Al X Operating System

for the PS/2 and Systen 370
Progranm ng Tools and I nterfaces
Version 1.2.1

Docunment Nunber SC23-2304-01

Copyright IBM Corp. 1985, 1991

Al X Operating System
for the PS/2 and System 370

Progranm ng Tools and I nterfaces

Version 1.2.1

Docunent Nunber SC23-2304-01

Copyright IBM Corp. 1985, 1991

Programming Tools and Interfaces
Edition Notice

Edition Notice
Third Edition (March 1991)

This edition applies to Version 1.2.1 of the | BM Advanced I nteractive
Executive for Personal Systeni2 (Al X PS/2), Program Nunmber 5713- AEQ
and to Version 1.2.1 of the | BM Advanced Interactive Executive for
System 370 (Al X/ 370), Program Number 5713-AFL, and to all subsequent
rel eases until otherwi se indicated in new editions or technical
newsletters. Mke sure you are using the correct edition for the

| evel of the product.

Order publications through your IBMrepresentative or the I BM branch
of fice serving your locality. Publications are not stocked at the
address gi ven bel ow.

A formfor reader's comments appears at the back of this publication.
If the form has been renoved, address your conments to:

| BM Cor poration, Departnent 52QA M5 911
Nei ghbor hood Road

Ki ngston, NY 12401

US A

When you send information to IBM you grant |BM a nonexcl usive right
to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

Portions of the code and docunentati on were devel oped at the

El ectrical Engi neering and Conputer Sciences Departnent at the

Ber kel ey Canmpus of the University of California under the auspices of
the Regents of the University of California.

Copyright International Business Machi nes Corporation 1985, 1991.
| rights reserved.

Copyri ght AT&T Technol ogi es 1984, 1987, 1988

Copyright Locus Conputing Corporation 1988

Copyright Aval on Computer Systens |984, |988

Copyright G aphics Software Systens, Inc., 1988

Copyright Sun M crosystens, Inc., 1988

Copyri ght | NTERACTI VE Systens Corporation 1985, 1988

Note to U. S. Government Users -- Docunentation related to restricted
rights -- Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedul e Contract with | BM Corp.

R EGEE TR

| Copyright IBM Corp. 1985, 1991
EDITION - 1

Programming Tools and Interfaces
Notices

Noti ces

References in this publication to | BM products, progranms, or services do
not inply that IBMintends to nmake these available in all countries in
which | BM operates. Any reference to an | BM product, program or service
is not intended to state or inply that only I1BMs product, program or
service may be used. Any functionally equival ent product, program or
service that does not infringe any of IBMs intellectual property rights
or other legally protectible rights may be used instead of the |IBM
product, program or service. Evaluation and verification of operation in
conjunction with other products, prograns, or services, except those
expressly designated by IBM are the user's responsibility.

| BM may have patents or pending patent applications covering subject
matter in this docunment. The furnishing of this docunent does not give
you any license to these patents. You can send license inquiries, in
witing, to the IBMDirector of Commercial Relations, |BM Corporation
Pur chase, Ny 10577.

Subt opi cs
Trademar ks and Acknow edgment s

| Copyright IBM Corp. 1985, 1991
FRONT_1-1

Programming Tools and Interfaces
Trademarks and Acknowledgments

Tradenmar ks and Acknow edgment s

The followi ng trademarks apply to this book:

O

IBMis a registered trademark of International Business Michine
Cor por ati on.

Al X is a registered trademark of International Business Mchine
Cor por ati on.

Personal System 2 and PS/2 are registered trademarks of th
I nternational Business Mchi nes Corporation.

System 370 is a trademark of International Business Mchi ne
Cor por ati on.

Ined is a tradenmark of | NTERACTI VE Systens Corporation

UNI X is a registered trademark of UNI X System Laboratories, Inc. i
the USA and ot her countri es.

The Renpte Procedure Call interface was devel oped by Sun M crosystens
Inc. RPCis a trademark of Sun M crosystens, |nc.

Renpte Procedure Call Language and eXternal Date Representation wer
devel oped by the Sun M crosystens, Inc.

| Copyright IBM Corp. 1985, 1991
FRONT_ 1.1-1

Programming Tools and Interfaces
About This Book

About Thi s Book

Thi s book describes the programm ng tools and services avail able for
witing application prograns that run on the |1 BM Advanced Interactive
Executive (Al X) for the Personal System 2 and System 370. This book
provi des an overview of the progranm ng process and descri bes how to use
the progranmng tools and interfaces within that process. This book

i ncludes information you need to be able to:

0 Understand the structure of the syste

0 Design output for the displa

0 Use C | anguage programi ng tool

0 Use systemcalls and library function

d Install prograns on the syste

0 Use the trace and error logging facilitie
0 Wite nessages

Subt opi cs

Who Shoul d Read Thi s Book
What You Shoul d Know
How to Use This Book
Rel at ed Publications

| Copyright IBM Corp. 1985, 1991
PREFACE - 1

Programming Tools and Interfaces
Who Should Read This Book

Wio Shoul d Read Thi s Book

This book is witten for programmers or application devel opers who want to
wite, develop, and debug application prograns that run on the Al X
Operating Systemfor the PS/2 and System 370.

| Copyright IBM Corp. 1985, 1991
PREFACE.1-1

Programming Tools and Interfaces
What You Should Know

What You Shoul d Know

The book uses the C progranm ng | anguage in many of the exanples, and many
of the tools work only with C | anguage source files. Therefore, you
should be famliar with the C programm ng | anguage to get the nost out of
this book. However, programers who use other high-Ievel |anguages can

al so benefit fromthe information in this book. 1In addition to knowing C
| anguage, you shoul d:

0 Have experience in witing application program
0 Be able to use the Al X Operating Systemto

- Ent er conmmands

- Create and delete files

- Edit files
- Move around the file system

| Copyright IBM Corp. 1985, 1991
PREFACE.2 - 1

Programming Tools and Interfaces
How to Use This Book

How to Use Thi s Book

This book is a reference manual for application devel opers who are witing
and testing prograns that run under the Al X Cperating System For many
topics, step-by-step instructions are given, but keep in mnd that the
book is not a tutorial. You can use the table of contents and the index
to locate particular topics you want to revi ew

Subt opi cs
Hi ghl i ghting

i Copyright IBM Corp. 1985, 1991
PREFACE.3-1

Programming Tools and Interfaces
Highlighting

Hi ghl i ghting

Thi s book observes the follow ng highlighting conventi ons:

0 Newterns introduced in the text are shown in boldface italic.

0 Al X commands, options, paraneters, names of keys, keywords
directives, and actual file nanmes are in bol df ace type.

O Structures are in UPPERCASE BOLDFACE.

0 Variable information is inijtalic type.

O Anything users type is in nobnospace type.

0 Anything appearing on a display screen that is referred to in
paragraph of text is in nonospace type.

O Instructions set off froma paragraph are printed in nonospace type.

| Copyright IBM Corp. 1985, 1991
PREFACE.3.1-1

Programming Tools and Interfaces
Related Publications

Rel at ed Publicati ons

For

addi tional information, you may want to refer to the follow ng

publi cati ons:

O

Al X C Language Reference, SC23-2058, describes the C programm ng
| anguage and contains reference information for witing progranms in C
| anguage that run on the Al X Operating System

Al X C Language User's QGui de, SC23-2057, describes how to devel op,
link, and execute C | anguage prograns. This book al so describes the
operati ng dependenci es of C |anguage and shows how to use C

| anguage-rel ated software utilities and other program devel opnent

t ool s.

Al X Commands Reference, SC23-2292 (Vol. 1) and SC23-2184 (Vol. 2),
lists and describes the Al X/ 370 and Al X PS/2 Qperating System
conmmands.

Al X Guide to Miltibyte Character Set (MBCS) Support, GC23-2333,
expl ains the basic concepts of Al X nultibyte character set support and
refers to other Al X books that contain nore detailed information.

Al X Library Quide, dossary, and Master |ndex, SC23-2324, describes
the publications in the Al X Operating Systemlibrary and contains a

gl ossary of terns used throughout the library. This book also
includes a master index to the contents of each of the publications in
the library.

Al X Messages Reference, SC23-2294, |ists nmessages displayed by the Al X
Operating System and explains how to respond to them

Al X TCP/I P User's Quide, SC23-2309, describes the features of TCP/IP
and shows how to install and custom ze the program It includes
reference informati on on TCP/I P conmands that are used to transfer
files, manage the network, and log into renote systens.

Al X Techni cal Reference, SC23-2300 (Vol. 1) and SC23-2301 (Vol. 2),
descri bes the systemcalls and subroutines a programer uses to wite
application prograns. This book al so provides information about the
Al X Operating Systemfile system special files, mscellaneous files,
and the witing of device drivers.

Al X VS FORTRAN Ref erence, SC23-2050, describes the FORTRAN progranm ng
| anguage as inmplenmented on Al X RT, Al X PS/ 2, and Al X/ 370. This book
describes all of the standard features of VS FORTRAN as well as the
enhanced functions and capabilities incorporated into | BM Al X VS
FORTRAN.

Al X VS FORTRAN User's @ui de, SC23-2049, shows how to devel op and
execute FORTRAN progranms on Al X RT, Al X PS/2, and Al X/ 370. This book
al so explains how to conpile and execute prograns that contain
sections of code witten in the VS Pascal and C progranm ng | anguages.

Al X VS Pascal Reference, SC23-2054, describes the VS Pascal

progranm ng | anguage as inplenented on the IBMPS/ 2 or RT with the Al X
Qperating Systeminstalled. This book describes all of the standard
features of Pascal as well as the enhanced functions and capabilities
i ncorporated into I BM Al X VS Pascal .

Al X VS Pascal User's Guide, SC23-2053, shows how to devel op and

| Copyright IBM Corp. 1985, 1991
PREFACE.4 -1

Programming Tools and Interfaces
Related Publications

execute Pascal prograns on the IBM PS/2 and RT using the Al X Operating
System This book al so explains how to conpile and execute prograns
that contain sections of code witten in the VS FORTRAN and C
progranm ng | anguages.

Al X X- W ndows Programmer's Reference, SC23-2118, describes the
X-W ndows |icensed program and provides information on X-W ndows
library functions, FORTRAN subroutines, protocols, and extensions.

Al X X- W ndows User's Quide, SC23-2017, describes the X-W ndows
i censed program and shows how to start, run, install, and custom ze
this program

Al X PS/ 2 General Information, GC23-2055, describes the Al X PS/2
Operating Systemis functions and capabilities and the product's
position in the AIX fam |y of products.

Al X PS/ 2 | Ned, SC23-2001, shows how to use the I Ned editor to create,
access, and store files. This book al so i ncludes reference
information on I Ned commands and a listing of INed error nessages.

Al X PS/2 INmail/INnet/INftp User's Quide, SC23-2076, describes the

I Nmai | /1 Nnet/ I Nftp/ Connect progranms and shows how to use these
prograns to send nmail to and receive nmail fromlocal and renote
comput er systens. This book al so shows how to transfer files to and
fromother conputer systens installed on the network.

Al X PS/ 2 Keyboard Description and Character Reference, SC23-2037,
descri bes the characters and keyboards supported by the Al X PS/2
Operating System This book al so provides infornmati on on keyboard
position codes, keyboard states, control code points, code-sequence
processi ng, and non-spaci ng character sequences.

Al X PS/2 Text Formatting Quide, SC23-2044, describes the text
formatting utilities available on the PS/2 and shows how to format
text with NROFF and TROFF. This book al so shows how to use the vi
editor to create, revise, and store files.

Al X/ 370 Administration Guide, SC23-2088, describes such adm nistrative
tasks as updating the file system backing up files, and fine-tuning
and nmonitoring the performance of the operating system

Al X/ 370 Di agnosi s Qui de, SC23-2090, describes procedures and tools
that can be used to define and categorize synptons of problens that
may occur during daily operation.

Al X/ 370 General |Informtion, GC23-2062, describes the functions and
capabilities of AIX/370 and its position in the AIX famly of
products.

Al X/ 370 Pl anni ng Qui de, GC23-2065, describes the functions and
capabilities of the Al X/ 370 Operating Systemand lists the
requirements for all supported hardware and software. This book al so
includes information to assist with planning for installation and
custom zation of the operating system

Installing and Custonizing the Al X PS/ 2 Operating System SC23-2290,
provi des step-by-step instructions for installing the Al X PS/2

Operating Systemand rel ated prograns. This book al so shows how to
custom ze the operating systemto suit the user's specific needs and

| Copyright IBM Corp. 1985, 1991
PREFACE.4 - 2

Programming Tools and Interfaces
Related Publications

wor kK envi ronnment .

Installing and Custonizing the Al X/ 370 Operating System SC23-2066,
provi des step-by-step instructions for installing the Al X/ 370
Operating Systemand rel ated prograns. This book al so shows how to
custom ze the operating systemto suit the user's specific needs and
wor k envi ronmnent .

Managi ng the Al X Operating System SC23-2293, describes such

syst em nanagenent tasks as adding and deleting user I1Ds, creating and
mounting file systens, backing up the system repairing file system
damage, and setting up an electronic mail system and ot her networking
facilities.

Using the Al X Qperating System SC23-2291, shows the begi nning user
how to use Al X Qperating System conmands to do such basic tasks as | og
in and out of the system display and print files, and set and change
passwords. It includes information for intermediate to advanced users
about how to use communi cation and networking facilities and wite
shel | procedures.

| Copyright IBM Corp. 1985, 1991
PREFACE.4 - 3

Programming Tools and Interfaces
Table of Contents

Tabl e of Contents

TI TLE Titl e Page
COVER Book Cover
EDI TI ON Editi on Notice
FRONT 1 Not i ces
FRONT 1.1 Trademar ks and Acknow edgnent s
PREFACE About Thi s Book
PREFACE. 1 Who Shoul d Read Thi s Book
PREFACE. 2 What You Shoul d Know
PREFACE. 3 How t o Use Thi s Book
PREFACE. 3. 1 Hi ghlighting
PREFACE. 4 Rel at ed Publications
CONTENTS Tabl e of Contents
FI GURES Fi gures

Chapter 1. Programming with Al X

CONTENTS

About This Chapter
Programm ng Tool s
Entering a Program
Checki ng a Program
Conpi l i ng and Linking a Program
Correcting Errors in a Program
Bui | di ng and Mai ntai ning a Program
Program Devel opnent in a Heterogeneous Environnment
Bui | di ng Prograns for Both Al X/ 370 and Al X PS/2
Progranmm ng I nterfaces
Conmmands
Li brary Routi nes
System Cal | s
Chapter 2. Conpiling and Linking Prograns
CONTENTS
About This Chapter
Conpi |l ing A Program
Choosi ng a Conpi |l er
Usi ng the cc Program
1 Exanpl es of Comrands
Checki ng C Prograns
Qperation
Pr ogram Fl ow
Dat a Type Checking
Bi nary Operators and Inplied Assignnents
Structures and Uni ons
Function Definition and Uses
Enuner at or s
Type Checking Contr ol
Type Casts
Vari abl e and Functi on Checki ng
I nconsi stent Function Return
Function Val ues That Are Not Used
Di sabling Function Rel ated Error Messages
Using Variables Before They Are Initialized
Portability Checking
Char acter Uses
Bit Field Uses
External Nane Size
Mul tiple Uses and Side Effects
Coding Errors and Style Differences
Assignments of Long Variables to Integer Variables
Oper ator Precedence
Conflicting Declarations

WN - = O wWNPEF

NN

OO, WN PR

NRNNRNRNNRNRNRNNRNRNNRNRNNNRNRNNNNNNNNNNNN R R R R R R R e
BRARPRARRRARRRARARRRARRRARAPRRNRNWWNROUINIOUARWN®W®W®WNEO
A WNPE

NNNANOoooOOUARAROWWLOWWWNE
N -

WN -

| Copyright IBM Corp. 1985, 1991
CONTENTS -1

WWWWRWWWWWWWWWWOWNNDNNNNNONMDNDNDNNDNDNDNNNNDNDNDNNDNNDNDNNDNNNDNDNDN

00000 RRWNRPONNNNNNNNNNNNNNNNNNNANNANNNNNNNANNANNNANNANNOOOOOARRR

Programming Tools and Interfaces
Table of Contents

Creating Alint Library
Creating the Input File
Creating the lint Library File
Checking a Programwith the New Library
O her C Progranm ng Tool s
Processi ng Assenbl er Language Routi nes
Usi ng the as Program
Using the I d Program
Using the cc Program
Bui | di ng Progranms with nake
Operation
Usi ng the make Program
Description Files
Format of a Description File Entry
Usi ng Commands in a Description File
Calling the make Program froma Description File
Preventing the make Program from Witing Commuands
Prevent Stopping on Errors
Determ ning the Trigger
Exanpl e of a Description File
Maki ng the Description File Sinpler
Internal Rules
Exanpl e of Default Rules File
Single Suffix Rules
Usi ng Make with Archive Libraries
Changing Macros in the Rules File
Defining Default Conditions
Including O her Files
Def i ni ng Macros
Using Macros in a Description File
I nternal Macros
Target File Name
Label Nane
Younger Files
First Qut-of-date File
Current File Name Prefix
Archive Library Menber

® 0 0
WN -

WN -

O~NO O~ WN P

©COOOOOORNDNARARRWWRW®WWWWWN -
A WNPE

OO~ WN PR

.10 Changi ng Macro Definitions in a Conmand
11 Using Make with SCCS Fil es

11,1 Description Files Stored in SCCS

.12 How nmake Uses the Environnent Variabl es
.13 Tr acki ng Dependenci es

I d options for use in make
cpp options for use in make
Usi ng oi nclude w th nake

=
w
WN -

.14 Exanpl e of a Description File

Chapter 3. PS/2 Assenbl er
CONTENTS
About This Chapter
Not at i onal Conventi ons
Conpatibility
80386 Architecture
Source Statenents
St at enent For nat
Char acter Set
Identifiers
Const ant s
Numeri ¢ Constants
Al phabetic Constants
Commrent s

N -

| Copyright IBM Corp. 1985, 1991
CONTENTS - 2

oo bhsbhhbbihbhrbhhhARAREhARAERhOOWOWNWWOWWWWHWWWWWWWWWWWHWWWWWWWWLWWLW

WNROUUNOUUINANRRARRRARBRWNRO

©OOOO®E®O®E®OONNNN

WN -

b wWNPEF

OO, WN PR

il
N =

WN -

O©CoOoO~NOUr~,WNPE

=

Programming Tools and Interfaces
Table of Contents

Pr ogram Segnen
Text Segment
Dat a Segnent
Bss Segnent

Expr essi ons

ts

Assenbl y
Assenbl y
Assenbl y

Assi gnnment Statenents

Scal ar Expre
Qperator Pre

ssion Qperators
cedence

Expressi on Types
Type Conbi nati ons

St at enent Proc

essi ng

St at enent Label s

Named Labe
Tenporary
I nstruction Se
Not ati on and
Regi sters
I nstructions
I nstructions f
Assenbler Dire
Al'i gnment De
Pr ogram Sect
Bl ock Defi ni
Conmment Sect
Record Defin
St orage Defi
Enuner ati on
Macro Defi ni
Repeat Bl ock
Condi ti onal
Ext er nal Def
Assi gnmrent
Optim zation
Conmmand For mat
Chapter 4. A X
Contents
About Thi s
Usi ng the Asse
D fferences
Lower case Su
Implicatio
Hex Numbers
Segnent s
Escapes
Pr epr ocessor

