IBM Corp. 1985, 1991
11.4.4 - 1

 --

 +-----------------------+
 hook_id&revcir.VV.RR&revcir.hook_label&revcir.event_label ---¦ +-- &revcir./n - : --------+ +---¦
 ¦ ¦ ¦ ¦
 +-+-- &revcir./t - : --------+-+
 �+- data_descriptor -+¦
 +---------------------+

 data_descriptor =

 +------------+ +---+
 ¦ +--- &revcir.format ---¦ +----------------------+ +--- :
 +- &revcir.d_label -+ ¦ +- &revcir.match_label --¦
 +- &revcir.match_value: --¦ +- &revcir.{data_descriptor} -+ +-+
 +- &revcir.{data_descriptor} ---------------------+¦
 +---+

 &revcir. - indicates a blank

 --
 Figure 11-4. Trace Template Syntax

 Figure 11-5. Fields in a Trace Template
 Field Description

 hook_id The 3-digit hook ID of the trace entries that use this
 template.
 VV.RR A number representing the version and release level of
 this template.
 hook_label A label field of up to 8 characters that describes the
 hook ID.
 event_label A label field of up to 8 characters that describes the
 event class.
 \n A special string used to start output data on a new
 line.
 \t A special string used to start output data after one
 tab unit.
 d_label A label field of up to 8 characters that describes the
 trace entry data.
 format An alphanumeric code that defines the format of the
 trace data.

 Code Format of Data

 Am ASCII string of m characters.
 Bm Binary string of m bytes.
 Bm.n Binary string of m bytes and n bits. If
 this format leaves some unformatted bits in
 the current byte, they are not written
 unless this format is followed by another
 format that specifies bits.
 D2 Decimal short integer.
 D4 Decimal long integer.
 F4 Floating-point number of type float, rounded
 to four places.
 F8 Floating-point number of type double,
 rounded to four places.

Programming Tools and Interfaces
Creating Trace Templates

¦ Copyright IBM Corp. 1985, 1991
11.4.4 - 2

 Om Omit (do not write) the next m bytes.
 Om.n Omit (do not write) the next m bytes and n
 bits. If this format leaves some
 unformatted bits in the current byte, they
 are not written unless this format is
 followed by another format that specifies
 bits.
 U2 Unsigned decimal short integer.
 U4 Unsigned decimal long integer.
 Xm Hexadecimal number of m bytes.
 match_value A value with a data type the same as the format
 field. If you specify a match_value, you must also
 specify a match_label or data_descriptor.
 match_label A character field up to 120 characters that replaces
 output data that matches a match_value field.
 data_descriptor A field containing formatting information for a
 portion of the output data.

 Subtopics
 11.4.4.1 Replacing Values in the Output Data
 11.4.4.2 Appearance of the Formatted Output Data
 11.4.4.3 Trace Template Example

Programming Tools and Interfaces
Creating Trace Templates

¦ Copyright IBM Corp. 1985, 1991
11.4.4 - 3

 11.4.4.1 Replacing Values in the Output Data

 The match_value field provides a function that is similar to a switch
 statement in programming. You can use this function to do either or both
 of the following:

 � Replace an output data value with a character string that describe
 the data. For example, you can replace a numeric error code with a
 description of that error. The replacement character string is called
 a match_label.

 � Change the data descriptor used to format the output data. Fo
 example, you can design trace points that will record different data
 at different times, depending on the state of your machine or program.
 You can then define a set of match_values with a different
 data_descriptor for each type of data.

 You can specify any number of match_value fields for a particular output
 data value as long as each field is accompanied by a match_label and/or a
 data_descriptor field. If the output data value matches match_value, the
 trace formatter uses the match_label and/or data_descriptor associated
 with the match_value.

 You can use the special string * as a match_value. This will match any
 output data value in the current data field. When the trace formatter
 finds this string, it does not check any match_values that occur after
 this string. Therefore, you should use this string as the last
 match_value in a list to provide a default action if none of the other
 match_values are matched. If no match is found, the data value is
 written.

 If a new data_descriptor follows the match_value, the trace formatter uses
 the formats from the new data_descriptor until one of the following
 occurs:

 � It has formatted all of the trace entry data

 � It has used all of the defined data_descriptors for the current output
 data.

 The trace formatter then looks for a new data_descriptor field to define
 the format for the rest of the data in the trace entry. If a new
 data_descriptor is not found, it writes the data literally according to
 the format given in the format field of the last data_descriptor.

 Note: The trace formatter compares a match_value field and the current
 output data as two character strings. For real numbers (F format), it
 uses the printf subroutine to round the data to four decimal places. If
 you plan to use a match_value field with output data formatted as a real
 number, the match_value field should use the same precision, four decimal
 places.

Programming Tools and Interfaces
Replacing Values in the Output Data

¦ Copyright IBM Corp. 1985, 1991
11.4.4.1 - 1

 11.4.4.2 Appearance of the Formatted Output Data

 The following examples show you how to format data using a single
 data_descriptor. The data is defined as 8 bytes consisting of IBM4341A.
 The data_descriptor fields have the following values:

 d_label PtrNode
 format A8
 match_value IBM4341A
 match_label Model4X

 Each of the following examples shows a data_descriptor using a combination
 of data_descriptor fields and how the output data would look if it used
 that data_descriptor:

 � If you just specify a format field, the data_descriptor would be:

 A8:

 The formatted trace report would show the data as:

 IBM4341A

 � If you specify d_label and format fields, but do not specify a
 match_value field, the data_descriptor would be:

 PtrNode A8:

 The formatted trace report would show the data as:

 PtrNode=IBM4341A

 � If you specify format, match_value, and match_label fields, but do not
 specify a d_label field, the data_descriptor would be:

 A8, IBM4341A Model4X:

 The formatted trace report would show the data as:

 Model4X

 � If you specify d_label, format, match_value, and match_label fields,
 the data_descriptor would be:

 PtrNode A8, IBM4341A Model4X:

 The formatted trace report would show the data as:

 Ptrnode=Model4X

Programming Tools and Interfaces
Appearance of the Formatted Output Data

¦ Copyright IBM Corp. 1985, 1991
11.4.4.2 - 1

 11.4.4.3 Trace Template Example

 This section shows you how a trace entry using a sample trace template
 would appear after being formatted. In the example, a trace point
 belonging to the printer event class generated a trace entry during
 printer initialization. The header data for the trace entry includes the
 hook ID, which in this example is 330. The trace entry data is listed
 below:

 PtrNode The printer node ID (8 ASCII characters). The format for
 this data would be A8.

 PtrType The printer type (a decimal long integer). The format for
 this data would be D4.

 PtrActv A 1-bit flag that indicates if the printer is active (1) or
 inactive (0). The format for this data would be B0.1.

 Figure 11-6 shows a sample trace template for trace entries with a hook ID
 of 330. Notice the newline and tab descriptors before the PtrType field.
 This will cause the PtrType field to appear on the next line and indented
 one standard tab unit. Also, notice that two pairs of match_value and
 match_label fields are defined for the 1-bit PtrActv flag. This tells the
 trace formatter to write Yes if the flag equals 1 and No if the flag
 equals 0:

 --

 330 1.0 InitPtr Printer PtrNode A8: \n: \t: \
 PtrType D4: PtrActv B0.1, 1 Yes, 0 No:

 --
 Figure 11-6. Example of a Trace Template for hook ID 330

 Figure 11-7 in topic 11.5 shows how a trace entry with a hook ID of 330
 might appear in a formatted trace report. In the report, the sample trace
 entry is the seventh formatted entry. Notice that the last part of the
 report shows a list of event classes and how many trace entries belong to
 each event class.

Programming Tools and Interfaces
Trace Template Example

¦ Copyright IBM Corp. 1985, 1991
11.4.4.3 - 1

 11.5 Using the Error Log Facilities

 The error log facilities are used to record errors that may occur in the
 system. These errors can be in hardware or software, and can be of
 several different types. Some of the basic error terms are defined below:

 error entry A data structure containing a header of identifying
 information plus several bytes of defined data. Error
 entries are generated by error points and written to an
 error log file that can be formatted by the error
 formatter.

 error point A group of code statements that generates an error entry
 from within a software program. Error entries are
 generated when a software or hardware component encounters
 an error.

 error ID This is part of the data required by an error entry. It is
 a unique combination of three hexadecimal digits that
 identifies the component that generated the error entry.

 error identifier
 A three-character code used to identify error templates and
 to specify which error entries the error formatter should
 process. This code is based on the error ID; however, it
 use alphanumeric characters instead of hexadecimal digits.

 --

 TRACE LOG REPORT

 File: /usr/adm/ras/trcfile

 Fri Jan 3 13:19:35 1985
 System: **** Node: ****

 Version: 0 Machine: ****

 TIME SEQ PID IODN IOCN TYPE HOOK DATA

 23:23:34.01 0001 00195 I/O_Sys ioctl[x] fildes=5 request=23
 arg=536872136
 23:23:34.01 0002 00195 I/O_Sys ioctl[x] fildes=1 nbyte=28
 23:23:34.01 0003 00195 I/O_Sys write[x] fildes=1 nbyte=40
 23:23:34.01 0004 00195 I/O_Sys write[x] fildes=1 nbyte=31
 23:23:34.01 0005 00142 I/O_Sys write[x] fildes=2 nbyte=1
 23:23:34.01 0006 00142 I/O_Sys write[x] fildes=2 nbyte=2
 23:23:34.01 0007 00140 Printer Initptr PtrNode=IBM4341
 Ptrtype=3 PtrActv= No
 23:23:34.01 0008 00196 I/O_Sys read[x] fildes=3 nbyte=128
 23:23:34.01 0009 00196 I/O_Sys access errno=2 filemode=1
 23:23:34.01 0010 00196 I/O_Sys access errno=2 filemode=1
 23:23:34.01 0011 00196 I/O_Sys ioctl[x] fildes=0 request=17
 arg=1073737112

 Summary of event counts.
 Event 0: 2 Event 66: 8
 Event 150: 1

Programming Tools and Interfaces
Using the Error Log Facilities

¦ Copyright IBM Corp. 1985, 1991
11.5 - 1

 Total number of events: 3

 --
 Figure 11-7. Example of Output from the Trace Formatter

 How you use the error facilities depends on what you want to accomplish:

 � To start the error log facilities, you should use the errdemon
 command. You usually will not have to use this command because the
 default initialization process is set to turn error logging on.

 � To stop error logging, you should use the errstop command. You must
 have superuser authority to use this command.

 � To format the error log files, you should learn how to use the errpt
 command.

 � To change the name or size of the default error log files, you shoul
 learn how to alter the /etc/rasconf file.

 � To create error points that generate error entries, you should lear
 how to use the error subroutines: errunix and errsave.

 � If you create your own error entries, you should learn how to creat
 an error template for each type of error entry. You also need to
 learn how to use the errupdate command to add error templates to the
 template file, /etc/errfmt.

 --

 +--+
 +--------------------+ ¦ +---------------------+ +------------------------+ ¦ +-----------------+
 ¦ /etc/rasconf +--- ¦ +--- ¦ /usr/adm/ras/errfile.0 +-+- ¦ Error Formatter ¦
 +--------------------+ ¦ ¦ +------------------------+ ¦ +-----------------+
 ¦ Error Daemon ¦ ¦ �
 +--------------------+ ¦ ¦ +------------------------+ ¦ +-----------------+
 ¦ Error Log Analysis ¦�-- ¦ +--- ¦ /usr/adm/ras/errfile.1 +-¦ ¦ standard output ¦
 +--------------------+ +---------------------+ +------------------------+ ¦ +-----------------+
 � ¦
 +--------------------+ ¦ +------------------------+ ¦
 ¦ User Application +-+ ¦ ¦ /etc/errfmt +-+
 +--------------------+ ¦ ¦ +------------------------+
 API--------------------¦-------------¦--
 ¦ ¦
 ¦ +---------------------+
 ¦ ¦ Error Device Driver ¦
 +--------------------+ ¦ ¦ and ¦
 ¦ Kernel Component +--- ¦ Interrupt Handler ¦
 +--------------------+ ¦ +--------------+ ¦
 ¦ ¦ Error Buffer ¦ ¦
 +---------------------+

 --
 Figure 11-8. Error Components

 Figure 11-8 shows how data is passed between the various files and
 components that constitute the error facilities. The lines labeled API,

Programming Tools and Interfaces
Using the Error Log Facilities

¦ Copyright IBM Corp. 1985, 1991
11.5 - 2

 which stands for Application Program Interface, show the logical
 distinction between application programs and kernel components. The lines
 connecting the files and components show where data comes from and where
 it goes.

 The components and files in Figure 11-8 are described on the next page.
 They are explained in more detail elsewhere in this chapter in the
 appropriate sections.

 The descriptions below start at the point where the error entries are
 first generated and end where the error entries are formatted and sent to
 standard output.

 � Applications and kernel components generate error entries using erro
 points. The system programs contain several pre-defined error points
 that generate error entries when necessary.

 � The error device driver collects the error entries in the erro
 buffer. There is one error buffer that collects error entries from
 all three error subroutines.

 � The /etc/rasconf file contains configuration data. For the error
 daemon, it defines the name and size of the file that the error daemon
 uses to open two error log files. For the error formatter, it defines
 the default error log file name if a file name is not specified when
 it is invoked.

 � The error daemon is an important part of the error facilities. Whe
 it is initialized, it performs the following major tasks:

 - It opens two error log files by appending the extensions .0 and .1
 to the file name specified in the error stanza in /etc/rasconf.

 - It checks the non-volatile RAM and if there is data, generates an
 error entry.

 � The default error log files are /usr/adm/ras/errfile.0 and
 /usr/adm/ras/errfile.1. These files are organized as a circular
 buffer and store all of the error entries generated by the software
 programs. If one of the error log files becomes full, the next error
 entry is written into the other file, discarding any entries that may
 have been in the file.

 � The error format file, /etc/errfmt, contains error templates that
 determine how each error entry appears when it is formatted. The
 pre-defined error entries also have pre-defined templates. If you
 generate error entries from your own programs, you need to define
 error templates for those entries.

 � The error formatter formats the error entries in the error log file
 into a readable format. If an error log file is not specified when
 the error formatter is invoked, it uses the file specified in
 /etc/rasconf. It reads the error files and sends error entries to the
 error log problem determination program, errpd. The errpd program
 analyzes the error entries and returns probable cause information to
 the error formatter. When errpd is finished, the error formatter
 appends the errpd analysis information, if any, onto the error entry
 and formats the entry. The formatted error entries are sent to
 standard output and can therefore be sent to the display screen, a

Programming Tools and Interfaces
Using the Error Log Facilities

¦ Copyright IBM Corp. 1985, 1991
11.5 - 3

 file, or a printer.

 Subtopics
 11.5.1 Altering the Error Log Configuration File
 11.5.2 Using the Error Log Commands
 11.5.3 Using the Error Log Subroutines
 11.5.4 Creating Error Templates
 11.5.5 AIX Dump Facility

Programming Tools and Interfaces
Using the Error Log Facilities

¦ Copyright IBM Corp. 1985, 1991
11.5 - 4

 11.5.1 Altering the Error Log Configuration File

 There is one file that you can modify before starting the error daemon.
 This is the /etc/rasconf/ file, which is a configuration file that is read
 by the error daemon and the error formatter. It contains various types of
 information, but the information you are interested in is the stanza that
 defines the name and maximum block size of the default error log file. It
 appears in /etc/rasconf in the following form:

 /dev/error:
 file = /usr/adm/ras/errfile
 size = 50

 Some other use may change the contents of this file. You may want to
 change the error log file name if the current error log files are full, or
 if you want to keep different logs for different types of error entries.

 Each time errdemon is invoked, the error daemon checks /etc/rasconf to see
 which files it should open to receive error entries. The error daemon
 does not open the actual file name specified in /etc/rasconf. It merely
 uses the file name as the basis for two other file names with extensions
 of .0 and .1. The file names with the extensions are the ones that are
 actually opened. For example, if the error stanza in /etc/rasconf is:

 /dev/error:
 file = /usr/adm/ras/errfile
 size = 50

 the error daemon will open two files using the names:

 /usr/adm/ras/errfile.0
 /usr/adm/ras/errfile.1

 All error entries generated while the error daemon is active are directed
 to these two files. When you use the error formatter, it uses the file
 name in /etc/rasconf as the default error log file if an error log file is
 not specified. The error formatter adds the .0 and .1 extensions to the
 error log file name to determine the actual names of the two error log
 files.

Programming Tools and Interfaces
Altering the Error Log Configuration File

¦ Copyright IBM Corp. 1985, 1991
11.5.1 - 1

 11.5.2 Using the Error Log Commands

 There are four commands associated with the error log facilities. They
 each perform one basic task:

 errdemon Starts an error session. Once the error daemon is
 initiated, all error points will generate error entries
 whenever their error conditions are met. This command is
 usually placed in the command file /etc/rc, which is run
 when the system is initialized. This command does not
 require any input parameters.

 errstop Stops the error daemon. Any error entries remaining in the
 error buffer are written out to the error log file. Any
 open files are closed and the error daemon is terminated.
 This command does not require any input parameters. Note
 that it is not necessary to stop the error daemon in order
 to format the error log files.

 errpt Formats error entries contained in error log files. This
 command accepts one or more error log file names as input
 parameters. If you do not specify an error log file, it
 uses the default error log file specified in /etc/rasconf.
 The formatted error entries are sent to standard output.

 The following example formats two error log files named
 myerr.0 and myerr.1 and sends the output to the printer.
 Notice that you use the file name myerr as input. The
 error formatter automatically appends the extensions and
 looks for those files, not the file named in the command:

 errpt myerr | print

 There are several options available to format subsets of
 the entire error log. See the description of the errpt
 command in AIX Operating System Commands Reference.

 errupdate Adds, updates, or deletes error templates in the
 /etc/errfmt file. Before using this command to add or
 update error templates, you need to create an input file
 with the extension .err. This file will contain two types
 of entries:

 � Template definitions. These contain a + in the first
 column to specify that the template is to be merged
 into the master template file. A single template
 definition may require several lines. The + is only
 required on the first line of each template.

 � Template deletions. These contain a - (minus sign) in
 the first column, one blank, and the error identifier
 of the template you want to delete.

 Note: Do not delete the pre-defined error templates.
 The only templates that you should consider deleting
 are those that are user-defined. User-defined error
 templates have an error identifier beginning with U or
 HF.

Programming Tools and Interfaces
Using the Error Log Commands

¦ Copyright IBM Corp. 1985, 1991
11.5.2 - 1

 The following example shows a file that will add error
 template U13 to the master template file and delete
 templates U11 and U12. Note that the first line in the
 file must be entered as shown. It is used by the errupdate
 command to verify that this file contains template
 information.

 * /etc/errfmt
 + U13 Serial/Parallel Adapter: \n: \
 ErrorType A1: -n: LastI/O X1: \
 LineStatus D4: PrinterStatus B0.1:
 - U11
 - U12

 To update an error template, you need to create a new
 template with the same error identifier but with a version
 and release number (VV.RR field) greater than the version
 and release number of the error template that you want to
 update. When errupdate merges the .err file into the
 master template file, it will replace the old template with
 the updated one.

 Once you have created a file containing new or updated
 template definitions and/or template deletions, you can use
 errupdate to process it. In the following example, the
 template definitions and deletions are contained in a file
 called newtemps.err:

 errupdate newtemps

Programming Tools and Interfaces
Using the Error Log Commands

¦ Copyright IBM Corp. 1985, 1991
11.5.2 - 2

 11.5.3 Using the Error Log Subroutines

 To use the error log subroutines, you need to understand the relationship
 between error IDs and error identifiers. You also need to know how to
 identify the type of an error.

 Error IDs are 3 bytes long, and are created using hexadecimal digits.
 When you use the error log subroutines, you must specify the error ID of
 the program that generates the error entry. The pre-defined error IDs can
 range from 0x010000 to 0x050F0F. User-defined error IDs can range from
 0x060000 to 0x060F0F. There is a special set of user-defined error IDs
 for hardware error entries. These error IDs can range from 0x010F00 to
 0x010F0F. Note that the second and third bytes cannot use values greater
 than 0x0F for any error ID.

 The error ID is used to categorize the error entries into appropriate
 groupings. The first digit is the class; the second is the subclass, and
 the third is the mask. The digits are hierarchical in that a class
 consists of zero or more subclasses and a subclass consists of zero or
 more masks.

 The class digits range from 0x01 to 0x06. Each value represents a general
 category of errors. The categories are assigned as follows:

 � 0x01 -- Hardwar
 � 0x02 -- Softwar
 � 0x03 -- IPL/Shutdow
 � 0x04 -- General System Conditio
 � 0x05 -- Not Availabl
 � 0x06 -- User-Defined

 The subclass and mask digits range from 0x00 to 0x0F. They are used to
 further subdivide the category represented by the class digit. Classes
 0x01 through 0x05 may have pre-defined subclasses and masks. Class 0x06
 has no pre-defined subclasses or masks because it is user-defined.

 When you format a file containing error entries, you have the option of
 specifying which class of errors should be formatted. You can also
 specify the subclass within the class and the mask within the subclass.
 Note that when you format error entries, you do not use the error ID.
 Instead, you use an error identifier. Error identifiers are similar to
 error IDs, except they consist of characters instead of hexadecimal digits
 and an alphabetic letter is used to specify the class instead of a digit.
 The letter is the first letter of the first word describing the class.

 For example, if the error ID of an error entry is 0x010102, the error
 entry is in the Hardware class. The error identifier for this type of
 error entry would be H12. An error entry in the Software class might have
 an error ID of 0x020303. The error identifier would be S33. Thus, An
 error entry in the User-defined class would have an error identifier that
 began with the letter U.

 Note: You should avoid defining error IDs that have a subclass or mask
 value of 0x00. This is because the error formatter uses the character 0
 as a pattern-matching character. For example, to format all hardware
 error entries, regardless of subclass or mask, you would specify H00 when
 you invoke the errpt command. The use of 0 within an error ID limits your
 selection options when you format the error entries.

 When you design a program, you must decide what constitutes an error

Programming Tools and Interfaces
Using the Error Log Subroutines

¦ Copyright IBM Corp. 1985, 1991
11.5.3 - 1

 condition and what actions should take place if an error does occur. You
 decide in advance what the error ID will be for any error entries
 generated by a specific component. You must also specify the type of
 error entry that is being generated. There are several pre-defined types
 of error entries. Your component must contain an algorithm for deciding
 which type of error has occurred. Once the type is identified, it is used
 as input data to the error log subroutines.

 The types of error entries are defined as follows:

 1 -- Permanent
 These are errors that are severe enough to prevent successful
 completion of an operation.

 2 -- Temporary
 These are errors that require an operation to be retried a defined
 number of times before being successfully completed.

 3 -- Information
 These are not necessarily errors. A component may generate an error
 entry of this type if an unusual condition occurs.

 4 -- Counters
 These error entries are generated by device driver components.
 Certain device drivers are able to generate retries if an operation is
 not successful on the first attempt. They use counters to monitor the
 number and cause of retries and contain algorithms that decide when
 these counters should be sent to the error log.

 5 -- Abbreviated Error Entries
 If the system fails before storing an error entry in the error log, it
 writes an abbreviated entry into non-volatile storage. When the
 system is started following such a failure, it writes this abbreviated
 entry into the error log.

 6 -- Expert Analysis Appended
 These error entries contain information from the Error Log Analysis
 routine.

 The data in an error entry is entirely dependent on the component
 generating the error entry. There is no defined limit on the size of an
 error entry. How you organize the information required to generate an
 error entry depends on which error log subroutine you use. Both errunix
 and errsave use an integer length field. This field specifies the length
 plus one (in words) of the error entry data. They are briefly defined
 below:

 errunix Generates an error entry from an AIX Operating System
 application and requires two input parameters. The first
 is the address of a buffer containing the 3-byte error ID,
 the 1-byte type number, an integer length field, and the
 error data for the error entry. The second is the length
 of the buffer.

 errsave Generates an error entry from an AIX Operating System
 kernel component and requires two input parameters. The
 first is the address of a buffer containing the 3-byte
 error ID, the 1-byte type number, an integer length field,
 and the error data for the error entry. The second is the
 length of the buffer.

Programming Tools and Interfaces
Using the Error Log Subroutines

¦ Copyright IBM Corp. 1985, 1991
11.5.3 - 2

 A sample error point for application level components is shown in
 Figure 11-9. Notice how the input data structure used by the error log
 subroutine is organized and how the required data is placed in it. Also,
 the error ID for the trace entry is 0x060104. Thus, the error template
 used to format the error entry would use an error identifier of U14.

 --

 #include <sys/erec.h>

 main(argc, argv)
 int argc;
 char **argv;
 {
 extern int errunix();
 int error=0;
 struct error_struct /* this is an input parameter for errunix */
 { union
 { struct
 {
 char er_class;
 char er_subclass;
 char er_mask;
 char er_type;
 } er_csmt;
 int csmt;
 } e_id;
 int e_len; /* length + 1 of error entry data in words */
 char e_data[40];
 } error_data;

 #define CLASS error_data.e_id.er_csmt.class
 #define SUBCLASS error_data.e_id.er_csmt.subclass
 #define MASK error_data.e_id.er_csmt.mask
 #define TYPE error_data.e_id.er_csmt.type

 /* Check for errors and increment error flag if an error is found. */
 if (error_check() < 0) /* User-defined function */ /
 error++;

 /* if the error flag is positive, generate an error entry. */
 if (error)
 {
 CLASS = E_USER; /* E_USER is predefined as 0x06. */
 SUBCLASS = 0x01;
 MASK = 0x04;
 TYPE = E_TMP; /* E_TMP is pre-defined as 0x40 */

 /* Collect the error data and put it in error_data.e_data */
 fill_in(error_data.e_data); /* User-defined function */ /

 /* Perform the subroutine call */
 if (errunix(&error_data, sizeof(struct error_struct)) < 0)
 {
 fprintf("%s: Cannot log error. errunix failed.\n", argv[0]);
 exit(-1);
 }
 }
 .

Programming Tools and Interfaces
Using the Error Log Subroutines

¦ Copyright IBM Corp. 1985, 1991
11.5.3 - 3

 .
 .
 } /* end main */

 --
 Figure 11-9. Example Program Fragment Using errunix Subroutine

 Figure 11-10 creates an error entry from within an AIX Operating System
 kernel component. Note that the user-defined subroutine fill_in must
 define the error ID and error data. The method is similar to that used in
 Figure 11-9; therefore, it is not repeated for this example:

 --

 #include <sys/erec.h>

 main(argc,argv)
 int argc;
 char **argv;
 {
 struct errinfo *errptr;

 if (error)

 /* collect error data and call errsave */
 {
 fill_in(errptr); /* User-defined subroutine)
 errsave(errptr, sizeof(struct errinfo));
 }
 } /* end main */

 --
 Figure 11-10. Example of a Program Fragment Showing Use of errsave
 Subroutine

Programming Tools and Interfaces
Using the Error Log Subroutines

¦ Copyright IBM Corp. 1985, 1991
11.5.3 - 4

 11.5.4 Creating Error Templates

 The error formatter uses error templates to determine how the data
 contained in error entries should be formatted. All error templates are
 stored in the master template file, /etc/errfmt. After you create some
 new or updated error templates, place them in a file that can then be
 merged into the master template file using the errupdate command.

 Error templates contain three required fields and zero or more data
 description fields. The required fields consist of the error identifier,
 the version and release number, and the error label. The data description
 fields contain formatting information for the error entry data and can be
 repeated as many times as is necessary to format all of the error data in
 the error entry.

 Error entries are formatted and written to standard output one entry at a
 time. For each entry, the error formatter performs the following
 operations:

 1. Locates the error template whose error identifier corresponds to the
 error ID in the error entry. If the error entry has an error ID of
 0x010201, the corresponding error template would have an error
 identifier of H21.

 2. Writes the time the entry was generated. This field is placed in the
 error entry header by the error subroutine.

 3. Writes the PID contained in the error entry header. These fields are
 placed in the error entry header by the error subroutine.

 4. Writes the error label contained in the format template. You can use
 the actual error identifier, or you can create a name up to 8
 characters. The error formatter will write whatever is placed in the
 field.

 5. Writes the error data according to the data_descriptors in the error
 template, if any are present. Any data that occurs after the last
 data_descriptor in the template is ignored. A data_descriptor does
 the following:

 a. Writes the data label (d_label), if it is specified.
 b. Writes the actual data according to the format field and the
 optional match fields. You can define match fields that will
 replace data values with descriptive labels or change to a
 different data_descriptor depending on the current data value.

 Figure 11-11 shows the syntax used to define an error template.
 Figure 11-12 defines each of the fields in an error template.

 Error template lines can be as long as you need. You can continue an
 error template on another line by adding the \ (backslash) character to
 the end of the line where the split occurs. Note that \ is not a
 substitute for a required blank. A blank is also required after a colon
 or comma.

 --

 +-----------------------+
 error_identifier&revcir.VV.RR&revcir.error_label ---¦ +-- &revcir./n - : --------+ +---¦

Programming Tools and Interfaces
Creating Error Templates

¦ Copyright IBM Corp. 1985, 1991
11.5.4 - 1

 ¦ ¦ ¦ ¦
 +-+-- &revcir./t - : --------+-+
 �+- data_descriptor -+¦
 +---------------------+

 data_descriptor =

 +------------+ +---+
 ¦ +--- &revcir.format ---¦ +----------------------+ +--- :
 +- &revcir.d_label -+ ¦ +- &revcir.match_label --¦
 +- &revcir.match_value: --¦ +- &revcir.{data_descriptor} -+ +-+
 +- &revcir.{data_descriptor} ---------------------+¦
 +---+

 &revcir. - indicates a blank

 --
 Figure 11-11. Error Template Syntax

 Figure 11-12. Fields in an Error Template
 Field Description

 error_identifier The 3-character error identifier of this template.
 VV.RR A number representing the version and release level of
 this template.
 error_label A field of up to 14 characters that describes the
 error entries that use this template. This appears in
 the summary header list under the Subclass heading.
 \n A special string used to start output data a new line.
 \t A special string used to start output data after one
 tab unit.
 d_label A field of characters that describes the error entry
 data.
 format An alphanumeric code that defines the format of the
 error data.

 Code Format of Data

 Am ASCII string of m characters.
 Bm Binary string of m bytes.
 Bm.n Binary string of m bytes and n bits. If
 this format leaves some unformatted bits in
 the current byte, they are not written
 unless this format is followed by another
 format that specifies bits.
 D2 Decimal short integer.
 D4 Decimal long integer.
 F4 Floating-point number of type float, rounded
 to four places.
 F8 Floating-point number of type double,
 rounded to four places.
 Om Omit (do not write) the next m bytes.
 Om.n Omit (do not write) the next m bytes and n
 bits. If this format leaves some
 unformatted bits in the current byte, they
 are not written unless this format is
 followed by another format that specifies
 bits.

Programming Tools and Interfaces
Creating Error Templates

¦ Copyright IBM Corp. 1985, 1991
11.5.4 - 2

 U2 Unsigned decimal short integer.
 U4 Unsigned decimal long integer.
 Xm Hexadecimal number of m bytes.
 match_value A value with a data type the same as the format field.
 If you specify a match_value, you must also specify a
 match_label or data_descriptor.
 match_label A character field up to 120 characters that replaces
 output data that matches a match_value field.
 data_descriptor A field containing formatting information for a
 portion of the output data.

 Subtopics
 11.5.4.1 Replacing Values in the Output Data
 11.5.4.2 Appearance of the Formatted Output Data
 11.5.4.3 Error Template Example

Programming Tools and Interfaces
Creating Error Templates

¦ Copyright IBM Corp. 1985, 1991
11.5.4 - 3

 11.5.4.1 Replacing Values in the Output Data

 The match_value field provides a function that is similar to a switch
 statement in programming. You can use this function to do either or both
 of the following:

 � Replace an output data value with a character string that describe
 the data. For example, you can replace a numeric error code with a
 description of that error. The replacement character string is called
 a match_label.

 � Change the data descriptor used to format the output data. Fo
 example, you can design error points that will record different data
 at different times, depending on the state of your machine or program.
 You can then define a set of match_values with a different
 data_descriptor for each type of data.

 You can specify any number of match_value fields for a particular output
 data value as long as each field is accompanied by a match_label and/or a
 data_descriptor field. If the output data value matches match_value, the
 error formatter uses the match_label and/or data_descriptor associated
 with the match_value.

 You can use the special string * as a match_value. This will match any
 output data value in the current data field. When the error formatter
 finds this string, it does not check any match_values that occur after
 this string. Therefore, you should use this string as the last
 match_value in a list to provide a default action if none of the other
 match_values are matched.

 If a new data_descriptor follows the match_value, the error formatter uses
 the formats from the new data_descriptor until one of the following
 occurs:

 � It has formatted all of the error entry data

 � It has used all of the defined data_descriptors for the current output
 data.

 The error formatter then looks for a new data_descriptor field to define
 the format for the rest of the data in the error entry. If a new
 data_descriptor is not found, it writes the data literally according to
 the format given in the format field of the last data_descriptor.

 Note: The error formatter compares a match_value field and the current
 output data as two character strings. For real numbers (F format), it
 uses the printf subroutine to round the data to four decimal places. If
 you plan to use a match_value field with output data formatted as a real
 number, the match_value field should use the same precision, four decimal
 places.

Programming Tools and Interfaces
Replacing Values in the Output Data

¦ Copyright IBM Corp. 1985, 1991
11.5.4.1 - 1

 11.5.4.2 Appearance of the Formatted Output Data

 The following examples show you how to format data using a single
 data_descriptor. The data is defined as 8 bytes consisting of IBM4341A.
 The data_descriptor fields have the following values:

 d_label PtrNode
 format A8
 match_value IBM4341A
 match_label Model4X

 Each of the following examples shows a data_descriptor using a combination
 of data_descriptor fields and how the output data would look if it used
 that data_descriptor:

 � If you just specify a format field, the data_descriptor would be:

 A8:

 The formatted error report would show the data as:

 IBM4341A

 � If you specify d_label and format fields, but do not specify a
 match_value field, the data_descriptor would be:

 PtrNode A8:

 The formatted error report would show the data as:

 PtrNode=IBM4341A

 � If you specify format, match_value, and match_label fields, but do not
 specify a d_label field, the data_descriptor would be:

 A8, IBM4341A Model4X:

 The formatted error report would show the data as:

 Model4X

 � If you specify d_label, format, match_value, and match_label fields,
 the data_descriptor would be:

 PtrNode A8, IBM4341A Model4X:

 The formatted error report would show the data as:

 Ptrnode=Model4X

Programming Tools and Interfaces
Appearance of the Formatted Output Data

¦ Copyright IBM Corp. 1985, 1991
11.5.4.2 - 1

 11.5.4.3 Error Template Example

 This section shows you how an error entry using a sample error template
 would appear after being formatted. In the example, a hardware error
 entry was generated for the Serial/Parallel Adapter. The header data for
 the error entry includes the error ID, which in this example is 0x060103.
 Thus, the error identifier in the template is U13. The error entry data
 is listed below:

 ErrorType The type of error encountered (1 ASCII character). The
 format for this data would be A1.

 LastI/O The last character transmitted (1 hexadecimal digit). The
 format for this data would be X1.

 LineStatus The status of the printer (1 decimal word). The format for
 this data would be D4.

 PrinterStatus A 1-bit flag that indicates if the printer is active (1) or
 inactive (0). The format for this data would be B0.1.

 Figure 11-13 shows a sample error template for error entries with an error
 ID of 0x060103. Notice the newline descriptor on the first line of the
 template. This will cause the data to start on a new line.

 --

 U13 Ser/Par: \n: \
 ErrorType A1: \n: Last_I/O X1: LineStatus D4: PrinterStatus \
 B0.1:

 --
 Figure 11-13. Example of an Error Template for Error Entries with Error ID
 613

 Figure 11-14 shows how an error entry using the template U13 would appear
 in a formatted error report. The first entry is from a different error.
 The second entry is the one that uses template U13.

 --

 ERROR LOG REPORT

 Error log: /usr/adm/ras/errfile
 --
 Date/Time Class Subclass Type Device Cause
 Thu May 9 16:54:42 Hardware Diskette Counters DSKT Hardware
 IODN=0004 IOCN=0240
 Base_Port_Address=000003F2
 Dev_Name=DSKT
 Internal_Dev_Type=D1015200
 Switchable_to_Coprocessor
 8_bit_device
 No._Interrupts=1
 Slot_Number=1
 Adapter_Type=52
 Port_Number=00
 Bad_IO_Address_Mark

Programming Tools and Interfaces
Error Template Example

¦ Copyright IBM Corp. 1985, 1991
11.5.4.3 - 1

 Bad_Count=4
 Good_Count=74
 Bad_Threshold=3
 Ratio=0

 --
 Date/Time Class Subclass Type Device Cause
 Thu May 9 16:54:45 Hardware Ser/Par Perm Ser/Par Hardware
 IODN=7 IOCN=600
 Base Port Addr=0278
 Dev Name=Ser/Par
 Internal Dev Type=91002300
 ErrorType=3
 Last_I/O=44 LineStatus=0 PrinterStatus=0

 ==

 --
 Figure 11-14. Example Output from the Error Formatter

Programming Tools and Interfaces
Error Template Example

¦ Copyright IBM Corp. 1985, 1991
11.5.4.3 - 2

 11.5.5 AIX Dump Facility

 The AIX dump facility records the computer's state at the time of a
 failure. The data collected by this dump facility is intended to help you
 or the person servicing your system determine the cause of the failure.
 The AIX dump facility needs to write its output to a configured dump
 device/area. Therefore, before a dump can be performed, you must
 designate where the dump should be stored. This storage area can be
 either minidisk or diskette.

 Subtopics
 11.5.5.1 Designating a Minidisk as the Dump Area
 11.5.5.2 Designating Diskette as the Dump Area
 11.5.5.3 Starting a Dump
 11.5.5.4 Analyzing a Dump

Programming Tools and Interfaces
AIX Dump Facility

¦ Copyright IBM Corp. 1985, 1991
11.5.5 - 1

 11.5.5.1 Designating a Minidisk as the Dump Area

 When you install the operating system, you are given the option of
 creating a dump minidisk. If you did not create a minidisk during
 installation but want to use a minidisk for storing dumps, you can create
 a minidisk with the minidisks command.

Programming Tools and Interfaces
Designating a Minidisk as the Dump Area

¦ Copyright IBM Corp. 1985, 1991
11.5.5.1 - 1

 11.5.5.2 Designating Diskette as the Dump Area

 To designate diskette as the storage area for operating system dumps, do
 the following:

 1. Edit the /etc/system file. Add the following line to the sysparms
 stanza:

 dump=fd0

 2. Build a new kernel. At the # prompt, enter:

 newkernel

 Diskette is now configured as the dump storage area.

Programming Tools and Interfaces
Designating Diskette as the Dump Area

¦ Copyright IBM Corp. 1985, 1991
11.5.5.2 - 1

 11.5.5.3 Starting a Dump

 If the system detects an operating system failure, it may start an
 operating system dump automatically. If the system, or part of the
 system, appears to be hung up (but a dump has not been started
 automatically), you can start an operating system dump by pressing
 Ctrl-Alt-Pad 7. If you are using a minidisk as the storage device, the
 dump is automatically placed on minidisk. If you are using diskette as
 the storage area, the system writes all of your system's real memory to
 diskette and requires multiple diskettes.

 You should have enough formatted diskettes (approximately one for each
 megabyte of memory) available for your system, for example:

 System Memory Number of Diskettes

 2M bytes 2
 3M bytes 3
 4M bytes 3

 If the dump is being stored on diskette, the system prompts you to insert
 a formatted diskette. You may find it useful to number the diskettes in
 the sequence you will use them; such as 1 for the first diskette, 2 for
 the second diskette, and so on.

 The operating system will restart automatically after a system dump.

Programming Tools and Interfaces
Starting a Dump

¦ Copyright IBM Corp. 1985, 1991
11.5.5.3 - 1

 11.5.5.4 Analyzing a Dump

 To determine the cause of the system failure, use the crash utility to
 examine the operating system dump. If you are a very experienced user,
 you may find the crash command useful. See crash in AIX Operating System
 Commands Reference for more information.

 Analyzing a Minidisk Dump Before you analyze a dump to a minidisk, you may
 want to save the dump. If you don't save the dump and another operating
 system dump occurs, the old dump on minidisk is overwritten by the new
 dump. To save a minidisk dump, use the dd command to copy the dump from
 the dump device (/dev/dump) into a file or onto diskettes. For example,
 to save a six-megabyte dump, you might enter the following:

 dd if=/dev/dump of=/u/dumps/dump.xxxx bs=4k count=1536

 where xxxx is a unique suffix that you use to identify that particular
 dump.

 See dd in the AIX Operating System Commands Reference if you need more
 information about the dd command.

 Analyzing a Dump to Diskette: Before you can use the crash command to
 analyze a dump on diskette, you must first use the dd command to copy the
 dump into a file. For example, to copy a three-megabyte dump into a file,
 you would use the following procedure:

 1. Insert first diskette and enter:

 dd if=/dev/rfd0 bs=40k > /u/dumps/dump.xxxx

 2. Insert second diskette and enter:

 dd if=/dev/rfd0 bs=40k >> /u/dumps/dump.xxxx

 3. Insert third diskette and enter:

 dd if=/dev/rfd0 bs=40k >> /u/dumps/dump.xxxx

 where xxxx is a unique suffix that you use to identify that particular
 dump.

 See dd in the AIX Operating System Commands Reference if you need more
 information about the dd command.

Programming Tools and Interfaces
Analyzing a Dump

¦ Copyright IBM Corp. 1985, 1991
11.5.5.4 - 1

 12.0 Chapter 12. Debugging Programs

 Subtopics
 12.1 CONTENTS
 12.2 About This Chapter
 12.3 Compiling Your Program for Debugging
 12.4 The dbx Symbolic Debugger
 12.5 dbx Command Summary
 12.6 Invoking the dbx Debugger
 12.7 Other Invocation Options
 12.8 Controlling Program Execution
 12.9 Setting and Deleting Breakpoints
 12.10 Running Your Program
 12.11 Separating dbx Output From Program Output
 12.12 Tracing Execution
 12.13 Signal Handling
 12.14 Calling Procedures
 12.15 Displaying a Stack Trace
 12.16 Printing Variables and Expressions
 12.17 Displaying and Modifying Variables
 12.18 Scoping of Names
 12.19 Variables in Unnamed Blocks
 12.20 Expressions
 12.21 Operators Allowed in Expressions
 12.22 Type Checking in Expressions
 12.23 Folding Variables to Lower and Upper Case
 12.24 Special Debugger Variables to Change Print Output
 12.25 Displaying and Manipulating the Source File
 12.26 Changing the Source Directory Path
 12.27 Displaying the Current File
 12.28 Changing the Current File or Procedure
 12.29 The dbx Debugging Environment
 12.30 The Alias Facility
 12.31 Changing the dbx Prompt
 12.32 Customizing Your Environment With .dbxinit
 12.33 Reading dbx Commands From a File
 12.34 Running Shell Commands From dbx
 12.35 Getting Help
 12.36 References
 12.37 dbx Vector Processor Support

Programming Tools and Interfaces
Chapter 12. Debugging Programs

¦ Copyright IBM Corp. 1985, 1991
12.0 - 1

 12.1 CONTENTS

Programming Tools and Interfaces
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
12.1 - 1

 12.2 About This Chapter

 This chapter describes the AIX language debug program. It is used to
 debug programs that have been compiled using the AIX C, VS Pascal or VS
 FORTRAN languages. You can only debug programs that are on a local
 machine. This chapter explains how to use dbx to help locate and fix
 program logic problems (bugs). Although the debug program is basically
 the same for the PS/2 and System/370, the sample output in this chapter
 uses PS/2 format.

Programming Tools and Interfaces
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
12.2 - 1

 12.3 Compiling Your Program for Debugging

 The AIX compilers can optionally generate symbolic information. To
 generate symbolic information for an AIX C program Cprog.c, compile the
 program as follows:

 cc -g Cprog.c -o Cprog

 This will produce a file called Cprog, consisting of executable code
 resulting from Cprog.c, plus additional symbolic information generated
 from Cprog.c as a result of the -g option.

 If an executable has more than one compilation module, each module will
 have its own corresponding symbolic debugging information (see the example
 below). If you have not compiled a particular module using the -g flag,
 that module can be debugged at the machine level only.

 Example

 cc -g Cmain.c Csub1.c Csub2.c -o Cmain

 This will produce file Cmain, which will contain executable code resulting
 code resulting from Cmain.c, plus additional symbolic information
 generated from each of Cmain.c, Csub1.c, and Csub2.c.

 Note: Pascal and FORTRAN programs may be compiled as in the above
 examples. Substitute a Pascal (.p) or FORTRAN (.f) for the C (.c) suffix.

Programming Tools and Interfaces
Compiling Your Program for Debugging

¦ Copyright IBM Corp. 1985, 1991
12.3 - 1

 12.4 The dbx Symbolic Debugger

 Using the dbx symbolic debugger you can:

 � Debug programs at either the source language or assembler languag
 level.

 � Set breakpoints at selected statements and machine instructions wit
 conditions for activation.

 � Run a program one line or one instruction at a time

 � Access variables symbolically and display them in the correct format

 � Display or modify the contents of machine registers, variables, an
 memory.

 � Examine the source text using simple search functions or your ow
 editor.

 � Debug processes and subprocesses that contain fork and exec system
 calls.

 � Interrupt and examine a program that is already in progress

 � Trace execution of a program by line, instruction, routine, o
 variable.

 � Display expressions using a wide range of operators

 � Print a list (stack trace) of the active routines and thei
 parameters.

 � Print declarations of variables, along with their fully qualifie
 names.

 � Customize your interface to the debugger through command aliasing

 � Personalize your debugging environment with an initialization file

 � Call program or diagnostic routines directly from the debugger

 � Invoke your choice of editors and shell commands during the debuggin
 session.

 � Open a virtual terminal to separate debugger interaction from you
 program in HFT-supported systems.

 � Issue commands from either standard input or a named file

 � Modify the directory list from which to search for source files

 Subtopics
 12.4.1 Notational Conventions

Programming Tools and Interfaces
The dbx Symbolic Debugger

¦ Copyright IBM Corp. 1985, 1991
12.4 - 1

 12.4.1 Notational Conventions

 The following notational conventions are used in this chapter:

 [] Items enclosed in brackets are optional. Brackets enclosed in
 quotation marks specify actual bracket characters.

 | Items separated by the or-symbol represent a mutually exclusive
 list. One and only one of these items must be chosen from the
 list.

 In addition, items in bold print must be typed as shown. Information that
 the user supplies is printed in italic.

Programming Tools and Interfaces
Notational Conventions

¦ Copyright IBM Corp. 1985, 1991
12.4.1 - 1

 12.5 dbx Command Summary

 The following is a list of dbx commands with a short description of each.
 For more information, see AIX Operating System Commands Reference.

 Subtopics
 12.5.1 Starting dbx
 12.5.2 Setting and Deleting Breakpoints
 12.5.3 Running Your Program from dbx
 12.5.4 Tracing Program Execution
 12.5.5 Ending Program Execution
 12.5.6 Displaying the Source File
 12.5.7 Printing and Modifying Variables, Expressions, and Types
 12.5.8 Procedure Calling
 12.5.9 Signal Handling
 12.5.10 Machine Level Debugging
 12.5.11 Debugging Environment

Programming Tools and Interfaces
dbx Command Summary

¦ Copyright IBM Corp. 1985, 1991
12.5 - 1

 12.5.1 Starting dbx

 dbx [objfile [corefile]]
 Starts dbx using objfile as the program. If no objfile is
 specified, the default is a.out.
 dbx -c cmdfile [objfile]
 Runs the dbx commands in cmdfile before reading from standard
 input.
 dbx -I dir [objfile]
 Adds dir to the list of directories that are searched when
 looking for a source file.
 dbx -r objfile
 Runs objfile immediately, and enters dbx only if the program
 terminates unsuccessfully.
 dbx -a pid
 Attaches dbx to a process already in progress with process ID =
 pid.

Programming Tools and Interfaces
Starting dbx

¦ Copyright IBM Corp. 1985, 1991
12.5.1 - 1

 12.5.2 Setting and Deleting Breakpoints

 stop at linenumber [if condition]
 Stops execution at linenumber.
 stop in procedure/function [if condition]
 Stops execution when the procedure is reached.
 stop variable [in procedure/function] [if condition]
 Stops execution when the value of variable is modified.
 stop if condition
 Stops execution when the condition is true.
 status [>filename]
 Displays the currently active breakpoints and trace events.
 delete event-number [, event-number, ...]
 Removes the breakpoint and trace events associated with the
 event numbers.
 clear linenumber
 Removes all breakpoints at the given source line.
 cleari address
 Removes all breakpoints at the given memory location.
 delete all
 Removes all breakpoints and trace events.

Programming Tools and Interfaces
Setting and Deleting Breakpoints

¦ Copyright IBM Corp. 1985, 1991
12.5.2 - 1

 12.5.3 Running Your Program from dbx

 run [args] [<inputfile] [>outputfile] [>>outputfile] [2>errfile]
 [2>>errfile] [>&outerrfile] [>>&outerrfile]
 Starts executing program, passing args as command line
 arguments. Redirection of input, output, and errors occurs in
 the usual manner.
 rerun [args] [<inputfile] [>outputfile] [>>outputfile] [2>errfile]
 [2>>errfile] [>&outerrfile] [>>&outerrfile]
 Same as run, except the default argument list is the previous
 argument list specified in a run or rerun.
 cont [signalnum | signalname]
 Continues execution of the program from where it stopped. If a
 signal is specified, the process continues as though it received
 the signal.
 step [num]
 Executes one or num program source line(s).
 next [num]
 Executes up to the next or next num program source line(s).
 next ignores breakpoints set in called procedures.
 return [procedure]
 Continues execution until a return to procedure is executed, or
 until the current procedure returns if procedure is not
 specified.
 stepi [num]
 Executes one or num machine instruction.
 nexti [num]
 Executes up to the next or next num machine instruction(s).
 nexti does not stop execution during execution of called
 procedures.
 goto source_linenumber
 Changes the next line to be executed to source_linenumber.
 gotoi address
 Changes the program counter to address.

Programming Tools and Interfaces
Running Your Program from dbx

¦ Copyright IBM Corp. 1985, 1991
12.5.3 - 1

 12.5.4 Tracing Program Execution

 trace
 Prints each source line executed in the program.
 trace in procedure/function [if condition]
 Prints each source line executed while procedure/function is
 active.
 trace source_linenumber [if condition]
 Prints the source line when execution reaches source_linenumber.
 trace expression at linenumber [if condition]
 Prints value of expression at linenumber.
 trace variable [in procedure/function] [if condition]
 Prints tracing information when the value of variable changes.
 tracei [variable] [at address] [if condition]
 Traces one program instruction.
 tracei address [if condition]
 Prints tracing information when the contents of address changes.
 watch variable [in procedure/function] [if condition]
 The same as trace except running under xdbx. Under xdbx,
 information printed is placed in a special watch window.
 where [>filename]
 Displays a stack trace of procedures and parameters.

Programming Tools and Interfaces
Tracing Program Execution

¦ Copyright IBM Corp. 1985, 1991
12.5.4 - 1

 12.5.5 Ending Program Execution

 quit
 Exits from the debugger and the program.

Programming Tools and Interfaces
Ending Program Execution

¦ Copyright IBM Corp. 1985, 1991
12.5.5 - 1

 12.5.6 Displaying the Source File

 use directory1 directory2 ...
 Sets the list of directories to search for source files to the
 directories listed in this command.
 list [linenumber_expression1 [, linenumber_expression2]]
 Displays the lines in the current source file from
 linenumber_expression1 or from linenumber_expression1 to
 linenumber_expression2. If no lines are specified, the next 10
 lines are listed unless the $listwindow debugger variable is set
 to some other value.
 list procedure/function
 Displays lines surrounding the first line of procedure or
 function.
 listi procedure/function
 Lists instructions from the specified procedure or function.
 listi at source_linenumber
 Lists instructions beginning at the source_linenumber.
 listi [address1][, address2]]
 Lists instructions at address1, or instructions from address1 to
 address2 inclusive.
 file [filename]
 Changes the current file to filename. If no file is specified,
 then the current source filename is displayed.
 func [procedure/function]
 Changes the current procedure or function. If no procedure or
 function is specified, then the current function is displayed.
 / regular_expression [/]
 Searches forward in the current source file for the given
 expression.
 ? regular_expression [?]
 Searches backward in the current source file for the given
 expression.
 edit [filename]
 Invokes an editor on filename or the current source file if none
 is specified.
 edit procedure/function
 Invokes an editor on the file containing the specified procedure
 or function.

Programming Tools and Interfaces
Displaying the Source File

¦ Copyright IBM Corp. 1985, 1991
12.5.6 - 1

 12.5.7 Printing and Modifying Variables, Expressions, and Types

 print expression [, expression...]
 Prints the values of the given expressions.
 dump [procedure] [>filename]
 Prints the names and values of the variables in procedure, or
 the current procedure if none is specified.
 assign variable = expression
 Assigns the value of expression to variable.
 assign addr = expression
 Assigns the value of expression to location addr in memory.
 case [default | mixed | lower | upper]
 Changes the way in which symbols are interpreted. The default
 handling of symbols is based upon the current language. Symbols
 are folded to lower case unless C is the current language. This
 command should be used if a symbol needs to be interpreted in a
 way that is not consistent with the current language. Entering
 this command with no parameters displays the current case mode.
 whatis identifier/type
 Displays the declaration of identifier or type which may be
 qualified with block names as above.
 which identifier
 Displays the full qualification of identifier (the outer blocks
 that contain the identifier).
 whereis identifier
 Displays the full qualification of all symbols that match
 identifier. Order of output is not meaningful.

Programming Tools and Interfaces
Printing and Modifying Variables, Expressions, and Types

¦ Copyright IBM Corp. 1985, 1991
12.5.7 - 1

 12.5.8 Procedure Calling

 call procedure (parm1, parm2, ...)
 Executes the object code associated with procedure.
 print function (parm1, parm2, ...)
 Executes the object code associated with function and prints any
 value returned by function.

Programming Tools and Interfaces
Procedure Calling

¦ Copyright IBM Corp. 1985, 1991
12.5.8 - 1

 12.5.9 Signal Handling

 catch [signalnum | signalname]
 Causes dbx to trap a signal before it is sent to your program.
 Signals can be specified by number or by name. Signal names are
 not case sensitive and the SIG prefix is optional. Use this
 command with no arguments to list trapped signals.
 ignore [signalnum | signalname]
 Stops trapping a signal before it is sent to your program.

Programming Tools and Interfaces
Signal Handling

¦ Copyright IBM Corp. 1985, 1991
12.5.9 - 1

 12.5.10 Machine Level Debugging

 address1, address2 / [mode] [>filename]
 Prints the contents of memory starting at address1 and
 continuing to address2. The mode specifies how memory is to be
 printed.
 address / [count] [mode] [>filename]
 Prints the contents of memory starting at address until count
 items have been displayed. The mode specifies how memory is to
 be printed.
 stopi address | variable [if condition]
 Halts execution when the value of variable or address is
 changed.
 stopi at address [if condition]
 Stops execution when the machine instruction is reached.
 stopi if condition [at address]
 Stops execution when the condition is met.
 tracei [at address] [if condition]
 Traces execution of the specified machine instruction.
 tracei address | variable [if condition]
 Traces modification of the specified machine location.
 stepi [num]
 Executes one or num machine instruction.
 nexti [num]
 Executes up to the next or next num machine instruction(s).
 nexti does not follow branch and link instructions; it continues
 until execution returns to the next instruction.
 registers [>filename]
 Displays the values of the machine registers and the current
 instruction.
 gotoi address
 Changes the program counter to address.

Programming Tools and Interfaces
Machine Level Debugging

¦ Copyright IBM Corp. 1985, 1991
12.5.10 - 1

 12.5.11 Debugging Environment

 alias [aliasname [commandname]]
 Builds a user alias from the arguments specified. Specifying
 alias with no arguments displays the current aliases in effect.
 alias aliasname "commandstring"
 Builds a user alias.
 alias aliasname (parm1, parm2, ...) "commandstring"
 Builds a user alias from the arguments specified. Specifying
 alias with one argument displays the replacement string
 associated with that alias.
 unalias aliasname
 Removes an alias with the given name.
 prompt "promptstring"
 Changes the dbx prompt to promptstring.
 help
 Lists the dbx commands. Specifying the help command provides
 more information about a specific command. On an AIX/370
 system, the help command provides a list of command names. To
 request more information on a specific command, type help
 command.
 source filename
 Reads dbx commands from filename.
 sh commandline
 Passes commandline to the shell for execution. If commandline
 is missing, the shell is entered for use until it is exited, at
 which time control returns to dbx. The SHELL environment
 variable determines which shell is used.

Programming Tools and Interfaces
Debugging Environment

¦ Copyright IBM Corp. 1985, 1991
12.5.11 - 1

 12.6 Invoking the dbx Debugger

 There are three ways to start a debug session with dbx:

 dbx [options] [objfile [corefile]]
 This is the usual way to invoke dbx. If objfile is not
 specified, then dbx asks for the name of the object file to be
 examined. The default is a.out. If either corefile is
 specified or a file named core exists in the current directory,
 then dbx reports the location where the program faulted.
 Examining variables, registers, and memory is applicable to the
 core image until execution of objfile begins. dbx prompts for
 commands at that time.
 dbx -r [options] [objfile]
 Use the -r option if you only want to enter the debugger if your
 program terminates abnormally. If objfile terminates
 successfully, dbx exits. Otherwise, the reason for termination
 is reported and you enter the debugger.
 dbx [options]-a pid
 Use the -a option if you want to debug a process that is already
 in progress. In order to use this option, you must have
 permission to kill the process that has a process ID of pid.
 dbx interrupts the process if access is allowed, determines the
 full path name of the object file, reads in the symbolic
 information, and then prompts for commands. Interaction at that
 point is no different than if you invoked dbx to begin execution
 of the process.

 The following program examples show the generation and use of an
 executable program called samp. When the program runs, it produces a bus
 error and stops. The commands show how to start and end the dbx program.

 In the first example, the program samp has run, faulted, and caused a core
 image to be written. dbx can be used to examine the core-image dump and
 attempt to determine the location of the error within the program.

 Compile the program with the -g option to get symbolic debugging
 capability. The symbolic information for the samp program will be stored
 in the executable file.

 cc -g samp.c -o samp
 samp
 Bus error - core dumped
 dbx samp
 dbx version 1.1 for AIX
 Type 'help' for help.
 reading symbolic information ...
 [using memory image in core]
 25 x[i] = 0;
 (dbx) quit

 In the second example, dbx can be used to examine the state of the process
 in memory even though a core-image dump is not taken:

 dbx -r samp
 Entering debugger ...
 dbx version 1.1 for AIX
 Type 'help' for help.
 reading symbolic information ...

Programming Tools and Interfaces
Invoking the dbx Debugger

¦ Copyright IBM Corp. 1985, 1991
12.6 - 1

 bus error in main at line 25
 25 x[i] = 0;
 (dbx) quit

 The third way of invoking dbx is used in order to attach to a process that
 is already running. Consider the following program, looper.c, which has a
 misplaced semicolon:

 for (i = 0; i < 10;);
 printf(x[i]);

 Compile the program with the -g option to get symbolic debugging
 capability:

 $ cc -g looper.c -o looper

 Run the following program from the command line:

 $ looper

 Seeing that your program is not terminating as expected, you want to debug
 it. In order to attach to looper, you must determine the ID number
 associated with the process. You must have another virtual terminal open
 if you did not run looper as a background process. From the other virtual
 terminal, run the system command ps -u userid, where userid is your login
 ID. All active processes that belong to you are displayed:

 PID TTY TIME COMMAND
 68 console 0:04 sh
 467 hft/3 10:48 looper

 The process ID associated with looper is 467. Attach dbx to looper:

 $ dbx -a 467
 Waiting to attach to process 467 ...
 Determining program name ...
 Successfully attached to /u/user/looper ...
 dbx version 2.2 for AIX
 Type 'help' for help.
 reading symbolic information ...
 (dbx)

 You can now query and debug the process as if it had been originally
 started with dbx.

Programming Tools and Interfaces
Invoking the dbx Debugger

¦ Copyright IBM Corp. 1985, 1991
12.6 - 2

 12.7 Other Invocation Options

 dbx -I dir1 -I dir2 ... [options] [objfile [corefile]]
 Adds dir1 and dir2 to the list of directories that are searched
 when looking for a source file. Normally dbx looks for source
 files in the current directory and in the directory where
 objfile is located. If your source is in /u/user/src and
 /u/group/src, and objfile is in /u/user/bin, then the -I option
 should be used so that dbx can find the source automatically:

 dbx -I /u/user/src -I /u/group/src objfile

 The use command can be used for this purpose once dbx is
 invoked. The use command differs in that it resets the list of
 directories to be searched, whereas the -I option adds a
 directory to the list.
 dbx -c cmdfile [options] [objfile [corefile]]
 Executes the dbx commands in cmdfile before accepting commands
 from standard input. The source command can be used for this
 purpose once dbx is invoked.

Programming Tools and Interfaces
Other Invocation Options

¦ Copyright IBM Corp. 1985, 1991
12.7 - 1

 12.8 Controlling Program Execution

 dbx allows you to set breakpoints (stopping places) in the program. After
 entering dbx, you can specify what lines or addresses are to be
 breakpoints, and then run the program with dbx. When the program reaches
 a breakpoint, it halts and reports that it has reached a breakpoint. You
 can then use dbx commands to examine the state of your program.

 An alternative to setting breakpoints is to run your program one line or
 instruction at a time, a procedure known as single stepping. In the
 following sections, we show how to set and delete breakpoints, begin
 program execution, and control program execution.

Programming Tools and Interfaces
Controlling Program Execution

¦ Copyright IBM Corp. 1985, 1991
12.8 - 1

 12.9 Setting and Deleting Breakpoints

 Use the stop command to set breakpoints in dbx. There are four variations
 of the stop command for programs compiled with the debug flag (usually
 -g):

 stop at linenumber [if condition]
 A source linenumber is an optional file name and a : (colon)
 followed by a line number. For example, (dbx) stop at
 "hello.c":23 or (dbx) stop at 23. The optional if condition
 specifies that execution should be halted at the specified line
 number if the condition is true when the line number is reached.
 Line numbers are relative to the beginning of the source file.
 A condition is an expression that evaluates to true or false.
 Valid expressions are described further in "Printing Variables
 and Expressions" in topic 12.16.
 stop in procedure/function [if condition]
 Use this version of stop to stop the program at the first
 executable line number in a procedure or function. For example,
 using C, (dbx) stop in main or using FORTRAN and Pascal, (dbx)
 stop in programname.
 stop variable [if condition]
 Use this version of stop to stop the program when the value of
 variable changes. For example, (dbx) stop x.
 stop if condition
 Use this version to stop the program whenever condition
 evaluates to true. For example, (dbx) stop if (x > y) and (x <
 20000).

 After any of the above commands, dbx responds with a message reporting the
 event it has built as a result of your command. The message includes the
 event ID associated with your breakpoint along with an interpretation of
 your command. The syntax of the interpretation might not be exactly the
 same as your command. The following are examples:

 (dbx) stop in main
 [1] stop in main
 (dbx) stop at 19 if x == 3
 [2] if x = 3 { stop } at "hello.c":19

 The numbers in the brackets are the event identifiers associated with the
 breakpoints. When the program is halted as the result of one of the
 events, the event identifier is displayed along with the current line in
 order to show what event caused the program to stop. The events you
 create exist with internal events created by dbx, so event identifiers
 might not always be sequential.

 Use the status command to display all of the current events. You can
 redirect output from status to a file. Each event is displayed in the
 same form as when it was generated.

 There are two commands used to delete breakpoints: delete and clear. Use
 delete to eliminate events by event identifier. Use clear to delete
 breakpoints by line number. Use delete all to remove all breakpoints and
 trace events. The following examples show how to display the active
 events and remove them:

 (dbx) status
 [1] stop in main
 [2] if x = 3 { stop } at "hello.c":19

Programming Tools and Interfaces
Setting and Deleting Breakpoints

¦ Copyright IBM Corp. 1985, 1991
12.9 - 1

 (dbx) delete 1

 (dbx) status
 [2] if x = 3 { stop } at "hello.c":19
 (dbx) clear 19
 (dbx) status
 (dbx)

Programming Tools and Interfaces
Setting and Deleting Breakpoints

¦ Copyright IBM Corp. 1985, 1991
12.9 - 2

 12.10 Running Your Program

 The run command starts your program. The command format is:

 run [args] [< inputfile] [> outputfile] [>> outputfile] [2> errfile] [2>>
 errfile] [>& outerrfile] [>>& outerrfile]

 This tells dbx to begin running objfile, passing args just as if they were
 typed on the shell command line. Input can be redirected from inputfile
 and to outputfile by using the preceding angle-bracket notation. The rerun
 command has the same form as run; the difference is that if no arguments
 are passed, the argument list from the previous execution is used.

 Note: dbx may produce unexpected results if the program being run forks a
 child.

 After your program begins, it continues until one of the following:

 � The program reaches a breakpoint

 � A signal occurs that is not ignored. For example, INTERRUPT or QUIT.

 � A multiprocess event occurs while multiprocess Debugging is enabled

 � The program completes

 In each case, dbx receives control and displays a message explaining why
 the program stopped.

 There are several ways to continue the program once it is stopped:

 cont [signalnum | signalname]
 Continues the program from where it stopped. If a signal is
 specified, the process continues as though it received the
 signal. Signals can be specified by number, name, or name
 without the SIG prefix. Signal names can be either lower or
 upper case. The following commands are equivalent:

 cont 3
 cont SIGQUIT
 cont quit

 step [num]
 Runs one or num source line(s).
 next [num]
 Runs up to the next or next num source line(s).

 A common method of debugging is to step through your program one line at a
 time. The step and next commands are for that purpose. The distinction
 between these two commands is apparent only when the next source line to
 be run involves a call to a function or procedure. In this case, the step
 command stops in the subroutine, whereas the next command runs until the
 subroutine has finished and then stops at the next instruction after the
 call.

 With step, the debugger stops after each machine instruction to see if the
 program has reached any line numbers. With next, the debugger sets an
 internal breakpoint at the address associated with the next line number
 and runs until that breakpoint is reached.

Programming Tools and Interfaces
Running Your Program

¦ Copyright IBM Corp. 1985, 1991
12.10 - 1

 There is no event number associated with these stops because there is no
 permanent event associated with stopping a program.

 return [procedure]
 Continues execution until a return to procedure is encountered,
 or until the current procedure returns if procedure is not
 specified.

 If you accidentally step into a subroutine that you do not want
 to step through, you can use the return command to run through
 the current procedure or to a specified procedure.

Programming Tools and Interfaces
Running Your Program

¦ Copyright IBM Corp. 1985, 1991
12.10 - 2

 12.11 Separating dbx Output From Program Output

 This command is useful for debugging programs that are screen oriented,
 such as text editors or graphics programs. If screen is not used, dbx
 output is intermixed with program output.

 screen
 Opens a virtual terminal for dbx command interaction. The
 program continues to operate in the window in which it
 originated. This applies to HFT-supported systems only.

Programming Tools and Interfaces
Separating dbx Output From Program Output

¦ Copyright IBM Corp. 1985, 1991
12.11 - 1

 12.12 Tracing Execution

 The trace command tells dbx to print information about the state of the
 program while the program is running. trace can slow your program
 considerably, depending on how much work dbx has to do. There are five
 basic forms of program tracing:

 trace
 Single steps the program, printing out each source line that is
 executed. This can be very slow for the same reasons that step
 can be slow.
 trace in procedure/function [if condition]
 Restricts the printing of source lines to when the specified
 procedure or function is active. You can specify an optional
 condition to control when trace information should be produced.
 For example:

 (dbx) trace in sub2
 [1] trace in sub2
 (dbx) run
 trace in hellosub.c: 8 printf("%s",s);
 trace in hellosub.c: 9 i = '5';
 trace in hellosub.c: 10 }

 trace procedure/function [in procedure/function] [if condition]
 Displays a message each time procedure or function is called or
 returned from. When procedure or function is called, the
 information includes passed parameters and the name or function
 of the calling routine. On a return, the information includes
 the return value from procedure or function. The following is
 an example:

 (dbx) trace sub
 [1] trace sub
 (dbx) run
 calling sub(s = "hello", a = -1, k = delete) from function main
 returning "hello" from sub

 trace linenumber [if condition]
 Prints linenumber when the program reaches that line.
 trace expression at linenumber [if condition]
 Prints the value of expression when the program reaches
 linenumber. The line number and file are printed, but the
 source line is not. For example:

 (dbx) trace x*17 at "hellosub.c":8 if (x > 0)
 [1] if x > 0 { trace x*17 } at "hellosub.c":8
 (dbx) run
 at line 8 in file "hellosub.c": x*17 = 51

 trace variable [in procedure/function] [if condition]
 Prints the location in the program and the value of variable
 each time the memory location associated with variable is
 modified. This is the slowest form of trace. The following is
 an example:

 (dbx) trace x
 [1] trace x
 initially (at line 4 in "hello.c"): x = 0
 after line 17 in "hello.c": x = 3

Programming Tools and Interfaces
Tracing Execution

¦ Copyright IBM Corp. 1985, 1991
12.12 - 1

 When a trace command is executed, the event ID associated is displayed
 along with the internal representation of the event. Deleting trace
 events is the same as deleting stop events.

Programming Tools and Interfaces
Tracing Execution

¦ Copyright IBM Corp. 1985, 1991
12.12 - 2

 12.13 Signal Handling

 dbx can either trap or ignore signals before they are sent to your
 program. Each time your program is to receive a signal, dbx is notified.
 If the signal is to be ignored, it is passed to your program; otherwise,
 dbx stops the program and notifies you that a signal has been trapped.
 Change the default handling with the catch and ignore commands:

 catch [signalnum | signalname]

 ignore [signalnum | signalname]
 Starts or stops trapping a signal before it is sent to your
 program. You can specify the signal by number or by name; names
 are not case sensitive, and the SIG prefix is optional. By
 default, all signals are trapped except SIGCONT, SIGCLD,
 SIGALRM, and SIGKILL. If no arguments are given, the signals
 currently caught or ignored are listed.

 In the following example, a program uses SIGGRANT and SIGRETRACT to handle
 allocation of resources. You do not want to stop dbx each time one of
 these signals is received:

 (dbx) ignore SIGGRANT
 (dbx) ignore SIGRETRACT
 %(dbx) ignore
 CONT CLD ALARM KILL GRANT RETRACT

 Note: dbx reserves the SIGTRAP signal for controlling the execution of
 the program. Therefore, abnormal behavior may result if the program
 receives the SIGTRAP signal from a process other than dbx.

Programming Tools and Interfaces
Signal Handling

¦ Copyright IBM Corp. 1985, 1991
12.13 - 1

 12.14 Calling Procedures

 You can call any of your program procedures from dbx in order to test
 different arguments or you can call diagnostic routines that format data
 in order to aid in debugging. There are two ways to call a procedure:

 call procedure (parm1, parm2, ...)
 Runs the object code associated with procedure.
 print procedure (parm1, parm2, ...)
 Runs the object code associated with procedure and prints the
 value returned by procedure.

 Note: A function can be used in any expression.

Programming Tools and Interfaces
Calling Procedures

¦ Copyright IBM Corp. 1985, 1991
12.14 - 1

 12.15 Displaying a Stack Trace

 To get a listing of the procedure calls preceding a program halt, use the
 where command:

 where [> filename]

 In the following example, the executable object file hello consists of two
 source files and three procedures, including the standard procedure main.
 The program stopped at a breakpoint in procedure sub2.

 (dbx) run
 [1] stopped in sub2 at line 4 in file "hellosub.c"
 4 printf ("%s",s);
 (dbx) where
 sub2(s = "hello", n = 52), line 4 in "hellosub.c"
 sub(s = "hello", a = -1, k = delete), line 31 in "hello.c"
 main(0x0, 0x0, 0x0), line 19 in "hello.c"

 The stack trace shows the calls in reverse order. Starting at the bottom,
 the following events occurred:

 1. Shell called main with three arguments, even though no arguments were
 declared in main. These three arguments represent the standard
 arguments passed into the main program: argc, argv, and environ.

 2. main called procedure sub at line 19 with values s = "hello", a = -1,
 and k = delete.

 3. sub called procedure sub2 at line 31 with values s = "hello" and n =
 52.

 4. The program stopped in procedure sub2 at line 4.

 If the debugger variable $noargs is set, then the arguments passed to
 procedures are not displayed.

 You can also display portions of the stack with the up and down commands:

 up [count]

 down [count]
 Moves the current context in the stack by count levels.

 For example:

 (dbx) up 0
 sub2(s = "hello", n = 54), line 4 in "hellosub.c"
 (dbx) up 2
 main(0x0, 0x0, 0x0), line 19 in "hello.c"
 (dbx) down
 sub(s = "hello", a = -1, k = delete), line 31 in "hello.c"

 Refer to the appropriate chapter on Mixing Languages in the C, Pascal, and
 FORTRAN User Guides for a description of the system calling conventions.

Programming Tools and Interfaces
Displaying a Stack Trace

¦ Copyright IBM Corp. 1985, 1991
12.15 - 1

 12.16 Printing Variables and Expressions

 You can use dbx to display a wide range of expressions. Specify
 expressions with a common subset of C and Pascal syntax, with some FORTRAN
 extensions.

 Indirection or pointer dereferencing can be denoted using either a prefix
 * (asterisk) or a postfix ^ (caret), and array expressions can be
 subscripted by either [] (brackets) or () (parentheses). The field
 reference operator for structures . (period) can be used with pointers as
 well as structures, making the C operator (arrow) unnecessary, although
 it is allowed. The & (ampersand) operator can be used to get the address
 of a variable.

Programming Tools and Interfaces
Printing Variables and Expressions

¦ Copyright IBM Corp. 1985, 1991
12.16 - 1

 12.17 Displaying and Modifying Variables

 print expression [, expression ...]
 Prints the values of the given expressions.
 dump [procedure] [> filename]
 Prints the names and values of the variables in procedure, or
 the current procedure if procedure is not specified.
 dump
 Prints all live variables.
 assign variable = expression
 Assigns the value of expression to variable.

 To display an expression, use print. To print the names and values of
 variables, use dump. If the given procedure is . (period), then all
 active variables are printed. To modify the value of a variable, use
 assign.

 For example, in a C program, you have an automatic integer variable x with
 value 7, and you are in procedure sub2 with parameters s and n:

 (dbx) print x, n
 7 52
 (dbx) assign x = 3*x
 (dbx) print x
 21
 (dbx) dump
 sub2(s = "hello", n = 52)
 x = 21

Programming Tools and Interfaces
Displaying and Modifying Variables

¦ Copyright IBM Corp. 1985, 1991
12.17 - 1

 12.18 Scoping of Names

 Names are resolved first by using the static scope of the current
 function, and then by using the dynamic scope if the name is not defined
 in the first scope. If static and dynamic searches do not yield a result,
 an arbitrary symbol by the same name is chosen and the message [using
 qualified name] is printed. The name resolution procedure can be
 overridden by qualifying an identifier with a block name (such as
 module.variable). In C, source files are treated as modules named by the
 file name without the suffix. For example, variable x which is declared
 in procedure sub inside file hello.c has a fully qualified name of
 hello.sub.x. The program itself has the name . (period). In Pascal and
 FORTRAN, module is the program name. For example, var x, which is
 declared in proc sub in program pmain inside file hello.p has a fully
 qualified name of "pmain.sub.x."

 Two dbx commands are helpful in determining which symbol is found when
 there are multiple symbols with the same name:

 which identifier
 Displays the full qualification of identifier (the outer blocks
 that contain the identifier).
 whereis identifier
 Displays the full qualification of all symbols that match
 identifier. Order is not meaningful.

 The following is an example after stopping in sub2:

 (dbx) which s
 hellosub.sub2.s
 (dbx) whereis s
 hellosub.sub2.s hello.sub.s hello.main.s

 The example shows there are three procedures in the program that have a
 symbol named s.

Programming Tools and Interfaces
Scoping of Names

¦ Copyright IBM Corp. 1985, 1991
12.18 - 1

 12.19 Variables in Unnamed Blocks

 In the C language, it is possible to declare variables which are "local"
 to a set of enclosing braces ({ }) or "unnamed blocks." dbx names each
 unnamed block uniquely within each module. For example, the first unnamed
 block in the module will be identified as "$b2," the second as "$b3,"
 etc.. Variables declared within each such block are local to that block.

Programming Tools and Interfaces
Variables in Unnamed Blocks

¦ Copyright IBM Corp. 1985, 1991
12.19 - 1

 12.20 Expressions

 An expression can be either:

 � A variabl

 � One or more operands combined with one or more operators

Programming Tools and Interfaces
Expressions

¦ Copyright IBM Corp. 1985, 1991
12.20 - 1

 12.21 Operators Allowed in Expressions

 The following types of operations are valid in expressions:

 Algebraic: +,-,*,/(floating division), div(integral division), mod,
 exp(exponentiation)

 Bitwise: |, bitand, xor, ~, <<, >>

 Logical: or, and, not

 Comparison: <, >, <=, >=, <> or !=, = or ==

 Logical and comparison expressions are allowed as conditions in stop and
 trace commands.

Programming Tools and Interfaces
Operators Allowed in Expressions

¦ Copyright IBM Corp. 1985, 1991
12.21 - 1

 12.22 Type Checking in Expressions

 Expression types are checked, and can be overridden with a type renaming
 or casting operator. There are two forms of type renaming:

 typename (expression)

 expression \ typename

 Both the typename and expression must be one of the following type
 specifiers:

 � in
 � signed in
 � unsigned in
 � lon
 � signed lon
 � unsigned lon
 � cha
 � signed cha
 � unsigned cha
 � shor
 � signed shor
 � unsigned shor
 � floa
 � doubl
 � long double

 The following is an example where x is an integer with value 97:

 (dbx) print x
 97
 (dbx) print char (x), x \ char, x
 'a' 'a' 97

 The whatis command prints the declaration of an identifier, which can then
 be qualified with block names as in the following example:

 (dbx) whatis sub2
 int sub2(s,n)
 char *s;
 int n;
 (dbx) whatis hello.sub.k
 enum status k;

 You can also print the declaration of a c enumeration, structure, or union
 tag. the construct $$tagname is used for that purpose:

 (dbx) whatis $$status
 enum $$status { run, create, delete, suspend };

 The expression in an assign command must match the variable to which it is
 being assigned. If the types do not match, then an error message is
 displayed. The expression type can then be altered with a type renaming,
 or type checking can be disabled by setting a special dbx debugger
 variable named $unsafeassign. for example, using n and status as in the
 previous example:

Programming Tools and Interfaces
Type Checking in Expressions

¦ Copyright IBM Corp. 1985, 1991
12.22 - 1

 (dbx) assign n = delete
 incompatible types
 (dbx) assign n = int (delete)
 (dbx) print n, $$status (n)
 2 delete
 (dbx) set $unsafeassign
 (dbx) assign n = suspend; print n
 3

Programming Tools and Interfaces
Type Checking in Expressions

¦ Copyright IBM Corp. 1985, 1991
12.22 - 2

 12.23 Folding Variables to Lower and Upper Case

 By default, dbx folds symbols based upon the current language. If the
 current language is C or undefined, then the symbols are not folded;
 otherwise, the symbols are folded to lowercase. The current language is
 undefined if the program is in a section of code that has not been
 compiled with the debug flag. You can override default handling with the
 case command:

 case [default | mixed | lower | upper]
 Changes the way in which symbols are interpreted.

 Using case without arguments tells you what the current case handling is.
 In the following example, the current file is testfort.f, a FORTRAN
 program:

 (dbx) case
 Symbols are folded based upon current language
 Symbols are currently folded to lower case
 (dbx) print X
 2
 (dbx) case mixed
 (dbx) print X
 "X" is not defined

 The FORTRAN and Pascal compilers fold all program symbols to lowercase,
 whereas the C compiler does not.

Programming Tools and Interfaces
Folding Variables to Lower and Upper Case

¦ Copyright IBM Corp. 1985, 1991
12.23 - 1

 12.24 Special Debugger Variables to Change Print Output

 You can set the following special debugger variables in order to get
 different results from a print command:

 $hexints Prints integer expressions in hexadecimal.
 $hexchars Prints character expressions in hexadecimal.
 $hexstrings Prints the address of the character string,
 not the string itself.
 $octints Prints integer expressions in octal.

 You can set and unset these variables to get the desired results, for
 example:

 (dbx) whatis x; whatis i; whatis s
 int x;
 char i;
 char *s;
 (dbx) print x, i, s
 375 'c' "hello"
 (dbx) set $hexints; set $hexchars; set $hexstrings
 (dbx) print x, i, s
 ox177 0x63 0x3fffe460
 (dbx) unset $hexchars; set $octints
 (dbx) print x, i
 0567 'c'

Programming Tools and Interfaces
Special Debugger Variables to Change Print Output

¦ Copyright IBM Corp. 1985, 1991
12.24 - 1

 12.25 Displaying and Manipulating the Source File

 You can use dbx to search through and display portions of the source files
 for a program. You do not need a current source listing; dbx keeps track
 of the current file, current procedure, and current line. If a core file
 exists, the current line and current file are initially set to the line
 and file containing the source statement where the process ended, unless
 the process was stopped in a location that was not compiled for debugging.
 Otherwise, they are set to the first line in main routine. While you
 manipulate and list the source file, the values for current line and
 procedure may change.

Programming Tools and Interfaces
Displaying and Manipulating the Source File

¦ Copyright IBM Corp. 1985, 1991
12.25 - 1

 12.26 Changing the Source Directory Path

 dbx normally searches the current directory and the directory where the
 program is located for the source files for the program. You can change
 this with the -I option on the dbx invocation line, or with the use
 command within dbx. For more information about the -I option, see "Other
 Invocation Options" in topic 12.7.

 use directory1 directory2 ...
 Sets the list of directories to search for source files to the
 directories listed in this command. If no directories are
 listed, then the current source directory list is displayed.

Programming Tools and Interfaces
Changing the Source Directory Path

¦ Copyright IBM Corp. 1985, 1991
12.26 - 1

 12.27 Displaying the Current File

 The list command allows you to list source lines:

 list [linenumber_expression1 [, linenumber_expression2]]
 Displays the lines in the current source file from
 linenumber_expression1 to linenumber_expression2, inclusive. If
 no lines are specified, the next 10 lines are listed unless the
 $listwindow debugger variable is set to some other value.
 list procedure/function
 Displays lines surrounding the first line of procedure.

 Some special symbols representing source line numbers are useful with the
 list command, as well as with the stop and trace commands. These symbols
 are $ and @. $ represents the next line to be run, and @ represents the
 next line to be listed. Simple integer expressions involving addition and
 subtraction can be used in source line number expressions as well. For
 example:

 (dbx) list $
 4 {
 (dbx) list 5
 5 char i = '4';
 (dbx) list sub
 23 char *sub(s,a,k)
 24 int a;
 25 enum status k;
 ...
 (dbx list @ -2
 23 char *sub(s,a,k)

Programming Tools and Interfaces
Displaying the Current File

¦ Copyright IBM Corp. 1985, 1991
12.27 - 1

 12.28 Changing the Current File or Procedure

 You can use the following func and file commands to change the current
 file, current procedure, and current line within dbx without having to run
 any part of your program:

 file [filename]
 Changes the current file to filename. If no file is specified,
 the current source file name is displayed.
 func [procedure/function]
 Changes the current function. If no procedure or function is
 specified, then the current function is displayed. Changing the
 current function implicitly changes the current source file to
 the one that contains the function; consequently, it also
 changes the current scope used for name resolution.

 You can search through the current file for text matching regular
 expressions. If a match is found, the current line is set to the line
 containing the matching text. The syntax of the search command is:

 / regularexpression [/]
 Searches forward in the current source file for the given
 expression.
 ? regularexpression [?]
 Searches backward in the current source file for the given
 expression.

 If you repeat the search without arguments, the search wraps around the
 end of a file. For example:

 (dbx) func; file
 sub2 hellosub.c
 (dbx) func sub
 (dbx) func; file
 sub hello.c
 (dbx) / i
 5 static int x;
 (dbx) /
 6 int i = 0xfffffff;
 (dbx) ? static
 5 static int x;

 You can also invoke an external text editor for your source. The default
 editor invoked is vi. You can override this default by setting the
 environment variable EDITOR to your desired editor before invoking dbx.

 edit [filename]
 Invokes an editor on filename, or the current source file if
 filename is not specified.
 edit procedure/function
 Invokes an editor on the file containing the specified procedure
 or function.

 Control returns to dbx after the return from an editing session.

 Subtopics
 12.28.1 Debugging Programs Involving Multiple Processes

Programming Tools and Interfaces
Changing the Current File or Procedure

¦ Copyright IBM Corp. 1985, 1991
12.28 - 1

 12.28.1 Debugging Programs Involving Multiple Processes

 Programs involving multiple processes are those that call the system
 routines fork and exec. When a program forks, the operating system
 creates another process that has the same image as the original; the
 original being the parent process, and the created being the child
 process.

 When a process performs an exec system call, a new program takes over or
 overlays the original process. Under normal circumstances, the debugger
 is only able to debug the original or parent process; however, dbx can
 follow the execution and debug the new processes.

 You must issue the following command to enable multiprocess debugging:

 multproc [on | off]
 Enables or disables multiprocess debugging. The initial value
 is off. If you issue the command with no arguments, the current
 status is displayed.

 When multiprocess debugging is enabled and a fork occurs, both the parent
 and the child process are halted in the fork. A separate virtual terminal
 is opened for a new version of dbx to control the running of the child:

 (dbx) multproc
 multi-process debugging is enabled
 (dbx) run

 When the fork occurs, execution is stopped in the parent, and dbx displays
 the state of the program:

 application forked, child pid = 422, process stopped, awaiting input

 trace trap in fork at 0x1000025a (fork+0xe)
 (dbx)

 Also, another virtual terminal is opened to debug the child:

 debugging child, pid=422, process stopped, awaiting input

 trace trap in fork at 0x10000250
 10000250 (fork+0x4))c05 jcs 1000025a (fork+0xe)
 (dbx)

 At this point there are two distinct debugging sessions. The debugging
 session for the child retains all of the breakpoints from the parent
 process, but only the parent process can be rerun.

 When a program performs an exec system call in multiprocess debugging
 mode, the program overwrites itself and the original symbol information
 becomes obsolete. All breakpoints are deleted when the exec occurs, and
 the new program is stopped and identified in order for the debugging to be
 meaningful. dbx attaches itself to the new program image, makes a system
 call to determine the name of the new program, reports the name, and then
 prompts for input:

 (dbx) multproc
 Multi-process debugging is enabled
 (dbx) run
 Attaching to program from exec...

Programming Tools and Interfaces
Debugging Programs Involving Multiple Processes

¦ Copyright IBM Corp. 1985, 1991
12.28.1 - 1

 Determining program name...
 Successfully attached to /u/user/execprog...
 Reading symbolic information...
 (dbx)

 Notes:

 1. It can take a fairly long time for dbx to determine the name of the
 overlaying program.

 2. It is not possible to determine the name of a program that belongs to
 a remotely-mounted file system.

Programming Tools and Interfaces
Debugging Programs Involving Multiple Processes

¦ Copyright IBM Corp. 1985, 1991
12.28.1 - 2

 12.29 The dbx Debugging Environment

 The following topics show how to modify and change the dbx environment.

Programming Tools and Interfaces
The dbx Debugging Environment

¦ Copyright IBM Corp. 1985, 1991
12.29 - 1

 12.30 The Alias Facility

 You can build your own commands from the dbx primitive command set. The
 following commands allow you to build a user alias from the arguments
 specified. All commands involved in the replacement string for the alias
 must be dbx primitive commands. You can then use your aliases in place of
 the dbx primitives.

 alias [aliasname [commandname]]

 alias aliasname "command string"

 alias aliasname (parm1, parm2, ...) "command string"

 The alias command with no arguments displays the current aliases in
 effect; with one argument the command displays the replacement string
 associated with that alias.

 The first two forms of alias are used to simply substitute the replacement
 string for the alias each time it is used. For example:

 (dbx) alias rr rerun
 (dbx) alias step2 "step;step"

 Each time rr is typed at the command line, dbx performs a rerun command.
 Similarly, step2 results in two step commands being executed.

 The third form of aliasing is a limited macro facility. Each parameter
 specified in the alias command is substituted for in the replacement
 string. This can be useful in eliminating excessive typing:

 (dbx) alias px(n) "set $hexints; print n; unset $hexints"
 (dbx) alias a(x,y) "print symname[x] symvalue._n_n.name.Id[y]"
 (dbx) px(126)
 0xfe

 The alias px in the previous example prints a value in hexadecimal without
 permanently affecting the debugging environment. The following aliases
 and associated command names are supplied by dbx by default:

 t where p print
 j status n next
 st stop l list
 s step e edit
 r run h help
 x registers d delete
 q quit c cont

 You can remove an alias with the unalias command:

 unalias aliasname
 Removes an alias with the given name.

Programming Tools and Interfaces
The Alias Facility

¦ Copyright IBM Corp. 1985, 1991
12.30 - 1

 12.31 Changing the dbx Prompt

 The dbx prompt is normally the name with which you invoked dbx. If you
 specified /usr/bin/dbx a.out on the command line, then your prompt would
 be /usr/bin/dbx. You can change the prompt to be whatever you desire with
 the prompt command:

 prompt "promptstring"
 Changes the dbx prompt to promptstring.

 For example:

 /usr/bin/dbx hello
 dbx version 2.2 for AIX
 Type 'help' for help.
 reading symbolic information...
 (/usr/bin/dbx) prompt "dbg>"
 dbg>

Programming Tools and Interfaces
Changing the dbx Prompt

¦ Copyright IBM Corp. 1985, 1991
12.31 - 1

 12.32 Customizing Your Environment With .dbxinit

 Each time you begin a debugging session, dbx searches for a special
 initialization file named .dbxinit. This file is searched for first in
 the current directory, and then in your home directory. .dbxinit should
 contain a list of dbx commands to execute each time you begin a debugging
 session. These commands are executed before dbx begins to read commands
 from standard input. Normally, .dbxinit contains alias commands, but it
 can contain any valid dbx commands. For example:

 cat .dbxinit
 alias si "stop in"
 prompt "dbg>"
 dbx a.out
 dbx version 2.2 for AIX
 Type 'help' for help.
 reading symbolic information...
 dbg> alias
 si stop in
 t where
 ...
 dbg>

Programming Tools and Interfaces
Customizing Your Environment With .dbxinit

¦ Copyright IBM Corp. 1985, 1991
12.32 - 1

 12.33 Reading dbx Commands From a File

 The -c invocation option and .dbxinit provide mechanisms for executing dbx
 commands before reading from standard input. There is also a way to read
 dbx commands from a file once the debugging session has begun:

 source filename
 Reads dbx commands from the given filename.

Programming Tools and Interfaces
Reading dbx Commands From a File

¦ Copyright IBM Corp. 1985, 1991
12.33 - 1

 12.34 Running Shell Commands From dbx

 You can run shell commands without exiting from the debugger:

 sh commandline
 Passes commandline to the shell for execution.

 If commandline is missing, the shell is entered for use until it is
 exited, at which time control returns to dbx. The SHELL environment
 variable determines which shell is used. For example:

 (dbx) sh echo $SHELL
 /bin/sh
 (dbx) sh
 echo 'This is the shell' #You will remain in the shell until you exit.
 exit
 (dbx)

Programming Tools and Interfaces
Running Shell Commands From dbx

¦ Copyright IBM Corp. 1985, 1991
12.34 - 1

 12.35 Getting Help

 help
 Prints a synopsis of common dbx commands.

Programming Tools and Interfaces
Getting Help

¦ Copyright IBM Corp. 1985, 1991
12.35 - 1

 12.36 References

 The cc command in AIX Operating System Commands Reference and the compiler
 chapters in AIX VS Pascal, VS FORTRAN, and C User's Guides.

Programming Tools and Interfaces
References

¦ Copyright IBM Corp. 1985, 1991
12.36 - 1

 12.37 dbx Vector Processor Support

 dbx vector processor support is an enhancement to dbx which now supports
 370 Fortran. This enhancement consists of a number of new commands which
 are entered at the (dbx) prompt. One type of command displays the
 contents of a specified vector register or all vector registers. The
 contents of individual registers may be displayed in binary, floating
 point, or double precision format. In addition, the contents of any of
 the registers of the vector processor can be modified.

 dbx contains a number of internal debugger variables which can be set by
 the user from the command line. New debugger variables have been added to
 support the vector processor enhancements. In general, these new
 variables either control the default display format of certain commands or
 refer to the vector processor registers themselves.

 scalar
 A single data item, which may be floating point number, a binary
 integer, or logical data.

 vector
 A linearly ordered collection of scalars.

 Element
 Any single scalar component of a vector, regardless of data
 type.

 section size
 The number of locations in a vector register; always a power of
 two, where 8 <= SS <= 512.

 The format and operation of the dbx vector processor commands is explained
 in the following sections.

 Subtopics
 12.37.1 dbx Vector Processor Support Commands
 12.37.2 Debugger Variables
 12.37.3 Error Handling

Programming Tools and Interfaces
dbx Vector Processor Support

¦ Copyright IBM Corp. 1985, 1991
12.37 - 1

 12.37.1 dbx Vector Processor Support Commands

 The following commands have been added for dbx vector processor support.
 These commands only apply to AIX/370.

 vregisters [<vreg number>]
 Prints the contents of all vector registers or the register
 designated by vreg number. The format of the display is
 controlled by internal debugger variables as follows:

 If $intvectors debugger variable is set, the contents of the
 vector elements are displayed as integers.

 If $doublevectors debugger variable is set, the contents of the
 vector elements are displayed as double precision floating point
 numbers. When specifying the vregisters with a single register,
 the vreg number parameter must be even.

 The above two variables are mutually exclusive. If one is set,
 the other is automatically cleared.

 vstate
 Prints the contents of the vector status register, vector mask
 register, and vector activity-count register.

Programming Tools and Interfaces
dbx Vector Processor Support Commands

¦ Copyright IBM Corp. 1985, 1991
12.37.1 - 1

 12.37.2 Debugger Variables

 The variables below are special variables known to the debugger. They may
 be displayed with the print command or modified with the assign command.

 $vrN (where 0 = N = 31)

 References vector register N as an integer. The reference must
 be further qualified to specify a particular component of the
 register. For example, $vr5[13] references the 14th word of
 the 6th vector register (vector registers and components within
 registers are numbered starting with 0).

 $vfrN (where 0 = N = 31)

 References vector register N as a single precision floating
 point number. A particular component within the register must
 be specified.

 $vdrN (where 0 = N = 30, n even)

 References vector register N as a double precision floating
 point number. A particular component within the register must
 be specified.

 $vstatus References the vector status register. The display appears as
 two 32-bit words in hexadecimal format. The two halves of the
 register may be referenced separately using the subscript
 notation.

 $vac References the vector activity-count register. The display
 appears as two 32-bit words in hexadecimal format. The two
 halves of the register may be referenced separately using the
 subscript notation.

 $vmask References the vector mask register. The display appears as a
 number of 32-bit words displayed in hexadecimal format.
 Individual words may be referenced separately using the
 subscript notation. The number of words displayed depends on
 the current section size. For example, if the section size is
 128, four 32-bit words will be displayed to show 128 bits, one
 bit per vector element.

 $vcount Displays the vector count field of the vector status register
 in decimal. This field is a 16-bit unsigned binary integer.

 $vmaskflag Displays the vector mask mode bit of the vector status
 register.

 $vstate Controls whether status information from the vector processor
 will be displayed as part of the output of the registers
 command. If $vstate is set, the contents of the vector status
 register, the vector activity-count register, and the vector
 mask register will be displayed in hexadecimal in addition to
 the normal output of the registers command.

 Note: The registers command should not be confused with the
 vregisters command which applies strictly to the vector
 processor. The registers command is a dbx command which
 displays the values of the general purpose registers and

Programming Tools and Interfaces
Debugger Variables

¦ Copyright IBM Corp. 1985, 1991
12.37.2 - 1

 system control registers.

 See the AIX 370 Fortran manual on use of the vector hardware for
 computation purposes. For additional information on the dbx interface to
 the vector processor hardware, refer to the ptrace and sysconf system
 calls in the AIX Operating System Technical Reference. See the IBM
 Enterprise Architecture/370 and System/370-Vector Operation for additional
 information on the hardware.

Programming Tools and Interfaces
Debugger Variables

¦ Copyright IBM Corp. 1985, 1991
12.37.2 - 2

 12.37.3 Error Handling

 If you attempt to use the vector commands on a 370 system which does not
 have the vector hardware, you receive the following message:

 no vector support

 If any of these commands are input to the PS/2 debugger, it responds the
 same way it would to any other unrecognized command.

 Other diagnostic messages inform the user of incorrect formats if they
 attempt to use the debugger variables which refer to the hardware
 registers (for example, using $vr0 without a subscript).

Programming Tools and Interfaces
Error Handling

¦ Copyright IBM Corp. 1985, 1991
12.37.3 - 1

 13.0 Chapter 13. Installing and Updating an LPP

 Subtopics
 13.1 CONTENTS
 13.2 About This Chapter
 13.3 Understanding System Guidelines
 13.4 Using Installation and Update Services
 13.5 Order of Execution
 13.6 What You Need to Install an LPP
 13.7 What You Need to Update an LPP
 13.8 Allowing for Recovery
 13.9 File Formats and Description
 13.10 The Local Information File
 13.11 The Save and Recover Directory
 13.12 Internal Commands

Programming Tools and Interfaces
Chapter 13. Installing and Updating an LPP

¦ Copyright IBM Corp. 1985, 1991
13.0 - 1

 13.1 CONTENTS

Programming Tools and Interfaces
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
13.1 - 1

 13.2 About This Chapter

 This chapter is provided for software developers who will write programs
 to run on the AIX platform. It describes the AIX tools used for
 installing and updating programs. By designing your application to use
 these tools, your users will be able to install and update you application
 by the same procedures they use for AIX Licensed Program Products (LPPs).

 After finishing the development and testing of a new program, you must
 prepare it to be installed. This chapter describes the tools used for the
 installation of LPPs. The descriptions include:

 � What the installation services d
 � What files to include on the distribution medi
 � The format of each of the needed files

 At a later time you may need to change the LPP to provide additional
 features, or to correct problems encountered in actual usage. This
 chapter also describes the tools used to change an installed LPP. The
 descriptions include:

 � What the update services d
 � What files to include on the update medi
 � The format of each of the needed files

Programming Tools and Interfaces
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
13.2 - 1

 13.3 Understanding System Guidelines

 When preparing your LPP to install on the AIX system, be aware of how the
 system files are organized so that the LPP can work as an integral part of
 the whole system. The following paragraphs describe some of the system
 conventions that any new LPP should follow.

 Subtopics
 13.3.1 System Directories
 13.3.2 Providing User Documentation

Programming Tools and Interfaces
Understanding System Guidelines

¦ Copyright IBM Corp. 1985, 1991
13.3 - 1

 13.3.1 System Directories

 Each of the directories supplied with the system has a defined purpose.
 The permission, owner and group ID for these directories are set so that
 the directories work properly with the system LPPs that use them.

 CAUTION:
 Do not change the permission, owner or group id of any system file or
 directory. Such changes may compromise proper operation of system
 programs.

 Many of the administrative system functions can be performed by a member
 of the system group without having to log in as root or know the root
 password. Refer to the description of each command in AIX Operating
 System Commands Reference to determine which functions the system group
 can perform. Some sensitive commands are still reserved for the person
 with superuser authority.

 In addition, reserve the following directories for their intended purpose
 only:

 / Do not add files or mount file systems to subdirectories in
 the root file system without an urgent need to do so. The
 root file system contains fixed system directories and
 should not be used for application programs or user files.

 /usr Do not add files or directories to the /usr directory
 without an urgent need to do so. The /usr directory
 contains files and directories that the system uses.

 /usr/bin This directory contains common user executable files and is
 part of the default search path for all users. Put a short
 binary program or shell script in this directory that calls
 your large executable files. Put the large executable files
 in the directory /usr/lpp/lpp-id (lpp-id is the identifier
 you choose for your LPP, as described in "What You Need to
 Install an LPP" in topic 13.6).

 /usr/lpp Create a directory in this directory to store your LPPs as
 described in "What You Need to Install an LPP" in
 topic 13.6.

 /usr/lib Use this directory to store those library files that have
 general use to all users. Store other library files in your
 directory, /usr/lpp/lpp-id.

 /usr/include Use this directory to store those include files that have
 general use to all users. Store other include files in your
 directory, /usr/lpp/lpp-id.

Programming Tools and Interfaces
System Directories

¦ Copyright IBM Corp. 1985, 1991
13.3.1 - 1

 13.3.2 Providing User Documentation

 You should provide documentation along with your LPP, describing its
 installation and use. For uniformity, pattern installation procedures
 after the format and steps shown in Installing and Customizing the AIX
 Operating System. If your LPP includes new device drivers, refer to the
 AIX Operating System Technical Reference. In addition, you should provide
 information about your LPP's use of disk space in each of the following
 directories:

 � /usr
 � /usr/bin
 � /usr/lib
 � /usr/lpp
 � /usr/include

 Give usage information in terms of the number of 4K-byte blocks that the
 LPP uses in each of the directories. The usage information helps the
 person installing your LPP determine if there is enough space on the file
 system to load the LPP. If there is not enough space, refer the user to
 Managing the AIX Operating Systems for information about expanding an
 existing file system.

Programming Tools and Interfaces
Providing User Documentation

¦ Copyright IBM Corp. 1985, 1991
13.3.2 - 1

 13.4 Using Installation and Update Services

 The installation and update services require only a few simple steps to
 install the LPP on the system. Typically, whoever installs the LPP need
 only enter one of the following two commands:

 installt options if the medium is PS/2 tape, or

 installp options if the medium is anything else.

 where options are as defined in the AIX Operating System Commands
 Reference. From that point on, messages to the screen guide the user.

 In addition to providing a simple user interface, the installation and
 update services also help ensure that the LPPs are handled correctly.
 They:

 � Maintain an accurate record of the revision state of each LPP on th
 system

 � Verify the existence and revision level of other needed LPP

 � Provide instruction

 � Provide online copies of changes to documentation

 Subtopics
 13.4.1 Commands (installp, installt, updatep)
 13.4.2 Replicated and Non-replicated File Systems
 13.4.3 installp and updatep File Hierarchy
 13.4.4 Installation Files
 13.4.5 Update Files
 13.4.6 installp and updatep Script Considerations

Programming Tools and Interfaces
Using Installation and Update Services

¦ Copyright IBM Corp. 1985, 1991
13.4 - 1

 13.4.1 Commands (installp, installt, updatep)

 Installation and update services provide the following commands to be
 entered from the command line to install or update an LPP. Complete
 information about the syntax and usage of these commands is in AIX
 Operating System Commands Reference. Further information on the installt
 command can be found in Appendix D of this book.

 Command Description

 installp Installs LPPs.
 installt Installs LPPs or user packages from PS/2 tape.
 updatep Applies one or more changes to an installed LPP.

 For simplicity, these commands will be referred to collectively as the
 service tools.

Programming Tools and Interfaces
Commands (installp, installt, updatep)

¦ Copyright IBM Corp. 1985, 1991
13.4.1 - 1

 13.4.2 Replicated and Non-replicated File Systems

 The root file system is a system replicated file system. It is found on
 each site in the cluster and contains files and directories that are
 required for all cluster sites. In order to maintain consistency of all
 root copies, AIX requires that one particular copy of a file system be
 available before any modification is made. This is called the primary
 copy. The cluster site that has the primary copy is called the primary
 site. The root file system on each cluster site is a copy of the primary
 copy. The primary site controls all modifications to the root file system
 and makes sure they are propagated to all other cluster sites.

 The service tools require that the primary copy of the root file system be
 available for changes. When service affects the replicated root file
 system, all other cluster sites will automatically be affected. When
 changes are made to a non-replicated or local file system, a different
 mechanism is used to propagate changes to other sites.

 The special mechanism developed for local file systems uses a system
 queue. The system queue is a set of directories that contain action
 information (apply, commit, uncommit, reject) for local sites. The queue
 is accessed through two programs, qapp and qproc. The purpose of the
 queue is to keep track of all installp/updatep changes to the local file
 systems. When installp/updatep is executed, entries are put into the
 system queue via qapp if local action is needed. When qproc is run on
 each site, it processes any local changes. This queuing system allows for
 synchronization of installp/updatep changes to local file systems in a
 time independent fashion, so that sites that are down or that have not
 joined the cluster can be brought up-to-date at a later time.

 A change to the kernel is an example of a change that requires local
 action. The installation of an application in /usr/bin is an example of a
 change that does not require local action.

 In summary, any changes to files on the root file system are automatically
 propagated throughout the cluster. Changes to files on the local
 non-replicated file systems are propagated via the system queue mechanism.
 Every cluster site will normally get these changes, although this can be
 tailored in inst_updt.loc.

Programming Tools and Interfaces
Replicated and Non-replicated File Systems

¦ Copyright IBM Corp. 1985, 1991
13.4.2 - 1

 13.4.3 installp and updatep File Hierarchy

 It is important to understand the installp and updatep file system
 hierarchy.

 --

 /
 +---+
 bin usr
 +---+---+ ¦
 ed vi sed lpp
 ¦
 +---------+
 ¦ editors ¦
 +---------+
 (lpp-id)
 ¦
 +---+
 liblpp.a
 lpp.loc (archive file)
 +--+ +--+
 inst_updt.loc al.loc lpp.hist info files scripts al lpp.hist instal uniscr copyright lpp.acf
 + ¦ (archive file)
 ¦ local +-------+ Note:
 hierarchy moved to ¦ ¦ lappscr.0000 ¦
 "bac" automatically ¦ +------+------+ ¦
 ¦ file1 file2 file3 ¦
 + lrejscr.0000

 --
 Figure 13-1. installp File Hierarchy - Fixes

 This example shows an LPP called "editors" with files "ed," "vi," and
 "sed" in the root file system under /bin. Note that the local files
 (those that are installed on each site in the cluster) are under
 /usr/lpp/lpp-id/lpp.loc/files/local. At a later time or at the user's
 discretion, the queuing mechanism will run the vendor supplied executable
 file inst_updt.loc on each site. These local files are then copied into
 that site's local filesystem.

 Note: "editors" is an example LPP.

 Figure 13-2 shows an example file hierarchy for updatep media (similar to
 the installp example).

 --

 /
 +--+
 bin usr +---------+
 +-----+-----+ -+---------------------+ ¦ editors ¦
 ed vi sed ¦ ¦ +---------+
 lpp sys (lpp-id
 ¦ ¦
 +---------+ inst_updt
 ¦ editors ¦ +------------------------+
 +---------+ special control
 (lpp-id) +---------------------------------------+

Programming Tools and Interfaces
installp and updatep File Hierarchy

¦ Copyright IBM Corp. 1985, 1991
13.4.3 - 1

 ¦ lppsize editors_vrl editors_instr editors_erata
 +--+
 lpp.loc inst_updt
 ¦ ¦
 +--------------------------+ arp
 inst_updt.loc info lpp.hist files (archive file)
 ¦
 +---+
 al_vrl loc_vrl update copyright lpp.acf appscr.
 Note: ¦
 lpp-id = editors lappscr.
 vrl = version release level number and
 nnnn = level number ¦
 lrejscr.

 --
 Figure 13-2. updatep File Hierarchy

Programming Tools and Interfaces
installp and updatep File Hierarchy

¦ Copyright IBM Corp. 1985, 1991
13.4.3 - 2

 13.4.4 Installation Files

 The following is a list of all files used for an installp installation,
 apart from the actual files being installed.

 +--+
 ¦ Figure 13-3. installp Files ¦
 +--¦
 ¦ FILE ¦ TYPE ¦
 +----------------------------+---¦
 ¦ /lpp_name ¦ Required ¦
 +----------------------------+---¦
 ¦ /copyright ¦ Optional ¦
 +----------------------------+---¦
 ¦ ¦ ¦
 ¦ /usr/lpp/lpp-id/liblpp.a ¦ Required (archive file) ¦
 ¦ al ¦ Required (file) ¦
 ¦ instal ¦ Required (executable) ¦
 ¦ prereq ¦ Prereq Optional (file) ¦
 ¦ lpp.hist ¦ Required (file) ¦
 ¦ copyright ¦ Optional (file) ¦
 ¦ lpp.acf ¦ Optional (file) ¦
 ¦ ¦ ¦
 +----------------------------+---¦
 ¦ /usr/lpp/lpp-id/lpp.loc ¦ Optional (directory) ¦
 +----------------------------+---¦
 ¦ ¦ ¦
 ¦ al.loc ¦ Required if lpp.loc exists (file). ¦
 ¦ files ¦ Required if lpp.loc exists (directory). ¦
 ¦ info ¦ Required if lpp.loc exists (file). ¦
 ¦ inst_updt.loc ¦ Required if lpp.loc exists (executable fil¦).
 ¦ lpp.hist ¦ Required if lpp.loc exists (history file).¦
 ¦ ¦ ¦
 +----------------------------+---¦
 ¦ ¦ ¦
 ¦ scripts ¦ Optional (archive file) ¦
 ¦ lappscr.0000 ¦ Optional (executable file) ¦
 ¦ lrejscr.0000 ¦ Required if lappscr.0000 ¦
 ¦ ¦ exists (executable file). ¦
 ¦ ¦ ¦
 +--+

Programming Tools and Interfaces
Installation Files

¦ Copyright IBM Corp. 1985, 1991
13.4.4 - 1

 13.4.5 Update Files

 The following is a list of all files used for an updatep upgrade.
 level-nr indicates the level number.

 +---+
 ¦ Figure 13-4. updatep: Files for an upgrade ¦
 +---¦
 ¦ FILE ¦ TYPE ¦
 +---+---¦
 ¦ /lpp_name ¦ Required ¦
 +---+---¦
 ¦ /copyright ¦ Optional ¦
 +---+---¦
 ¦ ¦ ¦
 ¦ /usr/lpp/lpp-id/inst_updt/arp ¦ Required (archive file) ¦
 ¦ al_vrl ¦ Required (file) ¦
 ¦ loc_vrl ¦ Optional (file) ¦
 ¦ update ¦ Required (executable) ¦
 ¦ copyright ¦ Optional (file) ¦
 ¦ lpp.acf ¦ Optional (file) ¦
 ¦ appscr.level-nr ¦ Optional ¦
 ¦ rejscr.level-nr ¦ Required if appscr.level-nr exists (exec¦table file)
 ¦ lappscr.level-nr ¦ Optional (file) ¦
 ¦ lrejscr.level-nr ¦ Required if appscr.level-nr exists (exec¦table file)
 ¦ ¦ ¦
 +---+---¦
 ¦ /usr/lpp/lpp-id/lpp.loc ¦ Optional (directory) ¦
 +---+---¦
 ¦ ¦ ¦
 ¦ files ¦ Required if lpp.loc exists (directory). ¦
 ¦ info ¦ Required if lpp.loc exists (file). ¦
 ¦ inst_updt.loc ¦ Required if lpp.loc exists (executable f¦le).
 ¦ lpp.hist ¦ Required if lpp.loc directory exists (fi¦e).
 ¦ ¦ ¦
 +---+---¦
 ¦ ¦ ¦
 ¦ /usr/sys/inst_updt/control ¦ Required (archive file) ¦
 ¦ lppsize ¦ Required (file) ¦
 ¦ lpp-id_vrl ¦ Required (file) ¦
 ¦ lpp-id_instr ¦ Optional (archive file) ¦
 ¦ lpp-id_erata ¦ Optional (archive file) ¦
 ¦ ¦ ¦
 +---+---¦
 ¦ /usr/sys/inst_updt/special ¦ Required (file) ¦
 +---+

Programming Tools and Interfaces
Update Files

¦ Copyright IBM Corp. 1985, 1991
13.4.5 - 1

 13.4.6 installp and updatep Script Considerations

 Subtopics
 13.4.6.1 Executable File Considerations
 13.4.6.2 installp and updatep Script Descriptions

Programming Tools and Interfaces
installp and updatep Script Considerations

¦ Copyright IBM Corp. 1985, 1991
13.4.6 - 1

 13.4.6.1 Executable File Considerations

 The service tools use certain scripts. These files must have their
 permissions set to executable. Figure 13-5 shows the script files.

 +--+
 ¦ Figure 13-5. Scripts Used by the Service Tools ¦
 +--¦
 ¦ Invoked By ¦ Non-local File ¦ Local File ¦
 +-----------------------+------------------------+-----------------------¦
 ¦ installp ¦ ¦ ¦
 ¦ ¦ instal ¦ inst_updt.loc ¦
 ¦ ¦ ¦ lappscr.0000 ¦
 ¦ ¦ ¦ lrejscr.0000 ¦
 ¦ ¦ ¦ ¦
 +-----------------------+------------------------+-----------------------¦
 ¦ updatep ¦ ¦ ¦
 ¦ ¦ update ¦ inst_updt.loc ¦
 ¦ ¦ appscr.nnnn ¦ lappscr.nnnn ¦
 ¦ ¦ rejscr.nnnn ¦ lrejscr.nnnn ¦
 ¦ ¦ ¦ ¦
 +--+

 Note: updatep and installp can only be used by a user with superuser
 authority.

Programming Tools and Interfaces
Executable File Considerations

¦ Copyright IBM Corp. 1985, 1991
13.4.6.1 - 1

 13.4.6.2 installp and updatep Script Descriptions

 The following is a description of each script:

 instal Required on all installp media. Used by installp only.
 This script moves files in the apply-list al from the
 media to the root filesystem. It can also edit files and
 use various other commands such as mknod, ln, etc.

 update Required on all updatep media. Used by updatep only.
 This script moves files in the apply list al from the
 media to the replicated filesystem. It also takes care
 of saving old versions of updated files before they are
 overlaid.

 appscr.nnnn Optional on all updatep media. Used by updatep only in
 the apply phase. This script edits files, makes links,
 etc., and does all the work for applying a particular
 level update (except for overlaying files by copying
 them from the media to the replicated filesystems).

 rejscr.nnnn Optional on all updatep media. Used by updatep only in
 the reject phase. This script edits files, removes
 links, etc., and undoes the effects of the earlier run
 appscr.nnnn.

 Note: If an appscr.nnnn exists, then the corresponding
 rejscr.nnnn is required.

 inst_updt.loc Optional on all updatep and installp media. Used by
 installp and updatep (on local filesystems). This
 script moves files in the apply list al.loc from the
 queue directory to a particular site's local filesystem.
 It should not do any work other than copying files.
 Actions such as editing files, creating links, etc. are
 taken care of by the lappscr.nnnn script. The
 inst_updt.loc script may also return a code requiring
 the system to make a kernel or ask the user to reboot.
 It may also return an error code in case of a failure.
 Refer to "Installation and Update Procedure Return
 Codes" in topic 13.6.4.5.

 lappscr.nnnn Optional on all updatep and installp media. Used by
 installp and updatep in the apply phase (on local
 filesystems). This script edits files, makes links,
 etc. on the local filesystem. It returns an error code
 in case of a failure.

 lrejscr.nnnn Optional on all updatep and installp media. Used by
 installp and updatep in the reject phase (on local
 filesystems). This script edits files, removes links,
 etc. on the local filesystems and undoes the effects of
 the earlier run lappscr.nnnn. It returns an error code
 in case of a failure.

 Note: If an lappscr.nnnn exists, then the corresponding
 lrejscr.nnnn is required on the same media.

Programming Tools and Interfaces
installp and updatep Script Descriptions

¦ Copyright IBM Corp. 1985, 1991
13.4.6.2 - 1

 13.5 Order of Execution

 This section describes the order of execution for the following:

 � installp

 � updatep apply

 � updatep reject

 Subtopics
 13.5.1 installp Order of Execution
 13.5.2 updatep apply Phase Order of Execution
 13.5.3 updatep reject Phase Order of Execution

Programming Tools and Interfaces
Order of Execution

¦ Copyright IBM Corp. 1985, 1991
13.5 - 1

 13.5.1 installp Order of Execution

 The following is the order of execution for the scripts during installp:

 � Replicated file

 installp: instal is run.

 � Local file

 apply: inst_updt.loc is run, and the return code is remembered.
 lappscr.0000 is run and any action that is requested by the return
 code of inst_updt.loc is performed (for example, make a kernel).
 Reboot may be required.

Programming Tools and Interfaces
installp Order of Execution

¦ Copyright IBM Corp. 1985, 1991
13.5.1 - 1

 13.5.2 updatep apply Phase Order of Execution

 The following is the order of execution during the updatep apply phase:

 � Replicated file

 update is run, followed by appscr.nnnn scripts in order from the
 lowest numbered nnnn to the highest.

 � Local file

 inst_updt.loc is run, and the return code is remembered. Next, the
 lappsrc.nnnn scripts are run from the lowest numbered nnnn to the
 highest. Any action that is requested by the return code of
 inst_updt.loc is performed (for example, make a kernel). Reboot may
 be required.

Programming Tools and Interfaces
updatep apply Phase Order of Execution

¦ Copyright IBM Corp. 1985, 1991
13.5.2 - 1

 13.5.3 updatep reject Phase Order of Execution

 The following is the order of execution during the updatep reject phase:

 � Replicated file

 The rejscr.nnnn scripts are run from the highest number to the lowest.
 Then, /etc/inurecv is called to recover overlaid and deleted files.

 � Local file

 lrejscr.nnnn is run, from the highest numbered nnnn to the lowest.
 Then, /etc/lpp/inrcvl is called to recover overlaid and deleted files.
 Finally, the return code from the original apply step is examined and
 the appropriate action is taken.

Programming Tools and Interfaces
updatep reject Phase Order of Execution

¦ Copyright IBM Corp. 1985, 1991
13.5.3 - 1

 13.6 What You Need to Install an LPP

 The primary site must be up to install an LPP. To install an LPP on the
 AIX system using the installp command, provide a set of control and LPP
 files in backup format on the installation media. The control files must
 appear before the LPP files. In addition, when backing up the files, use
 a relative path name with respect to the / directory on the installed
 system. For example, to create installation media for a single LPP file
 (ftrn) to be stored in the /bin directory on the target system, provide an
 ordered list of files to the backup -i command:

 ./lpp_name
 ./usr/lpp/FORTRAN/liblpp.a
 ./bin/ftrn

 The first two files are control files; the last file is the LPP file (or a
 group of files). There is no minimum required list of LPP files.

 Subtopics
 13.6.1 General Control Files
 13.6.2 Special Files for the Local
 13.6.3 General LPP Files
 13.6.4 Creating the Installation Script
 13.6.5 Example of Files on installp Media
 13.6.6 Important Example Files

Programming Tools and Interfaces
What You Need to Install an LPP

¦ Copyright IBM Corp. 1985, 1991
13.6 - 1

 13.6.1 General Control Files

 Provide the following control files at the beginning of the installation
 media:

 � A file named lpp_name that contains the title of the LPP or LPPs on
 the installation media (see "The LPP Name File" in topic 13.9.6).
 This file must appear first on the media.

 � A library file named ./usr/lpp/lpp-id/liblpp.a (lpp-id is a name for
 the LPP with a maximum of 8 characters). Create this library using
 the ar command. The library contains the following files:

 instal The installation procedure that installs special features
 and files that the LPP uses. This procedure must be
 either a shell script or an executable program in a.out
 format. This script may do the following:

 - Copy files in al from LPP media to the system
 - Edit files, make directories, etc..

 lpp.hist A file for logging changes to the LPP (see "Creating the
 LPP History File" in topic 13.9.1).

 al An apply list file that contains the relative path names
 with respect to the / directory of all files to be
 restored.

 copyright An optional file that contains appropriate copyright
 information for this LPP.

 prereq An optional file that lists other LPPs that this LPP uses
 and that, therefore, must be installed on the system (see
 "Creating the LPP Requirements File" in topic 13.9.4).

 lpp.acf An optional file that defines archiving procedures for the
 LPP (see "The Archive Control File" in topic 13.9.8).

 Other files Other optional files can be added to the end of the
 archive file as needed.

Programming Tools and Interfaces
General Control Files

¦ Copyright IBM Corp. 1985, 1991
13.6.1 - 1

 13.6.2 Special Files for the Local

 The following files and directories are required for the local
 installation:

 � /usr/lpp/lpp-id/lpp.loc

 A directory containing the following files:

 inst_updt.loc Executable which does the local installation.

 al.loc Apply list of all files needed for local installation.

 lpp.hist A history file for the local installation.

 info A file containing installation information and local
 file system size requirements.

 � /usr/lpp/lpp-id/lpp.loc/files

 A directory containing files needed by the inst_updt.loc script.

 Example: Assume that you have an LPP called PCI. You want to install the
 files PCI1, PCI2, etc. on the local filesystem. If you want to install
 /local/bin/PCI1 and /local/sys/PCI2, you must have an apply list, called
 al, in ./usr/lpp/PCI/liblpp.a. In addition to the usual general control
 files this apply list must have the following files:

 ./usr/lpp/PCI/lpp.loc/inst_updt.loc

 ./usr/lpp/PCI/lpp.loc/al.loc

 ./usr/lpp/PCI/lpp.loc/lpp.hist

 ./usr/lpp/PCI/lpp.loc/info

 ./usr/lpp/PCI/lpp.loc/files/local/bin/PCI1

 ./usr/lpp/PCI/lpp.loc/files/local/sys/PCI2

 You must also have an al.loc that has the following entries:

 ./local/bin/PCI1

 ./local/sys/PCI2

 On your media, you must have the following:

 ./usr/lpp/PCI/lpp.loc/files/local/bin/PCI1

 ./usr/lpp/PCI/lpp.loc/files/local/sys/PCI2

 In addition to the above files, you must also have an info file that
 contains size and LPP information. The final file that you need to have
 is the local history file ./usr/lpp/PCI/lpp.loc/lpp.hist which specifies
 the commit status and other LPP information.

 For more information about the specific files, refer to "Example of Files
 on installp Media" in topic 13.6.5.

Programming Tools and Interfaces
Special Files for the Local

¦ Copyright IBM Corp. 1985, 1991
13.6.2 - 1

 13.6.3 General LPP Files

 The LPP files are the files needed to use the LPP. You must include these
 files after the control files on the media.

Programming Tools and Interfaces
General LPP Files

¦ Copyright IBM Corp. 1985, 1991
13.6.3 - 1

 13.6.4 Creating the Installation Script

 To install an LPP and its files, you must provide an executable file named
 instal, which is usually a shell script. This instal script must be
 contained in the archive file ./usr/lpp/lpp-id/liblpp.a. The installp
 program restores the archive file ./usr/lpp/lpp-id/liblpp.a from the
 installation media and extracts the files in it. Then, installp executes
 your instal script and passes it a single parameter that specifies the
 device containing the restore files.

 When instal returns to installp, installp removes all files that do not
 begin with lpp from directory /usr/lpp/lpp-id. Directories in that
 directory are not deleted, however. The following is an example of a
 simple instal script:

 # Restore all replicated files.
 /etc/inurest -q -d$1 /usr/lpp/ate/al ate
 exit $?
 #
 # end
 #

 The following is a list of tasks that your instal script must perform to
 complete an installation:

 1. Ensure that the necessary level of other LPPs you depend on are
 installed on the system using ckprereq.

 2. Use inusave to back up any files that will be replaced or deleted.

 CAUTION:

 If your new LPP has files with names that conflict with file names in
 other installed LPPs, you need to add commands to detect those files
 and move them out of the way. installp will not override a file that
 already exists on the system. In addition, do not use inusave when
 installing large LPPs that will fill the disk with the backup files.

 3. Use inurest to restore files listed in the apply list file, and to
 archive constituent files.

 4. Customize the system for the LPP. See AIX Operating System Technical
 Reference for information to help you customize the system.

 5. If an error occurs and inusave was previously used, then use inurecv
 to recover the previous state of the system.

 6. If inusave was used, delete the directory,
 /usr/lpp/lpp-id/inst_updt.save.

 7. Return a completion code to installp.

 Subtopics
 13.6.4.1 Special Script for the Local
 13.6.4.2 Restoring the LPP Media
 13.6.4.3 Allowing for Individual Needs
 13.6.4.4 Customizing the System for an LPP
 13.6.4.5 Installation and Update Procedure Return Codes

Programming Tools and Interfaces
Creating the Installation Script

¦ Copyright IBM Corp. 1985, 1991
13.6.4 - 1

 13.6.4.1 Special Script for the Local

 When installp determines that there is some local installation to do, it
 uses qapp to set it up. The qapp program puts the files under
 .../lpp.loc/files in a backup-by-name saveset called bac. It creates an
 entry in /usr/lib/qproc.queue, as shown in Figure 13-6, for use by qproc.

 --

 /
 usr
 ¦
 ¦
 lib
 ¦
 ¦
 qproc.queue
 ¦
 +-------------------+
 n n+1 n+2 n+x
 ¦
 +----------------------------+
 al.loc bac info inst_updt.loc

 --
 Figure 13-6. Files for a local installation/update

 On each site, the inst_updt.loc script runs in the directory that contains
 the files bac and al.loc. The files in bac are in backup-by-name format,
 to be extracted using al.loc as the file list.

 The inst_updt.loc script should do the following:

 current=`pwd`
 cd /
 /etc/inurest -q -d$current/bac $current/al.loc lpp-id

 In the above example, the first line remembers the current directory,
 which also contains al.loc and bac. The second line changes the directory
 to root. The third line restores the files from bac to their proper
 location on the local filesystem.

 This may be more easily understood by looking at the file and directory
 hierarchy (see Figure 13-1 in topic 13.4.3).

 Note: If the LPP is to be installed on a particular CPU type, then the
 script inst_updt.loc should use the site command to determine if the CPU
 is the desired type. If it is not the desired type, then the script
 should exit immediately with a zero return code.

Programming Tools and Interfaces
Special Script for the Local

¦ Copyright IBM Corp. 1985, 1991
13.6.4.1 - 1

 13.6.4.2 Restoring the LPP Media

 At some point in the instal script, inurest is used to restore the LPP
 media. For example, to restore the files listed in the apply list file al
 for the LPP named myprog, use a shell command in the following format:

 /etc/inurest -qd device /usr/lpp/myprog/al myprog

 This command restores all files from the specified device. instal uses
 the device passed to it by installp. The parameter /usr/lpp/myprog/al is
 the full path name of the apply list file, and myprog is the name of the
 LPP being installed.

 Also use the inurest command to archive and then delete any restored
 archive member files. To enable the archive process, include a file
 lpp.acf in the archive file ./usr/lpp/lpp-id/liblpp.a. See "The Archive
 Control File" in topic 13.9.8 for the format of this file. If this file
 is present, inurest archives and then deletes all restored files that are
 listed in both lpp.acf and the apply list file (al in the example).

Programming Tools and Interfaces
Restoring the LPP Media

¦ Copyright IBM Corp. 1985, 1991
13.6.4.2 - 1

 13.6.4.3 Allowing for Individual Needs

 The instal script may need to perform some special tasks to ensure that
 the LPP operates properly. These may include the following:

 � Use the inurest command together with an apply list file and archive
 control file to store files in a library.

 � Display progress messages during the different stages of th
 installation procedure.

 � Recover from errors, or back out of the installation if errors occur

Programming Tools and Interfaces
Allowing for Individual Needs

¦ Copyright IBM Corp. 1985, 1991
13.6.4.3 - 1

 13.6.4.4 Customizing the System for an LPP

 Some changes require modification of configurable system files. These
 files are in general not overlaid, but modified through editing or
 commands such as echo. These files may be local (i.e. dfile) or
 replicated (i.e. profile). Such files must be changed by using the
 following scripts:

 instal For installs affecting replicated files.

 lappscr.0000 For installs affecting local files.

 appscr.nnnn For updates affecting replicated files.

 lappscr.nnnn For updates affecting local files.

 Before a script changes such files, it is advisable to back them up to
 another location. The script can check if the modification failed and if
 so, it can move the backed-up copy of the file to its original location
 and exit with an error code.

 Whenever one of the above scripts does its intended action, there must be
 a corresponding script to "undo" its effects, for use in rejects.

 Forwards Script Backwards Script

 instal

 lappscr.nnnn lrejscr.nnnn

 appscr.nnnn rejscr.nnnn

 If there is a need to reboot, the local script inst_updt.loc should return
 a reboot code. See the following section for a list of the proper return
 values.

Programming Tools and Interfaces
Customizing the System for an LPP

¦ Copyright IBM Corp. 1985, 1991
13.6.4.4 - 1

 13.6.4.5 Installation and Update Procedure Return Codes

 When an installation or update has completed, it may be necessary to
 rebuild the kernel or do a reboot. The instal updates and inst_updt.loc
 procedures may initiate the desired action by using the following return
 codes:

 Figure 13-7. Return Codes from instal, and inst_updt.loc
 Code Description

 0 Successful completion. No further actions required.

 2 Successful completion. Do a sync (inst_updt.loc only) reboot
 and exit.

 3 Successful completion. Rebuild the kernel, do a sync
 (inst_updt.loc only). The system will ask the user to reboot
 when all installation updates are completed.

 4 Successful completion. Rebuild the kernel, do a sync,
 (inst_updt.loc only) tell the user that reboot is required and
 exit.

 6 Successful completion. Do a sync (inst_updt.loc only). The
 system will ask the user to reboot when all installations
 record or updates are completed.

 7 The update procedure requests cancellation of the update with
 errors. The service tools recover the previous state of the
 system (update only).

 Other Error. If returned from instal, then write the information to
 lpp.hist with zeroes in the Version, Release, Level fields, and
 the return code value as the error code field.

Programming Tools and Interfaces
Installation and Update Procedure Return Codes

¦ Copyright IBM Corp. 1985, 1991
13.6.4.5 - 1

 13.6.5 Example of Files on installp Media

 The following is an example list of files and directories that are needed
 when installing an LPP using the installp command. The LPP being
 installed in the following example is MERGE.

 ./lpp_name
 ./usr/lpp/MERGE/liblpp.a

 ./usr/lpp/MERGE/lpp.loc
 ./usr/lpp/MERGE/lpp.loc/al.loc
 ./usr/lpp/MERGE/lpp.loc/inst_updt.loc
 ./usr/lpp/MERGE/lpp.loc/lpp.hist
 ./usr/lpp/MERGE/lpp.loc/info

 ./usr/lpp/MERGE/lpp.loc/files
 ./usr/lpp/MERGE/lpp.loc/files/local
 ./usr/lpp/MERGE/lpp.loc/files/local/MERGE1
 ./usr/lpp/MERGE/lpp.loc/files/local/MERGE2
 ./usr/lpp/MERGE/lpp.loc/files/local/MERGE3
 ./usr/bin/MERGE

Programming Tools and Interfaces
Example of Files on installp Media

¦ Copyright IBM Corp. 1985, 1991
13.6.5 - 1

 13.6.6 Important Example Files

 � FILE: ./lpp_name

 Merge DOS Merge

 � FILE: ./usr/lpp/MERGE/liblpp.a

 This archive file contains the following files:

 � al

 � copyright

 � instal

 � lpp.hist

 � FILE: The al file in ./usr/lpp/MERGE/liblpp.a

 ./usr/lpp/MERGE/lpp.loc/inst_updt.loc
 ./usr/lpp/MERGE/lpp.loc/al.loc
 ./usr/lpp/MERGE/lpp.loc/lpp.hist
 ./usr/lpp/MERGE/lpp.loc/info
 ./usr/lpp/MERGE/lpp.loc/files/local/MERGE1
 ./usr/lpp/MERGE/lpp.loc/files/local/MERGE2
 ./usr/lpp/MERGE/lpp.loc/files/local/MERGE3
 ./usr/bin/MERGE

 This file is the apply list for this installation. In order to install
 files in the local file system, the directory ./usr/lpp/MERGE/lpp.loc must
 exist and contain those files.

 � FILE: The copyright file in ./usr/lpp/MERGE/liblpp.a

 This is LPP MERGE
 MERGE LPP
 Version 00.00.0000.0000 (C) Copyright Vendor

 � FILE: The instal file in ./usr/lpp/MERGE/liblpp.a

 /etc/inurest -q -d$1 /usr/lpp/MERGE/al MERGE
 exit $?

 This is an executable file invoked by installp. It is written by the
 vendor.

 � FILE: The lpp.hist file in ./usr/lpp/MERGE/liblpp.a

 c MERGE 00.00.0000.0000 MERGE
 t MERGE LPP

 This is the history file for the replicated root file system.

 � FILE: ./usr/lpp/MERGE/lpp.loc/lpp.hist

 c MERGE 00.00.0000.0000 MERGE
 t MERGE LPP for local

 This is the history file for the local.

Programming Tools and Interfaces
Important Example Files

¦ Copyright IBM Corp. 1985, 1991
13.6.6 - 1

 � FILE: ./usr/lpp/MERGE/lpp.loc/al.loc

 ./local/MERGE1
 ./local/MERGE2
 ./local/MERGE3

 This is an apply list file for the local file system.

 � FILE: ./usr/lpp/MERGE/lpp.loc/inst_updt.loc

 cdir=`pwd`
 cd /
 /etc/inurest -q -d$cdir/bac $cdir/al.loc MERGE
 exit $?

 This is an executable for the local installation. All cluster sites have
 the LPP installed. If a site-specific installation were required, this
 script would need to be changed by the vendor.

 � FILE: ./usr/lpp/MERGE/lpp.loc/info

 a MERGE 60 00.00.0000.0000

 This information file is required for the local installation. For a
 description of this file, refer to "The Local Information File" in
 topic 13.10.

Programming Tools and Interfaces
Important Example Files

¦ Copyright IBM Corp. 1985, 1991
13.6.6 - 2

 13.7 What You Need to Update an LPP

 This section describes the type of information, the files and the
 directories that you need to update an LPP.

 Subtopics
 13.7.1 The Four Steps In the update Procedure
 13.7.2 Original
 13.7.3 Original to Applied
 13.7.4 Applied to Committed
 13.7.5 Committed to Applied
 13.7.6 Applied to Original
 13.7.7 Files For Updates to Local File Systems
 13.7.8 Example update Procedure
 13.7.9 Example of Update Files and Directories

Programming Tools and Interfaces
What You Need to Update an LPP

¦ Copyright IBM Corp. 1985, 1991
13.7 - 1

 13.7.1 The Four Steps In the update Procedure

 There are four steps involved in the update procedure:

 � apply

 � commit

 � uncommit

 � reject

 apply allows for a conditional or temporary installation. commit allows
 for a more permanent installation. uncommit brings the files back to the
 apply conditional status. reject returns the changed LPP to its condition
 before the changes were made.

 Figure 13-8 shows the relationship between the four steps in the update
 procedure.

 --

 apply commit
 +-----------+ +-----------+
 ¦ � ¦ �
 +-----------+ +-----------+ +-----------+
 ¦ Original ¦ ¦ Applied ¦ ¦ Committed ¦ states
 +-----------+ +-----------+ +-----------+
 � ¦ � ¦
 +-----------+ +-----------+
 reject uncommit

 --
 Figure 13-8. Four Steps in the update Procedure

 Each of the states is described in the following section.

Programming Tools and Interfaces
The Four Steps In the update Procedure

¦ Copyright IBM Corp. 1985, 1991
13.7.1 - 1

 13.7.2 Original

 This is the state before a particular update is done. It can occur after
 an initial installation. It can also occur after a commit or reject has
 been done on a previous update.

Programming Tools and Interfaces
Original

¦ Copyright IBM Corp. 1985, 1991
13.7.2 - 1

 13.7.3 Original to Applied
 The Applied state exists after an apply. apply recovers files from the
 media, possibly overlaying old files. To save the old files in
 /usr/lpp/lpp-id/inst_updt.save, inusave may be called from instal.

 In the Applied state, the directories /usr/lpp/lpp-id and
 /usr/sys/inst_updt contain the LPP files and status that are required for
 a commit.

Programming Tools and Interfaces
Original to Applied

¦ Copyright IBM Corp. 1985, 1991
13.7.3 - 1

 13.7.4 Applied to Committed

 The Committed state exists after a commit, which moves the
 /usr/lpp/lpp-id/inst_updt.save and /usr/sys/inst_updt directories to
 another location (the backout stack). It also allows for a new apply to
 be performed. A commit is performed if a particular LPP needs to be
 stored in a condition that is more permanent than an apply.

 Note: Another update (be it a subsequent update or an update to a
 different LPP) cannot be applied until any outstanding update has
 been committed (or rejected). An update in the applied state is a
 temporary state until the system administrator commits or rejects
 it.

Programming Tools and Interfaces
Applied to Committed

¦ Copyright IBM Corp. 1985, 1991
13.7.4 - 1

 13.7.5 Committed to Applied

 This transition reverses a commit by retrieving the /usr/lpp/lpp-id and
 /usr/sys/inst_updt.save directories from a frame stack in storage. It
 then restores the directories to their conditions prior to the commit.

Programming Tools and Interfaces
Committed to Applied

¦ Copyright IBM Corp. 1985, 1991
13.7.5 - 1

 13.7.6 Applied to Original

 This transition reverses an apply by using the information kept in the
 /usr/lpp/lpp-id and /usr/sys/inst_updt directories to reconstruct the old
 version of the LPP. When this occurs, the directory /usr/sys/inst_updt
 and some files in /usr/lpp/lpp-id used for reject are deleted.

 Note: All changes done by updatep are logged in the history file and the
 global history file.

 Subtopics
 13.7.6.1 Files for Updates

Programming Tools and Interfaces
Applied to Original

¦ Copyright IBM Corp. 1985, 1991
13.7.6 - 1

 13.7.6.1 Files for Updates

 To update an LPP on the AIX system using the updatep command, supply the
 following files in backup-by-name format, using a relative path name with
 respect to the / directory on the target system. The files must be in the
 following order:

 1. An optional file named ./copyright that contains the copyright
 information for each LPP on the media. If this file is present, it
 must be the first. It is referenced by the external media copyright
 label if there is not enough space on the label to include all of the
 appropriate copyright notices.

 2. A file named ./lpp_name that contains the title of each LPP (see "The
 LPP Name File" in topic 13.9.6).

 3. An archive named ./usr/sys/inst_updt/control, created with the ar
 command, that contains the following files:

 lpp-id_vrl
 A file for each LPP to be updated that contains the version,
 release and level numbers of the LPP after the update has
 been applied. The format of the one-record file is:

 VV RR LLLL

 This format is similar to all VRL numbers used in this
 section, except that there are spaces instead of periods
 between the version, release, and level. The record ends
 with a new-line character.
 lppsize
 A required file that contains an entry for each LPP that is
 being updated. Each entry contains:

 lpp-id size

 The size field specifies the number of 1024-byte blocks
 needed to save the changed portion of the LPP specified by
 the lpp-id field. The two fields must be separated by a
 blank. Each entry ends with a single new-line character.

 The updatep service tool uses the size information to
 determine if there is enough space in the /usr file system
 to save changed and deleted files. If the size of the LPPs
 being added is larger than the available free space in the
 /usr file system, updatep gives the user the following
 options:

 � Stop the update

 � Continue with the update.

 If the user continues, updatep does a commit rather than an
 apply of the update. The save step is skipped; thus, the
 current version of the LPP cannot be recovered. A
 subsequent uncommit and reject of the update will not work.

 Although this file is optional, you should include an
 lppsize file in all LPP updates. If updatep does not find

Programming Tools and Interfaces
Files for Updates

¦ Copyright IBM Corp. 1985, 1991
13.7.6.1 - 1

 this information, it does not check to see if there is
 enough space to save the previous version of the LPP.
 lpp-id_instr
 An optional archive, one for each LPP being updated, that
 contains a set of files with instructions. If you do not
 provide instruction files, do not include this archive.
 These are standard text files. They are named according to
 the update level to which they apply, in the following
 format:

 ui.VV.RR.LLLL

 In this format, the symbols VV, RR and LLLL represent the
 version, release, and level numbers. You can have
 instruction files for one or more of the LPP levels that are
 being updated.
 lpp-id_erata
 An optional archive, one for each LPP being updated, that
 contains a set of files with changes to the documentation
 for the LPP. If you do not provide changes to the
 documentation, do not include this archive. These files are
 standard text files. They are named according to the update
 level to which they apply, they are in the following format:

 me.VV.RR.LLLL

 In this format, the symbols VV, RR and LLLL represent the
 version, release and level numbers. You can have
 documentation change files for one or more of the LPP levels
 being updated.

 4. One file named ./usr/sys/inst_updt/special that identifies special
 update requirements for each LPP being updated. See "The Special
 File" in topic 13.10.1 for information about this file.

 5. An archive named ./usr/lpp/lpp-id/inst_updt/arp, created with the ar
 command, that contains the following files:

 update
 An executable file that contains a procedure to update the
 LPP. The procedure may be either a shell script or a
 compiled program.
 al_VV.RR.LLLL
 An apply list file that contains the relative path names
 with respect to the / directory of all files to be updated.
 See "Creating an Apply List File" in topic 13.9.7 for
 information about the file format. Include one apply list
 file for each update to the LPP. The symbols V , R and L
 represent version, release and level numbers as described in
 "Creating the LPP History File" in topic 13.9.1.
 lpp.acf
 An optional file that defines archiving procedures for the
 LPP as described in "The Archive Control File" in
 topic 13.9.8.
 copyright
 An optional file that contains appropriate copyright
 information for the LPP. If this file is present, updatep
 displays the contents of this file when it applies the
 update to the LPP.
 appscr.nnnn and rejscr.nnnn

Programming Tools and Interfaces
Files for Updates

¦ Copyright IBM Corp. 1985, 1991
13.7.6.1 - 2

 where nnnn is a level number. These are optional executable
 files. They are used to apply and reject any parts of the
 update that cannot be accomplished by simple file creation
 and replacement. If either file exists, they must both
 exist.

 6. The new and replacement LPP files.

Programming Tools and Interfaces
Files for Updates

¦ Copyright IBM Corp. 1985, 1991
13.7.6.1 - 3

 13.7.7 Files For Updates to Local File Systems

 The following files and directories are required for upgrade updates that
 include changes to local files.

 ./usr/lpp/lpp-id/lpp.loc
 A directory containing the following files:

 inst_updt.loc Executable which does the local installation.

 info A file containing installation information and
 local file system requirements.

 lpp.hist A history file for the local installation.

 ./usr/lpp/lpp-id/lpp.loc/files
 A directory containing the local updated files.

 In addition, the arp archive must contain the file loc_VV.RR.LLLL. This
 is the local apply list.

 Local Examples: Assume you have an LPP named "PCI" and you want to update
 two local files, <LOCAL>bin/pci1 and <LOCAL>sys/pci2. In order to do
 this, you must have the following entries in the file loc_VV.RR.LLLL in
 the arp archive:

 ./bin/pci1

 ./sys/pci2

 You must also have the following files on your media:

 ./usr/lpp/PCI/lpp.loc/files/local/bin/pci1

 ./usr/lpp/PCI/lpp.loc/files/local/sys/pci2

Programming Tools and Interfaces
Files For Updates to Local File Systems

¦ Copyright IBM Corp. 1985, 1991
13.7.7 - 1

 13.7.8 Example update Procedure

 Figure 13-9 is a shell procedure to update an example LPP. The parameters
 have the following meaning:

 $1 The full path name of the apply list file.

 $2 The device path, usually /dev/rfd0.

 The name of the LPP must be substituted for lpp-id.

 --

 NAME=lpp-id
 LDIR=/usr/lpp/$NAME/inst_updt
 AL=$1
 RESTDEV=$2

 #
 # Save the files to be updated
 #

 /etc/inusave $AL $NAME
 RC=$?
 if [$RC -ne 0]; then
 exit $RC
 fi

 #
 # Restore the updates
 #
 /etc/inurest "-d$RESTDEV" $AL $NAME
 RC=$?

 #
 # Exit
 #
 exit $RC

 --
 Figure 13-9. Example of update Shell Script

Programming Tools and Interfaces
Example update Procedure

¦ Copyright IBM Corp. 1985, 1991
13.7.8 - 1

 13.7.9 Example of Update Files and Directories

 The following is a list of files and directories residing on the updatep
 media for an update. The LPP to be updated in this example is called
 MERGE. There are several files to be updated on the local filesystem, as
 well as on the replicated root. Following the update, MERGE will be at
 version 0, release 0, level 20.

 ./lpp_name
 ./usr/sys/inst_updt
 ./usr/sys/inst_updt/control
 ./usr/sys/inst_updt/special

 ./usr/lpp/MERGE
 ./usr/lpp/MERGE/inst_updt
 ./usr/lpp/MERGE/inst_updt/arp

 ./usr/lpp/MERGE/lpp.loc
 ./usr/lpp/MERGE/lpp.loc/info
 ./usr/lpp/MERGE/lpp.loc/lpp.hist
 ./usr/lpp/MERGE/lpp.loc/files
 ./usr/lpp/MERGE/lpp.loc/files/local
 ./usr/lpp/MERGE/lpp.loc/files/local/merge_L1
 ./usr/lpp/MERGE/lpp.loc/files/local/merge_L3
 ./usr/lpp/MERGE/lpp.loc/files/local/merge_L4
 ./usr/lpp/MERGE/lpp.loc/files/local/merge_L5
 ./usr/lpp/MERGE/lpp.loc/files/local/merge_L6
 ./usr/bin/merge_g1
 ./usr/bin/merge_g3
 ./usr/bin/merge_g4
 ./usr/bin/merge_g5
 ./usr/bin/MERGE
 ./usr/bin/MERGE/mergeX

 � FILE: ./lpp-name

 MERGE Merge LPP

 � FILE: ./usr/sys/inst_updt/control

 This is an archive file containing the lppsize and MERGE_vrl files.

 � ARCHIVE MEMBER: lppsize

 MERGE 20

 � ARCHIVE MEMBER: MERGE_vrl

 00 00 0020 0000

 � FILE: /usr/syst/inst_updt/special
 This file is empty

 � FILE: ./usr/lpp/MERGE/inst_updt/arp

 This is an archive file containing the files copyright, update,
 al_00.00.0020, and loc_00.00.0020.

 If apply and reject scripts were needed, archive members appscr.0020

Programming Tools and Interfaces
Example of Update Files and Directories

¦ Copyright IBM Corp. 1985, 1991
13.7.9 - 1

 and rejscr.0020 would also be present. Local apply and reject
 scripts, if needed, would be in lappscr.0020 and lrejscr.0020.

 � ARCHIVE MEMBER: copyright

 (c) Copyright AIX PS/2 DOS Merge 1988
 (c) Copyright International Business Machines Corporation 1987
 All Rights Reserved

 � ARCHIVE MEMBER: update

 This is an executable file that is invoked by updatep to do the actual
 update.

 NAME=MERGE
 LDIR=/usr/lpp/$NAME/inst_updt

 AL=$1
 RESTDEV=$2

 #
 # Save the files to be updated
 #

 /etc/inusave $AL $NAME
 RC=$?
 if [$RC -ne 0]; then
 exit $RC
 fi

 #
 # Restore the updates
 #
 /etc/inurest "-d$RESTDEV" $AL $NAME
 RC=$?

 #
 # Exit
 #
 exit $RC

 � ARCHIVE MEMBER: 21_00.00.0020 (apply list for root)

 ./usr/bin/merge_g1
 ./usr/bin/merge_g2
 ./usr/bin/merge_g3
 ./usr/bin/merge_g4
 ./usr/bin/merge_g5
 ./user/bin/MERGE/mergeX

 � FILE: loc_00.00.0020 (apply list for local)

 ./local/merge_L1
 ./local/merge_L3
 ./local/merge_L4
 ./local/merge_L5

 � FILE: ./usr/lpp/MERGE/lpp.loc/info

Programming Tools and Interfaces
Example of Update Files and Directories

¦ Copyright IBM Corp. 1985, 1991
13.7.9 - 2

 a MERGE 60

 � FILE: ./usr/lpp/MERGE/lpp.loc/lpp.hist

 This is the <LOCAL> history file.

 a MERGE 00.00.0020.0000 MERGE Localpr update

 � FILE: ./usr/lpp/MERGE/lpp.loc/inst_updt.loc

 This is the script that performs the local upgrade.

 cdir=`pwd`
 cd /
 /etc/lpp/insvl "$cdir"/al.loc MERGE
 /etc/inurest -q -d$cdir/bac $cdir/al.loc MERGE
 exit $?

Programming Tools and Interfaces
Example of Update Files and Directories

¦ Copyright IBM Corp. 1985, 1991
13.7.9 - 3

 13.8 Allowing for Recovery

 The updatep service tool requires that the update script save enough
 information to allow it to recover the previous level of the LPP being
 updated. For simple updates calling inusave before trying to change
 anything is sufficient. The inusave program saves the current version of
 any file.

 The update service tool may either restore or delete the saved files,
 depending upon how the update turns out. It deletes the saved files if:

 � The user commits (accepts) the update (the files are actually move
 elsewhere).

 � An error occurs during the update process, but before any files hav
 been changed by the update process.

 It recovers the saved files if:

 � The user rejects the updat

 � An error occurs during the update process after files have bee
 changed.

 If an error occurs after the update process has already changed any file,
 the saved files are not automatically deleted after recovery. The
 /usr/lpp/lpp-id/inst_updt.save directory and its contents must be removed
 locally. Otherwise, a later install or update for that LPP will detect
 the presence of that directory, causing the installation to fail.

 A file /etc/lpp/config.log containing status information will be created
 at the beginning of each installp and updatep, and will be removed before
 the service tool exits. If the machine goes down in the middle of an
 operation, this file will not be removed.

 Error recovery is performed using /etc/lpp/inuconfig. This program must
 be invoked if an error occurs during use of the service tools. It checks
 for the existence of /etc/lpp/config.log. If the file does not exist,
 this means that the previous service was successfully accomplished. If
 the file does exist, inuconfig will notify the user about a possible bad
 system configuration caused by the previous service and fix any problem it
 can find.

Programming Tools and Interfaces
Allowing for Recovery

¦ Copyright IBM Corp. 1985, 1991
13.8 - 1

 13.9 File Formats and Description

 This section provides detailed file format information for:

 � The LPP History fil

 � The Global History fil

 � The Local History fil

 � The LPP Requirements fil

 � The Requirement Strin

 � The LPP Name fil

 � The Apply List fil

 � The Archive Control file

 Subtopics
 13.9.1 Creating the LPP History File
 13.9.2 The Global History File
 13.9.3 The Local History File
 13.9.4 Creating the LPP Requirements File
 13.9.5 Using the Requirement String
 13.9.6 The LPP Name File
 13.9.7 Creating an Apply List File
 13.9.8 The Archive Control File

Programming Tools and Interfaces
File Formats and Description

¦ Copyright IBM Corp. 1985, 1991
13.9 - 1

 13.9.1 Creating the LPP History File

 The LPP history files /usr/lpp/lpp-id/lpp.hist and
 /usr/lpp/lpp-id/lpp.loc/lpp.hist contain information to identify the
 installed release and version of an LPP on the system. These are ASCII
 text files. See the AIX Operating System Technical Reference for further
 information.