I's
Label s
t
Ter m nol ogy

or the 80387 Nuneric Processor
ctives

finition

ion (Segnent) Control

tion

i on

ition

nition

tion

Bl ock
inition

370 Assenbl er

Chapt er
nbl er Language

pport
ns

Support

Identifier Synbols

Macro Defi ni
CSECT Synbol
Free--form |l
Restrictions
Op- codes
Pseudo- ops
Attributes
Assenbl er Sy
Macr os
Condi ti onal
Chapter 5. Link
Contents
About Thi s
Li nk Edi tor

tions
S
nput

nbol s

Assenbly Instructions
ing Your Programs - Using the | d Conmand

Chapt er

| Copyright IBM Corp. 1985, 1991
CONTENTS - 3

NNNNNANNANNANNNNNNNOOOOOSOOIIUIOOaGaooiaoomoaaamomomoooooano

PRPARPRPPUNWONRPORMPRRRARWW®WNRO

N -

RWN PR P

WN -

PEERPEEPEEPEERE
N~NouhwN Rk

Programming Tools and Interfaces
Table of Contents

Menmory Configuration
Section
Addr esses
Bi ndi ng
bject File
Using the Link Editor
Li nk Edi tor Comrand Language
Expr essi ons
Const ant s
G obal Synbol s
Qperators
Assi gnnment Statenents
Specifying a Menory Configuration
Section Definition Directives
Fil e Specifications
Loading a Section at a Specified Address
Al'igning an Qutput Section
Groupi ng Sections Toget her
Creating Holes within Qutput Sections
Creating and Defining Synbols at Link-Edit Tinme
Al'l ocating a Section into Named Menory
Initialized Section Holes or .bss Sections
Not es and Speci al Consi derations
Changi ng the Entry Poi nt
Use of Archive Libraries
Dealing with Holes in Physical Menory
Al'l ocation Al gorithm
I ncrenmental Link Editing
DSECT, COPRY, and NOLOAD Secti ons
Qut put File Bl ocking
Non-rel ocatable I nput Files
Syntax Diagramfor Input Directives
Chapter 6. PS/2 D sassenbler
CONTENTS
About This Chapter
I ntroduction
Not ati onal Conventi ons
Preparati on
Usi ng the Di sassenbl er
From t he Conmand Li ne
1 Exampl e
Usi ng Menus
VS Pascal Exanpl e
VS FORTRAN Exanpl e
Chapter 7. Using the Subroutine Libraries
CONTENTS
About This Chapter
System Li braries
I ncl udi ng Decl arati ons
Li nki ng the Library Routines
Li brary Descriptions
The C Library
I nput / Qut put Contr ol
Using I/ O Routines
I/ O Routines Descriptions
File Access
File Status
| nput
CQut put
Directory Access

WN -

PRPROO~NOURAWNRRERR
N RO Tt

O©CoOoO~NOOOUITA~,WNE

| Copyright IBM Corp. 1985, 1991
CONTENTS - 4

P@POPOMOOBEOOOOOMOAONNNNNNNNNNNNNNNNNNNNNNNNNSNNNNNNNNNNSNNNNNNNNANN
PRAARARABRARAAMUNPONNNNANNANNANNANNNANNNOOOOOOOURARAAAAAARARAARARRARRARARS

Programming Tools and Interfaces
Table of Contents

8 M scel | aneous
9 I/ O Header File
String Routines
String Mani pul ation
Mermory Mani pul ation
Character Mani pul ation
Character Testing
Character Translation
Character Coll ation
Character Header File
Ti me
Ti me Header File
Nuneri cal Conversion
G oup File Access
Password Fil e Access
10 Par anet er Access
11 Hash Tabl e Managenent
12 Bi nary Tree Managenent
13 Tabl e Managenent
14 Menory Al |l ocation
15 Pseudo- random Nunber Generation
16 Si gnal Handl i ng
17 M scel | aneous
Run Tinme Services Library
Mat h Li brary
Trigononetry
Bessel
Hyperbolic
M scel | aneous
Shared Libraries
Comparing Shared and Archive Libraries
Calls to a Shared Library
Using a Shared Library
Creating a Shared Library
The Shared Library Specification File
The shli b2 Conmand
The shli brpt Comrand
A Sanpl e Shared Library
Gui del i nes
Choosi ng Li brary Menbers
Witing Code to a Shared Library
I mporting Synbols
Tuni ng Shared Library Code
Archive and Shared Library Compatibility
Shared Library Upward Conpatibility
Chapter 8. Using System Calls
CONTENTS
About This Chapter
Header Files Needed for Calls
Process Calls
Process Handling Calls
Starting a Process
For k
Rf or k
Exec
Rexec
Run
M grate
Wi t
Exanpl e of Process Life Cycle

A OWNPF

©CONOOUUNUUNURWNERER
=

A OWNPF

PRAARRBBRARARPONE

PP OO~NOOORAWNPE

= O

NESESESENE SESESENES
O~NO O, WN P

| Copyright IBM Corp. 1985, 1991
CONTENTS - 5

© ©©© 00000 mW 00 MO0 MO 000 mM 0000000 M 0000 M 000000000 0000 MO0 M 000 mM 00 MO WM M
WNRPONNNOOOOOPOOODONUNUGNUNUNTNUNTNRONUNNONTNNGOASRMARRMRRRARRMARAR

P

CTARPRRPRROONNNNN

NOOOUAPRARRRAWRWWRNNNNNNNEE -

NNNREEREREREREREERE

.10
11
.12

13

~NOoO O~ WNE N b wWNPRF A OWNPF OO, WN PR N OO~ WN PR =

=

Programming Tools and Interfaces
Table of Contents

Speci al Processes

Exanpl e of Fork and Wait System Calls

Exanpl e of Exec System Cal |

Exanpl e of Additional Process Handling System Calls

Exanpl e of a Pipe System Call
Process ldentification
Concurrent G oups
Process Attribute Calls
<LOCAL> Ali as
Cluster Site Number
Cluster Site Path List
Cluster Site Perm ssion Mask

Exanpl e of Process ID and Attribute Calls

Changing the Controlling Term nal

Process Tracking Calls
I nter process Conmuni cations
Signal Calls
How to React to a Signal
Exanpl e of Trapping a Signal
Enhanced Signal Facility
Responding to Signals
Usi ng Enhanced Signal s
Waiting for a Signal

Protecting Inportant Program Events

Fi nding Qut the Current Signal
Exanpl e Prograns

Semaphore Cal s
Structure of a Semaphore Set
How to Use Senmaphores
Exanpl e of Senmaphores

Mask

Exanpl e of Semmphore Progranm ng

Message Calls
Ter s
General Operation

Control ling Bidirectional Queues

Usi ng Message Queues
Exanpl e of Message Queue Calls
TCP/ I P Socket Conmuni cati on
Shared Menory Calls
Ter s
Usi ng Shared Segments
Menory Managenent Calls
File System Calls
Data Handling Calls
Using Files
File Descriptors
Openi ng and C osing Files
Random Access to Files
Reading and Witing to a File
Usi ng the Extended Calls
Committing File Changes
File Maintenance Calls
Synmbol i ¢ Li nks
Time System Calls
Using File Locking
Fil e Locki ng Exanpl e Program
Chapter 9. Controlling the Term nal
CONTENTS
About This Chapter
Ext ended Curses

| Copyright IBM Corp. 1985, 1991
CONTENTS - 6

Screen

COOLOVOOVOVOVOVOOVOLOOOOLOOOOLOO
ONNN~NoocoOARAERALOLWLW®

PONROOOOOORONNNNNOONOONNUNUIARADERRWONEO

OO, WN PR

N N A OWNPEF

WN -

=

abhwNPEF

A OWNPF

A WNPF

=

NESENES

NESENES
N -

Programming Tools and Interfaces
Table of Contents

New Ter s

What You Need

Using the

Screen Update Routines

What the Screen Looks Like
Functi on Nanes

Vari abl es
Usi ng the Li

brary Routines

Setting Up the Environnent
Witing to a Wndow

Getting Input fromthe Term na
Controlling the Screen

Routi nes for

Panel s and Panes

Defini ng Panel s and Panes
Creating Panels and Panes

Di splay Attr
Changi ng t

i but es
he Defined Attributes

Changi ng Screen Attri butes

Usi ng O her

Feat ur es

Controlling Input with the keypad, extended,

Scrol l'ing
| mprovi ng

W ndows
Per f or mance

Exanpl e Program

Chapter 10. Witing Messages and Hel p
CONTENTS

About This Chapter

Messages

Message For mat
Bui | di ng a Message Tabl e
Copying the Standard Format File
Nam ng the Message Tabl e
Addi ng Message Definitions
Message | ndex
Addi ng Text Insert Definitions
Usi ng Messages in a Program

I ncl udi ng

Header Fil es

Usi ng Routines to Display Messages
Generating an | nmedi ate Message

Cenerati

ng a Queued Message

Using Variable Fields in Message Text

Exanpl e of

Exanpl e of

Exanpl e of

Exanpl e of
Hel p

the I nteger Synmbo

the Long I nteger Synbo
the Character String Synbol

Text Insert Symbo

Hel p For mat

File Path
Changing t
Changing t

Name
he File Path Nane
he File Path Nane for

Building a Help File

Cont ent of
Usi ng Hel p
I ncl udi ng
Usi ng Rout
Di spl ayi
Putting

the Help Text File
n a Program

Header Files

ines to Display Help
ng a Help

Help in a Buffer

Debuggi ng

Chapter 11. DMbonitoring Program Activities
CONTENTS
About This Chapter
Monitoring Program Activities

Using the Tr

ace Facilities

| Copyright IBM Corp. 1985, 1991

CONTENTS -7

and trackl oc F

11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.

WN -

TONOOARRRONE
WN P

=
A WDNPE

PPRPOO~NOOOTR~WNE

CONDNUUONUANNUANUNTNARRN RO UNGOARNSDN
- O

Programming Tools and Interfaces
Table of Contents

Al'tering the Trace Configuration Files
Usi ng the Trace Commands
Usi ng the Trace Subroutines
Creating Trace Tenpl at es
Repl acing Values in the Qutput Data

Appear ance of the Formatted Qutput Data

Trace Tenpl ate Exanpl e
Using the Error Log Facilities

Al'tering the Error Log Configuration File

Using the Error Log Commands
Using the Error Log Subroutines
Creating Error Tenpl ates

Repl acing Values in the Qutput Data

Appear ance of the Formatted Qutput Data

Error Tenpl ate Exanple
Al X Dunmp Facility

Designating a Mnidisk as the Dunp Area

Designating Di skette as the Dunp Area
Starting a Dunp
Anal yzi ng a Dunp

Chapter 12. Debuggi ng Prograns

CONTENTS
About This Chapter
Conpi | i ng Your Program for Debuggi ng
The dbx Synbol i ¢ Debugger
Not ati onal Conventi ons
dbx Command Sunmary
Starting dbx
Setting and Del eting Breakpoints
Runni ng Your Program from dbx
Traci ng Program Execution
Endi ng Program Execution
Di spl aying the Source File

Printing and Modifying Variabl es, Expressions,

Procedure Calling
Si gnal Handl i ng
Machi ne Level Debuggi ng
Debuggi ng Envi r onnent
I nvoki ng t he dbx Debugger
O her I nvocation Options
Control ling Program Execution
Setting and Del eti ng Breakpoints
Runni ng Your Program
Separ ati ng dbx Qut put From Program Qut put
Traci ng Execution
Si gnal Handl i ng
Cal ling Procedures
Di spl aying a Stack Trace
Printing Variables and Expressions
Di spl ayi ng and Mddi fying Vari abl es
Scopi ng of Names
Variabl es in Unnanmed Bl ocks
Expr essi ons
Operators Al owed in Expressions
Type Checking in Expressions
Fol ding Vari ables to Lower and Upper Case

Speci al Debugger Variables to Change Print CQutput
Di spl ayi ng and Mani pul ati ng the Source File

Changi ng the Source Directory Path
Di splaying the Current File

| Copyright IBM Corp. 1985, 1991
CONTENTS - 8

and Types

12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
13.

28

28.

29
30
31
32
33
34
35
36
37

37.1
37.2
37.3

13.1

13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.

COOXNNNNANNANNANNNOOIOOOPOO000NNO00OARAbEAAbAbOWON

N -

WN P

N -

DO UTAWNR

N

O wWNPEF

Programming Tools and Interfaces
Table of Contents

Changing the Current File or Procedure
Debuggi ng Prograns | nvolving Miltiple Processes
The dbx Debuggi ng Environnent
The Alias Facility
Changi ng the dbx Pronpt
Custom zi ng Your Environment Wth .dbxinit
Readi ng dbx Commands Froma File
Runni ng Shel |l Commands From dbx
Getting Help
Ref er ences
dbx Vector Processor Support
dbx Vector Processor Support Conmmands
Debugger Vari abl es
Error Handling
Chapter 13. Installing and Updating an LPP
CONTENTS
About This Chapter
Under st andi ng System Cui del i nes
System Directories
Provi di ng User Docunentation
Using Installation and Update Services
Commands (installp, installt, updatep)
Replicated and Non-replicated File Systens
installp and updatep File Hierarchy
Installation Files
Update Files
install p and updatep Script Considerations
Execut abl e Fil e Consi derations
install p and updatep Script Descriptions
O der of Execution
installp Oder of Execution
updat ep apply Phase Order of Execution
updat ep reject Phase Order of Execution
What You Need to Install an LPP
General Control Files
Special Files for the Local
General LPP Files
Creating the Installation Script
Special Script for the Local
Restoring the LPP Media
Al'l owi ng for Individual Needs
Custom zing the Systemfor an LPP
Installati on and Update Procedure Return Codes
Exanple of Files on installp Mdia
| rportant Exanple Files
What You Need to Update an LPP
The Four Steps In the update Procedure
Oi gi nal
Oiginal to Applied
Applied to Conmitted
Committed to Applied
Applied to Oiginal
Files for Updates
Files For Updates to Local File Systens
Exanpl e update Procedure
Exanpl e of Update Files and Directories
Al'l owi ng for Recovery
File Formats and Descri ption
Creating the LPP History File
The G obal History File

| Copyright IBM Corp. 1985, 1991
CONTENTS -9

13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.

AR RN AR AR AR R AR AR PP P VN WWRNRPORARRARRRARRRWWRWWRWWWNEO

o~NoO U U AW
=

URWWWN R
N B

PONNNNE R
WN -

NP PR
N

N

Programming Tools and Interfaces

Table of Contents

The Local History File
Creating the LPP Requirenments File
Usi ng the Requirenent String
Requi rements File Exanple Entry
The LPP Nane File
Creating an Apply List File
The Archive Control Fi
The Local Information Fi
The Special File
The Save and Recover Dir

| nt er nal
14.

Chapt er

Commands

CONTENTS
About This Chapter
I nt roduci ng SCCS
Feat ur es
New Ter s
SCCS Fi |l e For mat
The SCCS Fil e Header
The SCCS Fil e Body
Conmand Conventi ons
Conmmand Summary
Usi ng SCCS Commands
Usi ng the adm n Command
Locati ng Damaged SCCS Fil es
Usi ng the get Command
Getting Read-Only Fi
CGetting Editable Fil
Getting Duplicate Fi
Usi ng the delta Coman

Using the
15.

Chapt er

CONTENTS
About This Chapter
Fi nding Strings
Strings
Literal Strings
Regul ar Expr essi ons
Exanpl e of Commands
Scanning Fil es
Program Fil e
Vari abl es
BEG N and END
Usi ng Regul ar Expressi
Character d ass
Speci al Characters
Usi ng Rel ational Expre

Exanpl es of Rel ati onal

Usi
Usi
Usi
Usi
Usi
Usi

ng
ng
ng
ng
ng
ng

Conbi nati ons of
Patt ern Ranges

Functions in an
Variables in an
Qperators in an
Field Vari abl es

Concatenating Strings
Usi ng Arrays
Usi ng Control Statenen
| f-Else Statenent
VWi | e St atenent
For St at enment

CONTENTS - 10

l e
l e

ectory

Mai ntaining Different Versions of a Program

| e Versions
e Versions
| e Versions
d

sccshel p Command
Fi ndi ng and Changi ng Strings

ons as Patterns

ssions as Patterns
Expressions in a Pattern

Patt erns

Action
Action
Action
in an Action

ts

| Copyright IBM Corp. 1985, 1991

15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
15.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.

NP OPONPONPONUNUNUNUNUARYWONRODDDNONNONODONUNAWNRONUGNUNUIAARNA

14. 4
14.5
14. 6
14.7

~NO O WNPE

N -

PP OO~NOUOR~WNE

= O

=

U hwN R

O©CoOo~NOUM~WNPE

Programming Tools and Interfaces
Table of Contents

Break St atenent
Conti nue St at enent
Next Stat enent
Exit Statenent
Comment s
Editing Files with sed
Starting the Editor
How sed Works
Sel ecting Lines for Editing
Regul ar Expressi ons
sed Command Sunmary
Text in Conmmands
String Repl acenent
Chapter 16. Using the Macro Processor (n4)
CONTENTS
About This Chapter
The Macro Processor
Usi ng the Macro Preprocessor
Def i ni ng Macros
Usi ng the Quote Characters
Ar gument s
Usi ng Gt her nd Macros
Changi ng the Quote Characters
Renovi ng a Macro Definition
Checking for A Defined Macro
Using Integer Arithnetic
Mani pul ating Fil es
Redi recting Qut put
Usi ng System Prograns in A Program
Usi ng Uni que File Nanes
Usi ng Conditional Expressions
Mani pul ating Strings
Printing
Chapter 17. Creating an |Input Language
CONTENTS
About This Chapter
Witing a Lexical Analyzer Programw th |ex
What | ex Does
How t he Lexical Analyzer Wrks
The | ex Specification File
Rul es
Regul ar Expressi ons
Operators
Putting Bl anks in an Expression
O her Special Characters
Character O asses
Mat chi ng Rul es
Matching a String Using WIdcard Characters
Finding Strings within Strings
Actions
Nul I Action
Sane as Next Action
Printing a Matched String
Fi nding the Length of a Matched String
Getting More | nput
Putting Characters Back
| nput / Qut put Routi nes
Char acter Set
End of File Processing
Passi ng Code to the Cenerated Program

| Copyright IBM Corp. 1985, 1991
CONTENTS - 11

Programming Tools and Interfaces
Table of Contents

17.8 Defining Substitution Strings

17.9 Start Conditions

17.10 Conpi l i ng the Lexical Analyzer
17.11 Using lex with yacc

17.12 Creating a Parser with yacc

17. 13 G ammar File

17.13.1 mai n and yyerror

17.13. 2 yyl ex

17.14 Using the Gammar File

17.14.1 Usi ng Conmment s

17.14.2 Using Literal Strings

17.14.3 How to Format the Grammar File
17.14. 4 Using Recursion in a Gammar File
17.14.5 Errors in the Ganmar File

17.15 Decl arati ons

17.15.1 Defining G obal Variabl es

17.15.2 Start Conditions

17.15. Token Numbers

17.16 Rul es

17.16.1 Repeating Nonterm nal Nanes
17.16.2 Enpty String

17.16. 3 End of | nput Marker

17.17 Acti ons

17.17. 1 Passi ng Val ues Between Actions
17.17.2 Support for Arbitrary Value Types
17.17.3 Putting Actions in the Mddle of Rules
17.18 Pr ogr ans

17. 19 Error Handling

17.19.1 Providing for Error Correcting
17.19.2 Clearing the Look Ahead Token

17. 20 Lexi cal Anal ysis

17.21 Parser Qperation

17.21.1 Shi ft

17.21.2 Reduce

17. 22 Usi ng Ambi guous Rul es

17.22. 1 Under st andi ng Parser Conflicts
17.22.2 How t he Parser Responds to Conflicts
17. 23 Turni ng On Debug Mbde

17. 24 Creating a Sinple Calculator Program - Exanple
17.24.1 Compi l'i ng the Exanpl e Program
17.24.2 The Parser Source Code

17.24. 2.1 Decl arations Section

17.24.2.2 Rul es Section

17.24.2.3 Prograns Section

17.24.3 The Lexical Anal yzer Source Code
18.0 Chapter 18. International Character Support
18.1 CONTENTS

18.2 About This Chapter

18.3 I nt roduction

18.4 Basi ¢ Concepts and Definitions
18.5 Hi story of Al X Character Support
18.6 Version 1.2.1 Modifications

18.7 Feat ur es

18. 8 Pr ogr amm ng Language Support

18.9 Kernel Modifications

18.9.1 Code Poi nt Support

18.9.2 Mul ti byte Character File Nanes
18.9.3 Term nal Maps

18.10 Intersystem Conpatibility

18.10.1 Communi cations with Renote Systens

| Copyright IBM Corp. 1985, 1991
CONTENTS - 12

18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.