 Figure 13-10 shows the record format of the history files. Figure 13-11
 defines the fields in the history record.

 --

 --
 Figure 13-10. Record Format for the History File

 Figure 13-11. Fields in a History Record
 Field Description

 S Indicates the condition of the LPP, using the following
 characters:

 a An update was applied.
 b Positions 3-16 contain the name of the backup
 format file used to install this LPP.
 c An update was committed (accepted).
 e An unrecoverable error has occurred.
 m A manual reject was performed. The state of the
 LPP is unknown.
 r An update was rejected or recovered.
 t This record is a title record. Positions 3
 through 32 contain a title for the LPP.
 * This record is a comment field (put an * in
 position 79 to ensure a full length record).

 lpp-id The name assigned to the LPP. If the name is less than 8
 characters, the field must be filled out with blanks.

 VV A 2-digit numeric field followed by a period indicating the
 version number of the LPP. The version number indicates
 which level of the hardware and operating system the LPP
 works with.

 RR A 2-digit numeric field followed by a period indicating the

Programming Tools and Interfaces
Creating the LPP History File

¦ Copyright IBM Corp. 1985, 1991
13.9.1 - 1

 release number of the LPP. The release number tracks
 changes to external programming interfaces since the last
 version change. This number increments each time the
 external interface to the LPP changes.

 LLLL A 4-digit numeric field indicating the update state of the
 LPP. This field increments when the LPP changes and the
 change does not affect the documented external interface
 for the LPP. The level, together with the S field, ensures
 that all changes up to and including the current change are
 installed on the system.

 DDMMYY These three numeric fields indicate the date the change is
 made to the LPP:

 DD Day of the month (01 to 31)
 MM Month of the year (01 to 12)
 YY Year (00 to 99)

 username An alphanumeric field that contains the user ID of the
 person that installed the LPP. If the user ID is less than
 8 characters, this field must be filled out with blanks.
 This field is filled in at installation time, and can be
 blank when the update is distributed.

 comment A 30-character field for adding comments.
 field

 \n A required new-line character.

Programming Tools and Interfaces
Creating the LPP History File

¦ Copyright IBM Corp. 1985, 1991
13.9.1 - 2

 13.9.2 The Global History File

 The global history file, /etc/lpp/ghf contains a chronological log of all
 installations and updates for all LPPs on the system. This file provides
 a snapshot of current status of software on the system. This file is
 unique to each system.

 The format of this file is similar to lpp.hist except that the status
 field is 2 characters long. This field contains an L if the local
 component exists, or a blank space if it does not exist. All other fields
 are shifted to the right by 1. Each line in this file must be eighty
 characters long. All access to this file is done through inudhist. This
 file is modified as a result of the following:

 � When a successful installp is done, a log of the successful
 installation is made through inudhist -i (a commit entry).

 � When an updatep -a (apply) is done, a log of the apply is made through
 inudhist -a (apply entry).

 � When an updatep -c (commit) is done, the previous apply record is
 commented out with a "*" in the first column and a new commit record
 is added through inudhist -c.

 � When an updatep -u (uncommit) is done, the previous commit record is
 commented out with a "*" in the first column and a new apply record is
 added through inudhist -u.

 � When an updatep -r (reject) is done, the last record (being an apply)
 is commented out with a "*" in the first column using inudhist -r.

Programming Tools and Interfaces
The Global History File

¦ Copyright IBM Corp. 1985, 1991
13.9.2 - 1

 13.9.3 The Local History File

 The purpose of the local history file is to log relevant information on
 changes made to the local filesystem of an individual site. Each site has
 a local history file which is kept under <LOCAL>/lpp.hist. These files
 are not used for determining what local changes are pending for a site as
 that is taken care of by the queue mechanism. Therefore, the local history
 file is only of interest to the system administrator as a log of the
 site's past, but not as a means of controlling any LPP.

 The format for this history file is identical to the global history file.

 Kernel information can be recorded in this history file as a comment. The
 comment line syntax for the history file must adhere to the following
 rules:

 � An asterisk (*) in column 1

 � To ensure an 80 byte record, place an asterisk in column 79 before th
 line feed.

 This history file will be modified as a result of a local action (pending
 in the queue) being processed by qproc.

Programming Tools and Interfaces
The Local History File

¦ Copyright IBM Corp. 1985, 1991
13.9.3 - 1

 13.9.4 Creating the LPP Requirements File

 You can use the ckprereq routine to determine if required LPPs are already
 installed on the system. The ckprereq routine uses the LPP requirements
 file (prereq by default) to make that determination. Figure 13-12 shows
 the record format of an entry in the requirements file. Figure 13-13
 defines the fields in the requirements record.

 --

 Character Position

 1 9 16 18 last character
 +-------+------+-+----------/ /--------------------------¦
 prereq-p&revbul.&revbul.&revbul.&revbul.&revbul.&revbul.&revbul.S&revbul.---- requirement string (up to 45 chars)----\n

 &revbul. - indicates a blank
 \n - indicates a single new-line character

 --
 Figure 13-12. Record Format for the Requirements File

 Figure 13-13. Fields in Requirements Record
 Field Description

 prereq-p An 8-character alphabetic field that contains the name
 of the LPP that is required.

 S ckprereq result code: Leave this field blank. The
 ckprereq command fills in this 1-character field with
 one of the following letters:

 f The format of the history file is not 80-byte
 records.
 l The requested level is not installed on the
 system.
 n A history file for that LPP is not installed
 on the system.
 r The requested release is not installed on the
 system.
 s The prereq file entry has a syntax error.
 u The state of the LPP is unknown.
 v The requested version is not installed on the
 system.
 blank The prerequisite LPP is installed on the
 system in the proper configuration.

 requirement A set of logical expressions that define the version,
 string release and level parameters that the prerequisite LPP
 must have. "Using the Requirement String" in
 topic 13.9.5 explains how to use the requirement
 string.

 \n Required new-line character.

Programming Tools and Interfaces
Creating the LPP Requirements File

¦ Copyright IBM Corp. 1985, 1991
13.9.4 - 1

 13.9.5 Using the Requirement String

 The requirement string allows you to specify a minimum version, release
 and level required for an LPP to be serviced. Figure 13-14 shows the
 syntax of the requirement string and the symbols used to create the
 string.

 --

 +---------------+ +----------------+ +----------------+
 ---¦ +- >n -+ +----¦ +- >n -+ +----¦ +- >n -+ +----
 +- v --¦ ¦-¦ +- &revcir.r --¦ +-+ +- &revcir.l --¦ +-¦
 �+- =n -+ +- &revcir.o&revcir. -+ �+- =n -+ +- &revcir.o&revcir. -+ � +- =n -+ +- &revcir.o&revcir. -+
 ¦ ¦ ¦ ¦ ¦ ¦
 +-----------------+ +-----------------+ +------------------+

 &revcir. - indicates required blank
 n - can be any integer

 --
 Figure 13-14. Format for the Requirement String

 The symbols in the diagram have the following meanings:

 v A version number is being specified.

 r A release number is being specified.

 l A level number is being specified.

 > Greater than.

 = Equal.

 o Logical OR.

 n An integer value for the specific parameter to be compared
 against.

 The ckprereq program evaluates each requirement string in the prereq file
 beginning with the v (for version) and continuing to the right (left to
 right order). It does not evaluate any further than is required to
 determine that the whole line must be true or false. For example, if the
 LPP myprog is at version 3.1 (version 3, release 1), and the requirement
 string is:

 myprog v>1 r>0

 The program needs to determine only that version 3 is larger than 1 to be
 sure that the correct conditions exist. If, however, myprog is at version
 2.1, the routine must not only evaluate the version but also the release.
 Version 2.0 would fail the test; version 2.1 passes the test.

 Subtopics
 13.9.5.1 Requirements File Example Entry

Programming Tools and Interfaces
Using the Requirement String

¦ Copyright IBM Corp. 1985, 1991
13.9.5 - 1

 13.9.5.1 Requirements File Example Entry

 The following entry:

 myprog v=2 r>30 o =10 o =15

 in a requirements file indicates that:

 � The LPP myprog is a required LPP.
 � It must be version 2
 � Any level is valid l is not specified).
 � The release may be either 10, 15 or greater than 30

 Similarly, the following entry:

 myprog v>1 r>30 o =10 o =15

 in a requirements file indicates that:

 � The LPP myprog is a required LPP.
 � It must be version 2 or greater
 � Any level is valid l is not specified).
 � If the version is 2, the release may be either 10, 15 or greater tha
 30; if the version is 3 or more, any release is valid.

Programming Tools and Interfaces
Requirements File Example Entry

¦ Copyright IBM Corp. 1985, 1991
13.9.5.1 - 1

 13.9.6 The LPP Name File

 The LPP name file contains the names of the LPPs on the service media.
 Name this file ./lpp_name. It must contain one or more entries.

 Figure 13-15 shows the format of an entry in the LPP name file and
 Figure 13-16 defines the fields in the entry.

 --

 Character Position

 47 or
 1 9 17 last character
 +-------+-------+-----------/ /----------¦
 lpp-id &revbul.&revbul.&revbul.&revbul.&revbul.&revbul.&revbul.&revbul.-- title (up to 30 chars) --\n

 &revbul. - indicates a blank
 \n - indicates a single new-line character

 --
 Figure 13-15. Format for the LPP Name file

 Figure 13-16. Fields in LPP Name Entry
 Field Description

 lpp-id The name assigned to the LPP. If the name is less than 8
 characters, this field must be filled out with blanks.

 title A descriptive title of up to 30 characters.

 \n A required new-line character.

Programming Tools and Interfaces
The LPP Name File

¦ Copyright IBM Corp. 1985, 1991
13.9.6 - 1

 13.9.7 Creating an Apply List File

 Apply List

 Apply lists are files containing a number of file names, one per line,
 using relative path names that begin with ./ (for example,
 ./usr/bin/tail). Apply lists will typically contain names of files that
 are functioning ports of the LPP. Sometimes they must also contain
 service tool control files, as is described below.

 These lists are intended to be used by the restore program to bring files
 on to the system. Due to the manner in which restore operates, the only
 directories in the apply lists should be those specific to the LPP (no
 ./etc or ./usr/lib). If a directory is present on the media and is in the
 apply list, its attributes (fstore, owner, etc.) on the system will be
 changed. This is usually not desired. A directory that is not on the
 system nor on the media will be created with default attributes if needed.

 Note: The apply list for an install and the merged set of apply lists for
 an update must not be larger than 14K-bytes.

 Global apply list

 These apply lists are always used while the current working directory is
 /, so all file names should be relative to /.

 For installp, the global apply list is a member of the
 /usr/lpp/lpp-id/liblpp.a archive called al. If there is any local
 installation to be performed, this list must include all files in the
 /usr/lpp/lpp-id/lpp.loc directory tree.

 For updatep, the global apply list is a set of members of the
 /usr/lpp/lpp-id/inst_updt/arp archive, named al_vrl for upgrade updates
 (one for each separate level). Any new archive member files that are
 provided for in the lpp.acf file must appear in the apply list(s) as well.

 Local apply list

 These apply lists are always used while the current working directory is
 /local, so all file names should be relative to /local.

 For installp, the local apply list is /usr/lpp/lpp-id/al.loc. This list
 would typically include all files found in the
 /usr/lpp/lpp-id/lpp.loc/files/local directory tree.

 For updatep, the local apply list is a set of members of the
 /usr/lpp/lpp-id/inst_updt/arp archive, named loc_vrl for upgrade updates
 (one for each separate level). These lists would typically include
 relevant files from the /usr/lpp/lpp-id/lpp.loc/files/local directory
 tree.

Programming Tools and Interfaces
Creating an Apply List File

¦ Copyright IBM Corp. 1985, 1991
13.9.7 - 1

 13.9.8 The Archive Control File

 The service tools use the optional archive control file to place
 individual member files into libraries.

 Supply a file named lpp_acf in the liblpp.a library for an install or in
 the arp library for an update. This archive control file lists the new
 library member files and the libraries they belong in. Each line has the
 following format:

 filename archive_file

 The parameters on each line are separated by one or more blanks, and have
 the following meaning:

 filename The relative full path name of the new library member
 exactly as it appears in the apply list.

 archive_file The full rooted path name of the library file that
 contains the member file.

Programming Tools and Interfaces
The Archive Control File

¦ Copyright IBM Corp. 1985, 1991
13.9.8 - 1

 13.10 The Local Information File

 The /usr/lpp/lpp-id/lpp.loc/info file contains information relevant to the
 local service of the LPP. It is required for service. For example, for
 the lpp-id MERGE, the file may contain:

 a MERGE 60 00.00.0020.0000

 Note the following:

 � Each field is separated by a space and there is no specified fiel
 size

 � The first field describes the action (this must be "a" for apply)

 � The second field is the LPP name MERGE)

 � The third field is the number of 1K-byte blocks required to servic
 the LPP on the local.

 � The fourth field describes the version, release, and level

 Subtopics
 13.10.1 The Special File

Programming Tools and Interfaces
The Local Information File

¦ Copyright IBM Corp. 1985, 1991
13.10 - 1

 13.10.1 The Special File

 The Special file must be present and must be empty. It is reserved for
 future use.

Programming Tools and Interfaces
The Special File

¦ Copyright IBM Corp. 1985, 1991
13.10.1 - 1

 13.11 The Save and Recover Directory

 This section describes the directory and files for the root replicated
 file system.

 The save and recover directory (/usr/lpp/lpp-id/inst_updt.save) contains
 copied files and extracted archived files that were saved during a
 reinstallation, or during application of an update. If a reinstallation
 procedure created the directory, the installation procedure must run
 inurecv if an error occurs, or delete the directory when installation is
 complete. If an update procedure created the directory, the directory
 exists until the update is either committed or rejected, or until updatep
 recovers the directory because of an error during the update procedure.
 At that time updatep deletes this directory, after recovering the saved
 files if the update was rejected. However, if the update is rejected
 without automatic recovery, the directory is not deleted to allow for
 manual recovery of the saved files. The directory must then be manually
 deleted after the files are recovered.

 For local files, the directory is similar, but is is found under
 /local/lpp/lpp-id/inst_updt.save instead of
 /usr/lpp/lpp-id/inst_updt.save. All other features are the same.

 The directory contains the files listed in Figure 13-17. The order is not
 important. The directory can contain only the file names in the list.

 Figure 13-17. Save/Restore Directory Content
 File Contents

 lpp-id A file in backup/restore format containing copies of
 all files affected by this update. Pathnames are in
 root-relative format (e.g., ./usr/bin/MERGE).

 archive.list An optional file that lists any archived files that
 were extracted and saved in this directory as
 described in archive.n below. This file consists of
 one record for each archive file saved. This record
 has the following format:

 archive.n member-name archive-name\n

 Where member-name is the full path name of the file
 when it is restored on the system, archive-name is
 the full path name of the target archive file where
 this file belongs, and \n represents a single
 new-line character.

 archive.n A file named in this form for each record in the
 archive.list file. The file contains the file that
 was saved as listed in the archive.list file. In
 this form for naming the file:

 archive Identifies the file as a backed up archive
 file.
 n Is an integer. Each backed up file has a
 unique n associated with it, starting with
 1 for the first file backed up. For
 example, three backed up files have the
 names archive.1, archive.2 and archive.3.

Programming Tools and Interfaces
The Save and Recover Directory

¦ Copyright IBM Corp. 1985, 1991
13.11 - 1

 uniq_dir.list An optional file that lists any install or update
 directories that were created during the process of
 archiving library members during an update. It
 permits updatep to delete any inst_updt/libname
 directories when committing or rejecting an update
 (except for the directories /usr/sys/inst_updt and
 /usr/lpp/lpp-id/inst_updt which are used by the
 update process). The file consists of one record
 for each member file in the directory that is
 created. The record consists of the full path name
 of the member file:

 /path/inst_updt/libname/member

 In this form the parts have the following meanings:

 path The full path name to the inst_updt
 directory
 libname The name of the library that was created
 member The name of the member file

Programming Tools and Interfaces
The Save and Recover Directory

¦ Copyright IBM Corp. 1985, 1991
13.11 - 2

 13.12 Internal Commands

 The following commands are used as part of the service process. They are
 available for use in the various procedures created as part of this
 process, (.e.g., update, lappscr.vrl, etc.).

 Figure 13-18. Internal Commands
 Command Description

 /etc/ckprereq Checks the revision level of LPPs.

 /etc/errupdate Adds, replaces, or deletes the error report
 format templates in the file /etc/errfmt.

 /etc/inudocm Gets copies of update instructions or book
 changes to look at or print.

 /etc/inurecv Recovers all files and archived member files that
 a previous execution of inusave saved. This
 command also recovers any other saved files
 recorded in the configuration list file, or
 active list file.

 /etc/inurest Does simple restores and archives.

 /etc/inusave Saves some, or all, of the files and archived
 member files that will be replaced or modified
 when the LPP is installed or updated.

 /etc/inuupdt Applies a maintenance update for a single LPP.

 /etc/trcupdate Adds, replaces, or deletes trace report format
 templates in the file /etc/trcfmt.

 /etc/lpp/insvl The local equivalent to inusave. Works on target
 directory in /local/lpp.

 /etc/lpp/inrcvl The local equivalent to inurecv. Works on target
 directory in /local/lpp.

 /etc/lpp/qapp Appends a new local action to the system queue.

 /etc/lpp/qproc Triggers the processing of all pending queue
 entries on an individual site.

 /etc/lpp/ckstack Checks the backout stack to find the frame
 containing the desired backout. If there are
 other frames (containing other lpps which must be
 backed out before the desired lpp due to
 prerequisites), it will create a file containing
 a list of other frames. The file created is
 called /usr/lpp.save/list.

Programming Tools and Interfaces
Internal Commands

¦ Copyright IBM Corp. 1985, 1991
13.12 - 1

 14.0 Chapter 14. Maintaining Different Versions of a Program

 Subtopics
 14.1 CONTENTS
 14.2 About This Chapter
 14.3 Introducing SCCS
 14.4 Using SCCS Commands

Programming Tools and Interfaces
Chapter 14. Maintaining Different Versions of a Program

¦ Copyright IBM Corp. 1985, 1991
14.0 - 1

 14.1 CONTENTS

Programming Tools and Interfaces
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
14.1 - 1

 14.2 About This Chapter

 This chapter shows how to use the Source Code Control System (SCCS) to
 control revisions to source code or documentation files using the major
 SCCS commands. It provides background information about SCCS, the format
 of SCCS files, and how to use the SCCS commands. In addition, it shows a
 sample SCCS session and describes the three major SCCS commands in detail.
 These commands are admin, get, and delta. The other commands are
 described in AIX Operating System Commands Reference.

Programming Tools and Interfaces
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
14.2 - 1

 14.3 Introducing SCCS

 The Source Code Control System (SCCS) allows one person or a group to
 control and account for changes made to source code or documentation
 files. It stores the changes made to a file instead of storing the
 changed file. This allows several versions of the same file to exist in
 the system. To edit the file, specify the version. SCCS builds that
 version based on its stored information about previous changes made.
 Using SCCS reduces storage requirements and helps track the development of
 a project that requires keeping many versions of large programs.

 Subtopics
 14.3.1 Features
 14.3.2 New Terms
 14.3.3 SCCS File Format
 14.3.4 Command Conventions
 14.3.5 Command Summary

Programming Tools and Interfaces
Introducing SCCS

¦ Copyright IBM Corp. 1985, 1991
14.3 - 1

 14.3.1 Features

 The SCCS commands form a complete system. Once you create an SCCS file,
 use an SCCS command to change it. Do not edit or compile the SCCS file
 itself. Use another file that is derived from the original SCCS file for
 these operations.

 SCCS commands can do the following:

 � Create an SCCS fil

 � Get a version of an SCCS fil

 � Save changes made to that file versio

 � Define who can change an SCCS fil

 � Record who made changes to the SCCS fil

 � Record when and why the changes were made

Programming Tools and Interfaces
Features

¦ Copyright IBM Corp. 1985, 1991
14.3.1 - 1

 14.3.2 New Terms

 The following descriptions of SCCS terms are used in this chapter.

 SCCS file Any file containing text (source code or documentation)
 that is controlled with SCCS commands. All SCCS files
 begin with s.. This file contains the original file
 contents and sets of changes to the original file or later
 versions of that file. It also contains information about
 who can change the file, who made changes and when they
 were made.

 Note: Do not edit this file directly. It contains
 information to build the stored files.

 delta A set of changes made to an SCCS file. After changing a
 file, use the delta command to save those changes in the
 SCCS file, thereby creating a new delta. Create a new
 delta only to save the changes made. When editing a
 specific version of an SCCS file, that version may consist
 of several different deltas.

 SID SCCS Identification: The name assigned to a delta. An SID
 has up to four parts as shown in Figure 14-1.

 Every SCCS file starts out with an SID of 1.1. which means
 release 1, level 1. After editing version 1.1 and saving
 the changes, SCCS gives the new delta an SID of 1.2, which
 means release 1, level 2.

 A typical SCCS file only uses release and level numbers and
 grows in a straight line. In these cases, the latest file
 version uses every previous delta to that file. However, a
 file may branch to a path where a file version consists of
 a subset of all of the deltas. For example, a common file
 can be used by two different groups. Both groups need the
 same code up to a certain point, and then each group goes
 its own way. In this case, create a branch delta that
 allows each group to add deltas onto a common base.

 The file then has a trunk, with deltas identified by
 release and level, and one or more branches, which have
 deltas containing all four parts of an SID. On a branch,
 the release and level numbers are fixed and new deltas are
 identified by changing sequence numbers. Note that a file
 version built from a branch does not use any deltas placed
 on the trunk after the point of separation. See
 Figure 14-2.

 SCCS can combine different deltas. However, when combining
 many deltas into one, SCCS loses track of the changes that
 created each of the smaller (old) deltas and only tracks
 the change to create the larger (new) delta.

 SID = 1 . 2 . 1 . 4
 � � � �
 ¦ ¦ ¦ ¦
 release --+ ¦ ¦ ¦
 ¦ ¦ ¦
 level --------+ ¦ ¦

Programming Tools and Interfaces
New Terms

¦ Copyright IBM Corp. 1985, 1991
14.3.2 - 1

 ¦ ¦
 branch -----------+ ¦
 ¦
 sequence -------------+
 Figure 14-1. Parts of an SID

 1.1 --- 1.2 --- 1.3 --- 2.1 trunk
 ¦
 ¦
 ¦
 branch +-- 1.2.1.1 --- 1.2.1.2 --- 1.2.2.1
 Figure 14-2. Growth of an SCCS File with Branching

Programming Tools and Interfaces
New Terms

¦ Copyright IBM Corp. 1985, 1991
14.3.2 - 2

 14.3.3 SCCS File Format

 SCCS files have two major sections called the header and the body. The
 header has five subsections, which identify who created the file, who can
 change it and other administrative details. The body has one or more
 subsections consisting of the text portions of the file. There is one
 text portion for each delta in the SCCS file.

 The get command uses the header and body to create the specified file
 version. Other SCCS commands make use of the header and body to perform
 their functions.

 Never edit the SCCS file itself except to modify incorrect information in
 the header as described in "Locating Damaged SCCS Files" in
 topic 14.4.1.1. Editing the SCCS file can damage the structure of the
 file. The SCCS commands can do any necessary modifications of the header
 or body. To see how an SCCS file is organized, examine an SCCS file using
 simple commands such as cat or an editor. However, do not edit the SCCS
 file.

 Subtopics
 14.3.3.1 The SCCS File Header
 14.3.3.2 The SCCS File Body

Programming Tools and Interfaces
SCCS File Format

¦ Copyright IBM Corp. 1985, 1991
14.3.3 - 1

 14.3.3.1 The SCCS File Header

 The sections of an SCCS file header are described in the following.

 Checksum A number containing the logical sum of all of the
 characters in the file. The admin command uses the
 checksum to ensure that all changes to the file were made
 by using the SCCS system.

 Delta Table Information about each delta including type, SID, date and
 time of creation, and comments.

 User Names List of login names or group IDs of users who are allowed
 to modify the SCCS file by adding or removing deltas. If
 this parameter does not exist, anyone can modify the SCCS
 file.

 Options List of indicators that control specific actions of various
 SCCS commands.

 Comments Descriptive text provided by the user to describe the
 contents or purpose of the file.

Programming Tools and Interfaces
The SCCS File Header

¦ Copyright IBM Corp. 1985, 1991
14.3.3.1 - 1

 14.3.3.2 The SCCS File Body

 The SCCS File body includes the actual text of the deltas in the file.
 The body also contains SCCS control text intermixed with the delta text.
 Notice that the deltas are in reverse order. That is, the most recently
 created delta is the first one in the list.

 Warning: Using non-SCCS commands with SCCS files can damage the SCCS
 files. Changing an SCCS file with a non-SCCS command makes the checksum
 incorrect. See "Locating Damaged SCCS Files" in topic 14.4.1.1 for
 information about working with the checksum.

Programming Tools and Interfaces
The SCCS File Body

¦ Copyright IBM Corp. 1985, 1991
14.3.3.2 - 1

 14.3.4 Command Conventions

 In most cases, SCCS commands accept the following two types of parameters:

 flags Flags begin with the - (minus sign), followed by a
 lowercase character, and sometimes followed by a value.
 They control how the command operates.

 arguments Arguments may be file or directory names. They specify the
 file or files with which the command operates. Using a
 directory name as an argument specifies all SCCS files in
 the directory.

 Arguments cannot begin with a - (minus sign). If you
 specify the - (minus sign) by itself, the command reads
 standard input until it reaches end of file character
 (usually signalled by the user pressing Ctrl-D). This can
 be useful when using pipes. When using the keyboard for
 input, it reads until end of file.

 Any flags specified for a command apply to all files specified for that
 command and are processed before arguments to that command. Their
 placement in the command line is not important. Arguments are processed
 left to right. Some SCCS files contain flags that determine how the
 command operates on the file. See "Using the admin Command" in
 topic 14.4.1 for more information.

 SCCS Commands produce error messages with the following format:

 ERROR [file]: message text (code)

 The code in parentheses can be used as an argument to the sccshelp
 command. The sccshelp command can sometimes provide more information
 about a particular error code.

 An SCCS command stops processing a file that contains a fatal error. Any
 other files in the command are still processed.

Programming Tools and Interfaces
Command Conventions

¦ Copyright IBM Corp. 1985, 1991
14.3.4 - 1

 14.3.5 Command Summary

 The following summary presents the commands in the order of their use.
 They are further defined in AIX Operating System Commands Reference.

 admin Creates an SCCS file or changes some characteristic of an
 existing SCCS file.

 get Gets a specified version of an SCCS file. Use this command to
 get a copy of a file to edit or compile.

 unget Undoes the effect of a previous use of the get -e command.

 delta Adds a set of changes (delta) to the text of an SCCS file.

 rmdel Removes a delta from an SCCS file. The delta must be the most
 recent delta on its branch.

 cdc Changes the comments associated with a delta.

 what Searches a system file for a pattern and displays what follows
 it. Use this command to find identifying information.

 sccsdiff Shows the differences between any two versions of an SCCS
 file.

 comb Combines two or more consecutive deltas of an SCCS file into a
 single delta. Combining deltas may reduce storage
 requirements.

 val Checks an SCCS file to see if its computed checksum matches
 the figure listed in the header.

 prs Prints portions of an SCCS file in a specified format.

 sccshelp Provides an explanation of a diagnostic message.

 vc Substitutes assigned values in place of keywords.

 sact Displays current SCCS file editing status.

Programming Tools and Interfaces
Command Summary

¦ Copyright IBM Corp. 1985, 1991
14.3.5 - 1

 14.4 Using SCCS Commands

 Figure 14-3 shows how to create, change and update the contents of an SCCS
 file. The SCCS commands have much more function than what is shown in the
 figure. System responses to the SCCS commands are not shown.

 --

 +--------+ This is your original file. It contains
 ¦ prog.c ¦ uncompiled C code.
 +--------+

 admin -iprog.c s.prog.c admin creates an SCCS file with the name
 s.prog.c.

 mv prog.c prog.bak Rename the original file and keep it as
 a backup.

 +----------+ You now have an SCCS file with an SID of
 ¦ s.prog.c ¦ 1.1. It contains a header that describes
 +----------+ the contents of the original.

 get -e s.prog.c get creates two files. The file prog.c
 you can edit. SCCS uses the file p.prog.c
 +--------+ +----------+ to keep track of file versions.
 ¦ prog.c ¦ ¦ p.prog.c ¦
 +--------+ +----------+

 ed prog.c You can now work on your actual file.
 In this case, you are editing it. You
 +--------+ can edit this file as often as you wish.
 ¦ prog.c ¦
 +--------+

 delta s.prog.c delta updates s.prog.c with the changes
 you made to prog.c. The SID of the new
 version is 1.2. You can now get version
 1.1 or 1.2.

 --
 Figure 14-3. Example of Using SCCS to Create and Update a File

 Subtopics
 14.4.1 Using the admin Command
 14.4.2 Using the get Command
 14.4.3 Using the delta Command
 14.4.4 Using the sccshelp Command

Programming Tools and Interfaces
Using SCCS Commands

¦ Copyright IBM Corp. 1985, 1991
14.4 - 1

 14.4.1 Using the admin Command

 These examples use an imaginary text file called test.c, and an editor
 such as ed to edit files.

 First, create an ordinary SCCS file. If you use the -i flag, admin
 creates delta 1.1 from the specified file. Without the -i flag, admin
 creates an empty SCCS file. Once delta 1.1 is created, rename the
 original text file so it does not interfere with SCCS commands. For
 example, to create an SCCS file from a file test.c:

 admin -itest.c s.test.c
 No id keywords (cm7)
 li
 s.test.c test.c

 Then rename the original text file:

 mv test.c back.c

 The message, No id keywords (cm7) does not indicate an error. SCCS writes
 this message when there are no identification keywords in the file.
 Identification keywords are variables that can be placed in an SCCS file.
 The values of these variables provide information, such as date, time,
 SID, or file name. See "Getting Read-Only File Versions" in
 topic 14.4.2.1 for an explanation of identification keywords. If there
 are no identification keywords, SCCS writes the message.

 Name the SCCS file anything as long as it begins with s.. In the above
 example, the original file and the SCCS file have the same name, but that
 is not necessary.

 Because you did not specify a release number, admin gave the SCCS file an
 SID of 1.1. SCCS does not use the number 0 to identify deltas.
 Therefore, a file cannot have an SID of 1.0 or 2.1.1.0. All new releases
 start with level 1. To start the test.c file with a release number of 3,
 use the -r flag with the admin command, as shown below:

 admin -i test.c -r3 s.test.c

 To restrict permission to change SCCS files to a specific set of user IDs,
 list their user IDs or group ID numbers in the user list of the SCCS file
 by using the -a flag of the admin command. These IDs then appear in the
 SCCS file header. Without the -a flag to restrict access, all user IDs can
 change the SCCS files.

 admin -adan s.test.c

 Subtopics
 14.4.1.1 Locating Damaged SCCS Files

Programming Tools and Interfaces
Using the admin Command

¦ Copyright IBM Corp. 1985, 1991
14.4.1 - 1

 14.4.1.1 Locating Damaged SCCS Files

 Although SCCS provides some error protection, you may need to recover a
 file that was accidentally damaged. This damage may result from a system
 malfunction, operator error, or changing an SCCS file without using SCCS
 commands.

 SCCS commands use the checksum to determine whether a file was changed
 since it was last used. The only SCCS command that processes a damaged
 file is the admin command when used with the -h or -z flags. The -h flag
 tells admin to compare the checksum stored in the SCCS file header against
 the computed checksum. The -z flag tells admin to recompute the checksum
 and store it in the file header.

 Check SCCS files on a regular basis for possible damage. The easiest way
 to do this is to run the admin command with the -h flag on all SCCS files
 or SCCS directories as shown below:

 admin -h s.file1 s.file2 ...

 admin -h directory1 directory2 ...

 If admin finds a file where the computed checksum is not equal to the
 checksum listed in the SCCS file header, it displays this message:

 corrupted file (co6)

 If a file was damaged, try to edit the file again, or read a backup copy.
 After fixing the file, run the admin command with the -z flag and the
 repaired file name:

 admin -z s.file1

 This operation replaces the old checksum in the SCCS file header with a
 new checksum based on the repaired file contents. Other SCCS commands can
 now process the file.

Programming Tools and Interfaces
Locating Damaged SCCS Files

¦ Copyright IBM Corp. 1985, 1991
14.4.1.1 - 1

 14.4.2 Using the get Command

 The get command gets files in either read-only or editable form. You can
 only use the editable form to create a delta to the SCCS file. Use the
 read-only form to print or compile the file. The results of using get on
 a file depend on whether you specify the file as read-only or editable.
 The examples are divided into read-only examples and editable examples.
 The examples are not related unless the comments specify that they are
 related.

 Note: You must use the -e flag with the get command, to create a delta.

 Subtopics
 14.4.2.1 Getting Read-Only File Versions
 14.4.2.2 Getting Editable File Versions
 14.4.2.3 Getting Duplicate File Versions

Programming Tools and Interfaces
Using the get Command

¦ Copyright IBM Corp. 1985, 1991
14.4.2 - 1

 14.4.2.1 Getting Read-Only File Versions

 To compile a program or print a document from an SCCS file, get the file
 as read-only. The get command performs different tasks when it gets a
 read-only document.

 The difference between the two types of get operations is important when
 using identification keywords in a file. Identification keywords can
 appear anywhere in a file. They are symbols that are replaced with some
 text value when get retrieves the file as read-only. For example, to
 print the current date and SID in a file, put the following symbols in the
 file:

 %H% %I%

 %H% is the symbol for the current date and %I% is the symbol for the SID.
 When get retrieves a file as editable, it leaves the symbols in the file
 and does not do text value substitution. See AIX Operating System
 Commands Reference for the identification keywords to use in a file.

 Several examples of the get command are shown below:

 To check the file directory, enter:

 li /* check file directory */

 The system responds with:

 s.test.c

 To get file test.c, enter:

 get s.test.c /* get file test.c */

 The system responds with:

 3.5
 59 lines

 To check the file directory, enter:

 li /* check file directory */

 The system responds with:

 s.test.c test.c

 Because you did not specify a version of the file, get built the version
 with the highest SID. In the next two examples, the -r flag specifies
 which version to get:

 To get a specific version of file test.c, enter:

 get -r1.3 s.test.c

 The system responds with:

 1.3
 40 lines

Programming Tools and Interfaces
Getting Read-Only File Versions

¦ Copyright IBM Corp. 1985, 1991
14.4.2.1 - 1

 To get a specific version of file test.c, enter:

 get -r1.3.1.4 s.test.c

 The system responds with:

 1.3.1.4
 50 lines

 If you specify just the release number of the SID, get finds the file with
 the highest level within that release number.

 To get the highest level of file test.c within a release number, enter:

 get -r2 s.test.c

 The system responds with:

 2.7
 21 lines

 If the SID specified is greater than the highest existing SID, get gets
 the highest existing SID. If the SID specified is lower than the lowest
 existing SID, SCCS writes an error message. In the following example,
 release 7 is the highest existing release:

 To get the highest existing SID of file test.c, enter:

 get -r9 s.test.c

 The system responds with:

 7.6
 400 lines

 The -t flag gets the top version in a given release or level. The top
 version is the most recently created delta, independent of its location.
 In the next example, the highest existing delta in release 3 is 3.5, while
 the most recently created delta is 3.2.1.5.

 To get the highest existing delta , enter:

 get -t -r3 s.test.c

 The system responds with:

 3.2.1.5
 46 lines

Programming Tools and Interfaces
Getting Read-Only File Versions

¦ Copyright IBM Corp. 1985, 1991
14.4.2.1 - 2

 14.4.2.2 Getting Editable File Versions

 All of the previous examples use the get command to get a read-only file.
 To edit the file and create a new delta, use the -e flag. The get command
 works differently when using the -e flag, so the previous examples may not
 apply. Restrictions for files built with the -e flag are explained in the
 AIX Operating System Commands Reference under the get and admin commands.
 If you build the wrong version of the file, use unget to undo the effect
 of the get -e command.

 Several examples of the get command are shown below.

 To check the file directory, enter:

 li /* check file directory */

 The system responds with:

 s.test.c

 To get an editable version of file test.c, enter:

 get -e s.test.c /* get editable version of test.c */

 The system responds with:

 1.3
 new delta 1.4
 67 lines

 To check the file directory, enter:

 li /* check file directory */

 The system responds with:

 p.test.c s.test.c test.c

 The working file is test.c.. If you edit test.c and save the changes with
 the delta command, SCCS creates a new delta with an SID of 1.4. The file
 p.test.c is a temporary file used by SCCS to keep track of file versions.

 In the previous example, you could use the -r flag to get a specific
 version. Assuming delta 1.3 already exists, the following three uses of
 the get command are the same:

 get -e s.test.c
 get -e -r1 s.test.c
 get -e -r1.3 s.test.c

 To start using a new (higher in value) release number, get the file with
 the -r flag and specify a release number greater than the highest existing
 release number. In the next example, release 2 does not yet exist.

 To get a new release of file test.c, enter:

 get -e -r2 s.test.c

 The system responds with:

Programming Tools and Interfaces
Getting Editable File Versions

¦ Copyright IBM Corp. 1985, 1991
14.4.2.2 - 1

 1.3
 new delta 2.1
 67 lines

 Notice that get indicates the version of the new delta that will be
 created if the delta command stores changes to the SCCS file. If the
 example did not include the -e flag, get would build the highest existing
 SID (1.3) and would not indicate a new delta, even though the -r2 flag
 requests a version 2.1.

 To develop a version of the SCCS file that does not depend on the most
 recently created delta, create a branch delta as shown in Figure 14-4.

 1.1 --- 1.2 --- 1.3 --- 2.1 trunk
 ¦
 ¦
 ¦
 branch +-- 1.2.1.1 --- 1.2.1.2 --- 1.2.2.1

 Figure 14-4. Growth of an SCCS File with Branching

 In the figure, a branch exists at version 1.2. Adding new deltas at two
 different places in the SCCS file creates programs for two environments
 that have some similar code (1.1 and 1.2) and some code that is not the
 same.

 Creating another branch from delta 1.2 builds a second series of program
 files. The new branch begins with delta 1.2.2.1.

 To create a branch delta, use the -r flag and specify the release and
 level where the branch occurs. In the next example, deltas 1.3 and 1.4
 already exist.

 To create a branch delta, enter:

 get -e -r1.3 s.test.c

 The system responds with:

 1.3
 new delta 1.3.1.1
 67 lines

 Create deltas on branches using the same methods.

Programming Tools and Interfaces
Getting Editable File Versions

¦ Copyright IBM Corp. 1985, 1991
14.4.2.2 - 2

 14.4.2.3 Getting Duplicate File Versions

 To edit a file, get the file version using the get command (with the -e
 flag) and save the changes with the delta command. Several different
 editable versions of an SCCS file can exist as long as each one is in a
 different directory. If you try to get the same editable file version
 more than once without using the delta command, SCCS writes an error
 message.

 To get the same editable file version more than once, set the j option in
 the SCCS file with the admin command. Set the j option using the -f flag.
 You can then get the same SID several times from different directories,
 creating a separate file for each get command. Although the files
 originate from a single SID, SCCS gives each of them a unique new SID.

 To obtain the starting directory, enter:

 pwd
 /u/dan/sccs /* starting directory */

 To set the j option, enter:

 admin -fj s.test.c /* set the j option */

 To get the latest version of file test.c, enter:

 get -e s.test.c /* get latest version */

 The system responds with:

 1.1
 new delta 1.2
 5 lines

 To change to directory new, enter:

 cd /u/new /* change to directory new */

 To get version 1.1 again, enter:

 get -e /u/dan/sccs/s.test.c /* get 1.1 again */

 The system responds with:

 1.1
 new delta 1.1.1.1
 5 lines

 Notice that SCCS creates two deltas, 1.2 and 1.1.1.1, from the single
 original file version of 1.1. Look at the p.test.c file. It shows a
 separate entry for each version currently in use. The p.test.c file
 remains in the directory until you take care of both file versions with
 either the delta command or the unget command.

Programming Tools and Interfaces
Getting Duplicate File Versions

¦ Copyright IBM Corp. 1985, 1991
14.4.2.3 - 1

 14.4.3 Using the delta Command

 The delta command saves the changes made to a particular version of an
 SCCS file. To use the delta command, follow these instructions:

 1. Use get -e to get an editable version of the file.

 2. Edit that file.

 3. Use delta to create a new version of the SCCS file.

 When using the delta command, it prompts for comments. The comments are
 for that particular delta and appear in the SCCS file header. The
 comments are not retrieved when you get the delta and do not appear in the
 text of a retrieved file. Use comments to keep track of why a delta was
 created.

 To see the comments, use an editor to look at the SCCS file, write the
 SCCS file to the display screen with the cat command, or print selected
 parts of the file to standard output using the prs command. Refer to AIX
 Operating System Commands Reference for descriptions of these commands.
 Remember not to change the contents of the SCCS file directly. To change
 the delta comments, use the cdc command.

 A common use of the delta command is shown below:

 delta s.test.c
 Enter comments, terminated with EOF or blank line:

 Then enter comments, as follows:

 This delta contains the payroll function

 delta then finishes processing and displays:

 1.4
 24 inserted
 3 deleted
 45 unchanged

 The above example stores the comment in the SCCS file header and creates
 delta 1.4. It then lists how many lines of text are inserted, deleted, or
 unchanged. SCCS may give unexpected numbers for these categories because
 of its definition for an edited line of text. However, the number of
 lines inserted plus the number of lines left unchanged should equal the
 total number of lines in the file. SCCS does not allow using the delta
 command if an editable file does not exist. However, once an editable
 file exists (created with get -e), SCCS creates the delta without checking
 the data being stored in the file.

 Note: When using identification keywords in SCCS files, do not use the
 delta command with a file built as read-only if an editable version of the
 file also exists. When you get a file as read-only, SCCS replaces
 identification keywords with their values. Using the delta command on the
 file saves the values and the identification keywords are lost. To
 recover, remove the delta, or re-edit the file and replace the
 identification keywords.

Programming Tools and Interfaces
Using the delta Command

¦ Copyright IBM Corp. 1985, 1991
14.4.3 - 1

 14.4.4 Using the sccshelp Command

 SCCS provides a limited form of help for certain error codes and all of
 the SCCS commands. To get help on a specific command or error code, use
 the following format:

 sccshelp [command].. [code]..

 The sccshelp program prompts for a command or an error code if those
 parameters are not included in the command. If it does not have
 information about a specific error code, sccshelp writes an error message
 and continues processing. For example, to get help on rmdel and two error
 codes, enter the following:

 sccshelp rmdel gee ge5

 The sccshelp command replies:

 rmdel:
 rmdel -r<SID> <file> ...

 ERROR: gee not found (he1)

 ge5:
 "nonexistent sid"
 The specified sid does not exist in the given file. Check for typos.

 The response indicates that either the sccshelp command does not have
 information for the error code gee or the code does not exist.

Programming Tools and Interfaces
Using the sccshelp Command

¦ Copyright IBM Corp. 1985, 1991
14.4.4 - 1

 15.0 Chapter 15. Finding and Changing Strings

 Subtopics
 15.1 CONTENTS
 15.2 About This Chapter
 15.3 Finding Strings
 15.4 Scanning Files
 15.5 Editing Files with sed

Programming Tools and Interfaces
Chapter 15. Finding and Changing Strings

¦ Copyright IBM Corp. 1985, 1991
15.0 - 1

 15.1 CONTENTS

Programming Tools and Interfaces
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
15.1 - 1

 15.2 About This Chapter

 This chapter contains introductory information about some of the system
 programs that are useful when developing programs. These programs are not
 required to create programs, but they do provide added services that make
 checking and maintaining programs easier. The commands described in this
 chapter:

 � Find a specified series of characters in a text fil
 � Find and change information in a text fil
 � Make fast editing changes on a large text file

 Complete reference information about all commands is in AIX Operating
 System Commands Reference.

 The examples in this chapter contain ASCII characters; however, the
 commands also recognize National Character Languages. For additional
 information on Multibyte Character Set (MBCS), see the discussion in
 Chapter 18, "International Character Support" in topic 18.0.

Programming Tools and Interfaces
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
15.2 - 1

 15.3 Finding Strings

 The system provides three similar programs to help locate a series of
 characters (string) in a file. These programs are:

 grep A general function program that finds literal strings in a file,
 and also finds strings that you specify using wildcard
 characters. (These are not the same as the shell wildcard
 characters).

 fgrep A faster version of grep that only finds literal strings in a
 file (wildcards are not allowed).

 egrep An extended version of grep that looks for more complex
 expressions.

 Use these programs to search one or more files at a time to answer the
 following questions:

 � In which file(s) does the string occur -l flag)?

 � On how many lines in each file does the string occur -c flag)?

 � What is the line number of each place that the string occurs -n
 flag)?

 � What lines in which file(s) contain the string (no flag)

 � What lines in which file(s) exactly match the string -x flag)?

 � What lines in which file(s) do not contain the string -v flag)?

 � What is the 512-byte disk block of the file in which the string occur
 (-b flag)?

 Subtopics
 15.3.1 Strings
 15.3.2 Example of Commands

Programming Tools and Interfaces
Finding Strings

¦ Copyright IBM Corp. 1985, 1991
15.3 - 1

 15.3.1 Strings

 A string is any group of characters to find. Enclose the string in ' '
 (single quotes) to ensure that the shell does not interpret blanks or
 special shell characters in the string as part of its syntax.

 For example, because blanks separate the parameters on the command line,
 the shell interprets the command:

 fgrep find me myfile

 as a request to find the string, find, in the files me and myfile. To
 find the string, find me, in myfile specify the command like:

 fgrep 'find me' myfile

 Subtopics
 15.3.1.1 Literal Strings
 15.3.1.2 Regular Expressions

Programming Tools and Interfaces
Strings

¦ Copyright IBM Corp. 1985, 1991
15.3.1 - 1

 15.3.1.1 Literal Strings

 A literal string is a string that does not contain wildcard characters,
 and can, therefore, be interpreted just as it is. The previous example
 contains a literal string, find me. Use literal strings to specify
 exactly what to find.

 For example, to find the file that contains the module, eprog(), in five
 source files that contain several modules each, use the command:

 fgrep 'eprog()' file1 file2 file3 file4 file5

 This command finds not only the actual module but any references to it.
 Look at the output lines to determine which reference actually contains
 the module definition. To find only the module definition, use the -x
 flag:

 fgrep -x 'eprog()' file1 file2 file3 file4 file5

 For coding formats that put each module definition left-justified on a
 line by itself, this command writes out only that line, together with the
 name of the file in which it occurs.

Programming Tools and Interfaces
Literal Strings

¦ Copyright IBM Corp. 1985, 1991
15.3.1.1 - 1

 15.3.1.2 Regular Expressions

 A regular expression is a string that contains wildcard characters and
 operators that define a set of one or more possible strings. Programs
 that find strings use a set of wildcard characters that is different from
 the shell wildcards, but the same as the line editor, ed. These wildcard
 characters and operators are:

 .(period)
 Specifies any character except new-line.

 ^ (caret)
 Specifies the beginning of the line when it is the first
 character in a regular expression.

 $ (dollar sign)
 Specifies the end of the line when it is the last character in a
 regular expression.

 [] (square brackets)
 Encloses a set of characters (not empty) that represents any one
 of the characters in the set.

 [abc] Represents either a or b or c.
 [a-c] Is the same as [abc] (grep only). The hyphen defines
 a range of ASCII values that starts with the value of
 the first letter and ends with the value of the second
 letter.
 [A-z] Defines more than just the letters of the alphabet
 (grep only). It defines the range of ASCII values
 from A (065) to z (122).

 |
 OR - indicates a search for either one string or another:

 egrep 'prog()|prog1()' file1

 finds lines containing either prog() or prog1().

 In addition to the regular expression support described above, AIX also
 supports searches for regular expressions containing international
 characters. Refer to Chapter 18 of this book for details on the "Use of
 Regular Expressions with International Characters." Refer to the ed
 command in AIX Operating System Commands Reference for details on building
 regular expressions.

Programming Tools and Interfaces
Regular Expressions

¦ Copyright IBM Corp. 1985, 1991
15.3.1.2 - 1

 15.3.2 Example of Commands

 To check a C program for proper nesting of braces, use the following two
 commands:

 grep -c '{' file1

 and

 grep -c '}' file1

 Each command responds with a number that represents the number of lines in
 the file containing either { or }, respectively. If the numbers are not
 the same, you may have a problem. Check the file again using a different
 form of the command:

 egrep '{|}' file1

 This command displays each line in the file that contains either a { or a
 }. It displays the lines in the order that they occur in the file, so
 that you can quickly check for matching pairs of open and closed braces.

Programming Tools and Interfaces
Example of Commands

¦ Copyright IBM Corp. 1985, 1991
15.3.2 - 1

 15.4 Scanning Files

 The awk program is an extension of the features of grep. It performs the
 following operations:

 � Scans a file or list of files to find matches to a regular expression

 � Performs an operation on the lines that are found, defined by a
 action.

 It uses all of the regular expression building features that egrep uses,
 plus it allows you to:

 � Write selected fields of the lin

 � Calculate running totals

 The awk program is a procedural language that finds and changes strings in
 text files. In addition, it provides numeric processing, variables, more
 general pattern selection for finding strings, and flow control
 statements. This program treats both string and numeric data. In
 general, this program is useful for:

 � Processing input to find numeric counts, sums or subtotal

 � Verifying that the contents of a field contains only numeri
 information

 � Checking to see that delimiters are balanced in a programming fil

 � Processing data contained in fields within line

 � Changing data from one program into a form that can be used by
 different program

 � Changing syntax in a program source fil

 � Changing system calls when porting from one system to another

 Subtopics
 15.4.1 Program File
 15.4.2 Variables
 15.4.3 BEGIN and END
 15.4.4 Using Regular Expressions as Patterns
 15.4.5 Using Relational Expressions as Patterns
 15.4.6 Using Combinations of Patterns
 15.4.7 Using Pattern Ranges
 15.4.8 Using Functions in an Action
 15.4.9 Using Variables in an Action
 15.4.10 Using Operators in an Action
 15.4.11 Using Field Variables in an Action
 15.4.12 Concatenating Strings
 15.4.13 Using Arrays
 15.4.14 Using Control Statements

Programming Tools and Interfaces
Scanning Files

¦ Copyright IBM Corp. 1985, 1991
15.4 - 1

 15.4.1 Program File

 When using awk, you can either enter the search pattern directly on the
 command line as with grep, or you can build a file that contains both the
 search pattern and the actions to perform. Using a program file puts many
 patterns in one file, and saves typing the command again to correct an
 error in the search pattern. When using a program file, run awk with the
 -f flag, such as:

 awk -f pfile file1 file2 file3

 In this command, pfile is the name of the program file, file1, file2, and
 file3 are the files to be searched, and -f tells awk to look in pfile for
 the search program.

 The program file is a series of statements that look like:

 pattern { action }
 pattern { action }
 pattern { action }
 .
 .
 .

 Where:

 pattern Is a regular expression, or series of regular expressions, that
 defines the search pattern, including:

 � Boolean combinations of regular expressions using the
 operators ! || && and () .
 � Boolean combinations of relational operators on strings,
 numbers, fields, variables, and array elements.

 action Is a set of steps to perform on the line, designated with awk
 commands and operators, including:

 � Any expressions that are used in a pattern
 � Arithmetic and string expressions
 � Assignment statements
 � If-else statements
 � While-for statements
 � More than one output stream.

 { } Are delimiters that set off the action from the search pattern.

 In any line, you can omit either the pattern or the action. If you omit
 the pattern, awk performs the action on all lines in the file(s); if you
 omit the action, awk copies the line to standard output.

 When awk runs, it reads the first line of the input data file and matches
 it against each of the patterns in the program file in the order that they
 appear in the program file. When awk finds a pattern that matches the
 line, it performs the associated action on that line. Then it continues
 to search for more matches in the program file. When it has compared the
 first input line against all patterns in the program file, awk reads the
 next input line and starts at the beginning of the program file with that
 line.

Programming Tools and Interfaces
Program File

¦ Copyright IBM Corp. 1985, 1991
15.4.1 - 1

 15.4.2 Variables

 Awk recognizes the following built-in variables:

 FILENAME The name of the current input file.

 NR The number of the current record.

 NF The number of fields in the current record.

 FS The character used for a field separator.

 RS The character used for a record separator.

 $0 The contents of the input record.

 $n The contents of field n of the input record.

 OFS The character used for output field separator (the character
 between fields when the data is written; a blank if you do
 not change it).

 ORS The character used for output record separator (the
 character between records when the data is written; a
 new-line if you do not change it).

Programming Tools and Interfaces
Variables

¦ Copyright IBM Corp. 1985, 1991
15.4.2 - 1

 15.4.3 BEGIN and END

 The awk program recognizes two special keywords that define the beginning
 (BEGIN) and the end (END) of the input file. The pattern BEGIN matches
 the beginning of the input before reading the first record. Therefore,
 awk performs any actions associated with this pattern once, before
 processing any of the input file. BEGIN must be the first pattern in the
 program file. For example, to change the field separator to a colon for
 all records in the file, include the following line as the first line of
 the program file:

 BEGIN {FS=":"}

 Similarly, the pattern, END, matches the end of the input file after
 processing the last record. Therefore, awk performs any actions
 associated with this pattern once, after processing all of the input file.
 END must be the last pattern in the program file. For example, to print
 the total number of lines in the input file, include the following line as
 the last line in the program file:

 END {print NR}

Programming Tools and Interfaces
BEGIN and END

¦ Copyright IBM Corp. 1985, 1991
15.4.3 - 1

 15.4.4 Using Regular Expressions as Patterns

 The simplest regular expression is a literal string of characters,
 enclosed in slashes. For example, if the program file contains only the
 entry:

 /the/

 the file is a complete program that displays all lines containing the
 string the. Because the string does not specify any blanks or other
 qualifiers, the program also displays lines containing words such as:

 theater
 northern

 that have the string as part of them. The program is sensitive to
 uppercase and lowercase, and only displays lines containing the lowercase
 form of the string.

 Subtopics
 15.4.4.1 Character Class
 15.4.4.2 Special Characters

Programming Tools and Interfaces
Using Regular Expressions as Patterns

¦ Copyright IBM Corp. 1985, 1991
15.4.4 - 1

 15.4.4.1 Character Class

 To find lines that contain The (the string as the first word in a
 sentence) in addition to the lowercase version, use a character class to
 represent either uppercase or lowercase. A character class is a set of
 characters, enclosed in [] (square brackets). Each character in the
 character class satisfies the search conditions for one character
 position. For example, to find lines containing both forms of the word
 the (and words containing it), use the string:

 /[Tt]he/

 The following string:

 /[cCdDhH]ome/

 finds lines that contain the words:

 come
 Come
 dome
 Dome
 home
 Home

 Use ranges within a character class to indicate a group of consecutive
 ASCII characters. To define a range, enter the following:

 1. [

 2. The first character of the range

 3. - (minus)

 4. The last character of the range

 5.]

 Note: Ranges specify a continuous sequence of ASCII character codes, not
 alphabetic order. For example, the range [Z-a] specifies only eight
 characters from ASCII code 90 (Z) to 97 (a).

Programming Tools and Interfaces
Character Class

¦ Copyright IBM Corp. 1985, 1991
15.4.4.1 - 1

 15.4.4.2 Special Characters

 The awk program defines the symbols shown in Figure 15-1 to use in
 building patterns:

 Figure 15-1. awk Special Characters
 Symbol Meaning

 / String delimiter: Indicates the start and end of a string or
 regular expression.

 \ Escape: Tells awk to treat the next character as a regular
 ASCII character instead of a symbol that awk treats as a
 special character.

 $0 Matches the entire line with the pattern.

 $n Matches field n (n is an integer) in each input line.

 ~ Match field operator: Tells awk to match the regular
 expression with a specified field in each line, not the line.

 !~ Not match field operator: Tells awk to compare the regular
 expression with a specified field in each line and perform the
 action only if the expression does not match the field.

 ^ Beginning of the line or field: When placed at the start of a
 string, tells awk to match the string only when it occurs at
 the start of a line or specified field.

 $ End of the line or field: When placed at the end of a string,
 tells awk to match the string only when it occurs at the end
 of a line or specified field.

Programming Tools and Interfaces
Special Characters

¦ Copyright IBM Corp. 1985, 1991
15.4.4.2 - 1

 15.4.5 Using Relational Expressions as Patterns

 Use a relational expression as a pattern in the program file. The awk
 program defines the following relational operators for use in building
 patterns:

 < Less than
 > Greater than
 <= Less than or equal
 >= Greater than or equal
 == Equivalent
 != Not equivalent

 Subtopics
 15.4.5.1 Examples of Relational Expressions in a Pattern

Programming Tools and Interfaces
Using Relational Expressions as Patterns

¦ Copyright IBM Corp. 1985, 1991
15.4.5 - 1

 15.4.5.1 Examples of Relational Expressions in a Pattern

 To find lines that contain an even number of fields:

 NF % 2 == 0

 To find lines that begin with s, t, u,...:

 $1 >= "s"

 To perform a string comparison between the first two fields:

 $1 > $2

Programming Tools and Interfaces
Examples of Relational Expressions in a Pattern

¦ Copyright IBM Corp. 1985, 1991
15.4.5.1 - 1

 15.4.6 Using Combinations of Patterns

 Combine two or more patterns using Boolean operators:

 oror Or
 && And
 ! Not

 For example, the pattern:

 $1 >= "T" && $1 < "U" && $1 != "The"

 finds lines that begin with T, and are not the word The.

Programming Tools and Interfaces
Using Combinations of Patterns

¦ Copyright IBM Corp. 1985, 1991
15.4.6 - 1

 15.4.7 Using Pattern Ranges

 A pattern range allows the use of one pattern to begin an action on the
 lines of text, and another pattern to end the action on lines of text.
 Specify a pattern range by using two patterns separated by commas. The
 first pattern specifies the starting pattern; the second pattern specifies
 the ending pattern. Therefore, the line:

 /The/,/End/ {action}

 finds the first line that contains the pattern The and begins performing
 the action on all lines following it in the file until awk finds a line
 containing the pattern End. awk does not change either the line
 containing The or the line containing End.

 Similarly, the line:

 NR==100,NR==200 {action}

 performs the action starting at line 100 and ending at line 200 of the
 input file.

Programming Tools and Interfaces
Using Pattern Ranges

¦ Copyright IBM Corp. 1985, 1991
15.4.7 - 1

 15.4.8 Using Functions in an Action

 The awk program provides the following functions to use within an action:

 length Returns the length of the current record.

 length(arg) Returns the length of the string specified by arg.

 sqrt(arg) Returns the square root of arg.

 log(arg) Returns the base e logarithm (natural logarithm) of arg.

 exp(arg) Returns the exponential part of arg.

 int(arg) Returns the integer part of arg.

 substr(s,m,n) Returns a string that is part of string s, beginning at
 character m and continuing for n characters (or the end
 of string s). If m is 1, the string starts at the
 beginning of string s. If you do not supply a value for
 n, the string continues to the end of string s.

 index(s1,s2) Returns the character position in string s1 where string
 s2 occurs. If s2 is not in s1, this function returns a
 zero.

 sprintf(f,e1,e2,...) Returns a formatted string. The parameters are:

 f A formatting specification string defined
 using the formatting specifications of the
 printf library routine.
 e1,e2,... A series of strings that the f format
 specification acts upon.

 The function formats the argument strings (e1, e2, ...)
 using the format specification f, and returns the
 formatted string.

Programming Tools and Interfaces
Using Functions in an Action

¦ Copyright IBM Corp. 1985, 1991
15.4.8 - 1

 15.4.9 Using Variables in an Action

 The awk program sets all variables in actions to zero when it begins
 executing the action. The variables do not have a strict type; they take
 on numeric (floating point) values or string values depending on their use
 in the action expression. For example, the expression:

 x = 1

 indicates that x is a numeric variable. Similarly, the expression:

 x = "smith"

 indicates that x is a string variable. However, awk converts between
 strings and numbers when needed. Therefore, the expression:

 x = "3" + "4"

 assigns a value of 7 (numeric) to x, even though the arguments are literal
 strings. If awk cannot change a string variable to numeric when you are
 using it as a numeric variable, awk assigns it a numeric value of zero.
 To force a variable to be treated as a single type:

 string Add the null string (" ") to the value assigned to the variable.

 numeric Add zero (0) to the value assigned to the variable.

Programming Tools and Interfaces
Using Variables in an Action

¦ Copyright IBM Corp. 1985, 1991
15.4.9 - 1

 15.4.10 Using Operators in an Action

 Use the following operators to build expressions within the action
 statement:

 + Addition
 - Subtraction
 * Multiplication
 / Division
 % Modulo (remaindering)
 ++ Increment
 -- Decrement
 += Increment by value
 -= Decrement by value
 *= Multiply by value
 /= Divide by value
 %= Modulo by value
 ~ Match string
 !~ Not match string

 For example, to find the sum of all the first fields and the sum of all
 the second fields in a file with the program file:

 {s1 +=$1; s2 += $2}
 END {print s1,s2}

Programming Tools and Interfaces
Using Operators in an Action

¦ Copyright IBM Corp. 1985, 1991
15.4.10 - 1

 15.4.11 Using Field Variables in an Action

 Fields in awk share the same properties as variables. They can be used in
 arithmetic or string operations and may be assigned to a numeric or string
 value. For example, to replace the first field with a sequence number:

 {$1 = NR;print}

 To accumulate two fields into a third field:

 {$1 = $2 + $3;print $0}

 Use numeric expressions for field references, such as:

 {print $i,$(i+1),$(i+n)}

 How you use a field determines whether awk treats a field as numeric or
 string. If it cannot tell how the field is used, awk treats fields as
 strings.

 awk splits input lines into fields as needed. You can also split any
 variable or string into fields. For example:

 n = split(s,array,sep)

 splits the string s into array[1]...array[n] and returns the number of
 elements. If you provide the sep argument, it is the field separator. If
 you do not provide sep, the field separator is the character defined by
 the variable FS.

Programming Tools and Interfaces
Using Field Variables in an Action

¦ Copyright IBM Corp. 1985, 1991
15.4.11 - 1

 15.4.12 Concatenating Strings

 Concatenate strings by placing their variable names together in an
 expression. For example, the expression:

 length($1 $2 $3)

 Returns the length of the first three fields. The expression:

 print $1 " is " $2

 Prints the first two fields separated by " is ". You can use variables
 and numeric expressions when concatenating strings.

Programming Tools and Interfaces
Concatenating Strings

¦ Copyright IBM Corp. 1985, 1991
15.4.12 - 1

 15.4.13 Using Arrays

 You do not need to declare array elements. The command awk sets them to
 zero when first used. Use any value that is not null, including a string
 value, for a subscript. An example of the numeric subscript is:

 x[NR] = $0

 This expression assigns the current input record to the NRth element of
 the array x. For an example of using a string subscript, suppose that the
 input contains fields with values like apple or orange. Then the program:

 /apple/ {x["apple"]++}
 /orange/ {x["orange"]++}
 END {print x["apple"], x["orange"]}

 increments counts for the named array elements and prints them at the end
 of the input.

Programming Tools and Interfaces
Using Arrays

¦ Copyright IBM Corp. 1985, 1991
15.4.13 - 1

 15.4.14 Using Control Statements

 The awk language also provides the following control structures as in the
 C language:

 � If-els
 � Whil
 � Fo
 � Brea
 � Continu
 � Nex
 � Exi
 � Braces for statement groupin
 � Comments

 Subtopics
 15.4.14.1 If-Else Statement
 15.4.14.2 While Statement
 15.4.14.3 For Statement
 15.4.14.4 Break Statement
 15.4.14.5 Continue Statement
 15.4.14.6 Next Statement
 15.4.14.7 Exit Statement
 15.4.14.8 Comments

Programming Tools and Interfaces
Using Control Statements

¦ Copyright IBM Corp. 1985, 1991
15.4.14 - 1

 15.4.14.1 If-Else Statement

 The if-else statement is exactly like that of the C language. The
 condition in parentheses of an if-else statement is evaluated; if it is
 true, the statement following the if is performed. The else part is
 optional.

Programming Tools and Interfaces
If-Else Statement

¦ Copyright IBM Corp. 1985, 1991
15.4.14.1 - 1

 15.4.14.2 While Statement

 The while statement is exactly like that of the C language. For example,
 to print all input fields, one on each line, use the following program:

 i = 1
 while(i<=NF)
 {
 print $i
 ++i
 }

Programming Tools and Interfaces
While Statement

¦ Copyright IBM Corp. 1985, 1991
15.4.14.2 - 1

 15.4.14.3 For Statement

 The for statement is also like that of the C language. For example, the
 previous while example could also be written:

 for(i=1;i<=NF;++i)
 print $i

Programming Tools and Interfaces
For Statement

¦ Copyright IBM Corp. 1985, 1991
15.4.14.3 - 1

 15.4.14.4 Break Statement

 The break statement causes an immediate exit from an enclosing while or
 for loop.

Programming Tools and Interfaces
Break Statement

¦ Copyright IBM Corp. 1985, 1991
15.4.14.4 - 1

 15.4.14.5 Continue Statement

 The continue statement causes the next iteration of an enclosing loop to
 begin.

Programming Tools and Interfaces
Continue Statement

¦ Copyright IBM Corp. 1985, 1991
15.4.14.5 - 1

 15.4.14.6 Next Statement

 The next statement causes awk to skip to the next input record and begin
 scanning the patterns from the top of the program file.

Programming Tools and Interfaces
Next Statement

¦ Copyright IBM Corp. 1985, 1991
15.4.14.6 - 1

 15.4.14.7 Exit Statement

 The exit statement causes the program to stop as if the end of the input
 occurred.

Programming Tools and Interfaces
Exit Statement

¦ Copyright IBM Corp. 1985, 1991
15.4.14.7 - 1

 15.4.14.8 Comments

 Include comments in the awk program file to explain program logic.
 Comments begin with the # character and end with the end of the line. For
 example:

 print x,y #this is a comment

Programming Tools and Interfaces
Comments

¦ Copyright IBM Corp. 1985, 1991
15.4.14.8 - 1

 15.5 Editing Files with sed

 The sed program is a text editor that has similar functions to those of
 ed, the line editor. Unlike ed, however, the sed program performs its
 editing without interacting with the person requesting the editing. This
 method of operation allows sed to:

 � Edit very large file

 � Perform complex editing operations many times without requirin
 extensive retyping and cursor positioning (as interactive editors do)

 � Perform global changes in one pass through the input

 The editor keeps only a few lines of the file being edited in memory at
 one time, and does not use temporary files. Therefore, the file to be
 edited can be any size as long as there is room for both the input file
 and the output file in the file system.

 Subtopics
 15.5.1 Starting the Editor
 15.5.2 How sed Works
 15.5.3 Selecting Lines for Editing
 15.5.4 Regular Expressions
 15.5.5 sed Command Summary
 15.5.6 Text in Commands
 15.5.7 String Replacement

Programming Tools and Interfaces
Editing Files with sed

¦ Copyright IBM Corp. 1985, 1991
15.5 - 1

 15.5.1 Starting the Editor

 To use the editor, create a command file containing the editing commands
 to perform on the input file. The editing commands perform complex
 operations and require a small amount of typing in the command file. Each
 command in the command file must be on a separate line. Once the command
 file is created, enter the following command on the command line:

 sed -fcmdfile >output <input

 In this command the parameters mean:

 cmdfile The name of the file containing editing commands.

 output The name of the file to contain the edited output.

 input The name of the file, or files, to be edited.

 The sed program then makes the changes and writes the changed information
 to the output file. The contents of the input file are not changed.

Programming Tools and Interfaces
Starting the Editor

¦ Copyright IBM Corp. 1985, 1991
15.5.1 - 1

 15.5.2 How sed Works

 The sed program is a stream editor that receives its input from standard
 input, changes that input as directed by commands in a command file, and
 writes the resulting stream to standard output. If you do not provide a
 command file and do not use any flags with the sed command, the sed
 program copies standard input to standard output without change. Input to
 the program comes from two sources:

 Input stream A stream of ASCII characters either from one or more files
 or entered directly from the keyboard. This stream is the
 data to be edited.

 Commands A set of addresses and associated commands to be performed,
 in the general form of:

 [line1 [,line2]] command [argument]

 The parameters line1 and line2 are called addresses.
 Addresses can be either patterns to match in the input
 stream, or line numbers in the input stream as explained in
 "Selecting Lines for Editing" in topic 15.5.3.

 You can also enter editing commands along with the sed
 command by using the -e flag.

 When sed edits, it reads the input stream one line at a time into an area
 in memory called the pattern space as shown in Figure 15-3. When a line
 of data is in the pattern space, sed reads the command file and tries to
 match the addresses in the command file with characters in the pattern
 space. If it finds an address that matches something in the pattern
 space, sed then performs the command associated with that address on the
 part of the pattern space that matched the address. The result of that
 command changes the contents of the pattern space, and thus becomes the
 input for all following commands.

 When sed has tried to match all addresses in the command file with the
 contents of the pattern space, it writes the final contents of the pattern
 space to standard output. Then it reads a new input line from standard
 input, and starts the process over at the start of the command file.

 Some editing commands change the way the process operates. See the
 Control commands in Figure 15-6 in topic 15.5.5.

 Flags used with the sed command can also change the operation of the
 command as shown in Figure 15-2.

 Figure 15-2. sed Command Flags
 Flag Function

 -n sed does not copy all input lines to standard output. Instead,
 it copies only those lines that editing commands specifically
 write to standard output. See the print lines and substitution
 commands in Figure 15-6 in topic 15.5.5.

 -e sed uses the argument that directly follows this flag as an
 editing command.

 -f sed uses the argument that directly follows this flag as the
 name of the file containing the editing commands. This file

Programming Tools and Interfaces
How sed Works

¦ Copyright IBM Corp. 1985, 1991
15.5.2 - 1

 must contain editing commands with each command on a separate
 line.

 --

 --
 Figure 15-3. sed Block Diagram

Programming Tools and Interfaces
How sed Works

¦ Copyright IBM Corp. 1985, 1991
15.5.2 - 2

 15.5.3 Selecting Lines for Editing

 Use one of the following forms of addressing to select lines in the input
 stream for editing:

 Line numbers As the editor reads each input line, it increments its
 line counter starting with line 1 as the first line of
 the first file in the input stream. The line counter
 runs cumulatively through all files in the input
 stream. The editor does not reset the counter when it
 opens a new file in the same input stream. The value
 of the line counter for each line is the line number
 for that line.

 Specifying a decimal integer as either line1 or line2
 in the editing commands indicates the line number of
 the line to be edited. The character $ matches the
 last line of the last file in the input stream.

 Context addresses A context address is a regular expression enclosed in
 / (slashes). See "Regular Expressions" in
 topic 15.5.4 for a description of the regular
 expressions that sed recognizes. The whole regular
 expression must match some part of the pattern space
 for a successful context address match.

 Editing commands can have zero, one, or two addresses, depending on the
 command and how you use it. The number of addresses determines how the
 address is used:

 Addresses Use of Command

 No address The command is applied to every line in the input
 stream.

 One address The command is applied to each line that matches the
 address.

 Two addresses The command is applied to the range of addresses
 starting with the line that matches the first address
 up to and including the first line that matches the
 second address. The editor then tries to match the
 first address again to find another range.

 Separate two addresses with a comma as shown in the
 syntax diagrams in Figure 15-6 in topic 15.5.5.

Programming Tools and Interfaces
Selecting Lines for Editing

¦ Copyright IBM Corp. 1985, 1991
15.5.3 - 1

 15.5.4 Regular Expressions

 A regular expression is a string that contains literal characters,
 wildcard characters and/or operators that define a set of one or more
 possible strings. The stream editor uses a set of wildcard characters
 that is different from the shell wildcards, but the same as the line
 editor, ed. These wildcard characters and operators are shown in
 Figure 15-4.

 Figure 15-4. sed Wildcard Characters
 Symbol Function

 . A period specifies any character except new-line.

 ^ A caret specifies the beginning of the line when it is the
 first character in a regular expression.

 $ A dollar sign specifies the end of the line when it is the
 last character in a regular expression.

 .[] Square brackets enclose a set of characters (not empty) that
 represents any one of the characters in the set. If the
 first character inside the brackets is a ^ (caret), the
 regular expression matches any character except the
 characters in the set and the new-line at the end of the
 pattern space.

 [abc] Represents either a or b or c.
 [a-c] Is the same as [abc]. The hyphen defines a range
 of ASCII values that starts with the value of the
 first letter and ends with the value of the second
 letter.
 [A-z] Defines more than just the letters of the alphabet.
 It defines the range of ASCII values from A (065)
 to z (122).

 \n A new-line character matches a new-line character that is not
 the new-line character at the end of the pattern space.

 * A regular expression followed by an asterisk matches any
 number (including 0) of adjacent occurrences of that regular
 expression.

 \(and \) A set of backslash-parentheses enclose a regular expression
 that can be repeated using the \d expression.

 \d d is a single digit. This symbol in string is replaced by
 the set of characters in the input lines that matches the dth
 substring in pattern. Substrings begin with the characters
 \(and end with the characters \). See "String Replacement"
 in topic 15.5.7 for more information about using this
 expression.

 // The null string is the same as the last regular expression in
 the edit stream.

 \ A backslash tells sed to treat the next character as a
 regular ASCII character instead of a symbol that sed treats
 as a special character.

Programming Tools and Interfaces
Regular Expressions

¦ Copyright IBM Corp. 1985, 1991
15.5.4 - 1

 Refer to the ed program in AIX Operating System Commands Reference for
 details for building regular expressions.

Programming Tools and Interfaces
Regular Expressions

¦ Copyright IBM Corp. 1985, 1991
15.5.4 - 2

 15.5.5 sed Command Summary

 All sed commands are single letters plus some parameters, such as line
 numbers or text strings. Figure 15-6 summarizes the commands that make
 changes to the lines in the pattern space. The table uses the symbols
 shown in Figure 15-5 in the syntax diagrams:

 Figure 15-5. Syntax Symbols
 Symbol Meaning

 [] Square brackets enclose optional parts of the commands

 italics Parameters in italics represent general names for a name that
 you enter. For example, filename represents a parameter that
 you replace with the name of an actual file.

 line1 This symbol is a line number or regular expression to match
 that defines the starting point for applying the editing
 command.

 line2 This symbol is a line number or regular expression to match
 that defines the ending point to stop applying the editing
 command.

 Figure 15-6. sed Command Summary
 Category Function Syntax/Description

 Line Append lines [line1]a\\ntext Writes the lines
 Manipulation: contained in text to the output
 stream after line1. The a command
 must appear at the end of a line.
 See "Text in Commands" in
 topic 15.5.6 for the format of the
 text.

 Change lines [line1 [,line2]]c\\ntext Deletes
 the lines specified by line1 and
 line2 as the delete lines command
 does. Then it writes text to the
 output stream in place of the
 deleted lines.

 . Delete lines [line1 [,line2]]d Removes lines
 from the input stream and does not
 copy them to the output stream. The
 lines not copied begin at line
 number line1. The next line copied
 to the output stream is line number
 line2 + 1. If you specify only one
 line number, then only that line is
 not copied. If you do not specify a
 line number, the next line is not
 copied. You cannot perform any
 other functions on lines that are
 not copied to the output.

 Insert lines [line1]i\\ntext Writes the lines
 contained in text to the output

Programming Tools and Interfaces
sed Command Summary

¦ Copyright IBM Corp. 1985, 1991
15.5.5 - 1

 stream before line1. The i command
 must appear at the end of a line.
 See "Text in Commands" in
 topic 15.5.6 for the format of the
 text.

 Next line [line1 [,line2]]n Reads the next
 line, or group of lines from line1
 to line2 into the pattern space.
 The current contents of the pattern
 space are written to the output if
 it has not been deleted.

 Substitution: Substitute for [line1 [,line2]
 Pattern]s/pattern/string/flags Searches the
 indicated line(s) for a set of
 characters that matches the regular
 expression defined in pattern. When
 it finds a match, the command
 replaces that set of characters with
 the set of characters specified by
 string. See "String Replacement" in
 topic 15.5.7 for specifications for
 this command.

 Input and Output: Print lines [line1 [,line2]]p Writes the
 indicated lines to stdout at the
 point in the editing process that
 the p command occurs.

 . Write lines [line1 [,line2]]w filename Writes
 the indicated lines to filename at
 the point in the editing process
 that the w command occurs.

 If filename exists, it is
 overwritten; otherwise, it is
 created. A maximum of 10 different
 files can be mentioned as input or
 output files in the entire editing
 process. Include exactly one space
 between w and filename.

 Read file [line1]r filename Reads filename and
 appends the contents after the line
 indicated by line1.

 Include exactly one space between r
 and filename. If filename cannot be
 opened, the command reads it as a
 null file without giving any
 indication of an error.

 Matching Across Join next line [line1 [,line2]]N Joins the
 Lines: indicated input lines together,
 separating them by an imbedded
 new-line character. Pattern matches
 can extend across the imbedded
 new-line(s).

Programming Tools and Interfaces
sed Command Summary

¦ Copyright IBM Corp. 1985, 1991
15.5.5 - 2

 Delete first [line1 [,line2]]D Deletes all text
 line of pattern in the pattern space up to and
 space including the first new-line
 character. If only one line is in
 the pattern space, reads another
 line. Starts the list of editing
 commands again from the beginning.

 Print first [line1 [,line2]]P Prints all text
 line of pattern in the pattern space up to and
 space including the first new-line
 character to stdout.

 Pick up and Put Pick up copy [line1 [,line2]]h Copies the
 down: contents of the pattern space
 indicated by line1 and line2 if
 present, to the holding area. The
 previous contents of the holding
 area are destroyed.

 Pick up copy, [line1 [,line2]]H Copies the
 appended contents of the pattern space
 indicated by line1 and line2 if
 present, to the holding area, and
 appends it to the end of the
 previous contents of the holding
 area.

 Put down copy [line1 [,line2]]g Copies the
 contents of the holding area to the
 pattern space indicated by line1 and
 line2 if present. The previous
 contents of the pattern space are
 destroyed.

 Put down copy, [line1 [,line2]]G Copies the
 appended contents of the holding area to the
 end of the pattern space indicated
 by line1 and line2 if present. The
 previous contents of the pattern
 space are not changed. A new-line
 character separates the previous
 contents from the appended text.

 Exchange copies [line1 [,line2]]x Exchanges the
 contents of the holding area with
 the contents of the pattern space
 indicated by line1 and line2 if
 present.

 Control: Negation [line1 [,line2]]! The !
 (exclamation point) applies the
 command that follows it on the same
 line to the parts of the input file
 that are not selected by line1 and
 line2.

 Command groups [line1 [,line2]]{ grouped commands
 } The { (left brace) and the }
 (right brace) enclose a set of

Programming Tools and Interfaces
sed Command Summary

¦ Copyright IBM Corp. 1985, 1991
15.5.5 - 3

 commands to be applied as a set to
 the input lines selected by line1
 and line2. The first command in the
 set can be on the same line or on
 the line following the left brace.
 The right brace must be on a line by
 itself. You can nest groups within
 groups.

 Labels :label Marks a place in the stream
 of editing commands to be used as a
 destination of a branch (see the b
 and t commands). The symbol label
 is a string of up to 8 bytes. Each
 label in the editing stream must be
 different from any other label.

 Branch to [line1 [,line2]]blabel Branches to
 label, the point in the editing stream
 unconditional indicated by label (see :label
 above) and continues processing the
 current input line with the commands
 following label. If label is null,
 branches to the end of the editing
 stream, which results in reading a
 new input line and starting the
 editing stream over. The string
 label must appear as a label in the
 editing stream.

 Test and Branch [line1 [,line2]]tlabel If any
 successful substitutions were made
 on the current input line, branches
 to label. If no substitutions were
 made, does nothing. Clears the flag
 that indicates a substitution was
 made. This flag is cleared at the
 start of each new input line.

 Quit [line1]q Stops editing in an orderly
 fashion by:

 � Writing the current line to the
 output
 � Writing any appended or read
 text to the output
 � Stopping the editor.

 Find line [line1]= Writes to standard output
 number the line number of the line that
 matches line1.

Programming Tools and Interfaces
sed Command Summary

¦ Copyright IBM Corp. 1985, 1991
15.5.5 - 4

 15.5.6 Text in Commands

 The append, insert and change lines commands all use a supplied text
 string to add to the output stream. This text string conforms to the
 following rules:

 � Can be one or more lines long

 � Each \n (new-line character) inside text must have an additional \
 character before it (\\n).

 � The text string ends with a new-line that does not have an additional
 \ character before it (\n).

 � Once the command inserts the text string, the string:

 - Is always written to the output stream, regardless of what other
 commands do to the line that caused it to be inserted
 - Is not scanned for address matches
 - Is not affected by other editing commands
 - Does not affect the line number counter.

Programming Tools and Interfaces
Text in Commands

¦ Copyright IBM Corp. 1985, 1991
15.5.6 - 1

 15.5.7 String Replacement

 The s command performs string replacement in the indicated lines in the
 input file. If the command finds a set of characters in the input file
 that satisfies the regular expression pattern, it replaces the set of
 characters with the set of characters specified in string.

 The string parameter is a literal set of characters (digits, letters and
 symbols). Two special symbols can be used in string:

 & This symbol in string is replaced by the set of characters in
 the input lines that matched pattern. For example, the command:

 s/boy/&s/

 tells sed to find a pattern boy in the input line, and copy that
 pattern to the output with an appended s.

 Therefore, it changes the input line:

 From: The boy look at the game.
 To: The boys look at the game.

 \d d is a single digit. This symbol in string is replaced by the
 set of characters in the input lines that matches the dth
 substring in pattern. Substrings begin with the characters \(
 and end with the characters \). For example, the command:

 s/\(stu\)\(dy\)/\1r\2/

 tells sed to find a pattern study in the input line, and copy
 that pattern to the output with an r inserted in the middle.
 Therefore, it changes the input line:

 From: The study chair
 To: The sturdy chair

 The letters that appear as flags change the replacement as
 follows,

 g Substitute string for all instances of pattern in
 the indicated line(s). Characters in string are not
 scanned for a match of pattern after they are
 inserted. For example, the command:

 s/r/R/

 changes:
 From: the round rock
 To: the Round rock

 But, the command:

 s/r/R/g

 changes:
 From: the round rock
 To: the Round Rock
 p Print (to stdout) the line that contains a
 successfully matched pattern.

Programming Tools and Interfaces
String Replacement

¦ Copyright IBM Corp. 1985, 1991
15.5.7 - 1

 w filename Write to filename the line that contains a
 successfully matched pattern. If filename exists,
 it is overwritten; otherwise, it is created. A
 maximum of 10 different files can be mentioned as
 input or output files in the entire editing process.
 Include exactly one space between w and filename.

Programming Tools and Interfaces
String Replacement

¦ Copyright IBM Corp. 1985, 1991
15.5.7 - 2

 16.0 Chapter 16. Using the Macro Processor (m4)

 Subtopics
 16.1 CONTENTS
 16.2 About This Chapter
 16.3 The Macro Processor
 16.4 Using the Macro Preprocessor
 16.5 Defining Macros
 16.6 Using Other m4 Macros

Programming Tools and Interfaces
Chapter 16. Using the Macro Processor (m4)

¦ Copyright IBM Corp. 1985, 1991
16.0 - 1

 16.1 CONTENTS

Programming Tools and Interfaces
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
16.1 - 1

 16.2 About This Chapter

 This chapter describes how to use the m4 macro processor, which is a
 front-end processor for a compiled or assembled programming language. It
 also contains information on defining macros and using predefined macros.

Programming Tools and Interfaces
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
16.2 - 1

 16.3 The Macro Processor

 The m4 macro processor is a front-end processor for a compiled (or
 assembled) programming language. The #define statement in C language is
 an example of the facility provided by the macro processor.

 At the beginning of a program, you can define a symbolic name or symbolic
 constant as a particular string of characters. The m4 macro processor
 then replaces later unquoted occurrences of the symbolic name with the
 corresponding string. Besides replacing one string of text with another,
 the m4 macro processor provides the following features:

 � Arithmetic capabilitie
 � File manipulatio
 � Conditional macro expansio
 � String and substring functions

 A token is a string of letters and digits. The m4 program reads each
 alphanumeric token and determines if the token is the name of a macro. It
 then replaces the name of the macro with its defining text, and pushes the
 resulting string back onto the input to be rescanned. You can call macros
 with arguments, in which case the arguments are collected and substituted
 into the right places in the defining text before the defining text is
 rescanned.

 The m4 program provides built-in macros; you can also define new macros.
 Built-in and user-defined macros work the same way except that some of the
 built-in macros change the state of the process. Refer to "Using Other m4
 Macros" in topic 16.6 for a list of the macros.

Programming Tools and Interfaces
The Macro Processor

¦ Copyright IBM Corp. 1985, 1991
16.3 - 1

 16.4 Using the Macro Preprocessor

 To use the m4 macro processor, enter the following command:

 m4 [file]

 The m4 program processes each argument in order. If there are no
 arguments or if an argument is -, m4 reads standard input as its input
 file. The m4 program writes its results to standard output. Therefore,
 to redirect the output to a file for later use, use a command like:

 m4 [file] >outputfile

Programming Tools and Interfaces
Using the Macro Preprocessor

¦ Copyright IBM Corp. 1985, 1991
16.4 - 1

 16.5 Defining Macros

 The define macro is a built-in function that defines macros. For example,
 if the following statement is in a program:

 define(name, stuff)

 the m4 program defines the string name as stuff. When the string name
 occurs in a program file, m4 replaces it with the string stuff. The
 string name must be ASCII alphanumeric and must begin with a letter or
 underscore. The string stuff is any text, but if the text contains
 parentheses the number of open, or left, parentheses must equal the number
 of close, or right, parentheses.

 Use the / (slash) character to spread the text for stuff over multiple
 lines. The open parenthesis must immediately follow the word define.
 For example:

 define(N, 100)
 ...
 if (i > N)

 defines N to be 100 and uses the symbolic constant N in a later if
 statement. Macro calls in a program have the following form:

 name(arg1,arg2,...argn)

 A macro name is only recognized if it is surrounded by nonalphanumerics.
 Using the following example:

 define(N, 100)
 ...
 if (NNN > 100)

 the variable NNN is not related to the defined macro N.

 You can define macros in terms of other names. For example:

 define(N, 100)
 define(M, N)

 defines both M and N to be 100. If you later change the definition of N
 and assign it a new value, M retains the value of 100, not N.

 The m4 macro processor expands macro names into their defining text as
 soon as possible. The string N is replaced by 100. Then the string M is
 also replaced by 100. The overall result is the same as using the
 following input in the first place:

 define(M, 100)

 The order of the definitions can be interchanged as follows:

 define(M, N)
 define(N, 100)

 Now M is defined to be the string N, so when the value of M is requested
 later, the result is the value of N at that time (because the M is
 replaced by N, which is replaced by 100).

Programming Tools and Interfaces
Defining Macros

¦ Copyright IBM Corp. 1985, 1991
16.5 - 1

 Subtopics
 16.5.1 Using the Quote Characters
 16.5.2 Arguments

Programming Tools and Interfaces
Defining Macros

¦ Copyright IBM Corp. 1985, 1991
16.5 - 2

 16.5.1 Using the Quote Characters

 To delay the expansion of the arguments of define, enclose them in the
 quote characters. If you do not change them, the quote characters are
 left and right single quotes (' '). See "Changing the Quote Characters"
 in topic 16.6.1 to change these characters. Any text surrounded by the
 quote characters is not expanded immediately, but the quote characters are
 removed. The value of a quoted string is the string with the quote
 characters removed. If the input is:

 define(N, 100)
 define(M, 'N')

 The quote characters around the N are removed as the argument is being
 collected. The result of using quote characters is to define M as the
 string N, not 100. The general rule is that m4 always strips off one
 level of quote characters whenever it evaluates something. This is true
 even outside of macros. To make the word define appear in the output,
 enter the word in quote characters, as follows:

 'define' = 1;

 Another example of using quote characters is redefining N. To redefine N,
 delay the evaluation by putting N in quote characters. For example:

 define(N, 100)
 ...
 define('N', 200)

 To prevent problems from occurring, quote the first argument of a macro.
 For example, the following fragment does not redefine N:

 define(N, 100)
 ...
 define(N, 200)

 The N in the second definition is replaced by 100. The result is the same
 as the following statement:

 define(100, 200)

 The m4 program ignores this statement because it can only define names,
 not numbers.

Programming Tools and Interfaces
Using the Quote Characters

¦ Copyright IBM Corp. 1985, 1991
16.5.1 - 1

 16.5.2 Arguments

 The simplest form of macro processing is replacing one string by another
 (fixed) string. However, macros can also have arguments, so that you can
 use the macro in different places with different results. To indicate
 where an argument is to be used within the replacement text for a macro
 (the second argument of its definition), use the symbol $n to indicate the
 nth argument. When the macro is used, m4 replaces the symbol with the
 value of the indicated argument. For example, the symbol:

 $2

 refers to the second argument of a macro. Therefore, if you define a
 macro called bump as:

 define(bump, $1 = $1 + 1)

 m4 generates code to increment the first argument by 1. The bump(x)
 statement is equivalent to x = x + 1.

 A macro can have as many arguments as needed. However, you can access
 only nine arguments using the $n symbol ($1 through $9). To access
 arguments past the ninth argument, use the shift macro which drops the
 first argument and reassigns the remaining arguments to the $n symbols
 (second argument to $1, third argument to $2 ... tenth argument to $9).
 Using the shift macro more than once allows access to all arguments used
 with the macro.

 The macro name $0 returns the name of the macro. Arguments that are not
 supplied are replaced by null strings, so that you can define a macro that
 concatenates its arguments like this:

 define(cat, $1$2$3$4$5$6$7$8$9)

 Thus:

 cat(x, y, z)

 is the same as:

 xyz

 Arguments $4 through $9 in this example are null since corresponding
 arguments were not provided.

 The m4 program discards leading unquoted blanks, tabs, or new lines in
 arguments, but keeps all other white space. Thus:

 define(a, b c)

 defines a to be b c.

 Arguments are separated by commas. Use parentheses to enclose arguments
 containing commas, so that the comma does not end the argument. For
 example:

 define(a, (b,c))

 has only two arguments. The first argument is a. The second is (b,c).
 To use a comma or single parenthesis, enclose it in quote characters.

Programming Tools and Interfaces
Arguments

¦ Copyright IBM Corp. 1985, 1991
16.5.2 - 1

 16.6 Using Other m4 Macros

 The m4 program provides a set of macros that are already defined. The
 define macro already mentioned is one of them. Figure 16-1 lists each of
 these macros and provides a brief explanation of its function. The
 following paragraphs further explain many of the macros and how to use
 them.

 Figure 16-1. m4 Built-in Macros
 Macro Function

 changecom(l , r) Changes the left and right comment
 characters to the characters
 represented by l and r.

 changequote(l , r) Changes the left and right quote
 characters to the characters
 represented by l and r.

 decr(number) Returns the value of number - 1.

 define(macroname , replacement) Defines new macro macroname with a
 value of replacement.

 defn(macroname) Returns the quoted definition of
 macroname.

 divert(number) Changes output stream to number.

 divnum Returns the value of the current
 output stream.

 dnl Delete characters up to and
 including new-line.

 dumpdef('macroname'...) Prints the macroname and current
 definition of named macros.

 errprint(string) Prints string to the diagnostic
 output file.

 eval(expression) Evaluates expression as a 32-bit
 arithmetic expression.

 ifdef('macroname' , arg1 , arg2) If macro macroname is defined,
 returns arg1; otherwise, it returns
 arg2.

 ifelse(string1 , string2 , arg1 , If string1 matches string2, returns
 arg2) the value of arg1; otherwise,
 returns the value of arg2.

 include(file) Returns the contents of the file
 file.

 incr(number) Returns the value of number + 1.

 index(string1 , string2) Returns the character position in
 string1 where string2 starts (
 starting with character number 0),

Programming Tools and Interfaces
Using Other m4 Macros

¦ Copyright IBM Corp. 1985, 1991
16.6 - 1

 or -1 if string1 does not contain
 string2.

 len:(string) Returns the number of characters in
 string.

 m4exit(code) Exits m4 with a return code of
 code.

 m4wrap(macroname) Runs macro macroname at the end of
 m4.

 maketemp(string...XXXXX...string) Creates a unique file name by
 replacing the characters XXXXX in
 the argument string with the
 current process ID.

 popdef(macroname) Removes the definition of macroname
 and then defines macroname to be
 its previous value that was saved
 with the pushdef macro.

 pushdef(macroname , replacement) Saves the current definition of
 macroname and then defines
 macroname to be replacement.

 shift(parameter list) Returns all but the first element
 of parameter list to perform a
 destructive left shift of the list.

 sinclude(file) Returns the contents of the file
 file, but does not report an error
 if it cannot access file.

 substr(string , position , length) Returns a substring of string that
 begins at character number position
 and is length characters long.

 syscmd(command) Executes the system command command
 with no return value.

 sysval Gets the return code from the last
 use of the syscmd macro.

 traceoff(macro list) Turns off trace for any macro in
 macro list. If macro list is null,
 turns off all tracing.

 traceon(macroname) Turns on trace for macro macroname.
 If macroname is null, turns trace
 on for all macros.

 translit(string , set1 , set2) Searches string for characters that
 are in set1. If it finds any,
 changes those characters to
 corresponding characters in set2.

 undefine('macroname') Removes the definition of
 macroname.

Programming Tools and Interfaces
Using Other m4 Macros

¦ Copyright IBM Corp. 1985, 1991
16.6 - 2

 undivert(number , number...) Appends the contents of the
 indicated diversion numbers to the
 current diversion.

 Subtopics
 16.6.1 Changing the Quote Characters
 16.6.2 Removing a Macro Definition
 16.6.3 Checking for A Defined Macro
 16.6.4 Using Integer Arithmetic
 16.6.5 Manipulating Files
 16.6.6 Redirecting Output
 16.6.7 Using System Programs in A Program
 16.6.8 Using Unique File Names
 16.6.9 Using Conditional Expressions
 16.6.10 Manipulating Strings
 16.6.11 Printing

Programming Tools and Interfaces
Using Other m4 Macros

¦ Copyright IBM Corp. 1985, 1991
16.6 - 3

 16.6.1 Changing the Quote Characters

 Quote characters are normally left and right single quotes (' '). If
 those characters are not convenient, change the quote characters with the
 following built-in macro:

 changequote([,])

 The built-in changequote makes the left and right brackets the new quote
 characters. To restore the original quote characters, use changequote
 without arguments as follows:

 changequote

Programming Tools and Interfaces
Changing the Quote Characters

¦ Copyright IBM Corp. 1985, 1991
16.6.1 - 1

 16.6.2 Removing a Macro Definition

 The undefine macro removes the definition of some macro or built-in. For
 example:

 undefine('N')

 The macro removes the definition of N. undefine can also remove
 built-ins, as follows:

 undefine('define')

 Once you remove a built-in macro, you cannot use the definition of the
 built-in again.

Programming Tools and Interfaces
Removing a Macro Definition

¦ Copyright IBM Corp. 1985, 1991
16.6.2 - 1

 16.6.3 Checking for A Defined Macro

 The built-in ifdef determines if a macro is currently defined. The ifdef
 macro permits three arguments. If the first argument is defined, the
 value of ifdef is the second argument. If the first argument is not
 defined, the value of ifdef is the third argument. If there is no third
 argument, the value of ifdef is null. If the first argument is undefined,
 the value of ifdef is the third argument.

Programming Tools and Interfaces
Checking for A Defined Macro

¦ Copyright IBM Corp. 1985, 1991
16.6.3 - 1

 16.6.4 Using Integer Arithmetic

 The m4 program provides the following built-in functions for doing
 arithmetic on integers only:

 incr Increments its numeric argument by 1.

 decr Decrements its numeric argument by 1.

 eval Evaluates an arithmetic expression.

 Thus, to define a variable as one more than N, use the following:

 define(N, 100)
 define(N1, 'incr(N)')

 which defines N1 as one more than the current value of N.

 The eval function can evaluate expressions containing the following
 operators (listed in decreasing order of precedence):

 unary + unary -

 ** or ^ (exponentiation)

 * / % (modulus)

 + -

 == != <<= >>=

 ! (not)

 & (and) && (logical and)

 | (or) || (logical or) ^ (exclusive or)

 Use parentheses to group operations where needed. All operands of an
 expression must be numeric. The numeric value of a true relation (like 1
 > 0) is 1, and false is 0. The precision in eval is 32 bits.

 For example, define M to be 2==N+1 using eval as follows:

 define(N, 3)
 define(M, 'eval(2==N+1)')

 Use quote characters around the text that defines a macro unless the text
 is very simple.

Programming Tools and Interfaces
Using Integer Arithmetic

¦ Copyright IBM Corp. 1985, 1991
16.6.4 - 1

 16.6.5 Manipulating Files

 To merge a new file in the input, use the built-in function: include.
 For example:

 include(filename)

 This function inserts the contents of filename in place of the include
 command.

 A fatal error occurs if the file named in include cannot be accessed. To
 avoid a fatal error, use the alternate form sinclude. The built-in
 sinclude (silent include) does not write a message, but continues if the
 file named cannot be accessed.

Programming Tools and Interfaces
Manipulating Files

¦ Copyright IBM Corp. 1985, 1991
16.6.5 - 1

 16.6.6 Redirecting Output

 The output of m4 can be redirected to temporary files during processing,
 and the collected material can be output upon command. The m4 program
 maintains nine possible temporary files, numbered 1 through 9. If you use
 the built-in macro:

 divert(n)

 The m4 program writes all output from the program after the divert
 function at the end of temporary file, n. To return the output to the
 display screen, use either the divert or divert(0) command, which resumes
 the normal output process.

 The m4 program writes all redirected output to the temporary files in
 numerical order at the end of processing. The m4 program discards the
 output if you redirect the output to a temporary file other than 0 through
 9.

 To bring back the data from all temporary files in numerical order, use
 the built-in undivert. To bring back selected temporary files in a
 specified order, use the built-in undivert with arguments. When using
 undivert, m4 discards the temporary files that are recovered and does not
 search the recovered data for macros.

 The value of undivert is not the diverted text.

 The built-in divnum returns the number of the currently active temporary
 files. If you do not change the output file with the divert macro, m4
 puts all output in temporary file 0.

Programming Tools and Interfaces
Redirecting Output

¦ Copyright IBM Corp. 1985, 1991
16.6.6 - 1

 16.6.7 Using System Programs in A Program

 You can run any program in the operating system from a program by using
 the syscmd built-in. For example, the following statement runs the date
 program:

 syscmd(date)

Programming Tools and Interfaces
Using System Programs in A Program

¦ Copyright IBM Corp. 1985, 1991
16.6.7 - 1

 16.6.8 Using Unique File Names

 Use the built-in maketemp to make a unique file name from a program. If
 this macro receives an argument that contains the string XXXXX, it changes
 the XXXXX to the process ID of the current process. For example, for the
 statement:

 maketemp(myfileXXXXX)

 the m4 program returns a string that is myfile concatenated with the
 process ID. Use this string to name a temporary file.

Programming Tools and Interfaces
Using Unique File Names

¦ Copyright IBM Corp. 1985, 1991
16.6.8 - 1

 16.6.9 Using Conditional Expressions

 The built-in ifelse performs conditional testing. In the simplest form:

 ifelse(a, b, c, d)

 compares the two strings a and b. If a and b are identical, ifelse
 returns the string c. If they are not identical, it returns string d.
 For example, you can define a macro called compare to compare two strings
 and return yes if they are the same, or no if they are different, as
 follows:

 define(compare, 'ifelse($1, $2, yes, no)')

 The quote characters prevent the evaluation of ifelse from occurring too
 early. If the fourth argument is missing, it is treated as empty.

 The built-in ifelse can have any number of arguments, and therefore,
 provides a limited form of multiple path decision capability. For example:

 ifelse(a, b, c, d, e, f, g)

 This statement is logically the same as the following fragment:

 if(a == b) x = c;
 else if(d == e) x = f;
 else x = g;
 return(x);

 If the final argument is omitted, the result is null, so:

 ifelse(a, b, c)

 is c if a matches b, and null otherwise.

Programming Tools and Interfaces
Using Conditional Expressions

¦ Copyright IBM Corp. 1985, 1991
16.6.9 - 1

 16.6.10 Manipulating Strings

 The built-in len returns the byte length of the string that makes up its
 argument. Thus:

 len(abcdef)

 is 6, and:

 len((a,b))

 is 5.

 The built-in dlen returns the length of the displayable characters in a
 string. Characters made up from 2-byte codes are displayed as one
 character. Thus, if the string contains any 2-byte international
 character support characters, the results of dlen will differ from the
 results of len.

 The built-in substr provides substrings of strings. Using input,
 substr(s, i, n) returns the substring of s that starts at the ith position
 (origin zero) and is n characters long. If n is omitted, the rest of the
 string is returned. For example, the function:

 substr('now is the time',1)

 returns the following string:

 ow is the time

 The built-in index(s1, s2) returns the index (position) in s1 where the
 string s2 occurs, or -1 if it does not occur. As with substr, the origin
 for strings is 0.

 The built-in translit performs character transliteration. It has the
 general form:

 translit(s, f, t)

 which modifies s by replacing any character found in f by the
 corresponding character of t. For example, the function:

 translit(s, aeiou, 12345)

 replaces the vowels by the corresponding digits. If t is shorter than f,
 characters that do not have an entry in t are deleted. If t is not
 present at all, characters from f are deleted from s. So:

 translit(s, aeiou)

 deletes vowels from string s.

 The built-in dnl deletes all characters that follow it up to and including
 the next new line. Use this macro to get rid of empty lines. For
 example, the function:

 define(N, 100)
 define(M, 200)
 define(L, 300)

Programming Tools and Interfaces
Manipulating Strings

¦ Copyright IBM Corp. 1985, 1991
16.6.10 - 1

 results in a new-line at the end of each line that is not part of the
 definition. These new-line characters are passed to the output. To get
 rid of the new-lines, add the built-in dnl to each of the lines.

 define(N, 100) dnl
 define(M, 200) dnl
 define(L, 300) dnl

Programming Tools and Interfaces
Manipulating Strings

¦ Copyright IBM Corp. 1985, 1991
16.6.10 - 2

 16.6.11 Printing

 The built-in errprint writes its arguments on the standard error file.
 For example:

 errprint ('error')

 The built-in dumpdef dumps the current names and definitions of items
 named as arguments. If you do not supply arguments, dumpdef prints all
 current names and definitions. Do not forget to quote the names.

Programming Tools and Interfaces
Printing

¦ Copyright IBM Corp. 1985, 1991
16.6.11 - 1

 17.0 Chapter 17. Creating an Input Language

 Subtopics
 17.1 CONTENTS
 17.2 About This Chapter
 17.3 Writing a Lexical Analyzer Program with lex
 17.4 The lex Specification File
 17.5 Regular Expressions
 17.6 Actions
 17.7 Passing Code to the Generated Program
 17.8 Defining Substitution Strings
 17.9 Start Conditions
 17.10 Compiling the Lexical Analyzer
 17.11 Using lex with yacc
 17.12 Creating a Parser with yacc
 17.13 Grammar File
 17.14 Using the Grammar File
 17.15 Declarations
 17.16 Rules
 17.17 Actions
 17.18 Programs
 17.19 Error Handling
 17.20 Lexical Analysis
 17.21 Parser Operation
 17.22 Using Ambiguous Rules
 17.23 Turning On Debug Mode
 17.24 Creating a Simple Calculator Program - Example

Programming Tools and Interfaces
Chapter 17. Creating an Input Language

¦ Copyright IBM Corp. 1985, 1991
17.0 - 1

 17.1 CONTENTS

Programming Tools and Interfaces
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
17.1 - 1

 17.2 About This Chapter

 This chapter describes lex, a program that generates a program from a set
 of rules. The lex program generates a program, called a lexical analyzer,
 that analyzes input and breaks it into categories, such as: numbers,
 letters or operators.

 The chapter also describes the yacc program. This program generates a
 program from a set of rules. However, the program that yacc generates is
 a parser. program. A parser is a program that analyzes input, using the
 categories that the lexical analyzer identified, and determines what to do
 with the input.

Programming Tools and Interfaces
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
17.2 - 1

 17.3 Writing a Lexical Analyzer Program with lex

 The lex program helps write a C language program that can receive a
 character stream input and translate that input into program actions. To
 use the lex program, write a specification file that contains the
 following parts:

 Regular expressions
 Character patterns that the generated lexical analyzer
 recognizes.

 Action statements
 C language program fragments that define how the generated
 lexical analyzer reacts to regular expressions that it
 recognizes.

 The actual format and logic allowed in this file is discussed in "The lex
 Specification File" in topic 17.4.

 Subtopics
 17.3.1 What lex Does
 17.3.2 How the Lexical Analyzer Works

Programming Tools and Interfaces
Writing a Lexical Analyzer Program with lex

¦ Copyright IBM Corp. 1985, 1991
17.3 - 1

 17.3.1 What lex Does

 Using the information in the specification file, the lex program generates
 a C language program to analyze an input stream according to the
 specifications. The lex program puts the output program in a file called
 lex.yy.c. If the output program recognizes a simple one-word input
 structure, compile the lex.yy.c output file using the command:

 cc lex.yy.c -ll

 to get an executable lexical analyzer. However, if the lexical analyzer
 recognizes more than one-word syntax, create a parser to ensure proper
 handling of the input (see "Creating a Parser with yacc" in topic 17.12).

 The lex.yy.c output file can be moved to other systems that have a C
 compiler that supports the lex library functions.

 The compiled lexical analyzer performs the following functions:

 � Reads an input stream of characters

 � Copies the input stream to an output stream

 � Breaks the input stream into smaller strings that match the regula
 expressions in the lex specification file.

 � Executes an action for each regular expression that it recognizes
 The action(s) are C language program fragments in the lex
 specification file. The action fragments can call actions or
 subroutines outside of the action fragment.

Programming Tools and Interfaces
What lex Does

¦ Copyright IBM Corp. 1985, 1991
17.3.1 - 1

 17.3.2 How the Lexical Analyzer Works

 The lexical analyzer that lex generates uses an analysis method called a
 deterministic finite-state automaton. This method provides for a limited
 number of conditions that the lexical analyzer can exist in, along with
 the rules that determine what state the lexical analyzer is in.

 For a simple example, Figure 17-1 shows a chart of a program that has
 three states: start, good and bad. The program gets a stream of
 characters for input. It begins in the start condition. When it receives
 the first character, the program compares the character with the rule. If
 the character is alphabetic (according to the rule), the program changes
 to the good state; if it is not alphabetic, the program changes to the bad
 state. The program stays in good until it finds a character that does not
 match its conditions, and then it moves to bad (which terminates the
 program).

 --

 --
 Figure 17-1. Simple Finite State Model

 The automaton allows the generated lexical analyzer to look ahead in an
 input stream more than one or two characters. For example, define two
 rules in the lex specification file, one that looks for the string ab and
 the other that looks for the string abcdefg. If the lexical analyzer gets
 an input string of abcdefh, it reads characters to the end of string
 abcdefg before finding that the input string does not match the string
 abcdefg. The lexical analyzer then returns to the rule that looks for the
 string ab, decides that it matches part of the input, and begins trying to
 find another match using the remaining input cdefh.

Programming Tools and Interfaces
How the Lexical Analyzer Works

¦ Copyright IBM Corp. 1985, 1991
17.3.2 - 1

 17.4 The lex Specification File

 The format of the lex specification file is:

 {definitions}
 %%
 {rules}
 %%
 {user subroutines}

 You can omit the definitions and the user subroutines. The second %% is
 optional, but the first %% is required to mark the beginning of the rules.
 The minimum lex specification file contains no definitions and no rules:

 % %

 Without a specified action for a pattern match, the lexical analyzer
 copies the input pattern to the output without changing it. Therefore,
 the previous specification file results in a lexical analyzer that copies
 all input to the output unchanged.

 Subtopics
 17.4.1 Rules

Programming Tools and Interfaces
The lex Specification File

¦ Copyright IBM Corp. 1985, 1991
17.4 - 1

 17.4.1 Rules

 The rules section of the specification file contains control decisions
 that define the lexical analyzer that lex generates. The rules are in the
 form of a table. The left column of the table contains regular
 expressions; the right column of the table contains actions. Actions are
 C language program fragments. When the lexical analyzer finds a match for
 the regular expression that appears in the left column of the table, the
 lexical analyzer executes the action.

 For example, to create a lexical analyzer to look for the string integer
 and print a message when the lexical analyzer finds the string, define a
 rule:

 integer printf("found keyword int");

 This example uses the C language library function printf to print the
 string. The first blank or tab character in the action indicates the end
 of the expression. When using only one expression in an action, put it on
 the same line and to the right of the regular expression (integer). When
 using more than one statement, or if the statement takes more than one
 line, enclose the action in braces, the same as in a C language program.

 For another example, a lexical analyzer to change some words in a file
 from British spelling to the American spelling has a specification file
 that contains rules such as:

 colour printf("color");
 mechanise printf("mechanize");
 petrol printf("gas");

 This specification file is not complete because it changes the word
 petroleum to gaseum.

Programming Tools and Interfaces
Rules

¦ Copyright IBM Corp. 1985, 1991
17.4.1 - 1

 17.5 Regular Expressions

 Specifying regular expressions in a lex specification file is similar to
 methods used in sed or ed. A regular expression specifies a set of
 strings to be matched. It contains text characters and operator
 characters. Text characters match the corresponding characters in the
 strings being compared. Operator characters specify repetitions, choices,
 and other features.

 The letters of the alphabet and the digits are always text characters.
 For example, the regular expression integer matches the string integer,
 and the expression a57D looks for the string a57D.

 Subtopics
 17.5.1 Operators
 17.5.2 Putting Blanks in an Expression
 17.5.3 Other Special Characters
 17.5.4 Character Classes
 17.5.5 Matching Rules

Programming Tools and Interfaces
Regular Expressions

¦ Copyright IBM Corp. 1985, 1991
17.5 - 1

 17.5.1 Operators

 The operator characters for specifying a regular expression are:

 Figure 17-2. Regular Expression Operators
 Symbol Use

 " Encloses literal strings to interpret as text characters.

 \ (Escape character). Indicates that the operator symbol
 represents the character rather than the operator when used
 before one of the character class operators. For example,
 [\^abc] represents the class of characters that includes the
 characters ^abc.

 [] Encloses character classes.

 ^ In a character class, indicates the complement of the set of
 characters when the ^ is the first character in a set of
 characters. For example, [^abc] matches all characters
 except a, b or c, including all special or control
 characters. Similarly, [^a-zA-Z] is any character that is
 not a letter.

 In an expression, indicates a match only when the expression
 is at the beginning of the line when the ^ is the first
 character in an expression.

 0.- In a character class, indicates a range of characters from
 the ASCII value of the character that comes before the - to
 the ASCII value of the character that follows the -. For
 example, [a-z0-9] indicates the character class containing
 all the lowercase letters and the digits. A range can be
 either in ascending or descending order, but the order is
 that of the ASCII values of the characters for AIX. If the
 program is moved to a system that uses a different set of
 character codes (like EBCDIC), the range may be a different
 set of characters. lex displays a warning message if moving
 to another system is likely to cause a problem.

 ? (Optional element). Indicates that the character that
 precedes the ? is not required to match the string, but may
 be present in that position. For example, ab?c matches
 either ac or abc

 . Matches any single character except new-line.

 * Matches any number of consecutive occurrences, including
 zero, of the character that comes before the *. For example,
 a* is any number of consecutive a characters, including zero.
 The usefulness of matching zero occurrences is more obvious
 in complicated expressions. For example, the expression,
 [A-Za-z][A-Za-z0-9]* indicates all alphanumeric strings with
 a leading alphabetic character, including strings that are
 only one alphabetic character. Use this expression for
 recognizing identifiers in computer languages.

 + Matches any number of consecutive occurrences, but not zero,
 of the character that comes before the +. For example, a+ is
 one or more instances of a. Also, [a-z]+ is all strings of

Programming Tools and Interfaces
Operators

¦ Copyright IBM Corp. 1985, 1991
17.5.1 - 1

 lowercase letters.

 | Indicates a match for either the expression that precedes the
 | or the expression that follows the |. For example, ab|cd
 matches either ab or cd.

 () Groups more complex expressions. For example, (ab|cd+)?(ef)*
 matches such strings as abefef, efefef, cdef, or cddd; but
 not abc, abcd, or abcdef.

 a/b / indicates a match of expression a only if expression b
 immediately follows expression a. For example, ab/cd matches
 the string ab but only if followed by cd.

 $ Indicates a match only when the expression is at the end of
 the line when used as the last character in an expression.
 For example, ab$ is the same as ab/\n where \n is a new-line
 character. See the description of the a/b operator.

 { } When enclosing numbers, the numbers indicate a number of
 consecutive occurrences of the expression that comes before
 it. For example, a{1,5} indicates a match for from 1 to 5
 occurrences of the letter a.

 When enclosing a name, the name represents a string defined
 earlier in the specification file. Define the named string
 in the first part of the lex specification, before the rules.
 For example, {digit} looks for a defined string named digit
 and inserts it at that point in the expression.

 <x> Encloses a start condition (see "Start Conditions" in
 topic 17.9). The lexical analyzer executes the associated
 action only if the lexical analyzer is in the indicated start
 condition (x). If the condition of being at the beginning of
 a line is start condition ONE, then the ^ operator would be
 the same as the expression, <ONE>.

 To use the operator characters as text characters, indicate that they are
 text characters by using one of the escape sequences: " " (quotes) or \
 (backslash). The operator " (quotation mark) indicates that what is
 between a pair of quotes is text. Thus:

 xyz"++"

 matches the string xyz++. Note that a part of a string may be quoted.
 Quoting an ordinary text character has no effect. For example, the
 expression:

 "xyz++"

 is the same as the previous one. Quoting all characters that are not
 letters or numbers, ensures that text is interpreted as text.

 Another way to turn an operator character into a text character is to put
 a backslash character before it. For example:

 xyz\+\+

Programming Tools and Interfaces
Operators

¦ Copyright IBM Corp. 1985, 1991
17.5.1 - 2

 is another form of the above expressions.

Programming Tools and Interfaces
Operators

¦ Copyright IBM Corp. 1985, 1991
17.5.1 - 3

 17.5.2 Putting Blanks in an Expression

 Normally, blanks or tabs end a rule and therefore, the expression that
 defines a rule. However, you can enclose the blanks or tab characters in
 quotation marks to include them in the expression. Use quotes around all
 blanks in expressions that are not already within sets of brackets ([]).

Programming Tools and Interfaces
Putting Blanks in an Expression

¦ Copyright IBM Corp. 1985, 1991
17.5.2 - 1

 17.5.3 Other Special Characters

 The lex program recognizes many of the normal C language special
 characters. These character sequences are:

 Figure 17-3. Special Characters
 Sequence Meaning
 \n New-line - Do not use the actual new-line character in an
 expression.
 \t Tab
 \b Backspace
 \\ Backslash

 When using these special characters in an expression, you do not need to
 enclose them in quotes. Every character, except these special characters
 and the previously described operator symbols, is always a text character.

Programming Tools and Interfaces
Other Special Characters

¦ Copyright IBM Corp. 1985, 1991
17.5.3 - 1

 17.5.4 Character Classes

 Character classes are ranges of characters that lex uses to match a single
 character in the input stream. For example, a character class may contain
 the letters a, b, c. If this character class is a match pattern, lex
 accepts any one of the characters a, b or c from the input stream.

 Define character classes using the [] operator pair. Therefore, to
 define the above character class use the following expression:

 [abc]

 The operator symbols, -, ^ and \ can also help define the patterns
 represented in a character class. See "Operators" in topic 17.5.1 for the
 definitions of these symbols. All other operators within square brackets
 do not have any meaning other than as an ordinary character.

Programming Tools and Interfaces
Character Classes

¦ Copyright IBM Corp. 1985, 1991
17.5.4 - 1

 17.5.5 Matching Rules

 When more than one expression can match the current input, lex chooses in
 the following order:

 1. The longest match.

 2. Among rules that match the same number of characters, the rule that
 occurs first.

 For example, if the rules

 integer keyword action...;
 [a-z]+ identifier action...;

 are given in that order, and integers is the input word, lex matches the
 input as an identifier, because [a-z]+ matches eight characters while
 integer matches only seven.

 However, if the input is integer, both rules match seven characters. lex
 selects the keyword rule because it occurs first. A shorter input, such
 as int, does not match the expression integer and so lex selects the
 identifier rule.

 Subtopics
 17.5.5.1 Matching a String Using Wildcard Characters
 17.5.5.2 Finding Strings within Strings

Programming Tools and Interfaces
Matching Rules

¦ Copyright IBM Corp. 1985, 1991
17.5.5 - 1

 17.5.5.1 Matching a String Using Wildcard Characters

 Because lex chooses the longest match first, do not use rules containing
 expressions like .*. For example:

 '.*'

 might seem like a good way to recognize a string in single quotes.
 However, the lexical analyzer reads far ahead, looking for a distant
 single quote to complete the long match. If a lexical analyzer with such
 a rule gets the following input:

 'first' quoted string here, 'second' here

 it matches:

 'first' quoted string here, 'second'

 To find the smaller strings, first and second, use the following rule:

 '[^'\n]*'

 This rule stops after 'first'.

 Errors of this type are not far reaching, because the . (period) operator
 does not match a new-line character. Therefore, expressions like .* stop
 on the current line. Do not try to defeat this with expressions like
 [.\n] +. The lexical analyzer tries to read the entire input file and an
 internal buffer overflow occurs.

Programming Tools and Interfaces
Matching a String Using Wildcard Characters

¦ Copyright IBM Corp. 1985, 1991
17.5.5.1 - 1

 17.5.5.2 Finding Strings within Strings

 The lex program partitions the input stream, and does not search for all
 possible matches of each expression. Each character is accounted for once
 and only once. For example, to count occurrences of both she and he in an
 input text, try the following rules:

 she s++
 he h++
 \n |
 . ;

 where the last two rules ignore everything besides he and she. However,
 because she includes he, lex does not recognize the instances of he that
 are included in she.

 To override this choice, use the action REJECT. This directive tells lex
 to go to the next rule. lex then adjusts the position of the input
 pointer to where it was before the first rule was executed, and executes
 the second choice rule. For example, to count the included instances of
 he, use the following rules:

 she {s++; REJECT;}
 he {h++; REJECT;}
 \n |
 . ;

 After counting the occurrences of she, lex rejects the input stream and
 then counts the occurrences of he. Because in this case "she" includes
 "he" but not vice versa, and you can omit the REJECT action on "he". In
 other cases, it may be difficult to determine which input characters are
 in both classes.

 In general, REJECT is useful whenever the purpose of lex is not to
 partition the input stream but to detect all examples of some items in the
 input, and the instances of these items may overlap or include each other.

Programming Tools and Interfaces
Finding Strings within Strings

¦ Copyright IBM Corp. 1985, 1991
17.5.5.2 - 1

 17.6 Actions

 When the lexical analyzer matches one of the regular expressions in the
 rules section of the specification file, it executes the action that
 corresponds to the regular expression. Without rules to match all strings
 in the input stream, the lexical analyzer copies the input to standard
 output. Therefore, do not create a rule that only copies the input to the
 output. Use this default output to find gaps in the rules.

 When using lex to process input for a parser that yacc produces, provide
 rules to match all input strings. Those rules must generate output that
 yacc can interpret.

 Subtopics
 17.6.1 Null Action
 17.6.2 Same as Next Action
 17.6.3 Printing a Matched String
 17.6.4 Finding the Length of a Matched String
 17.6.5 Getting More Input
 17.6.6 Putting Characters Back
 17.6.7 Input/Output Routines
 17.6.8 Character Set
 17.6.9 End of File Processing

Programming Tools and Interfaces
Actions

¦ Copyright IBM Corp. 1985, 1991
17.6 - 1

 17.6.1 Null Action

 To ignore the input associated with a regular expression, use a ; (C
 language null statement) as an action. For example:

 [\t\n] ;

 ignores the three spacing characters (blank, tab, and new-line).

Programming Tools and Interfaces
Null Action

¦ Copyright IBM Corp. 1985, 1991
17.6.1 - 1

 17.6.2 Same as Next Action

 To avoid repeatedly writing the same action, use the | (vertical bar)
 character . This character indicates that the action for this rule is the
 same as the action for the next rule. For example, the example to ignore
 blank, tab and new-line characters (shown above), can be written as:

 " " |
 "\t" |
 "\n" ;

 The quotes around \n and \t are not required.

Programming Tools and Interfaces
Same as Next Action

¦ Copyright IBM Corp. 1985, 1991
17.6.2 - 1

 17.6.3 Printing a Matched String

 To find out what text matched an expression in the rules section of the
 specification file, include a C language printf function as one of the
 actions for that expression. When the lexical analyzer finds a match in
 the input stream, the program puts that matched string in an external
 character array, called yytext. To print the matched string, use a rule
 like:

 [a-z]+ printf("%s",yytext);

 The C language function printf accepts a format argument and data to be
 printed. In this example the arguments to printf have the following
 meanings:

 %s A symbol that converts the data to type string before printing.
 yytext The name of the array containing the data to be printed.

 Printing the output like this is common. You may want to define it as a
 macro in the definitions section of the specification file. If this
 action is defined as ECHO, then the rules section entry looks like:

 [a-z]+ ECHO;

Programming Tools and Interfaces
Printing a Matched String

¦ Copyright IBM Corp. 1985, 1991
17.6.3 - 1

 17.6.4 Finding the Length of a Matched String

 To find the number of characters that the lexical analyzer matched for a
 particular regular expression, use the external variable yyleng. For
 example, to count both the number of words and the number of characters in
 words in the input, use the following action:

 [a-zA-Z]+ {words++;chars += yyleng;}

 This action totals the number of characters in the words matched and puts
 that number in chars.

 The following expression finds the last character in the string matched:

 yytext[yyleng-1]

Programming Tools and Interfaces
Finding the Length of a Matched String

¦ Copyright IBM Corp. 1985, 1991
17.6.4 - 1

 17.6.5 Getting More Input

 The lexical analyzer may run out of input before it completely matches an
 expression in a rules file. In this case, include a call to the lex
 function yymore in the action for that rule. Normally, the next string
 from the input stream overwrites the current entry in yytext. If you use
 yymore, the next string from the input stream is added to the end of the
 current entry in yytext.

 For example, to define a language that includes the following syntax:

 � A string is any set of characters between " (quotes).

 � A \ (backslash) must come before all strings.

 use the rules:

 \"[^"]* {
 if (yytext[yyleng-l] =='\\')
 yymore();
 else
 ... normal user processing
 }

 When this lexical analyzer receives a string such as "abc\"def", it first
 matches the five characters "abc\. Then the call to yymore adds the next
 part of the string "def to the end. The part of the action code labeled
 normal processing must process the final quote that ends the string.

Programming Tools and Interfaces
Getting More Input

¦ Copyright IBM Corp. 1985, 1991
17.6.5 - 1

 17.6.6 Putting Characters Back

 The lexical analyzer may not need all of the characters that are matched
 by the currently successful expression, or it may need to return matched
 characters to the input stream to be checked again for another match. To
 return characters to the input stream, use the call:

 yyless(n)

 where n is the number of characters of the current string to keep.
 Characters that are beyond the nth character in the stream are returned to
 the input stream. This function provides the same type of look ahead that
 the / operator uses, but it allows more control over its usage.

 Use the yyless function to process text more than once. For example, when
 parsing a C language program an expression such as x=-a is difficult to
 understand. Does it mean x is equal to minus a, or is it an older
 representation of x -= a which means decrement x by the value of a? To
 treat this expression as x is equal to minus a, but print a warning
 message, use a rule such as:

 =-[a-zA-Z] {
 printf("Operator (=-) ambiguous\n");
 yyless(yyleng-1);
 ... action for =-...
 }

Programming Tools and Interfaces
Putting Characters Back

¦ Copyright IBM Corp. 1985, 1991
17.6.6 - 1

 17.6.7 Input/Output Routines

 The lex program allows a program to use the input/output (I/O) routines it
 uses. These routines are:

 input Returns the next input character.

 output(c) Writes the character c on the output.

 unput(c) Pushes the character c back onto the input stream to be read
 later by input.

 lex provides these routines as macro definitions. You can override them
 and provide other versions.

 These routines define the relationship between external files and internal
 characters. If you change them, change them all in the same way and they
 should follow these rules:

 � All routines must use the same character set

 � The input routine must return a value of zero to indicate end of file.

 � Do not change the relationship of unput to input or the look ahead
 functions will not work.

 The standard lex library allows the lexical analyzer to back up a maximum
 of 100 characters.

 Create a different version of input to be able to read a file containing
 nulls. Using the normal version of input, the returned value of 0 (from
 the null characters) indicates the end of file and ends the input.

Programming Tools and Interfaces
Input/Output Routines

¦ Copyright IBM Corp. 1985, 1991
17.6.7 - 1

 17.6.8 Character Set

 The lexical analyzers that lex generates process character I/O through the
 routines input, output, and unput. Therefore, to return values in yytext,
 lex uses the character representation that these routines use. Internally
 however, lex represents each character with a small integer. When using
 the standard library, this integer is the value of the bit pattern that
 the computer uses to represent the character. Normally, the letter a is
 represented in the same form as the character constant 'a'. If you change
 this interpretation with different I/O routines, put a translation table
 in the definitions section of the specification file. The translation
 table begins and ends with lines that contain only the entries:

 %T

 The translation table contains lines of the form:

 %T
 {integer} {character string}
 {integer} {character string}
 {integer} {character string}
 %T

 that indicate the value associated with each character.

Programming Tools and Interfaces
Character Set

¦ Copyright IBM Corp. 1985, 1991
17.6.8 - 1

 17.6.9 End of File Processing

 When the lexical analyzer reaches the end of a file, it calls a library
 routine called yywrap. This routine returns a value of 1 to indicate to
 the lexical analyzer that it should continue with normal wrap-up at the
 end of input. However, if the lexical analyzer receives input from more
 than one source, change the yywrap function. The new function must get
 the new input and return a value of 0 to the lexical analyzer. A return
 value of 0 indicates that the program should continue processing.

 You can also include code to print summary reports and tables when the
 lexical analyzer ends in a new version of yywrap. The yywrap function is
 the only way to force yylex to recognize the end of input.

Programming Tools and Interfaces
End of File Processing

¦ Copyright IBM Corp. 1985, 1991
17.6.9 - 1

 17.7 Passing Code to the Generated Program

 You can define variables in either the definitions section or the rules
 section of the specification file. lex changes statements in the
 specification file into a lexical analyzer. Any line in the specification
 file that lex cannot interpret is passed, unchanged, to the lexical
 analyzer. Three types of entries can be passed to the lexical analyzer in
 this manner:

 � Lines beginning with a blank or tab that are not a part of a lex rule
 are copied into the lexical analyzer. If this entry occurs before the
 first %% in the specification file, the entry is external to any
 function in the code. If the entry occurs after the first %%, it must
 be a C language program fragment that defines a variable. Define
 these statements before the first lex rule in the specification file.

 � Lines beginning with a blank or tab that are program comments are
 included as comments in the generated lexical analyzer. The comments
 must be in the C language format for comments.

 � Any lines that lie between lines containing only %{ and %} is copied
 to the lexical analyzer. The symbols %{ and %} are not copied. Use
 this format to enter preprocessor statements that must begin in column
 1, or to copy lines that do not look like program statements.

 � Any lines occurring after the third %% delimiter are copied to the
 lexical analyzer without format restrictions.

Programming Tools and Interfaces
Passing Code to the Generated Program

¦ Copyright IBM Corp. 1985, 1991
17.7 - 1

 17.8 Defining Substitution Strings

 You can define string macros that lex expands when it generates the
 lexical analyzer. Define them before the first %% delimiter in the lex
 specification file. Any line in this section that begins in column 1 and
 that does not lie between %{ and %} defines a lex substitution string.
 Substitution string definitions have the general format:

 name translation

 where name and translation are separated by a least one blank or tab, and
 name begins with a letter. When lex finds the string name enclosed in { }
 (braces) in the rules part of the specification file, it changes name to
 the string defined in translation and deletes the braces.

 For example, to define the names D and E, put the following definitions
 before the first %% delimiter in the specification file:

 D [0-9]
 E [DEde][-+]{D}+

 Then, use these names in the rules section of the specification file to
 make the rules shorter:

 {D}+ printf("integer");
 {D}+"."{D}*({E})? |
 {D}*"."{D}+({E})? |
 {D}+{E} printf("real");

 You can also include the following items in the definitions section:

 � Character set tabl
 � List of start condition
 � Changes to size of arrays to accommodate larger source programs

Programming Tools and Interfaces
Defining Substitution Strings

¦ Copyright IBM Corp. 1985, 1991
17.8 - 1

 17.9 Start Conditions

 Any rule may be associated with a start condition. lex recognizes that
 rule only when lex is in that start condition. You can change the current
 start condition at any time.

 Define start conditions in the definitions section of the specification
 file by using a line in the following form:

 % Start name1 name2

 The symbols, name1 and name2, are names that represent conditions. There
 is no limit to the number of conditions and they can appear in any order.
 You can also shorten the word Start to s or S.

 When using a start condition in the rules section of the specification
 file, enclose the name of the start condition in <> (angle brackets) at
 the beginning of the rule:

 <name1> expression

 defines a rule, expression that lex recognizes only when lex is in start
 condition name1. To put lex in a particular start condition, execute the
 action statement (in the action part of a rule):

 BEGIN name1;

 This statement changes the start condition to name1. To resume the normal
 state:

 BEGIN 0;

 resets lex to its initial condition. A rule can be active in several
 start conditions. For example:

 <name1,name2,name3>

 is a legal prefix. Any rule that does not begin with a start condition is
 always active.

Programming Tools and Interfaces
Start Conditions

¦ Copyright IBM Corp. 1985, 1991
17.9 - 1

 17.10 Compiling the Lexical Analyzer

 Compiling a lex program is a two-step process:

 1. Use lex to change the specification file into a C language program.
 The resulting program is in the lex.yy.c file.

 2. Use the cc -ll command to compile and link the program with a library
 of lex subroutines. The resulting executable program is in the a.out
 file.

 For example, if the lex specification file is called lextest, enter the
 following commands:

 lex lextest
 cc lex.yy.c -ll

 Although the default lex I/O routines use the C language standard library,
 the lexical analyzers that lex generates do not. You can include
 different copies of the input, output, and unput routines to avoid using
 the library (see "Input/Output Routines" in topic 17.6.7).

Programming Tools and Interfaces
Compiling the Lexical Analyzer

¦ Copyright IBM Corp. 1985, 1991
17.10 - 1

 17.11 Using lex with yacc

 When used alone, the lex program generator makes a lexical analyzer that
 recognizes simple one-word input or receives statistical input. You can
 also use lex with a parser generator, such as yacc. The yacc program
 generates a program, called a parser, that analyzes the construction of
 more than one word input. This parser program operates well with lexical
 analyzers that lex generates. The lex program recognizes only regular
 expressions and formats them into character packages called tokens.

 token The smallest independent unit of meaning as defined by either
 the parser or the lexical analyzer. A token can contain data, a
 language keyword, an identifier, or other parts of a language
 syntax.

 yacc produces parsers that recognize many types of grammar with no regard
 to context. These parsers need a preprocessor to recognize input tokens
 such as the preprocessor that lex produces.

 When using lex to make a lexical analyzer for a parser, the lexical
 analyzer (from lex) partitions the input stream. The parser (from yacc)
 assigns structure to the resulting pieces. Figure 17-4 shows how the two
 generated programs work together. You can also use other programs along
 with the programs generated by either lex or yacc.

 The yacc program must have a lexical analyzer named yylex, which is what
 the lexical analyzer from lex is named. Normally, the default main
 program in the lex library calls this routine, but if yacc is loaded and
 its main program is used, yacc calls yylex. In this case, each lex rule
 should end with:

 return(token);

 where the appropriate token value is returned.

 To find out the names for tokens that yacc uses, compile the lex output
 file as part of the yacc output file by placing the line:

 #include "lex.yy.c"

 in the last section of the yacc grammar file. For example, if the grammar
 file is good and the specification file is better, the final program is
 created with the following command sequence:

 yacc good
 lex better
 cc y.tab.c lex.yy.c -ly -ll

 The yacc library (-ly in the preceding example) should be loaded before
 the lex library to get a main program that invokes the yacc parser. You
 can generate lex and yacc programs in either order.

 --

Programming Tools and Interfaces
Using lex with yacc

¦ Copyright IBM Corp. 1985, 1991
17.11 - 1

 --
 Figure 17-4. lex With yacc

Programming Tools and Interfaces
Using lex with yacc

¦ Copyright IBM Corp. 1985, 1991
17.11 - 2

 17.12 Creating a Parser with yacc

 The yacc program creates parsers that define and enforce structure for
 character input to a computer program. To use this program, supply the
 following inputs:

 Grammar file
 A source file that contains the specifications for the language
 to recognize. This file also contains the programs main,
 yyerror and yylex. You must supply these programs.

 main
 A C language program that as a minimum contains a call to the
 function yyparse that yacc generates. A limited form of this
 program is in the yacc library.

 yyerror
 A C language program to handle errors that can occur during
 parser operation. A limited form of this program is in the yacc
 library.

 yylex
 A C language program to perform lexical analysis on the input
 stream and pass tokens to the parser. You can generate this
 lexical analyzer using the lex program.

 When yacc gets a specification, it generates a file of C language
 programs, called y.tab.c. When compiled using the cc command, these
 programs form a function called yyparse that returns an integer. When it
 is called, yyparse calls yylex, the lexical analyzer to get input tokens.
 yylex continues providing input until either the parser detects an error,
 or yylex returns an end-marker token to indicate the end of operation. If
 an error occurs and yyparse cannot recover, it returns a value of 1 to
 main. If it finds the end-marker token, yyparse returns a value of 0 to
 main.

Programming Tools and Interfaces
Creating a Parser with yacc

¦ Copyright IBM Corp. 1985, 1991
17.12 - 1

 17.13 Grammar File

 To use yacc to generate a parser, give it a grammar file that describes
 the input data stream and what the parser is to do with the data. The
 grammar file includes rules describing the input structure, code to be
 invoked when these rules are recognized, and a routine to do the basic
 input.

 The yacc program uses the information in the grammar file to generate a
 program that controls the input process. This program, called a parser,
 calls an input routine (the lexical analyzer) to pick up the basic items
 (called tokens) from the input stream. The parser organizes these tokens
 according to the structure rules in the grammar file. The structure rules
 are called grammar rules. When the parser recognizes one of these rules,
 it executes the user code supplied for that rule. The user code is called
 an action. Actions return values and use the values returned by other
 actions.

 Use the C programming language to write the action code and other
 subroutines. yacc uses many of the C language syntax conventions for the
 grammar file.

 Subtopics
 17.13.1 main and yyerror
 17.13.2 yylex

Programming Tools and Interfaces
Grammar File

¦ Copyright IBM Corp. 1985, 1991
17.13 - 1

 17.13.1 main and yyerror

 You must provide these two routines for the parser. To ease the initial
 effort of using yacc, the yacc library contains simple versions of main
 and yyerror. Include these routines using the -ly argument to the loader
 (or to the cc command). The source code for the main library program is:

 main()
 {
 return (yyparse());
 }

 The source code for the yyerror library program is:

 #include <stdio.h>

 yyerror(s)
 char *s;
 {
 fprintf(stderr, " %s\n" ,s);
 }

 The argument to yyerror is a string containing an error message, usually
 the string syntax error.

 These are very limited programs. You should provide more function in
 these routines. For example, keep track of the input line number and
 print it along with the message when a syntax error is detected. You may
 also want to use the value in the external integer variable yychar. This
 variable contains the look-ahead token number at the time the error was
 detected.

Programming Tools and Interfaces
main and yyerror

¦ Copyright IBM Corp. 1985, 1991
17.13.1 - 1

 17.13.2 yylex

 The input routine that you supply must be able to:

 � Read the input stream

 � Recognize basic patterns in the input stream

 � Pass the patterns to the parser along with tokens that define th
 pattern to the parser.

 A token is a symbol or name that tells the parser which pattern is being
 sent to it by the input routine. A nonterminal symbol is the structure
 that the parser recognizes.

 For example, if the input routine separates an input stream into the
 tokens of WORD, NUMBER and PUNCTUATION, and it receives the input:

 I have 9 turkeys.

 the program could choose to pass the following strings and tokens to the
 parser:

 String Token

 I WORD
 have WORD
 9 NUMBER
 turkeys WORD
 . PUNCTUATION

 The parser must contain definitions for the tokens that the input routine
 passes to it. If you use the -d option for yacc, it generates a list of
 tokens in a file called y.tab.h. This list is a set of #define statements
 that allow the lexical analyzer (yylex) to use the same tokens as the
 parser.

 To avoid conflict with the parser, do not use names that begin with the
 letters yy.

 You can use lex to generate the input routine, or you can write it in the
 C language. See "The lex Specification File" in topic 17.4 for
 information about using lex.

Programming Tools and Interfaces
yylex

¦ Copyright IBM Corp. 1985, 1991
17.13.2 - 1

 17.14 Using the Grammar File

 A yacc grammar file consists of three sections:

 � Declaration

 � Rule

 � Programs

 Two %% (percent signs) that appear together separate the sections of the
 grammar file. To make the file easier to read, put the %% on a line by
 themselves. A complete grammar file looks like:

 declarations
 %%
 rules
 %%
 programs

 The declarations section may be empty. If you omit the programs section,
 omit the second set of %%. Therefore, the smallest yacc grammar file is:

 % %
 rules

 yacc ignores blanks, tabs and new-line characters in the grammar file.
 Therefore, use these characters to make the grammar file easier to read.
 Do not, however, use blanks, tabs or new-lines in names or reserved
 symbols.

 Subtopics
 17.14.1 Using Comments
 17.14.2 Using Literal Strings
 17.14.3 How to Format the Grammar File
 17.14.4 Using Recursion in a Grammar File
 17.14.5 Errors in the Grammar File

Programming Tools and Interfaces
Using the Grammar File

¦ Copyright IBM Corp. 1985, 1991
17.14 - 1

 17.14.1 Using Comments

 Put comments in the grammar file to explain what the program is doing.
 You can put comments anywhere in the grammar file that you can put a name.
 However, to make the file easier to read, put the comments on lines by
 themselves at the beginning of functional blocks of rules. A comment in a
 yacc grammar file looks the same as a comment in a C language program; it
 is enclosed in /* */. For example:

 /* This is a comment on a line by itself. */

Programming Tools and Interfaces
Using Comments

¦ Copyright IBM Corp. 1985, 1991
17.14.1 - 1

 17.14.2 Using Literal Strings

 A literal string is one or more characters enclosed in '' (single quotes).
 As in the C language, the \ (backslash) is an escape character within
 literals, and all the C language escape codes are recognized.

 Thus, yacc accepts the symbols in the following table:

 Figure 17-5. yacc Literal Strings
 Symbol Definition
 \n New-line
 \r Return
 \' Single quote (')
 \\ Backslash (\)
 \t Tab
 \b Backspace
 '\f' Form feed
 '\xxx' The value xxx in octal

 Never use \0 or 0 (the NUL character) in grammar rules.

Programming Tools and Interfaces
Using Literal Strings

¦ Copyright IBM Corp. 1985, 1991
17.14.2 - 1

 17.14.3 How to Format the Grammar File

 Use the following guidelines to help make the yacc grammar file more
 readable:

 � Use uppercase letters for token names and lowercase letters fo
 nonterminal symbol names.

 � Put grammar rules and actions on separate lines to allow changin
 either one without changing the other.

 � Put all rules with the same left side together. Enter the left sid
 once and use the vertical bar to begin the rest of the rules for that
 left side.

 � For each set of rules with the same left side, enter the semicolo
 once on a line by itself following the last rule for that left side.
 You can then add new rules easily.

 � Indent rule bodies by two tab stops and action bodies by three ta
 stops.

Programming Tools and Interfaces
How to Format the Grammar File

¦ Copyright IBM Corp. 1985, 1991
17.14.3 - 1

 17.14.4 Using Recursion in a Grammar File

 Recursion is the process of using a function to define itself. In
 language definitions, these rules normally take the form:

 rule : <end case>
 | rule,<end case>

 which means that the simplest case of the rule is the end case, but rule
 can also be made up of more than one occurrence of end case. The entry in
 the second line that uses rule in the definition of rule is the recursion.
 The parser cycles through the input until the stream is reduced to the
 final end case.

 When using recursion in a rule, always put the call to the name of the
 rule as the leftmost entry in the rule (as it is in the above example).
 If the call to the name of the rule occurs later in the line, such as:

 rule : <end case>
 | <end case>,rule

 the parser may run out of internal stack space, stopping the parser.

Programming Tools and Interfaces
Using Recursion in a Grammar File

¦ Copyright IBM Corp. 1985, 1991
17.14.4 - 1

 17.14.5 Errors in the Grammar File

 The yacc program cannot produce a parser for all sets of grammar
 specifications. If the grammar rules contradict themselves or require
 different matching techniques than yacc has, yacc will not produce a
 parser. In most cases, yacc provides messages to indicate the errors.
 To correct these errors, redesign the rules in the grammar file, or
 provide a lexical analyzer (input program to the parser) to recognize the
 patterns that yacc cannot.

Programming Tools and Interfaces
Errors in the Grammar File

¦ Copyright IBM Corp. 1985, 1991
17.14.5 - 1

 17.15 Declarations

 The declarations section of the yacc grammar file contains:

 � Declarations for any variables or constants used in other parts of th
 grammar file.

 � #include statements to use other files as part of this file (used fo
 library header files).

 � Statements that define processing conditions for the generated parser

 A declaration for a variable or constant follows the syntax of the C
 programming language:

 type specifier declarator ;

 where, type specifier is a data type keyword, and declarator is the name
 of the variable or constant. Names can be any length and consist of
 letters, dots, underscores, and digits. A name cannot begin with a digit.
 Uppercase and lowercase letters are distinct. The names used in the body
 of a grammar rule may represent tokens or nonterminal symbols.

 Without declaring a name in the declarations section, you can use that
 name only as a nonterminal symbol. Define each nonterminal symbol by
 using it as the left side of at least one rule in the rules section. The
 #include statements are identical to C language syntax, and perform the
 same function.

 The yacc program has a set of keywords that define processing conditions
 for the generated parser. Each of the keywords begin with a % and is
 followed by a list of tokens. These keywords are:

 %left Identifies tokens that are left associative with other tokens.

 %nonassoc Identifies tokens that are not associative with other tokens.

 %right Identifies tokens that are right associative with other
 tokens.

 %start Identifies a name for the start symbol.

 %token Identifies the token names that yacc accepts. Declare all
 token names in the declarations section.

 All of the tokens on the same line have the same precedence level and
 associativity; the lines appear in the file in order of increasing
 precedence or binding strength. Thus:

 %left '+' '-'
 %left '*' '/'

 describes the precedence and associativity of the four arithmetic
 operators. The + (plus) and - (minus) are left associative and have lower
 precedence than * (asterisk) and / (slash), which are also left
 associative.

 Subtopics
 17.15.1 Defining Global Variables
 17.15.2 Start Conditions

Programming Tools and Interfaces
Declarations

¦ Copyright IBM Corp. 1985, 1991
17.15 - 1

 17.15.3 Token Numbers

Programming Tools and Interfaces
Declarations

¦ Copyright IBM Corp. 1985, 1991
17.15 - 2

 17.15.1 Defining Global Variables

 To define variables to be used by some or all actions, as well as the
 lexical analyzer, enclose the declarations for those variables in the
 %{ %} symbols. Declarations enclosed in these symbols are called global
 variables. For example, to make the var variable available to all parts
 of the complete program, use the following entry in the declarations
 section of the grammar file:

 %{ int var = 0; %}

Programming Tools and Interfaces
Defining Global Variables

¦ Copyright IBM Corp. 1985, 1991
17.15.1 - 1

 17.15.2 Start Conditions

 The parser recognizes a special symbol called the start symbol. The start
 symbol is the name of the rule in the rules section of the grammar file
 that describes the most general structure of the language to be parsed.
 Because it is the most general structure, it is the structure where the
 parser starts in its top down analysis of the input stream. Declare the
 start symbol in the declarations section using the keyword, %start. If
 you do not declare the name of the start symbol, the parser uses the name
 of the first grammar rule in the grammar file.

 For example, when parsing a C language procedure, the most general
 structure for the parser to recognize is:

 main()
 {
 code_segment
 }

 The start symbol should point to the rule that describes this structure.
 All remaining rules in the file describe ways to identify lower-level
 structures within the procedure.

Programming Tools and Interfaces
Start Conditions

¦ Copyright IBM Corp. 1985, 1991
17.15.2 - 1

 17.15.3 Token Numbers

 Token numbers are nonnegative integers that represent the names of tokens.
 If the lexical analyzer passes the token number to the parser instead of
 the actual token name, both programs must agree on the numbers assigned to
 the tokens.

 You can assign numbers to the tokens used in the yacc grammar file. If
 you do not assign numbers to the tokens, yacc assigns numbers using the
 following rules:

 � A literal character is the numerical value of the character in th
 ASCII character set.

 � Other names are assigned token numbers starting at 257

 Note: Do not assign a token number of 0. This number is assigned to the
 endmarker token. You cannot redefine it.

 To assign a number to a token (including literals) in the declarations
 section of the grammar file, put a positive integer (not zero) immediately
 following the token name in the %token line. This integer is the token
 number of the name or literal. Each number must be different from the
 rest of the token numbers. All lexical analyzers used with yacc must
 return a 0, or a negative value for a token when they reach the end of
 their input.

Programming Tools and Interfaces
Token Numbers

¦ Copyright IBM Corp. 1985, 1991
17.15.3 - 1

 17.16 Rules

 The rules section contains one or more grammar rules. Each rule describes
 a structure and gives it a name. A grammar rule has the form:

 A : BODY;

 where A is a nonterminal name, and BODY is a sequence of zero or more
 names and literals. The colon and the semicolon are required yacc
 punctuation.

 Subtopics
 17.16.1 Repeating Nonterminal Names
 17.16.2 Empty String
 17.16.3 End of Input Marker

Programming Tools and Interfaces
Rules

¦ Copyright IBM Corp. 1985, 1991
17.16 - 1

 17.16.1 Repeating Nonterminal Names

 If there are several grammar rules with the same nonterminal name, use the
 | (vertical bar) to avoid rewriting the left side. In addition, use the ;
 (semicolon) only at the end of all rules joined by vertical bars. Thus
 the grammar rules:

 A : B C D ;
 A : E F ;
 A : G ;

 can be given to yacc as:

 A : B C D
 | E F
 | G
 ;

 by using the vertical bar.

Programming Tools and Interfaces
Repeating Nonterminal Names

¦ Copyright IBM Corp. 1985, 1991
17.16.1 - 1

 17.16.2 Empty String

 To indicate a nonterminal symbol that matches the empty string, use a ;
 (semicolon) by itself in the body of the rule. Therefore, to define a
 symbol empty that matches the empty string, use a rule like the following
 rule:

 empty : ;

Programming Tools and Interfaces
Empty String

¦ Copyright IBM Corp. 1985, 1991
17.16.2 - 1

 17.16.3 End of Input Marker

 When the lexical analyzer reaches the end of the input stream, it sends an
 end of input marker to the parser. This marker is a special token called
 endmarker, and has a token value of 0. When the parser receives an end of
 input marker, it checks to see that it has assigned all of the input to
 defined grammar rules, and that the processed input forms a complete unit
 (as defined in the yacc grammar file). If the input is a complete unit,
 the parser stops. If the input is not a complete unit, the parser signals
 an error and stops.

 The lexical analyzer must send the end of input marker at the correct
 time, such as the end of a file, or the end of a record.

Programming Tools and Interfaces
End of Input Marker

¦ Copyright IBM Corp. 1985, 1991
17.16.3 - 1

 17.17 Actions

 With each grammar rule, you can specify actions to be performed each time
 the parser recognizes the rule in the input stream. Actions return values
 and obtain the values returned by previous actions. The lexical analyzer
 can also return values for tokens.

 An action is a C language statement that does input and output, calls
 subprograms, and alters external vectors and variables. Specify an action
 in the grammar file with one or more statements enclosed in braces { and
 }. For example:

 A : '('B')'
 {
 hello(1, "abc");
 }

 and

 XXX : YYY ZZZ
 {
 printf("a message\n");
 flag = 25;
 }

 are grammar rules with actions.

 Subtopics
 17.17.1 Passing Values Between Actions
 17.17.2 Support for Arbitrary Value Types
 17.17.3 Putting Actions in the Middle of Rules

Programming Tools and Interfaces
Actions

¦ Copyright IBM Corp. 1985, 1991
17.17 - 1

 17.17.1 Passing Values Between Actions

 An action can get values generated by other actions by using the yacc
 parameter keywords that begin with a dollar sign ($1, $2 ...). The
 keywords that begin with a dollar sign refer to the values returned by the
 components of the right side of a rule, reading from left to right. For
 example, if the rule is:

 A : B C D ;

 then $2 has the value returned by the rule that recognized C, and $3 the
 value returned by the rule that recognized D.

 To return a value, the action sets the pseudo-variable $$ to some value.
 For example, the action:

 { $$ = 1;}

 returns a value of one.

 By default, the value of a rule is the value of the first element in it
 ($1). Therefore, you do not need to provide an action for rules that have
 the following form:

 A : B ;

Programming Tools and Interfaces
Passing Values Between Actions

¦ Copyright IBM Corp. 1985, 1991
17.17.1 - 1

 17.17.2 Support for Arbitrary Value Types

 The values returned by the lexical analyzer and actions are integers. In
 addition, yacc supports values of other types, such as structures. yacc
 also tracks the types and inserts the appropriate union member name so
 that the resulting parser is type checked. The yacc value stack is
 declared a union of the various types of values desired. The union is
 declared by the user, and the user associates union member names with each
 token and nonterminal symbol that has a value. When the $$ or $
 construction is used to reference a value, yacc automatically inserts the
 appropriate union name so that unwanted conversions do not occur.

 The following three methods are used to provide for this typing:

 � Defining the union

 The user must define the union because other subroutines (such as the
 lexical analyzer) need to know the union member names.

 � Associating a union member name with tokens and nonterminals

 � Describing the type of those few values where yacc cannot easily
 determine the type.