=
©

e ol el
WNBRBRO

= e
B w

N
~o o h

=
N

=
N

=
N

=
N

=
N

=
N

=
N

i
o~

=
©

=
©

=
©

=
©

=
©

=
©

=
©

=
©

=
©

N B
o © ™

)
©

NN
= o

N
=

NRNRNNNNNNNN
MNNNNNDNNEE

WWWWwWWWWNON

N~NouhwWNRE

O~NO O WNPEF

=

O~NO O~ WN P

WN -

=
N

PP

Programming Tools and Interfaces
Table of Contents

uucp between Systens
Mai |
Limts to Support
ASCIl vs. Miltibyte Character Entries
Col l ation
Modi fications to Files and Directories
Obt ai ni ng Character Information
cron and /etc/openfiles
Per f ormance Tuning with cron and /etc/openfiles
Mul ti byte Character Set Support
Progranmm ng for an MBCS Environnent
How to Wite Codeset-I|ndependent Prograns
Character Set Design
Codeset | ndependence
Col l ation
| nput and Qut put
Enhanced printf/scanf Format Strings
wchar _t Oriented I nput and Qut put
Message Cat al ogs
Non- Posi ti onal Format Paraneters
Message Catal og Ceneration
The Message Text Source File
Syntax of Messages Wthin a Catal og
Argunents within Messages
Using Synmbolic Definitions
Default Values and Limts
Generation of a Message Catal og froma Message Text Source
gencat, runcat, nkcatdefs
Di spl ayi ng Messages from Message Cat al ogs
dspcat, dspnsg
Accessi ng Messages from Message Catal ogs from User Prograne
Use of Regul ar Expressions with International Characters
Usi ng The C Language MBCS Interface
Usi ng The Li brary Routines
Nam ng Conventi ons
Getting Wde Characters (wchar_t's)
Si ngl e Character | nput
Character Strings
Formatted | nput
Processi ng Wde Characters
ctype. h
The String Library
Conver si on Routi nes
Character Treatnent Routines
Printing Wde Characters
Si ngl e Character Qutput
Character Strings
Formatted Qut put

Chapter 19. Using Renote Procedure Call (RPQ

CONTENTS
About This Chapter
Overvi ew of RPC

The RPC Communi cati on Paradi gm

Data Transports and Semantics

Bi ndi ng and Rendezvous | ndependence

Message Aut hentication

The RPC Prot ocol

Renote Procedure Call Language (RPCL)

Defining Arbitrary Data Types with eXternal Data Represente
Al'l ocating Menory Wth eXternal Data Representation (XDR)

| Copyright IBM Corp. 1985, 1991
CONTENTS - 13

Programming Tools and Interfaces
Table of Contents

19.4 Aut henti cating Renote Procedure Calls
19.4.1 Aut henticating the dient

19.4.2 Aut henti cating the Server

19.5 Speci al Topics

19.5.1 The sel ect Procedure on the Server Side
19.5.2 Br oadcast RPC

19.5.3 Usi ng Bat chi ng

19.5.4 Using the inetd Daenon to Start a Server
19.6 Exanpl e Applications

19.6.1 Exanpl e of Using Version Numbers

19.6.2 Exanpl e of Using Transm ssion Control Protocol/Internet Prc
19.6.3 Exanpl e of Using Call back Procedures

19. 7 RPC Progranm ng Level s

19.7.1 Usi ng the Hi ghest Level

19.7.2 Usi ng I nternedi ate-Level RPC

19.7.2.1 Using the callrpc Routine

19.7.2.2 Usi ng the registerrpc Routine

19.7.3 Usi ng Low Level RPC

19.7.3.1 Usi ng the svc_regi ster Routine
19.7.3.2 The dient Side of Low Level RPC

A 0 Appendi x A. Extended curses Structures
Al W NDOW St ruct ure

A 2 PANEL Structure

A 3 PANE Structure

B.0 Appendi x B. PS/2 Printer Support Data Stream
B.1 Using Printers froma Program

C.oO Appendi x C. ASCI| Characters

D. 0 Appendi x D. installt Conmmand

D1 Menu For mat

D. 2 Tape For mat

D. 3 Tabl e of Contents (TOC) For nmat

D 3.1 Conmuni cati on Met hod

D 3.2 Changes to unix.std

GLOSSARY d ossary

I NDEX I ndex

| Copyright IBM Corp. 1985, 1991
CONTENTS - 14

Programming Tools and Interfaces
Figures

Fi gures
2-1. Exanple lint Library Input File 2.4.8.1

2-2. Rules for Creating Files 2.7.4

2-3. Exanple Default Rules File 2.7.4.1

2-4. Exanple Description File 2.7.14

3-1. Character Escape Sequence 3.6.4.2

3-2. Addressing Mbde Summary 3.8

3-3. Scal ar Expression Operators 3.8.2

3-4. Special Purpose Registers 3.10.2

3-5. Directive Summary 3.12

5-1. Synbols and Functions of Operators 5.10.1.3
5-2. Syntax Diagramfor Input Directives 5.11.9

7-1. Sunmary of System Libraries 7.3

7-2. Conparison of 1/0O Operations 7.4.1.1

8-1. Using the Fork System Cal | 8.4.2.8

8-2. Fork and Wait System Calls - Sanple Program 8.4.2.10
8-3. Qutput fromforktst2 Sample Program 8.4.2.10
8-4. Exec System Call - Sanple Program 8.4.2.11

8-5. Qutput fromforktst3 Sample Program 8.4.2.11
8-6. Additional Process Handling SystemCalls - Sanple

Program 8.4.2.12
8-7. Additional Process Handling System Calls - Sanple
Cut put 8.4.2.12

8-8. Using the pipe System Call 8.4.2.13

8-9. Relationship of IDs in the System 8.4.3
8-10. Process ID and Attribute Calls Sanple Program 8.4.4
8-11. Process ID and Attribute Calls Sanple Program 8.4.4
8-12. User Controlled Signals 8.5.1
8-13. Exanple of Signal Trapping 8.5.1.2
8-14. Enhanced Signal Calls 8.5.2
8-15. Sources of Signals 8.5.2.1
8-16. sigvec Structure Menbers 8.5.2.2
8-17. Enhanced Signals Exanple Program 8.5.2.6
8-18. Semid Data Structure 8.5.3.1
8-19. Semaphore Structure 8.5.3.1
8-20. Senop System Call Paraneters 8.5.3.2
8-21. How Sem op Specifies a Semaphore Qperation 8.5.3.2
8-22. Using Semaphores Concept Example 8.5.3.3
8-23. Semop Call for Proca 8.5.3.3
8-24. Semop Call for Prochb 8.5.3.3

[620¢)

8-25. Semaphore Usage 8.5.3.3

8-26. Using Semaphore Calls 8.5.3.4

8-27. Message Queue Terns 8.5.4.1

8-28. Shared Menory Terns 8.5.6.1

8-29. Exanple Program Listing for |ocktest.c 8.7.1.1
8-30. CQutput from Exanple Program | ocktest.c 8.7.1.1

9-1. Terns 9.3.1

Screen Coordi nate Boundari es 9. 3.
Exanpl e Panel Final Appearance 9.
Creating Panes in the Panel 9.5.2
Links in the Panel and Pane Structure 9.5.2
Programto Create Exanpl e Panel 9.5.2

Di splay Attributes 9.6

Changi ng Screen Attributes Exanple Program 9.6.2
Control Codes 9.7.1

Exanpl e of Extended curses Program 9.8

Message Fi el ds 10. 3.1

System ldentifiers 10.3.1

Content of Message Standard Format File 10.4.1
10-4. Header Files 10.5.1

4
5.2

1
©CONOG R wN

=
o

R P RO
OO0 ' ©W©W©WOWO®O©OO
wnN ke

| Copyright IBM Corp. 1985, 1991
FIGURES - 1

10-5.
10- 6.
10-7.
10- 8.
10-9.
11-1.
11-2.

11- 3.
11-4.
11-5.
11-6.
11-7.
11- 8.
11-9.
11-10.

11-11.
11-12.
11-13.

11-14.
13-1.
13- 2.
13- 3.
13-4.
13-5.
13- 6.
13-7.
13- 8.
13-9.

13-10.

13-11.

13-12.

13-13.

13- 14.

13-15.

13- 16.

13-17.

13-18.
14-1.
14-2.
14- 3.
14-4.
15-1.
15-2.
15-3.
15-4.
15-5.
15-6.
16-1.
17-1.
17-2.
17-3.
17-4.
17-5.
17-6.
17-7.
18-1.
18- 2.

Programming Tools and Interfaces
Figures

St andard Synbol s 10. 6
Exanpl e of |nteger Synbol Programm ng 10.6.1
Exanpl e of Character String Symbol Progranm ng
Exanpl e of Text Insert Synmbol Programnm ng 10.6
Content of Help Text Format File 10.8.1
Trace Conponents 11. 4
Exanpl e Program Fragnment Show ng Use of trcunix
Subr outi ne 11.4.3

10.6.3
.4

Exanpl e Program Fragnment Show ng Use of trsave Subroutine

Trace Tenpl ate Synt ax 11.4. 4

Fields in a Trace Tenpl ate 11.4. 4

Exanpl e of a Trace Tenplate for hook I D 330 11
Exanpl e of Qutput fromthe Trace Formatter 11
Error Conponents 11.5

Exanpl e Program Fragnment Using errunix Subroutin
Exanpl e of a Program Fragnent Showi ng Use of err
Subr outi ne 11.5.3

Error Tenpl ate Synt ax 11.5. 4

Fields in an Error Tenpl ate 11.5.4

.4.4.3
5

e 11.5.3
save

Exanpl e of an Error Tenplate for Error Entries with Error

613 11.5.4.3

Exanpl e Qutput fromthe Error Formatter 11.5. 4
installp File H erarchy - Fixes 13.4.3

updatep File Hi erarchy 13.4.3

installp Files 13.4. 4

updatep: Files for an upgrade 13.4.5

Scripts Used by the Service Tool s 13.4.6.1
Files for a local installation/update 13.6.4.1
Return Codes frominstal, and inst_updt.!|oc 13
Four Steps in the update Procedure 13.7.1
Exanpl e of update Shell Script 13.7.8

Record Format for the History File 13.9.1
Fields in a H story Record 13.9.1

Record Format for the Requirenents File 13.9.4
Fields in Requirenents Record 13.9.4

Format for the Requirenment String 13.9.5
Format for the LPP Nane file 13.9.6

Fields in LPP Nanme Entry 13.9.6

Save/ Restore Directory Content 13.11

I nternal Conmands 13.12

Parts of an SID 14.3.2

Gowh of an SCCS File w th Branching 14.3.2
Exanpl e of Using SCCS to Create and Update a Fil
Gowh of an SCCS File wi th Branching 14.4.2.2
awk Speci al Characters 15.4.4.2

sed Command Fl ags 15.5.2

sed Block Diagram 15.5.2

sed Wl dcard Characters 15.5.4

Synt ax Synbol s 15.5.5

sed Command Sunmary 15.5.5

md Built-in Macros 16. 6

Sinmple Finite State Mddel 17.3.2

Regul ar Expression Operators 17.5.1

Speci al Characters 17.5.3

lex Wth yacc 17.11

yacc Literal Strings 17.14.2

yacc Grammar File for Cal cul ator Program - calc.
| ex Specification File for Cal cul ator Program -
Sampl e Message Text Source File 18.18.1
Message Text Source File with Synbolic Val ues

| Copyright IBM Corp. 1985, 1991
FIGURES - 2

.3

.6.4.5

e 14. 4

11.4.3

ID

yacc 17.24.2

calc. | ex

18.18. 4

17.24.3

18- 3.
18-4.
18-5.
18- 6.
19-1.
19-2.
19- 3.
19-4.
19-5.
19-6.
19-7.

19- 8.
19-9.
19-10.
19-11.

19-12.
19-13.
19-14.
19-15.
19-16.
19-17.

19-18.
19-19.

A-1.
A-2.
A- 3.
B-1.
G 1.
C 2.
C 3.
D-1.
D 2.
D 3.
D 4.
D-5.
D- 6.
D-7.

Programming Tools and Interfaces

Figures
Include File for Synbolic Message Catal og 18.18. 4
Sampl e C Source Code 18.18.9
Error Val ues 18. 19
Nam ng Conventi ons 18.20.1.1
How t o Assign Program Numbers 19.3.5
Exanpl e of Authentication Credentials Structure 19.4.1
Renote Users Service Exanpl e 19.4.2
Code for the Library Routine svc_run 19.5.1
Exanpl e of broadcast RPC 19.5.2
Constants for the WNDOA5S exanpl e RPC program 19.5.3
Exanple of a Cient Using Batching to Create Strings Using RPC
Batching with TCP/I P Delivery 19.5.3
Exanple of a Cient Using Batching to Create Strings 19.5.3
A Server Supporting Two Versions of the Same Program 19.6.1
C Procedure Handling Two Versions of the Sane Program 19.6.1
Exanpl e of Using Transm ssion Control Protocol/Internet Protocol
(TCP/ I P) 19.6.2
Exanpl e of Using a Call back Procedure 19.6.3
Using the gettransient Routine with a Cient 19.6.3
Using the gettransient Routine with a Server 19.6.3
Using the rnusers Library Routine in a Program 19.7.1
Using callrpc to Determ ne Nunber of Renote Users 19.7.2.1
Using registerrpc to Register RPC Calls with a
Por t mapper 19.7.2.2
Using svc_register, a Low Level RPC Routine 19.7.3.1
Low Level RPC Cdient Passing an RPC Program using
UDP/IP 19.7.3.2
Structure Definition for WNDOW A1
Structure Definition for PANEL A 2
Structure Definition for PANE A 3
Printer Control Codes B.1
Code Page O C.O0
Code Page 1 C.O0
Code Page 2 C.O0
Initial Menu Displ ay D1
Updat ed Menu D1
Fstore Val ues D1
Changi ng Fstore Val ues D1
Menu Di spl ay D.1
Tape Formats D. 2
Format of Entry in ./installt_toc File D 3

| Copyright IBM Corp. 1985, 1991
FIGURES - 3

Programming Tools and Interfaces
Chapter 1. Programming with AIX

1.0 Chapter 1. Programming with Al X

Subt opi cs

1.1 CONTENTS

1.2 About This Chapter

1.3 Programm ng Tool s

1.4 Program Devel oprnent in a Heterogeneous Environnment
1.5 Progranmm ng I nterfaces

| Copyright IBM Corp. 1985, 1991
1.0-1

Programming Tools and Interfaces
CONTENTS

1.1 CONTENTS

| Copyright IBM Corp. 1985, 1991
1.1-1

Programming Tools and Interfaces
About This Chapter

1.2 About This Chapter

This chapter describes the IBM Al X tools and services for devel opi ng
application prograns. 1In addition, it indicates where to get nore

i nformati on about these facilities, both in this book and in other Al X
books.

| Copyright IBM Corp. 1985, 1991
1.2-1

Programming Tools and Interfaces
Programming Tools

1.3 Progranmm ng Tool s

The Al X system has many tools to help devel op a C | anguage program These
tools provide help in the follow ng progranm ng areas:

0 Entering a programinto the syste
0 Checking a progra

0 Conpiling and linking a progra

0 Correcting errors in a progra

O Filing and maintaining a program

Subt opi cs

1.3.1 Entering a Program

1. 3.2 Checking a Program

1.3.3 Conpiling and Linking a Program
1.3.4 Correcting Errors in a Program
1.3.5 Building and Maintaining a Program

| Copyright IBM Corp. 1985, 1991
1.3-1

Programming Tools and Interfaces
Entering a Program

1.3.1 Entering a Program

The systemhas a line editor to help enter a programinto a file to be
conpiled. The editor is called ed. Refer to Using the Al X Operating
System for instructions about how to use this editor.

In addition, the systemhas two full screen editors, |INed and vi. These
editors display a full screen of data and allow interactive editing of the
file.

| Copyright IBM Corp. 1985, 1991
131-1

Programming Tools and Interfaces
Checking a Program

1. 3.2 Checking a Program

The foll owi ng prograns help check the format of a programfor consistency
and accuracy:

[int

cfl ow

cxr ef

cb

Checks for syntax, data type and other programm ng and usage
errors. Refer to "Checking C Prograns” in topic 2.4 for
i nformati on about using this program

Cenerates a flow diagram of a C | anguage program Refer to
"Qther C Programm ng Tools" in topic 2.5 for information about
this program

Generates a cross reference listing for a C |anguage program
Refer to "Qther C Progranmm ng Tools" in topic 2.5 for
i nformati on about this program

Reformats a C | anguage source programinto a consistent,
indented format. Refer to "OQther C Programm ng Tools" in
topic 2.5 for information about this program

| Copyright IBM Corp. 1985, 1991
132-1

Programming Tools and Interfaces
Compiling and Linking a Program

1.3.3 Conpiling and Linking a Program
The cc command conpiles and Iinks C, VS Pascal, VS FORTRAN, and Assenbl er

| anguage progranms with one command line entry. Refer to Chapter 2,
"Conpiling and Linking Prograns” for information about using this program

| Copyright IBM Corp. 1985, 1991
1.33-1

Programming Tools and Interfaces
Correcting Errors in a Program

1.3.4 Correcting Errors in a Program

The synbolic debug program dbx, helps find logic errors in C Pascal, and
FORTRAN | anguage prograns. Refer to Chapter 12, "Debuggi ng Prograns” for
i nformati on about using this program

In addition, string searching prograns such as grep, sed and awk help

| ocat e and change character strings (such as paraneter nanes and syntax
problenms) in programfiles. Refer to Chapter 15, "Finding and Changi ng
Strings" for information about using these prograns.

| Copyright IBM Corp. 1985, 1991
134-1

Programming Tools and Interfaces
Building and Maintaining a Program

1.3.5 Building and Maintaining a Program

Two programs help control changes to a programand build the final program
nodul e. These prograns are:

make A programthat builds prograns from several source nodules. It
conpiles only those nodul es that have changed. Refer to
"Buil ding Prograns with nmake" in topic 2.7 for information about
usi ng this program

ScCs A set of prograns that maintain separate versions of a program
wi t hout storing separate copies of each version. Refer to
Chapter 14, "Maintaining D fferent Versions of a Progranm in
topic 14.0 for information about using this program

| Copyright IBM Corp. 1985, 1991
1.35-1

Programming Tools and Interfaces
Program Development in a Heterogeneous Environment

1.4 Program Devel oprment in a Heterogeneous Environnent

Subt opi cs
1.4.1 Building Programs for Both Al X/ 370 and Al X PS/ 2

| Copyright IBM Corp. 1985, 1991
14-1

Programming Tools and Interfaces
Building Programs for Both AIX/370 and AIX PS/2

1.4.1 Building Progranms for Both Al X/ 370 and Al X PS/ 2

It is possible to develop an Al X/ 370 LPP and an Al X PS/2 LPP from conmon
source. |If the prograns are witten in a machi ne i ndependent | anguage
such as C, VS Pascal or VS Fortran, Al X with the Transparent Conputing
Facility (TCF) provides a neans to devel op both Al X/ 370 and Al X PS/ 2
versions of the program concurrently. To do so, you will need to do the
devel opnent in a TCF cluster consisting of at |east one Al X/ 370 site and
one AIX PS/2 site. You will probably also want to nmake use of the hidden
di rectory nechani sm and design or make slight changes to your nakefiles to
account for nultiple conpilations of the sane source files.

When desi gning your build nethod (both source directory |ayout and
makefiles) the inportant thing is to arrange it so that object files for
different CPU types (System 370 and 80386) are placed in separate
directories. Al X doesn't provide tools to conpletely automate the

buil ding of progranms for nultiple CPU types, but the follow ng sinple
approach descri bes one possible way to organi ze the source to acconplish
this task conveniently. Large applications will require this approach to
be extended to include placing source into an entire directory hierarchy.

First, place the common files (i.e., those source files that are machine

i ndependent) and a nmakefile in one directory. Place source files specific
to the Al X PS/2 version of your applications in a subdirectory named i 386,
and source files specific to the Al X/ 370 version in a subdirectory naned

i 370.

Then, build the Al X PS/2 version of the programby entering a command such
as:

cd 1386; onsite i386 make -f ../ nmakefile
and build the Al X/ 370 version with a command as:
cd 1370; onsite i370 make -f ../ nmakefile

The makefile will need to access the conmon source files using a pathnane
such as ../filenane.c, but the objects created will be placed into the
i 386 or 1370 subdirectory, as appropriate.