 To declare the union, you must include the following in the declaration
 section of your program:

 %union
 {
 body of union...
 }

 In the above declaration, the yacc value stack and the external variables
 yylval and yyval have type equal to the union. If you invoked yacc by
 using the -d option, the union declaration is copied onto the y.tab file
 as YYSTYPE.

 The union member names must be associated with the various terminal and
 nonterminal names once YYSTYPE has been defined. The construction

 <name>

 indicates a union member name. If the <name> construction follows one of
 the keywords %token, %right, and %nonassoc, the union member name is
 associated with the tokens listed. Therefore, if you specify:

 %left <optype> '+' '-'

 any reference to values returned by these two tokens is tagged with the
 union member name optype. To associate union member names with
 nonterminals, the keyword %type is used. Therefore, to associate the
 union member nodetype with the nonterminal symbols expr and stat, you can
 use the following:

 %type <nodetype> expr stat

Programming Tools and Interfaces
Support for Arbitrary Value Types

¦ Copyright IBM Corp. 1985, 1991
17.17.2 - 1

 17.17.3 Putting Actions in the Middle of Rules

 To get control of the parsing process before a rule is completed, write an
 action in the middle of a rule. If this rule returns a value through the
 $ parameters, actions that come after it can use that value. It can use
 values returned by actions that come before it. Therefore, the rule:

 A : B
 {
 $$ =1;
 }
 C
 {
 x = $2;
 y = $3;
 }
 ;

 sets x to 1 and y to the value returned by C.

 Internally, yacc creates a new nonterminal symbol name for the action that
 occurs in the middle, and it creates a new rule matching this name to the
 empty string. Therefore, yacc treats the above program as if it were
 written in the following form:

 $ACT : /* empty */
 {
 $$ = 1;
 }
 ;
 A : B $ACT C
 {
 x = $2;
 y = $3;
 }
 ;

 where $ACT is an empty action.

Programming Tools and Interfaces
Putting Actions in the Middle of Rules

¦ Copyright IBM Corp. 1985, 1991
17.17.3 - 1

 17.18 Programs

 The programs section contains C language programs to perform functions
 used by the actions in rules section. In addition, if you write a lexical
 analyzer (input routine to the parser), include it in the programs
 section.

Programming Tools and Interfaces
Programs

¦ Copyright IBM Corp. 1985, 1991
17.18 - 1

 17.19 Error Handling

 When the parser reads an input stream, that input stream might not match
 the rules in the grammar file. The parser detects the problem as early as
 possible. If there is an error handling routine in the grammar file, the
 parser can allow for entering the data again, skipping over the bad data,
 or a cleanup and recovery action. When the parser finds an error, for
 example, it may need to reclaim parse tree storage, delete or alter symbol
 table entries, and set switches to avoid generating any further output.

 When an error occurs, the parser stops unless you provide error handling
 routines. To keep processing the input to find more errors, restart the
 parser at a point in the input stream where the parser can try to
 recognize more input. One way to restart the parser when an error occurs
 is to discard some of the tokens following the error, and try to restart
 the parser at that point in the input stream.

 The yacc program has a special token name, error, to use for error
 handling. Put this token in the rules file at places that an input error
 might occur so that you can provide a recovery routine. If an input error
 occurs in this position, the parser executes the action for the error
 token, rather than the normal action.

 To prevent a single error from producing many error messages, the parser
 remains in error state until it processes three tokens following an error.
 If another error occurs while the parser is in the error state, the parser
 discards the input token and does not produce a message.

 As an example, a rule of the form:

 stat : error ';'

 tells the parser that, when there is an error, it should skip over the
 token and all following tokens until it finds the next semicolon. All
 tokens after the error and before the next semicolon are discarded. When
 the parser finds the semicolon, it reduces this rule and performs any
 cleanup action associated with it.

 Subtopics
 17.19.1 Providing for Error Correcting
 17.19.2 Clearing the Look Ahead Token

Programming Tools and Interfaces
Error Handling

¦ Copyright IBM Corp. 1985, 1991
17.19 - 1

 17.19.1 Providing for Error Correcting

 You can also allow the person entering the input stream in an interactive
 environment to correct any input errors by entering a line in the data
 stream again. For example:

 input : error '\n'
 {
 printf(" Reenter last line: ");
 }
 input
 {
 $$ = $4;
 }
 ;

 is one way to do this. However, in this example the parser stays in the
 error state for three input tokens following the error. If the corrected
 line contains an error in the first three tokens, the parser deletes the
 tokens and does not give a message. To allow for this condition, use the
 yacc statement:

 yyerrok;

 When the parser finds this statement, it leaves the error state and begins
 processing normally. The error recovery example then becomes:

 input : error '\n'
 {
 yyerrok;
 printf("Reenter last line: ");
 }
 input
 {
 $$ = $4
 }
 ;

Programming Tools and Interfaces
Providing for Error Correcting

¦ Copyright IBM Corp. 1985, 1991
17.19.1 - 1

 17.19.2 Clearing the Look Ahead Token

 The look ahead token is the next token that the parser examines. When an
 error occurs, the look ahead token becomes the token at which the error
 was detected. However, if the error recovery action includes code to find
 the correct place to start processing again, that code must also change
 the look ahead token. To clear the look ahead token, include the
 statement:

 yyclearin ;

 in the error recovery action.

Programming Tools and Interfaces
Clearing the Look Ahead Token

¦ Copyright IBM Corp. 1985, 1991
17.19.2 - 1

 17.20 Lexical Analysis

 You must provide a lexical analyzer to read the input stream and send
 tokens (with values, if required) to the parser that yacc generates. The
 lexical analyzer is a function called yylex. The function must return an
 integer that represents the kind of token that was read. The integer is
 called the token number. In addition, if a value is associated with the
 token, the lexical analyzer must assign that value to the external
 variable yylval.

 To build a lexical analyzer that works well with the parser that yacc
 generates, use the lex program (see "The lex Specification File" in
 topic 17.4).

Programming Tools and Interfaces
Lexical Analysis

¦ Copyright IBM Corp. 1985, 1991
17.20 - 1

 17.21 Parser Operation

 The yacc program turns the grammar file into a C language program. That
 program, when compiled and executed, parses the input according to the
 grammar specification given.

 The parser is a finite state machine with a stack. The parser can read
 and remember the next input token (called the look ahead token). The
 current state is always the state that is on the top of the stack. The
 states of the finite state machine are represented by small integers.
 Initially, the machine is in state 0, the stack contains only 0, and no
 look ahead token has been read.

 The machine can perform one of four actions:

 shift n The parser pushes the current state onto the stack, makes n
 the current state, and clears the look ahead token.

 reduce r The letter r is a rule number. When the parser finds a string
 defined by rule number r in the input stream, the parser
 replaces that string with the rule number in the output
 stream.

 accept The parser looked at all input, matched it to the grammar
 specification, and recognized the input as satisfying the
 highest level structure (defined by the start symbol). This
 action appears only when the look ahead token is the endmarker
 and indicates that the parser has successfully done its job.

 error The parser cannot continue processing the input stream and
 still successfully match it with any rule defined in the
 grammar specification. The input tokens it looked at,
 together with the look ahead token, cannot be followed by
 anything that would result in a legal input. The parser
 reports an error and attempts to recover the situation and
 resume parsing.

 The parser performs the following actions during one process step:

 1. Based on its current state, the parser decides whether it needs a look
 ahead token to decide the action to be taken. If it needs one and
 does not have one, it calls yylex to obtain the next token.

 2. Using the current state and the look ahead token if needed, the parser
 decides on its next action and carries it out. This may result in
 states being pushed onto the stack or popped off of the stack and in
 the look ahead token being processed or left alone.

 Subtopics
 17.21.1 Shift
 17.21.2 Reduce

Programming Tools and Interfaces
Parser Operation

¦ Copyright IBM Corp. 1985, 1991
17.21 - 1

 17.21.1 Shift

 The shift action is the most common action the parser takes. Whenever the
 parser does a shift, there is always a look ahead token. For example, for
 the following grammar specification rule:

 IF shift 34

 if the parser is in the state that contains this rule and the look ahead
 token is IF, the parser:

 1. Pushes the current state down on the stack.
 2. Makes state 34 the current state (puts it on the top of the stack).
 3. Clears the look ahead token.

Programming Tools and Interfaces
Shift

¦ Copyright IBM Corp. 1985, 1991
17.21.1 - 1

 17.21.2 Reduce

 The reduce action keeps the stack from growing too large. The parser uses
 reduce actions after it has matched the right side of a rule with the
 input stream and is ready to replace the characters in the input stream
 with the left side of the rule. The parser may have to use the look ahead
 token to decide if the pattern is a complete match.

 Reduce actions are associated with individual grammar rules. Because
 grammar rules also have small integer numbers, you can easily confuse the
 meanings of the numbers in the two actions, shift and reduce. For
 example, the action:

 . reduce 18

 refers to grammar rule 18, while the action:

 IF shift 34

 refers to state 34.

 For example, to reduce the rule:

 A : x y z ;

 The parser pops off the top three states from the stack. The number of
 states popped equals the number of symbols on the right side of the rule.
 These states are the ones put on the stack while recognizing x, y, and z.
 After popping these states, a state is uncovered which is the state the
 parser was in before beginning to process the rule (the state that needed
 to recognize rule A to satisfy its rule). Using this uncovered state and
 the symbol on the left side of the rule, the parser performs an action
 called goto, which is similar to a shift of A. A new state is obtained,
 pushed onto the stack, and parsing continues.

 The goto action is different from an ordinary shift of a token. The look
 ahead token is cleared by a shift but is not affected by a goto. When the
 three states are popped, the uncovered state contains an entry such as:

 A goto 20

 causing state 20 to be pushed onto the stack and become the current state.

 The reduce action is also important in the treatment of user-supplied
 actions and values. When a rule is reduced, the parser executes the code
 that you included in the rule before adjusting the stack. In addition to
 the stack holding the states, another stack running in parallel with it
 holds the values returned from the lexical analyzer and the actions. When
 a shift takes place, the external variable yylval is copied onto the value
 stack. After executing the code that you provide, the parser performs the
 reduction. When the parser performs the goto action, it copies the
 external variable yyval onto the value stack. The yacc variables that
 begin with $ refer to the value stack.

Programming Tools and Interfaces
Reduce

¦ Copyright IBM Corp. 1985, 1991
17.21.2 - 1

 17.22 Using Ambiguous Rules

 A set of grammar rules is ambiguous if any possible input string can be
 structured in two or more different ways. For example, the grammar rule:

 expr : expr '-' expr

 states a rule that forms an arithmetic expression by putting two other
 expressions together with a minus sign between them. Unfortunately, this
 grammar rule does not specify how to structure all complex inputs. For
 example, if the input is:

 expr - expr - expr

 using that rule, a program could structure this input as either left
 associative:

 (expr - expr) - expr

 or as right associative:

 expr - (expr - expr)

 and produce different results.

 Subtopics
 17.22.1 Understanding Parser Conflicts
 17.22.2 How the Parser Responds to Conflicts

Programming Tools and Interfaces
Using Ambiguous Rules

¦ Copyright IBM Corp. 1985, 1991
17.22 - 1

 17.22.1 Understanding Parser Conflicts

 When the parser tries to handle an ambiguous rule, it can become confused
 over which of its four actions to perform when processing the input. Two
 major types of conflicts develop:

 shift/reduce conflict
 A rule can be evaluated correctly using either a shift action or
 a reduce action but the result is different.

 reduce/reduce conflict
 A rule can be evaluated correctly using one of two different
 reduce actions, producing two different actions.

 A shift/shift conflict is not possible. These conflicts result from a
 rule that is not as complete as it could be. For example, using the
 previous ambiguous rule, if the parser receives the input:

 expr - expr - expr

 after reading the first three parts the parser has:

 expr - expr

 which matches the right side of the grammar rule above. The parser can
 reduce the input by applying this rule. After applying the rule, the
 input becomes:

 expr

 which is the left side of the rule. The parser then reads the final part
 of the input:

 - expr

 and reduces it. This produces a left associative interpretation.

 However, the parser can also look ahead in the input stream. If when it
 receives the first three parts:

 expr - expr

 it reads the input stream until it has the next two parts, it then has the
 following input:

 expr - expr - expr

 Applying the rule to the rightmost three parts reduces them to expr. The
 parser then has the expression:

 expr - expr

 Reducing the expression once more produces a right associative
 interpretation.

 Therefore, at the point that the parser has read only the first three
 parts, it can take two legal actions: a shift or a reduction. If the
 parser has no rule to decide between them, this situation is called a
 shift/reduce conflict.

Programming Tools and Interfaces
Understanding Parser Conflicts

¦ Copyright IBM Corp. 1985, 1991
17.22.1 - 1

 A similar situation occurs if the parser can choose between two legal
 reduce actions. That situation is called a reduce/reduce conflict.

Programming Tools and Interfaces
Understanding Parser Conflicts

¦ Copyright IBM Corp. 1985, 1991
17.22.1 - 2

 17.22.2 How the Parser Responds to Conflicts

 When shift/reduce or reduce/reduce conflicts occur, yacc produces a parser
 by selecting one of the valid steps wherever it has a choice. If you do
 not provide a rule that makes the choice, yacc uses two rules:

 � In a shift/reduce conflict, do the shift

 � In a reduce/reduce conflict, reduce by the grammar rule that it ca
 apply at the earliest point in the input stream.

 Using actions within rules can cause conflicts if the action must be done
 before the parser can be sure which rule is being recognized. In these
 cases, using the above rules leads to an incorrect parser. For this
 reason, yacc reports the number of shift/reduce and reduce/reduce
 conflicts that it resolved using its rules.

Programming Tools and Interfaces
How the Parser Responds to Conflicts

¦ Copyright IBM Corp. 1985, 1991
17.22.2 - 1

 17.23 Turning On Debug Mode

 For normal operation, the external integer variable yydebug is set to 0.
 However, if you set it to a value that is not zero, the parser generates a
 description of:

 � The input tokens that it receive

 � The actions that it takes for each toke

 while it is parsing an input stream.

 Set this variable in one of two ways:

 � Put the C language statement

 yydebug = 1;

 in the declarations section of the yacc grammar file.

 � Use dbx to execute the final parser, and set the variable on or off
 using dbx commands. See Chapter 12, "Debugging Programs" for
 information about using dbx.

Programming Tools and Interfaces
Turning On Debug Mode

¦ Copyright IBM Corp. 1985, 1991
17.23 - 1

 17.24 Creating a Simple Calculator Program - Example

 This section describes the example programs for lex and yacc that are in
 the set of example programs. The lex and yacc programs together create a
 simple desk calculator program that performs addition, subtraction,
 multiplication and division operations. The calculator program also
 allows you to assign values to variables (each designated by a single
 lower case letter) and then use the variables in calculations.

 The files that contain the program are:

 File Content

 calc.lex The lex specification file that defines the lexical analysis
 rules.

 calc.yacc The yacc grammar file that defines the parsing rules, and
 calls the yylex function created by lex to provide input.

 To use these files, they must be in your current directory. Copy them
 from the directory /usr/lib/samples/toolbook. The remaining text expects
 that the current directory is the directory that contains the lex and yacc
 example program files.

 Subtopics
 17.24.1 Compiling the Example Program
 17.24.2 The Parser Source Code
 17.24.3 The Lexical Analyzer Source Code

Programming Tools and Interfaces
Creating a Simple Calculator Program - Example

¦ Copyright IBM Corp. 1985, 1991
17.24 - 1

 17.24.1 Compiling the Example Program

 Perform the following steps, in order, to create the example program using
 lex and yacc:

 1. Process the yacc grammar file using the -d option. The -d option
 tells yacc to create a file that defines the tokens it uses in
 addition to the C language source code:

 yacc -d calc.yacc

 2. Use the li command to verify that the following files were created:

 y.tab.c The C language source file that yacc created for the parser.

 y.tab.h A header file containing define statements for the tokens
 used by the parser.

 3. Process the lex specification file:

 lex calc.lex

 4. Use the li command to verify that the following file was created:

 lex.yy.c The C language source file that lex created for the lexical
 analyzer.

 5. Compile and link the two C language source files:

 cc y.tab.c lex.yy.c -ly -ll

 6. Use the li command to verify that the following files were created:

 y.tab.o The object file for y.tab.c.

 lex.yy.o The object file for lex.yy.c.

 a.out The executable program file.

 You can then run the program directly from a.out by entering the command:

 a.out

 or, you can move the program to a file with a more descriptive name, like
 in the following example, and then run it:

 mv a.out calculate
 calculate

 In either case after you start the program, the cursor moves to the line
 below the $ (command prompt); Then enter numbers and operators in
 calculator fashion. After you press the Enter key, the program displays
 the result of the operation. If you assign a value to a variable:

 m=4 <enter>
 _

 the cursor moves to the next line. You can then use the variable in
 calculations and it will have the value assigned to it:

Programming Tools and Interfaces
Compiling the Example Program

¦ Copyright IBM Corp. 1985, 1991
17.24.1 - 1

 m+5 <enter>
 9
 _

Programming Tools and Interfaces
Compiling the Example Program

¦ Copyright IBM Corp. 1985, 1991
17.24.1 - 2

 17.24.2 The Parser Source Code

 Figure 17-6 shows the contents of the file calc.yacc. This file has
 entries in all three of the sections of a yacc grammar file: declarations,
 rules and programs.

 --

 %{
 #include <stdio.h>
 int regs[26];
 int base;

 %}
 %start list

 %token DIGIT LETTER

 %left '|'
 %left '&'
 %left '+' '-'
 %left '*' '/' '%'
 %left UMINUS /*supplies precedence for unary minus */

 %% /* beginning of rules section */

 list: /*empty */
 |
 list stat'\n'
 |
 list error'\n'
 {
 yyerrok;
 }
 ;

 stat: expr
 {
 printf("%d\n",$1);
 }
 |
 LETTER '=' expr
 {
 regs[$1] = $3;
 }
 ;

 expr: '(' expr ')'
 {
 $$ = $2;
 }
 |
 expr '*' expr
 {
 $$ = $1 * $3;
 }
 |
 expr '/' expr
 {
 $$ = $1 / $3;

Programming Tools and Interfaces
The Parser Source Code

¦ Copyright IBM Corp. 1985, 1991
17.24.2 - 1

 }
 |
 expr '%' expr
 {
 $$ = $1 % $3;
 }
 |
 expr '+' expr
 {
 $$ = $1 + $3;
 }

 |
 expr '-' expr
 {
 $$ = $1 - $3;
 }
 |

 expr '&' expr
 {
 $$ = $1 & $3;
 }
 |
 expr '|' expr
 {
 $$ = $1 | $3;
 }
 |
 '-' expr %prec UMINUS
 {
 $$ = -$2;
 }

 |
 LETTER
 {
 $$ = regs[$1];
 }
 |
 number
 ;

 number: DIGIT
 {
 $$ = $1;
 base = ($1==0) ? 8:10;
 }

 |
 number DIGIT
 {
 $$ = base * $1 + $2;
 }
 ;

 %%
 main()
 {
 return(yyparse());

Programming Tools and Interfaces
The Parser Source Code

¦ Copyright IBM Corp. 1985, 1991
17.24.2 - 2

 }

 yyerror(s)
 char *s;
 {
 fprintf(stderr," %s\n",s);
 }

 yywrap()
 {
 return(1);
 }

 --
 Figure 17-6. yacc Grammar File for Calculator Program - calc.yacc

 Subtopics
 17.24.2.1 Declarations Section
 17.24.2.2 Rules Section
 17.24.2.3 Programs Section

Programming Tools and Interfaces
The Parser Source Code

¦ Copyright IBM Corp. 1985, 1991
17.24.2 - 3

 17.24.2.1 Declarations Section

 This section contains entries that perform the following functions:

 � Includes standard I/O header fil
 � Defines global variable
 � Defines the rule list as the place to start processing
 � Defines the tokens used by the parse
 � Defines the operators and their precedence

Programming Tools and Interfaces
Declarations Section

¦ Copyright IBM Corp. 1985, 1991
17.24.2.1 - 1

 17.24.2.2 Rules Section

 The rules section defines the rules that parse the input stream.

Programming Tools and Interfaces
Rules Section

¦ Copyright IBM Corp. 1985, 1991
17.24.2.2 - 1

 17.24.2.3 Programs Section

 The programs section contains the following routines. Because these
 routines are included in this file, you do not need to use the yacc
 library when processing this file.

 main() The required main program that calls yyparse() to start the
 program.

 yyerror(s) This error handling routine only prints a syntax error
 message.

 yywrap() The wrap-up routine that returns a value of 1 when the end
 of input occurs.

Programming Tools and Interfaces
Programs Section

¦ Copyright IBM Corp. 1985, 1991
17.24.2.3 - 1

 17.24.3 The Lexical Analyzer Source Code

 Figure 17-7 shows the contents of the file calc.lex. This file contains
 include statements for standard input and output, as well as for the file
 y.tab.h. The yacc program generates that file from the yacc grammar file
 information if you use the -d flag with the yacc command. The file
 y.tab.h contains definitions for the tokens that the parser program uses.
 In addition, calc.lex contains the rules to generate the tokens from the
 input stream.

 --

 %{

 #include <stdio.h>
 #include "y.tab.h"
 int c;
 extern int yylval;
 %}
 %%
 " " ;
 [a-z] {
 c = yytext[0];
 yylval = c - 'a';
 return(LETTER);
 }
 [0-9] {
 c = yytext[0];
 yylval = c - '0';
 return(DIGIT);
 }
 [^a-z0-9\b] {
 c = yytext[0];
 return(c);
 }

 --
 Figure 17-7. lex Specification File for Calculator Program - calc.lex

Programming Tools and Interfaces
The Lexical Analyzer Source Code

¦ Copyright IBM Corp. 1985, 1991
17.24.3 - 1

 18.0 Chapter 18. International Character Support

 Subtopics
 18.1 CONTENTS
 18.2 About This Chapter
 18.3 Introduction
 18.4 Basic Concepts and Definitions
 18.5 History of AIX Character Support
 18.6 Version 1.2.1 Modifications
 18.7 Features
 18.8 Programming Language Support
 18.9 Kernel Modifications
 18.10 Intersystem Compatibility
 18.11 Limits to Support
 18.12 Collation
 18.13 Modifications to Files and Directories
 18.14 cron and /etc/openfiles
 18.15 Multibyte Character Set Support
 18.16 Programming for an MBCS Environment
 18.17 How to Write Codeset-Independent Programs
 18.18 Message Catalog Generation
 18.19 Use of Regular Expressions with International Characters
 18.20 Using The C Language MBCS Interface
 18.21 Getting Wide Characters (wchar_t's)
 18.22 Processing Wide Characters

Programming Tools and Interfaces
Chapter 18. International Character Support

¦ Copyright IBM Corp. 1985, 1991
18.0 - 1

 18.1 CONTENTS

Programming Tools and Interfaces
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
18.1 - 1

 18.2 About This Chapter
 This chapter includes a discussion of international character support,
 which pervasively affects character and string handling to support the
 character sets and strings of a number of languages. Accordingly,
 international character support is described in terms of all the affected
 areas, to let you establish and revise environments for character, string,
 and time and date handling. International character support is provided
 primarily through subroutines, but the kernel, commands and other
 utilities are also affected.

Programming Tools and Interfaces
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
18.2 - 1

 18.3 Introduction

 The AIX operating system and the programming languages used with it are
 based on English language characters and on symbols common to the United
 States of America. Nevertheless, facilities to handle other languages are
 also provided. This includes character sets and string-handling functions
 to cover Japanese and many European languages, plus functions to
 manupulate date, time, and currency formats.

 Conversion subroutines are offered to translate between the various
 character sets and between date and time formats. For the most part, the
 programmer does not need to be concerned with the details of these
 manipulations. The programmer merely needs to know which subroutines to
 call.

 Environment variables are used to control the date, time, and currency
 formats used by each process. Each of these values has a default, and
 formats may be selected individually or in logical groups. The LANG
 variable, for instance, sets all place- and culture-related variables to
 the standard formats normally used by the speakers of a particular
 language. Pointers to tables select collation sequences and the relative
 values given to characters when they are compared. Conversion subroutines
 permit passing information to and from other systems which use extended
 character sets other than those supported by AIX. Other conversion
 facilities support passing text to attached terminals or remote systems
 which do not offer extended characters.

Programming Tools and Interfaces
Introduction

¦ Copyright IBM Corp. 1985, 1991
18.3 - 1

 18.4 Basic Concepts and Definitions

 ASCII vs. extended characters
 The foundation of most IBM character sets is the 7-bit ASCII character
 set. These are 128 logical symbols offering digits, punctuation
 marks, English language letters and a set of non-printing control
 characters. These characters are always represented by bit values
 from 0 to 127 (decimal). Any character with a bit value beyond 127 is
 considered an extended character. The PC-DOS and OS/2 operating
 systems use these extended characters for mathematical and scientific
 symbols, plus a group of block-based drawing characters.

 pc850 and pc932
 AIX offers international character support in the form of two extended
 character sets called pc850 and pc932. pc850 offers the ASCII
 characters plus a full set of extended Roman-based characters with
 diacritical and accent marks. These satisfy the needs of European
 languages. All pc850 characters are stored as one byte.

 pc932 offers the ASCII characters plus a large complement of extended
 characters used to write Japanese. pc932 includes Hiragana, Katakana,
 Kanji, and double-wide Roman-based characters. This character set
 contains both single-byte and double-byte characters.

 Multibyte characters and their data types
 AIX character sets are based on multibyte characters. This means that
 a character may be encoded in any number of bytes. All characters
 currently used by AIX are stored in files as one or two bytes, but the
 system uses a four-byte format for fast, accurate collation and
 comparison of the elements of very large character sets. The same
 character is often stored in files in a one- or two-byte format (data
 type mbchar_t) and manipulated internally by programs in a four-byte
 format (data type wchar_t).

 Code Page
 Characters are grouped together in arrays called Code Pages. A Code
 Page which fills the needs of English and other European languages can
 be defined as 256 unique characters, each of which is represented by a
 single byte of data. AIX, DOS, and OS/2 all offer such single-byte
 Code Pages. pc850 is the Code Page used by AIX for English and other
 Roman-based European languages. Full details may be found in the AIX
 PS/2 Keyboard Description and Character Reference.

 The Japanese language is written with many more symbols than can be
 represented by a single byte, so AIX extends the normal definition of
 Code Page to cover pc932, an array of over three thousand separate
 symbols. In this larger sense, a Code Page is an array of any number
 of code points used to represent a given character set.

 Code Point
 A code point is a conceptual character, it is a bit pattern which
 corresponds to one single character in a Code Page array. This binary
 value may correspond to one character in Code Page A and another
 character in Code Page B. Code points encode both ASCII characters
 and extended characters.

 Each code point in a Code Page represents a single unique character.
 The same letter may be represented by several code points in the same
 Code Page (a and A, for instance), but these are considered different
 characters.

Programming Tools and Interfaces
Basic Concepts and Definitions

¦ Copyright IBM Corp. 1985, 1991
18.4 - 1

 Characters oriented vs code point oriented
 Most programs and operating systems are character oriented. They make
 the assumption that a character is always encoded by a certain number
 of bits and they will not properly handle characters larger or smaller
 than that value. AIX Version 1.2.1 is code point oriented rather than
 character oriented. AIX processes characters as logical entities
 which may be expressed in any number of bits needed by the language in
 use.

 Collation concepts
 Code points within a Code Page may be divided into ranges. The code
 points within a range may be ordered by a collating sequence. This
 sets up a lexigraphical ("dictionary" or "alphabetical") order for
 that range. Equivalence classes may also be established. This means
 that certain characters may be considered equal for the purpose of
 comparison, even though they are expressed by different bit values.
 An equivalence class is based on the natural grouping of characters
 for a language or dialect. In English, for instance, a is considered
 equal to A for the purpose of a dictionary sort. The two are
 considered unequal for the purpose of an ASCII sort.

 Locale
 Each national language group uses its own coordinated set of formats
 for certain kinds of data. These include the character set used to
 write the national language, plus distinct formats for the expression
 of times, dates, numbers, and currency. The set of patterns chosen by
 each nation is different from the formats used by other language
 groups.

 The format a process uses is indicated by environment variables. Each
 AIX process is said to run in a specific locale, which is the subset
 of environment variables that establishes these place- and
 culture-dependent formats.

Programming Tools and Interfaces
Basic Concepts and Definitions

¦ Copyright IBM Corp. 1985, 1991
18.4 - 2

 18.5 History of AIX Character Support

 AIX Version 1.0 supported only ASCII characters. Character processing was
 exclusively single-byte and was character-oriented rather than code-point
 oriented.

 AIX Version 1.2 introduced National Language Support (NLS) which supported
 European languages only. Character processing was still single-byte, but
 a larger array of characters was available via a Code Page switching
 system. A number of data types, subroutines, and environment variables
 were introduced for use with extended Roman-based characters. All were
 prefixed with NC or NL. These have been preserved for the sake of
 backward compatibility.

 AIX Version 1.2.1 offers Multibyte Character Support (MBCS) to cover both
 European-based languages and Japanese. Data types mbchar_t and wchar_t
 were introduced to accommodate characters that may be encoded in a variety
 of sizes and bit patterns, according to the needs of the language. New
 environment variables were introduced. A large number of the standard
 string processing routines were modified to process characters as logical
 entities, irrespective of the number of bytes being used to encode each
 character.

 Note: Programs written under the NLS system will still run under Version
 1.2.1, but the NLS system should not be used when writing new programs.
 Most of the NL and NC entities are now front ends for equivalent MBCS
 routines. These have been preserved for the sake of backward
 compatibility only. Calling them in a new program would be inefficient,
 when the corresponding MBCS entity can be called directly.

Programming Tools and Interfaces
History of AIX Character Support

¦ Copyright IBM Corp. 1985, 1991
18.5 - 1

 18.6 Version 1.2.1 Modifications

 The system uses file code for storage and transmission of characters.
 wide code (or process code) is used for processing characters within any
 program that will do more than the simplest character manipulation. The
 mbchar_t data type is used for characters in file code format. The
 wchar_t data type is used to express wide characters. AIX Version 1.2.1
 offers subroutines to convert back and forth between the two.

 The ctype macros classify characters by type and the conv macros convert
 from one type to another. (See the AIX Technical Reference for details.)
 All of these macros have been modified to accommodate multibyte
 characters.

 Macros and subroutines throughout the system have been modified to operate
 on the wchar_t character type in ways that are analogous to the processing
 of the more familiar char character type. These modified macros and
 subroutines are named as their counterparts, with the addition of the
 prefixes mb and wc. mb indicates a routine that processes character
 strings which might possibly contain multibyte characters. wc indicates a
 routine that operates on the wchar_t, (wide character) format.

 Additional macros and subroutines translate between the wchar_t and
 mbchar_t character types. mbtowc converts the file code formats, chars,
 or mbchar_ts, to the internal processing format, wchar_t. wctomb converts
 wide characters back to the file code formats.

 Dynamically configurable tables are loaded into memory at runtime to
 support the wchar_t data type. One table maps each wchar_t to its
 corresponding mbchar_t; another assigns collation weights to each wchar_t.

 AIX uses system routines to translate times, dates, and currency values
 into formats appropriate to the nationality selected. The formats
 produced are controlled by environment files, which contain strings of
 tokens used to modify the operation of these system routines. These
 environment files are found in /usr/lib/mbcs/file.en and there is one for
 each national language supported by the system. Which of these
 environment files will be used is dictated by the LANG environment
 variable.

 In most cases, the speakers of a given language will always select a
 coordinated set of formats for their characters, dates, times, and money.
 LANG selects these formats as a logical unit. In the rare instance that a
 user wants to run a process with some non-standard mixture of formats,
 other environment variables allow culturally defined formats to be set
 individually. For further information, see environment in the AIX
 Operating System Technical Reference.

 AIX offers configurable collation. Character collation is controlled by
 the dynamically configurable collation tables described above. A number
 of these are shipped with the system. Each table establishes an
 alphabetical sorting order for a particular character set. It may also
 establish character cases and set up equivalence classes. You may alter
 any of theses for the needs of the dialect used by a particular group,
 site, or individual. Customized tables are compiled with the ctab program
 and selected with environment variables. For further information, see
 ctab in the AIX Operating System Commands Reference.

Programming Tools and Interfaces
Version 1.2.1 Modifications

¦ Copyright IBM Corp. 1985, 1991
18.6 - 1

 18.7 Features

 AIX subroutines offer the following features for international character
 support:

 � Character conversion and collation using code points

 � Regular expression support for non-ASCII character. A code point i
 always treated as a single character, even though it may be expressed
 as more than one byte. Metacharacters retain their traditional
 interpretation, but now refer to code points rather than particular
 glyphs.

 � Revision of character sets, collating sequence, and equivalence clas
 from an application. A new collating table input file can be selected
 with the setlocale routine.

 � Extension of all user-visible names by code points. Users may emplo
 extended characters in file names, including the names of devices,
 directories, and file systems.

 � European language support for ASCII terminals. Such terminals do no
 ordinarily offer extended character support, but AIX supports input
 and output of code points rather than specific characters. (See
 "Terminal Maps" in topic 18.9.3.)

 � Conversion of ASCII text to and from European extended characters
 The essential characteristics of a file containing pc850 extended
 characters is preserved.

 � Support for dialectic date and time formats. All AIX utilities ca
 output time and date information in the configuration selected. The
 at utility accepts input dates in the currently configured format.

 � Time zone support. The system can automatically begin and en
 daylight savings time as specified, using the TZ environment variable.
 See the discussion of environment (Miscellaneous Facilities) in the
 AIX Operating System Technical Reference.

 � Currency and number format support. Selection and placement of th
 monetary symbol, the thousands divider, and the decimal position
 character can be varied. (For example, the default for U.S. currency
 is: $9,999.99).

 � Conversion between code points and characters. Two subroutines
 mbtowc and wctomb, convert from the char data type to the wchar_t and
 back again.

 � Conversion of character strings. Two subroutines, mbstowcs and
 wcstombs, convert strings of extended characters to wide character
 strings, or strings of wide characters to extended character strings,
 respectively.

 � Facilities for retrieving the current collation values of code points
 This information is obtained from the arrays created by ctab from a
 collation table. The wc_collate and wcscoll subroutines access
 collation information. wc_eqvmap determines equivalence classes.

 � Facilities for retrieving information on code points. mblen
 determines the number of bytes comprising a character.

Programming Tools and Interfaces
Features

¦ Copyright IBM Corp. 1985, 1991
18.7 - 1

 � String manipulation support. The basic string manipulatio
 subroutines of AIX have been enhanced to handle strings of extended
 characters. The wcstring and mbstring classes are provided to handle
 extended characters in ways that parallel the handlings given to
 singlebyte characters by the string routines.

 � Code point extensions to I/O and in-memory format conversio
 subroutines. The standard conversion subroutines of the general
 printf, scanf, sprintf, and sscanf types have been modified to handle
 extended characters and strings, both in memory and during I/O.

 � Conversion between the time formats used internally and those use
 during input and output. Three subroutines (NLtmtime, NLstrtime, and
 strftime) convert between a binary representation of time and a text
 string representation, formatted according to conventions which the
 user may specify.

 � Automatic initialization of international character support at AI
 initialization. The setlocale() function is used to initialize the
 user's locale-dependent variables and formats. They are usually set
 as a coordinated battery (the date, time, character, and currency
 expressions used in Switzerland, for instance) according to the
 dictates of the LANG environment variable. For unusual needs,
 setlocale() can also modify the locale settings to any non-standard
 mixture desired.

Programming Tools and Interfaces
Features

¦ Copyright IBM Corp. 1985, 1991
18.7 - 2

 18.8 Programming Language Support

 AIX does not currently provide direct international character support
 features for the VS FORTRAN, VS COBOL, or VS Pascal languages. Programs
 can be written in these languages for purely numerical functions, but none
 of these languages can process characters of more than one byte directly.
 Each of these languages is oriented strictly toward singlebyte characters
 and must not be given multibyte characters to process.

 The C library routines, however, offer full support for handling multibyte
 characters, and AIX allows Version 1.1 of all three of these languages to
 link with the C libraries. Thus FORTRAN, COBOL, and Pascal programs can
 gain indirect multibyte character support through the C library routines.

 Any such program must first call setlocale(). It must do all character
 processing through the C language library routines. The source code given
 to these compilers must contain no multibyte characters, and the compilers
 must not be given filenames or pathnames which contain multibyte
 characters.

 Warning: It is easiest and safest to adhere to the following rule of
 thumb: Any function that will process characters or accept character
 input in an environment where users may employ multibyte characters should
 probably be coded in the C language. VS Pascal, VS COBOL, or VS FORTRAN
 should not be used for this purpose unless they link to the C libraries
 and do all character processing through those facilities.

Programming Tools and Interfaces
Programming Language Support

¦ Copyright IBM Corp. 1985, 1991
18.8 - 1

 18.9 Kernel Modifications

 The AIX kernel has been modified in three major ways: to handle code
 points, to handle multibyte file names, and to provide terminal map
 support.

 Subtopics
 18.9.1 Code Point Support
 18.9.2 Multibyte Character File Names
 18.9.3 Terminal Maps

Programming Tools and Interfaces
Kernel Modifications

¦ Copyright IBM Corp. 1985, 1991
18.9 - 1

 18.9.1 Code Point Support

 The kernel treats characters as logical entities rather than as specific
 glyphs. A code point is not assumed to occupy any specific number of
 bytes.

 Tables of mapped characters are provided in the AIX PS/2 Keyboard
 Description and Character Reference. The ordinal ranges of the pc850
 characters can be seen in the "display symbols" listing in the AIX
 Operating System Technical Reference. The two references cited above
 cover only pc850, which provides characters for Roman-based European
 languages. Similar data for the pc932 Japanese characters is made
 available with the Japanese AIX system.

 A code point is removed from input with a single backspace character when
 ICANON is set. (See termio in the AIX Operating System Technical
 Reference.) This causes a code point to be handled like a character, even
 if it occupies more than a single byte of storage. Otherwise a single
 backspace would remove only the last byte of a multibyte character.
 ICANON is set by default.

Programming Tools and Interfaces
Code Point Support

¦ Copyright IBM Corp. 1985, 1991
18.9.1 - 1

 18.9.2 Multibyte Character File Names

 AIX Version 1.2.1 allows file names to be expressed in multibyte extended
 characters. This includes the names of directories and file systems.

 This provision cannot be indiscriminately used, however. Certain files,
 file systems and directories are always known by their traditional ASCII
 names (/etc and /bin, for instance). Renaming these would wreak havoc
 with system programs.

 Multibyte character names should generally be used for user files and user
 directories only. Any use of multibyte names or entries in system-related
 files must be avoided.

 Other restrictions to the use of extended characters also apply. See
 "Limits to Support" and "ASCII vs. Multibyte Character Entries" below.

Programming Tools and Interfaces
Multibyte Character File Names

¦ Copyright IBM Corp. 1985, 1991
18.9.2 - 1

 18.9.3 Terminal Maps

 AIX provides European language support for a variety of ASCII terminals.
 This is accomplished through terminal maps.

 European extended characters are usually ASCII letters with accent marks
 added. These may be entered at the terminal keyboard as multiple key
 sequences and sent to the host as a sequence of bytes. They are
 translated to code points when read by the AIX host. The host may then
 output a code point, and this is mapped to the sequence of bytes needed by
 the terminal to form that character on the screen. That sequence of bytes
 is sent back to the terminal. A variety of terminals are supported in
 this manner.

 AIX supplies terminal maps for many common terminal types and users may
 create their own. The map provides a list of correspondences between the
 input sequence which is to be received from the terminal and the code
 point to which it is mapped. It also records the byte sequence which must
 be sent to that terminal to produce or display the desired characters.

 Many terminals have a hardware capacity to generate, display or emulate
 European international characters but do not use these features without
 special provisions. AIX provides additional maps to support these
 otherwise untapped capabilities.

 The usual way to set terminal type is with the TERM environment variable.
 This does not always support the full range of international character
 support features offered by the terminal. Instead, you can set terminal
 map values from /etc/ports. The two port control parameters used for
 international character support are imap, which sets the file to be used
 as the terminal's input map and omap, which indicates the output map. The
 getty process reads these keywords in /etc/ports and loads the indicated
 terminal maps into memory at the time it initializes the port.

 For hardwired ports, the same terminal will always be attached to the same
 port, usually employed by the same user, or at least by a user with
 similar language requirements. Therefore the methods above, which always
 configure the port to support a particular language, are appropriate.

 Undedicated ports are always initialized with the default settings, which
 expect to receive the login and password information in ASCII characters
 only. Users who log in to undedicated ports (as they do over a modem or
 an ethernet connection) must start their sessions in ASCII. They are then
 free to enhance the terminal connection by specifying a set of terminal
 maps to support their own language.

 After a session has begun, the user can change the terminal map by using
 the stty command. (See stty in the AIX Operating System Technical
 Reference for full details.)

 One place to put such commands is in the user's .login, so that the
 terminal is automatically enhanced for international character support
 whenever that user logs in.

Programming Tools and Interfaces
Terminal Maps

¦ Copyright IBM Corp. 1985, 1991
18.9.3 - 1

 18.10 Intersystem Compatibility

 AIX retains compatibility with environments that do not support
 international characters. This means AIX can support work stations that
 do not offer extended characters. Intersystem mail and networking is
 possible with such systems, and programs may be developed for them on the
 AIX platform. The same mechanisms that provide translation between
 environments with and without international character support will also
 permit interactions between systems that offer different international
 character support environments.

 For the sake of maintaining intersystem compatibility with operating
 systems that do not support international characters, certain items are
 always expressed in the ASCII characters which are a subset of every AIX
 character set. In general, these are items that may be sent to other
 systems (like login names and passwords) and system files that may be read
 by other systems (like the stanzas in system attribute files). For
 details see "Intersystems Compatibility" in Managing the AIX Operating
 System.

 Subtopics
 18.10.1 Communications with Remote Systems

Programming Tools and Interfaces
Intersystem Compatibility

¦ Copyright IBM Corp. 1985, 1991
18.10 - 1

 18.10.1 Communications with Remote Systems

 AIX can communicate with other systems via the standard mail program
 and/or via communications protocols such as uucp. Communication packages
 offered with AIX have been modified to support multibyte characters. That
 same support may or may not be present at the receiving end. The
 implementations of the same communications packages from other vendors are
 sometimes limited. The next two sections deal with these issues.

 Site names must always conform to the specifications of the communication
 protocol being used. Since the implementations of uucp and other
 protocols in use by other systems can often handle only ASCII characters,
 all sitenames must be expressed in ASCII. Some protocols read only a
 subset of ASCII.

 Files may be received from remote systems or transmitted to such systems
 in file codes other than those used by AIX. AIX uses pc932 to encode
 Japanese text, but some other systems use a format called U-JIS.
 Likewise, AIX uses pc850 to encode European language text, while some
 other systems use a format called ISO Latin-1.

 AIX provides a translation utility, iconv, to translate one file code into
 another. Its primary use is to allow speakers of the same language to
 translate files in that language from one encoding format into another. A
 Japanese AIX user might compose a message in pc932 Japanese characters and
 then use iconv to transform it into the U-J1S format needed by another
 Japanese user on a remote system.

 It is possible to send messages in extended characters to users on other
 AIX systems, even if the intervening layers of software read only ASCII
 characters. The AIX implementation of uucp, for instance, passes
 characters from one system to another without altering them. It is
 "eight-bit transparent." (See "Interoperability with Other Systems" in
 Chapter 1 of Managing the AIX Operating System.) The command structure
 given to uucp itself, however, must be in ASCII characters.

 Discussions of the procedures needed by uucp and mail are presented below.
 Use these to illustrate the scope of the support you may be expected to
 provide for communication between systems.

 Subtopics
 18.10.1.1 uucp between Systems
 18.10.1.2 Mail

Programming Tools and Interfaces
Communications with Remote Systems

¦ Copyright IBM Corp. 1985, 1991
18.10.1 - 1

 18.10.1.1 uucp between Systems

 The Basic Networking Utilities (BNU) is IBM's implementation of the widely
 used uucp package. These commands (cu and uucp) provide a transparent
 data path. cu provides a data stream for terminal login that will pass
 multibyte characters accurately. uucp will transfer files without
 distortion to multibyte character contents. For the message to be
 readable, however, both the sending and the receiving systems must support
 the same file codes and both sender and receiver must be using the same
 file code.

 The path name and machine name usages, however, are not fully transparent.
 The name of the host being logged onto or to which the files are being
 sent must be in ASCII characters only. This is true even if the machine
 to which the file is being sent is an AIX system which handles multibyte
 characters. In fact, sitenames in a cluster must always be expressed in
 ASCII.

 AIX allows pathnames to contain multibyte characters, but this should be
 done with care when using uucp. uucp composes a work file which contains
 the path names of the source and destination files, the user's login name,
 the name of the data file in the spool directory, and the user ID to
 notify on the remote system. The AIX uucp software will pass a multibyte
 character pathname properly. The receiving machine will certainly be able
 to handle that name if it is part of the same cluster as the sending
 machine. This is because all machines in a cluster must be running the
 same version of the operating system, and therefore the implementation of
 uucp which receives the file will be multibyte capable.

 When that work file is read by a non-AIX destination system, or by other
 systems through which the message may pass, the results may vary. A
 remote machine running some other operating system or some other version
 of AIX may be unable to interpret the pathname passed to it. Therefore it
 is recommended that uucp operations be conducted from a directory with a
 pathname expressed in ASCII characters only. Any pathnames and filenames
 that will be declared in the work files should be expressed the same way.

 In addition, not all vendors' implementations of uucp are 8-bit
 transparent. Multibyte character messages sent to remote systems using a
 form of uucp which employs the eighth bit for any purpose other than
 character data will scramble file contents.

Programming Tools and Interfaces
uucp between Systems

¦ Copyright IBM Corp. 1985, 1991
18.10.1.1 - 1

 18.10.1.2 Mail

 The standard mail program provided with AIX has been modified. It will
 handle multibyte characters both as message text and as names of files.

 This means that the text of mail messages sent to users on the same
 cluster may contain Japanese characters. Incoming Japanese text sent by
 other users will also be properly handled. The user may write incoming
 messages to files with Japanese names or include such files in the
 outgoing mail message.

 As with all other AIX commands, the standard methodology for use is to
 invoke the mail program by its ASCII name. It is also standard to provide
 mail with its flags and subcommands in single-letter ASCII format.

 Japanese text entered into a mail message will be received reliably by
 another user, provided:

 � The recipient is running in a Japanese local
 � The recipient has chosen the same file cod
 � The recipient is part of the same AIX cluster

 Notice that this applies to in-cluster mail only. The transfer is not
 guaranteed to work reliably between AIX and all other UNIX systems.

 Most varieties of UNIX mail programs limit messages to seven-bit ASCII.
 The remote transfer protocols only allow a 7-bit data path. These systems
 assume that the eighth bit is zero; some even zero out the high-order bit.
 Such programs will receive Japanese text but be unable to interpret or
 display it properly. The characters may even be destroyed in the process.

 As a general rule, then, Japanese users should feel free to create mail
 messages in Japanese characters for local users only. mail to users on
 remote systems should contain only ASCII text.

 An alternative for mail to remote users is the following system:

 � Each user creates a /mail subdirectory in his own HOME directory and
 gives it full "public" permissions. This way his HOME directory and
 all others can be secured with the standard AIX permissions. All
 incoming messages will be deposited in this special directory.

 � The sender creates a Japanese text message with an editor. Thi
 message should be given an ASCII-character name.

 � The sender uses either uucp or FTP to place the message in the
 recipient's /mail directory. If FTP is used, the "binary file" option
 should be employed.

 � The sender notifies the recipient that the message has been sent vi
 the standard mail program. A mail message is sent which simply gives
 the name of the text file that was transferred.

 � The recipient retrieves the named file from his /mail subdirectory.

Programming Tools and Interfaces
Mail

¦ Copyright IBM Corp. 1985, 1991
18.10.1.2 - 1

 18.11 Limits to Support

 Some subroutines do not handle wchar_t data type; these include essential
 routines that use the system, control it, or pass characters to or from
 it. Many of the standard AIX subroutines remain unchanged; strings passed
 to them must be explicitly converted to an appropriate format with the
 international character support macros.

 File and directory names have a limit of 255 bytes. Code points can be
 represented by more than one byte of storage, however. Therefore a
 filename which includes multibyte characters will reach its size limit at
 some number of characters less than 255. In a case where all the
 characters used happened to be encoded in two bytes each, the maximum
 would be 128 characters.

 Subtopics
 18.11.1 ASCII vs. Multibyte Character Entries

Programming Tools and Interfaces
Limits to Support

¦ Copyright IBM Corp. 1985, 1991
18.11 - 1

 18.11.1 ASCII vs. Multibyte Character Entries

 In general, AIX Version 1.2.1 permits almost any interaction which could
 be handled in ASCII characters to be performed in multibyte characters.
 There are significant exceptions to this rule, however, and these are
 noted below.

 Items which CAN be expressed in multibyte characters are:

 � File name
 � The contents of text file
 � Path name
 � Aliases for shell scripts and command names (C Shell users only
 � Names linked to command or script
 � Names of new programs specially created for AIX Version 1.2.
 � Comments and literal strings in a C progra

 Items which CANNOT be entered in multibyte characters are:

 � Sitenames (the names of cluster hosts
 � Names of remote machine
 � User login name
 � User password
 � Group name
 � Names of environmental variable
 � Pathname delimiter
 � Command names
 � Command flags
 � The contents (stanzas) of system attribute files
 � The coding in a C program (or any other programming language
 � Telephone numbers and dialer string

 All of the above must be entered in ASCII characters only. The items with
 asterisks have exceptions, but require considerable care and expertise to
 accomplish. The safest course is to express these items in ASCII.

Programming Tools and Interfaces
ASCII vs. Multibyte Character Entries

¦ Copyright IBM Corp. 1985, 1991
18.11.1 - 1

 18.12 Collation

 You can use the ctab command to create a new table file which defines the
 collating sequence and the case conversion of a particular character set.
 The input and output files are stored in the conventional /usr/lib/mbcs
 directory. Files to support a variety of user environments are supplied
 with the system, and you can create customized versions for dialects or
 other special purposes. File names generally reflect their purpose. For
 example, the files containing the characters, symbols and lexographical
 collating sequence for Britain have uk in their names. Those for the U.S.
 have us.

 ctab allows you to use an existing language table file without change,
 modify an existing file, or create a new one. At system initialization,
 the setlocale subroutine gets an output file and loads it into memory.
 setlocale can also be called from within a program to select a different
 table file for the use of that program. nllanginfo can be used in the
 same way to return various information about the current locale settings.

 For each character in a collating sequence (each wchar_t) the table input
 file provides the following information:

 � For characters that have case, the corresponding upper- or lowercas
 version of a given character.

 � The collating sequence

 � The characters in each equivalence class. This is used for regula
 expression processing.

 A discussion of setting up collation tables is also contained in "Overview
 of International Character Support" in Managing the Operating System. See
 ctab in the AIX Operating System Commands Reference for information on
 setting ctype attributes. See regexp in the AIX Operating System
 Technical Reference for detailed information on regular expression
 programming.

Programming Tools and Interfaces
Collation

¦ Copyright IBM Corp. 1985, 1991
18.12 - 1

 18.13 Modifications to Files and Directories

 Some files have been modified and others added to provide international
 character support. New directories contain groups of files for
 international character support.

 /usr/lib/mbcs/*
 Contains character collation tables. Input tables are of the form
 ctable.ctab, and output tables are binary arrays of the form ctable.
 If no collation table is set by environment variables, no language
 tables are used. The values for the C locale are used:

 8-bit ASCII is recognized; collation is by actual ASCII character
 value; date, time, and currency formats are set to the traditional
 UNIX defaults.

 /etc/environment
 A shell script which provides system-wide environment variables that
 seldom change (like the timezone).

 /etc/profile
 A shell script which provides environment variables suitable for most
 of the users of a system. Individuals may modify these settings
 automatically in their own .profile files.

 /$HOME/.profile
 Provides user-specific variables.

 /usr/include
 Holds header files that provide international character support:

 1. /usr/include/mbcs.h - provides types and prototypes for mb and wc
 functions.

 2. /usr/include/NLregexp.h - provides regular expression support for
 extended character sets.

 3. /usr/include/ctype.h - provides support of character type
 conversion.

 4. /usr/include/NLchar.h - provides support for the NLchar character
 type.

 /usr/include/sys
 Some header files in this directory have been modified to provide
 support for terminal mapping.

 1. termio.h

 2. ttmap.h

 3. tty.h

 /usr/nls/termmap/*
 Contains terminal maps.

 Subtopics
 18.13.1 Obtaining Character Information

Programming Tools and Interfaces
Modifications to Files and Directories

¦ Copyright IBM Corp. 1985, 1991
18.13 - 1

 18.13.1 Obtaining Character Information

 The system uses file code formats which represent code points in a
 variable number of bytes. The pc850 characters are all a single byte in
 length, but the pc932 characters may be stored as one- or two-byte
 entities, according to which character is being represented. Any
 application which manipulates characters in file code format needs to know
 the length of each character in order to handle them properly. Some
 functions also need to know the display width. Several macros return
 information about the length of characters expressed in file code:

 mblen
 Returns the length in bytes (1 or 2) of the character pointed to by a
 pointer of the type mbchar_t. If the character indicated is not a
 valid code point, the function returns -1.

 wctomb
 This routine converts wide characters to multibyte characters. As an
 ancillary function, it also returns the number of bytes of the
 character generated.

 mbdwidth
 Returns the display width of a file code character.

 NCisxxxx
 A collection of routines which return the type of the character
 pointed to (Is this character alphabetic? Is it numeric? Is it
 lowercase? etc.).

 Similar facilities are usually available for strings of file code
 characters. Applications which manipulate wide character data need no
 such facilities because wchar_t is always a uniform four bytes.

 For details, see "The C Library" in Chapter 7 of this book.

Programming Tools and Interfaces
Obtaining Character Information

¦ Copyright IBM Corp. 1985, 1991
18.13.1 - 1

 18.14 cron and /etc/openfiles

 Certain system files are used so frequently that it would be a large drain
 on system resources to open and close them repeatedly. One of the lesser
 known functions of the cron program is to enhance system performance by
 keeping these files constantly open. The inode remains always in memory.

 In previous versions of AIX, cron worked from an internal list. Version
 1.2.1 uses message catalogs and other language-related files so frequently
 that these need to be added to the list of files held open. In addition,
 it is desirable to allow the system administrator to customize this
 important aspect of system operation.

 For these and other performance-related reasons, cron now consults an
 editable text file called /etc/openfiles, for the list of files to hold
 open. /etc/openfiles is supplied with the system, but the system
 administrator may alter it to suit the needs of the installation.

 The first ten files listed in /etc/openfiles were previously opened by
 cron from its internal list:

 /bin
 /lib
 /usr
 /usr/bin
 /usr/lib
 /etc
 /tmp
 /usr/adm
 /
 /local

 These heavily used system directories should never be removed from the
 list. The three system files which follow should be treated the same way:

 /etc/passwd
 /etc/group
 /usr/lib/terminfo

 Below these entries appear a number of lines which begin with comment
 symbols. Each names a file which should be held open if a certain program
 or package is run on that site. These entries should be uncommented
 according to the needs of the site being configured.

 #
 # Uncomment the next line if TCF is installed
 #/etc/site

 # Uncomment the next line if TCP/IP is installed
 #/etc/hosts

 # Uncomment the next line if the nameserver is used
 #/etc/resolv.conf

 Each site will support at least one language. This requires the use of at
 least one coordinated set of message catalogs. The message catalogs
 listed in the delivered version of /etc/openfiles are those for the
 default language, U.S. English. If you are configuring the site to use
 another locale, change the "En.pc850" to the appropriate directory name.

Programming Tools and Interfaces
cron and /etc/openfiles

¦ Copyright IBM Corp. 1985, 1991
18.14 - 1

 /usr/lib/mbcs
 /usr/lib/mbcs/msg
 /usr/lib/mbcs/msg/En.pc850
 /usr/lib/mbcs/msg/En.pc850/system.cat
 /usr/lib/mbcs/msg/En.pc850/sh.cat
 /usr/lib/mbcs/msg/En.pc850/bas2.cat
 /usr/lib/mbcs/msg/En.pc850/lib.cat
 /usr/lib/mbcs/msg/En.pc850/ext.cat

 For locales other than U.S. English, four other language-related files
 should be added: an environment file, a character table, a collation
 table, and a conversion table. Every program that deals with text will
 need to open and close these four.

 The entries shown below are presented as examples only. They would be
 correct for the French language as used in the Swiss locale.

 # If using a locale other than U.S. English,
 # replace the next line with
 # the pathname of your environment file.
 #/usr/lib/mbcs/Fr_SW.pc850.en

 # If using a locale other than U.S. English,
 # replace the next line with
 # the pathname of your character table file.
 #/usr/lib/mbcs/Fr_FR.pc850

 # If using a locale other than U.S. English,
 # replace the next line with
 # the pathname of your conversion table file.
 #/usr/lib/mbcs/pc850.cct

 # If using a locale other than U.S. English,
 # replace the next line with
 # the pathname of your collation table file.
 #/usr/lib/mbcs/Fr_FR.pc850

 Other candidates for inclusion would be any software development tools
 that are heavily used by the programmers on the site. The file which
 describes the most heavily used terminal at your installation is one more
 entry to consider. The descriptor file for the VT100, for instance, is
 /usr/lib/terminfo/v/vt100.

 One way to determine the most frequently used files on a site is with the
 crash program. The netlog subcommand produces a display log of recent net
 messages:

 netlog 200 >logfile

 This subcommand will yield a record of the last 200 net messages. Look
 for open requests in the listing (grep for "open"). The results are your
 candidates.

 In the rare instance that users on site or cluster function in several
 locales, the system administrator may wish to include several sets of
 language-related files in the list. The language files for the principal
 non-English language of the site should always be included. Whether those
 for a secondary non-English language should be included will depend upon
 how heavily that language is used and upon how many other files are being
 held open.

Programming Tools and Interfaces
cron and /etc/openfiles

¦ Copyright IBM Corp. 1985, 1991
18.14 - 2

 Subtopics
 18.14.1 Performance Tuning with cron and /etc/openfiles

Programming Tools and Interfaces
cron and /etc/openfiles

¦ Copyright IBM Corp. 1985, 1991
18.14 - 3

 18.14.1 Performance Tuning with cron and /etc/openfiles

 The number of files held open should not be indiscriminately increased.
 The maximum permitted is 48, but there will come a point where holding
 files open ceases to help performance and starts to hinder. Like any
 performance tuning, the best results are obtained by careful testing.

 Once you have chosen the files for cron to maintain, any extraneous
 comment lines should be removed from /etc/openfiles. cron rereads this
 file periodically; rereading unnecessary comment lines would be wasteful.
 If you feel that /etc/openfiles will need to be modified in the future and
 the comment lines would be helpful, make a backup copy before erasing
 these lines.

 To provide for files which are removed or recreated, cron closes all the
 open files at regular intervals. Then it rereads /etc/openfiles and
 reopens files based on the contents of /etc/openfiles, which may have
 changed since the time of cron's last reading. The default for this cycle
 is 20 minutes, but you may arrange to have it done more or less frequently
 by running cron with the -f option.

 cron -f 10

 This command runs cron with a reread interval of 10 minutes. It would
 normally be placed in /etc/rc. This reread interval is another factor
 that can be adjusted for system tuning. The best interval is determined
 by trial.

 Any changes you make to /etc/openfiles will not take effect until the next
 time cron reads the file. If you have set this interval to some long
 delay and you want your changes to take effect immediately, you may wish
 to force a reread. This is done by sending cron the hangup signal:

 kill -HUP PID

 where PID is the Process ID of the cron daemon.

Programming Tools and Interfaces
Performance Tuning with cron and /etc/openfiles

¦ Copyright IBM Corp. 1985, 1991
18.14.1 - 1

 18.15 Multibyte Character Set Support

 The AIX Operating System provides international character support for both
 the European languages and the Japanese language. AIX international
 character support is multibyte character set (MBCS) support, which uses a
 set of codes (rather than a single code) to represent ASCII and extended
 characters in files, on networks, and in storage. MBCS support combines
 (1) ASCII support for English, (2) single-byte national language support
 (NLS) for the European languages, and (3) double-byte character set (DBCS)
 support for the Japanese language.

Programming Tools and Interfaces
Multibyte Character Set Support

¦ Copyright IBM Corp. 1985, 1991
18.15 - 1

 18.16 Programming for an MBCS Environment

 Programming for an MBCS environment requires certain specific knowledge.
 There are specific library routines to be used for character data.
 Programs ported from previous systems require special handling. The C
 language offers specific data types to be used for file code characters,
 and others for wide character data.

Programming Tools and Interfaces
Programming for an MBCS Environment

¦ Copyright IBM Corp. 1985, 1991
18.16 - 1

 18.17 How to Write Codeset-Independent Programs

 Subtopics
 18.17.1 Character Set Design
 18.17.2 Codeset Independence
 18.17.3 Collation
 18.17.4 Input and Output
 18.17.5 Enhanced printf/scanf Format Strings
 18.17.6 wchar_t Oriented Input and Output
 18.17.7 Message Catalogs
 18.17.8 Non-Positional Format Parameters

Programming Tools and Interfaces
How to Write Codeset-Independent Programs

¦ Copyright IBM Corp. 1985, 1991
18.17 - 1

 18.17.1 Character Set Design

 There are two ways within MBCS to represent a character. Internal or
 process code is fixed width in order to speed up character operations.
 External or file code is variable width. Typically, it is smaller than
 process code, making it more convenient to store data. However, it is
 cumbersome to manipulate in this form since you must always check how many
 bytes make up a particular character.

 The basic paradigm used in MBCS is to use process code if any significant
 data manipulation is necessary. To facilitate this model, new standard
 I/O format conversion characters have been added to allow one to read
 and/or write process code. The translation from/to file code is done
 before any data is transferred between the device and a program. Thus,
 the picture seen by the user is that one is actually able to read and
 write process code.

 There are character types for both process and file codes. A character in
 process code is called a wide character. A wide character is defined as:

 typedef unsigned long wchar_t

 A character encoded in file code is called a multibyte character. Since
 multibyte characters can have variable width, they are typically processed
 as byte streams, and as such are declared as character arrays. Thus the
 declaration:

 char *mbs

 will be sufficient to access multibyte characters. Occasionally it is
 necessary to store a character in a integral data type. This can be
 useful for character comparisons. The data type for a multibyte character
 is:

 typedef unsigned long mbchar_t

 The difference between mbchar_t and wchar_t is that mbchar_t may not
 necessarily require all 4 bytes for its encoding, whereas a wchar_t always
 takes 4 bytes. A mbchar should ONLY be used when dealing with a single
 character as an atom and will not be the usual case.

 All supported file codes will never have a single byte of 0 be part of a
 multibyte character. So, the null character will be defined as:

 wide character null: 4 bytes long containing 0.

 multibyte character null: 1 byte long containing 0.

Programming Tools and Interfaces
Character Set Design

¦ Copyright IBM Corp. 1985, 1991
18.17.1 - 1

 18.17.2 Codeset Independence

 MBCS has been designed in such a way as to minimize the changes to the
 system and to isolate most of them to the libraries. This facilitates
 writing application programs in a codeset independent manner. Codeset
 independence can be achieved by never assuming that a byte and a character
 are necessarily the same thing. Code that manipulates characters is
 usually written as:

 while (*p) {
 /* do some processing on p */
 p++;
 }

 If 'p' is declared as:

 char *p;

 then it means that this code will potentially need to handle multibyte
 characters. Thus 'p' can no longer be advanced using 'p++'. There are
 routines which handle pointer advancement and are described in several
 sections below. For now note the following:

 p++;

 would become:

 p = mbsadvance(p);

 It is obvious that the extra overhead of a function call slows performance
 if a significant amount of processing is to be performed on the pointer
 'p'. Instead, the code could be modified to convert multibyte characters
 to wide characters or process code. All of the I/O routines support
 automatic conversion from file code to process code. Other conversion
 routines such as mbtowc() are discussed in detail below.

 If the code is designed to handle process code, 'p' will be declared as:

 wchar_t *p;

 Since wide characters are a fixed length, you can advance a pointer by
 'p++'. However, character and string constants can no longer be written
 as:

 'A' or "FOO"

 This is interpreted by the compiler as multibyte characters (file code)
 rather than wide characters (process code). Instead, it will be necessary
 to prefix the character constant by the 'L' character to indicate to the
 compiler that this is a wide literal:

 wchar_t wc = L'A';
 wchar_t *s = L"FOO";

 To support programmers' needs, MBCS provides string routines which handle
 both multibyte and wide characters.

Programming Tools and Interfaces
Codeset Independence

¦ Copyright IBM Corp. 1985, 1991
18.17.2 - 1

 18.17.3 Collation

 wc_collate produces the collation value for wide characters. The ordinal
 value of the characters themselves should never be used for relative
 comparisons (i.e. <, >, =, =). For these types of comparisons, you should
 take the collation value of the wide characters (using wc_collate()).

 wc_collate also provides information for extended collation (an n-to-1
 mapping). If the collation value returned by wc_collate is negative, the
 character may possibly make up a larger collation object. In this event,
 you should pass this value (the negative collation value) to wc_xcol,
 along with the original character and the address of a pointer to that
 character in the string. wc_xcol matches the longest possible collation
 object in the string, returns the collation value of that object, and
 advances the string pointer past the object.

 Note: This functionality is useful in Latin derived languages.

 Latin derived languages also have the notion of "diacriticals" in which
 the glyphs of various Roman characters are modified to represent different
 sounds. Although these letters each have unique collating values, in some
 circumstances it is desirable to map the letters by the Roman letter to
 which they are equivalent. This equivalence mapping is performed by the
 wc_eqvmap() function.

 wc_eqvmap() is a predicate function which returns FALSE (0) if the given
 wchar_t is not the first character of an equivalence class. Using this
 function (and the fact that equivalence classes are required to contain
 only consecutive characters) it is possible to determine the beginning and
 end of a given equivalence class. Since it is possible to create a
 collation table in which several characters to map to the same collation
 value, it is necessary to find a unique value for the character before
 determining its equivalence class. wc_coluniq() is the function that
 finds this unique collating value.

 The sequence of code to determine whether a character (some_char) falls
 into the same equivalence class as another character (other_char) would be
 written as follows:

 test_equivalent(wchar_t some_char,wchar_t other_char)
 {
 long some_col, range_start, range_end;

 some_col=wc_coluniq(some_char));
 range_start = range_end = wc_coluniq(other_char);

 while (wc_eqvmap(range_end+1) == 0)
 range_end++;

 while (wc_eqvmap(range_start) == 0)
 range_start--;

 if (range_start <= some_col && some_col <= range_end)
 return TRUE;
 else
 return FALSE;
 }

Programming Tools and Interfaces
Collation

¦ Copyright IBM Corp. 1985, 1991
18.17.3 - 1

 18.17.4 Input and Output

 Much of the work of adapting an application to a particular locale is
 tailoring the expected input and formatted output to fit the target
 language. Several features of MBCS support this task, including enhanced
 printf/scanf format strings, wchar_t oriented input and output facilities,
 and message catalogs.

Programming Tools and Interfaces
Input and Output

¦ Copyright IBM Corp. 1985, 1991
18.17.4 - 1

 18.17.5 Enhanced printf/scanf Format Strings

 printf and scanf now allow the 'w' format modifier in format strings to
 specify wide characters (i.e. wchar_t). The appropriate conversion
 from/to file code to/from process code will be performed by the library
 call.

Programming Tools and Interfaces
Enhanced printf/scanf Format Strings

¦ Copyright IBM Corp. 1985, 1991
18.17.5 - 1

 18.17.6 wchar_t Oriented Input and Output

 The new library routines getwc()/getwchar()/getws() /fgetws() and
 putwc()/putwchar()/putws()/fputws() are available in stdio.h. These
 routines are analogous to the traditional getc() /getchar() and
 putc()/putchar() routines.

Programming Tools and Interfaces
wchar_t Oriented Input and Output

¦ Copyright IBM Corp. 1985, 1991
18.17.6 - 1

 18.17.7 Message Catalogs

 MBCS supports message encapsulation (the ability to retrieve messages from
 a catalog) by providing several message catalogs containing all the
 messages generated throughout the system.

 The simplest way to access these message catalogs is to determine the
 message catalog, set, and message number you wish to display, and then
 call the NLgetamsg() function. NLgetamsg returns a pointer to the message
 in question, or (in the event of an error) returns the default string
 defined in the call. For example:

 char * msg = NLgetamsg("fake_compiler.cat",1,3,"Beginning Pass2");

 retrieves message 3 from set 1 of the catalog 'fake_compiler.cat' The
 message presumably contains information about the state of the compiler.
 If the message or catalog is not available, NLgetamsg returns the default
 string (defined in this case to be "Beginning Pass 2").

Programming Tools and Interfaces
Message Catalogs

¦ Copyright IBM Corp. 1985, 1991
18.17.7 - 1

 18.17.8 Non-Positional Format Parameters

 In order to make the message catalogs more useful, printf and scanf allow
 position specifiers within format specifiers (as required by XPG3). In
 the following example, the NLgetamsg() call demonstrates the use of these
 position specifiers:

 char * msg = NLgetamsg("compiler.cat",1,4,"%s: Syntax Error line %d\n");

 The default message strings demonstrate that there are variable insertions
 to be performed within the strings before displaying the message, namely a
 string (the compiler name) and a decimal (the line number in which the
 syntax error occurred). The display of this message looks like the
 following:

 fprintf(stderr, msg, program_name, source_line_number);

 fprintf would perform the proper variable substitution upon the format
 string before displaying the message, so that the final result would
 appear on stderr as:

 fake_compiler: Syntax Error line 23

 In the course of internationalizing the fake_compiler program, the message
 catalog compiler.cat would need to be translated into the language of the
 target locale.

 NLgetamsg() takes into account the current locale (defined by the
 setlocale() function call) when searching for the proper message catalog.
 The fake_compiler program should perform the following function call:

 setlocale(LC_ALL,"");

 to initialize the MBCS library functions for the current locale. The
 LC_ALL parameter tells setlocale() to initialize all facets of the locale
 to that locale specified in the second parameter. The second parameter,
 if a string of zero length, tells setlocale() to look up the environment
 variable LC_ALL for the current locale.

 Due to the nature of the target language, the translated messages may
 require that the message be rearranged somewhat. This rearrangement is
 permitted, and will not break the message, if the message contains
 position specifiers within the formats. For example, in the fake_compiler
 program there is a message that reads:

 "%s: line %d Parameter '%s' cannot be of type '%s'"

 which describes messages of the type:

 fake_compiler: line 23 Parameter dest cannot be of type 'const int'

 In translation it may be necessary to reorder the word in the message such
 that the third parameter (dest) now needs to follow the fourth (const
 int). This is possible if the message format patterns contain position
 specifiers. Examine the original message with position specifiers:

 "%1$s: line %2$d Parameter '%3$s' cannot be of type '%4$s'"

 Now there is no ambiguity in the format specifiers, and they can be
 rearranged freely. For example,

Programming Tools and Interfaces
Non-Positional Format Parameters

¦ Copyright IBM Corp. 1985, 1991
18.17.8 - 1

 "%1$s: inelay %2$d Ypetay '%4$s' otnay allowedmay orfay arameterpay '%3$s'"

 will appear as:

 fake_compiler: inelay 23 Ypetay 'const int' otnay allowedmay orfay
 arameterpay 'dest'"

 In both cases, the printf call would appear as:

 fprintf(stderr,
 NLgetamsg("fake_compiler.cat",SET_TYPES,MSG_NOTALLOWED,
 "%s: line %d Parameter '%s' cannot be of type '%s'"),
 program_name,
 source_line_number,
 parm_name,
 parm_type_name);

Programming Tools and Interfaces
Non-Positional Format Parameters

¦ Copyright IBM Corp. 1985, 1991
18.17.8 - 2

 18.18 Message Catalog Generation

 This sections describes the steps to be taken to create, generate, and
 implement the use of message catalogs for user applications written using
 the C programming language. It describes the syntax that is used in the
 generation of a message catalog. There are various commands used to
 generate the binary message catalog from a message text source file and to
 output messages within the catalog and the entire catalog to verify its
 correctness. In addition, it describes the various library routines
 included in user programs to open, read, and display messages from within
 a binary catalog.

 The AIX Message Facility allows user messages to be separated from program
 source code. The separated messages may be easily edited or translated to
 other languages. If the separation of the messages and the subsequent
 retrieval operation are designed correctly, the same binary image of a
 program can be executed by different users, each using a different
 national language set. The person who edits or translates the messages
 does not require access to the source code; the source code does not need
 to be recompiled when messages are modified or translated.

 Subtopics
 18.18.1 The Message Text Source File
 18.18.2 Syntax of Messages Within a Catalog
 18.18.3 Arguments within Messages
 18.18.4 Using Symbolic Definitions
 18.18.5 Default Values and Limits
 18.18.6 Generation of a Message Catalog from a Message Text Source File
 18.18.7 gencat, runcat, mkcatdefs
 18.18.8 Displaying Messages from Message Catalogs
 18.18.9 Accessing Messages from Message Catalogs from User Programs

Programming Tools and Interfaces
Message Catalog Generation

¦ Copyright IBM Corp. 1985, 1991
18.18 - 1

 18.18.1 The Message Text Source File

 A message catalog is a file that contains messages from one or more
 executable programs. Each message in a message catalog is identified by a
 message set number and message ID number. These numbers are assigned when
 the message catalog is created, and are used by the programs accessing the
 message catalog to specify a particular message to retrieve. Message sets
 can be used to group a number of related messages together logically
 within a catalog.

 The message catalog is the binary image that is created from the message
 text source file. The message text source file is initially created by a
 user with the messages, set numbers and message numbers using a favorite
 editor. This file is then converted into the message catalog using
 commands described later. When changes are to be made to the message
 catalog, they are made to the message text source file.

 The best way to describe the message catalog facility is by creating an
 example message catalog. In Figure 18-1, a sample catalog is created and
 used to describe the various procedures. You will also note that the
 example does not extensively use every possible option that is available.
 However, it provides an understanding of how to create a usable message
 facility by the user.

 --

 $
 $ This is a Sample Message Text Source File to be
 $ used as an example throughout this document
 $

 $quote " This defines " to be the quote character
 $
 $set 1 First Set in the example
 $
 1 " Message Number %d in Set 1\n "

 2 "File Not Found!"
 3 "Cannot Open %s. Program %s aborting\n"

 $set 3
 14 "Yes, this is message number 14 in set 3. \
 Set and Message Numbers don't have to be in sequence \
 They only have to be in ascending order!!!"

 15 "Final message in set 3 and this catalog\n"
 16 "Positional Parameter %3$s example %2$s --- %1$s\n"

 $
 $ End of example 1
 $

 --
 Figure 18-1. Sample Message Text Source File

Programming Tools and Interfaces
The Message Text Source File

¦ Copyright IBM Corp. 1985, 1991
18.18.1 - 1

 18.18.2 Syntax of Messages Within a Catalog
 The format of a message text source file has certain definitions that must
 be followed. Note that the fields within the message text source file are
 separated by ASCII space and tab characters. Any other ASCII spaces or
 tabs are considered as being part of the subsequent field.

 A line beginning with a '$' followed by ASCII space or tab characters
 defines a comment line. Comment lines are not included in the message
 catalog so any characters are allowed on a comment line. You will also
 notice lines that are completely blank. You can think of these lines as
 comment lines with nothing on them; they are not included in the message
 catalog either.

 Throughout the example, you will notice text on some lines that doesn't
 look as though it is a part of the line. Any delimiters on a line
 (delimiters are separated by spaces and tabs remember) that follow the
 required syntax of the command are treated as comments. Using the line
 beginning with "$set 1" as an example, the characters on the line "First
 Set in the example" are considered comments because the syntax of this
 line specifies only having '$set <n>'. The delimiter in this case is the
 spaces/tabs after the '1'.

 Following the first set of comment lines is a line that contains '$quote
 "'. This defines a quote character for the message text source file which
 can be used to surround message text so that trailing spaces or empty
 messages are visible in a message source line. A good example of the quote
 character being used is in message 1 located 2 lines below the line that
 starts with '$set 1'. Notice that with the quote character defined, we
 can put leading and trailing spaces in the message. If we had not defined
 a quote character, then the leading and trailing characters would have not
 been included in this message when the message catalog was created.

 A message text source file can contain many sets to segregate the
 different types of messages that you will have. For example, you may want
 to have a set that contains your low level system messages, like "file not
 found", "can't execute the application specified", and have another set
 that contains more descriptive help messages that the user will interact
 with; "please hit the <foo> key to receive more help" and "to change the
 color of the screen, please go to the previous menu and select the color
 desired" are some other examples.

 To create different sets, the $set <n> command is used. This line
 specifies the set identifier of the following messages until the next $set
 <n>, $delset <n> or end of file appears. The <n> parameter specifies the
 set identifier. Set identifiers must be presented in ascending order
 within a message text source file, but do not need to be contiguous. In
 our example, we start with set 1, then define set 3. We don't have a set
 2, and there is no requirement to have it. However, it is important to
 note that we could set 3 first, before set 1. Messages with sets are
 defined as <m> <message text>, where <m>specifies the message number
 within the set and <message text> specifies the message text. The same
 rules apply for message numbers as applied for sets. The messages must be
 presented in ascending order with a set but do not need to be contiguous.
 In set 3 of our example, we start with message 14, followed by message 15.
 The messages are in ascending order, but they do not start with 1. Note
 that these requirements are for within sets only. Starting a new set is
 like starting at the beginning of the message text source file. In our
 example, we define set 1 to have 3 messages, 1, 2, and 3. In set 3 we
 start with message 14, but we could have easily started with message 1.

Programming Tools and Interfaces
Syntax of Messages Within a Catalog

¦ Copyright IBM Corp. 1985, 1991
18.18.2 - 1

 When defining a message, if the message text is empty and there are ASCII
 spaces or tabs defining a field separator, an empty string is stored in
 the message catalog for that message number. If there are no ASCII spaces
 or tabs that follow the message number, then that message is deleted from
 the message catalog. Finally, there is a way to continue a message on more
 than one line. In our example, message 14 within set 3 is on 3 lines. To
 continue a message on another line, a backslash (\) character is specified
 as the last character on the current line. Be careful when trying to
 continue lines though; any character following a backslash means to treat
 the character literally. Specifically, if a space follows the backslash,
 the space character is treated as a literal space (which is still a
 space). The message is not continued on the next line and an attempt will
 be made to interpret the text on the next line in the context of the
 message catalog. An error may occur, or you may have defined a new set or
 message if you included the right syntax.

Programming Tools and Interfaces
Syntax of Messages Within a Catalog

¦ Copyright IBM Corp. 1985, 1991
18.18.2 - 2

 18.18.3 Arguments within Messages

 The actual content of the messages within a message text source file can
 contain text and some formatting strings. The text is obvious, the
 formatting options need to be defined more explicitly.

 Text strings can contain special characters and escape sequences defined
 as follows:

 newline \n

 horizontal tab \t

 vertical tab \v

 backspace \b

 carriage return \r

 form-feed \f

 backslash \\

 octal digit \ddd

 hexidecimal digit \xdddd

 Most of these special characters have obvious meanings. They perform the
 same actions as in the C programming language. The specification for a
 hexadecimal digit allows you to define 1 or 2 hexadecimal digits . This
 is an effective way to get characters within your message text that you
 cannot enter with a keyboard. Being able to specify 2 hexadecimal digits
 gives you the ability to create multibyte characters from the binary
 counterparts.

 All of the conversion characters as defined for the printf and scanf
 routines are also available in messages since the message text will almost
 always be output from a C program . An added feature called positional
 parameters can also be included with the conversion characters. Positional
 parameters allow you to specify which argument is to be used with the
 associated conversion character.

 An example of the use of a positional parameter is message number 16 in
 set 3 of our example. Notice the added syntax when defining the conversion
 characters for printing a character string. In this message, %3$s says to
 use the third argument passed along with this format string and insert it
 at this point as a string of characters. The %2$s and %1$s perform the
 same action for the second and first arguments.

 The advantage of using positional parameters becomes clear when a message
 catalog is translated into another language that use a different syntax.
 The position of arguments in a string that is printed in English may have
 to be switched when the same string is translated into Japanese.
 Positional parameters enable the actual arguments to stay in the same
 order; all that needs to change is the positional parameter in the format
 string when translating the message.

 If you have two different conversion characters in a message string and
 you use positional parameters undefined results may occur. For example if
 a message text is of the form:

Programming Tools and Interfaces
Arguments within Messages

¦ Copyright IBM Corp. 1985, 1991
18.18.3 - 1

 "This %2$d is a test %1$s\n"

 and the arguments passed are 10 and "foobar", then this will work. But if
 the positional parameters are switched to be:

 "This %1$d is a test %2$s\n"

 and the arguments are the same, the string argument will be printed as a
 decimal value (which means the address of the beginning of the string will
 be printed) and the numeric value will be printed as a string.

Programming Tools and Interfaces
Arguments within Messages

¦ Copyright IBM Corp. 1985, 1991
18.18.3 - 2

 18.18.4 Using Symbolic Definitions

 Creating a message text source file with set numbers and message numbers
 can be a confusing process since it deals with numeric values to define
 messages. The message facility under AIX has a mechanism that allows the
 user to define symbolic values to the sets and message numbers in the
 message text source file. Using the mkcatdefs program, the symbolic values
 are replaced with numeric values. An include file is also created with the
 symbolic to numeric value relationship so the user can use the symbolic
 values also in the C program. For example, the following message text
 source file is created with symbolic values. It is exactly the same as
 example 1, but symbolic values instead of numeric values are used.
 Afterwards, an example of the header file produced is shown. The result of
 running mkcatdefs to produce this include file is the message text source
 file in example 1.

 --

 $
 $ This is a Sample Message Text Source File to be
 $ used as an example throughout this document
 $

 $quote " This defines " to be the quote character
 $
 $set SET_ONE First Set in the example
 $
 M_ONE_ONE " Message Number %d in Set 1\n "

 M_ONE_TWO "File Not Found!"
 M_ONE_THREE "Cannot Open %s. Program %s aborting at line %d\n"

 $set SET_THREE
 M_THREE_FOURT "Yes, this is message number 14 in set 3. \
 Set and Message Numbers don't have to be in sequence \
 They only have to be in ascending order!!!"

 M_THREE_FIFT "Final message in set 3 and this catalog\n"
 M_THREE_SIXT "PositionalParameter %3$s example %2$s-%1$s\n"

 $
 $ End of example 1

 --
 Figure 18-2. Message Text Source File with Symbolic Values

 --

 #include <limits.h>
 #include <nl_types.h>
 #define MF_MSGFAC "example_msg.cat"

 /* The following was generated from the example symbolic message catalog */

 /* definitions for set SET_ONE */
 #define SET_ONE 1

 #define M_ONE_ONE 1
 #define M_ONE_TWO 2

Programming Tools and Interfaces
Using Symbolic Definitions

¦ Copyright IBM Corp. 1985, 1991
18.18.4 - 1

 #define M_ONE_THREE 3

 /* definitions for set SET_THREE */
 #define SET_THREE 2

 #define M_THREE_FOURT 1
 #define M_THREE_FIFT 2
 #define M_THREE_SIXT 3

 --
 Figure 18-3. Include File for Symbolic Message Catalog

 Notice that the numeric values are arbitrary. By including this header
 file in a program that will access the message catalog being created,
 symbolic values can be used to reference set and message numbers. The
 symbolic values can be arbitrary and it is recommended to make them
 similar to the type of message being output. For example, using
 M_FILE_NOT_FOUND would be a reasonable value for the message "file not
 found\n".

Programming Tools and Interfaces
Using Symbolic Definitions

¦ Copyright IBM Corp. 1985, 1991
18.18.4 - 2

 18.18.5 Default Values and Limits

 There are various limits for the size of the message text, number of sets
 and number of messages that can be used in a message text source file. To
 determine these limits, consult the include file <limits.h> and
 <nl_types.h>.

Programming Tools and Interfaces
Default Values and Limits

¦ Copyright IBM Corp. 1985, 1991
18.18.5 - 1

 18.18.6 Generation of a Message Catalog from a Message Text Source File

 The syntax and acceptable values that go into making a message text source
 file must be converted into a message catalog. To complete this task, AIX
 provides the following commands:

 � gencat

 � runcat

 � mkcatdefs

Programming Tools and Interfaces
Generation of a Message Catalog from a Message Text Source File

¦ Copyright IBM Corp. 1985, 1991
18.18.6 - 1

 18.18.7 gencat, runcat, mkcatdefs

 The binary image of the message catalog is created by the gencat command.
 The gencat routine reads text and commands which describe sets and
 messages within sets from a text file and creates the binary image of the
 catalog. The gencat command takes as arguments a message catalog name,
 and a series of optional message catalog descriptor files. If our example
 1 message text source file is named example.1 and we would like to create
 a catalog called example.cat, the appropriate command would look like:

 gencat example.cat example.1

 AIX provides the mkcatdefs command to convert this file into the message
 text source with numerical values and to create the header file with the
 symbol to numeric definitions. The mkcatdefs utility preprocesses a
 descriptor file that contains ASCII symbolic message identifiers (set and
 message numbers), producing a descriptor file that has these symbols
 replaced by numeric values. A header file is also produced which can be
 included within a user program to reference the messages symbolically. The
 syntax for mkcatdefs is to specify the prefix of the header file to be
 created, the suffix always being _msg.h, and the descriptor file which is
 a message text source file with symbolic values. The output from
 mkcatdefs is a header file called <cmd_name>_msg.h, the modified
 descriptor file with numerical values replacing the symbolic values being
 written to standard output. In the example, if our symbolic message text
 source file is called symbol.msg, and we want to create a header file
 known as symbol_msg.h, the the command line would look like:

 mkcatdefs symbol symbol.msg

 The modified descriptor file is written to standard output. We need to
 save this output in a file or pipe it directly to the gencat command to
 create the actual message catalog. To perform all these steps, a command
 would look the following:

 mkcatdefs symbol symbol.msg | gencat example.cat

 This would create a header file known as symbol_msg.h and a message
 catalog known as example.cat from the original symbol message text source
 file symbol.msg. AIX also includes a shell script known as runcat which
 converts a symbolic message text source file into a message catalog and
 creates the appropriate header file. The appropriate command to implement
 runcat is:

 runcat example symbol.msg

Programming Tools and Interfaces
gencat, runcat, mkcatdefs

¦ Copyright IBM Corp. 1985, 1991
18.18.7 - 1

 18.18.8 Displaying Messages from Message Catalogs

 Subtopics
 18.18.8.1 dspcat, dspmsg

Programming Tools and Interfaces
Displaying Messages from Message Catalogs

¦ Copyright IBM Corp. 1985, 1991
18.18.8 - 1

 18.18.8.1 dspcat, dspmsg

 Once the message catalog is created, you must verify that it was created
 correctly. To do this, use the dspcat command. dspcat displays messages
 in a catalog. A specific message within a specific set can be shown, or
 the entire catalog can be shown. The basic syntax of dspcat is to specify
 the message catalog file, along with the set and message number to be
 displayed. If no set or message number is given, the entire catalog is
 displayed.

 Another very useful command is the dspmsg command. This command displays a
 message from a message catalog, including a default message if the
 specified message cannot be accessed. It replaces the echo command in
 shell scripts. dspmsg can access messages from a catalog and substitute
 string arguments into the message as specified on the command line. In
 addition to the default message, conversion arguments can be in the
 default message, so the arguments to the dspmsg command are substituted
 into the default message. However, one restriction is that the arguments
 can only be string arguments.

 As an example, suppose we wanted to print out message 3 in set 1 in
 example 1. The command:

 dspmsg -s 1 example.msg 3 'default %s message %s' "hello" "world"

 would print out the following:

 Cannot Open hello. Program world aborting at line

 If the following bad set was specified:

 dspmsg -s 99 example.msg 3 'default %s message %s.' "hello" "world"

 the following message would be received:

 default hello message world.

Programming Tools and Interfaces
dspcat, dspmsg

¦ Copyright IBM Corp. 1985, 1991
18.18.8.1 - 1

 18.18.9 Accessing Messages from Message Catalogs from User Programs

 The following is an example of how to access message catalogs using
 library routines within a C program. The following example will be used to
 demonstrate the appropriate library routines.

 --

 #include <stdio.h>
 #include <locale.h>
 #include <nl_types.h>
 #include <limits.h>
 #include "symbol_msg.h"

 nl_catd catd;
 extern char *malloc();

 main(argc, argv)
 int argc;
 char **argv;
 {
 char *buf, *cp;
 char mybuf[NL_TEXTMAX];

 setlocale(LC_ALL, "");
 /*
 * sequence 1:
 * open the catalog, access a message from the catalog
 * using different library routines. close the catalog.
 */
 if ((catd = catopen("example.cat")) == CATD_ERR) {
 printf("Can't open message catalog\n");
 exit(1);
 }

 printf(catgets(catd, SET_ONE, M_ONE_ONE, "default message"));
 printf(catgetmsg(catd, SET_ONE, M_ONE_ONE, &mybuf, NL_TEXTMAX));
 catclose(catd);

 /*
 * sequence 2:
 * open the catalog using NLcatopen and access a
 * message using NLcatgets(). Close the catalog
 */
 catd = NLcatopen("example.cat");
 printf(NLcatgets(catd, SET_ONE, M_ONE_ONE, "default message"), M_ONE_ONE);
 catclose(catd);

 /*
 * sequence 3:
 * read a message from the catalog using NLgetamsg().
 * this opens, reads the message, and closes the catalog.
 */
 printf(NLgetamsg("example.cat", SET_ONE, M_ONE_ONE, "default message"), M_ONE_ONE);
 }

 --
 Figure 18-4. Sample C Source Code

Programming Tools and Interfaces
Accessing Messages from Message Catalogs from User Programs

¦ Copyright IBM Corp. 1985, 1991
18.18.9 - 1

 18.19 Use of Regular Expressions with International Characters

 This section describes how to use regular expressions with international
 characters. The following library routines are discussed:

 � libPW

 - regex

 - regcmp

 � NLregexp.h

 - compile

 - step

 - advance

 Regular expression syntax varies slightly between the NLregexp and the
 libPW routines. The syntax for the libPW regex regular expressions is as
 follows:

 []* . ^ These symbols have the same meaning as they do in the ed
 command. For regex, the minus within brackets means
 'through' according to the current collating sequence.
 For example, depending on the default collating sequence
 "[a-z]" can be equivalent to "[abcd...xyz]" or
 "[aBbCc...xYyZz]". You can use the "-" by itself if the
 "-" is the last or first character. For example, the
 character class expression "[]-]" matches the "]" (right
 bracket) and "-" (minus) characters.

 $ Matches the end of the string. Use "\" to match a
 new-line character.

 + (regex only) A regular expression followed by "+" means
 one or more times. For example, "[0-9]+" is equivalent to
 "[0-9] [0-9]*".

 {m} {m,} {m,u} Integer values enclosed in { } indicate the number of
 times to apply the preceding regular expression. m is the
 minimum number and u is the maximum number. u must be
 less than 256. If you specify only m, it indicates the
 exact number of times to apply the regular expression.
 {m,} is equivalent to {m,infinity} and matches m or more
 occurrences of the expression. The "+" (plus) and "*"
 (asterisk) operations are equivalent to "{1,}" and "{0,}",
 respectively.

 Note: The NLregexp.h syntax is \{m\} \{m, \} \{m,u\}

 (...)$n This stores the value matched by the enclosed regular
 expression in the (n+1)(th) ret parameter (regex only).
 Ten enclosed regular expressions are allowed. regex makes
 the assignments unconditionally.

 Note: The NLregexp.h syntax is \(. . .\). The char
 pointers braslist[i] and braelist[i] mark the
 beginning and end (respectively) of the text

Programming Tools and Interfaces
Use of Regular Expressions with International Characters

¦ Copyright IBM Corp. 1985, 1991
18.19 - 1

 matching the pattern enclosed by the i'th pair of
 parentheses. \i matches the text matched by the
 i'th pair of parentheses. Paren numbers are
 assigned starting with the first open paren being
 number 1, the second open paren being number 2,
 etc. Parentheses nesting is allowed.

 (...) (regex only) Parentheses group subexpressions. An
 operator, such as "*", "+", or "{" "}" works on a single
 character or on a regular expression enclosed in
 parenthesis. For example, "(a*(cb+)*)$0". All of the
 above defined symbols are special. You must precede them
 with "\" (backslash) if you want to match the special
 symbol itself. For example, "\$" matches a dollar sign.

 The following special symbols are defined for internationalized regular
 expressions. Each is valid only within a range expression (i.e. between
 brackets).

 [:alnum:] Matches any alphanumeric, as defined by the NLctype.h macro
 iswalnum()

 [:alpha:] Matches any alpha, like iswalpha()

 [:digit:] Matches any digit, like iswdigit()

 [:lower:] Matches any lower, like iswlower()

 [:print:] Matches any printable, like iswprint()

 [:punct:] Matches any punctuation, like iswpunct()

 [:space:] Matches any white space, like iswspace()

 [:upper:] Matches any upper case letter, like iswupper()

 [:xdigit:] Matches any hex digit, like iswxdigit()

 [=X=] Matches any character in the same equivalence class as X (as
 defined by wceqvmap())

 [.XY.] Matches the multiple character collating sequence XY as a single
 character (as defined by _wcxcol()). For example, some Latin
 languages collate the sequence 'ch' as a single character which
 falls between 'c' and 'd'. The regular expression
 '[c[.ch.]d]amp' would match the words camp, champ, and damp.

 The ctype sequences ([:alpha:], etc.) can not be used as end
 points of a range.

 The NLregexp.h functions compile, step and advance operate on file code
 strings. The following macros must be defined prior to including
 NLregexp.h:

 Note: The examples given are from grep.c

 INIT
 This macro is used for dependent declarations and
 initializations. It is placed right after the declaration and
 opening "{" (left brace) of the compile subroutine. The

Programming Tools and Interfaces
Use of Regular Expressions with International Characters

¦ Copyright IBM Corp. 1985, 1991
18.19 - 2

 definition of INIT must end with a ";"(semicolon). INIT is
 frequently used to set a register variable to point the
 beginning of the regular expression so that this register
 variable can be used in the declarations for GETC, PEEKC, and
 UNGETC. Otherwise, you can use INIT to declare external
 variables that GETC, PEEKC, and UNGETC need.

 #define INIT

 register char *sp = instring; \
 int sp_len; \
 mbchar_t sp_peekc;

 GETC()
 This macro returns the value of the next character (as an
 mbchar_t) in the regular expression pattern. Successive calls
 to the GETC macro should return successive characters of the
 pattern.

 #define GETC()

 (PEEKC(),sp+=sp_len,sp_peekc)

 PEEKC()
 This macro returns the next character (as an mbchar_t) in the
 regular expression. Successive calls to the PEEKC macro should
 return the same character, which should also be the next
 character returned by the GETC macro. The special value ERR
 should be returned if there is an error in the character.

 #define PEEKC()

 ((-1==(sp_len=mbstomb(&sp_peekc,sp,MB_LEN_MAX))) \
 ? sp_peekc=ERR\
 : sp_peekc)

 UNGETC(c)
 This macro causes the parameter c to be returned by the next
 call to the GETC and PEEKC macros. No more than one character
 of pushback is ever needed and this character is guaranteed to
 be that last character read by the GETC macro. The return value
 of the UNGETC macro is always ignored.

 #define UNGETC(c)

 (sp-=sp_len)

 RETURN(pointer)
 This macro is used on normal exit of the compile subroutine.
 The pointer parameter points to the first character immediately
 following the compiled regular expression. This is useful to
 programs that have memory allocation to manage.

 #define RETURN(p)
 return

 ERROR(val)
 This macro is used on abnormal exit from the compile subroutine.
 It should never return. The val parameter is an error number.
 The error values and their meanings are:

Programming Tools and Interfaces
Use of Regular Expressions with International Characters

¦ Copyright IBM Corp. 1985, 1991
18.19 - 3

 #define ERROR(c)
 regerr(c)

 +--+
 ¦ Figure 18-5. Error Values ¦
 +--¦
 ¦ Error Name ¦ Value ¦ Meaning ¦
 +-------------+-------+--¦
 ¦ BIG_RANGE ¦ 11 ¦ Range endpoint too large. ¦
 +-------------+-------+--¦
 ¦ BAD_NUM ¦ 16 ¦ Bad number. ¦
 +-------------+-------+--¦
 ¦ BAD_BACK ¦ 25 ¦ "\"digit out of range. ¦
 +-------------+-------+--¦
 ¦ BAD_DELIM ¦ 36 ¦ Illegal or missing delimiter. ¦
 +-------------+-------+--¦
 ¦ NO_SAVED ¦ 41 ¦ No remembered search string. ¦
 +-------------+-------+--¦
 ¦ BAD_LEFTP ¦ 42 ¦ "\(\)" imbalance. ¦
 +-------------+-------+--¦
 ¦ BAD_RIGHTP ¦ 43 ¦ Too many "\(". ¦
 +-------------+-------+--¦
 ¦ EX_COMMA ¦ 44 ¦ More than two numbers given in \{ \}. ¦
 +-------------+-------+--¦
 ¦ NO_CLOSE ¦ 45 ¦ "}" expected after "\". ¦
 +-------------+-------+--¦
 ¦ MAX_MIN ¦ 46 ¦ First number exceeds second in \{ \}. ¦
 +-------------+-------+--¦
 ¦ BAD_BRAK ¦ 49 ¦ "[]" imbalance. ¦
 +-------------+-------+--¦
 ¦ TOO_BIG ¦ 50 ¦ Regular expression overflow. ¦
 +-------------+-------+--¦
 ¦ STACK_EMPTY ¦ 51 ¦ Backtrack stack empty. ¦
 +-------------+-------+--¦
 ¦ STACK_FULL ¦ 52 ¦ Backtrack stack full. ¦
 +-------------+-------+--¦
 ¦ BAD_CHAR ¦ 60 ¦ Weird multibyte char. ¦
 +--+

Programming Tools and Interfaces
Use of Regular Expressions with International Characters

¦ Copyright IBM Corp. 1985, 1991
18.19 - 4

 18.20 Using The C Language MBCS Interface

 This section contains definitions and examples of how to interface to the
 MBCS library routines in libc.a.

 Byte
 An eight bit data object. Exactly the same as the C data type
 'char'.

 Character
 A single display object. An ASCII character is represented by
 exactly 7 bits. A PC 850 character is represented by exactly 8
 bits. A SJIS character is represented by 8 or 16 bits,
 depending on the particular character. Some character sets use
 exactly 32 bits to represent a single character.

 Character Set
 A particular ordering of the characters necessary for a language
 or locale. Usually includes printable characters (glyphs) and
 non-printing (control) characters. Each character in a
 character set is assigned a unique (ordinal) value, and can be
 assigned a weight in one or more collating sequences.

 File Code Character
 A single display object. The representation of a character
 depends upon the character set in use. A file code character
 does not correspond directly to any C data type, but can be
 represented by a char (for 7 or 8 bit character sets) or as an
 array of chars (for character sets that require more than 8
 bits). For convenience, the character type 'mbchar_t' can be
 used to hold all the bytes that make up a file code character,
 but the representation for a particular glyph may vary depending
 on the file code in use.

 Process Code Character
 A single display object. Each process code character is
 represented by exactly 32 bits. There are enough process code
 characters to unambiguously map characters from all known
 languages into unique numeric values. Process Code can be
 thought of as a character set which can possibly encompass all
 other character sets. Process code characters are exactly
 equivalent to the C data type 'wchar_t'.

 Subtopics
 18.20.1 Using The Library Routines

Programming Tools and Interfaces
Using The C Language MBCS Interface

¦ Copyright IBM Corp. 1985, 1991
18.20 - 1

 18.20.1 Using The Library Routines

 Subtopics
 18.20.1.1 Naming Conventions

Programming Tools and Interfaces
Using The Library Routines

¦ Copyright IBM Corp. 1985, 1991
18.20.1 - 1

 18.20.1.1 Naming Conventions

 The following naming conventions apply to all MBCS library routines:

 +--+
 ¦ Figure 18-6. Naming Conventions ¦
 +--¦
 ¦ Routine Name ¦ Deals With ¦ Usually Takes ¦
 +-----------------------+------------------------+-----------------------¦
 ¦ c ¦ bytes ¦ char ¦
 +-----------------------+------------------------+-----------------------¦
 ¦ wc ¦ process code ¦ wchar_t ¦
 +-----------------------+------------------------+-----------------------¦
 ¦ mb ¦ file code ¦ mbchar_t ¦
 +-----------------------+------------------------+-----------------------¦
 ¦ str ¦ byte strings ¦ char * ¦
 +-----------------------+------------------------+-----------------------¦
 ¦ wcs ¦ wchar_t string ¦ wchar_t * ¦
 +-----------------------+------------------------+-----------------------¦
 ¦ mbs ¦ file code strings ¦ char * ¦
 +--+

Programming Tools and Interfaces
Naming Conventions

¦ Copyright IBM Corp. 1985, 1991
18.20.1.1 - 1

 18.21 Getting Wide Characters (wchar_t's)

 Subtopics
 18.21.1 Single Character Input
 18.21.2 Character Strings
 18.21.3 Formatted Input

Programming Tools and Interfaces
Getting Wide Characters (wchar_t's)

¦ Copyright IBM Corp. 1985, 1991
18.21 - 1

 18.21.1 Single Character Input

 getwchar() and fgetwc() parallel the stdio routines getchar() and fgetc().
 To process all characters from stdin as wide chars:

 #include <stdio.h> /* for getwchar & WEOF */
 #include <locale.h> /* for LC_ALL */
 main()
 {
 wchar_t wc;
 void process_wchar(wchar_t);
 setlocale(LC_ALL,"); /* adopt current locale */
 while (WEOF != (wc = getwchar()))
 {
 process_wchar(wc);
 }
 }

Programming Tools and Interfaces
Single Character Input

¦ Copyright IBM Corp. 1985, 1991
18.21.1 - 1

 18.21.2 Character Strings

 getws() and fgetws() parallel the stdio routines gets() and fgetws(). To
 process a file as lines of text:

 #include <stdio.h>
 #include <locale.h>
 main()
 {
 wchar_t text[256]; /* space for 256 characters */
 FILE * fp;
 void process_wstr(wchar_t *);
 setlocale(LC_ALL,"");
 fp = fopen("data_file","r");
 while (NULL != fgetws(text, sizeof(text)/sizeof(text[0], fp))
 {
 process_wstr(text);
 }
 }

 As in fgets, the string is terminated by a null character. A null wchar_t
 is equivalent to L'\0', (wchar_t)0, or usually just plain 0. Notice the
 use of 'sizeof()' to determine the count parameter for fgetws(). fgetws()
 requires the count parameter to be in units of wchar_t's. sizeof(text)
 returns the size of the entire array 'text' in bytes (not wchar_t's). We
 divide the size in bytes by the size of the first element of 'text'
 (text[0], a wchar_t) to obtain the number of elements (wchar_t's) in the
 array.

Programming Tools and Interfaces
Character Strings

¦ Copyright IBM Corp. 1985, 1991
18.21.2 - 1

 18.21.3 Formatted Input

 There are two new flags allowed in the scanf() format string, %ws and %wc:

 %ws Takes a wide character string as its target, and using the
 current locale it converts the input to process code placing it
 in the target.

 %wc Takes a single wide character as its target.

 To accept a phone list (names and phone numbers) from stdin:

 #include <stdio.h>
 #include <locale.h>
 #define MAXNAME 256 /* widest name allowed */
 main()
 {
 wchar_t name[MAXNAME];
 long phone_number;
 void process_pair(wchar_t *, line);
 setlocale(LC_ALL,"");
 while (EOF != scanf("%ws %ld , name, &phone_number))
 {
 process_pair(name, phone_number);
 }
 }

Programming Tools and Interfaces
Formatted Input

¦ Copyright IBM Corp. 1985, 1991
18.21.3 - 1

 18.22 Processing Wide Characters

 Subtopics
 18.22.1 ctype.h
 18.22.2 The String Library
 18.22.3 Conversion Routines
 18.22.4 Character Treatment Routines
 18.22.5 Printing Wide Characters
 18.22.6 Single Character Output
 18.22.7 Character Strings
 18.22.8 Formatted Output

Programming Tools and Interfaces
Processing Wide Characters

¦ Copyright IBM Corp. 1985, 1991
18.22 - 1

 18.22.1 ctype.h
 All the standard ctype.h is...() functions are available for wide
 characters. Their names are similar to the ctype macros, except that the
 predicate is preceded by the letter 'w'. For example, isalpha() for wide
 characters is spelled iswalpha(). Likewise for all the is...()
 predicates. The isw...() predicates take a wchar_t as their parameter.
 The traditional ctype is...() predicates take ASCII characters only. DO
 NOT pass wchar_t's to ctype is...() macros. To determine the ctype
 attributes of a stream of characters from stdin:

 #include <stdio.h>
 #include <ctype.h>
 #include <locale.h>
 main()
 {
 wchar_t wc;
 while (WEOF != (wc = wgetchar()))
 {
 printf("Value: %ld =",wc);
 if (iswalpha(wc))
 printf(" alpha");
 if (iswdigit(wc))
 printf(" digit");
 if (iswxdigit(wc))
 printf(" xdigit");
 if (iswpunct(wc))
 printf(" punct");
 /*
 ** et cetera
 */
 if (iswprint(wc))
 printf(" print);
 }
 }

Programming Tools and Interfaces
ctype.h

¦ Copyright IBM Corp. 1985, 1991
18.22.1 - 1

 18.22.2 The String Library

 All the standard string functions (as defined in string.h) are provided
 for wchar_t strings. The functions names contain 'wcs' where the original
 name contained 'str'. For example, 'strstr()' for wide strings is named
 'wcstok()'. Routines which traditionally expected a char parameter now
 expect a wchar_t. For example, 'strchr()' expects a char * and a char;
 however, 'wcschr()' expects a wchar_t * and a wchar_t.
 To print the lines from stdin matching a certain pattern, (a simplified
 fgrep command):

 #include <stdio.h>
 #include <locale.h>
 #include string.h>
 #define MAXLINE 256
 main()
 {
 wchar_t * pattern[] = "Something to look for";%
 wchar_t line[MAXLINE];
 setlocale(LC_ALL,"");
 while (NULL != getws(line))
 (%
 if (wcswcs(line,pattern))
 putws(line);
 }
 }

Programming Tools and Interfaces
The String Library

¦ Copyright IBM Corp. 1985, 1991
18.22.2 - 1

 18.22.3 Conversion Routines

 Sometimes it is desirable to convert from process code to file code, and
 vice versa. There are two main routines provided for this purpose:
 wcstombs() and mbstowcs(). As is implied by their names, wcstombs
 converts wide character (process code) strings to multibyte character
 (file code) strings, and mbstowcs converts from multibyte character
 strings to wide character strings.

 Variants exist to convert from a wide character to a multibyte character
 string (wctomb()), convert from a multibyte character string to a wide
 character (mbtowc()). The following example performs the equivalent of
 getws():

 #include <stdio.h>
 #include <stdlib.h> /* get prototype for mbstowcs */
 wchar_t *
 getwstring(wchar_t *buffer)
 {
 char tmp[MAXSIZE];
 if (NULL == fgets(tmp,MAXSIZE,stdin))
 return (wchar_t *) NULL; /* fail if fgets()
 fails */
 if (-1 == mbstowcs(buffer, tmp, MAXSIZE))
 return (wchar_t *) NULL; /* fail if file
 code is not
 recognized */
 return buffer;
 }

Programming Tools and Interfaces
Conversion Routines

¦ Copyright IBM Corp. 1985, 1991
18.22.3 - 1

 18.22.4 Character Treatment Routines

 Since process code characters are fixed size types, it is possible to
 access strings of process code characters using traditional pointer
 dereferencing operators. File code strings, however, are composite types.
 Accessing a string of file code characters requires functions which
 understand the length (in bytes) of a given character. The most useful of
 these functions are mblen() and mbsadvance().
 The following counts the number of characters in a multibyte character
 string (this is very similar to mbslen()):

 int
 mb_string_length(char * mbs)
 {
 int len=0;
 while (*mbs)
 {
 mbs=mbsadvance(mbs); /* mbsadvance returns
 NULL if string
 contains an invalid
 character */
 if (!mbs)
 return -1; /* fail if invalid
 string */
 len++;
 }
 return len;
 }

Programming Tools and Interfaces
Character Treatment Routines

¦ Copyright IBM Corp. 1985, 1991
18.22.4 - 1

 18.22.5 Printing Wide Characters

 Wide characters (wchar_t's) are generally never written to a file. I/O
 routines are provided for converting process code into file code in such a
 way that programs can be written with no knowledge of the prevailing file
 code set whatsoever.

Programming Tools and Interfaces
Printing Wide Characters

¦ Copyright IBM Corp. 1985, 1991
18.22.5 - 1

 18.22.6 Single Character Output

 putwchar() and fputwc() parallel the stdio routines putchar() and fputc().
 To copy stdin to stdout (sort of an inefficient cat command):

 #include <stdio.h> /* for getwchar, putwchar, WEOF */
 #include <locale.h> /* for LC_ALL */
 main()
 {
 wchar_t wc;
 setlocale(LC_ALL,"); /* adopt current locale */
 while (WEOF != (wc = getwchar()))
 {
 putwchar(wc);
 }
 }

Programming Tools and Interfaces
Single Character Output

¦ Copyright IBM Corp. 1985, 1991
18.22.6 - 1

 18.22.7 Character Strings

 putws() and fputws() parallel the stdio routines puts() and fputws(). To
 process a file as lines of text, then print the resulting lines to stdout:

 #include <stdio.h>
 #include <locale.h>
 main()
 {
 wchar_t text[256&rbrk; /* space for 256 characters */
 FILE * fp;
 void process_wstr(wchar_t *);
 setlocale(LC_ALL,"");
 fp = fopen("data_file","r");
 while (NULL != fgetws(text, sizeof(text)/sizeof(text[0]), fp))
 {
 process_wstr(text);
 fputws(text,stdout);
 }
 }

 Notice that we use fputws() to write to stdout. Putws() adds a newline to
 the end of the string when it writes to stdout, in cooperation with
 getws() which strips the newline at the end of the string. Since we used
 fgetws() to read the string, we must use fputws() to avoid adding an extra
 newline to the string.

Programming Tools and Interfaces
Character Strings

¦ Copyright IBM Corp. 1985, 1991
18.22.7 - 1

 18.22.8 Formatted Output

 There are two new flags allowed in the printf() format string, %ws and
 %wc.

 %ws Takes a wide character string as its input, and using the
 current locale it converts the input to file code and print the
 result. The meaning of width is modified by including the '#'
 flag in the format specifier. In presence of the '#' flag the
 width stands for the number of character otherwise it stands for
 the number of bytes.

 %wc Takes a single wide character as its argument.

 To print the minimum, maximum, and average a list of (name, value) pairs:

 #include <stdio.h>
 #include <locale.h>
 #define MAXNAME 256 /* widest name allowed */
 main()
 {
 wchar_t name[MAXNAME];
 wchar_t name_of_max[MAXNAME] = "Error";
 wchar_t name_of_min[MAXNAME] = "Error";
 double value;
 double max = -99999.0;
 double min = 99999.0;
 double total=0.0;
 int count=0;
 setlocale(LC_ALL,"");
 while (EOF != scanf("%ws %g", name, &value))
 {
 count++;
 total += value;
 if (value > max)
 {
 max = value;
 wcscpy(name_of_max,name);
 }
 if (value < min)
 {
 min = value;
 wcscpy(name_of_min,name);
 }
 }
 printf("Maximum: %ws = %g", name_of_max);
 printf("Minimum: %ws = %g", name_of_min);
 printf("Average over %d samples: %g",count, total/count);
 }

Programming Tools and Interfaces
Formatted Output

¦ Copyright IBM Corp. 1985, 1991
18.22.8 - 1

 19.0 Chapter 19. Using Remote Procedure Call (RPC)

 Subtopics
 19.1 CONTENTS
 19.2 About This Chapter
 19.3 Overview of RPC
 19.4 Authenticating Remote Procedure Calls
 19.5 Special Topics
 19.6 Example Applications
 19.7 RPC Programming Levels

Programming Tools and Interfaces
Chapter 19. Using Remote Procedure Call (RPC)

¦ Copyright IBM Corp. 1985, 1991
19.0 - 1

 19.1 CONTENTS

Programming Tools and Interfaces
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
19.1 - 1

 19.2 About This Chapter

 This chapter describes how to write network applications using the Remote
 Procedure Call (RPC) specification. RPC is the basic communication
 protocol used by the Network File Service (NFS). Remote procedure calls
 are used to communicate with machines in local area network usually
 outside your TCF cluster. This allows users to share files or access
 additional disk space without leaving their work stations. To access
 remote files within your TCF cluster does not require RPC. For additional
 information, refer to the discussion on Transparent Computing Facility in
 Using the AIX Operating System.

 The chapter begins with an overview of the RPC specification, and the
 software components that support it: Remote Procedure Call Language
 (RPCL)and eXternal Data Representation (XDR). Next in the chapter is a
 discussion of the three levels of the RPC interface and how to
 authenticate the remote procedure calls. The chapter concludes with
 sections that contain examples of specific network applications of the RPC
 interface.

 For information on specific RPC routines, see the Remote Procedure Call
 and RPC Service Routines sections in AIX Operating System Technical
 Reference.

Programming Tools and Interfaces
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
19.2 - 1

 19.3 Overview of RPC

 Remote Procedure Call (RPC) is a remote procedure call specification that
 provides a procedure-oriented interface to remote services. RPC is used
 in networks to provide programs that enable communication between
 machines. For example, a network file service can be composed of programs
 that deal with high level applications such as file access control, and
 programs that deal with low level applications such as read or write. The
 programs are accessible through a machine designated as a network server.
 A client of the network file service can call the procedures associated
 with the programs on behalf of a user logged in to the client machine.

 A client is a computer or process that accesses the services or resources
 of another process or computer on the network. A server is a computer
 that provides services and resources, as well as implements network
 services. Each network service is a collection of remote programs. A
 remote program implements remote procedures. The procedures, along with
 their parameters and results, are documented in the specific program's
 protocol specification. A server can support more than one version of a
 remote program in order to be compatible with changing protocols.

 In RPC, each server supplies a program that is a set of procedures. The
 combination of a host address, a program number and a procedure number
 specifies one remote service procedure.

 Subtopics
 19.3.1 The RPC Communication Paradigm
 19.3.2 Data Transports and Semantics
 19.3.3 Binding and Rendezvous Independence
 19.3.4 Message Authentication
 19.3.5 The RPC Protocol
 19.3.6 Remote Procedure Call Language (RPCL)
 19.3.7 Defining Arbitrary Data Types with eXternal Data Representation (XDR)

Programming Tools and Interfaces
Overview of RPC

¦ Copyright IBM Corp. 1985, 1991
19.3 - 1

 19.3.1 The RPC Communication Paradigm

 Programs that communicate over a network need a paradigm for
 communication. The RPC paradigm is based on the remote procedure call
 model, which is similar to the local procedure call model. A local
 procedure call involves the caller placing arguments to a procedure in a
 defined location, such as a result register, and transferring control to
 the procedure. The caller eventually gains back control, and extracts the
 results of the procedure from the defined location before continuing
 execution.

 The remote procedure call is similar, except that one thread of control
 winds through two processes: a caller process and a server process. That
 is, the caller process sends a call message to the server process and
 waits (or blocks) for a reply message. The call message contains
 information that includes the parameters of the procedure. The reply
 message contains information that includes the results of the procedure.
 When the caller receives the reply message, it extracts the results of the
 procedure and resumes execution.

 On the server side, a process is dormant awaiting the arrival of a call
 message. When one arrives, the server process extracts the procedure's
 parameters, computes the results, sends a reply message, and awaits the
 next call message.

 Only one of the two processes is active at any given time. That is, the
 RPC protocol does not explicitly support multithreading of caller or
 server processes.

Programming Tools and Interfaces
The RPC Communication Paradigm

¦ Copyright IBM Corp. 1985, 1991
19.3.1 - 1

 19.3.2 Data Transports and Semantics

 RPC deals with the specification and interpretation of messages, not with
 the method used to pass messages from one process to the other. It does
 not depend on services provided by specific transport protocols. Although
 specific semantics, or meanings, are not attached to remote procedures or
 their execution, certain semantics can be inferred from the protocol of
 the underlying data transport that is used.

 For example, passing RPC messages with the UDP/IP data transport is
 unreliable. If the caller retransmits RPC call messages after short
 timeouts, the only thing it can infer from no reply message is that the
 remote procedure was executed zero or more times (and from a reply
 message, one or more times). In contrast, passing RPC messages with
 TCP/IP is reliable. No reply message means the remote procedure was
 executed one time at most, and a reply message means that the remote
 procedure was executed exactly once.

Programming Tools and Interfaces
Data Transports and Semantics

¦ Copyright IBM Corp. 1985, 1991
19.3.2 - 1

 19.3.3 Binding and Rendezvous Independence

 RPC does not bind a client to a service as part of its protocol. This
 required function is left up to a higher level software. However, the
 network software can use RPC to accomplish the tasks involved with binding
 clients to services.

Programming Tools and Interfaces
Binding and Rendezvous Independence

¦ Copyright IBM Corp. 1985, 1991
19.3.3 - 1

 19.3.4 Message Authentication

 The RPC protocol provides the fields required for a client to identify
 itself to a service, and for a service to identify itself to the client.
 The contents of RPC authentication parameters for these fields are
 determined by the type, sometimes called flavor, of the authentication
 used by the server and the client. A server can support multiple types of
 authentication at one time.

 You can build additional security and access controls on top of the
 message authentication.

Programming Tools and Interfaces
Message Authentication

¦ Copyright IBM Corp. 1985, 1991
19.3.4 - 1

 19.3.5 The RPC Protocol

 RPC is primarily a tool for calling remote procedures. By providing a
 unique specification for calling the remote procedures, RPC can match a
 reply message to each request (or call) message.

 Each RPC call message contains the following unsigned fields to uniquely
 identify the procedure to be called:

 � Remote program numbe
 � Remote program version numbe
 � Remote procedure number

 Assigning Program Numbers to Protocols: Program numbers are assigned in
 groups of 0x20000000 (536870912) as shown in Figure 19-1:

 +--+
 ¦ Figure 19-1. How to Assign Program Numbers ¦
 +--¦
 ¦ Program Number ¦ How Assigned ¦ Use ¦
 +----------------------+----------------+--------------------------------¦
 ¦ 0 - 1fffffff ¦ Defined by ¦ System authority (the product ¦
 ¦ ¦ system ¦ licensor) administers this ¦
 ¦ ¦ authority ¦ first group of numbers. This ¦
 ¦ ¦ ¦ group should be identical for ¦
 ¦ ¦ ¦ all system customers. ¦
 +----------------------+----------------+--------------------------------¦
 ¦ 20000000 - 3fffffff ¦ Defined by ¦ Use this group for ¦
 ¦ ¦ user ¦ applications you develop and ¦
 ¦ ¦ ¦ for debugging new programs. ¦
 +----------------------+----------------+--------------------------------¦
 ¦ 40000000 - 5fffffff ¦ Transient ¦ Use the third group for ¦
 ¦ ¦ ¦ applications that generate ¦
 ¦ ¦ ¦ program numbers dynamically. ¦
 +--+

 Assigning Version Numbers to Programs: As programs evolve into more
 stable and mature protocols, version numbers are assigned. The first
 implementation of a remote program is usually designated as version number
 1.

 The version number identifies which version of the protocol the caller is
 using. Version numbers make it possible to use old and new protocols
 through the same server.

 Assigning Procedure Numbers to Programs: The procedure numbers are
 documented in each program's protocol specification. For example, a file
 service protocol's specification can list the read procedure as procedure
 number 5 and write as procedure number 12.

Programming Tools and Interfaces
The RPC Protocol

¦ Copyright IBM Corp. 1985, 1991
19.3.5 - 1

 19.3.6 Remote Procedure Call Language (RPCL)

 RPC uses the Remote Procedure Call Language (RPCL) as the input language
 to its protocols and routines. RPCL specifies the data types used by RPC
 and generates the XDR routines that standardize their representation.

 In order to implement the service protocols and routines, the RPCL input
 is compiled into the corresponding C language code using the rpcgen
 command. The C code is compiled by converting the RPCL definitions to C
 language definitions and placing them in a header file. The rpcgen
 command also compiles the corresponding XDR routine that serializes the
 protocol. The RPCL input can contain comments and preprocessor
 directives, but rpcgen ignores comments in the text and copies the
 directives to the output header file without interpreting them. For more
 information on the rpcgen command, see AIX Operating System Commands
 Reference.

 The following section contains brief definitions of the RPCL syntax
 intended to help you understand RPCL. These definitions are not exact
 statements of the language protocols.

 Primitive Data Types: RPCL uses the following primitive data types:

 char A single character value. A char value can accept a sign
 (positive or negative).

 unsigned_char A single character value on which a sign extension cannot
 occur.

 int An integer or numerical representation.

 unsigned_int An integer value that is not negative and has the same
 number of bits as an int.

 long An integer value that has the same or a larger number of
 bits as an int.

 unsigned_long An integer value that is not negative and has the same or a
 larger number of bits as an unsigned_int.

 short An integer value that has the same or a smaller number of
 bits as an int.

 unsigned_short An integer value that is not negative and has the same or a
 smaller number of bits as an unsigned_int.

 float Single floating-point number value. A single floating-point
 number is a number that contains an exponent value. It can
 also contain a fraction.

 double A floating-point number value that has the same or a larger
 number of bits as a float.

 void No data structure. The void declarations can appear only
 inside union and program definitions.

 bool Boolean value. The rpcgen command converts bool
 declarations to int declarations in an output header file.

 Note: The prefix unsigned can be shortened to u_ so the data types can be

Programming Tools and Interfaces
Remote Procedure Call Language (RPCL)

¦ Copyright IBM Corp. 1985, 1991
19.3.6 - 1

 abbreviated as follows: u_char, u_int, u_long, and u_short.

 Defining Other Data Types: When you use RPCL data declarations, you
 cannot declare multidimensional arrays. You cannot point to pointers
 inline, but you can declare them with typedef statements. In addition,
 you can declare opaque data and strings as vectors. The vector
 declaration for opaque data is as follows:

 opaque objectident +
 [size]

 A vector resulting from an opaque data declaration is compiled in the
 output header file as a character array of the size, in bytes, specified
 by the size parameter. Do not confuse this array declaration with the
 declaration of character sizes of XDR characters because the XDR
 characters are defined as 32-bits. The vector declaration for string data
 is as follows:

 string objectident [maxsize]

 The maxsize parameter specifies the maximum size, in bytes, of the vector
 representing the string. If you do not specify maxsize, there is no limit
 to the maximum length of the string. String declarations are compiled
 into a character string pointer that points to the object. The character
 string appears in the following form:

 string *object-ident

 Structure and Type Definitions: The only way to generate an XDR routine
 is to define a data type. For example, if you define a data type named
 zetype, an XDR routine called xdr_zetype is generated to serialize it.
 You cannot nest data type definitions. Nesting them can cause the rpcgen
 command to fail when it tries to compile the C code for the definition.

 Declaring Arbitrary Types with typedef: The typedef declarations are
 similar to the typedefs in the C language. They take the following simple
 declaration form:

 typedef declaration ;

 The declaration parameter contains the typename and objectident parts from
 the simple declaration form. The typename parameter specifies the name of
 the data type from which the new data type is derived. The objectident
 parameter specifies the name of the new data type.

 Declaring Enumerations: The enumeration-def declarations are similar to
 their C language counterparts. They take the following form:

 enum enumident {
 enumlist
 };

 enumlist:
 enumsymbol-ident [= assignment]
 enumsymbol-ident [= assignment], enumlist

 The assignment parameter is an integer or a symbolic constant. If there
 is no explicit assignment, the implicit assignment is the value of the
 previous enumeration plus 1. If not explicitly assigned, the first

Programming Tools and Interfaces
Remote Procedure Call Language (RPCL)

¦ Copyright IBM Corp. 1985, 1991
19.3.6 - 2

 enumeration receives the value 0.

 Declaring Structures: The structure-def declarations are similar to their
 C language counterparts. They take the following form:

 struct struct-ident {
 declaration-list
 };

 declaration-list:
 declaration ;
 declaration ; declaration-list

 Declaring Variable Length Arrays: The variable-length-array-def
 declarations are unique to RPCL. They take the following form:

 array array-ident {
 unsigned length-identifer ;
 vector-declaration ;
 };

 A variable length array is similar to a structure. The following example
 shows a variable length array definition:

 array mp_int {
 unsigned len;
 short val[MAX_MP_LENGTH];
 };

 compiled into the following structure definition:

 struct mp_int {
 unsigned len;
 short *val;
 };
 typedef struct mp_int mp_int;

 Declaring Discriminated Unions: The discriminated-union-def declarations
 differ from the standard C union. The discriminated unions are unions
 that have a value that is added as an arm of the union to specify a
 particular object. RPCL discriminated union definitions take the
 following form:

 union union-ident switch (discriminant-declaration) {
 case-list
 [default : declaration ;]
 };

 case-list:
 case case-ident : declaration ;
 case case-ident : declaration ; case-list
 discriminant-declaration:
 declaration

 The union definition appears as a cross between a C union and a C switch.
 The following is an example of a union definition:

 --

 union net_object switch (net_kind kind) {

Programming Tools and Interfaces
Remote Procedure Call Language (RPCL)

¦ Copyright IBM Corp. 1985, 1991
19.3.6 - 3

 case MACHINE:
 struct sockaddr_in sin;
 case USER:
 int uid;
 default:
 string whatisit;
 };

 --

 compiled into the following:

 --

 struct net_object {
 net_kind kind;
 union {
 struct sockaddr_in sin;
 int uid;
 char *whatisit;
 } net_object;
 {;
 typedef struct net_object net_object;

 --

 Note that the output structure's union component name is the same as the
 data type name.

 Declaring Program Definitions: The program-def declarations do not define
 data type. They define information used by the client programs to
 reference remote procedures. The program-defs take the following form:

 program program-ident {
 version-list
 } = program-number ;

 version-list:
 version
 version version-list

 version:
 version version-ident {
 procedure-list
 } = version-number ;

 procedure-list:
 procedure-declaration
 procedure-declaration procedure-list

 procedure-declaration:
 type-name procedure-ident +
 (type-name) = procedure-number;

 Client programs use program definitions from these declarations to
 reference the remote procedures associated with a user commands execution.
 When a program-def is compiled, it becomes a #define statement that
 identifies a remote procedure. When the server receives the local

Programming Tools and Interfaces
Remote Procedure Call Language (RPCL)

¦ Copyright IBM Corp. 1985, 1991
19.3.6 - 4

 procedure, it matches the function of the procedure to an existing C
 function of the same name. Although the C function has the same name, it
 appears in lowercase letters and can be followed by a version number.

 Note: XDR recursively frees the argument after getting the results from
 your local procedure, so be sure to copy from the argument any data you
 need between calls.

 The following example illustrates the use of the program-def declarations.
 Suppose you wanted to create a server that can get or set the date. You
 can use program-def declarations to identify the remote procedures the
 program needs to access. The program-def declaration for this example
 could appear as follows:

 --

 program DATE_PROG {
 version DATE_VERS {
 date DATE_GET(timezone) = 1;
 void DATE_SET(date) = 2;
 } = 1;
 } = 100;

 --

 This compiles in the header file as the following:

 #define DATE_PROG 100
 #define DATE_VERS 1
 #define DATE_GET 1
 #define DATE_SET 2

 In the example, the local procedure defined by #define DATE_GET has the
 following form:

 date *
 date_get_1(tz)
 timezone *tz;
 {
 static date d;

 return(&d);
 }

Programming Tools and Interfaces
Remote Procedure Call Language (RPCL)

¦ Copyright IBM Corp. 1985, 1991
19.3.6 - 5

 19.3.7 Defining Arbitrary Data Types with eXternal Data Representation (XDR)

 RPC handles arbitrary data structures in the remote procedure call message
 data by converting the structures to a network standard called eXternal
 Data Representation (XDR) before sending them through the system. The
 process of converting data from a machine's representation to the XDR
 format is called serializing. As data is serialized, the size of each
 type is set to allow the data to be shared over the network independent of
 machine type or structure alignment algorithm. XDR serializing defines
 data externally in memory, allowing other functions using the same data to
 access the definitions.

 The reverse process of serializing is called deserializing. This converts
 the message data back to the original machine representation. XDR
 converts data quantities in multiples of 4 bytes when deserializing.

 XDR routines are not direction-dependent. The same routines can be called
 to serialize and deserialize data types.

 XDR routines return a non-zero number (or the value for true in the C
 language) upon successful completion. They return zero if the
 serialization or deserialization is not successful.

 Data type parameters in RPC calls can be supplied from XDR's built-in
 routines, or from routines that you create. XDR contains the following
 set of built-in routines for the primitive data types:

 xdr_int()
 xdr_u_int()
 xdr_long()
 xdr_u_long()
 xdr_short()
 xdr_u_short()
 xdr_bool()
 xdr_enum()
 xdr_string()

 Note: For specific information about these routines, see AIX Operating
 System Technical Reference.

 Users can create their own XDR routine to serialize a data type that they
 have defined. For example, you can define a data type called simple with
 a structure declaration as shown in the following:

 --

 struct simple {
 int a;
 short b;
 } simple;

 --

 In the simple structure, the parameters have integer and short integer
 values.

 The corresponding XDR structure could be created as follows:

 --

Programming Tools and Interfaces
Defining Arbitrary Data Types with eXternal Data Representation (XDR)

¦ Copyright IBM Corp. 1985, 1991
19.3.7 - 1

 #include <rpc/rpc.h>

 xdr_simple(xdrsp, simplep)
 XDR *xdrsp;
 struct simple *simplep;
 {
 if (!xdr_int(xdrsp, &simplep->a))
 return (0);
 if (!xdr_short(xdrsp, &simplep->b))
 return (0);
 return (1);
 }

 --

 Next, you can use the simple structure to call a remote procedure as shown
 in the following:

 --

 callrpc (hostname, prognum, +
 versnum, procnum,
 xdr_simple, &simple ...);

 --

 Note: Programming with the callrpc routine is discussed in a later
 section of this book. For detailed information on callrpc and its
 parameters, see AIX Operating System Technical Reference.

 In addition to the primitive data type routines, XDR also includes the
 routines for the following:

 xdr_array() Arrays of arbitrary elements of fixed length.

 xdr_bytes() Variable arrays of character bytes.

 xdr_reference() Pointers to other structures within structures.

 xdr_union() Discriminated unions which are comprised of a C language
 union and an enumerated value that represents an arm of the
 union.

 Note: For specific information on these routines, see AIX Operating
 System Technical Reference.

 These routines cover the constructed data types, which are more complex
 than the primitive data types.

 XDR does not provide a routine for variable length arrays. To send a
 variable array of integers, the following structure can be defined:

 --

 struct varintarr {
 int *data;
 int arrlnth;

Programming Tools and Interfaces
Defining Arbitrary Data Types with eXternal Data Representation (XDR)

¦ Copyright IBM Corp. 1985, 1991
19.3.7 - 2

 } arr;

 --

 The xdr_varintarr() routine is defined as follows:

 --

 xdr_varintarr (xdrsp, arrp)
 XDR *xdrsp;
 struct varintarr *arrp;
 {
 xdr_array(xdrsp, &arrp->data, &arrp->arrlnth, MAXLEN,
 sizeof(int), xdr_int);
 }

 --

 The corresponding XDR routine takes as parameters:

 � The XDR stream handle. The XDR stream handle identifies the XD
 stream where data objects are serialized to XDR format and
 deserialized back into machine representation.

 � Pointer to the data in the array. This is also where the dat
 representation is placed for future use.

 � Pointer to the size of the array

 � Maximum length of the array allowed

 � Size of each array element

 � The XDR routine that handles each array element

 With the variable array of integers defined, the following remote
 procedure call can be made:

 --

 callrpc (hostname, prognum, +
 versnum, procnum,
 xdr_varintarr, &arr ...);

 --

 Note: Programming with callrpc is discussed in a later section of this
 book. For detailed information on callrpc and its parameters, see AIX
 Operating System Technical Reference. See the XDR library section of AIX
 Operating System Technical Reference for information on XDR routines.

 Subtopics
 19.3.7.1 Allocating Memory With eXternal Data Representation (XDR)

Programming Tools and Interfaces
Defining Arbitrary Data Types with eXternal Data Representation (XDR)

¦ Copyright IBM Corp. 1985, 1991
19.3.7 - 3

 19.3.7.1 Allocating Memory With eXternal Data Representation (XDR)

 In addition to their input and output functions, XDR routines allocate
 memory. For this reason, the second parameter of XDR routines contains a
 pointer to the object instead of the object itself. In the case of the
 constructed data types, the sizes of objects are specified and placed in
 structures that are pointed to by the second parameter.

 Allocating and freeing memory is usually not a concern unless a routine
 specifically directs it. However, a simplified example of memory
 allocation is shown below. For more information, see the XDR section in
 AIX Operating System Technical Reference.

 In the following example, the xdr_chararr1 routine deals with a fixed
 array of bytes with the length SIZE:

 --

 xdr_chararr1(xdrsp, chararr)
 XDR *xdrsp;
 char chararr[];
 {

 char *p;
 int len;

 p = chararr;
 len = SIZE;
 return (xdr_bytes(xdrsp, &p, &len, SIZE));
 }

 --

 It can be called from a server using the following:

 --

 char chararr[SIZE];
 svc_getargs(transp, xdr_chararr1, chararr);

 --

 where chararr has already allocated space.

 If you want XDR to allocate the memory space, the routine can be written
 as follows:

 --

 xdr_chararr2 (xdrsp, chararrp)
 XDR *xdrsp;
 char **chararrp;
 {
 int len;

 len = SIZE;
 return (xdr_bytes(xdrsp, charrarrp, &len, SIZE));
 }

Programming Tools and Interfaces
Allocating Memory With eXternal Data Representation (XDR)

¦ Copyright IBM Corp. 1985, 1991
19.3.7.1 - 1

 --

 The RPC call can look like the following:

 --

 char *arrptr;
 arrptr = NULL;
 svc_getargs(transp, xdr_chararr2, &arrptr);
 svc_freeargs(transp, xdr_chararr2, &arrptr);

 --

 The svc_freeargs routine frees the character array.

 For more information about the XDR routines, see the XDR library section
 of AIX Operating System Technical Reference.

Programming Tools and Interfaces
Allocating Memory With eXternal Data Representation (XDR)

¦ Copyright IBM Corp. 1985, 1991
19.3.7.1 - 2

 19.4 Authenticating Remote Procedure Calls

 RPC servers are configured to contain the information to authenticate all
 remote procedure calls made with RPC routines. When remote procedure
 calls are made, the caller sends authentication parameters with the
 routine as identification. Authentication is a means of verifying the
 user of an information system or resource. You can associate different
 forms, sometimes called flavors, of authentication with RPC clients just
 as you can set different transport protocols (UDP/IP and TCP/IP) for
 message delivery when you create RPC clients and servers. The default
 authentication parameter is the null value or can be set by the
 authunix_none routine.

 Subtopics
 19.4.1 Authenticating the Client
 19.4.2 Authenticating the Server

Programming Tools and Interfaces
Authenticating Remote Procedure Calls

¦ Copyright IBM Corp. 1985, 1991
19.4 - 1

 19.4.1 Authenticating the Client

 When a caller creates a new RPC client handle, the routine returns the
 authentication handle declaration as the following:

 clnt->cl_auth = authnone_create ();

 You can set the RPC client authentication by setting the statement after
 creating the RPC client handle to the appropriate routine. For example,
 you can set the client authentication to be the default AIX style by the
 following entry:

 clnt->cl_auth = authunix_create_default();

 This causes each RPC call associated with the client handle specified by
 clnt to carry the following authentication credentials structure:

 --

 /*
 * Unix style credentials.
 */
 struct authunix_parms {
 u_long aup_time; /* credentials creation time */
 char *aup_machname; /* host name where client is */
 int aup_uid; /* client's UNIX effective uid */
 int aup_gid; /* client's current group id */
 u_int aup_len; /* element length of aup_gids */
 int *aup_gids; /* array of groups user is in */
 };

 --
 Figure 19-2. Example of Authentication Credentials Structure

 The fields in the credentials structure are set when the
 authunix_create_default routine invokes the appropriate system calls.

 The user who created the RPC authentication is responsible for destroying
 it to conserve memory. Use the following routine to free space used by
 the authentication:

 auth_destroy(clnt->cl_auth);

Programming Tools and Interfaces
Authenticating the Client

¦ Copyright IBM Corp. 1985, 1991
19.4.1 - 1

 19.4.2 Authenticating the Server

 The RPC service package passes authentication parameters as opaque data.
 This means that the structures are passed as arbitrary types without
 interpretations. To understand the authentication data that is passed,
 examine the typical structure of an RPC request that follows:

 Note: The comments to the side indicate the definition of the parameter.

 --

 struct svc_req {
 u_long rq_prog; /* service program number */
 u_long rq_vers; /* service protocol version number */
 u_long rq_proc; /* desired procedure number */
 struct opaque_auth
 rq_cred; /* raw credentials from wire */
 caddr_t rq_clntcred; /* credentials that specify read only */
 };

 --

 The rq_cred parameters are mostly opaque to the programmer. The exception
 is the style of authentication used.

 The following fields can be set by the programmer:

 --

 struct opaque_auth {
 enum_t oa_flavor; /* style of credentials */
 caddr_t oa_base; /* address of more auth stuff */
 u_int oa_length; /* not to exceed MAX_AUTH_BYTES */
 };

 --

 The service implementer can inspect the request's rq_cred.oa_flavor to
 determine which style of authentication the caller used. The request's
 rq_clntcred field is NULL or points to a structure that corresponds to a
 supported style of authentication credentials.

 Consider the following regarding server authentication:

 � It is not necessary to check the authentication parameters associate
 with the nullproc procedure number since it means the procedure is
 number zero.

 � If the authentication parameter's type cannot be matched on you
 server, call the svcerr_weakauth routine.

 � The service protocol itself should return the information regardin
 denied access.

 � RPC does not use an individual service's access controls. Eac
 service must implement its own access control policies and reflect
 these policies as a return value in its protocol.

Programming Tools and Interfaces
Authenticating the Server

¦ Copyright IBM Corp. 1985, 1991
19.4.2 - 1

 The remote users service example shown in Figure 19-3 computes the results
 from the remote procedure call that requests the total number of remote
 users minus the user identified by UID 16.

 --

 #include <stdio.h>
 #include <rpc/rpc.h>
 #include <utmp.h>
 #include <rpcsvc/rusers.h>

 nuser(rqstp, transp)
 struct svc_req *rqstp;
 SVCXPRT *transp;
 {
 struct authunix_parms *unix_cred;
 int uid;
 unsigned long nusers;

 /*
 * we don't care about authentication for null proc
 */
 if (rqstp->rq_proc == NULLPROC) {
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, "can't reply to RPC call\n");
 exit(1);
 }
 return;
 }
 /*
 * now get the uid
 */
 switch (rqstp->rq_cred.oa_flavor) {
 case AUTH_UNIX:
 unix_cred = (struct authunix_parms *)rqstp->rq_clntcred;
 uid = unix_cred->aup_uid;
 break;

 case AUTH_NULL:
 default:
 svcerr_weakauth(transp);
 return;
 }
 switch (rqstp->rq_proc) {
 case RUSERSPROC_NUM:
 /*
 * make sure caller is allowed to call this proc
 */
 if (uid == 16) {
 svcerr_systemerr(transp);
 return;
 }
 /*
 * code here to compute the number of users
 * and put in variable nusers
 */
 if (!svc_sendreply(transp, xdr_u_long, &nusers)){
 fprintf(stderr, "can't reply to RPC call\n");
 exit(1);
 }

Programming Tools and Interfaces
Authenticating the Server

¦ Copyright IBM Corp. 1985, 1991
19.4.2 - 2

 return;
 default:
 svcerr_noproc(transp);
 return;
 }
 }

 --
 Figure 19-3. Remote Users Service Example

Programming Tools and Interfaces
Authenticating the Server

¦ Copyright IBM Corp. 1985, 1991
19.4.2 - 3

 19.5 Special Topics

 This section discusses certain aspects related to RPC functions.

 Subtopics
 19.5.1 The select Procedure on the Server Side
 19.5.2 Broadcast RPC
 19.5.3 Using Batching
 19.5.4 Using the inetd Daemon to Start a Server

Programming Tools and Interfaces
Special Topics

¦ Copyright IBM Corp. 1985, 1991
19.5 - 1

 19.5.1 The select Procedure on the Server Side

 A select procedure allows you to poll devices, that is, read to see if
 there is data present and continue regular processing if not. For
 example, a process can execute RPC requests while periodically
 interrupting regular processing to update a data structure. The process
 sets an alarm signal before calling the svc_run routine. If the process'
 other activity involves waiting for a file descriptor, the svc_run call
 does not work. Figure 19-4 shows the code for svc_run:

 --

 #include <errno.h>
 #include <rpc/rpc.h>
 void
 svc_run()
 {
 int readfds;

 for (;;) {
 readfds = svc_fds;
 switch (select(32, &readfds, NULL, NULL, NULL)) {

 case -1:
 if (errno == EINTR)
 continue;
 perror("rstat: select");
 return;
 case 0:
 break;
 default:
 svc_getreq(readfds);
 }
 }
 }

 --
 Figure 19-4. Code for the Library Routine svc_run

 If you identify the file descriptors of the sockets for the programs for
 which you are waiting, you can bypass the svc_run routine and call the
 svc_getreq routine directly.

 See the RPC Service Routines section in AIX Operating System Technical
 Reference for information on RPC library routines.

Programming Tools and Interfaces
The select Procedure on the Server Side

¦ Copyright IBM Corp. 1985, 1991
19.5.1 - 1

 19.5.2 Broadcast RPC

 With RPC, you can broadcast remote procedure calls across the network.
 When you broadcast data, it is transmitted to all servers listening at the
 port or ports the data is transmitted on. This means clients do not have
 to depend on a particular server to answer requests. Clients can also
 broadcast remote procedure calls in order to receive more than one answer
 to a service request.

 Broadcast RPC is only supported by transport protocols that deliver
 information in packet form, such as UDP/IP.

 Broadcast RPC filters out all unsuccessful responses. The user does not
 know if calls were discarded or not. For example, if a mismatch between
 the broadcast and remote service versions occurs, the responses are
 filtered out.

 Broadcast messages are sent through the portmap daemon. The portmap
 daemon program, sometimes called the portmapper runs on the local servers
 to map RPC program program numbers to the ports that service each
 procedure. RPC can only access broadcast service requests that are
 registered with their portmap daemon. The portmap daemon, in conjunction
 with standard RPC protocols, is required to use broadcast RPC.

 Figure 19-5 shows an example of broadcast RPC:

 --

 #include <rpc/pmap_clnt.h>

 enum clnt_stat clnt_stat;

 clnt_stat =
 clnt_broadcast(prog, vers, proc, xargs, argsp, xresults,
 resultsp, eachresult)
 u_long prog; /* program number */
 u_long vers; /* version number */
 u_long proc; /* procedure number */
 xdrproc_t xargs; /* xdr routine for args */
 caddr_t argsp; /* pointer to args */
 xdrproc_t xresults; /* xdr routine for results */
 caddr_t resultsp; /* pointer to results */
 bool_t (*eachresult)(); /* call with each result gotten */

 --
 Figure 19-5. Example of broadcast RPC

 The procedure eachresult is called for each valid result. It returns a
 boolean expression that indicates whether or not the client wants more
 responses, as the following example shows:

 --

 bool_t done;
 done =
 eachresult(resultsp, raddr)
 caddr_t resultsp;
 struct sockaddr_in *raddr; /* addr of responding machine */

Programming Tools and Interfaces
Broadcast RPC

¦ Copyright IBM Corp. 1985, 1991
19.5.2 - 1

 --

 If done is TRUE, broadcasting stops and clnt_broadcast returns
 successfully. Otherwise, the routine waits for another response. The
 request is rebroadcast after waiting a few seconds. If no response comes
 back, the routine returns with RPC_TIMEDOUT. To interpret clnt_stat
 errors, feed the error code to the clnt_perrno routine.

Programming Tools and Interfaces
Broadcast RPC

¦ Copyright IBM Corp. 1985, 1991
19.5.2 - 2

 19.5.3 Using Batching

 When you use RPC, the client sends a call message and waits for servers to
 reply. RPC batch facilities allow clients to continue processing while
 waiting for a response from a server.

 When you use batching, you can place RPC messages in a pipeline of calls
 to a server. The pipeline of calls is carried on a reliable transport
 such as TCP/IP. RPC batching is more efficient than single call messages
 because:

 � The client can continue to generate new calls while the serve
 executes previous ones.

 � TCP/IP can send many call messages to the server in one write system
 call.

 Note: No response is required from the server for each call in the
 pipeline.

 Figure 19-7 shows an example of RPC batching with TCP/IP delivery. It has
 two calls that create strings. One call returns void results. The other
 call does not return results. Note that you must have the file windows.h
 in the directory /usr/include/rpcsvc. Figure 19-6 shows the contents of
 the file /usr/include/rpcsvc/windows.h.

 --

 Constants for the WINDOWS example RPC program
 /* Program and version numbers */
 #define WINDOWPROG ((u_long)100099)
 #define WINDOWVERS ((u_long)1)

 /* Procedure numbers */
 #define RENDERSTRING ((u_long)1)
 #define RENDERSTRING_BATCHED ((u_long)2)

 --
 Figure 19-6. Constants for the WINDOWS example RPC program

 --

 #include <stdio.h>
 #include <rpc/rpc.h>
 #include <rpcsvc/windows.h>

 void windowdispatch();

 main()
 {
 SVCXPRT *transp;

 transp = svctcp_create(RPC_ANYSOCK, 0, 0);
 if (transp == NULL){
 fprintf(stderr, "can't create an RPC server\n");
 exit(1);
 }
 pmap_unset(WINDOWPROG, WINDOWVERS);

Programming Tools and Interfaces
Using Batching

¦ Copyright IBM Corp. 1985, 1991
19.5.3 - 1

 if (!svc_register(transp, WINDOWPROG, WINDOWVERS,
 windowdispatch, IPPROTO_TCP)) {
 fprintf(stderr, "can't register WINDOW service\n");
 exit(1);
 }
 svc_run(); /* never returns */
 fprintf(stderr, "should never reach this point\n");
 }

 void
 windowdispatch(rqstp, transp)
 struct svc_req *rqstp;
 SVCXPRT *transp;
 {
 char *s = NULL;

 switch (rqstp->rq_proc) {
 case NULLPROC:
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, "can't reply to RPC call\n");
 exit(1);
 }
 return;
 case RENDERSTRING:
 if (!svc_getargs(transp, xdr_wrapstring, &s)) {
 fprintf(stderr, "can't decode arguments\n");
 svcerr_decode(transp);
 break;
 }

 /*
 * call here to render the string s
 */
 if (!svc_sendreply(transp, xdr_void, NULL)) {
 fprintf(stderr, "can't reply to RPC call\n");
 exit(1);
 }
 break;

 case RENDERSTRING_BATCHED:
 if (!svc_getargs(transp, xdr_wrapstring, &s)) {
 fprintf(stderr, "can't decode arguments\n");
 /*
 * we are silent in the face of protocol errors
 */
 break;

 }
 /*
 * call here to render string s, but send no reply!
 */
 break;
 default:
 svcerr_noproc(transp);
 return;
 }
 /*
 * now free string allocated while decoding arguments
 */
 svc_freeargs(transp, xdr_wrapstring, &s);

Programming Tools and Interfaces
Using Batching

¦ Copyright IBM Corp. 1985, 1991
19.5.3 - 2

 }

 --
 Figure 19-7. Example of a Client Using Batching to Create Strings Using
 RPC Batching with TCP/IP Delivery

 The server can have one procedure that takes the string and a boolean to
 indicate whether or not the procedure should respond.

 For a client to take advantage of batching, it must perform RPC calls on a
 TCP-based delivery. The calls must have the following attributes:

 � The result of the XDR routine must be zero NULL).

 � The RPC call timeout must be zero

 Figure 19-8 shows an example of a client using batching to create several
 strings. The batch is emptied when the client gets a null string. Note
 that you must have the file windows.h in the directory
 /usr/include/rpcsvc; see page 19.5.3 for a listing of the contents of this
 file.

 --

 #include <stdio.h>
 #include <rpc/rpc.h>
 #include <sys/socket.h>
 #include <sys/time.h>
 #include <netdb.h>

 #include <rpcsvc/window.h>

 main(argc, argv)
 int argc;
 char **argv;
 {
 struct hostent *hp;
 struct timeval pertry_timeout, total_timeout;
 struct sockaddr_in server_addr;
 int addrlen, sock = RPC_ANYSOCK;
 register CLIENT *client;
 enum clnt_stat clnt_stat;
 char buf[1000], *s = buf;

 /* initial as in Figure 19-19 in topic 19.7.3.2
 */
 server_addr.sin_family = AF_INET;
 if ((client = clnttcp_create(&server_addr,
 WINDOWPROG, WINDOWVERS, &sock, 0, 0)) == NULL) {
 perror("clnttcp_create");
 exit(-1);
 }
 total_timeout.tv_sec = 0;
 total_timeout.tv_usec = 0;
 while (scanf("%s", s) != EOF) {
 clnt_stat = clnt_call(client, RENDERSTRING_BATCHED,
 xdr_wrapstring, &s, NULL, NULL, total_timeout);
 if (clnt_stat != RPC_SUCCESS) {
 clnt_perror(client, "batched rpc");

Programming Tools and Interfaces
Using Batching

¦ Copyright IBM Corp. 1985, 1991
19.5.3 - 3

 exit(-1);
 }
 }
 /* now flush the pipeline
 */
 total_timeout.tv_sec = 20;
 clnt_stat = clnt_call(client, NULLPROC, xdr_void, NULL,
 xdr_void, NULL, total_timeout);
 if (clnt_stat != RPC_SUCCESS) {
 clnt_perror(client, "rpc");
 exit(-1);
 }
 clnt_destroy(client);
 }

 --
 Figure 19-8. Example of a Client Using Batching to Create Strings

 The server does not send a message to notify clients of failures.

Programming Tools and Interfaces
Using Batching

¦ Copyright IBM Corp. 1985, 1991
19.5.3 - 4

 19.5.4 Using the inetd Daemon to Start a Server

 You can start an RPC server from the inetd daemon. Change the original
 code to call the svcudp_create routine as follows:

 transp = svcudp_create (0);

 This way the inetd process passes a socket as a file descriptor with the
 value 0.