Makefile differences between Al X/ 370 and Al X PS/2 can be achi eved by
maki ng use of the shell prograns /bin/u370 and /bin/i 386, which are
progranms which exit with the value O (neaning true) or the value 1
(rmeani ng fal se) dependi ng on whether you are running on Al X/ 370 or
Al X/ PS/ 2.

Hi dden directories can be used to give both the Al X/ 370 and Al X PS/ 2
versions of files the sanme nane and nake it so that the Al X/ 370 programis
run by users on Al X/ 370 systens and the Al X PS/2 programis run by users
on Al X PS/2 system For exanple, if your application should be known as
/usr/bi n/ newprog, you could install your programinto a hidden directory
with a sequence of conmands such as the foll ow ng:

nkdir -h /usr/bin/ newprog

cp i 386/ newprog /usr/bin/newprog@i 386
chfstore 1386 /usr/bin/newprog@i 386
cp i 370/ newprog /usr/ bin/ newprog@i 370
chfstore 1370 /usr/bin/newprog@i 370

I Iy |

This can al so be done by using /etc/install with the -H and -v options.

| Copyright IBM Corp. 1985, 1991
14.1-1

Programming Tools and Interfaces
Programming Interfaces

1.5 Progranmm ng Interfaces

When writing an application programfor AlX use the follow ng system
servi ces:

0 Conmmand
O Library routine
0 Systemcalls

These services are available from C, VS FORTRAN, and VS Pascal |anguage
progr ans.

Subt opi cs

1.5.1 Conmands

1.5.2 Library Routines
1.5.3 System Cal |l s

| Copyright IBM Corp. 1985, 1991
15-1

Programming Tools and Interfaces
Commands

1.5.1 Commands

To include the functions of any of the conmands in a program use the fork
and exec systemcalls to allow the command to run in a part of the system
(called a process) that is separate fromthe program The systemlibrary
routine also runs a command in a program and the popen library routine
uses shell filters. Wen using conmands in a program ensure that these
conmands are al so available on all systens that will use the program
Refer to Al X Operating System Commands Reference for details about
conmands.

| Copyright IBM Corp. 1985, 1991
151-1

Programming Tools and Interfaces
Library Routines

1.5.2 Library Routines

Routines fromthe systemlibraries handl e many conplex or repetitive
progranm ng situations so that you can concentrate progranmng efforts on
t he unique progranmm ng situations. Details of each library subroutine are
in Al X Operating System Techni cal Reference.

Sone of the libraries on the system are:

Clibrary
A collection of input/output formatting routines, system cal
interface routines and other functions. This library includes
the library stdio, which is the standard i nput/output system

Run Tinme Services library
A collection of routines that help a programuse the follow ng
system servi ces:

O Configuration

0 Messages

O Trace

0 FError |og.
Math library

A collection of nmathenmatics functions.

Ext ended curses library
A collection of routines for witing prograns that help contro
di spl ay screen input and output without regard to the type of
term nal that the system uses.

See Chapter 7, "Using the Subroutine Libraries" in topic 7.0 for a summary
of the functions available in some of the libraries. See Chapter 9,
"Controlling the Termi nal Screen"” in topic 9.0 for a description of using
the Extended curses library.

| Copyright IBM Corp. 1985, 1991
152-1

Programming Tools and Interfaces
System Calls

1.5.3 System Call s

Systemcalls are the | owest |evel of interaction between a program and the
Al X operating system Systemcalls are called like library routines, and
it is usually unnecessary for a progranmer to know whether a particul ar
routine is a systemcall or a library routine. |In nany cases, system
calls provide a | ower |evel service, while library routines nake use of
systemcalls to provide higher |evel services to an application. See
Chapter 8, "Using SystemCalls" in topic 8.0 for exanples of how to use
many of the systemcalls.

| Copyright IBM Corp. 1985, 1991
153-1

Programming Tools and Interfaces
Chapter 2. Compiling and Linking Programs

2.0 Chapter 2. Conpiling and Linking Prograns

Subt opi cs

CONTENTS

About Thi s Chapter

Conpi I ing A Program

Checki ng C Prograns

O her C Progranm ng Tool s

Processi ng Assenbl er Language Routi nes
Bui | di ng Prograns wi th nake

NESESENRERRS
~NOoO O~ WN -

| Copyright IBM Corp. 1985, 1991
20-1

Programming Tools and Interfaces
CONTENTS

2.1 CONTENTS

| Copyright IBM Corp. 1985, 1991
21-1

Programming Tools and Interfaces
About This Chapter

2.2 About This Chapter
This chapter discusses the follow ng programm ng processes:

Conpi l i ng the progra

Checki ng C program

O her C progranm ng tool

Processi ng assenbl er | anguage routi ne

Bui l ding the program using the nmake utility program

I Iy |

This chapter does not contain conplete informati on about any of the
progranms. For conplete information refer to the reference book for the

| anguage conpiler or to Al X Operating System Commands Reference (for the C
| anguage conpiler).

| Copyright IBM Corp. 1985, 1991
22-1

Programming Tools and Interfaces
Compiling A Program

2.3 Compiling A Program

A conpiler is a programthat reads programtext froma file and changes

t he programm ng | anguage statenents in that file to a formthat the system
can understand. The follow ng steps show how the systemcreates this

final formof the program

1. Includes additional files specified with the #include directive, and
expands nmacros into programm ng | anguage statenents. This applies to
the C progranm ng | anguage only.

2. Changes the progranmm ng | anguage statenents into object code (a form
that the system can understand). This object code is stored in a file
with a .o suffix. This formof the program cannot be executed.

3. Links the object code (using the |d command) into a programthat the
system can execute. |If you do not specify differently, the executable
programis in the file a.out in the current directory.

When you conpile a programon an Al X/ 370 or Al X PS/2 system it generates
an object file for that particular system You can use this resulting
object file only on the type of systemon which it was conpiled. For
prograns consisting of nore than one object file, all object files nust be
conmpi l ed on the sane systemtype in order for themto |link together.

Refer to Using the Al X Operating System for additional information.

If the programis witten in the C |anguage, use the cc programto perform
these steps. See "Using the cc Progrant in topic 2.3.2 and Al X Operating
Syst em Conmands Reference for information about this program If the
programis witten in assenbl er | anguage, see "Processing Assenbl er
Language Routines"” in topic 2.6.

Subt opi cs
2.3.1 Choosing a Compiler
2.3.2 Using the cc Program

| Copyright IBM Corp. 1985, 1991
23-1

Programming Tools and Interfaces
Choosing a Compiler

2.3.1 Choosing a Compiler

Al X PS/ 2 supports two C conpilers. The C conpiler released with Al X PS/ 2
Version 1.2 and earlier is known as the VS C conpiler. The vs conmand

i nvokes this compiler, which can be used to conpile C |anguage source
code. The other conpiler available on AIX PS/2 is called the Extended C
conpi |l er.

By default, if both AIX PS/2 C conpilers are installed on a system the cc
conmand i nvokes the Extended C conpiler. Only if the environment variable
known as COWI LER is set to VSC does cc invoke the VS C conpiler. |If
there is only one C conpiler installed on the system the cc conmand

i nvokes that C conpiler. The vs command al ways invokes the VS C conpiler,
if it is installed.

Al X/ 370 supports a conpiler, which is also called the Extended C conpiler.
When you compile a programusing this conpiler, it generates an object
file for Al X/ 370 only.

For information about invoking the compiler and the command-|ine options
avail able for the cc command, see C Language User's Qui de.

The followi ng list includes sone of the programm ng | anguages that are
avail able for use with the Al X Operating System

VS FORTRA
VS Pasca

OoOoOoo

Assenbl er

The books that come with the conpiler programs contain information for
usi ng those | anguages. The exanples in this chapter use the C | anguage.

You can also wite parts of the programin different |anguages and have
one main routine call the separate routines to execute. To do this,
however, follow the rules explained in the appropriate sections of the C,
VS Pascal and VS FORTRAN Users Qui des.

| Copyright IBM Corp. 1985, 1991
231-1

Programming Tools and Interfaces
Using the cc Program

2.3.2 Using the cc Program

The cc programcalls the C |anguage conpiler, but it can do nuch nore.
The cc program can:

0 Process the input with a rmacro preprocesso
0 Conpile a high-level |anguage progra

0 Assenble an assenbly | anguage progra

0 Link program nodul es

You can select any or all of these functions. |In addition, you can
repl ace the supplied prograns for any of these steps with a programsuited

to special needs. Al X Operating System Commands Reference contains
detailed reference information about the cc program

On the Systeni 370 you can generate |oad nodules in either 370 node (24-bit
addressing) or in XA node (31-bit addressing). You can use the XA node
for very large prograns. The default is 370 node which runs on either 370
machi ne type.

Subt opi cs
2.3.2.1 Exanpl es of Commands

| Copyright IBM Corp. 1985, 1991
23.2-1

Programming Tools and Interfaces
Examples of Commands

2.3.2.1 Exanpl es of Commands

The fol |l owi ng exanpl es show sone operations with the cc program using
conmand |ine flags.

Conpil e source file testfile.c using the Clibrary (libc.a). Link the
resulting nodul e and place the output in a.out:

cc testfile.c

Process source file testfile.c to produce assenbl er | anguage out put, and
pl ace the output in testfile.s:

cc testfile.c -S

Conpil e source file testfile.c using the Clibrary (libc.a) and place the
unl i nked output in testfile.o:

cc testfile.c -c¢

Process source file testfile.c using the macro preprocessor only, and
pl ace the output in testfile.i

cc testfile.c -P
Conpil e source file testfile.c using the Clibrary (libc.a) but using the
newcpp conpiler programin the directory /u/jim Place the unlinked
output in testfile.o:

cc testfile.c -c -B/u/jimnew

| Copyright IBM Corp. 1985, 1991
2321-1

Programming Tools and Interfaces
Checking C Programs

2.4 Checking C Prograns

Use the |int programto ensure that C prograns do not contain syntax
errors, as well as to verify that the prograns do not contain data type
errors. The |int program checks these areas of a programnore carefully
than the C conpiler does, and displays nany nessages that point out
possi bl e probl ens. These nmessages may not require you to change the
programif you decide to ignore the possible problens.

Refer to the Al X Operating System Conmands Reference for detailed
information on using the |int command.

The paraneters for the |int command are in the follow ng categories:

fl ags Optional flags to control |int nessages. This section
contai ns exanpl es of some useful flags. See Al X Qperating

Syst em Conmands Reference for a conplete list of the flags
for the system

file nane The name of the C | anguage source file for lint to check
The file name nust end with .c.

library-nane The nanme of a library that |int uses when checking the
program The following libraries are included with the
system

[lib-lc.In Checks standard function call syntax (included
by default).

[1ib-port.In Checks portable function call syntax (included
by using the -p flag).

[lib-IlmlIn Checks math library call syntax (included by
using the -Imflag).

[1ib-lcurses.| Checks extended curses library call syntax.

You can also create your own lint library. See "Creating Alint Library"
intopic 2.4.8 for nore information

Wth no flags specified on the conmand line, the [int programchecks the C
source files and wites nessages about the foll owi ng coding errors and
progranm ng style differences that it finds:

0 Data types that are not used correctl

O Variables and functions that are not use
0 Functions that are not used correctl

d Syntax error

0 Techniques that could cause problens in noving the programto othe
syst emns.

ubt opi cs

1 Qperation

2 Program Fl ow

3 Data Type Checking
4

S
2
2
2
2 Variabl e and Function Checking

4.
4.
4.
4.

| Copyright IBM Corp. 1985, 1991
24-1

Programming Tools and Interfaces
Checking C Programs
Usi ng Variables Before They Are Initialized
Portability Checking
Coding Errors and Style Differences
Creating Alint Library

| Copyright IBM Corp. 1985, 1991
24-2

Programming Tools and Interfaces
Operation

2.4.1 QOperation

The lint program checks a group of files using the follow ng procedure:
1. Checks each file and wites nessages for problens found in that file.
2. Collects errors in included files and wites those nessages.

3. Checks for consistency of |abels and data types anong the group of
files.

4. Wites the source file nanme followed by a ? (question mark) if any
errors remain that are not assigned to either a source file or an
i ncluded file.

If lint does not report any errors, the program has correct syntax and
will conmpile without errors. Passing that test, however, does not nean
that the programw ||l operate correctly, or that the |ogic design of the
programis accurate. The |int program does not check for design problens.
It only checks | anguage semantics and synt ax.

| Copyright IBM Corp. 1985, 1991
241-1

Programming Tools and Interfaces
Program Flow

2.4.2 Program Fl ow

The lint programdetects parts of the programthat cannot be reached. It
writes nmessages about statenents that do not have a | abel, but inmediately
follow statements that change the program flow, such as:

got

br ea
continu
return

[

The lint programal so detects and wites nessages for the foll ow ng
condi tions:

O A loop that cannot be exited at the botto
O A loop that cannot be entered at the to

O Infinite | oops such as
- whil e(1)
- for(;;)

Some prograns that work may have such | oops. However, the | oops can cause
probl ens.

The |int program does not detect functions that are called, but never
return to the calling program For exanple, a call to exit may result in
code that cannot be reached, but [int does not detect it.

Progranms generated by yacc and | ex may have hundreds of break statenents
that cannot be reached. The |int programnormally wites an error nessage
for each of these break statenents. Use the -Oflag for the cc comuand
when compiling the programto elimnate the resulting object code
inefficiency, so that these extra statenents are not inportant. Use the
-b flag with the |int programto prevent witing of these nessages when
checki ng yacc and | ex output code.

| Copyright IBM Corp. 1985, 1991
242-1

Programming Tools and Interfaces
Data Type Checking

2.4.3 Data Type Checking

The lint programenforces the type checking rules of C |anguage nore

strictly than the conpiler does. 1In addition to the checks that the
compi | er makes, |int checks for the data type errors in the foll ow ng
ar eas:

0 Binary operators and inplied assignnent
O Structures and union

O Function definition and use

d Enuner at or

O Type checking contro

0O Type casts

Subt opi cs

2.4.3.1 Binary Operators and I nplied Assignnents
2.4.3.2 Structures and Uni ons

2.4.3.3 Function Definition and Uses

2.4.3.4 Enunerators

2.4.3.5 Type Checking Control

2.4.3.6 Type Casts

| Copyright IBM Corp. 1985, 1991
243-1

Programming Tools and Interfaces
Binary Operators and Implied Assignments

2.4.3.1 Binary Operators and Inplied Assignnents

The C |l anguage allows mxing of the followi ng data types in statenents,
and the conpiler does not indicate an error when they are m xed:

cha
shor

in

| on
unsi gne
floa
doubl e

I I o I o

The | anguage converts data types within this group automatically to allow
the progranmer nore flexibility in programmng. This flexibility,

however, neans that the programer, not the |anguage, mnust ensure that the
data type m xi ng produces the desired result.

You can m x these data types when using themin the followi ng ways (in the
exanpl es, alpha is type char, and numis type int):

0 Operands on both sides of an assignnment operator, for exanple
al pha = num

0 Operands in a conditional expression, for exanple
value = (alpha < num) ? alpha : num

0 Operands on both sides of a relational operator, for exanple
if(alpha !'= num)

0 The type of an argunent in a return statenent is converted to the type
of the value that the function returns. For exanple:

funct (x) /* returns an integer */
{

return(al pha);
}

The data types of pointers must agree exactly, except that you can m x
arrays of x's with pointers to x's.

| Copyright IBM Corp. 1985, 1991
2431-1

Programming Tools and Interfaces
Structures and Unions

2.4.3.2 Structures and Uni ons

The lint program checks structure operations for the foll ow ng
requi rements:

0 The left operand of the -> operator nust be a pointer to a structure.
0 The left operand of the . operator nust be a structure.

0 The right operand of these operators nust be a nenber of the sam
structure.

The |int program nmakes siml|ar checks for references to unions.

| Copyright IBM Corp. 1985, 1991
2432-1

Programming Tools and Interfaces
Function Definition and Uses

2.4.3.3 Function Definition and Uses
The |[int programapplies strict rules to function argunent and return
val ue matching. Argunents and return values nust agree in type with the
foll ow ng exceptions:
O You can match argunments of type float with arguments of type doubl e.
O You can match arguments within the follow ng types

- char

- short

- i nt

- unsi gned.

a You can match pointers with the associ ated arrays

| Copyright IBM Corp. 1985, 1991
2433-1

Programming Tools and Interfaces
Enumerators

2.4.3.4 Enunerators
The [int program checks enunerated data type variables to ensure that:

0 Enumerator variables or nenbers are not mxed with other types o
ot her enunerators

0 The enunerated data type variables are only used in the follown
ar eas:

- Assi gnrent (=)

- Initialization

- Equi val ence (==

- Not equi val ence (!=)
- Functi on argunents

- Ret urn val ues.

| Copyright IBM Corp. 1985, 1991
2434-1

Programming Tools and Interfaces
Type Checking Control

2.4.3.5 Type Checking Control

To turn off strict type checking for one expression in the program add
the directive:

/ *NOSTRI CT*/

to the programinmedi ately before the expression. This directive prevents
strict type checking for only the next line in the program

| Copyright IBM Corp. 1985, 1991
2435-1

Programming Tools and Interfaces
Type Casts

2.4.3.6 Type Casts

Type casts in the C |l anguage allows the programto treat data of one type
as if it were data of another type. The |int program can check for type
casts and wite a nessage if it finds one.

The -c flag for the |int programcontrols the witing of comments about

casts. Wthout the -c flag, lint treats casts as though they were

assi gnnments subject to messages. The resulting nessages indicate the
casts that are in the program Wth the -¢c flag, lint ignores all |egal
casts.

| Copyright IBM Corp. 1985, 1991
2436-1

Programming Tools and Interfaces
Variable and Function Checking

2.4.4 Variable and Function Checking

The [int programdetects variables and functions declared in the program
but not used. Wien it finds one of these cases, it wites a nessage.
Variabl e and function errors that |lint finds include the follow ng:

0 Functions that return val ues inconsistentl

O Variables and functions that are defined, but not use

O Argunents to a function call that are not use

O Functions that can return either with or w thout val ue

O Functions that return values that are never use

O Programnms that use the value of a function when the function does no
return a val ue.

Subt opi cs

2.4.4.1 Inconsistent Function Return

2.4.4.2 Function Values That Are Not Used
2.4.4.3 Disabling Function Rel ated Error Messages

| Copyright IBM Corp. 1985, 1991
244-1

Programming Tools and Interfaces
Inconsistent Function Return

2.4.4.1 Inconsistent Function Return
If a function returns a val ue under one set of conditions, but does not
return a val ue under another set of conditions, you cannot predict the
results of the program The |[int programdetects this type of error. For
exanple, if both of the followng statenents are in a function definition:
return(expr);
and
return;
The lint programwites the nessage:

function name contains return(e); and return;

VWhen using this function, the programmay or may not receive a return
value. The error message points out that problem

The lint program al so detects function returns caused by reaching the end
of the function code (an inplied return). For exanple, in the foll ow ng
part of a function:

checkout (a)

{
if (a) return (3);
fix_it ();
}
If a tests false, checkout calls fix_it and then returns with no defined
return value. 1In this case, |lint wites the nessage:

functi on checkout contains return(e); and return;

If fix it, exits without returning, lint still wites the message even
t hough not hing is wong.

| Copyright IBM Corp. 1985, 1991
2441-1

Programming Tools and Interfaces
Function Values That Are Not Used

2.4. 4.2 Function Values That Are Not Used

The |int programdetects cases where a function returns a value and the
calling program may not use the value. |If the value is never used, the
function definition may be inefficient and should be checked. If the
value is sonetines used, the function may be returning an error code that
the calling program does not check.

| Copyright IBM Corp. 1985, 1991
2442-1

Programming Tools and Interfaces
Disabling Function Related Error Messages

2.4.4.3 Disabling Function Rel ated Error Messages

To prevent |int fromreporting these types of errors, specify one or nore
of the following flags to the |int command:

- X Do not wite nmessages about variables that are declared in an
extern statenent, but are never used.

-V Do not wite nmessages about argunents to functions that are not
used (except those that are al so declared as register
arguments) .

-u Do not wite messages about functions and external variables

that are either used and not defined, or defined and not used.
Use this flag to run |lint on a subset of files of a larger
program

To prevent |int fromreporting errors about unused argunents for one
function, add the directive:

| * ARGSUSED* /
to the program before the function.

Add the following directive before the function definition to prevent the
program fromwiting nessages about variable nunbers of argunents in calls
to a function:

| * VARARGS* /

To check the first several argunments and | eave the |ater arguments
unchecked, add a digit to the end of the VARARGS directive to give the
nunber of argunents that should be checked, such as:

| * VARARGS2* /
VWhen [int reads this directive, it checks only the first two argunents.
VWhen using |int with some (but not all) files that operate together, nmany
of the functions and variables defined in those files may not be used.

Al so, many functions and vari abl es defined el sewhere nay be used. Use the
-u flag to prevent |[int fromwiting these messages.

| Copyright IBM Corp. 1985, 1991
2443-1

Programming Tools and Interfaces
Using Variables Before They Are Initialized

2.4.5 Using Variables Before They Are Initialized

The lint programdetects if a programuses a |ocal variable (automatic and
regi ster storage classes) before assigning a value to it. |In this case,
using a variable also includes taking the address of the variable. This

i s because the program can use the variable (through its address) any tine
after it knows the address of the variable. Therefore, if the program
does not assign a value to the variable before it finds the address of the
variable, lint reports an error. Because |int only checks the physica
order of the variables and their usage in the file, it may wite nessages
about a programthat actually does not contain errors.

The |int programrecognizes and wites nessages about:

O Initialized automati ¢ vari abl e
0 Variables that are used in the expression that first sets the
O Local variables that are set and never used

Note: The operating systeminitializes static and external variables to
zero. Therefore, |int assunmes that these variables are set (to zero) at
the start of the program and does not check to see if they have been
assi gned a val ue when they are used. Wen developing a programfor a
systemthat does not do this initialization, ensure that the program sets
static and external variables to an initial val ue.

| Copyright IBM Corp. 1985, 1991
245-1

Programming Tools and Interfaces
Portability Checking

2.4.6 Portability Checking

Use |int to help ensure that you can conpile and run the program on ot her
systens that have a C | anguage conpiler that confornms to the UNI X System V
requirements for a C conpiler. The follow ng paragraphs indicate areas to
check before conpiling the program on another system Checking only these
areas, however, does not guarantee that the programw |l run on any
system

Subt opi cs

2.4.6.1 Character Uses

2 Bit Field Uses
External Nanme Size

2.4.6.
2.4.6.3
2.4.6.4 Multiple Uses and Side Effects

| Copyright IBM Corp. 1985, 1991
246-1

Programming Tools and Interfaces
Character Uses

2.4.6.1 Character Uses

Sone systens define characters in a C |anguage program as signed
gquantities with a range from-128 to 127; other systens define characters
as positive values. The lint programwites nessages when it finds
character conparisons or assignnents. The nessages indicate that the use
of characters nmay not be portable to other systens. For exanple, the
fragnent:

char c;

if((¢c =getchar()) <0)..

may work on one systembut fail on systens |ike Al X where characters
al ways take on positive values. The |int programwites the nessage:

nonportabl e character conparison
when it checks the program
To nake the program work on systens that use positive values for

characters, declare ¢ as an integer because getchar returns integer
val ues.

| Copyright IBM Corp. 1985, 1991
246.1-1

Programming Tools and Interfaces
Bit Field Uses

2.4.6.2 Bit Field Uses

Bit fields may al so produce probl ens when transferring a programto

anot her system Wen assigning constant values to bit fields, the field
may be too snmall to hold the value, because bit fields nay be signed
guantities on the new system To make this assignnent work on all
systens, declare the bit field to be of type unsigned before assigning
values to it.

| Copyright IBM Corp. 1985, 1991
246.2-1

Programming Tools and Interfaces
External Name Size

2.4.6.3 External Nane Size

When changing fromone type of systemto another, be aware of differences
in the information retai ned about external names during the | oading
process. The nunber of characters allowed for external nanes can vary.
The Al X Operating System C | anguage conpil er considers at |east the first
64 characters in internal and external identifiers as significant. Some
prograns that the conpiler command calls and some of the functions that
your prograns call may further limt the nunber of significant characters
inidentifiers. 1n addition, the conpiler keeps uppercase and | owercase
characters separate. On other systemns, uppercase or | owercase may not be
i nportant or allowed. To avoid problens wth | oading the program when
transferring fromone systemto another:

1. Find out the requirenents of each system
2. Run |int with the -p flag.
The -p flag tells lint to change all external synbols to one case and

limt themto six characters while checking the input files. The nessages
produced indicate the terns that may need to be changed.

| Copyright IBM Corp. 1985, 1991
246.3-1

Programming Tools and Interfaces
Multiple Uses and Side Effects

2.4.6.4 Multiple Uses and Side Effects

Be careful when using conplicated expressions. Many C conpilers eval uate
conmpl ex expressions in different orders. Function calls that are
argunments of other functions nay or may not be treated the sane as
ordinary argunents. Also, operators such as assignnment, increnent, and
decrenent may cause probl enms when used on another system For exanple, if
any variable is changed by a side effect of one of the operators and is

al so used el sewhere in the sane expression, the result is undefined. The
eval uation of the variable years in the follow ng exanple is confusing
because on some machines years is incremented before the function call
whil e on other machines years is incremented after the function call

printf("%l %\n", ++years, anort(interest, years));
The |int program checks for sinple scalar variables that may be affected
by eval uation order problens. For exanple, the statenent:

a[i]=b[i++];
causes |lint to wite the nessage:

war ni ng: i evaluation order undefined

| Copyright IBM Corp. 1985, 1991
2464-1

Programming Tools and Interfaces
Coding Errors and Style Differences

2.4.7 Coding Errors and Style Differences

Use |lint to detect some coding errors and differences in coding style from
the style that |int expects. Although coding style is mainly a matter of

i ndi vidual taste, exam ne each difference to ensure that the difference is
bot h needed and accurate. The follow ng paragraphs indicate the types of
coding and style problens that |[int can find.

Subt opi cs
2.4.7.1 Assignnments of Long Variables to Integer Variabl es
7.2 Operator Precedence

2.4,
2.4.7.3 Conflicting Declarations

| Copyright IBM Corp. 1985, 1991
24.7-1

Programming Tools and Interfaces
Assignments of Long Variables to Integer Variables

2.4.7.1 Assignnents of Long Variables to Integer Variabl es

I'f you assign variables of type long to variables of type int, the program
may not work properly. The long variable is truncated to fit in the

i nt eger space and data nay be lost. An error of this type occurs
frequently when converting a programthat uses typedef to run on a
different system \Wen changing a typedef variable fromint to long, the
program can stop worKking because an internediate result may be assigned to
an integer variable, and the internediate result is truncated.

To assign a long variable to an integer variable and prevent |int from
writing nmessages for these assignnments, use the -a flag with the |int
program

| Copyright IBM Corp. 1985, 1991
247.1-1

Programming Tools and Interfaces
Operator Precedence

2.4.7.2 Operator Precedence

The [int programdetects errors in operator precedence. Wthout

parent heses to show order in conplex sequences, these errors are hard to
find by | ooking at the code. For exanple, the follow ng statenents are
not cl ear:

i f(x&077==0)... [* actually: if(x & (077 == 0)) */
/* should be: if((x & 077) == 0) */
or
X<<2+40 /* shift x left 42 positions */
/* shoul d be: (x<<2) + 40 */
Use parentheses to nake the operation nore clearly understood. |If you do
not, lint wites a nmessage.

| Copyright IBM Corp. 1985, 1991
247.2-1

Programming Tools and Interfaces
Conflicting Declarations

2.4.7.3 Conflicting Declarations

The lint programwites nessages about variables that are declared in

i nner blocks in a way that conflicts with their use in outer blocks. This
practice is allowed but may cause problens in the program Use the -h
flag with the lint programto prevent witing of nessages about
conflicting declarations.

| Copyright IBM Corp. 1985, 1991
24.73-1

Programming Tools and Interfaces
Creating A lint Library

2.4.8 Creating Alint Library

For programm ng projects that define additional |ibrary routines, create
an additional lint library to check the syntax of the progranms. Using
this library, the |int programcan check the new functions in addition to
the standard C | anguage functions. Performthe follow ng steps to create
a newlint library (see the follow ng paragraphs for nore information
about these steps).

1. Create an input file that defines the new functions.
2. Process the input file to create the lint library file.

3. Run |int using the new library.

Subt opi cs

2.4.8.1 Creating the Input File

2.4.8.2 Creating the lint Library File

2.4.8.3 Checking a Programwi th the New Library

| Copyright IBM Corp. 1985, 1991
248-1

Programming Tools and Interfaces
Creating the Input File

2.4.8.1 Creating the Input File

Figure 2-1 shows an input file that defines three additional functions for
lint to check. This file is a text file that you create with an editor
It consists of:

O Adirective to tell the cpp programthat the following information is
to be made into a library of |int definitions:

/ * LI NTLI BRARY*/
O A series of function definitions that define

- The type of the function (int in the exanple)

- The nanme of the function

- The parameters that the function expects

- The types of the paraneters

- A pl acehol der for any value that the function returns.

Narme this file in the follow ng format:
[17Db-1pgm

In this format, the letters pgmrepresent a unique nane that indicates the
functions contained in the input file. For exanple, in the exanple input
file the nane of this input file could be Ilib-l1dns. Wen choosing the
nane of the file, ensure that it is not the sane as any of the existing
files in the /usr/lib directory.

/ *LI NTLI BRARY*/

#i ncl ude <dns. h>

int dnsadd(rnsdes, rechuf, reclen)
i nt rmnsdes;
char *rechbuf;
unsi gned recl en;
{ return 0; }
int dnsclos(rnedes)
i nt rmnsdes;
{ return 0; }
int dnscrea(path, node, recfm reclen)
char *path;
i nt node;
int recfm
unsi gned recl en;
{ return 0; }

Figure 2-1. Example lint Library Input File

| Copyright IBM Corp. 1985, 1991
2481-1

Programming Tools and Interfaces
Creating the lint Library File

2.4.8.2 Creating the lint Library File

To create a lint library file, process the input file using the follow ng
conmand:

I[lib/lcpp -C-Diint Ilib-lpgm]| /usr/lib/lintl -Hnpfile >\
fusr/lib/llib-1pgmln

This command tells the preprocessor program cpp and an internediate
program|intl to create a lint library file, /usr/lib/Ilib-lpgmln using
the input file [lib-lpgm |In each of these cases, the pgmin the file
name represents the identifier for the input file. The file name tnpfile
can be any tenporary file nane. The |intl programcreates this file and
uses it for intermedi ate storage. When the program conpletes, delete this
file:

rmtnpfile

| Copyright IBM Corp. 1985, 1991
2482-1

Programming Tools and Interfaces
Checking a Program with the New Library

2.4.8.3 Checking a Programw th the New Library

To check a programusing the new |ibrary, use the conmand:
lint -lpgmfilename.c

In this command, the letters pgmrepresent the identifier for the library,
and fil enanme.c represents the nanme of the file containing the C |anguage
source code to check. Wth no other flags, the |int programchecks the C
| anguage source code against the standard lint library in addition to
checking the indicated special lint library.

| Copyright IBM Corp. 1985, 1991
2483-1

Programming Tools and Interfaces
Other C Programming Tools

2.5 O her C Progranm ng Tool s

The Al X Operating System provides tools to help format and check the
structure of the C |anguage program These tools include:

cb

cfl ow

cxr ef

c beautifier: This programformats the C | anguage source
programinto a formthat uses indentation |evels to show the
structure of the program

c flow diagram generator: This program produces an out put
di agram that shows the logic flow of the C |anguage source
program

c cross reference list: This program produces a list of all
external references for each nodul e of the C | anguage program
i ncluding where the reference is resolved (if it is).

| Copyright IBM Corp. 1985, 1991
25-1

Programming Tools and Interfaces
Processing Assembler Language Routines

2.6 Processing Assenbl er Language Routi nes

To use program nodules witten in assenbler |anguage for the PS/ 2 and 370,
assenbl e the source code and link the resulting output with any other
nmodul es in the program To performthese steps, either:

1. Use the as programon a site of the appropriate type to assenble the
source code into an object nodul e.

2. Use the |d programto link the object nodules with the other object
nmodul es that form the program

0 Use the cc programto both assenble and |ink the program

0

1 Using the as Program
2 Using the Id Program
3 Using the cc Program

| Copyright IBM Corp. 1985, 1991
26-1

Programming Tools and Interfaces
Using the as Program

2.6.1 Using the as Program

The foll owi ng command sequences show sone uses of the as programto
assenbl e an assenbl er | anguage nodul e into an object nodul e:

O Assenble source file asntest.s and place the output in the default
file, asntest.o

as asntest.s

O Assenble source file asntest.s and place the output in the file
nyfile.o.

as -o nyfile.o asntest.s

The foll owi ng command sequence shows how to use the as programto generate
an assenbler |isting:

O Assenble source file asntest.s and wite the assenbler listing to the
screen.

as -l asntest.s

Note: An assenbler listing witten to standard output using the -|
option is available only on Al X PS/ 2.

O Assenble source file asntest.s and place the assenbler listing in the
file myfile.

as -Inyfile asntest.s

For nore information about the as conmmand, see as in Al X Qperating System
Conmands Ref erence.

| Copyright IBM Corp. 1985, 1991
26.1-1

Programming Tools and Interfaces
Using the Id Program

2.6.2 Using the | d Program

After assenbling the source programw th the as program use the |d
programto |ink that object nobdule with other object nodules, or to
prepare it to run on the system

| Copyright IBM Corp. 1985, 1991
26.2-1

Programming Tools and Interfaces
Using the cc Program

2.6.3 Using the cc Program

To use the cc programto process an assenbly | anguage file, the file nane
must end in .s to indicate that it is an assenbl er | anguage source file.
The foll owi ng command sequences show sone uses of the cc programto
assenbl e an assenbl er | anguage nodul e into an object nmodule, and link it
w th other object nodules to formthe program

O

You

Assenble and link the file asntest.s and place the resulting program
infile a.out.

cc asntest.s

Assenble the file asntest.s and place the resulting unlinked object
code in file asntest.o.

ccC asntest.s -c

Assenble the file asntest.s, link it with object files oldfile.o and
otherfile.o, and place the resulting programin file a.out.

cc asntest.s oldfile.o otherfile.o
can al so use the cc programto generate an assenbler |isting.

On the PS/2 assenble the file asntest.s and place the assenbl er
listing in asntest.|st.

cc -X asntest.s

On Al X/ 370, assenble the file asntest.s and pl ace an annot at ed
assenbler listing in asntest.|st.

cc -Hasm asnmtest.s > asntest.| st

| Copyright IBM Corp. 1985, 1991
26.3-1

Programming Tools and Interfaces
Building Programs with make

2.7 Building Prograns with make

The make program builds up-to-date versions of programs. It keeps track
of the commands that are needed to create the files, and uses a |ist of
files that nust be current before the operations can be done. After
changi ng any part of a program enter the make conmand on the command
line. The nake programthen creates only the files that are affected by
t he change, according to the rules in its rules file.

Using the nake programto maintain progranms, you can:

O Conbine the instructions for creating a |large programin a single fil
0 Define macros to use within the nake description file

0 Define new flags to use with the nmake program

0 Create any file to use with the operating system including SCCS file

O Use shell conmands to define the nmethod of file creation, or use th
make programto create many of the basic types of files

O Create librarie
O Include files fromother programs when creating a file

The make programis nost useful for nediumsized programm ng projects. It
does not solve the problens of naintaining nore than one source version
and descri bing huge prograns (see Chapter 14, "Miintaining Different
Versions of a Progrant in topic 14.0).

Subt opi cs

Operation

Usi ng t he rmake Program

Description Files

Internal Rules

Defining Default Conditions

I ncluding O her Files

Defi ni ng Macros

Usi ng Macros in a Description File

I nternal Macros

.10 Changing Macro Definitions in a Conmand
.11 Using Make with SCCS Fil es

.12 How make Uses the Environnent Variables
. 13 Tracki ng Dependenci es

.14 Exanmple of a Description File

O©CoO~NOUrWNPE

NN NNDNDNDNNDD
NN NNNNNNNNN NN

| Copyright IBM Corp. 1985, 1991
27-1

Programming Tools and Interfaces
Operation

2.7.1 Operation

The make programuses the follow ng sources of information
O A description file that you creat

O File nane

O Tine stanps of the files fromthe file syste

O Rules in the nake programthat tell how to build many of the standard
types of files.

The file containing the conpleted programis called a target file. The
make programcreates a target file using a step-by-step procedure:

1. Finds the nanme of the target file in the description file, or in the
make comrand

2. Ensures that the files on which the target file depends exist and are
up-to-date.

3. Determines if the target file is up-to-date with the files it depends
on.

4. If the target file or one of the parent files is out of date, creates
the target file using one of the foll ow ng:

a. Commands fromthe description file

b. Internal rules to create the file (if they apply)

c. Default rules fromthe description file.
If all files in the procedure are up-to-date when running the nake
program nmake di splays a nessage to indicate that the file is up-to-date,
and then stops. |If sone files have changed, nmmke creates only those files
that are out of date, and does not create files that are already current.
VWhen t he nmake programruns commands to create a target file, it replaces

macros with their values, wites each conmand |ine, and then passes the
conmand to a new copy of the shell

| Copyright IBM Corp. 1985, 1991
27.1-1

Programming Tools and Interfaces
Using the make Program

2.7.2 Using the nake Program

Start the make programfromthe directory that contains the description
file for the file to create. The variable nane desc-file represents the
nane of that description file. Then, enter the command:

make -f desc-file

on the command line. Enter nmacro definitions, flags, description file
nanes, and target file names along with the make command on the conmand
line as foll ows:

make [flags] [nmacrodefinitions] [targets]

The nake programthen exam nes the command line entries to determ ne what
to do. First, it looks at all macro definitions on the conmrand |ine
(entries that are enclosed in quotes and have equal signs in them and
assigns values to them If it finds a definition for a macro on the
command line different fromthe definition for that macro in the
description file, it chooses the comrand |line definition for the nacro.

Next, the make program|looks at the flags. See Al X Qperating System
Conmmands Reference for a list of the flags that nmke recogni zes.

The nmake program expects the remaining command |line entries to be the
nanes of target files to be created. The nmake program creates the target
files inleft toright order. Wthout a target file name, the nake
program creates the first target file naned in the description file that
does not begin with a period. Wth nore than one description file
specified, nmake searches the first description file for the nane of the
target file.

| Copyright IBM Corp. 1985, 1991
272-1

Programming Tools and Interfaces
Description Files

2.7.3 Description Files

The description file tells make how to build the target file, what files
are involved, and what their relationships are to the other files in the
procedure. The description file contains the follow ng information

O Target file nam

0 Parent file nanes that make up the target fi

0 Commands that create the target file fromthe parent file
0 Definitions of macros in the description file

The make program deternmines what files to create to get an up-to-date copy
of the target file by checking the dates of the parent files. |If any
parent file was changed nore recently than the target file, make creates
the files that are affected by the change, including the target file.

If you nanme the description file nakefile or Makefile, and are working in
the directory containing that description file, enter the comrmand:

make

to bring the first target file and its parent files up-to-date, regardless
of the nunber of files that were changed since the last tinme nake created
the target file. 1n nost cases, the description file is easy to wite and
does not change often

To keep many different description files in the sane directory, nanme them
differently. Then, enter the command:

make -f desc-file

substituting the nanme of the description file to use in place of the
vari abl e nane desc-file.

Subt opi cs

Format of a Description File Entry

Usi ng Conmands in a Description File

Calling the make Programfrom a Description File
Preventing the make Programfrom Witing Commands
Prevent Stopping on Errors

Determ ning the Trigger

Exanpl e of a Description File

Maki ng the Description File Sinpler

NSESESESERESRNEN
NNNNNNNN
W W W www o
O~NO O A, WN P

| Copyright IBM Corp. 1985, 1991
27.3-1

Programming Tools and Interfaces
Format of a Description File Entry

2.7.3.1 Format of a Description File Entry
The general formof an entry is:

targetl [target2..]:[:] [parentl..][; commands]
[#..]
[(TAB) commands] [#...]