 In addition, call the svc_register routine as:

 svc_register (transp, PROGNUM, VERSNUM, service, 0);

 with the final flag as the value 0, since the program is already
 registered by the inetd daemon.

 Remember that if you want to exit from the server process and return
 control to the inetd daemon, you must explicitly exit because the svc_run
 routine never returns.

 The format of entries in the /etc/inetd.conf file for RPC service
 procedures is as follows:

 svc_name sunrpc_udp udp wait|nowait root +
 program prognum versnum

 The program field is the C code implementing the server, and prognum and
 versnum are the program and version numbers of the RPC procedure. The
 value udp can be replaced by tcp for TCP/IP based RPC services as follows:

 svc_name sunrpc_tcp tcp nowait

 The version number can be a range if the same program handles multiple
 versions, as shown in the following example:

 rstatd sunrpc_udp udp wait root /usr/etc/rpc.rstadt +
 rstatd 100001 1-2

Programming Tools and Interfaces
Using the inetd Daemon to Start a Server

¦ Copyright IBM Corp. 1985, 1991
19.5.4 - 1

 19.6 Example Applications

 The following sections show examples of specific network applications
 using RPC routines. The explanation accompanying each example briefly
 explains the use of each application. For a more detailed explanation of
 the routines and their parameters, see AIX Operating System Technical
 Reference.

 Subtopics
 19.6.1 Example of Using Version Numbers
 19.6.2 Example of Using Transmission Control Protocol/Internet Protocol (TCP/IP)
 19.6.3 Example of Using Callback Procedures

Programming Tools and Interfaces
Example Applications

¦ Copyright IBM Corp. 1985, 1991
19.6 - 1

 19.6.1 Example of Using Version Numbers

 An RPC version number identifies the version of an RPC program. It is
 possible to use several versions of the same program through a server in
 order to call a remote procedure. The following example shows how an RPC
 server can service two versions of the same program. In this example, the
 first version number of the program called RUSERSPROG is RUSERSVERS_ORIG.
 There is a new version of RUSERPROG that returns an unsigned short rather
 than an unsigned long. This version is named RUSERSVERS_SHORT. A server
 that supports both versions does a double register, as shown in
 Figure 19-9.

 --

 if (!svc_register(transp, RUSERSPROG, RUSERSVERS_ORIG,
 nuser, IPPROTO_TCP)) {
 fprintf(stderr, "can't register RUSER service\n");
 exit(1);
 }
 if (!svc_register(transp, RUSERSPROG, RUSERSVERS_SHORT,
 nuser, IPPROTO_TCP)) {
 fprintf(stderr, "can't register RUSER service\n");
 exit(1);
 }

 --
 Figure 19-9. A Server Supporting Two Versions of the Same Program

 A C program can be written to handle both versions. Figure 19-10 shows an
 example of a C program that handles both versions.

 --

 #include <stdio.h>
 #include <rpc/rpc.h>
 #include <utmp.h>
 #include <rpcsvc/rusers.h>

 nuser(rqstp, transp)
 struct svc_req *rqstp;
 SVCXPRT *transp;
 {
 unsigned long nusers;
 unsigned short nusers2;

 switch (rqstp->rq_proc) {
 case NULLPROC:
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, "can't reply to RPC call\n");
 exit(1);
 }
 return;
 case RUSERSPROC_NUM:
 /*
 * code here to compute the number of users
 * and put in variable nusers
 */
 nusers2 = nusers;
 if (rqstp->rq_vers != RUSERSVERS_ORIG)

Programming Tools and Interfaces
Example of Using Version Numbers

¦ Copyright IBM Corp. 1985, 1991
19.6.1 - 1

 return;
 if (!svc_sendreply(transp, xdr_u_long, &nusers)) {
 fprintf(stderr, "can't reply to RPC call\n");
 exit(1);
 } else
 if (!svc_sendreply(transp, xdr_u_short, &nusers2)) {
 fprintf(stderr, "can't reply to RPC call\n");
 exit(1);
 }
 return;
 default:
 svcerr_noproc(transp);
 return;
 }
 }

 --
 Figure 19-10. C Procedure Handling Two Versions of the Same Program

Programming Tools and Interfaces
Example of Using Version Numbers

¦ Copyright IBM Corp. 1985, 1991
19.6.1 - 2

 19.6.2 Example of Using Transmission Control Protocol/Internet Protocol (TCP/IP)

 In the following example, RPC uses the Transmission Control
 Protocol/Internet Protocol (TCP/IP) to carry messages between
 communicating programs. TCP/IP transports RPC messages in long streams of
 data. In Figure 19-11, the initiator of the remote procedure call takes
 its standard input and sends it to the server. The server lists it to
 standard output. This example also shows an XDR procedure that behaves
 differently on serialization than on deserialization.

 --

 /*
 * The xdr routine:
 * on decode, read from wire, write onto fp
 * on encode, read from fp, write onto wire
 */
 #include <stdio.h>
 #include <rpc/rpc.h>

 bool_t

 xdr_rcp(xdrs, fp)
 XDR *xdrs;
 FILE *fp;
 {
 unsigned long size;
 char buf[BUFSIZ], *p;

 if (xdrs->x_op == XDR_FREE)/* nothing to free */
 return 1;
 while (1) {
 if (xdrs->x_op == XDR_ENCODE) {
 if ((size = fread(buf, sizeof(char), BUFSIZ,
 fp)) == 0 && ferror(fp)) {
 fprintf(stderr, "can't fread\n");
 exit(1);
 }

 }
 p = buf;
 if (!xdr_bytes(xdrs, &p, &size, BUFSIZ))
 return 0;
 if (size == 0)
 return 1;
 if (xdrs->x_op == XDR_DECODE) {

 if (fwrite(buf, sizeof(char), size,
 fp) != size) {
 fprintf(stderr, "can't fwrite\n");
 exit(1);
 }
 }
 }
 }

 /*
 * The sender routines
 */
 #include <stdio.h>

Programming Tools and Interfaces
Example of Using Transmission Control Protocol/Internet Protocol (TCP/IP)

¦ Copyright IBM Corp. 1985, 1991
19.6.2 - 1

 #include <netdb.h>
 #include <rpc/rpc.h>
 #include <sys/socket.h>
 #include <sys/time.h>
 /* program and version numbers*/
 #define RCPPROG ((u_long)100100)
 #define RCPVERS ((u_long)1)

 /*Procedure nummbers*/
 #define RCPPROC_FP ((u_long)1)

 main(argc, argv)
 int argc;
 char **argv;
 {
 int err;

 if (argc < 2) {
 fprintf(stderr, "usage: %s servername\n", argv[0]);
 exit(-1);

 }
 if ((err = callrpctcp(argv[1], RCPPROG, RCPPROC_FP,
 RCPVERS, xdr_rcp, stdin, xdr_void, 0) != 0)) {
 extern bool_t xdr_rcp ();
 clnt_perrno(err);
 fprintf(stderr, "can't make RPC call\n");
 exit(1);
 }

 }
 callrpctcp(host, prognum, procnum, versnum,
 inproc, in, outproc, out)
 char *host, *in, *out;
 xdrproc_t inproc, outproc;

 {
 struct sockaddr_in server_addr;
 int socket = RPC_ANYSOCK;
 enum clnt_stat clnt_stat;
 struct hostent *hp;
 register CLIENT *client;
 struct timeval total_timeout;

 if ((hp = gethostbyname(host)) == NULL) {
 fprintf(stderr, "can't get addr for '%s'\n", host);
 exit(-1);
 }
 bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr,
 hp->h_length);
 server_addr.sin_family = AF_INET;
 server_addr.sin_port = 0;
 if ((client = clnttcp_create(&server_addr, prognum,
 versnum, &socket, BUFSIZ, BUFSIZ)) == NULL) {
 perror("rpctcp_create");
 exit(-1);

 }

Programming Tools and Interfaces
Example of Using Transmission Control Protocol/Internet Protocol (TCP/IP)

¦ Copyright IBM Corp. 1985, 1991
19.6.2 - 2

 total_timeout.tv_sec = 20;
 total_timeout.tv_usec = 0;
 clnt_stat = clnt_call(client, procnum,
 inproc, in, outproc, out, total_timeout);
 clnt_destroy(client);
 return (int)clnt_stat;
 }

 /*
 * The receiving routines
 */
 #include <stdio.h>
 #include <rpc/rpc.h>
 /*Program and version numbers*/
 #define RCPPROG ((u_long)100100)
 #define RCPVERS ((u_long)1)
 /*Procedure numbers*/
 #define RCPPROC_FP ((u_long)1)

 main()
 {
 register SVCXPRT *transp;
 extern void rcp_service ();
 if ((transp = svctcp_create(RPC_ANYSOCK,
 BUFSIZ, BUFSIZ)) == NULL) {
 fprintf("svctcp_create: error\n");
 exit(1);

 }
 pmap_unset(RCPPROG, RCPVERS);
 if (!svc_register(transp,
 RCPPROG, RCPVERS, rcp_service, IPPROTO_TCP)) {
 fprintf(stderr, "svc_register: error\n");
 exit(1);

 }
 svc_run(); /* never returns */
 fprintf(stderr, "svc_run should never return\n");
 }

 void
 rcp_service(rqstp, transp)
 register struct svc_req *rqstp;
 register SVCXPRT *transp;

 {
 extern bool_t xdr_rcp ();
 switch (rqstp->rq_proc) {
 case NULLPROC:
 if (svc_sendreply(transp, xdr_void, 0) == 0) {
 fprintf(stderr, "err: rcp_service");
 exit(1);

 }
 return;
 case RCPPROC_FP:
 if (!svc_getargs(transp, xdr_rcp, stdout)) {
 svcerr_decode(transp);

Programming Tools and Interfaces
Example of Using Transmission Control Protocol/Internet Protocol (TCP/IP)

¦ Copyright IBM Corp. 1985, 1991
19.6.2 - 3

 return;

 }
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, "can't reply\n");
 return;
 }
 exit(0);
 default:
 svcerr_noproc(transp);
 return;
 }
 }

 --
 Figure 19-11. Example of Using Transmission Control Protocol/Internet
 Protocol (TCP/IP)

Programming Tools and Interfaces
Example of Using Transmission Control Protocol/Internet Protocol (TCP/IP)

¦ Copyright IBM Corp. 1985, 1991
19.6.2 - 4

 19.6.3 Example of Using Callback Procedures

 A server can become a client and make a remote procedure call back to a
 client process. An RPC callback requires a program number on which to
 make the RPC call. Figure 19-12 shows how the gettransient routine
 generates a program number dynamically. The gettransient routine returns
 a valid program number in the transient range (see the table in "Assigning
 Program Numbers to Protocols" in topic 19.3.5), and registers the number
 with the portmap daemon, sometimes called the portmapper. It communicates
 only with the portmap daemon running on the same machine as the
 gettransient routine. The call to pmap_set is a test and set operation
 that tests whether a program number has already been registered, and
 reserves the number if not.

 --

 #include <stdio.h>
 #include <rpc/rpc.h>
 #include <sys/socket.h>
 #include <sys/in.h>

 gettransient(proto, vers, sockp)
 int proto, vers, *sockp;
 {
 static int prognum = 0x40000000;
 int s, len, socktype;
 struct sockaddr_in addr;
 switch(proto) {
 case IPPROTO_UDP:
 socktype = SOCK_DGRAM;
 break;
 case IPPROTO_TCP:
 socktype = SOCK_STREAM;
 break;
 default:
 fprintf(stderr, "unknown protocol type\n");
 return 0;
 }
 if (*sockp == RPC_ANYSOCK) {
 if ((s = socket(AF_INET, socktype, 0)) < 0) {
 perror("socket");
 return (0);
 }
 *sockp = s;
 }
 else
 s = *sockp;
 addr.sin_addr.s_addr = 0;
 addr.sin_family = AF_INET;
 addr.sin_port = 0;
 len = sizeof(addr);
 /*
 * may be already bound, so don't check for error
 */
 bind(s, &addr, len);
 if (getsockname(s, &addr, &len)< 0) {
 perror("getsockname");
 return (0);
 }
 while (!pmap_set(prognum++, vers, proto, ntohs(addr.sin_port)))

Programming Tools and Interfaces
Example of Using Callback Procedures

¦ Copyright IBM Corp. 1985, 1991
19.6.3 - 1

 continue;
 return (prognum-1);
 }

 --
 Figure 19-12. Example of Using a Callback Procedure

 The programs shown in Figure 19-13 and Figure 19-14 show how to make an
 RPC callback using the gettransient routine. The client makes an RPC call
 to the server, passes a transient program number, and waits to receive a
 callback from the server at that program number. The server registers the
 program EXAMPLEPROG, to receive the RPC call informing it of the callback
 program number. At some time (which in this example is when it receives
 SIGALRM), it sends a callback RPC call using the program number it
 received earlier.

 This program is included only as an example. The user should define the
 specific values.

 --

 /*
 * client
 */
 #include <stdio.h>
 #include <rpc/rpc.h>
 /*Example program and version numbers*/
 #define EXAMPLEPROG ((u_long)100101)
 #define EXAMPLEVERS ((u_long)1)
 /*Procedure number*/
 #define EXAMPLEPROC_CALLBACK ((u_long)1)

 int callback();
 char hostname[256];

 main(argc, argv)
 int argc;
 char **argv;
 {
 int x, ans, s;
 SVCXPRT *xprt;

 gethostname(hostname, sizeof(hostname));
 s = RPC_ANYSOCK;
 x = gettransient(IPPROTO_UDP, 1, &s);
 fprintf(stderr, "client gets prognum %d\n", x);
 if ((xprt = svcudp_create(s)) == NULL) {
 fprintf(stderr, "rpc_server: svcudp_create\n");
 exit(1);
 }
 /* protocol is 0 - gettransient() does registering
 */
 (void)svc_register(xprt, x, 1, callback, 0);
 ans = callrpc(hostname, EXAMPLEPROG, EXAMPLEVERS,
 EXAMPLEPROC_CALLBACK, xdr_int, &x, xdr_void, 0);

 if (ans != RPC_SUCCESS) {
 fprintf(stderr, "call: ");

Programming Tools and Interfaces
Example of Using Callback Procedures

¦ Copyright IBM Corp. 1985, 1991
19.6.3 - 2

 clnt_perrno(ans);
 fprintf(stderr, "\n");
 }
 svc_run();
 fprintf(stderr, "Error: svc_run shouldn't return\n");
 }
 callback(rqstp, transp)
 register struct svc_req *rqstp;
 register SVCXPRT *transp;
 {
 switch (rqstp->rq_proc) {
 case 0:
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, "err: callback\n");
 exit(1);
 }
 exit(0);
 case 1:
 if (!svc_getargs(transp, xdr_void, 0)) {
 svcerr_decode(transp);
 exit(1);
 }
 fprintf(stderr, "client got callback\n");
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, "err: callback\n");
 exit(1);
 }
 }
 }

 --
 Figure 19-13. Using the gettransient Routine with a Client

 This program is included only as an example. The user should define the
 specific values.

 --

 /*
 * server
 */
 #include <stdio.h>
 #include <rpc/rpc.h>
 #include <sys/signal.h>
 /*Example Program and version numbers*/
 #define EXAMPLEPROG ((u_long)100101)
 #define EXAMPLEVERS ((u_long)1)
 /*Procedure numbers*/
 #define EXAMPLEPROC_CALLBACK ((u_long)1)

 char *getnewprog();
 char hostname[256];
 int docallback();
 int pnum; /* program number for callback routine */

 main(argc, argv)
 int argc;
 char **argv;

Programming Tools and Interfaces
Example of Using Callback Procedures

¦ Copyright IBM Corp. 1985, 1991
19.6.3 - 3

 {
 gethostname(hostname, sizeof(hostname));
 registerrpc(EXAMPLEPROG, EXAMPLEVERS,
 EXAMPLEPROC_CALLBACK, getnewprog, xdr_int, xdr_void);
 fprintf(stderr, "server going into svc_run\n");
 signal(SIGALRM, docallback);
 alarm(10);
 svc_run();
 fprintf(stderr, "Error: svc_run shouldn't return\n");
 }

 char *
 getnewprog(pnump)
 char *pnump;
 {
 pnum = *(int *)pnump;
 return NULL;
 }

 docallback()
 {
 int ans;

 ans = callrpc(hostname, pnum, 1, 1, xdr_void, 0,
 xdr_void, 0);
 if (ans != 0) {
 fprintf(stderr, "server: ");
 clnt_perrno(ans);
 fprintf(stderr, "\n");
 }
 }

 --
 Figure 19-14. Using the gettransient Routine with a Server

Programming Tools and Interfaces
Example of Using Callback Procedures

¦ Copyright IBM Corp. 1985, 1991
19.6.3 - 4

 19.7 RPC Programming Levels

 The RPC interface is divided into the following three programming levels:

 � At the highest level, you can call RPC library routines directly in
 program. The RPC library routines take care of making the remote
 procedure calls they need to function.

 � At the middle level, you can directly use the registerrpc and callrpc
 routines to make and execute remote procedure calls. Use this level
 for most common RPC applications.

 � At the lowest level, you can work directly with sockets that transmit
 the RPC messages. In AIX, sockets are the mapping of port numbers to
 Internet addresses in order to create a unique identifier for a host
 machine. Use this level for more direct control, such as changing the
 defaults of RPC routines and manipulating the sockets.

 Subtopics
 19.7.1 Using the Highest Level
 19.7.2 Using Intermediate-Level RPC
 19.7.3 Using Low-Level RPC

Programming Tools and Interfaces
RPC Programming Levels

¦ Copyright IBM Corp. 1985, 1991
19.7 - 1

 19.7.1 Using the Highest Level

 When you use the highest level of RPC, you call RPC library routines to
 make the procedure calls in your programs. The library routines access
 RPC service procedures needed to make and execute the required remote
 procedures associated with a remote program. RPC is transparent to the
 programmer at this level because it resembles programming without the need
 to know RPC.

 When you use a library routine in a program, the program must be compiled
 using the rpcsvc library file. Compile the program with the following
 command:

 cc program.c -lrpcsvc

 The following table contains the RPC library routines available for
 inclusion in your programs.

 Routine Description

 getrpcport() Gets RPC port number servicing the requested
 procedure's function.

 rnusers() Returns number of users on remote machine.

 rusers() Returns information about users on remote machine.

 havedisk() Determines if remote machine has disk.

 rstat() Gets performance data from remote kernel.

 rwall() Writes to specified remote machines.

 getmaster() Gets name of Network Information Service (NIS) master
 server if NIS is being used to administer the system.

 yppasswd() Updates user password in NIS databases if NIS Pages is
 being used to administer the system.

 Figure 19-15 shows how to use the rnusers library routine to determine the
 number of users logged in to a remote machine.

 --

 #include <stdio.h>

 main(argc, argv)
 int argc;
 char **argv;
 {
 int num;

 if (argc < 2) {
 fprintf(stderr, "usage: rnusers hostname\n");
 exit(1);
 }
 if ((num = rnusers(argv[1])) < 0) {
 fprintf(stderr, "error: rnusers\n");
 exit(-1);

Programming Tools and Interfaces
Using the Highest Level

¦ Copyright IBM Corp. 1985, 1991
19.7.1 - 1

 }
 printf("%d users on %s\n", num, argv[1]);
 exit(0);
 }

 --
 Figure 19-15. Using the rnusers Library Routine in a Program

Programming Tools and Interfaces
Using the Highest Level

¦ Copyright IBM Corp. 1985, 1991
19.7.1 - 2

 19.7.2 Using Intermediate-Level RPC

 When you use intermediate-level RPC, you can work directly with the
 callrpc and registerrpc routines to make and execute remote procedure
 calls. The callrpc routine calls a remote procedure. The registerrpc
 routine matches the remote procedure number to its corresponding C
 language procedure.

 Access to a remote procedure is through the program number, version
 number, and procedure number. The program number defines a group of
 related remote procedures. Each program has a version number to allow
 minor changes to a program, such as adding a new related procedure,
 without assigning a new program number. Each of the program's related
 procedures has a procedure number that uniquely identifies it in the
 group. The program, version and procedure number related to each remote
 service procedure is documented by RPC. You must look up the information
 to call a remote service procedure.

 Subtopics
 19.7.2.1 Using the callrpc Routine
 19.7.2.2 Using the registerrpc Routine

Programming Tools and Interfaces
Using Intermediate-Level RPC

¦ Copyright IBM Corp. 1985, 1991
19.7.2 - 1

 19.7.2.1 Using the callrpc Routine

 Eight parameters are used to call a remote procedure with the callrpc
 routine. Besides the program, version and procedure numbers, the name of
 the remote machine on which the procedure resides must be identified. The
 next two parameters contain the arguments to the remote procedure call.

 There are two more parameters that identify the return value of the call.
 One return parameter contains the return value itself. If the callrpc
 routine succeeds, it returns the value 0. If the routine does not
 succeed, it returns an integer value that represents a client condition.
 The meaning of each return code is defined in the <rpc/clnt.h> header
 file. The other return parameter points to the location of the return
 value.

 Since internal machine data types can be represented differently on
 machines, you must supply the data type of the RPC argument as well as a
 pointer to the argument itself.

 For example, the RUSERSPROC_NUM function takes no arguments, resides on a
 network server, and returns an unsigned long data type value. When you
 use the callrpc routine to call the RUSERSPROC_NUM function, callrpc uses
 the xdr_u_long routine as its first return parameter. The second return
 parameter of callrpc points to a host machine's pointer that indicates
 where the return value associated with unsigned long is placed. Since the
 RUSERSPROC_NUM function takes no arguments, the xdr_void routine is the
 the argument parameter of callrpc.

 The callrpc routine tries several times to deliver the call message. If
 it repeatedly gets no reply, callrpc returns an error code transported by
 the User Datagram Protocol (UDP). The callrpc routine contains defaults
 which determine both the number of times callrpc tries to deliver a
 message and the use of UDP as the return value's transport protocol. See
 the callrpc routine in the RPC section of AIX Operating System Technical
 Reference for information on changing these values.

 Figure 19-16 shows how to use the callrpc routine in a program to
 determine the number of users logged in to a remote machine.

 --

 #include <stdio.h>
 #include <rpc/rpc.h>
 #include <utmp.h>
 #include <rpcsvc/rusers.h>

 main(argc, argv)
 int argc;
 char **argv;
 {
 unsigned long nusers;

 if (argc < 2) {
 fprintf(stderr, "usage: nusers hostname\n");
 exit(-1);
 }
 if (callrpc(argv[1],
 RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM,
 xdr_void, 0, xdr_u_long, &nusers) != 0) {
 fprintf(stderr, "error: callrpc\n");

Programming Tools and Interfaces
Using the callrpc Routine

¦ Copyright IBM Corp. 1985, 1991
19.7.2.1 - 1

 exit(1);
 }
 printf("%d users on %s\n", nusers, argv[1]);
 exit(0) ;
 }

 --
 Figure 19-16. Using callrpc to Determine Number of Remote Users

Programming Tools and Interfaces
Using the callrpc Routine

¦ Copyright IBM Corp. 1985, 1991
19.7.2.1 - 2

 19.7.2.2 Using the registerrpc Routine

 When network servers are booted, they register the RPC procedures they
 will handle with the portmap., and go into an infinite loop waiting to
 service remote procedure call requests from clients. The RPC procedures
 are registered by the portmapper using the registerrpc routine. The
 routine uses six parameters to register an RPC call. The first three
 parameters register the remote procedure's program, version, and procedure
 number. The fourth parameter registers the name of the C language
 procedure required to implement it. The last two parameters identify the
 data types of the procedure's input and output. (See the Remote Procedure
 Call section in AIX Operating System Technical Reference for information
 on the registerrpc routine.)

 The registerrpc routine uses the User Datagram Protocol (UDP/IP) as its
 data transport when it registers an RPC call with a server.

 Figure 19-17 shows how to use the registerrpc routine in a program to
 register RPC calls with the portmapper creating an association between a
 server and RPC program/procedure/version.

 --

 #include <stdio.h>
 #include <rpc/rpc.h>
 #include <utmp.h>
 #include <rpcsvc/rusers.h>

 extern char *nuser; /* This routine must be provided by the user*/

 main()
 {
 registerrpc(RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM,
 nuser, xdr_void, xdr_u_long);
 svc_run(); /* never returns */
 fprintf(stderr, "Error: svc_run returned!\n");
 exit(1);
 }

 --
 Figure 19-17. Using registerrpc to Register RPC Calls with a Portmapper

Programming Tools and Interfaces
Using the registerrpc Routine

¦ Copyright IBM Corp. 1985, 1991
19.7.2.2 - 1

 19.7.3 Using Low-Level RPC

 You can change the default values set for RPC routines and manipulate the
 sockets that transmit remote procedure calls by using the lower level of
 the RPC library. You should be familiar with sockets and their system
 calls to program with low-level RPC routines. See AIX Operating System
 TCP/IP User's Guide and AIX Operating System Technical Reference for
 information about sockets.

 You can use the lowest level of the RPC library to do the following:

 � To change to the Transmission Control Protocol/Internet Protoco
 (TCP/IP) data transport protocol from the default User Datagram
 Protocol/Internet Protocol (UDP/IP). UDP/IP transports packets of
 data that contain 8 kilobytes of data or less. TCP/IP transports the
 data in long streams of data.

 � To allocate and free memory while serializing (or deserializing
 message data with XDR (eXternal Data Representation) routines. You
 cannot free memory in the higher programming levels of RPC.

 � To perform authentication on a client or server by supplying o
 verifying credentials.

 Subtopics
 19.7.3.1 Using the svc_register Routine
 19.7.3.2 The Client Side of Low-Level RPC

Programming Tools and Interfaces
Using Low-Level RPC

¦ Copyright IBM Corp. 1985, 1991
19.7.3 - 1

 19.7.3.1 Using the svc_register Routine

 Calling the svc_register routine illustrates how low level RPC works.
 Figure 19-18 shows how to write a low-level RPC network application for
 determining the number of remote users logged in to a server by calling
 the svc_register routine.

 --

 #include <stdio.h>
 #include <rpc/rpc.h>
 #include <utmp.h>
 #include <rpcsvc/rusers.h>

 main()
 {

 SVCXPRT *transp;
 int nuser();

 transp = svcudp_create(RPC_ANYSOCK);
 if (transp == NULL){
 fprintf(stderr, "can't create an RPC server\n");
 exit(1);
 }
 pmap_unset(RUSERSPROG, RUSERSVERS);
 if (!svc_register(transp, RUSERSPROG, RUSERSVERS,
 nuser, IPPROTO_UDP)) {
 fprintf(stderr, "can't register RUSER service\n");
 exit(1);
 }
 svc_run(); /* never returns */
 fprintf(stderr, "should never reach this point\n");
 }
 nuser(rqstp, transp)
 struct svc_req *rqstp;
 SVCXPRT *transp;
 {
 unsigned long nusers;

 switch (rqstp->rq_proc) {
 case NULLPROC:
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, "can't reply to RPC call\n");
 exit(1);
 }
 return;
 case RUSERSPROC_NUM:
 /*
 * code here to compute the number of users
 * and put in variable nusers
 */
 if (!svc_sendreply(transp, xdr_u_long, &nusers)) {
 fprintf(stderr, "can't reply to RPC call\n");
 exit(1);
 }
 return;
 default:
 svcerr_noproc(transp);
 return;

Programming Tools and Interfaces
Using the svc_register Routine

¦ Copyright IBM Corp. 1985, 1991
19.7.3.1 - 1

 }
 }

 --
 Figure 19-18. Using svc_register, a Low-Level RPC Routine

 First, the server gets a transport handle, which is used for sending out
 RPC messages. The registerrpc routine uses the svcudp_create routine to
 get a UDP/IP handle. If you require a reliable protocol, you should call
 the svctcp_create routine. If the argument to the svcudp_create routine
 is RPC_ANYSOCK, the RPC library creates the socket. If you specify a
 different socket, it can be either bound or unbound. If you bind the
 socket to a port, the port numbers of svcudp_create and clntudp_create
 must match.

 When you make a clntudp_create call with an unbound socket, the system
 gets the port number from the portmap on the machine you are calling. The
 portmap is a daemon that keeps track of the port numbers of all registered
 RPC services and the servers that can receive them. If the portmap is not
 running or does not have a port that matches the remote procedure call,
 the call fails.

 Note: You can call the portmap directly if you prefer. Search the
 <rpc/pmap_prot.h> header file for the procedure numbers required to call
 the portmap.

 After creating a server transport handle, call the pmap_unset routine to
 erase the last entry for the program number associated with this remote
 procedure from the portmap tables so the procedure is identified by its
 new number.

 Next, the program number for the nusers routine is associated with the
 procedure nuser. The last argument to svc_register is usually the
 protocol that is being used. The default value is IPPROTO_UDP so you must
 change it to IPPROTO_TCP if you have created a new TCP/IP socket. The
 IPPROTO_UDP and IPPROTO_TCP are constants set in the <netinet/in.h> file.

 The user routine nuser must call and dispatch the appropriate XDR routines
 based on the procedure number. The user service routine nuser serializes
 the results and returns them to the caller using the svc_sendreply
 routine.

 See the RPC Service Routines section of AIX Operating System Technical
 Reference for information on RPC routines.

Programming Tools and Interfaces
Using the svc_register Routine

¦ Copyright IBM Corp. 1985, 1991
19.7.3.1 - 2

 19.7.3.2 The Client Side of Low-Level RPC

 On the client side, you can control the socket used to transport RPC data
 and the delivery protocol by using the clnt_call routine. This contrasts
 with using the callrpc routine in which you have no control over the
 parameters that set the socket and delivery protocol.

 The clnt_call routine takes a pointer to a client. You can supply values
 to the following parameters of clnt_call:

 � Client handl

 � Procedure number associated with the remote procedur

 � XDR routine for serializing the parameter

 � Pointer to the location of the parameter

 � XDR routine for deserializing the return valu

 � Pointer to location the return value is place

 � Time, in seconds, to wait for a reply

 The pointer to the client contains the transport protocol value. The
 callrpc routine automatically calls the clntudp_create routine to get the
 pointer. To specify TCP/IP as the delivery protocol, use the
 clnttcp_create routine.

 The parameters to the clntudp_create routine that can be changed are as
 follows:

 � Address and length of the serve

 � Remote procedure's program numbe

 � Remote procedure's version numbe

 � Amount of time the client waits between trie

 � Pointer to the socket

 The number of times the clnt_call routine tries to reach the server is
 determined by dividing the amount of time the client waits between tries
 by the clntudp_create timeout value.

 Include the clnt_destroy routine to deallocate space associated with the
 client's handle. It does not close the socket that was passed as a
 parameter to the clntudp_create routine. If there are multiple client
 handles using the same socket, you can close one handle without destroying
 the socket used by other handles.

 Figure 19-19 shows the low-level RPC code to call the nusers service from
 the server in Figure 19-18 in topic 19.7.3.1.

 --

 #include <stdio.h>
 #include <rpc/rpc.h>
 #include <utmp.h>

Programming Tools and Interfaces
The Client Side of Low-Level RPC

¦ Copyright IBM Corp. 1985, 1991
19.7.3.2 - 1

 #include <rpcsvc/rusers.h>
 #include <sys/socket.h>
 #include <sys/time.h>
 #include <netdb.h>

 main(argc, argv)
 int argc;
 char **argv;
 {
 struct hostent *hp;
 struct timeval pertry_timeout, total_timeout;
 struct sockaddr_in server_addr;
 int addrlen, sock = RPC_ANYSOCK;
 register CLIENT *client;
 enum clnt_stat clnt_stat;
 unsigned long nusers;

 if (argc < 2) {
 fprintf(stderr, "usage: nusers hostname\n");
 exit(-1);
 }
 if ((hp = gethostbyname(argv[1])) == NULL) {
 fprintf(stderr, "can't get addr for %s\n", argv[1]);
 exit(-1);
 }
 pertry_timeout.tv_sec = 3;
 pertry_timeout.tv_usec = 0;
 addrlen = sizeof(struct sockaddr_in);
 bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr,
 hp->h_length);
 server_addr.sin_family = AF_INET;
 server_addr.sin_port = 0;
 if ((client = clntudp_create(&server_addr, RUSERSPROG,
 RUSERSVERS, pertry_timeout, &sock)) == NULL) {
 clnt_pcreateerror("clntudp_create");
 exit(-1);
 }
 total_timeout.tv_sec = 20;
 total_timeout.tv_usec = 0;
 clnt_stat = clnt_call(client, RUSERSPROC_NUM, xdr_void,
 0, xdr_u_long, &nusers, total_timeout);
 if (clnt_stat != RPC_SUCCESS) {
 clnt_perror(client, "rpc");
 exit(-1);
 }
 clnt_destroy(client);
 }

 --
 Figure 19-19. Low-Level RPC Client Passing an RPC Program using UDP/IP

 If you want to make a stream connection, replace the clntudp_create
 routine with the clnttcp_create routine. Code the new entry as follows:

 clnttcp_create (&server_addr, prognum, versnum,
 &socket inputsize, outputsize);

 Notice that in the clnttcp_create routine, there are no timeout parameters

Programming Tools and Interfaces
The Client Side of Low-Level RPC

¦ Copyright IBM Corp. 1985, 1991
19.7.3.2 - 2

 to supply, but you do need to supply values for the send and receive
 buffers. Once the TCP/IP connection is established, all remote procedure
 calls using the client handle pointed to by this creation routine use this
 socket. The server that answers a remote procedure call using TCP/IP has
 its svcudp_create routine replaced by the svctcp_create routine.

 See the RPC Service Routines section of AIX Operating System Technical
 Reference for information about RPC library routines.

Programming Tools and Interfaces
The Client Side of Low-Level RPC

¦ Copyright IBM Corp. 1985, 1991
19.7.3.2 - 3

 A.0 Appendix A. Extended curses Structures

 Subtopics
 A.1 WINDOW Structure
 A.2 PANEL Structure
 A.3 PANE Structure

Programming Tools and Interfaces
Appendix A. Extended curses Structures

¦ Copyright IBM Corp. 1985, 1991
A.0 - 1

 A.1 WINDOW Structure

 The Extended curses library routines use a structure, WINDOW, to hold
 information about each window that it is working with. Figure A-1 shows
 the contents of that structure.

 --

 struct _win_st
 {
 short _cury, _curx;
 short _maxy, _maxx;
 short _begy, _begx;
 short _winy, _winx;
 short _flags;
 short *_firstch;
 short *_lastch;
 bool _clear;
 bool _leave;
 bool _scroll;
 ATTR _csbp;
 NLSCHAR **_y;
 ATTR **_a;
 struct _win_st *_view;
 } ;

 #define WINDOW struct _win_st
 #define _SUBWIN 001
 #define _ENDLINE 002
 #define _FULLWIN 004
 #define _SCROLLWIN 010
 #define _ISVIEW 040
 #define _HASVIEW 100
 #define _STANDOUT 200
 #define _NOCHANGE -1

 --
 Figure A-1. Structure Definition for WINDOW

 The variables in this structure perform the following functions:

 _cury and _curx
 The current (y, x) coordinates for the window. New characters
 added to the screen are added at this point.

 _maxy and _maxx
 One more than the maximum values allowed for _cury and _curx.

 _begy and _begx
 The starting (y, x) coordinates on the terminal for the window
 (the home position for the window). The variables _cury, _curx,
 _maxy, and _maxx are measured relative to _begy and _begx, not
 the home position for the terminal.

 winy, _winx
 The starting (y, x) coordinates of a viewport within the
 original window.

Programming Tools and Interfaces
WINDOW Structure

¦ Copyright IBM Corp. 1985, 1991
A.1 - 1

 _flags
 A flag byte that can have one or more of the following values
 ORed into it:

 _SUBWIN
 Indicates that the window is a subwindow. The
 delwin() call checks this flag. If this flag is set,
 the space for the lines is not freed when the window
 is deleted.
 _END-LINE
 Indicates that the end of the line for this window is
 also the end of a screen.
 _FULLWIN
 Indicates that this window is a full screen window.
 _SCROLLWIN
 Indicates that the last character of this screen is at
 the lower right corner of the terminal. If a
 character is written to the lower right corner of the
 terminal, the terminal (hardware) scrolls
 automatically.
 _ISVIEW
 Indicates that the window is a viewport window.
 _HASVIEW
 Indicates that the window has a viewport window in it.
 _STANDOUT
 Indicates that all characters added to the screen are
 in standout mode.

 *_firstch
 Pointer to the first position (row by row) in the optimization
 array that was changed. If this pointer contains the value
 _NOCHANGE, then a change was not made to a line since the last
 time that refresh() changed curscr.

 *_lastch
 Pointer to the last position (row by row) in the optimization
 array that has been changed.

 _clear
 Tells if a clear-screen sequence is to be generated on the next
 refresh() call. This is only meaningful for screens. The
 initial clear-screen for the first refresh() call is generated
 by initially setting clear to be TRUE for curscr. When this
 variable is set for the current screen (curscr), each refresh()
 generates a clear screen.

 _leave
 TRUE if the current (y, x) coordinates and the cursor are to be
 set to the character position following the last character
 changed on the terminal, or not moved if there is not a change.

 _scroll
 TRUE if scrolling is allowed.

 _csbp
 Current Standout Bit Pattern: The attribute pattern for
 characters that are written to the window in standout mode. See
 the _STANDOUT flag. See Figure 9-7 in topic 9.6 for the
 patterns that can be combined into this variable.

Programming Tools and Interfaces
WINDOW Structure

¦ Copyright IBM Corp. 1985, 1991
A.1 - 2

 **_y
 A pointer to an array of lines which describe the terminal. The
 expression:

 _y[i]

 is a pointer to the ith line, and:

 _y [i][j]

 is the jth character on the ith line.

 **_a
 A pointer to the attribute array space. The expression:

 _a [i][j]

 is a pointer to the attribute variable (of data type ATTR) that
 corresponds to the jth character on the ith line, represented as
 _y [i][j] in the array specified by the **_y field.

 struct _win_st *_view
 A pointer to the original window from a viewport window.

Programming Tools and Interfaces
WINDOW Structure

¦ Copyright IBM Corp. 1985, 1991
A.1 - 3

 A.2 PANEL Structure

 The Extended curses library routines use a structure, PANEL, to hold
 information about each panel that it is working with. Figure A-2 shows
 the contents of that structure.

 --

 #define PANEL struct Panel

 struct Panel
 {
 short int p_depth ;
 short int p_width ;
 short int orow ;
 short int ocol ;
 char *title ;
 char divty ;
 char bordr ;
 char fill1 ;
 char fill2 ;
 PANEL *p_under;
 PANEL *p_over ;
 PANE *fpane ;
 PANE *dpane ;
 PANE *apane ;
 WINDOW *p_win ;
 int dfid ;
 char plobsc ;
 char plmodf ;
 char PLfill[6] ;
 } ;

 --
 Figure A-2. Structure Definition for PANEL

 The variables in this structure perform the following functions:

 p_depth Number of rows in panel

 p_width Number of columns in panel

 orow Origin row (top left)

 ocol Origin column

 *title Title string pointer

 divty Divide type code

 bordr Border flag byte

 The following fields are used to relate multiple panels on the display:

 *p_under Next panel in chain under this panel

 *p_over Previous panel in chain over this panel

 The following fields are used by the library routines. Do not change

Programming Tools and Interfaces
PANEL Structure

¦ Copyright IBM Corp. 1985, 1991
A.2 - 1

 these fields directly:

 *fpane First pane after divisions

 *dpane First root pane for div

 *apane Current active pane

 *p_win Window struct for panel

 dfid External panel ident

 plobsc Panel obscured flag

 plmodf Panel modified flag

 PLfill[6] Not used

Programming Tools and Interfaces
PANEL Structure

¦ Copyright IBM Corp. 1985, 1991
A.2 - 2

 A.3 PANE Structure

 The Extended curses library routines use a structure, PANE, to hold
 information about each pane that it is working with. Figure A-3 shows the
 contents of that structure.

 --

 #define PANE struct Pane

 struct Pane
 {
 short int w_depth ;
 short int w_width ;
 short int v_depth;
 short int v_width ;
 short int orow ;
 short int ocol ;
 PANE *vscr ;
 PANE *hscr ;
 PANE *nxtpn ;
 PANE *prvpn ;
 PANE *divs ;
 PANE *divd ;
 char divty ;
 char fill1 ;
 short int divsz ;
 char divszu ;
 char bordr ;
 char fill2 ;
 char fill3 ;
 WINDOW *w_win ;
 WINDOW *v_win ;
 int pnvsid ;
 PANEL *hpanl ;
 PANEPS *exps ;
 char alloc ;
 char pnobsc ;
 char pnmodf ;
 char PNfill[5]
 } ;

 --
 Figure A-3. Structure Definition for PANE

 The variables in this structure perform the following functions:

 w_depth Rows of data in presentation space for this pane.

 w_width Columns of data in presentation space for this pane.

 v_depth Rows being shown on the display of this pane including space for
 borders.

 v_width Columns being shown on the display of this pane including space
 for borders.

 orow Top row on panel of view for this pane (including the border).

Programming Tools and Interfaces
PANE Structure

¦ Copyright IBM Corp. 1985, 1991
A.3 - 1

 ocol First column on panel of view for this pane (including the
 border).

 *vscr Pane to scroll vertically with this pane.

 *hscr Pane to scroll horizontally with this pane.

 *nxtpn Next pane in chain.

 *prvpn Previous pane in chain.

 *divs Next pane that is part of current division specification.

 *divd Start of division of this pane into smaller parts.

 divty Division type code that applies to divisions of this pane. May
 have the following values:

 Pdivtyv '0' Divide vertical dimension of this pane.
 Divisions appear above each other.
 Pdivtyh '1' Divide horizontal dimension of this pane.
 Divisions appear beside each other.

 divsz Division size specification:

 divszu Division size unit specification that indicates the form for
 divsz value using one of the following values:

 Pdivszc '1' Size is a fixed constant. Fixed constants must
 be in the range from 1 to the dimension being
 divided.
 Pdivszp '2' Size is a proportional value. Proportional
 values must be in the range of 1 to 10,000.
 They represent the number of 10,000ths of the
 available screen space to assign to the pane.
 Pdivszf '0' Size is float. A float pane shares an equal
 amount of the available screen space with all
 other panes that have the float attribute.

 bordr Border flag for this pane.

 *w_win Pointer to pspace window.

 *v_win Pointer to view window.

 pnvsid External identifier for this p-pspace and view window.

 *hpanl Pointer to panel that contains this pane.

 *exps Pointer to chain of extra p-spaces for this pane.

 alloc An allocation flag that indicates whether ecdfpl allocated the
 window so that ecrlpl should free it.

 pnobsc A flag that indicates that the pane is obscured by an overlayed
 panel.

 pnmodf A flag that indicates the pane was modified.

 PNfill[5] Not used.

Programming Tools and Interfaces
PANE Structure

¦ Copyright IBM Corp. 1985, 1991
A.3 - 2

 B.0 Appendix B. PS/2 Printer Support Data Stream

 Subtopics
 B.1 Using Printers from a Program

Programming Tools and Interfaces
Appendix B. PS/2 Printer Support Data Stream

¦ Copyright IBM Corp. 1985, 1991
B.0 - 1

 B.1 Using Printers from a Program

 The printer support of the PS/2 system allows a program to produce output
 on any installed printer, as long as the program produces an output data
 stream that conforms to the control and data characters defined in this
 appendix. Printer support changes that data stream into the specific data
 stream that the installed printer needs.

 Figure B-1 lists the printer control codes to use when printing using the
 PS/2 printer support. If the printer can perform the function by itself,
 printer support passes the codes directly to the printer. If the codes do
 not work on the printer that is installed on your system, printer support
 performs one of the following actions:

 � Tries to emulate the control with functions that the installed printe
 does have

 � Removes the control from the output stream. The function is no
 performed.

 The three code columns in the table show different representations of the
 same code, depending on how you enter the code into the data stream:

 Control Name This column shows the name of the control character. In
 many cases this name is the same as the keyboard keys that
 produce the required ASCII code for the control code.

 Hex Code This column shows the hexadecimal representation of the
 control code.

 ASCII Code This column shows the decimal representation of the
 control code.

 Figure B-1. Printer Control Codes
 Category Function Control Name Hex Code ASCII Code
 Performed

 Control: Provides a null NUL 00 0
 value.
 Used as a list
 terminator.

 Sounds the BEL 07 7

 buzzer. (2)
 Prints the next ESC ^ 1B5E 27 94

 character as a
 printable
 character. The
 next character
 is a control
 with an ASCII
 value of less

Programming Tools and Interfaces
Using Printers from a Program

¦ Copyright IBM Corp. 1985, 1991
B.1 - 1

 than 32.
 Prints more ESC \ m n c 1B5C m n c 27 92 m n c

 than one
 character with
 an ASCII value
 that is below
 32.
 Clears the CAN 18 24

 printer memory
 of all data
 waiting to be
 printed
 following the
 last received
 line feed. (1)
 Sets resolution ESC [O n 1B5B4F n 27 91 79 n

 for raster
 image print
 (n indicates a
 string of
 control bytes).
 (1)
 Performs a ESC [K 1B5B4B 0100 0 27 91 75 1 0

 printer 0
 power-on reset.
 (1)

 Positioning Sets back BS 08 8
 the space.
 Printhead: Sets horizontal HT 09 9
 tab.

 Sets horizontal ESC D n NUL 1B44n00 27 68 n 0

 tabs
 (n is a list of
 one or more tab
 positions).
 Sets tab stops ESC R 1B52 27 82

 to power-on
 settings.
 Sets line feed. LF 0A 10

Programming Tools and Interfaces
Using Printers from a Program

¦ Copyright IBM Corp. 1985, 1991
B.1 - 2

 Sets reverse ESC] 1B5D 27 93

 line feed.
 Starts ESC 5 1 1B35 1 27 53 1

 automatic line
 feed.
 Stops automatic ESC 5 0 1B35 0 27 53 0

 line feed.
 Provides a CR 0D 13

 carriage return
 (no line feed).
 Provides a VT 0B 11

 vertical tab.
 Sets vertical ESC B n NUL 1B42 n NUL 27 66 n NUL

 tabs
 (n is a list of
 tab positions).
 Paper Provides a form FF 0C 12
 Control: feed.
 Sets top of ESC 4 1B34 27 52

 forms. (2)
 Ignores end of ESC 8 1B38 27 56

 forms. (2)
 Respects end of ESC 9 1B39 27 57

 forms. (2)
 Sets skip ESC N n 1B4E n 27 78 n

 perforation
 (2)
 (n is lines to
 skip).
 Stops skip ESC O 1B4F 27 79

 perforation.
 (2)
 Formatting Uses 12 ESC : 1B3A 27 58
 the Page characters-per-inch
 printing.
 Image: Sets 1/8" line ESC 0 1B30 27 48

Programming Tools and Interfaces
Using Printers from a Program

¦ Copyright IBM Corp. 1985, 1991
B.1 - 3

 spacing.

 Starts n/72" ESC 2 1B32 27 50

 line spacing.
 Sets n/72" line ESC A n 1B41 n 27 59 n

 spacing.
 Sets page ESC C n 1B43 n 27 67 n

 length. (2)
 (n is lines per
 page).
 Sets page ESC C 0 n 1B43 0 n 27 67 0 n

 length (2)
 (n is inches
 per page).
 Sets left and ESC X m n 1B58 m n 27 88 m n

 right margins
 (m and n are
 column
 numbers).
 Sets top and ESC [S m n t1 1B5B53 m n t1 27 91 83 m n

 bottom margins t0 b1 b0 t0 b1 b0 t1 t0 b1 b0
 (m and n are
 length of
 control;
 t1 t0 are
 high/low-order
 bytes of top
 margin; b1 b0
 are
 high/low-order
 bytes of bottom
 margin).
 Starts ESC M 1 1B4D 1 27 77 1

 automatic line
 justification.
 Stops automatic ESC M 0 1B4D 0 27 77 0

 line

Programming Tools and Interfaces
Using Printers from a Program

¦ Copyright IBM Corp. 1985, 1991
B.1 - 4

 justification.
 Starts ESC P 1 1B50 1 27 80 1

 proportional
 spacing.
 Stops ESC P 0 1B50 0 27 80 0

 proportional
 spacing.
 Sets print ESC [0 n 1B5B30 0100 n 27 91 48 1 0

 resolution for n
 draft quality
 font and ESC K
 image data
 (n indicates
 the resolution
 value). (1)
 Sets ESC [L n 1B5B4C 0200 27 91 76 2 0

 presentation 00 n n
 surface color
 (n indicates
 the available
 colors). (1)
 Controlling Sets color band ESC y 1B79 27 121
 the Ribbon: 1 (yellow).
 Sets color band ESC m 1B6D 27 109

 2 (magenta).
 Sets color band ESC c 1B63 27 99

 3 (cyan).
 Sets color band ESC b 1B62 27 98

 4 (black).
 Sets automatic ESC a 1B61 27 97

 ribbon band
 shift.
 Sets the ESC [N n 1B5B4E 0100 n 27 91 78 1 0

 background n
 color for Text,
 ESC K, or ESC
 [O printing

Programming Tools and Interfaces
Using Printers from a Program

¦ Copyright IBM Corp. 1985, 1991
B.1 - 5

 (n indicates
 the available
 colors). (1)
 Sets the ESC [M n 1B5B4D 0100 n 27 91 77 1 0

 foreground n
 color for Text,
 ESC K, or ESC
 [O printing
 (n indicates
 the available
 colors). (1)
 Swaps the ESC [] 1B5B5D 0100 n 27 91 93 1 0

 foreground and n
 background
 printing color
 (n= 0 indicates
 normal
 printing;
 n= 1 indicates
 reversing
 background and
 foreground
 colors). (1)
 Selecting Starts SO 0E 14
 Print double-wide
 printing.
 Mode: Stops DC4 14 20
 double-wide
 printing.

 Starts ESC W 1 1B57 1 27 87 1

 double-wide
 continuous
 printing.
 Stops ESC W 0 1B57 0 27 87 0

 double-wide
 continuous
 printing.
 Starts SI 0F 15

 compressed
 printing.
 Stops DC2 12 18

Programming Tools and Interfaces
Using Printers from a Program

¦ Copyright IBM Corp. 1985, 1991
B.1 - 6

 compressed
 printing.
 Starts ESC -1 1B2D 1 27 45 1

 underline
 printing.
 Stops underline ESC -0 1B2D 0 27 45 0

 printing.
 Starts ESC E 1B45 27 69

 emphasized
 printing.
 Stops ESC F 1B46 27 70

 emphasized
 printing.
 Starts ESC G 1B47 27 71

 double-strike
 printing.
 Stops ESC H 1B48 27 72

 double-strike
 printing.
 Starts ESC S 0 1B53 0 27 83 0

 superscript
 printing.
 Starts ESC S 1 1B53 1 27 83 1

 subscript
 printing.
 Stops ESC T 1B54 27 84

 superscript or
 subscript
 printing.
 Starts color ESC [B 1 n 1B5B42 0200 27 91 66 2 0

 underline, 1 n 1 n
 bypassing white
 space
 (n defines the
 available
 color). (1)
 Starts ESC [B 0 n 1B5B42 0200 27 91 66 2 0

Programming Tools and Interfaces
Using Printers from a Program

¦ Copyright IBM Corp. 1985, 1991
B.1 - 7

 continuous 0 n 0 n
 color underline
 (n defines the
 available
 color). (1)
 Stops ESC [E 1B5B450000 27 91 69 0 0

 underline.
 Selecting thUses PC ESC 6 1B36 27 54
 Character character set
 2.
 Set: Uses PC ESC 7 1B37 27 55
 character set
 1.

 Selects font ESC I n 1B49 n 27 73 n

 (n specifies
 the font;
 varies with
 printer type).
 Sets graphic ESC [T 1 0 c 1B5B54 1 0 c 27 91 84 1 0

 set ID c
 (c selects
 graphic set 0,
 1 or 2).
 Using Bit Sets bit ESC K n 1B4B n 27 75 n
 Image graphics normal
 Graphics: ((n is a string
 of control
 bytes).
 Sets graphics ESC L n 1B4C n 27 76 n

 dual-half speed
 (n is a string
 of control
 bytes).
 Sets bit ESC Y n 1B59 n 27 89 n

 graphics
 dual-normal
 speed
 (n is a string
 of control
 bytes).
 Sets bit ESC Z n 1B5A n 27 90 n

Programming Tools and Interfaces
Using Printers from a Program

¦ Copyright IBM Corp. 1985, 1991
B.1 - 8

 graphics
 high-half speed
 (n is a string
 of control
 bytes).
 Sets aspect ESC n 1 1B6E 1 27 110 1

 ratio to 1:1.
 Sets aspect ESC n 0 1B6E 0 27 110 0

 ratio to 5:6.
 Moves carriage ESC < 1B3C 27 60

 to home
 position.
 Moves right ESC d n 1B64 n 27 100 n

 n/120.
 Moves left ESC e n 1B65 n 27 101 n

 n/120.
 Starts ESC U 1 1B551 27 85 1

 unidirectional
 printing.
 Stops ESC U 0 1B550 27 85 0

 unidirectional
 printing.
 Sets 7 dot line ESC 1 1B31 27 49

 spacing.
 Sets graphics ESC 3 n 1B33 n 27 51 n

 line spacing
 (n is the
 number of
 1/216-inch
 steps).
 Sets variable ESC J n 1B4A n 27 74 n

 space line feed
 (n is the
 number of
 1/216-inch
 steps).

Programming Tools and Interfaces
Using Printers from a Program

¦ Copyright IBM Corp. 1985, 1991
B.1 - 9

 Moves vertical ESC [U n 1B5B55 0100 n 27 91 85 1 0

 presentation n
 down the page
 in number of
 dots
 (n indicates
 how far to move
 the
 presentation).
 (1)
 Selecting a Selects the DC1 11 17
 Printer: printer to
 accept data.
 (2)
 Deselects the DC3 13 19

 printer so as
 to not receive
 data. (2)
 Sets initialize ESC ? 1 1B3F 1 27 63 1

 function on.
 (2)
 Sets initialize ESC ? 0 1B3F 0 27 63 0

 function off.
 (2)
 Queries a ESC Q n 1B51 n 27 81 n

 parallel
 attached
 printer for
 identification.
 If the device
 queried is
 equal to n,
 this printer
 deactivates the
 select line.
 (2)

 (1) Use with the Color Jet Printer.

 (2) Do not use these controls when using the print queue.

 (3) These controls may not work on the installed printer. Use
 passthrough mode to send these codes to the printer.

Programming Tools and Interfaces
Using Printers from a Program

¦ Copyright IBM Corp. 1985, 1991
B.1 - 10

 C.0 Appendix C. ASCII Characters

Programming Tools and Interfaces
Appendix C. ASCII Characters

¦ Copyright IBM Corp. 1985, 1991
C.0 - 1

 Figure C-1. Code Page 0

Programming Tools and Interfaces
Appendix C. ASCII Characters

¦ Copyright IBM Corp. 1985, 1991
C.0 - 2

 Figure C-2. Code Page 1

Programming Tools and Interfaces
Appendix C. ASCII Characters

¦ Copyright IBM Corp. 1985, 1991
C.0 - 3

 Figure C-3. Code Page 2

Programming Tools and Interfaces
Appendix C. ASCII Characters

¦ Copyright IBM Corp. 1985, 1991
C.0 - 4

 D.0 Appendix D. installt Command
 The installt command usage is documented in the AIX Operating System
 Commands Reference. This section shows menu formats and the format of
 installt tapes.

 Subtopics
 D.1 Menu Format
 D.2 Tape Format
 D.3 Table of Contents (TOC) Format

Programming Tools and Interfaces
Appendix D. installt Command

¦ Copyright IBM Corp. 1985, 1991
D.0 - 1

 D.1 Menu Format

 The menu selections and their associated fstore values are generated by
 reading the table of contents (TOC) tape file on the media. The format of
 the TOC is given below. A sample initial menu display may look like
 Figure D-1.

 --

 SELECTION MENU

 ID FSTORE DESCRIPTION ID FSTORE DESCRIPTION
 1 asis Asynch. Terminal Emulation 7 asis Basic Networking Utility
 2 asis Graphics Support Library 8 asis Extended User Support
 3 asis DOS Server 9 asis Message Handler
 4 asis Learn 10 asis Sendmail
 5 asis CDROM Access Package 11 asis Sample Programs
 6 asis Administrative Support 12 asis Games

 Use 'all' to refer to all packages
 Use 'quit' to exit program

 Enter list of id numbers to install separated by spaces:

 --
 Figure D-1. Initial Menu Display

 The value "all" can be used to select all items. Items selected for
 installation are prefixed with '+'. The menu is updated to indicate the
 user's choices, as in Figure D-2.

 --

 SELECTION MENU

 ID FSTORE DESCRIPTION ID FSTORE DESCRIPTION
 +1 asis Asynch. Terminal Emulation 7 asis Basic Networking Utility
 2 asis Graphics Support Library 8 asis Extended User Support
 +3 asis DOS Server 9 asis Message Handler
 4 asis Learn 10 asis Sendmail
 +5 asis CDROM Access Package 11 asis Sample Programs
 6 asis Administrative Support +12 asis Games

 Use 'all' to refer to all packages
 Use 'quit' to exit program

 Do you want to change any fstore values (Y/N/HELP)?

 --
 Figure D-2. Updated Menu

 The installt command allows the user to change the fstore values used
 during installation. The fstore help text looks like that shown in
 Figure D-3.

Programming Tools and Interfaces
Menu Format

¦ Copyright IBM Corp. 1985, 1991
D.1 - 1

 --

 Possible fstore values are:

 asis
 none
 primary
 i386
 i370
 cluster
 all

 Press any key to continue:

 --
 Figure D-3. Fstore Values

 Fstore values are extracted from the /etc/fstore file. The 'asis' entry
 is the normally chosen case and indicates that the fstore values
 associated with files on the media should be used. Figure D-4 shows an
 example of changing fstore values associated with a package.

 --

 SELECTION MENU

 ID FSTORE DESCRIPTION ID FSTORE DESCRIPTION
 +1 asis Asynch. Terminal Emulation 7 asis Basic Networking Utility
 2 asis Graphics Support Library 8 asis Extended User Support
 +3 asis DOS Server 9 asis Message Handler
 4 asis Learn 10 asis Sendmail
 +5 asis CDROM Access Package 11 asis Sample Programs
 6 asis Administrative Support +12 asis Games

 Use 'all' to refer to all packages
 Use 'quit' to exit program

 Do you want to change any fstore values (Y/N/HELP)? Y
 Enter fstore value followed by a list of id numbers (ex: i386 2 4)

 --
 Figure D-4. Changing Fstore Values

 Fstore values entered must be in the /etc/fstore file. The value "all"
 can be used instead of specifying id numbers to change the fstore value of
 all packages. installt gives the user a chance to modify the previous
 selections. Figure D-5 shows the menu display after answering "no" or
 entering an empty carriage return.

 --

 SELECTION MENU

 ID FSTORE DESCRIPTION ID FSTORE DESCRIPTION
 +1 asis Asynch. Terminal Emulation 7 asis Basic Networking Utility
 2 asis Graphics Support Library 8 asis Extended User Support
 +3 asis DOS Server 9 asis Message Handler

Programming Tools and Interfaces
Menu Format

¦ Copyright IBM Corp. 1985, 1991
D.1 - 2

 4 asis Learn 10 asis Sendmail
 +5 asis CDROM Access Package 11 asis Sample Programs
 6 asis Administrative Support +12 asis Games

 Use 'all' to refer to all packages
 Use 'quit' to exit program

 Are selections correct (Y/N - 'yes' begins installation)? yes

 --
 Figure D-5. Menu Display

 Answering "no" to the above question clears the selections made by the
 user, but fstore values changed by the user remain changed. Answering
 "yes" causes the selections to be installed.

Programming Tools and Interfaces
Menu Format

¦ Copyright IBM Corp. 1985, 1991
D.1 - 3

 D.2 Tape Format

 Tapes used with installt must be in one of three formats, shown in
 Figure D-6.

 +--+
 ¦ BOS image ¦ TOC ¦ package images separated by EOF tape marks ¦
 +--+

 or
 +--+
 ¦ null file ¦ TOC ¦ package images separated by EOF tape marks ¦
 +--+

 or
 +--+
 ¦ TOC ¦ package images separated by EOF tape marks ¦
 +--+

 Figure D-6. Tape Formats

 All of the images on the tape are in backup format (installp images are
 also in backup format).

 Each image must be separated by an end-of-file (EOF) tape mark. EOF tape
 marks are also found between the BOS and TOC, and TOC and first package.
 EOF tape marks are automatically placed between the backup images on the
 media if each image is written with a separate invocation of backup and a
 no-rewind tape device is used.

 The first tape file on IBM LPP Distribution Media contains a backup image
 of the BOS (also known as opsys).

 If the -u flag is specified on the installt command, the first tape file
 on the media is the TOC. Otherwise, the TOC is the second tape file. See
 below for the format of the TOC.

 Additional tape files on the tape contain individual package images in
 installp or backup format. These images correspond to entries in the TOC.

Programming Tools and Interfaces
Tape Format

¦ Copyright IBM Corp. 1985, 1991
D.2 - 1

 D.3 Table of Contents (TOC) Format

 The TOC is a backup image containing one file with the path name
 ./installt_toc. The TOC is the first tape file if the -u parameter is
 specified, otherwise it is the second tape file. Entries in the
 ./installt_toc file describe the list of packages contained on the tape
 following the TOC tape file. The entries in the TOC must be in the same
 order as the images appear following the TOC tape file. The format of an
 entry in the ./installt_toc file is shown in Figure D-7.

 +---------------------------------+
 ¦ name, description, type, fstore ¦
 +---------------------------------+

 Figure D-7. Format of Entry in ./installt_toc File

 The 'name' is usually the same name found in the 'lpp_name' file described
 in Chapter 13, "Installing and Updating an LPP" in topic 13.0. It can be
 any name up to 8 characters long.

 The 'description' field is usually the description text from the
 'lpp_name' file, but can be any description up to 30 characters. The
 description will be truncated to 27 characters only to fit on the menu
 display).

 The 'type' field determines the type of image and the command used to do
 the actual installation.

 installp installp image, uses installp command
 i installp image, uses installp command
 backup backup image, uses restore command
 b backup image, uses restore command

 The fstore value is passed to the appropriate installation command (i.e.
 installp or backup). The fstore value is passed to restore via the -F
 option and passed to installp via the FRCFSTORE environment variable.
 installp does not directly use the FRCFSTORE environment variable but
 invokes /etc/lpp/getfstore, which sets the value for the restore command
 called from installp.

 Note: When installing backup images that were created with relative file
 path names, you must be in the directory where the files are to be
 installed. installp images do not require you to be in any
 particular directory during installation.

 Fields in the TOC entries are separated by commas.

 Subtopics
 D.3.1 Communication Method
 D.3.2 Changes to unix.std

Programming Tools and Interfaces
Table of Contents (TOC) Format

¦ Copyright IBM Corp. 1985, 1991
D.3 - 1

 D.3.1 Communication Method

 If the installt command invokes the installp command, it communicates with
 installp via a named pipe, called /tmp/installt.pipe. If this file exists
 upon invocation of installt, the user is asked whether the file can be
 deleted and re-created.

Programming Tools and Interfaces
Communication Method

¦ Copyright IBM Corp. 1985, 1991
D.3.1 - 1

 D.3.2 Changes to unix.std

 If the unix.std file is updated during the execution of installt, the
 following message is displayed:

 The 'unix.std' file has been modified during execution
 Enter the command '/etc/reboot' to enable the changes
 installed into the kernel.

 Multiple changes to the unix.std file may have taken place during the
 course of installing packages via installp. These changes will not take
 place until the system is rebooted.

Programming Tools and Interfaces
Changes to unix.std

¦ Copyright IBM Corp. 1985, 1991
D.3.2 - 1

 GLOSSARY Glossary

 access. To obtain data from or put data in storage.

 access permission. A group of designations that determine who can access
 a particular AIX file and how the user may access the file.

 action. In awk, lex and yacc, a C language program fragment that defines
 what the program does when it finds input that it recognizes.

 All Points Addressable (APA) display. A display that allows each pel to
 be individually addressed. An APA display allows for images to be
 displayed that are not made up of images predefined in character boxes.
 Contrast with character display.

 allocate. To assign a resource, such as a disk file or a diskette file,
 to perform a specific task.

 alphabetic. Pertaining to a set of letters a through z.

 alphanumeric character. Consisting of letters, numbers and often other
 symbols, such as punctuation marks and mathematical symbols.

 American National Standard Code for Information Interchange (ASCII). The
 code developed by ANSI for information interchange among data processing
 systems, data communications systems, and associated equipment. The ASCII
 character set consists of 7-bit control characters and symbolic
 characters.

 American National Standards Institute. An organization sponsored by the
 Computer and Business Equipment Manufacturers Association for establishing
 voluntary industry standards.

 application. A program or group of programs that apply to a particular
 business area, such as the Inventory Control or the Accounts Receivable
 application.

 application program. A program used to perform an application or part of
 an application.

 ASCII. See American National Standard Code for Information Interchange.

 attribute. A characteristic. For example, the attribute for a displayed
 field could be blinking.

 auto carrier return. The system function that places carrier returns
 automatically within the text and on the display. This is accomplished by

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 1

 moving whole words that exceed the line end zone to the next line.

 background process. (1) An activity that does not require operator
 intervention that can be run by the computer while the work station is
 used to do other work. (2) A mode of program execution in which the shell
 does not wait for program completion before prompting the user for another
 command.

 backup copy. A copy, usually of a file or group of files, that is kept in
 case the original file or files are unintentionally changed or destroyed.

 backup diskette. A diskette containing information copied from a fixed
 disk or from another diskette. It is used in case the original
 information becomes unusable.

 bad block. A portion of a disk that can never be used reliably.

 base address. The beginning address for resolving symbolic references to
 locations in storage.

 basename. The last element to the right of a full path name. A file name
 specified without its parent directories.

 batch printing. Queueing one or more documents to print as a separate
 job. The operator can type or revise additional documents at the same
 time. This is a background process.

 batch processing. A processing method in which a program or programs
 process records with little or no operator action. This is a background
 process. Contrast with interactive processing.

 binary. (1) Pertaining to a system of numbers to the base two; the binary
 digits are 0 and 1. (2) Involving a choice of two conditions, such as
 on-off or yes-no.

 bit. Either of the binary digits 0 or 1 used in computers to store
 information. See also byte.

 block. (1) A group of records that is recorded or processed as a unit.
 Same as physical record. (2) In data communications, a group of records
 that is recorded, processed, or sent as a unit. (3) A block is 512 bytes
 long.

 block file. A file listing the usage of blocks on a disk.

 block special file. A special file that provides access to a device which
 is capable of supporting a file system.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 2

 branch. In a computer program an instruction that selects one of two or
 more alternative sets of instructions. A conditional branch occurs only
 when a specified condition is met.

 breakpoint. A place in a computer program, usually specified by an
 instruction, where execution may be interrupted by external intervention
 or by a monitor program.

 buffer. (1) A temporary storage unit, especially one that accepts
 information at one rate and delivers it at another rate. (2) An area of
 storage, temporarily reserved for performing input or output, into which
 data is read, or from which data is written.

 bug. A problem in the logic of a program that causes the program to
 perform differently than expected.

 byte. The amount of storage required to represent one character; a byte
 is 8 bits.

 C language. A general-purpose programming language that is the primary
 language of the AIX Operating System.

 call. To activate a program or procedure at its entry point. Compare
 with load.

 cancel. To end a task before it is completed.

 carrier return. (1) In text data, the action causing line ending
 formatting to be performed at the current cursor location followed by a
 line advance of the cursor. Equivalent to the carriage return of a
 typewriter. (2) A keystroke generally indicating the end of a command
 line.

 channel. One of 32 bits in a table used to represent which event classes
 are active or inactive. The most significant bit is called channel 0 and
 the least significant bit is called channel 31.

 character. A letter, digit, or other symbol.

 character class. Ranges of characters that match a single character.

 character display. A display that uses a character generator to display
 predefined character boxes of images (characters) on the screen. This
 kind of display can not address the screen any less than one character box
 at a time. Contrast with All Points Addressable display.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 3

 character key. A keyboard key that allows the user to enter the character
 shown on the key. Compare with function keys.

 character position. On a display, each location that a character or
 symbol can occupy.

 character set. A group of characters used for a specific reason; for
 example, the set of characters a printer can print or a keyboard can
 support.

 character special file. A special file that provides access to an input
 or output device. The character interface is used for devices that cannot
 or do not want to use a file system.

 character string. A sequence of consecutive characters.

 character variable. The name of a character data item whose value may be
 assigned or changed while the program is running.

 child. (1) Pertaining to a secured resource, either a file or library,
 that uses the user list of a parent resource. A child resource can have
 only one parent resource. (2) In the AIX Operating System, child is a
 process spawned by a parent process that shares resources of parent
 process, for example, the definition is one characteristic of the
 parent/child relationship. Contrast with parent.

 close. To end an activity and remove that window from the display.

 code. (1) Instructions for the computer. (2) To write instructions for
 the computer; to program. (3) A representation of a condition, such as an
 error code. *.symbols. Lower code page P0 (0-127 ordinal) is the ASCII

 code segment. See segment.

 collating sequence. The sequence in which characters are ordered within
 the computer for sorting, combining, or comparing.

 collation. The process of character and string sorting based on
 alphabetical order and equivalence class.

 collation table. Provides an ordered character set and character
 equivalence classes used by functions.

 color display. A display device capable of displaying more than two
 colors and the shades produced via the two colors, as opposed to a
 monochrome display.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 4

 column. A vertical arrangement of text or numbers.

 column headings. Text appearing near the top of columns of data for the
 purpose of identifying or titling.

 command. A request to perform an operation or execute a program. When
 parameters, arguments, flags, or other operands are associated with a
 command, the resulting character string is a single command.

 command line editing keys. Keys for editing the command line.

 compile. (1) To translate a program written in a high-level programming
 language into a machine language program. (2) The computer actions
 required to transform a source file into an executable object file.

 compiler. A program that reads program text from a file and changes the
 programming language statements in that file to a form that the system can
 understand.

 compress. (1) To move files and libraries together on disk to create one
 continuous area of unused space. (2) In data communications, to delete a
 series of duplicate characters in a character string.

 compression. A technique for removing strings of duplicate characters and
 for removing trailing blanks before transmitting data.

 concatenate. (1) To link together. (2) To join two character strings.

 concurrent groups. The ability to access files from many groups at the
 same time.

 condition. An expression in a program or procedure that can be evaluated
 to a value of either true or false when the program or procedure is
 running.

 configuration. The group of machines, devices, and programs that make up
 a computer system. See also system customization.

 constant. A data item with a value that does not change. Contrast with
 variable

 control block. A storage area used by a program to hold control
 information.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 5

 control program. Part of the AIX Operating System that determines the
 order in which basic functions should be performed.

 controlled cancel. The system action that ends the job step being run,
 and saves any new data already created. The job that is running can
 continue with the next job step.

 copy. The action by which the user makes a whole or partial duplicate of
 already existing data.

 copy on reference. A form of memory management provided on AIX/370
 whereby a process shares a page of data with other processes until the
 first attempt to read or write to the page. On the first read or write,
 the page is copied to give the process its own copy of the data.

 copy on write. A form of memory management provided on AIX/PS2 whereby a
 process shares a page of data with other processes until the first attempt
 to write to that page. On the first write, the data is copied to a new
 page at the same virtual memory address before the page of data is
 changed.

 crash. An unexpected interruption of computer service, usually due to a
 serious hardware or software malfunction.

 creation date. The program date at the time a file is created.

 current directory. The currently active directory, displayed with the pwd
 command.

 current file. In make, the file that the make command is working with at
 a given moment. make replaces the macro $* with the name of the current
 file.

 current line. The line on which the cursor is located.

 current screen. In Extended curses, the actual image that is currently on
 the terminal.

 current working directory. See current directory.

 cursor. (1) A movable symbol (such as an underline) on a display, used to
 indicate to the operator where the next typed character will be placed or
 where the next action will be directed. (2) A marker that indicates the
 current data access location within a file.

 cursor movement keys. The directional keys used to move the cursor.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 6

 customize. To describe (to the system) the devices, programs, users, and
 user defaults for a particular data processing system.

 cylinder. All fixed disk or diskette tracks that can be read or written
 without moving the disk drive or diskette drive read/write mechanism.

 daemon. See daemon process.

 daemon process. A process begun by the root or the root shell that can be
 stopped only by the root. Daemon processes generally provide services
 that must be available at all times such as sending data to a printer.

 data communications. The transmission of data between computers, or
 remote devices or both (usually over long distance).

 data stream. All information (data and control information) transmitted
 over a data link.

 declaration. A statement in a program that defines how a label is used.

 default. A value, attribute, or option that is used when no alternative
 is specified by the operator.

 default directory. The directory name supplied by the operating system if
 none is specified.

 default drive. The drive name supplied by the operating system if none is
 specified.

 default value. A value stored in the system that is used when no other
 value is specified.

 delete. To remove. For example, to delete a file.

 dependent work station. A work station having little or no standalone
 capability, that must be connected to a host or server in order to provide
 any meaningful capability to the user.

 device. An electrical or electronic machine that is designed for a
 specific purpose and that attaches to your computer, for example, a
 printer, plotter, disk drive, and so forth.

 device driver. A program that operates a specific device, such as a
 printer, disk drive, or display.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 7

 device name. A name reserved by the system that refers to a specific
 device.

 diagnostic. Pertaining to the detection and isolation of an error.

 diagnostic aid. A tool (procedure, program, reference manual) used to
 detect and isolate a device or program malfunction or error.

 diagnostic routine. A computer program that recognizes, locates, and
 explains either a fault in equipment or a mistake in a computer program.

 digit. Any of the numerals from 0 through 9.

 directory. A type of file containing the names and controlling
 information for other files or other directories.

 diskette. A thin, flexible magnetic plate that is permanently sealed in a
 protective cover. It can be used to store information copies from the
 disk or another diskette.

 diskette drive. The mechanism used to read and write information on
 diskettes.

 display device. An output unit that gives a visual representation of
 data.

 display screen. The part of the display device that displays information
 visually.

 display station. A device that includes a keyboard from which an operator
 can send information to the system and a display screen on which an
 operator can see the information sent to or received from the computer.

 dump. (1) To copy the contents of all or part of storage, usually to an
 output device. (2) Data that has been dumped.

 EBCDIC. See extended binary-coded decimal interchange code.