The itens that are inside brackets are optional. Targets and parents are
file nanes (strings of letters, nunbers, periods, and slashes). nake
recogni zes wildcard characters such as * (asterisk) and ? (question mark).
Each line in the description file that contains a target file nane is

call ed a dependency line. Lines that contain commands nust begin with a
tab character

Not e: Because make uses the dollar sign synmbol ($) to designate a nacro,
do not use that synbol in file names of targets and parents, or in
commands in the description file unless you are using a defined nake

macr o.

Put comments in the description file by using a # (nunber sign) to begin
the comment phrase. The nmake programignores the # and all characters on
the sane line after the #. The nmake program al so ignores blank |ines.

If the line is not a coment line, you can enter |ines that are | onger
than the line width of the input device. To continue a line on the next
line, put a \ (backslash) at the end of the line that is to be continued.

| Copyright IBM Corp. 1985, 1991
27.31-1

Programming Tools and Interfaces
Using Commands in a Description File

2.7.3.2 Using Conmands in a Description File

A command is any string of characters not including a # or a newline. A
conmand can use a # if it is in quotes. Commands can appear either after
a sem colon on a dependency line, or on |lines beginning with a tab

i medi ately foll owing a dependency |i ne.

When defining the conmand sequence for a particular target, specify either
one command sequence for each target in the description file, or specify
separate command sequences for special sets of dependencies. Do not do
bot h.

To use one command sequence for every use of the target, use a single
(colon) follow ng the target nanme on the dependency line. For exanple:

test: dependency listl...
command list...

test: dependency list2...

defines a target name, test, with a set of parent files, and a set of
conmands to create the file. The target nane, test, can appear in other
places in the description file with another dependency |ist, but that nane
cannot have another command list in the description file. When one of the
files that test depends on changes, nake runs the commands in that one
conmand list to create the file, test.

To specify nore than one set of commands to create a particul ar target
file, enter nmore than one dependency definition. Each dependency line
nust have the target nane, followed by :: (two colons), a dependency
list, and a command |ist that make uses if any of the files in the
dependency |ist changes. For exanple:

test:: dependency list1...
conmand list1..

test:: dependency list2...
conmand |ist2..

defines two separate processes to create the target file, test. |If any of
the files in dependency |istl changes, make runs command listl; if any of
the files in dependency |ist2 changes, make runs command |list2. To avoid
conflicts, a parent file cannot appear in both dependency listl and
dependency |i st 2.

Not e: Because make passes the commands from each command |ine to a new
shel |, be careful when using certain commands (for exanple, cd and shel
control conmmands) that have neaning only within a single shell process.
The make program forgets these results before running the commands on the
next |ine.

To group commands together, use the \ (backslash) at the end of a command
line. The make program continues that command line into the next line in
the description file. The shell sends both of these lines to a single new
shel |

| Copyright IBM Corp. 1985, 1991
2.7.32-1

Programming Tools and Interfaces
Calling the make Program from a Description File

2.7.3.3 Calling the make Program from a Description File

Nest calls to the nake programw thin a nake description file by including
the $(MAKE) macro in one of the command lines in the file. [If this macro
is present, nmake calls another copy of make even if the -n flag (do not
execute) is set. The nake program passes the flags to the new copy of
make through the MAKEFLAGS vari abl e.

If the -n flag is set when the $(MAKE) nmacro is found, the new copy of
make does not do any of its conmmands, except another $(MAKE) macro. Use
this characteristic to test a set of description files that describe a
program Enter the comrand:

make -n

For additional information on the nake -n command, refer to the Al X
Operating System Commands Ref erence.

The make program does not do any of the operations, but it wites all of
the steps needed to build the program including output fromlower |evel
calls to make.

| Copyright IBM Corp. 1985, 1991
27.33-1

Programming Tools and Interfaces
Preventing the make Program from Writing Commands

2.7.3.4 Preventing the make Program from Witing Commands

To prevent nmake fromwiting the commands while it runs, do any of the

fol | ow ng:

0 Use the -s flag on the command |ine when using the nmake command.

0 Put the fake target nane . SILENT on a dependency line by itself in the
description file. Because .SILENT is not a real target file, it is
called a fake target.

O Put an @in the first character position after the tab of each line in

the description file that nake should not wite.

| Copyright IBM Corp. 1985, 1991
2734-1

Programming Tools and Interfaces
Prevent Stopping on Errors

2.7.3.5 Prevent Stopping on Errors

The make programnornmally stops if any programreturns an error code that
is not zero. Sone prograns return status that has no neani ng.

To prevent make from stopping on errors, do any of the foll ow ng:

O

O

Use the -i flag on the conmmand |ine when using the nmake command.

Put the fake target nanme .| GNORE on a dependency line by itself in the
description file. Because .IGNORE is not a real target file, it is
called a fake target.

Put a - (hyphen) in the first character position after the tab of each
line in the description file where make should not stop on errors.

| Copyright IBM Corp. 1985, 1991
27.35-1

Programming Tools and Interfaces
Determining the Trigger

2.7.3.6 Determning the Trigger

As you build larger and | arger software products, relationships anong the
files involved becone increasingly conplex. Cccasionally you may find it
difficult to determ ne exactly which file(s) have changed to trigger the
remake of the program being made. Even nore difficult to determne is
exactly which routine(s) froma given library are being called by a
certain object nodule. The make command can determ ne these rel ationships
for you.

Running make with the -T option causes trigger information to be printed
to standard output. This gives the reason or the make rul e by which nake
was acti vat ed.

l'ibc.a(printf.o)<-pgm

The response above, for instance, indicates that printf.o was updated nore
recently than pgm so pgm was renade.

| Copyright IBM Corp. 1985, 1991
27.36-1

Programming Tools and Interfaces
Example of a Description File

2.7.3.7 Exanpl e of a Description File

For exanple, a program nanmed prog is made by conpiling and |oading three C
| anguage files x.c, y.c, and z.c with the Clibrary (libc.a) and the run
time library (librts.a). The files x.c and y.c share sone declarations in
a file named defs. The file z.c does not share those declarations. A
description file to create prog | ooks Ilike:

Make prog from 3 object files

prog: X.0 y.0 zZ.0

Use the cc programto nmake prog
CC X.0Yy.0 z.0 -0 prog

Make x.0 from 2 other files

0. x.c defs

Use the cc programto nmake x.o
CC -C X.C

X

H

Make y.o from 2 other files

0: y.c defs

Use the cc programto nmake y.o
ccC -cy.c

<

Make z.o fromz.c

. O: z.C

Use the cc programto nake z.o
ccC -c z.cC

N

If this file is called nakefile, just enter the command:
make

to make prog up-to-date after naking changes to any of the four source
files .x.c, y.c, z.c or defs.

| Copyright IBM Corp. 1985, 1991
2.7.3.7-1

Programming Tools and Interfaces
Making the Description File Simpler

2.7.3.8 Making the Description File Sinpler

To nmake this file sinpler, use the internal rules of the make program
Using file system nam ng conventions, nake knows that there are three .c
files corresponding to the needed .o files. It also knows how to generate
an object froma source file (that is, issue a cc -c conmand).

By taking advantage of these internal rules, the description file becones:

Make prog from 3 object files

prog: X.0 y.0 z.0

Use the cc programto nmake prog
CC X.0Yy.0 z.0 -0 prog

Use the file defs and the .c file
when making x.o0 and y.o
X.0 Yy.O0: defs

| Copyright IBM Corp. 1985, 1991
27.38-1

Programming Tools and Interfaces
Internal Rules

2.7.4 Internal Rules

The internal rules for the make programare in a file that |looks like a
description file. Wth the -r flag the make program does not use the
internal rules file; you nust supply the rules to create the files. The
internal rules file contains a list of file nane suffixes (such as, .o, or
.a) that make understands, plus the rules that tell nmake howto create a
file with one suffix froma file with another suffix. [If you do not
change the list, nake understands the follow ng suffixes:

.0 hject file

.C C source file

.e Efl source file

T Ratfor source file

f FORTRAN source file

.S Assenbl er source file

.y Yacc-c source granmar

.yr Yacc-Ratfor source grammar

.ye Yacc-Efl source granmmar

A Lex source granmmar.

The list of suffixes is |ike a dependency list in a description file, and
follows the fake target .SUFFIXES. Because nmake | ooks at the suffixes
list inleft to right order, the order of the entries is inportant. The
make programuses the first entry in the list that satisfies two

requi rements:

0 The entry matches input and output suffix requirenents

O The entry has a rule assigned to it

The make programcreates the name of the rule fromthe two suffixes of the
files that the rule defines. For exanple, the nanme of the rule to
transforma .r filetoa .o fileis .r.o

To add nore suffixes to the list, add an entry for .SUFFIXES in the
description file. For a .SUFFIXES |line w thout any suffixes follow ng the
target nane in the description file, make erases the current list. To
change the order of the names in the list, erase the current |ist and then
assign a new set of values to . SUFFI XES.

Figure 2-2 shows the paths that nake uses to create a file. |If two paths

connect a pair of suffixes, make uses the |onger one only if the
internediate file exists or is naned in the description file.

| Copyright IBM Corp. 1985, 1991
274-1

Programming Tools and Interfaces
Internal Rules

Source Files

oy e
Vb

Source Files

}Preprocessing
.C .r e f .S Y Lyr Lye N .d

o l W .

.0 object file

Figure 2-2. Rules for Creating Files

Subt opi cs

2.7.4.1 Exanpl e of Default Rules File
2.7.4.2 Single Suffix Rules

2.7.4.3 Using Make with Archive Libraries
2.7.4.4 Changing Macros in the Rules File

| Copyright IBM Corp. 1985, 1991
27.4-2

Programming Tools and Interfaces
Example of Default Rules File

2.7.4.1 Exanpl e of Default Rules File

Figure 2-3 shows a portion of the default rules file.

Define suffixes that make knows
.SUFFIXES: .0 .c .e .r .f .y .yr .ye .l .s

Begin macro definitions for
internal nacros

YACC = yacc

YACCR = yacc -r

YACCE = yacc -e

YFLAGS =

LEX = |l ex

LFLAGS =

CC =cc

AS = as

CFLAGS =

RC =rc

RFLAGS =

EC = ec

EFLAGS =

FFLAGS =

End macro definitions for
internal nmacros

Create a .o file froma .c
file with the cc program
. C.oO:

$(CC) $(CFLAGS) -c $<

Create a .o file fromeither a
.e, a.r , or a.f
file with the efl conpiler
.e.o .r.o .f.o:
$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $<

Create a .o file from
a .s file with the assenbl er
.S.0:

$(AS) -0 3@ %<

.y. 0O:
Use yacc to create an internediate file
$(YACO) $(YFLAGS) $<
Use cc conpiler
$(CC) $(CFLAGS) -c y.tab.c
Erase the internediate file
rmy.tab.c
Move to target file
mv y.tab.o $@

.y. C:

Use yacc to create an internediate file
$(YACO) $(YFLAGS) $<

Move to target file

| Copyright IBM Corp. 1985, 1991
2741-1

Programming Tools and Interfaces
Example of Default Rules File

mv y.tab.c $@

Figure 2-3. Exanple Default Rules File

| Copyright IBM Corp. 1985, 1991
274.1-2

Programming Tools and Interfaces
Single Suffix Rules

2.7.4.2 Single Suffix Rules

The make program al so has a set of single suffix rules to create files
directly to a file name that does not have a suffix (command files for
exanpl e). The make program has rules to change the foll owi ng source files
wWith a suffix to object files without a suffix:

. C: From a C | anguage source file

. C~: From an SCCS C | anguage source file
. sh: From a shell file

. sh~: From an SCCS shell file.

Therefore, to maintain a programlike cat, enter:
make cat

if all of the needed files are in the current directory.

| Copyright IBM Corp. 1985, 1991
2742-1

Programming Tools and Interfaces
Using Make with Archive Libraries

2.7.4.3 Using Make with Archive Libraries

Use nmake to build libraries and library files. The make program
recogni zes the suffix .a as a library file. The internal rules for
changi ng source files to library files are:

.Cc.a C source to archive
.C~.a SCCS C source to archive
.S~.a SCCS assembl er source to archive.

| Copyright IBM Corp. 1985, 1991
2743-1

Programming Tools and Interfaces
Changing Macros in the Rules File

2.7.4.4 Changing Macros in the Rules File
The make program uses nmacro definitions in the rules file.

conmand line or in the description file. The nake program
followi ng macro nanes to represent | anguage processors that

AS for the Assenble

CC for the C conpile

RC for the ratfor conpile
EC for the efl conpile
YACC for yacc

YACCR for yacc -r

YACCE for yacc -e

LEX for |[ex.

Oooooogoodg

The make programuses the foll ow ng macro names to represent flags that

uses:

0 CFLAGS for C conpiler flag

0 RFLAGS for ratfor conpiler flag
0 EFLAGS for efl conpiler flag

0 YFLAGS for yacc flags

0 LFLAGS for |ex flags.

Ther ef ore, the command:

make " CC=newcc"

To change
these macro definitions, enter new definitions for those macros on the

uses the
it uses:

tells make to use the newcc programin place of the usual C |anguage

conpiler. Simlarly, the command:

make " CFLAGS=-O'

tells make to optim ze the final object code produced by the C | anguage

conpi |l er.

To look at the internal rules (in rules.c) that nake uses,
fol | owi ng command:

make -p -f /dev/null 2>/dev/nul

The out put appears on the standard out put.

| Copyright IBM Corp. 1985, 1991
274.4-1

enter the

it

Programming Tools and Interfaces
Defining Default Conditions

2.7.5 Defining Default Conditions

When nake creates a target file and cannot find conmands in the
description file and internal rules to create a file, it |ooks at the
description file for default conditions. To define the commands that nake
performs in this case, use the .DEFAULT target nanme in the description
file:

. DEFAULT:
comrand
comrand

Because . DEFAULT is not a real target file, it is called a fake target.
Use the . DEFAULT fake target for an error recovery routine, or for a
general procedure to create all files in the programthat are not defined
by an internal rule of the make program

| Copyright IBM Corp. 1985, 1991
275-1

Programming Tools and Interfaces
Including Other Files

2.7.6 Including Gher Files
Include files other than the current description file by using the word
include as the first word on any line in the description file. Follow the
word with a blank or a tab, and then the set of file names for make to
include in the operation. For exanple:

i ncl ude fu/tomtenp /u/tom sanple

tells nake to read the files tenp, sanple and the current description file
to build the target file.

If any of the files to be included are m ssing, nmake returns an error and
exits. If this is not what you want, you can use an alternative keyword,
oi nclude. It uses the sane fornmat:

oi nclude /u/tonftenp /u/tom sanple

If oinclude finds mssing files, no error is reported and make conti nues
as if the oinclude command had not been encount ered.

Do not use nore than 16 levels of nesting with the include files feature.

| Copyright IBM Corp. 1985, 1991
276-1

Programming Tools and Interfaces
Defining Macros

2.7.7 Defining Macros

A macro is a nane (or label) to use in place of several other nanes. It
is a shorthand way of using the longer string of characters. To define a
macr o:

1. Start a newline with the name of the nacro.

2. Followthe nane with an = (equal sign).

3. To the right of the =, enter the string of characters that the nmacro
nanme represents.

The macro definition can contain blanks before and after the = wi thout
affecting the result. The macro definition cannot contain a : (colon) or
a tab before the =.

The follow ng are exanples of macro definitions:

Macro "2" has a value of "xyz"
2 = xyz

Macro "abc" has a value of "-11 -ly"
abc = -1l -ly

Macro "LIBES" has a null val ue
LI BES =

A macro that is naned but is not defined has a value of the null string.

| Copyright IBM Corp. 1985, 1991
27.7-1

Programming Tools and Interfaces
Using Macros in a Description File

2.7.8 Using Macros in a Description File

After defining a macro in a description file, use the macro in the
description file commands by putting a $ (dollar sign) before the nane of
the macro. |If the macro nane is |onger than one character, put ()
(parentheses) or { } (braces) around it. The follow ng are exanpl es of
usi ng nacr os:

$(CFLAGS)

The last two exanpl es have the same effect.
The foll owi ng fragnent shows how to define and use sone nacros:

OBJECTS is the 3 files x.0, y.0 and
z.0 (previously conpil ed)
OBJECTS = x.0 y.0 z.0

LIBES is the standard library
LIBES = -lc

prog depends on x.o0 y.o and z.o0

prog: $(OBJECTS)

Link and load the 3 files with

the standard |library to nmake prog
cc $(OBIECTS) $(LIBES) -0 prog

The make programthat uses that description file | oads the three object
files with the |ibc.a library.
A macro definition entered on the command |ine replaces any nacro
definitions in the description file that define the sane macro | abel
Therefore, the command:

make "LIBES= -11"
|l oads the files with the Lex (-I11) library.
Note: Wien entering macros with blanks in themon the command |ine, put "

(doubl e quotes) around the nmacro. Wthout the double quotes, the shel
interprets the blanks as paraneter separators and not a part of the nacro.

| Copyright IBM Corp. 1985, 1991
2.78-1

Programming Tools and Interfaces
Internal Macros

2.7.9 Internal Macros

The nmake program has built-in nmacro definitions for use in the description
file. These macros help specify variables in the description file. The
nmake programreplaces the macros with one of the follow ng val ues:

$@ The name of the current target file

$$@ The | abel nanme on the dependency |ine

$? The names of the files that have changed nore recently than the
t ar get

$< The name of the out-of-date file that caused a target file to be
created

$* The name of the current parent file without the suffix

$% The name of an archive library nmenber.

Subt opi cs

2.7.9.1 Target File Nane

2.7.9.2 Label Nane

2.7.9.3 Younger Files

2.7.9.4 First Qut-of-date File

2.7.9.5 Current File Name Prefix

2.7.9.6 Archive Library Menber

| Copyright IBM Corp. 1985, 1991
279-1

Programming Tools and Interfaces
Target File Name

2.7.9.1 Target File Nane

If the $@macro is in the command sequence in the description file, make
repl aces the synbol with the full nane of the current target file before
passing the command to the shell to be run. The make programrepl aces the
synmbol only when it runs commands fromthe description file to create the
target file.

| Copyright IBM Corp. 1985, 1991
2791-1

Programming Tools and Interfaces
Label Name

2.7.9.2 Label Nane

If the $$@mnmacro is on the dependency line in a description file, nmake
replaces this synbol with the |abel nanme that is on the left side of the
colon in the dependency line. This name could be a target file name, the
nane of a new flag, or the nane of another macro. For exanple, if the
followng is included in a dependency |ine:

cat: $$@c
The make programtranslates it to:
cat: cat.c

when make eval uates the expression. Use this macro to build a group of
files, each of which has only one source file. For exanple, to maintain a
directory of system commands, use a description file Iike:

Define nmacro CMDS as a series
of command nanes
CVMDS = cat dd echo date cc cnp conmar |d chown

Each conmand depends on a .c file
$(C\VDS) : $$@c
Create the new command set by conpiling the out of
date files ($?) to the target file nane ($@
$(CC -08%? -0 $@

The nake program changes the $$(@) nmacro to the file part of $@when it
runs. For exanple, use this synbol when maintaining the /usr/include
directory while using a description file in another directory. That
description file would I ook Iike:

Define directory name nmacro | NCDI R
I NCDI R = /usr/include

Define a group of files in the directory
with the macro name | NCLUDES
I NCLUDES = \

$(INCDIR)/stdio.h \

$(INCDIR)/ pwd. h \

$(INCDIR)/dir.h

Each file in the list depends on a file
of the sane nanme in the current directory
$(| NCLUDES) : $$(@)
Copy the younger files fromthe current
directory to /usr/include
cp $? $@
Set the target files to read only status
chnod 0444 $@

This description file creates a file in the /usr/include directory when
the corresponding file in the current directory has been changed.

| Copyright IBM Corp. 1985, 1991
2792-1

Programming Tools and Interfaces
Younger Files

2.7.9.3 Younger Files

If the $? macro is in the command sequence in the description file, make
replaces the synmbol with a |list of parent files that have been changed
since the target file was | ast changed. The make programrepl aces the
synmbol only when it runs commands fromthe description file to create the
target file.

| Copyright IBM Corp. 1985, 1991
2793-1

Programming Tools and Interfaces
First Out-of-date File

2.7.9.4 First Qut-of-date File

If the $< macro is in the command sequence in the description file, make
repl aces the synbol with the nane of the file that started the file
creation. The file nane is the nanme of the parent file that was out of
date with the target file, and therefore caused nake to create the target
file again.