 EBCDIC character. Any one of the symbols included in the 8-bit EBCDIC
 set.

 edit. To modify the form or format of data.

 editor. A program used to enter and modify programs, text, and other

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 8

 types of documents.

 emulation. Imitation; for example, when one computer imitates the
 characteristics of another computer.

 enable. To make functional.

 enter. To send information to the computer by pressing the Enter key.

 entry. A single input operation on a work station.

 environment. The settings for shell variables and paths set when the user
 logs in. These variables can be modified later by the user.

 equivalence class. A grouping of characters (or character strings) that
 are considered equal for purposes of collation. For example, many
 languages place an uppercase character in the same equivalence class as
 its lowercase form, but some languages distinguish between accented and
 unaccented character forms for the purpose of collation.

 error-correct backspace. An editing key that performs editing based on a
 cursor position; the cursor is moved one position toward the beginning of
 the line, the character at the new cursor location is deleted, and all
 characters following the cursor are moved one position toward the
 beginning of the line (to fill the vacancy left by the deleted element).

 error entry. A data structure containing a header of identifying
 information plus several bytes of defined data. Error entries are
 generated by error points and written to an error log file.

 error ID. This is part of the data required by an error entry. It is a
 unique combination of three hexadecimal digits that identifies the
 component that generated the error entry.

 error identifier. A three-character code used to identify error templates
 and to specify which error entries the error formatter should process.
 This code is based on the error ID; however, it uses alphanumeric
 characters instead of hexadecimal digits.

 error point. A group of code statements that generates an error entry
 from within a software program. Error entries are generated when a
 software or hardware component encounters an error.

 error type. One of six categories of errors. The type of an error is
 determined by the software program that generates the error. When you
 format an error log, you can specify which types of errors you want to
 format.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 9

 escape character. The backslash character, used to indicate to the shell
 that the next character is not intended to have the special meaning
 normally assigned to it by the shell.

 event class. A number assigned to a group of trace points that relate to
 a specific subject or system component. The defined event classes are
 listed in the trace profile.

 exit value. (1) A code sent to either standard output or standard error
 on completion of the command. (2) A numeric value that a command returns
 to indicate whether it completed successfully. Some commands return exit
 values that give other information, such as whether a file exists. Shell
 programs can test exit values to control branching and looping.

 expression. A representation of a value. For example, variables and
 constants appearing alone or in combination with operators.

 extended binary-coded decimal interchange code (EBCDIC). A set of 256
 eight-bit characters.

 extended character. A character other than a 7-bit ASCII character. An
 extended character can be a 1-byte code point with the 8th bit set
 (ordinal 128-255) or a 2-byte code point (ordinal 256 and greater).

 fake target name. A control name used in a makefile that looks like a
 target name, but actually tells make to perform some operation
 differently.

 feature. A programming or hardware option, usually available at an extra
 cost.

 field. (1) An area in a record or panel used to contain a particular
 category of data. The smallest component of a record that can be referred
 to by a name. (2) In Extended curses, an area in a presentation space
 where the program can accept operator input.

 FIFO. See first-in-first-out.

 file. A collection of related data that is stored and retrieved by an
 assigned name.

 file descriptor. A small positive integer that the system uses instead of
 the file name to identify the file.

 file name. The name used by a program to identify a file. See also
 label.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 10

 file specification (filespec). The name and location of a file. A file
 specification consists of a drive specifier, a path name, and a file name.

 file system. The collection of files and file management structures on a
 physical or logical mass storage device, such as a diskette or minidisk.

 filename. In DOS, that portion of the file name that precedes the
 extension.

 filter. A command that reads standard input data, modifies the data, and
 sends it to standard output.

 first-in-first-out (FIFO). A named permanent pipe. A FIFO allows two
 unrelated processes to exchange information using a pipe connection.

 fixed disk. A flat, circular, nonremoveable rotating plate with a
 magnetizable surface layer on which data can be stored by magnetic
 recording.

 fixed-disk drive. The mechanism used to read and write information on
 fixed disk.

 flag. A modifier that appears on a command line with the command name
 that defines the action of the command. Flags in the AIX Operating System
 almost always are preceded by a dash.

 flattened character. An ASCII character created by translating an
 extended character to its ASCII equivalent in appearance. Code point
 information is lost; the character cannot be retranslated to an extended
 character.

 font. A family or assortment of characters of a given size and style.

 foreground. A mode of program execution in which the shell waits for the
 program specified on the command line to complete before returning your
 prompt.

 format. (1) A defined arrangement of such things as characters, fields,
 and lines, usually used for displays, printouts, or files. (2) The
 pattern which determines how data is recorded.

 formatted diskette. A diskette on which control information for a
 particular computer system has been written but which may or may not
 contain any data.

 free list. A list of available space on each file system. This is

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 11

 sometimes called the free-block list.

 full path name. The name of any directory or file expressed as a string
 of directories and files beginning with the root directory.

 function. A synonym for procedure. The C language treats a function as a
 data type that contains executable code and returns a single value to the
 calling function.

 function keys. Keys that request actions but do not display or print
 characters. Included are the keys that normally produce a printed
 character, but when used with the code key produce a function instead.
 Compare with character key.

 generation. For some remote systems, the translation of configuration
 information into machine language.

 Gid. See group number.

 global. Pertains to information available to more than one program or
 subroutine.

 global action. An action having general applicability, independent of the
 context established by any task.

 global character. The special characters * and ? that can be used in a
 file specification to match one or more characters. For example, placing
 a ? in a file specification means any character can be in that position.

 global search. The process of having the system look through a document
 for specific characters, words, or groups of characters.

 global symbol. A symbol defined in one program module, but used in other
 independently assembled program modules.

 graphic character. A character that can be displayed or printed.

 group name. A name that uniquely identifies a group to the system.

 group number (Gid). A unique number assigned to a group of related users.
 The group number can often be substituted in commands that take a group
 name as an argument.

 handler. A software routine that controls a program's reaction to
 specific external events, such as an interrupt handler.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 12

 hardware. The equipment, as opposed to the programming, of a computer
 system.

 header. Constant text that is formatted to be in the top margin of one or
 more pages.

 header file. A text file that contains declarations used by a group of
 functions or users.

 header label. A special set of records on a diskette describing the
 contents of the diskette.

 help. Explanatory information that a program provides.

 highlight. To emphasize an area on the display by any of several methods,
 such as brightening the area or reversing the color of characters within
 the area.

 history file. A file containing a log of system actions and operator
 responses.

 hole in a file. See sparse file.

 home directory. (1) A directory associated with an individual user.
 (2) The user's current directory on login or after issuing the cd command
 with no argument.

 hook ID. A unique number assigned to a specific trace point. All trace
 entries include the hook ID of the originating trace point in the trace
 entry header. Pre-defined trace points use assigned hook IDs ranging from
 0 to 299. User-defined trace points can choose hook IDs ranging from 300
 to 399.

 I/O. See input/output.

 ID. Identification.

 IF expressions. Expressions within a procedure, used to test for a
 condition.

 informational message. A message providing information to the operator,
 that does not require a response.

 initial program load (IPL). The process of loading the system programs
 and preparing the system to run jobs. See initialize.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 13

 initialize. To set counters, switches, addresses, or contents of storage
 to zero or other starting values at the beginning of, or at prescribed
 points in, the operation of a computer routine.

 inode. The internal structure for managing files in the system. Inodes
 contain all of the information pertaining to the node, type, owner, and
 location of a file. A table of inodes is stored near the beginning of a
 file system.

 i-number. A number specifying a particular inode on a file system.

 input. Data to be processed.

 input device. Physical devices used to provide data to a computer.

 input file. A file opened in the input mode.

 input list. A list of variables to which values are assigned from input
 data.

 input-output file. A file opened for input and output use.

 input/output (I/O). Pertaining to either input, output, or both between a
 computer and a device.

 interactive processing. A processing method in which each system user
 action causes response from the program or the system. Contrast with
 batch processing.

 interface. A shared boundary between two or more entities. An interface
 might be a hardware component to link two devices together or it might be
 a portion of storage or registers accessed by two or more computer
 programs.

 interrupt. (1) To temporarily stop a process. (2) In data
 communications, to take an action at a receiving station that causes the
 sending station to end a transmission. (3) A signal sent by an I/O device
 to the processor when an error has occurred or when assistance is needed
 to complete I/O. An interrupt usually suspends execution of the currently
 executing program.

 IPL. See initial program load.

 job. (1) A unit of work to be done by a system. (2) One or more related
 procedures or programs grouped into a procedure.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 14

 job queue. A list, on disk, of jobs waiting to be processed by the
 system.

 justify. To print a document with even right and left margins.

 K-byte. See kilobyte.

 kernel. The memory-resident part of the AIX Operating System containing
 functions needed immediately and frequently. The kernel supervises the
 input and output, manages and controls the hardware, and schedules the
 user processes for execution.

 key. A unique identifier (of type key_t) that names the particular
 interprocess communications member.

 key pad. A physical grouping of keys on a keyboard (for example, numeric
 key pad, and cursor key pad).

 keyboard. An input device consisting of various keys allowing the user to
 input data, control cursor and pointer locations, and to control the
 user-to-work station dialogue.

 keylock feature. A security feature in which a lock and key can be used
 to restrict the use of the display station.

 keyword. One of the predefined words of a programming language; a
 reserved word.

 kill. An AIX Operating System command that stops a process.

 kill character. The character that is used to delete a line of characters
 entered after the user's prompt.

 kilobyte. 1024 bytes.

 label. (1) The name in the disk or diskette volume table of contents that
 identifies a file. See also file name. (2) The field of an instruction
 that assigns a symbolic name to the location at which the instruction
 begins, or such a symbolic name.

 left margin. The area on a page between the left paper edge and the
 leftmost character position on the page.

 left-adjust. The process of aligning lines of text at the left margin or

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 15

 at a tab setting such that the leftmost character in the line or filed is
 in the leftmost position. of the field is in the leftmost position.
 Contrast with right-adjust.

 lexical analyzer. A program that analyzes input and breaks it into
 categories, such as: numbers, letters or operators.

 library. A collection of functions, calls, subroutines, or other data.

 licensed program product (LPP). Software programs that remain the
 property of the manufacturer, for which customers pay a license fee.

 linefeed. An ASCII character that causes an output device to move forward
 one line.

 literal. A symbol or a quantity in a source program that is itself data,
 rather than a reference to data.

 load. (1) To move data or programs into storage. (2) To place a diskette
 into a diskette drive, or a magazine into a diskette magazine drive.
 (3) To insert paper into a printer.

 loader. A program that reads run files into main storage, thus preparing
 them for execution.

 local. Pertaining to a device directly connected to your system without
 the use of a communications line. Contrast with remote.

 log. To record; for example, to log all messages on the system printer.

 log in (v). To sign on at a work station.

 log off (v). To sign off at a work station.

 logical device. A file for conducting input or output with a physical
 device.

 loop. A sequence of instructions performed repeatedly until an ending
 condition is reached.

 main storage. The part of the processing unit from which programs are
 run.

 mapped file. A file that can be accessed using direct memory operations,
 rather than having to read it from disk each time it is accessed.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 16

 mask. A pattern of characters that controls the keeping, deleting, or
 testing of portions of another pattern of characters.

 matrix. An array arranged in rows and columns.

 memory. Storage on electronic chips. Examples of memory are random access
 memory, read only memory, or registers. See storage.

 memory areas. Arrays of characters in memory.

 menu. A displayed list of items from which an operator can make a
 selection.

 message. (1) A response from the system to inform the operator of a
 condition which may affect further processing of a current program.
 (2) An error indication, or any brief information that a program writes to
 standard error or a queue. (3) Information sent from one user in a
 multi-user operating system to another. (4) A general method of
 communication between two processes.

 message queue ID. An identifier assigned to a message queue for use
 within a particular process. It is similar in use to a file descriptor of
 a file.

 message services. A set of routines to help create, update and display
 messages from a program.

 minidisk. A logical division of a fixed disk that may be further
 subdivided into one or more partitions. See partitions.

 modem. See modulator-demodulator.

 modulation. Changing the frequency or size of one signal by using the
 frequency or size of another signal.

 modulator-demodulator (modem). A device that converts data from the
 computer to a signal that can be transmitted on a communications line, and
 converts the signal received to data for the computer.

 module. A discrete programming unit that usually performs a specific task
 or set of tasks. Modules are subroutines and calling programs that are
 assembled separately, then linked to make a complete program.

 msqid. See message queue ID.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 17

 multiprogramming. The processing of two or more programs at the same
 time.

 multivolume file. A diskette file occupying more than one diskette.

 nest. To incorporate a structure or structures of some kind into a
 structure of the same kind. For example, to nest one loop (the nested
 loop) within another loop (the nesting loop); to nest one subroutine (the
 nested subroutine) within another subroutine (the nesting subroutine).

 network. A collection of products connected by communication lines for
 information exchange between locations.

 new-line character. A control character, when coupled with a carriage
 return, causes the print or display position to move to the first position
 on the next line.

 null. Having no value, containing nothing.

 null character (NUL). The character hex 00, used to represent the absence
 of a printed or displayed character.

 numeric. Pertaining to any of the digits 0 through 9.

 object code. Machine-executable instruction, usually generated by a
 compiler from source code written in a higher level language. Consists of
 directly executable machine code. For programs that must be linked,
 object code consists of relocatable machine code.

 octal. A base eight numbering system.

 open. To make a file available to a program for processing.

 operating system. Software that controls the running of programs; in
 addition, an operating system may provide services such as resource
 allocation, scheduling, input/output control, and data management.

 operation. A specific action (such as move, add, multiply, load) that the
 computer performs when requested.

 operator. A symbol representing an operation to be done.

 output. The result of processing data.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 18

 output devices. Physical devices used by a computer to present data to a
 user.

 output file. A file that is opened in either the output mode or the
 extend mode.

 override. (1) A parameter or value that replaces a previous parameter or
 value. (2) To replace a parameter or value.

 overwrite. To write output into a storage or file space that is already
 occupied by data.

 owner. The user who has the highest level of access authority to a data
 object or action, as defined by the object or action.

 pad. To fill unused positions in a field with dummy data, usually zeros
 or blanks.

 page. A block of instructions, data, or both.

 pagination. The process of adjusting text to fit within margins and/or
 page boundaries.

 paging. The action of transferring instructions, data, or both between
 real storage and external page storage.

 paging space. An area on disk that the system uses to store information
 that is resident in virtual memory, but is not currently being accessed.

 pane. In Extended curses, an area of the display that shows all or a part
 of the data contained in a presentation space associated with that pane.
 A pane is a subdivision of a panel.

 panel. In Extended curses, a rectangular area on the display consisting
 of one or more panes that a program can treat as a unit.

 parallel processing. The condition in which multiple tasks are being
 performed simultaneously within the same activity.

 parameter. Information that the user supplies to a panel, command, or
 function.

 parent. (1) Pertaining to a secured resource, either a file or library,
 whose user list is shared with one or more other files or libraries.
 Contrast with child. (2) Also pertains to a process that has forked to
 create one or more child processes.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 19

 parent directory. The directory one level above the current directory.

 parser. A program that analyzes input and determines what to do with the
 input.

 partition. A logical division of a fixed disk.

 password. A string of characters that, when entered along with a user
 identification, allows an operator to sign on to the system.

 password security. A program product option that helps prevent the
 unauthorized use of a display station, by checking the password entered by
 each operator at sign-on.

 path name. A complete file name specifying all directories leading to
 that file.

 pattern-matching character. Special characters such as * or ? that can be
 used in a search pattern. Some are used in a file specification to match
 one or more characters. For example, placing a ? in a file specification
 means any character can be in that position. Pattern-matching characters
 are also called wildcards.

 permission code. A three-digit octal code indicating the access
 permissions. The access permissions are read, write, and execute.

 permission field. One of the three-character fields within the
 permissions column of a directory listing indicating the read, write, and
 run permissions for the file or directory owner, group, and all others.

 physical device. See device.

 physical file. An indexed file containing data for which one or more
 alternative indexes have been created.

 physical record. (1) A group of records recorded or processed as a unit.
 Same as block. (2) A unit of data moved into or out of the computer.

 PID. See process ID.

 pipe. To direct the data from one process to another process.

 pipeline. A direct, one-way connection between two or more processes.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 20

 pitch. A unit of width of typewriter type, based on the number of times a
 letter can be set in a linear inch. For example, 10-pitch type has 10
 characters per inch.

 platen. The support mechanism for paper on a printer, commonly
 cylindrical, against which printing mechanisms strike to produce an
 impression.

 position. The location of a character in a series, as in a record, a
 displayed message, or a computer printout.

 presentation space. In Extended curses, the data and attribute array
 associated with a window.

 primary group. In concurrent groups, the group that is assigned to the
 files that you create.

 print queue. A file containing a list of the names of files waiting to be
 printed.

 printing device. Any printer or device that prints, such as a
 typewriter-like device or a plotter.

 printout. Information from the computer produced by a printer.

 priority. The relative ranking of items. For example, a job with high
 priority in the job queue will be run before one with medium or low
 priority.

 problem determination. The process of identifying why the system is not
 working. Often this process identifies programs, equipment, data
 communications facilities, or user errors as the source of the problem.

 problem determination procedure. A prescribed sequence of steps aimed at
 recovery from, or circumvention of, problem conditions.

 procedure. See shell procedure.

 process. (1) A sequence of actions required to produce a desired result.
 (2) An entity receiving a portion of the processor's time for executing a
 program. (3) An activity within the system begun by entering a command,
 running a shell program, or being started by another process.

 process ID (PID). A unique number assigned to a process that is running.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 21

 profile. (1) A file containing customized settings for a system or user
 (2) Data describing the significant features of a user, program, or
 device.

 program. A file containing a set of instructions conforming to a
 particular programming language syntax.

 prompt. A displayed request for information or operator action.

 propagation time. The time necessary for a signal to travel from one
 point on a communications line to another.

 queue. A line or list formed by items waiting to be processed.

 queued message. A message from the system that is added to a list of
 messages stored in a file for viewing by the user at a later time. This
 is in contrast to a message that is sent directly to the screen for the
 user to see immediately.

 quit. A key, command, or action that tells the system to return to a
 previous state or stop a process.

 random access. An access mode in which records can be read from, written
 to, or removed from a file in any order.

 real memory. Memory that is physically present in the system. Contrast
 with virtual memory.

 recovery procedure. (1) An action performed by the operator when an error
 message appears on the display screen. Usually, this action permits the
 program to continue or permits the operator to run the next job. (2) The
 method of returning the system to the point where a major system error
 occurred and running the recent critical jobs again.

 recursion. The process of using a function to define itself.

 redirect. To divert data from a process to a file or device to which it
 would not normally go.

 regular expression. A set of characters, metacharacters and operators
 that define a string or group of strings in a search pattern.

 relational expression. A logical statement describing the relationship
 (such as greater than or equal) of two arithmetic expressions or data
 items.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 22

 relational operator. The reserved words or symbols used to express a
 relational condition or a relational expression.

 relative address. An address specified relative to the address of a
 symbol. When a program is relocated, the addresses themselves will
 change, but the specification of relative addresses remains the same.

 relative addressing. A means of addressing instructions and data areas by
 designating their locations relative to some symbol.

 relative path name. The name of a directory or file expressed as a
 sequence of directories followed by a file name, beginning from the
 current directory.

 remote. Pertaining to a system or device that is connected to your system
 through a communications line. Contrast with local.

 reserved word. A word that is defined in a programming language for a
 special purpose, and that must not appear as a user-declared identifier.

 reset. To return a device or circuit to a clear state.

 restore. Return to an original value or image. For example, to restore a
 library from diskette.

 right adjust. The process of aligning lines of text at the right margin
 or tab setting such that the right-most character in the line or file is
 in the right-most position.

 right-adjust. To place or move an entry in a field so that the rightmost
 character of the field is in the rightmost position. Contrast with
 left-adjust.

 right margin. The area on a page between the last text character and the
 right upper edge.

 root. Another name sometimes used for superuser.

 root directory. The top level of a tree-structured directory system.

 root file system. The basic AIX Operating System file system, which
 contains operating system files and onto which other file systems can be
 mounted. The root file system is the file system that contains the files
 that are run to start the system running.

 routine. A set of statements in a program causing the system to perform

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 23

 an operation or a series of related operations.

 run. To cause a program, utility, or other machine function to be
 performed.

 run-time environment. A collection of subroutines and shell variables
 that provide commonly used functions and information for system
 components.

 SCCS. See Source Code Control System.

 SCCS identification. In SCCS, a number assigned to a version of a program
 to keep track of each version of the program.

 scratch file. A file, usually used as a work file, that exists until the
 program that uses it ends.

 screen. (1) See display screen. (2) In Extended curses, a special type
 of window that is as large as the terminal screen.

 scroll. To move information vertically or horizontally to bring into view
 information that is outside the display or pane boundaries.

 sector. (1) An area on a disk track or a diskette track reserved to
 record information. (2) The smallest amount of information that can be
 written to or read from a disk or diskette during a single read or write
 operation.

 security. The protection of data, system operations, and devices from
 accidental or intentional ruin, damage, or exposure.

 segment. A contiguous area of virtual storage allocated to a job or
 system task. A program segment can be run by itself, even if the whole
 program is not in main storage.

 segment registers. Registers in the system that hold the actual addresses
 of the memory segments currently in use.

 semaphore. A general method of communication between two processes that
 is an extension of the features of signals.

 semaphore ID. An integer that points to a set of semaphores and a data
 structure that contains information about the semaphores.

 semid. See semaphore ID

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 24

 separator. A character used to separate parts of a command. See
 delimiter.

 sequential access. An access method in which records are read from,
 written to, or removed from a file based on the logical order of the
 records in the file.

 shared memory. A area of memory that more than one cooperating process
 can access simultaneously.

 shared memory ID. An identifier assigned to the shared segment for use
 within a particular process. It is similar in use to a file descriptor of
 a file.

 shared printer. A printer that is used by more than one work station.

 shell. See shell program.

 shell procedure. A series of commands combined in a file that carry out a
 particular function when the file is run or when the file is specified as
 an argument to the sh command. Shell procedures are frequently called
 shell scripts.

 shell program. A program that accepts and interprets commands for the
 operating system (there is an AIX shell program and a DOS shell program).

 shmid. See shared memory ID.

 sign off. To end a session at a display station.

 sign on. To begin a session at a display station.

 sign-off. The action an operator uses at a display station to end working
 at the display station.

 sign-on. The action an operator uses at a display station to begin
 working at the display station.

 signal. A simple method of communication between two processes.

 software. Programs.

 sort. To select a particular group of records from a file based upon some
 criterion. Also, to rearrange some or all of a group of records based

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 25

 upon items in a particular field of those records.

 Source Code Control System (SCCS). A program for maintaining version
 control for the source files of a developing program.

 source diskette. The diskette containing data to be copied, compared,
 restored, or backed up.

 source program. A set of instructions written in a programming language,
 that must be translated to machine language compiled before the program
 can be run.

 sparse file. A file that is created with a length greater than the data
 it contains, leaving empty spaces for future addition of data.

 special character. A character other than an alphabetic or numeric
 character. For example; *, +, and % are special characters.

 special file. Special files are used in the AIX system to provide an
 interface to input/output devices. There is at least one special file for
 each device connected to the computer. Contrast with directory and
 ordinary AIX files.

 standalone work station. A work station that can be used to preform tasks
 independent of (without being connected to) other resources such as
 servers or host systems.

 standard error. The place where many programs place error messages.

 standard input. The primary source of data going into a command.
 Standard input comes from the keyboard unless redirection or piping is
 used, in which case standard input can be from a file or the output from
 another command.

 standard output. The primary destination of data coming from a command.
 Standard output goes to the display unless redirection or piping is used,
 in which case standard output can be to a file or another command.

 standard screen. In Extended curses, a memory image of the screen that
 the routines make changes to.

 stanza. A group of lines in a file that together have a common function.
 Stanzas are usually separated by blank lines, and each stanza has a name.

 statement. An instruction in a program or procedure.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 26

 status. (1) The current condition or state of a program or device. For
 example, the status of a printer. (2) The condition of the hardware or
 software, usually represented in a status code.

 stderr. See standard error.

 stdin. See standard input.

 stdout. See standard output.

 storage. (1) The location of saved information. (2) In contrast to
 memory, the saving of information on physical devices such as disk or
 tape. See memory.

 storage device. A device for storing and/or retrieving data.

 stream. Sequential input or output from an open file descriptor.

 string. A linear sequence of entities such as characters or physical
 elements. Examples of strings are alphabetic string, binary element
 string, bit string, character string, search string, and symbol string.

 subdirectory. A directory contained within another directory in the file
 system hierarchy.

 subprogram. A program invoked by another program. Contrast with main
 program.

 subroutine. (1) A sequenced set of statements that may be used in one or
 more computer programs and at one or more points in a computer program.
 (2) A routine that can be part of another routine.

 subscript. An integer or variable whose value refers to a particular
 element in a table or an array.

 substring. A part of a character string.

 subsystem. A secondary or subordinate system, usually capable of
 operating independently of, or synchronously with, a controlling system.

 superblock. The most critical part of the file system containing
 information about every allocation or deallocation of a block in the file
 system.

 superuser. The system user with superuser privileges.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 27

 superuser privileges. The unrestricted ability to access and modify any
 part of the operating system associated with the user who manages the
 system.

 system. The computer and its associated devices and programs.

 system call. A request by an active process for a service by the system
 kernel.

 system customization. A process of specifying the devices, programs, and
 users for a particular data processing system.

 system date. The date assigned by the system user during setup and
 maintained by the system.

 system dump. A printout of storage from all active programs (and their
 associated data) whenever an error stops the system. Contrast with task
 dump.

 system profile. A file containing the default values used in system
 operations.

 system unit. The part of the system that contains the processing unit,
 the disk drives, and the diskette drives.

 system user. A person who uses a computer system.

 target diskette. The diskette to be used to receive data from a source
 diskette.

 task. A basic unit of work to be performed. Examples are a user task, a
 server task, and a processor task.

 task dump. A printout of storage from a program that failed (and its
 associated data). Contrast with system dump.

 terminal. (1) An input/output device containing a keyboard and either a
 display device or a printer. Terminals usually are connected to a
 computer and allow a person to interact with a computer. See work
 station. (2) In Extended curses, a memory image of what the terminal
 screen currently looks like.

 text. A type of data consisting of a set of linguistic characters (for
 example, alphabet, numbers, and symbols) and formatting controls.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 28

 text application. A program defined for the purpose of processing text
 data (for example, memos, reports, and letters).

 token. (1) The smallest independent unit of meaning as defined by either
 the parser or the lexical analyzer. A token can contain data, a language
 keyword, an identifier, or other parts of a language syntax. (2) In M4,
 any string of letters and digits that m4 recognizes.

 token numbers. Nonnegative integers that represent the names of tokens.

 trace. To record data that provides a history of events occurring in the
 system.

 trace entry. A data structure containing a header of identifying
 information plus up to 20 bytes of defined data. Trace entries are
 generated by trace points and written to a trace log file.

 trace point. A group of code statements that generates a trace entry from
 within a software program. Trace points are assigned to an event class
 which can be active or inactive. Trace points with active event classes
 can generate trace entries.

 trace profile. An ASCII file that can be modified to activate or
 deactivate the various event classes. The trace profile is used by the
 trace daemon to set up three channel tables that show which event classes
 are active.

 trace template. Used by the trace formatter to determine how the data
 contained in a trace entry should be formatted. All trace templates are
 stored in the master template file.

 track. A circular path on the surface of a fixed disk or diskette on
 which information is magnetically recorded and from which recorded
 information is read.

 trap. An unprogrammed, hardware-initiated jump to a specific address.
 Occurs as a result of an error or certain other conditions.

 tree-structured directories. A method for connecting directories such
 that each directory is listed in another directory except for the root
 directory, which is at the top of the tree.

 truncate. To shorten a field or statement to a specified length.

 typematic key. A key that repeats its function multiple times when held
 down.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 29

 type style. Characters of a given size, style, and design.

 Uid. See user number.

 user ID. See user number.

 user name. A name that uniquely identifies a user to the system.

 user number (Uid). A unique number identifying an operator to the system.
 This string of characters limits the functions and information the
 operator is allowed to use. The Uid can often be substituted in commands
 that take a user's name as an argument.

 user profile. A file containing a description of user characteristics and
 defaults (for example, printer assignment, formats, group ID) to be
 conveyed to the system while the user is signed on.

 utility. A service; in programming, a program that performs a common
 service function.

 valid. (1) Allowed. (2) True, in conforming to an appropriate standard
 or authority.

 value. (1) In Usability Services, information selected or typed into a
 pop-up. (2) A set of characters or a quantity associated with a parameter
 or name. (3) In programming, the contents of a storage location.

 variable. A name used to represent a data item whose value can change
 while the program is running. Contrast with constant.

 verify. To confirm the correctness of something.

 version. Information in addition to an object's name that identifies
 different modification levels of the same logical object.

 virtual device. A device that appears to the user as a separate entity
 but is actually a shared portion of a real device. For example, several
 virtual terminals may exist simultaneously, but only one is active at any
 given time.

 virtual memory. Addressable space that appears to be real memory. From
 virtual memory, instructions and data are mapped into real memory
 locations. Contrast with real memory.

 virtual storage. See virtual memory

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 30

 Volume ID (Vol ID). A series of characters recorded on the diskette used
 to identify the diskette to the user and to the system.

 wildcard. See pattern matching characters.

 window. In Extended curses, a memory image of what a section of the
 terminal screen looks like at some point in time. A window can be either
 the entire terminal screen, or any smaller portion down to a single
 character.

 word. A contiguous series of 32 bits (four bytes) in storage, addressable
 as a unit. The address of the first byte of a word is evenly divisible by
 four.

 work file. A file used for temporary storage of data being processed.

 work station. A device at which an individual may transmit information
 to, or receive information from, a computer for the purpose of performing
 a task, for example, a display station or printer.

 working directory. See current directory.

Programming Tools and Interfaces
Glossary

¦ Copyright IBM Corp. 1985, 1991
GLOSSARY - 31

 Special Characters
 .align 3.12 3.12.1
 .bcd 3.12 3.12.6
 .blkb 3.12
 .blkd 3.12
 .blkf 3.12
 .blkl 3.12
 .blkw 3.12
 .bss 3.12 3.12.2 3.12.3 3.12.6 5.8 5.9
 grouping sections 5.10.8
 initialized section holes 5.10.12
 of archive library members 5.11.2
 .byte 3.12
 .comm 3.12 3.12.3
 .data 3.12 3.12.2 5.8 5.9
 grouping sections 5.10.8
 of archive library members 5.11.2
 .DEFAULT 2.7.5
 .double 3.12
 .dsect 3.12 3.12.5
 .else 3.12.10
 .elseif 3.12 3.12.10
 .end 3.12 3.12.5
 .endif 3.12 3.12.10
 .endm 3.12 3.12.8
 .endr 3.12 3.12.9
 .enum 3.12 3.12.7
 .even 3.12 3.12.1
 .extern 3.12 3.12.11
 .float 3.12
 .globl 3.12 3.12.11
 .ident 3.12 3.12.4
 .if 3.12 3.12.10
 .lcomm 3.12 3.12.3
 .list 3.12
 .long 3.12
 .macro 3.12 3.12.8
 .nlist 3.12
 .noopt 3.12 3.12.13
 .optim 3.12 3.12.13
 .rept 3.12 3.12.9
 .set 3.12 3.12.12
 .string 3.12
 .SUFFIXES 2.7.4
 .text 3.12 3.12.2 5.8 5.9
 grouping sections 5.10.8
 holes in 5.11.3
 of archive library members 5.11.2
 .value 3.12
 .version 3.12 3.12.4
 $? macro 2.7.9
 $@ macro 2.7.9
 $$@ macro 2.7.9
 $* macro 2.7.9
 $% macro 2.7.9
 $< macro 2.7.9
 # 2.7.3.1
 Numerics
 80387 numeric processor
 assembler instructions 3.11

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 1

 A
 a.out header file 5.11.1
 about this book PREFACE
 absolute value 7.6.4
 ACTR pseudo-op 4.5.2
 addresses 5.6
 admin command, using 14.4.1
 AGO instruction 4.5.6
 AIF instruction 4.5.6
 AIX
 programming tools 1.2
 system services 1.2
 AIX/370 Assembler 4.2 to 4.5.6
 ALIGN option 5.10.7
 aligning output sections 5.10.7
 alignment definition
 assembler 3.12.1
 allocation algorithm 5.10.8 5.11.4
 alphabetic constants
 assembler 3.6.4.2
 AMODE pseudo-op 4.5.2
 apply list file 13.7.6.1
 example procedure 13.7.8
 ar command 5.11.2
 archive control file 13.9.8
 archive libraries, linking 5.11.2
 archive libraries, with make program 2.7.4.3
 AREAD pseudo-op 4.5.2
 ARGSUSED 2.4.4.3
 arguments within messages 18.18.3
 arguments, SCCS command 14.3.4
 arrays 15.4.13
 as command 2.6.1
 options 4.3
 using 2.6.1
 assembler 3.2
 80387 numeric processor instructions 3.11
 ACTR pseudo-op 4.5.2
 add instruction with register stack operands 3.11
 add instructions with a memory operand 3.11
 add instructions with a memory operand and the pop option 3.11
 addressing mode 3.8
 AGO instruction 4.5.6
 AIF instruction 4.5.6
 alphabetic constants 3.6.4.2
 AMODE pseudo-op 4.5.2
 AREAD pseudo-op 4.5.2
 assignment 3.12.12
 assignment statements 3.8.1
 attributes 4.4.1.1 4.5.3
 bit scan instructions 3.10.3
 bit test instructions 3.10.3
 block definition 3.12.3
 Bss 4.4.3
 Bss segment assembly 3.7.3
 CCW0 pseudo-op 4.5.2
 CCW1 pseudo-op 4.5.2
 CFC op-code 4.5.1
 character constants 3.6.4.2
 character set 3.6.2

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 2

 character translation 3.6.4.2
 clear instructions 3.10.3
 COM pseudo-op 4.5.2
 command format 3.13
 syntax 3.13
 comment section 3.12.4
 comments 3.6.5
 comparison instructions with a single register operand 3.11
 conditional assembly instructions 4.5.6
 conditional block 3.12.10
 conditional jump instructions 3.10.3
 COPY pseudo-op 4.5.2
 CSECT pseudo-op 4.4.3
 CSECT symbols 4.4.8
 CXD pseudo-op 4.5.2
 data segment assembly 3.7.2 4.4.3
 DC pseudo-op 4.5.2
 directives 3.12
 divide instructions with a single memory operand 3.11
 divide instructions with register stack operands 3.11
 double-precision shift instructions 3.10.3
 DSECT pseudo-op 4.4.3
 DXD pseudo-op 4.5.2
 EJECT pseudo-op 4.5.2
 enumeration 3.12.7
 EQU pseudo-op 4.5.2
 escapes 4.4.4
 exchange instruction 3.10.3
 expression types 3.8.4
 expressions 3.8 5.10.1
 external definition 3.12.11
 free-form input 4.4.9
 hex numbers 4.4.2
 I/O instructions 3.10.3
 ICTL pseudo-op 4.5.2
 increment and decrement instructions 3.10.3
 instruction set 3.10
 instructions 3.10.3
 instructions with no operands 3.10.3
 ISEQ pseudo-op 4.5.2
 jump and call instructions 3.10.3
 LAB op-code 4.5.1
 LOCTR pseudo-op 4.5.2
 lowercase support 4.4.1
 macro definition 3.12.8 4.4.7
 macros, operation field in 4.5.5
 MEND pseudo-op 4.5.2
 MHELP pseudo-op 4.5.2
 MNOTE pseudo-op 4.5.2
 modes 3.5
 move instructions 3.10.3
 segment registers 3.10.3
 special CPU registers 3.10.3
 zero or sign extensions 3.10.3
 multiply instructions with a memory operand 3.11
 multiply instructions with a memory operand and the pop option 3.11
 multiply instructions with register stack operands 3.11
 MVCIN op-code 4.5.1
 named labels 3.9.1.1
 notation and terminology 3.10.1

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 3

 numeric constants 3.6.4.1
 numeric instructions with general operands 3.10.3
 numeric processor binary coded decimal load and store 3.11
 numeric processor instructions with no operands 3.11
 numeric processor instructions with one memory operand 3.11
 numeric processor instructions with one register operand 3.11
 numeric processor instructions with short real and long real formats 3.11
 numeric processor instructions with word, very long word formats 3.11
 numeric processor word and long word integer instructions 3.11
 operation codes 4.4.1.1
 operator precedence 3.8.3
 OPSYN pseudo-op 4.5.2
 optimization 3.12.13
 options
 -b 4.3
 -C 4.3
 -D 4.3
 -dl 4.3
 -i int n 4.3
 -l listfile 4.3
 -m 4.3
 -n n 4.3
 -o 4.3
 -s n 4.3
 -t 4.3
 -T dnu 4.3
 -V 4.3
 -Xa 4.3
 POP pseudo-op 4.5.2
 preprocessor support 4.4.5
 PRINT pseudo-op 4.5.2
 program section (segment) control 3.12.2
 program segments 3.7
 PSECT pseudo-op 4.4.3
 pseudo-ops 4.4.3
 restrictions on 4.5.2
 PUNCH pseudo-op 4.5.2
 push instruction 3.10.3
 PUSH pseudo-op 4.5.2
 registers 3.10.2
 repeat block 3.12.9
 repeat count 3.12.6
 REPRO pseudo-op 4.5.2
 RMODE pseudo-op 4.5.2
 rotate and shift instructions 3.10.3
 scalar expression operators 3.8.2
 segments 4.4.3
 set instructions 3.10.3
 SIE op-code 4.5.1
 signed and unsigned division 3.10.3
 signed integer multiply instructions 3.10.3
 source statements 3.6
 SPACE pseudo-op 4.5.2
 special purpose registers 3.10.2
 stack pop instructions 3.10.3
 STAM op-code 4.5.1
 START pseudo-op 4.5.2
 statement format 3.6.1
 statement processing 3.9
 storage definition 3.12.6

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 4

 storage definition directive 3.12.6
 format 3.12.6
 string constants 3.6.4.2
 string instructions 3.10.3
 subtract instruction with a single memory operand 3.11
 subtract instructions with register stack operands 3.11
 symbols 4.4.1.1 4.5.4
 system variable symbols 4.4.1.1
 temporary labels 3.9.1.2
 text segment assembly 3.7.1 4.4.3
 TITLE pseudo-op 4.5.2
 type combinations 3.8.5
 unsigned multiplication 3.10.3
 UPT op-code 4.5.1
 WXTRN pseudo-op 4.5.2
 ZSECT pseudo-op 4.4.3
 assembler command format
 options 3.13 4.3
 -a 3.13
 -l [file] 3.13
 -o 3.13
 -R 3.13
 -s0 3.13
 -s1 3.13
 -s2 3.13
 assembler directives 3.12
 assembler language 2.6
 differences between System/370 and AIX/370
 attributes 4.4.1.1 4.5.3
 conditional assembly instructions 4.5.6
 CSECT symbols 4.4.8
 escapes 4.4.4
 free-form input 4.4.9
 hex numbers 4.4.2
 identifier symbols 4.4.6
 lowercase support 4.4.1
 macro definitions 4.4.7
 macros, operation field in 4.5.5
 operation codes 4.4.1.1
 preprocessor support 4.4.5
 pseudo-ops 4.5.2
 segments 4.4.3
 symbols 4.4.1.1 4.5.4
 system variable symbols 4.4.1.1
 assembler listing 2.6.1
 assembler registers 3.10.2
 Assembler source statements 3.6
 assembling source file 2.6.1
 assignment statements
 assembler 3.8.1
 in link editor command language 5.10.2
 attributes (in assembler language) 4.4.1.1 4.5.3
 audience of this book PREFACE.2
 awk 1.3.4
 action 15.4.1
 arrays 15.4.13
 control statements
 break 15.4.14.4
 continue 15.4.14.5
 exit 15.4.14.7

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 5

 for 15.4.14.3
 if-else 15.4.14.1
 next 15.4.14.6
 while 15.4.14.2
 defined variables 15.4.2
 field separator 15.4.2
 field variables 15.4.11
 functions 15.4.8
 macros 15.4.2
 operation 15.4.1
 operators 15.4.10
 program file 15.4.1
 syntax 15.4.1
 record separator 15.4.2
 regular expressions 15.4.4
 relational expressions 15.4.5
 search pattern 15.4.1
 defining 15.4.1
 special characters 15.4.4.2
 strings
 concatenating 15.4.12
 variables 15.4.9
 B
 backslash (\) 2.7.3.1
 bessel functions 7.6.2
 binary tree 7.4.12
 binding 5.7
 bit fields 2.4.6.2
 bit scan instructions
 assembler 3.10.3
 bit test instructions
 assembler 3.10.3
 block definition
 assembler 3.12.3
 BLOCK option 5.11.7
 blocking output files 5.11.7
 body, in SCCS file 14.3.3.2
 branch, SID 14.3.2
 branching backwards 4.5.6
 break statement 2.4.2
 broadcast RPC 19.5.2
 Bss segment assembly 4.4.3
 assembler 3.7.3
 building programs 2.7
 description file 2.7
 macros 2.7
 operation 2.7.1
 parent file 2.7.1
 rules 2.7.1
 target file 2.7.1
 C
 C
 library functions 7.4
 operator precedence 2.4.7.2
 program checking 2.4
 data type 2.4.3
 external names 2.4.6.3
 function definitions 2.4.3.3
 functions 2.4.4
 initializing variables 2.4.5

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 6

 portability 2.4.6
 structure 2.4.3.2
 union 2.4.3.2
 use of characters 2.4.6.1
 variables 2.4.4 2.4.5
 C language
 libraries
 c library 1.5.2
 Extended curses 1.5.2
 math library 1.5.2
 run time services library 1.5.2
 stdio 1.5.2
 macro preprocessor, m4 16.3
 calls
 file maintenance 8.6.2
 file system 8.6
 header files 8.3
 include files 8.3
 memory management 8.5.7
 message 8.5.4
 operation 8.5.4.2
 sample program 8.5.4.5
 pipe 8.4.2.13
 process
 exec 8.4.1
 exit 8.4.1
 fork 8.4.1
 getpriority 8.4.1
 pipe 8.4.1
 plock 8.4.1
 process ID 8.4.3
 sample program 8.4.4.5
 process tracking 8.4.5
 rforktst 8.4.2.12
 semaphore 8.5.3
 operation 8.5.3.2
 sample program 8.5.3.4
 structures 8.5.3.1
 shared memory 8.5.6
 signal
 sample program 8.5.1.2
 signals 8.5.1
 time 8.7
 wait 8.4.2.10
 casts 2.4.3.6
 cc command 2.3 2.3.2
 and entry points 5.11.1
 examples 2.3.2.1
 using
 for assembler language 2.6.3 4.3
 for c programs 2.3.2
 what it does 2.3.2
 CCW0 pseudo-op 4.5.2
 CCW1 pseudo-op 4.5.2
 CFC op-code 4.5.1
 changing an LPP 13.2
 changing strings 15.4.1
 channels tables, trace 11.4.3
 character
 header file 7.4.5.4

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 7

 library functions 7.4.5
 character constants
 assembler 3.6.4.2
 character set
 assembler 3.6.2
 character set design 18.17.1
 character strings 18.21.2 18.22.7
 character translation
 assembler 3.6.4.2
 character treatment routines 18.22.4
 characters
 use in a C program 2.4.6.1
 checksum, in SCCS header 14.3.3.1
 ckprereq 13.12
 clear instructions
 assembler 3.10.3
 codes, printer
 See printer codes
 codeset-independent programs 18.17
 collation 18.17.3
 character 7.4.5.3
 equivalence class 7.4.5.1 7.4.5.3
 extended 7.4.5.3
 wc_collate 7.4.5.3
 wc_eqvmap 7.4.5.3
 COM pseudo-op 4.5.2
 command
 cc 2.3 2.3.2
 installation 13.4.1
 installation, internal 13.12
 installp 13.4
 command conventions, SCCS 14.3.4
 command format
 assembler 3.13
 commands
 as 2.6.1
 error log, summary of 11.5.2
 ld 2.6.2
 SCCS, summary of 14.3.5
 trace, summary of 11.4.2
 comments 2.7.3.1
 comments 2.7.3.1
 comments, in SCCS header 14.3.3.1
 comparison instructions
 assembler 3.11
 compatible, assembler 3.4
 compiler 2.3
 compilers
 C 2.3.1
 MCC 2.3.1
 VS C 2.3.1
 compiling 2.2
 compressed printing B.1
 conditional assembly instructions 4.5.6
 conditional block
 assembler 3.12.10
 conditional jump instructions
 assembler 3.10.3
 configuration
 error log file 11.5.1

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 8

 trace log file 11.4.1
 trace profile 11.4.1
 configured memory 5.4 5.10.3
 constants
 in link editor command language 5.10.1.1
 conversion routines 18.22.3
 converting numbers 7.4.7
 COPY option 5.11.6
 COPY pseudo-op 4.5.2
 creating files 2.7.1
 CSECT pseudo-op 4.4.3
 CSECTs symbols, AIX/370 Assembler support for 4.4.8
 cur00.h 9.3.2
 cur01.h 9.3.2
 cur05.h 9.3.2
 curses 9.3
 cursescontrolling display screen
 See Extended
 cursesdisplay screen
 See Extended
 cursesscreen handling
 See Extended
 curseswriting to display screen
 See Extended
 CXD pseudo-op 4.5.2
 D
 data segment assembly 4.4.3
 assembler 3.7.2
 data type 2.4.3
 array 2.4.3.1
 array pointer 2.4.3.1
 casts 2.4.3.6
 checking
 turning off 2.4.3.5
 mixing 2.4.3.1
 dbx 1.3.4
 dbx vector processor
 debugger variables 12.37.2
 error handling 12.37.3
 support 12.37
 dbx vector processor support 12.37
 commands 12.37.1
 dbx vector processor support commands 12.37.1
 dbx, program debugger 12.2
 DC pseudo-op 4.5.2
 debug
 dbx 1.3.4
 delta command 14.3.2
 delta command, using 14.4.3
 delta table, in SCCS header 14.3.3.1
 description file
 colon, double 2.7.3.2
 colon, single 2.7.3.2
 command sequences 2.7.3.2
 commands 2.7.3.2
 contents 2.7.3
 example 2.7.3.7
 format 2.7.3.1
 line continuation 2.7.3.1
 macro 2.7.8

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 9

 simplifying 2.7.3.8
 directives, assembler 3.12
 .align 3.12.1
 .bcd 3.12.6
 .bss 3.12.2 3.12.3 3.12.6
 .comm 3.12.3
 .data 3.12.2
 .dsect 3.12.5
 .else 3.12.10
 .elseif 3.12.10
 .end 3.12.5
 .endif 3.12.10
 .endm 3.12.8
 .endr 3.12.9
 .enum 3.12.7
 .even 3.12.1
 .extern 3.12.11
 .globl 3.12.11
 .ident 3.12.4
 .if 3.12.10
 .lcomm 3.12.3
 .macro 3.12.8
 .noopt 3.12.13
 .optim 3.12.13
 .rept 3.12.9
 .set 3.12.12
 .text 3.12.2
 .version 3.12.4
 directories 7.3.1 7.4.1.9 7.4.5.4 7.4.6.1 7.4.10 7.5 7.6
 /usr/include 7.3.1 7.4.1.9 7.4.5.4 7.4.6.1 7.6
 /usr/lib 7.5
 current 7.4.10
 Directory Access
 library functions 7.4.1.7
 disassembler 6.0
 assembly language output 6.3
 defaults 6.4.1
 invoking 6.4.1 6.4.2
 from command line 6.4.1
 menus 6.4.2
 notational conventions 6.3.1
 options 6.4.1
 -e 6.4.1
 -o 6.4.1
 -r 6.4.1
 -w 6.4.1
 preparing 6.3.2
 syntax 6.4.1
 using 6.4
 disk space saving 7.7
 displaying messages from message catalogs 18.18.8
 double-precision shift instructions
 assembler 3.10.3
 double-strike printing B.1
 double-wide printing B.1
 DSECT option 5.11.6
 DSECT pseudo-op 4.4.3
 dummy sections
 See DSECT option
 dump

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 10

 AIX PS/2 Operating System 11.5.5
 operation 11.5.5
 DXD pseudo-op 4.5.2
 E
 EJECT pseudo-op 4.5.2
 else 3.12
 emphasized printing B.1
 entry points, changing 5.11.1
 enumerated data type 2.4.3.4
 enumeration
 assembler 3.12.7
 enumerator 2.4.3.4
 environment variables 2.7.12 18.3
 used by make command 2.7.12
 environment, system
 Extended curses 9.3.6
 EQU pseudo-op 4.5.2
 error entry 11.5
 error ID 11.5
 error identifier 11.5
 error log
 class 11.5.3
 commands, using 11.5.2
 data_descriptor 11.5.4
 definition 11.5.4
 device driver 11.5
 error daemon 11.5
 error ID 11.5.3
 error identifier 11.5.3
 error log file 11.5
 errsave, example 11.5.3
 format file 11.5
 log file, altering the 11.5.1
 mask 11.5.3
 match values, using 11.5.4.1
 output data, formatting 11.5.4.2
 report, example 11.5.4.3
 subclass 11.5.3
 subroutines, using 11.5.3
 template, example 11.5.4.3
 templates, creating 11.5.4
 templates, defining 11.5.2
 templates, syntax 11.5.4
 templates, updating 11.5.2
 type 11.5.3
 error log components, diagram of 11.5
 error log facilities 11.5
 error messages
 SCCS, format of 14.3.4
 error point 11.5
 errors, logging 11.0
 errupdate 13.12
 escapes, AIX/370 Assembler support for 4.4.4
 event class 11.4
 exec 8.4.2.8 8.4.2.11
 sample program 8.4.2.11
 exit 8.4.2.8
 exponential 7.6.4
 expression types
 assembler 3.8.4

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 11

 expressions
 assembler 3.8
 Extended C compiler 2.3.1
 Extended curses 9.3 9.3.2
 attributes 9.4.2
 boxes 9.4.2
 compiling a program 9.3.2
 controlling input 9.7.1
 curscr 9.3.1
 display attributes 9.6
 changing attributes 9.6.1
 environment 9.3.6
 setting up 9.4.1
 example program 9.8
 extended characters 9.3.1
 extended routine 9.7.1
 features 9.3
 field 9.3.1
 function names 9.3.5
 combining 9.3.5
 getting input 9.4.3
 header files 9.3.2
 initializing the screen 9.4.1
 insert functions 9.4.2
 keypad routine 9.7.1
 pane 9.3.1
 PANE structure A.3
 panel 9.3.1
 PANEL structure A.2
 panels 9.5.1
 panes 9.5.1
 linkage 9.5.1
 prerequisites 9.3.2
 presentation space 9.3.1
 programming structures A.0
 routine categories 9.3
 routines 9.3
 using 9.4
 screen 9.3.1
 screen appearance 9.3.4
 screen dimensions 9.3.4
 screen update 9.3.3
 stdscr 9.3.1
 system environment 9.3.6
 terminal 9.3.1
 terms 9.3.1
 trackloc routine 9.7.1
 variables 9.3.6
 what you need 9.3.2
 window 9.3.1
 WINDOW structure A.0
 windows 9.4.4
 scrolling 9.7.2
 writing to a window 9.4.2
 eXternal Data Representation (XDR)
 converting data types to a uniform representation 19.3.7
 deserializing data 19.3.7
 serializing data 19.3.7
 using to allocate memory 19.3.7.1
 XDR 19.3.7

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 12

 external definition
 assembler 3.12.11
 external names 2.4.6.3
 F
 FF
 See form feed
 file code 18.17.1
 file control 14.0
 file system calls 8.6
 file, SCCS 14.3.2
 files
 accessing
 with library functions 7.4.1.2
 archive control 13.9.8
 branch delta, creating 14.4.2.2
 corrupted 14.4.1.1
 creating 14.4.1
 duplicate version, getting 14.4.2.3
 editable version, getting 14.4.2.2
 format, SCCS 14.3.3
 LPP history 13.9.1
 LPP name 13.9.6
 LPP requirements 13.9.4
 maintenance 8.6.2
 non-relocatable 5.11.8
 read-only version, getting
 recovering 14.4.1.1
 release number, changing 14.4.2.2
 SCCS, naming conventions 14.4.1
 special requirement 13.10.1
 status
 with library functions 7.4.1.4
 system calls 8.6.2
 updating 14.4.3
 using with system call 8.6.1.1
 files, library description 2.4.8
 finding strings 15.3
 flags, SCCS command 14.3.4
 forktst4 8.4.2.12
 sample program 8.4.2.12
 form feed B.1
 format
 assembler source statements 3.6.1
 format strings 18.17.5
 formatted output 18.22.8
 Forms control, printer B.1
 free-form input, AIX/370 Assembler support for 4.4.9
 function 2.4.4 2.4.6.4
 calling 2.4.2
 calling another function 2.4.6.4
 functions 2.4.3.3
 G
 get command, using 14.4.2
 global symbols
 in link editor command language 5.10.1.2
 Graphics codes, printer B.1
 grep 1.3.4
 defining string patterns 15.3.1.2
 extended grep (egrep) 15.3
 fast grep (fgrep) 15.3

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 13

 wildcard 15.3.1.2
 GROUP directive 5.10.8 5.11.7
 syntax 5.11.9
 group ID
 effective 8.4.3
 real 8.4.3
 guidelines
 writing shared library code 7.7.4.5
 H
 hash tables 7.4.11
 header files 7.3.1 7.4.1 7.4.1.9 7.4.4 7.4.5.4 7.4.6 7.4.6.1 7.4.8 7.4.9 7.4.16
 ctype.h 7.4.5.4
 definition of 7.3.1
 Extended curses 9.3.2
 grp.h 7.4.8
 math.h 7.6
 memory.h 7.4.4
 pwd.h 7.4.9
 signal.h 7.4.16
 stdio.h 7.4.1 7.4.1.9
 time.h 7.4.6 7.4.6.1
 use of 7.3.1
 help 10.0 10.7
 definition 10.7
 displaying 10.9 10.9.2
 file path name
 changing 10.7.3
 changing for debug 10.7.4
 default 10.7.2
 format 10.7.1
 header files 10.9.1
 help file 10.8
 building 10.8
 contents 10.8.1
 routines 10.7
 using 10.7 10.9
 heterogeneous environment
 building programs 1.4.1
 TCF cluster 1.4.1
 hex numbers, AIX/370 Assembler support for 4.4.2
 highlighting in this book PREFACE.3.1
 holes
 in output sections, creating 5.10.9
 in physical memory 5.11.3
 initialized section 5.10.12
 hook ID 11.4
 hyperbolic functions 7.6.3
 I
 I/O
 display screen 1.5.2
 header file 7.4.1.9
 library functions 7.4.1.5 7.4.1.6
 I/O instructions
 assembler 3.10.3
 ICTL pseudo-op 4.5.2
 ID keywords 14.4.2.1
 identification keywords 14.4.1 14.4.2.1
 warning, getting files 14.4.3
 include
 m4 built-in function 16.6.5

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 14

 incremental link editing 5.11.5
 index, message 10.4.4
 information in this book PREFACE
 init 8.4.2.9
 initialization
 section holes (.bss) 5.10.12
 initializing variables, C 2.4.5
 installation
 archive control file 13.9.8
 LPP history file 13.9.1
 LPP name file 13.9.6
 LPP requirements file 13.9.4
 script 13.6.4
 customizing 13.6.4.3
 restoring the LPP 13.6.4.2
 special requirement file 13.10.1
 what you need 13.6
 installation services 13.2
 using 13.4
 installation tools
 sending return codes 13.6.4.5
 installing an LPP 13.2
 installp 13.4
 instruction set
 assembler 3.10
 instructions
 assembler 3.10.3
 instructions with no operands
 assembler 3.10.3
 international character set
 regular expressions 18.19
 international character support 18.0
 inudocm 13.12
 inurecv 13.12
 inurest 13.12
 inusave 13.12
 inuupdt 13.12
 ISEQ pseudo-op 4.5.2
 J
 jump and call instructions
 assembler 3.10.3
 L
 LAB op-code 4.5.1
 languages 2.3.1
 assembler 2.6
 ld command 2.6.2 5.0 to 5.11.9
 options 5.9
 with archive libraries 5.11.2
 with ifiles 5.9
 level, SID 14.3.2
 lex 2.4.2 17.3
 libraries 1.5.2 7.0 7.3
 accessing files 7.4.1.2
 additional C functions 7.4.1.7
 abort 7.4.1.8
 abs 7.4.1.8
 assert 7.4.1.8
 opendir 7.4.1.7
 readdir 7.4.1.7
 rewinddir 7.4.1.7

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 15

 scandir 7.4.1.7
 seekdir 7.4.1.7
 telldir 7.4.1.7
 bessel functions 7.6.2
 binary tree functions 7.4.12
 C library 7.4
 character functions 7.4.5
 header file 7.4.5.4
 converting numbers 7.4.7
 get status information 7.4.1.4
 getting system parameters 7.4.10
 group access functions 7.4.8
 hash table function 7.4.11
 hyperbolic functions 7.6.3
 including on command line 7.3.2
 input functions 7.4.1.5
 math 7.6
 including on the command line 7.6
 memory allocation functions 7.4.14
 memory functions 7.4.4
 output functions 7.4.1.6
 password functions 7.4.9
 pseudo-random number functions 7.4.15
 random number functions 7.4.15
 run time services 7.5
 signal functions 7.4.16
 string functions 7.4.3
 string routines 7.4.2
 system 7.3
 table management functions 7.4.13
 time function header file 7.4.6.1
 trigonometry functions 7.6.1
 libraries, with make program 2.7.4.3
 library control 14.0
 library description files 2.4.8
 library files 7.3 7.5
 /lib/lib.a 5.11.2
 /lib/libc.a 5.11.2 7.3
 /lib/libm.a 7.3
 /lib/libPW.a 7.3
 /lib/librts.a 7.3
 /usr/lib/libcur.a 7.3
 /usr/lib/libcurses.a 7.3
 /usr/lib/libdbm.a 7.3
 /usr/lib/libl.a 7.3
 /usr/lib/libqb.a 7.3
 /usr/lib/librts.a 7.5
 /usr/lib/libsd.a 7.3
 /usr/lib/liby.a 7.3
 including from program 7.3.1
 link editor
 See also linking
 command language 5.10 to 5.10.12
 using the 5.9
 linking 2.2 2.6.2 5.0 to 5.11.9
 aligning an output section 5.10.7
 allocating in named memory 5.10.11
 allocation algorithm 5.10.8 5.11.4
 archive libraries 5.11.2
 binding 5.7

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 16

 BLOCK option 5.11.7
 COPY option 5.11.6
 directives, syntax 5.11.9
 DSECT option 5.11.6
 entry points, changing 5.11.1
 file specifications 5.10.5
 grouping sections 5.10.8
 holes in memory 5.11.3
 holes in output sections 5.10.9
 ifiles 5.9
 incremental 5.11.5
 initialized section holes 5.10.12
 input directives, syntax 5.11.9
 link editor command language 5.10 to 5.10.12
 link editor, using the 5.9
 loading sections at specified addresses 5.10.6
 memory configuration 5.4 5.10.3
 NOLOAD option 5.11.6
 non-relocatable files 5.11.8
 object files 5.8
 SECTIONS directive 5.10.4
 sections, defining 5.10.4
 symbols, creating at link time 5.10.10
 lint 2.4
 command syntax 2.4
 creating a library 2.4.8
 flags 2.4
 library description files 2.4.8
 operation 2.4.1
 LOCTR pseudo-op 4.5.2
 logarithm 7.6.4
 lowercase support by AIX/370 Assembler 4.4.1
 LPP
 changes 13.2
 installation 13.2
 updating 13.2
 LPP history file 13.9.1
 LPP name file 13.9.6
 LPP requirements file 13.9.4
 example entry 13.9.5.1
 M
 m4
 function
 divert 16.6.6
 sinclude 16.6.5
 undivert 16.6.6
 functions
 eval 16.6.4
 include 16.6.5
 incr 16.6.4
 maketemp 16.6.8
 syscmd 16.6.7
 integer arithmetic 16.6.4
 system command 16.6.7
 m4 macro preprocessor
 command syntax 16.4
 defining macros 16.5
 functions
 arguments for 16.5.2
 changequote 16.6.1

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 17

 define 16.5
 ifdef 16.6.3
 undefine 16.6.2
 macro
 defining 2.7.7
 make's internal 2.7.9
 precedence for make program 2.7.8
 preprocessor, m4 16.3
 macro definition
 AIX/370 Assembler support for 4.4.7
 assembler 3.12.8
 macros, operation field in
 magic numbers 5.9
 make 1.3.5
 .DEFAULT 2.7.5
 adding suffixes 2.7.4
 building programs 2.7
 command syntax 2.7.2
 description file 2.7.3
 example 2.7.14
 macros in a 2.7.8
 description file example 2.7.3.7
 environment variables 2.7.12
 error handling 2.7.3.5
 flags 2.7.2
 functions 2.7
 ignore errors 2.7.3.5
 including other files 2.7.6
 internal rules 2.7.3.8 2.7.4
 default 2.7.5
 libraries 2.7.4.3
 macro 2.7.4.4
 defining 2.7.7
 internal 2.7.9
 precedence 2.7.8
 macro definitions 2.7.2
 makefile 2.7.3
 MAKEFLAGS 2.7.3.3
 nested calls 2.7.3.3
 parent file 2.7.3
 prevent writing 2.7.3.4
 rules file 2.7.4.4
 rules file example 2.7.4.1
 rules, internal
 writing 2.7.4.4
 rules, single suffix 2.7.4.2
 shell commands 2.7.3.2
 target file 2.7.2
 using with SCCS files 2.7.11
 write only flag 2.7.3.3
 math library functions 7.6
 MBCS (multibyte character set)
 arguments within messages 18.18.3
 character set design 18.17.1
 character strings 18.21.2 18.22.7
 character treatment routines 18.22.4
 collation 18.17.3
 conversion routines 18.22.3
 displaying messages from message catalogs 18.18.8
 file code 18.17.1

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 18

 format strings 18.17.5
 formatted input 18.21.3
 formatted output 18.22.8
 input and output 18.17.4
 library routines 18.20
 message catalog generation 18.18
 message catalogs 18.17.7
 message text source file 18.18.1
 naming conventions 18.20.1.1
 non-positional format parameters 18.17.8
 printing wide characters 18.22.5
 process code 18.17.1
 processing wide characters 18.22
 programming 18.16
 string library 18.22.2
 syntax of messages 18.18.2
 using symbolic definitions 18.18.4
 writing codeset-independent programs 18.17
 memory 7.4.14
 allocation 7.4.14
 allocation algorithm 5.10.8 5.11.4
 and linking 5.4 5.10.3
 configuration 5.4 5.10.3
 holes in 5.10.9 5.10.12 5.11.3
 library functions 7.4.4
 MEMORY directive 5.10.3
 named, allocating sections in 5.10.11
 MEMORY directive 5.10.3
 syntax 5.11.9
 memory dumps 11.5.5
 memory management calls 8.5.7
 memory saving 7.7
 MEND pseudo-op 4.5.2
 message calls 8.5.4
 sample program 8.5.4.5
 message catalog generation 18.18
 message catalogs 18.17.7
 message services
 See messages
 message table 10.4
 message text source file 18.18.1
 messages
 adding 10.4.3
 displaying 10.5.2
 error number 10.3.1
 example message table 10.4
 format
 immediate 10.3.1
 queued 10.3.1
 standard file 10.4.1
 header files 10.5.1
 immediate 10.3
 format 10.3.1
 generating 10.5.2.1
 index 10.4.4
 message table 10.4
 program identifiers 10.3.1
 queued 10.3
 format 10.3.1
 generating 10.5.2.2

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 19

 sample message 10.3.1
 severity code 10.3.1
 symbols for variables 10.6
 table
 naming 10.4.2
 text insert
 example 10.6.4
 text insert definition 10.4.5
 time stamp 10.3.1
 types of 10.3
 using 10.5
 variable fields in 10.6
 example 10.6.1 10.6.2 10.6.3 10.6.4
 MHELP pseudo-op 4.5.2
 MNOTE pseudo-op 4.5.2
 mov 3.4
 movb 3.4
 move instructions
 assembler 3.10.3
 moving a program 2.4.6
 movl. 3.4
 movw 3.4
 msghelp 10.9.2.1
 msgrtrv 10.9.2.2
 multibyte character 18.17.1
 multibyte character set
 See MBCS (multibyte character set)
 multiple processes
 shared text 7.7
 MVCIN op-code 4.5.1
 N
 named labels
 assembler 3.9.1.1
 natural logarithm 7.6.4
 NOLOAD option 5.11.6
 non-configured memory 5.4 5.10.3
 non-positional format parameters 18.17.8
 non-relocatable files 5.11.8
 numbers
 converting to other forms 7.4.7
 numeric constants
 assembler 3.6.4.1
 numeric processor instructions
 binary coded decimal load and store 3.11
 no operands 3.11
 one memory operand 3.11
 one register operands 3.11
 short real and long real formats 3.11
 word and long word integer instructions 3.11
 word, long word, very long word formats 3.11
 O
 object files
 linking 5.8
 operation codes 4.4.1.1
 operator precedence
 assembler 3.8.3
 operators
 in link editor command language 5.10.1.3
 OPSYN pseudo-op 4.5.2
 optimization

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 20

 assembler 3.12.13
 options, in SCCS header 14.3.3.1
 P
 panels A.2
 panes A.3
 password
 library functions 7.4.9
 password file 7.4.9
 pios
 See printer
 pipe 8.4.2.13
 sample program 8.4.2.13
 POP pseudo-op 4.5.2
 portability 2.4.6
 bit fields 2.4.6.2
 external names 2.4.6.3
 power, raising to a 7.6.4
 precedence, operator 2.4.7.2
 preprocessing, AIX/370 Assembler support for 4.4.5
 PRINT pseudo-op 4.5.2
 printer
 codes, control B.0
 graphics B.1
 page appearance B.1
 paper control B.1
 print mode B.1
 printhead B.1
 ribbon control B.1
 type style B.1
 data stream B.0
 printing B.1
 codes, control
 ASCII B.1
 hexadecimal B.1
 Keys to generate B.1
 Miscellaneous B.1
 Names B.1
 I/O support B.1
 Printing ASCII codes less than 32. B.1
 printing wide characters 18.22.5
 process 8.4
 group 8.4.3
 ID 8.4.3
 special ids 8.4.2.9
 process code 18.17.1
 process group 8.4.3
 process ID 8.4.3
 processing wide characters 18.22
 program checking, C 2.4
 program control 14.0
 program development in heterogeneous environment 1.4
 program section (segment) control 3.12.2
 program segments
 assembler 3.7
 programming
 MBCS environment 18.16
 programming in an MBCS environment 18.16
 programming languages 2.3.1
 programming tools
 cb 1.3.2

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 21

 cc 1.3.3
 cflow 1.3.2
 cxref 1.3.2
 ed 1.3
 lint 1.3.2
 programming with remote procedure calls 19.3
 library routines 19.7
 programming levels 19.7
 programs, monitoring 11.0
 PSECT pseudo-op 4.4.3
 pseudo-ops 4.4.3 4.5.2
 pseudo-random number generator 7.4.15
 PUNCH pseudo-op 4.5.2
 push instruction
 assembler 3.10.3
 PUSH pseudo-op 4.5.2
 R
 random number generator 7.4.15
 registers
 assembler 3.10.2
 special purpose 3.10.2
 regular expressions 18.19
 definition 15.3.1.2 15.5.4
 used with awk 15.4.4
 relational expressions 15.4.5
 release, SID 14.3.2
 Remote Procedure Call Language (RPCL) 19.3.6
 defining data types 19.3.6
 input language 19.3.6
 remote procedure calls 19.3
 authentication 19.3.4
 broadcast 19.5.2
 callrpc routine 19.7.2.1
 communication model 19.3.1
 input language 19.3.6
 registerrpc routine 19.7.2.2
 terms 19.3
 repeat block
 assembler 3.12.9
 REPRO pseudo-op 4.5.2
 RMODE pseudo-op 4.5.2
 rotate and shift instructions
 assembler 3.10.3
 RPC message authentication 19.3.4
 RPC protocol 19.3.5
 assigning procedure numbers 19.3.5
 assigning program numbers 19.3.5
 assigning version numbers 19.3.5
 rules
 changing, make 2.7.4.4
 rules, make program 2.7.4 2.7.4.1
 rules, single suffix 2.7.4.2
 S
 scalar expression operators
 scanning files 15.4
 sccs 1.3.5 2.7.4.3
 admin, using 14.4.1
 command conventions 14.3.4
 commands
 summary of 14.3.5

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 22

 delta, using 14.4.3
 error messages, format of 14.3.4
 features 14.3.1
 file format 14.3.3
 files
 branch delta, creating 14.4.2.2
 duplicate version, getting 14.4.2.3
 editable version, getting 14.4.2.2
 naming conventions 14.4.1
 read-only version, getting
 recovering 14.4.1.1
 release number, changing 14.4.2.2
 warning, non-SCCS commands 14.3.3.2
 get, using 14.4.2
 identification keywords 14.4.1
 overview 14.3
 terminology 14.3.2
 using make with 2.7.11
 description files 2.7.11.1
 SCCS identification 14.3.2
 scheduler 8.4.2.9
 scrolling 9.7.2
 search algorithm 7.4.11
 searching
 tables 7.4.13
 sections (of files) 5.5
 address of 5.6
 aligning output sections 5.10.7
 allocating to named memory 5.10.11
 binding 5.7
 COPY section 5.11.6
 DSECT section 5.11.6
 holes, creating in output sections 5.10.9
 holes, initialized 5.10.12
 loading at specified addresses 5.10.6
 NOLOAD section 5.11.6
 SECTIONS directive 5.10.4
 SECTIONS directive 5.10.4
 ALIGN option 5.10.7
 BLOCK option 5.11.7
 COPY option 5.11.6
 default allocation algorithm 5.10.8
 DSECT option 5.11.6
 file specifications 5.10.5
 holes in sections 5.10.12
 NOLOAD option 5.11.6
 syntax 5.11.9
 with archive library member 5.11.2
 sed
 defining string patterns 15.5.4
 wildcard 15.5.4
 see awk.changing strings 15.3
 seeid refid=assdir.assembler directives
 segments, AIX/370 Assembler support for 4.4.3
 select procedure 19.5.1
 semaphore 8.5.3
 sample program 8.5.3.4
 structures 8.5.3.1
 sequence, SID 14.3.2
 set instructions

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 23

 assembler 3.10.3
 shared libraries 7.7
 shared library
 choosing library members 7.7.4.6
 comparing shared and archive libraries 7.7.1
 creating 7.7.4
 guidelines 7.7.4.5
 shlib2 command 7.7.4.2
 shared memory calls 8.5.6
 sharp 2.7.3.1
 shell commands
 in a c language program 1.5.1
 SID 14.3.2
 SIE op-code 4.5.1
 signal 8.5.1
 handling 8.5.1.1
 sample program 8.5.1.2
 trapping 8.5.1.2
 signals
 library functions 7.4.16
 software generated 7.4.16
 signed integer multiply instructions
 assembler 3.10.3
 Source Code Control System 14.0
 source statements
 assembler 3.6
 SPACE pseudo-op 4.5.2
 special requirement file 13.10.1
 square root 7.6.4
 stack pop instructions
 assembler 3.10.3
 STAM op-code 4.5.1
 START pseudo-op 4.5.2
 statement processing
 assembler 3.9
 statements
 assignment 3.8.1
 stdio 7.4.1.9
 storage
 getting 7.4.14
 storage definition
 assembler 3.12.6
 string 7.4.1.1 7.4.1.5 7.4.1.6 7.4.3 7.4.5.4 7.4.6 7.4.6.1 7.4.7 7.4.17
 character search 7.4.3
 compare 7.4.3
 compiled regular expression 7.4.3
 concatenate 7.4.3
 conversion 7.4.7 7.4.17
 convert 7.4.3
 converting to other forms 7.4.7
 copy 7.4.3
 data type 7.4.1.1
 date and time 7.4.6 7.4.6.1
 definition 15.3.1
 format from 7.4.1.5
 format to 7.4.1.6
 from stdin 7.4.1.5
 from stream 7.4.1.5
 functions 7.4.1.1
 dnl (delete to new-line) 16.6.10

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 24

 dumpdef 16.6.11
 errprint 16.6.11
 index 16.6.10
 substr 16.6.10
 translit 16.6.10
 header file 7.4.5.4
 length 7.4.3
 library functions 7.4.3
 literal 15.3.1.1
 manipulation functions 7.4.3
 printing 16.6.11
 regular expression 7.4.3
 regular expression to 7.4.3
 search 7.4.3
 single quotes with 15.3.1
 strings 16.6.10
 to stdout 7.4.1.6
 to stream 7.4.1.6
 with m4 16.6.10
 string constants
 assembler 3.6.4.2
 string instructions
 assembler 3.10.3
 string library 18.22.2
 string routines
 library functions 7.4.2
 strings
 changing 15.3
 concatenating, in awk 15.4.12
 finding 15.3
 strip command 5.11.8
 structures 2.4.3.2
 subscript printing B.1
 suffixes, file name 2.7.4
 suffixes 2.7.4
 superscript printing B.1
 symbols 4.4.1.1
 creating at link time 5.10.10
 symbols, AIX/370 Assembler support for 4.5.4
 symbols, global
 in link editor command language 5.10.1.2
 syntax
 disassembler 6.4.1
 input directives 5.11.9
 make command 2.7.2
 syntax of messages 18.18.2
 system calls 8.3
 forktst4, example 8.4.2.12
 parent process 8.4.2
 process
 process id, example 8.4.4.5
 special 8.4.2.9
 system commands 15.2
 system management
 errors
 dumps 11.5.5
 memory dumps 11.5.5
 system parameters 7.4.10
 T
 table, message 10.4

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 25

 tables
 managing from a program 7.4.13
 temporary labels
 assembler 3.9.1.2
 text segment assembly 4.4.3
 assembler 3.7.1
 time
 library functions
 header file 7.4.6.1
 time system call 8.7
 TITLE pseudo-op 4.5.2
 trace
 channel tables 11.4.3
 commands, using 11.4.2
 data_descriptor 11.4.4
 definition 11.4.4
 device drivers 11.4
 format file 11.4
 guidelines 11.4.3
 log file, altering the 11.4.1
 match values, using 11.4.4.1
 output data, formatting 11.4.4.2
 profile, altering the 11.4.1
 report, example 11.4.4.3
 subroutines, using 11.4.3
 template, example 11.4.4.3
 templates, creating 11.4.4
 templates, defining 11.4.2
 templates, syntax 11.4.4
 templates, updating 11.4.2
 trace ID 11.4.3
 trsave, example 11.4.3
 trace components, diagram of 11.4
 trace daemon 11.4
 trace entry 11.4
 trace facilities 11.4
 trace formatter 11.4
 trace ID 11.4.3
 trace log file 11.4
 trace point 11.4
 trace profile 11.4
 tracing 11.0
 data, dumping 11.0
 trigonometry functions 7.6.1
 tty group 8.4.3
 type combinations
 assembler 3.8.5
 typedef 2.4.7.1
 U
 underline printing B.1
 unions 2.4.3.2
 update services 13.2
 updating
 archive control file 13.9.8
 LPP history file 13.9.1
 LPP name file 13.9.6
 LPP requirements file 13.9.4
 special requirement file 13.10.1
 updating an LPP 13.2
 updating files 2.7.1

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 26

 UPT op-code 4.5.1
 user ID
 effective 8.4.3
 real 8.4.3
 user names, in SCCS header 14.3.3.1
 using lex with yacc
 using make 2.7.2
 using symbolic definitions 18.18.4
 V
 VARARGS 2.4.4.3
 variable 2.4.4 2.4.5
 integer 2.4.7.1
 long 2.4.7.1
 variable fields in messages 10.6
 vector processor debugger variables 12.37.2
 W
 wait 8.4.2.10
 sample program 8.4.2.10
 wcllation
 wc_coluniq 7.4.5.3
 wildcard 15.3.1.2 15.5.4
 wildcard characters 2.7.3.1
 wildcard characters 2.7.3.1
 windows A.0
 panels A.2
 panes A.3
 WXTRN pseudo-op 4.5.2
 Y
 yacc 2.4.2 17.11
 Z
 ZSECT pseudo-op 4.4.3

Programming Tools and Interfaces
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 27