In addition, use a letter (D or F) after the < (less-than sign) to get

either the directory name (D) or the file nane (F) of the first

out-of-date file. For exanple, if the first out-of-date file were:
fu/tom sanpl e.c

then make gives the follow ng val ues:

$(<D) = Ju/tom
$(<F) = sanple
$< = Jul/tom sanple

The nake programreplaces this synbol only when it runs comands fromits
internal rules or fromthe . DEFAULT I|i st.

| Copyright IBM Corp. 1985, 1991
2794-1

Programming Tools and Interfaces
Current File Name Prefix

2.7.9.5 Current File Name Prefix
If the $ macro is in the command sequence in the description file, nake
repl aces the synbol with the file nanme part (w thout the suffix) of the
parent file that make is currently using to generate the target file. For
exanple, if nake is using the file:

test.c
then the $* represents the file nane, test.

In addition, use a letter (D or F) after the * (asterisk) to get either
the directory name (D) or the file nane (F) of the current file.

For exanmpl e, make uses nmany files (specified either in the description
file or the internal rules) to create a target file. Only one of those
files (the current file) is used at any nmonent. If that current file
wer e:

/fu/tom sanpl e.c

then make gives the follow ng values for the macros:

$(*D) = /u/tom
$(*F) = sanple
$* = /ul/tom sanple

The nmake programreplaces this synbol only when it runs comands fromits
internal rules (or fromthe .DEFAULT list), and not when runni ng commands
froma description file.

| Copyright IBM Corp. 1985, 1991
2795-1

Programming Tools and Interfaces
Archive Library Member

2.7.9.6 Archive Library Menber
If the $% macro is in a description file, and the target file is an
archive library nenber, nake replaces the macro synbol with the name of
the library menber. For exanple, if the target file is:

[ib(file.o)

then make replaces the $%with the nenber nane, file.o.

| Copyright IBM Corp. 1985, 1991
279.6-1

Programming Tools and Interfaces
Changing Macro Definitions in a Command

2.7.10 Changing Macro Definitions in a Conmmand

When macros in the shell commands are in the description file, you can
change the val ues that nmke assigns to the macro. To change the

assi gnment of the macro, put a : (colon) after the macro nane, followed by
a replacenent string. The formis as follows:

$(macro: stringl=string2)
When nmake reads the macro and begins to assign the values to the macro
fromthe macro definition, it replaces each stringl in the nacro
definition with a value of string2. For exanple, if the description file
contains the macro definition:

FI LES=test.o sanple.o formo defs

you can replace the file formo with a newfile, input.o, by using the
macro in the description file conmands:

cc -0 $(FILES: form o=i nput. 0)
Changing the value of a macro in this manner is useful when maintaining

archive libraries (see the ar programin Al X Operating System Commands
Ref er ence) .

| Copyright IBM Corp. 1985, 1991
2.7.10-1

Programming Tools and Interfaces
Using Make with SCCS Files

2.7.11 Using Make with SCCS Fil es

The make program does not allow references to prefixes of file nanes.
Because SCCS file names begin with an s., do not refer to themdirectly
within a make description file. The nake programuses a different suffix,
the ~ (tilde), to represent SCCS files. Therefore, .c~.o refers to the
rule that transfornms an SCCS C | anguage source file into an object. The
internal rule is:

.C~. 0O:
$(CET) $(GFLAGS) -p $< >%*.c
$(CC) $(CFLAGS) -c $*.c
-rm-f $*.c

The ~ added to any suffix changes the file search into an SCCS fil e nane
search with the actual suffix named by the . (period) and all characters
up to (but not including) the ~. The GFLAGS macro passes flags to SCCS to
determ ne the version of the SCCS files to be used.

The nmake program recogni zes the foll ow ng SCCS suffixes:

.C~ C source

Ly~ yacc source granmar
.S~ Assenbl er source

. sh~ shel |

. h~ header

The nmake program has internal rules for changing the follow ng SCCS fil es:

. C~:
. sh~:

.C~.0:
. S~.
Ly~
-
Ly~
. C~.
. S~.
. h~.

TRRLO0OQ

Subt opi cs
2.7.11.1 Description Files Stored in SCCS

| Copyright IBM Corp. 1985, 1991
27.11-1

Programming Tools and Interfaces
Description Files Stored in SCCS

2.7.11.1 Description Files Stored in SCCS

If you specify a description file, or a file naned makefile is in the
current directory, nake does not |ook for a description file wthin SCCS
If a description file is not in the current directory and you enter the
conmand make, W thout specifying a description file the nmake program | ooks
for an SCCS file nanmed either s.nakefile or s.Makefile. |f either of
these files are present, nmmke uses a get command to tell SCCS to build the
description file fromthat source file. The value of the internal nacro,
GETFLAGS, determines the level of the file that SCCS creates. Wen SCCS
creates the description file, nake uses the file as a normal description
file. Wen nmake finishes, it renoves the created description file from
the current directory.

| Copyright IBM Corp. 1985, 1991
27.11.1-1

Programming Tools and Interfaces
How make Uses the Environment Variables

2.7.12 How nmake Uses the Environnmnent Vari abl es

Each time make runs, it reads the current environnent variables and adds
themto its defined nmacros. |In addition, it creates a new nmacro call ed
MAKEFLAGS. This nacro is a collection of all input flags to the nake
program (w thout the minus signs). Conmand |ine flags and assignnents in
the description file can al so change the MAKEFLAGS nmacro. Wen nmake
starts another process, it passes MAKEFLAGS to that process by using the
export comand.

Wien make runs, it assigns macro definitions in the follow ng order:

1. Reads the MAKEFLAGS environnent variable to set debug on, if it is
needed.

If MAKEFLAGS is not present or null, make sets its internal MAKEFLAGS
variable to the null string. OQherw se, make assunes that each letter
in MAKEFLAGS is an input flag. The nmke program uses these flags
(except for the -f, -p, and -r flags) to determne its operating

condi tions.

2. Reads and sets the input flags fromthe conmand |ine. The comrand
line adds to the previous settings fromthe MAKEFLAGS environment
vari abl e.

3. Reads nmacro definitions fromthe command line. Mke ignhores any
further assignnments to these nanes.

4. Reads the internal macro definitions.
5. Reads the environment, including the MAKEFLAGS macro. The nake

programtreats the environnment variables as macro definitions and
passes themto other shell prograns.

| Copyright IBM Corp. 1985, 1991
27.12-1

Programming Tools and Interfaces
Tracking Dependencies

2.7.13 Tracki ng Dependenci es

nmake was created to keep track of nediumto-large size software projects
in which the build process is often conplex. Wen nmany nodul es depend on
a single section of code, a snmall change can have very broad consequences.
A single change to /usr/include/stdio.h, for instance, could cause
hundreds of object nodules in a single project to be renade. The
progranmers in charge of such projects need to be kept aware of these
dependenci es and Al X provides a series of interlocking tools for doing so.

make itself provides the -n and the -T options.

make -n lists all the commands used to build a given program w thout
actually running them Since a single run of make can call another make,
this can sonetines be an overwhel m ng vol une of information.

make al so provides the -T option, which displays just the dependency
triggers for a given program |If the programneeds to be renade, make -T
di spl ays the [owest |evel reason or make rule which would cause nake to
remake the file. |If everything is up to date and the program does not
need to be remade, namke -T returns no output.

When make is used for preparing a C program cpp and |d will be included
in the build process. cpp is responsible for inserting header files in
the finished program |d is responsible for incorporating |library
routines.

Both of these programs offer options for dependency tracking. Some of

t hese options produce output in a format suitable for use in nake
description files. Wen make runs Id and cpp with these options, the
dependency informati on can be directed back into nmake's own description
files. In this way, running nake today will automatically record any new
dependenci es created. Then future invocations of make will automatically
t ake t hose new dependencies into account.

Subt opi cs

2.7.13.1 1d options for use in make
2.7.13.2 cpp options for use in nmake
2.7.13.3 Using oinclude with nmake

| Copyright IBM Corp. 1985, 1991
2.7.13-1

Programming Tools and Interfaces
Id options for use in make

2.7.13.1 1d options for use in nake

When you need to determ ne which archive nenbers and object nodules are
used in creating a given target file, |d gives you a quick, convenient way
to do this. |d-mwites to standard output the nanes of all the files
and archive nmenbers being used in that |link operation, along with a map of
how they are arranged in menory. This output can be redirected to a file,
yielding a record of the operation which can be exam ned afterward.

Id -m-oexecutable filel.o file2.0 nylib.a > logfile

This command creates logfile. logfile records the fact that filel.o,
file2.0, and specified nenbers of nylib.a were used in the creation of a
program nanmed executable. It wites the data in a table format,
unsuitable for use in nake description files.

The paired options, |d -q and |d -Q allow you to specify the exact nane
of the description file into which the information is to be put and
exactly how you want the file name to be reported on each dependency line
inthat file.

Id -otarget filel.o file2.0 libc.a -Qdesc-file

The command above will build target and record the dependency information
in desc-file. In certain situations the name of target may not be
reported in exactly the format needed by make. Wen this happens, you can
add the -qtarget option, which allows you to specify exactly how you want
the nane target reported.

Id -otarget filel.o file2.0 libc.a -qtarget -Qdesc-file

By using -qtarget, the format of the nane "target" is exactly what is
needed in a nmake description file. The format of the lines in desc-file
is:

target: dependency

dependency is determ ned by which library nodules are referenced by target
during the Iink operation. 1t has the form

ful | - pat hnane/ | i bnanme(menber)

Notice that this output cites exactly which library routine is being
called. If target references printf.o in libc.a, the line would ook Iike
this:

target: /lib/libc.a(printf.o)

desc-file is often used to guide further invocations of nmake. Thus the
dependency lines being inserted nmust be added to the file rather than
overwiting it. It is not created anew each tinme. |d preens the file of
any prior entries for target and the new dependency |ines are added. Then
it is sorted with the -u option, which elimnates duplicate entries.

| Copyright IBM Corp. 1985, 1991
2.7.131-1

Programming Tools and Interfaces
cpp options for use in make

2.7.13.2 cpp options for use in make

The cpp preprocessor offers dependency tracking facilities simlar to
t hose of |d.

cpp -Mgenerates nakefil e dependencies and sends the results to standard
error. It automatically converts the filenane.c given on the cc comrand
line to filenane.o filenane.o is automatically the target file nanme for
whi ch dependencies are reported. This is not a fornmat suitable for use in
make description files.

If you wi sh dependency information in a format suited to use by nake, this
can be obtained with two cpp options that function parallel to the Id
options descri bed above. These are the paired -t and -X options.

cpp -ttarget allows you to specify the actual name to be reported on the
dependency line. cpp -Xdesc-file gives the name of the file to which the
information is to be witten. desc-file is preened of any existing
entries referring to target and the new entries are appended to the file.

| Copyright IBM Corp. 1985, 1991
2.713.2-1

Programming Tools and Interfaces
Using oinclude with make

2.7.13.3 Using oinclude with make

make nornally reads its information fromdescription files called nmakefile
or Makefile, or fromfiles specified on the conmand line with -f

desc-file. As your project grows, you nmay need to break your description
information into a nunber of small files with different names. This

all ows you to keep track of manageabl e anbunts of dependency i nformation

Trying to cite all these description files on the command line is a

| abori ous and error-prone process. These small files can be accessed

t hrough the jnclude statenment, which is enbedded in the main description
file used by nake. This allows the nake statement itself to be relatively

si mpl e.

Two parallel statements in the nake rul es section can create the
description files for headers and library routines and channel dependency
output into them

cpp -ttarget -Xdesc-file.hdr
Id -gtarget -Qdesc-file.lib

Then make can access the information in the description files by
statenents of the followng formin makefil e:

i nclude desc-file.hdr
i nclude desc-file.lib

The problemw th jnclude is that it does not work for the first running of
make. The nmake programitself is going to generate the two description
files. Therefore desc-file.hdr and desc-file.lib do not yet exist on the
first invocation of make. Wen include finds mssing files, it returns an
error code and exits. For this reason you should use the oinclude
statenent, which will proceed as if the statenent had never been call ed.

| Copyright IBM Corp. 1985, 1991
2.7133-1

Programming Tools and Interfaces
Example of a Description File

2.7.14 Exanple of a Description File

Figure 2-4 shows the description file that mmintains the make program
The source code for make is spread over a nunber of C |anguage source
files and a Yacc granmar.

Description file for the Make program

Macro def: send to be printed
P=und -3 | opr -r2

Macro def: source fil enanes used

FI LES = Makefil e version.c defs main.c\
donane.c msc.c files.c\
dosys.c gramy |l ex.c gcos.c

Macro def: object filenanes used
OBJECTS = version.o nain.o donane. o\
msc.o files.o dosys. o\

gramo
Macro def: |lint programand fl ags
LINT =1lint -p

Macro def: c conpiler flags
CFLAGS = -0

make depends on the files specified
in the OBJECTS nmacro definition
make: $(OBJIECTS)
Build make with the cc program
cc $(CFLAGS) $(OBJECTS) -o nmke
Show the file sizes
si ze nake

The object files depend on a file
nanmed defs
$(OBIECTS): defs

The file gram o depends on | ex.c
uses internal rules to build gramo
gramo: lex.c

Cean up the internediate files
cl ean:

-rm*. o gramc

-du

Copy the newly created program

to /usr/bin and del etes the program
fromthe current directory

install:

| Copyright IBM Corp. 1985, 1991
27.14-1

Programming Tools and Interfaces
Example of a Description File
@i ze make /usr/ bin/ make
cp make /usr/bin/make ; rm nake

Enpty file "print" depends on the
files included in the nmacro FILES
print: $(FI LES)
Print the recently changed files

pr $? | $P
Change the date on the enpty file,
print, to show the date of the |ast
printing

touch print

Check the date of the old

file against the date

of the newy created file

test:
make -dp | grep -v TIME >1zap
fusr/bin/make -dp | grep -v TIME >2zap
diff lzap 2zap
rmilzap 2zap

The program |int, depends on the

files that are listed

lint: dosys.c donane.c files.c main.c msc.c
version.c gramc

Run lint on the files |isted

LINT is an internal macro
$(LINT) dosys.c donane.c files.c main.c \
m sc.c version.c gramc
rmgramc

Archive the files that build rmake
ar ch:
ar uv /sys/source/s2/ make.a $(Fl LES)

Figure 2-4. Exanple Description File
The make programusually wites out each comrand before issuing it.

The follow ng output results fromtyping the sinple conmand nmake in a
directory containing only the source and description file:

cc -O-c version.c

cc -O-c main.c

cc -O -c donane.c

cc -O-c msc.c

cc -O-c files.c

cc -0 -c dosys.c

yacc gramy

nv y.tab.c gramc

cc -O-c gramc

cc version.o nmain.o donane.o msc.o files.o dosys.o
gramo -o meke

13188+3348+3044 = 19580b = 046174b

Al t hough none of the source files or grammars are specified in the
description file, make uses its suffix rules to find them and issues the

| Copyright IBM Corp. 1985, 1991
27.14-2

needed comands.

Programming Tools and Interfaces
Example of a Description File

The string of digits is the result of the size nmake

conmand. The @ (at sign) on the size commuand in the description file

prevented witing

The out put can be
definition of the

make print "P
or
make print "P

of the command, so only the sizes are witten.

sent to a different printer or to a file by changing the
P macro on the commuand |ine as follows:

print -sp"

cat >zap"

| Copyright IBM Corp. 1985, 1991
2714 -3

Programming Tools and Interfaces
Chapter 3. PS/2 Assembler

3.0 Chapter 3. PS/2 Assenbl er

Subt opi cs

CONTENTS

About This Chapter

Not at i onal Conventi ons
Compatibility

80386 Architecture
Source Statenents

Pr ogram Segnent s

Expr essi ons

St at enent Processi ng
.10 Instruction Set

.11 Instructions for the 80387 Numeric Processor
.12 Assenbler Directives
.13 Command For nat

O©CoOoO~NOUIrWNPEF

W W W W wwwwwww

| Copyright IBM Corp. 1985, 1991
3.0-1

Programming Tools and Interfaces
CONTENTS

3.1 CONTENTS

| Copyright IBM Corp. 1985, 1991
31-1

Programming Tools and Interfaces
About This Chapter

3.2 About This Chapter

Thi s chapter discusses the assenbler for the 80386 m croprocessor. It
di scusses:

O The way statenents and expressions are forne

0 How the assenbl er | abels and processes instruction

0 The abbreviated instruction operands and synbols for the register
O The assenbler directive

O The options used in assenbling source files

| Copyright IBM Corp. 1985, 1991
3.2-1

Programming Tools and Interfaces
Notational Conventions

3.3 Notational Conventions
The fol |l owi ng notational conventions are used in this chapter:

Ellipsis indicate that the preceding itemmy be in a list. The
list is a series of the itens, each separated by a conma.

This notation alone on a line indicates that material not rel evant
to the exanpl e has been ski pped.

[] Itens enclosed in brackets are optional. Brackets enclosed in
guot ati on marks specify actual bracket characters.

expr This specifies the appearance of an expression.
id This specifies the appearance of a synbol identifier.
The following terns which are defined in the 80386 Programmer's Reference

Manual are used in the addressing node conponent, sib byte; and the field
nanes, ss, index, and base.

| Copyright IBM Corp. 1985, 1991
33-1

Programming Tools and Interfaces
Compatibility

3.4 Conpatibility
The assenbler is conpatible with the UNI X System V Operating System
The assenbl er supports:

Common Cbject File Format (COFF) nodul e

Span- dependent instruction optim zation

Arbitrarily long identifiers (80 characters are significant
Compl etely rel ocat abl e obj ect nodul e

Optional source and generated code |isting

Addr essi ng node expressions and vari ables, for exanple

I I o

x=5(%ebx, %ecx, 8)

O .macro assenbly, repeat block assenbly, and conditional assenbly
di rectives

g full floating-point suppor

O very high speed assenbly

There are differences between the format of assenbler instruction
specifications and the instructions as described in the 80386 Programrer's
Ref erence Manual that is published by Intel Corporation. The fornmat
published by Intel is labeled Intel format. The assenbler format used
here is al so accepted by the UNI X assenbler and is | abeled UNI X format.

There are two mgjor differences between the Intel format and the UNI X
fornmat:

0 The Intel format places the source operand on the right; while th
UNI X format places the source operand on the left.

0 Most of the instructions have either byte, word, and |long word forns
or word and long word forns. The Intel format operand size is
specified when defining storage while the UNI X format operand size is
part of the instruction. Therefore the Intel format assenbly |anguage
has only one nove instruction: nov. The UNI X format assenbl er defines
each of the three possible nove instructions:

- novb (nove byte)
- novw (nove word)
- nmovl (nove |ong).

This assenbl er operates in a 32-bit segnent environnment where it
automatically generates a 16 bit data prefix as needed for word
i nstructions.

| Copyright IBM Corp. 1985, 1991
34-1

Programming Tools and Interfaces
80386 Architecture

3.5 80386 Architecture

As noted above, the assenbler assunes that the programis intended for use
in a 32-bit segnment. The assenbler automatically generates the data size
prefix (66[16]) when a 16-bit instruction is generated. The address size
prefix is never generated.

A nunber of instructions have a short form Many instructions have a form
W th no addressing node and an inplied destination of %l, %ax, or % ax.
Some instructions have a short formwhere the size of the immediate
constant or imedi ate address is shorter than the size of the destination
Cenerally, the assembl er chooses the shortest instruction. Wen the
assenbl er nmust choose between two di fferent abbreviations for the same

i nstruction, the assenbler selects the instructions with the shorter
abbrevi ation (fewest components), even if the generated instruction is
larger. This produces faster code when the instruction is a branch

target.

The condi tional branch instructions and the junp instruction have short
and long forns. The assenbl er can process these instructions in one of
three different nodes. The npdes are sel ected by specifying a conmand
option, see Figure 3-5 in topic 3.12. The default node tells the
assenbler to run one extra pass in which nost of the forward references
are reduced to the shortest possible form

In all nodes, it is an error when a synbol used as a branch target is
redefined at a different address.

| Copyright IBM Corp. 1985, 1991
35-1

Programming Tools and Interfaces
Source Statements

3.6 Source Statenents

Subt opi cs

3.6.1 Statenent Format
2 Character Set

3 ldentifiers

4 Constants
5

3. 6.
3. 6.
3. 6.
3.6.5 Comments

| Copyright IBM Corp. 1985, 1991
36-1

Programming Tools and Interfaces
Statement Format

3.6.1 Statenent Format

An assenbl er statenent is contained on one line of an input file. The
statenent may consist of a |abel part, an opcode or directive part, a
paraneter part, and a comment part. The general statenent format is:

| abel : operation paraneters [/ conment

A statement may contain nore than one |abel. The operation is an
instruction, an assenbler directive, a macro call, or an assi gnnment
statenent. Miltiple statenents may be typed on a single line by
separating each statenment fromthe previous statement with a sem col on
(;). For example:

.if not_terse; .string "Type exit to quit"; .endif

| Copyright IBM Corp. 1985, 1991
36.1-1

Programming Tools and Interfaces
Character Set

3.6.2 Character Set

Spaces and tabs separate identifiers and constants in source statements.
Spaces and tabs have no other significance unless quoted. The newine
character (\n), separates source lines (statenents).

| Copyright IBM Corp. 1985, 1991
3.6.2-1

Programming Tools and Interfaces
Identifiers

3.6.3 ldentifiers

Identifiers (or symbols) may be conposed of a conbination of letters,
digits, and the followi ng characters: periods (.), dollar signs ($), and
underscores (_). The first character of a symbol can not be a digit or a
dollar sign ($). Upper and |ower case letters are accepted and renain
distinct. That is, lowercase letters (for exanple, a)

nmean sonething different fromuppercase letters (for exanple, A
Assenbl er directives and machine instructions are defined in | owercase
only. ldentifiers are significant up to 80 characters.

| Copyright IBM Corp. 1985, 1991
3.6.3-1

Programming Tools and Interfaces
Constants

3.6.4 Constants

Subt opi cs
3.6.4.1 Nuneric Constants
3.6.4.2 Al phabetic Constants

| Copyright IBM Corp. 1985, 1991
364-1

Programming Tools and Interfaces
Numeric Constants

3.6.4.1 Nuneric Constants

A sequence of digits is a decinmal nuneric constant. A hexadeci mal
constant begins with "0" followed by a | owercase "x" (that is, 0x). The
hexadeci mal digits include the decimal digits and the | owercase |letters
"a" though "f". An octal constant begins with an "0" followed by a

| owercase "0" (that is, 0o). A long floating constant begins with an "0"
followed by a | owercase "f" (that is, 0f). A long floating constant nay
have a decinal fraction and a signed exponent.

| Copyright IBM Corp. 1985, 1991
3.641-1

Programming Tools and Interfaces
Alphabetic Constants

3.6.4.2 Al phabetic Constants

There are two types of al phabetic constants: character constants and
string constants.

Character Constants: A character constant is treated as an integer
nuneric constant with the value of the ASCII character specified. The
constant is typed with single quotes (') and nust specify a single
character. Character constants may be used in expressions and i mmedi ate
oper ands.

String Constants: A string constant supplies a sequence of values for the
data storage directives. It consists of a sequence of character
specifications enclosed in double quotes ("). String constants nay
contain the ASCII null character. A null character is appended to the
string by the assenbler. String constants may be used as paraneters of
storage definition instructions.

Character Translation: Character and string constants nmay contain all of
the ASCI|I character set except new ine characters. The ASCH | backsl ash
(\) is used within character and string constants to escape the quote

mar ks and to specify certain control characters synbolically. A backsl ash
foll owed by any other character is equivalent to the other character; in
this way quotation marks or a backslash may be specified. The synbolic
character specifications are:

o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +
| Figure 3-1. Character Escape Sequence

o m m e o e m o |
. ESCAPE i CHARACTER . ASCI | VALUE :
RS o m e e e e e e e e e e e e e e m o o e e e e e i e - |
1 \O i null 1 0 |
RS o m e e e e e e e e e e e e e e m o o e e e e e i e - |
i \'b | backspace]

RS o m e e e e e e e e e e e e e e m o o e e e e e i e - |
Pt | tab 19

RS o m e e e e e e e e e e e e e e m o o e e e e e i e - |
P \n | newine i 10

RS o m e e e e e e e e e e e e e e m o o e e e e e i e - |
P\ . return 13 |
RS o m e e e e e e e e e e e e e e m o o e e e e e i e - |
A i a double quote in a string | 34

RS o m e e e e e e e e e e e e e e m o o e e e e e i e - |
Pt | a single quote in a character I 39 |
| | constant |

RS o m e e e e e e e e e e e e e e m o o e e e e e i e - |
PtV | a backsl ash 192

o m o o o o o m e e e e e e o e o e e o eema—aoo-- +

| Copyright IBM Corp. 1985, 1991
3.642-1

Programming Tools and Interfaces
Comments

3.6.5 Comment s

Comments begin with a slash (/) and extend to the end of the line. They
can be placed at the end of a statenent.

| Copyright IBM Corp. 1985, 1991
3.65-1

Programming Tools and Interfaces
Program Segments

3.7 Program Segnents

The output of the assenbler is an object nodule in three segnents. The
three segnents are called: text, data, and bss. Wen the link editor is
used to conbi ne several object nodules, the segnments from each input
nmodul e are concatenated to forma single output nodul e consisting of the
combi ned text segments followed by the conbined data segnents. The
operating system nmakes di stinctions between text and data nenory; the
assenbl er, however, treats both segnments identically.

Subt opi cs

3.7.1 Text Segment Assenbly
3.7.2 Data Segnment Assenbly
3.7.3 Bss Segnent Assenbly

| Copyright IBM Corp. 1985, 1991
3.7-1

Programming Tools and Interfaces
Text Segment Assembly

3.7.1 Text Segment Assenbly

Assenmbly initially begins in the text segnent. The type of the |ocation
counter is text relocatable.

| Copyright IBM Corp. 1985, 1991
3.71-1

Programming Tools and Interfaces
Data Segment Assembly

3.7.2 Data Segnment Assenbly

The .data directive is available to switch to the data segnent. The type
of the location counter is data relocatable. The directive .text returns
to the text segnent.

| Copyright IBM Corp. 1985, 1991
3.7.2-1

Programming Tools and Interfaces
Bss Segment Assembly

3.7.3 Bss Segnent Assenbly

The . bss directive serves as a type for synmbols which are assigned
addresses in nenory allocated when the inage is |oaded. This nenory is
initialized with zeroes. The .comm .lconm or .bss directives allocate
bss segnment nenory, and define synmbols with the type .bss relocatable.
The size of the bss segnent is stored in the object and image files. No
space (other than the space used to record the size information) is

all ocated for the bss segnment in the object and inmage files.

| Copyright IBM Corp. 1985, 1991
3.7.3-1

Programming Tools and Interfaces
Expressions

3.8 Expressions

Expressi ons and synmbol s may be specified as integer expressions, or as
nore conpl ex expressions which specify an entire addressi ng node. The
addr essi ng node expressions have the foll ow ng general appearance:

e e e e e e e e e ee e mmemmmmmsmmmemsmemMeemmmemmmmemmmmmmasmmmememem-mmmmmmemmmmmm .- m .. m——m—-—-———-a
| Figure 3-2. Addressing Mbde Sunmary

e e e e e e e e e ee e mmemmmmmsmmmemsmemMeemmmemmmmemmmmmmasmmmememem-mmmmmmemmmmmm .- m .. m——m—-—-———-a
i EXPRESSI ON . TYPE

o m o m o o e e e e e e e e e e eme—a— - o m o m e e e e e e emamaoo -
| reg | register node

o m o m o o e e e e e e e e e e eme—a— - o m o m e e e e e e emamaoo -
i (reg) | register indirect

o m o m o o e e e e e e e e e e eme—a— - o m o m e e e e e e emamaoo -
| disp(reg) | register relative

o m o m o o e e e e e e e e e e eme—a— - o m o m e e e e e e emamaoo -
| addr | absolute

o m o m o o e e e e e e e e e e eme—a— - o m o m e e e e e e emamaoo -
| (base[,index][,scale]) | indexed

o m o m o o e e e e e e e e e e eme—a— - o m o m e e e e e e emamaoo -
i disp[(base[,index][,scale])] i displacenent indexed

o m o m o o e e e e e e e e e e eme—a— - o m o m e e e e e e emamaoo -
| [sreg:][disp][(base[,index][,scale])] | segment register override prefix

| i displacenent indexed

e e e e e e e e e ee e mmemmmmmsmmmemsmemMeemmmemmmmemmmmmmasmmmememem-mmmmmmemmmmmm .- m .. m——m—-—-———-a

A reference to a | abel or an inported synbol (see "External Definition" in
topic 3.12.11) is nade with the absolute nmenory node unless the
instruction is a junp or call that supports a relative reference. A
forward reference is assuned to be a text segnent reference and may not
change later to a non-nenory type if it was used in a span-dependent
construct.

Subt opi cs

3.8.1 Assignnent Statenents

3.8.2 Scal ar Expression Operators
3.8.3 Operator Precedence

3. 8.4 Expression Types

3.8.5 Type Conbi nati ons

| Copyright IBM Corp. 1985, 1991
3.8-1

Programming Tools and Interfaces
Assignment Statements

3.8.1 Assignnent Statenents

An expression may be assigned to a synmbol by an assignnment statenent in
the foll owi ng general form

synmbol =[:] expr

An expression may specify any addressi ng node and that node is generated
when the synbol is used as an instruction operand. An equal sign (=) in
an assignnment statement defines a |local constant. An equal sign followed
by a colon (=), specifies that the synbol is global. An exanple of these
assignments i s shown bel ow.

a=1 / a const ant
xyz=: 123 / a gl obal constant
abc=4(%x) /a register relative expression

| Copyright IBM Corp. 1985, 1991
3.81-1

Programming Tools and Interfaces
Scalar Expression Operators

3.8.2 Scal ar Expression Operators

A nunber of operators are available to form expressions. The operators
are listed in the following table. The unary node indicates that the
function is recogni zed when the operator has only a right operand. The
bi nary node indi cates the nmeani ng applied when the operator has two
oper ands.

CFigue 3.3 scalar Bapression Gperators T
Coperation 1 Wde 3 mmetion T
Cs T Cunary convert type to imediate
o Cunary Cnegation T
o Cbinary Csubtraction T
Ce T Cbinary Clogical and T
AT Cbinary Clogical exclusive or
T Cbinary Clogical o T
T Cbinary logical and not (0 or 1)
LT Cbinary Caddition T
T Cbinary Cmitiplication T
BV Cbinary Cdivision T
v T Cbinary Cmoduo T
CTTTTT Cbinary Cless than (0 o 1y T
L Cbinary Cgreater than (0 or 1
o Cbinary Ceaquality (0 oy T
C T Cbinary Cshitererc T
Ca T Cbinary Cshiteorigne T
/AN e A S s S

| Copyright IBM Corp. 1985, 1991
3.82-1

Programming Tools and Interfaces
Operator Precedence

3.8.3 Operator Precedence

Al binary operators are inplenented at the sanme priority. Unary
operators have a higher priority than the binary operators except for the
dollar sign ($) which has a lower priority than the binary operators.
Expressi ons may be grouped with matchi ng bracket characters.

| Copyright IBM Corp. 1985, 1991
3.83-1

Programming Tools and Interfaces
Expression Types

3. 8.4 Expression Types

The primary expression types are:

Const ant
Constant expressions are defined ultimately froma constant or
the difference between two synbols with the same type of
rel ocati on node. The val ues of constant expressions are never
affected by the Iink editor.

| mredi at e

| nedi at e expressions are produced by the dollar sign (%)
operator. These expressions are referenced with the i mredi ate
addr essi ng node when used as instruction operands. Wen a | abel
or external synbol is nade i mediate by the use of the dollar
sign ($) operator, a relocatable expression yielding an address
i s produced.

Text Rel ocat abl e
These expressions are generally defined with text segment
| abel s. These expressions are referenced with the program
counter relative address nopde.

Dat a Rel ocat abl e
These expressions are generally defined with data segment
| abel s.

Bss Rel ocat abl e
The .comm and .| comm directive generates bss rel ocatable
synbol s.

Undefi ned Externa
Synbol s (that are undefined except for their appearance) in a
.globl statenent have this type. See the discussion under
"Bl ock Definition" in topic 3.12.3.

Regi st er

The follow ng regi ster synbols are predefined:

o m o e o e o o emeaooo - +
I 8-Dbit | 16-bit | 32-bit |
o e e e e oo o o e e e e e e oo S |
| %al | Yax | Y%eax |
o e e e e oo o o e e e e e e oo S |
| %ah | %X | Y%ebx |
o e e e e oo o o e e e e e e oo S |
0] | %X | %ecx |
o e e e e oo o o e e e e e e oo S |
| %bh | Yax | Y%edx |
R L oo |
| %l ! | Yesi |
R L oo |
I %h I %di | Y%edi |
R L oo |
I dl I Y%bp | Yebp |
R L oo |
I %h I Y%sp | Yesp |
R L oo |
o m o e o e o o emeaooo - +

| Copyright IBM Corp. 1985, 1991
3.84-1

Programming Tools and Interfaces
Expression Types

Compl ex Types
A nunber of conplex types are conposed of mnultiple sinple types
when an instruction contains several displacenents or
indirection steps with separate addressing constructs.

| Copyright IBM Corp. 1985, 1991
3.84-2

Programming Tools and Interfaces
Type Combinations

3.8.5 Type Conbi nati ons

The constant type nay be combined with all operators, except where a
rel ocatabl e type has been nade i nmedi ate or absolute. These types and the
rel ocatabl e types thensel ves may be conbined only as foll ows:

+ If one operand is constant, the result is the type of the non-constant
oper and.

- If the second operand is constant, the result is the type of the
second operand. |If both operands are selected fromthe sane type
(text, data, or bss relocatable), the result is a constant that is the
di fference between the addresses.

(Rel ocat abl e types, constants and regi sters nay be conmbined with the
left parenthesis binary operator, "(", to formregister indirect,
register relative, or indexed expressions. A matching right
parenthesis, ")", is required.

(reg) regi ster indirect expression
disp(reg) register relative expression
di sp(base, i ndex, scal e)

i ndexed expressi on.

The di spl acenment specifies an absolute offset or base address in
menory. The base and index fields are 32-bit registers that specify
the base and index fields of the sib byte. The scale field is the
constant 1, 2, 4, or 8 fromwhich the ss field is derived. A
conmponents are optional however, either a displacenent or a base
regi ster must be specified. The default scale factor is 1

The fol |l owi ng exanpl es show sone of the different expressions:

4 / const ant

4*(5-4) / const ant

$4 / i medi ate

$l abel / i medi ate rel ocat abl e
Y%ebx [register

4(Y%ebx) / register relative
y=8(%ebp) / register relative
(%ebx, ¥%ebp, 8) / indexed

| Copyright IBM Corp. 1985, 1991
3.85-1

Programming Tools and Interfaces
Statement Processing

3.9 Statenment Processing

Subt opi cs
3.9.1 Statenent Labels

| Copyright IBM Corp. 1985, 1991
39-1

Programming Tools and Interfaces
Statement Labels

3.9.1 Statenent Labels

A statement may begin with one or nore | abels. Each |abel can be either a
naned | abel or a tenporary | abel.

Subt opi cs
3.9.1.1 Naned Label s
3.9.1.2 Tenporary Label s

| Copyright IBM Corp. 1985, 1991
391-1

Programming Tools and Interfaces
Named Labels

3.9.1.1 Naned Labels

Naned | abels are identifiers followed by one or two col on characters.
Label s defined with one colon can not be referenced outside the source
nmodul e. A second col on specifies that the | abel is to be made external
(see "External Definition" in topic 3.12.11).

Label Exanpl es:

Xyz:
abc: : . byte 1 / a gl obal | abel
[1:12:183: .byte 1 / three labels on a line

| Copyright IBM Corp. 1985, 1991
39.11-1

Programming Tools and Interfaces
Temporary Labels

3.9.1.2 Tenporary Label s

Tenporary | abels consists of a non-zero numeric constant followed by a
singl e colon character. Any nunber of these |abels nmay be present even if
the value of the constant is repeated. A reference to a tenporary |abe
consists of the |abel's constant val ue expressed as a deci mal nunber
followed i Mmediately (that is, with no space) by a lowercase f or b. The
trailing letter specifies that the reference is to the nearest tenporary

| abel with the sane value. The f or b further specifies a forward or
backwards reference (synbols with the sane value but the wong direction
are not considered nearer).

Tenporary Label Exanples:

1: jmp 1f / skip the next instruction
2: jmp 1b / select previous instruction
1: C. / continue

| Copyright IBM Corp. 1985, 1991
39.1.2-1

Programming Tools and Interfaces
Instruction Set

3.10 Instruction Set

Subt opi cs

3.10.1 Notation and Term nol ogy
3.10.2 Registers

3.10.3 Instructions

| Copyright IBM Corp. 1985, 1991
3.10-1

Programming Tools and Interfaces
Notation and Terminology

3.10.1 Notation and Term nol ogy
The fol |l owi ng abbreviations are used to describe instruction operands:

reg A register nane is required. The register name nust correspond to
the size of the instruction.

mem An addressing node for which a menory address is required.

r/m An addressing node for which a register or a nenory address is
required.

addr A constant address is required.

i med An i mredi ate constant or inmedi ate address is required.

control A CPU control register.

debug A CPU debug register.

t est A CPU test register.
seg A segnent/sel ector register.
The 80386 has no nenory-to-nmenory addressing nodes. Instructions that use

addr essi ng nodes have one operand in a register and one operand in either
a register or nenory. These instructions are either "to menory" or "to
register” instructions. Some instructions are present in both the "to
menory" and "to register” form

| Copyright IBM Corp. 1985, 1991
3.10.1-1

Programming Tools and Interfaces
Registers

3.10.2 Registers

The fol |l owi ng general register synbols are defined:

o m o o o o o e o e ao oo +
| 8-bit | 16-bit | 32-bit |
o e e e e e e e e oo o e e e e e e e oo e |
| Yal | Yax | Y%eax |
o e e e e e e e e oo o e e e e e e e oo e |
| Yah | Ybx | Y%ebx |
o e e e e e e e e oo o e e e e e e e oo e |
]! | %X | %ecx |
o e e e e e e e e oo o e e e e e e e oo e |
| %bh | Yax | Yedx |
o e e e e e e e e oo o e e e e e e e oo e |
| %l 7 | Y%esi |
o e e e e e e e e oo o e e e e e e e oo e |
| %h | odi | %edi |
o e e e e e e e e oo o e e e e e e e oo e |
|l | Y%bp | Yebp |
o e e e e e e e e oo o e e e e e e e oo e |
| %dh I Y%sp | Yesp |
o e e e e e e e e oo o e e e e e e e oo e |
o m o o o o o e o e ao oo +

The 80387 Numeric Processor register stack is specified with an expression
of the form

st (expr)
where expr is an integer expression with a value between 0 and 7. |f
%t (0) is specified, it nmeans the top of the stack; %t(1l) neans the next
item and so on. Sone instructions, requiring two operands, that
inmplicitly operate on the top of the stack and on a specific stack
| ocation have a reverse form These instructions specify the inplicit
operand sinply with %st.

The fol |l owi ng speci al purpose regi ster nanes are defined:

Segnent or Sel ector Register Nanes

Debug Regi st er Nanes

| Copyright IBM Corp. 1985, 1991
3.10.2-1

Programming Tools and Interfaces

Registers
Y%r 7 :
______________________ e m e e e e me e e mmemm MM mmmemmmmemmmmmmmmem e e e e e m-———--
%r6 | '
%r7 | Test Registers

| Copyright IBM Corp. 1985, 1991
3.10.2-2

Programming Tools and Interfaces
Instructions

3.10.3 Instructions
Nuneric instructions with general operands:

| eft vbar

"add" rabove "adc" rabove "and" rabove "xor"
%86 " or" rabove "sbb" rabove "sub" rabove "cnp"
right vbar

%

| eft vbar

"b" rabove "wW' rabove "I"

right vbar

%

| eft vbar

<i nred, r/ m> | above <reg,r/n> | above <r/mreg>
right vbar

I ncrenent and decrenent instructions:

| eft vbar

"inc" rabove "dec"
right vbar

%

| eft vbar

"b" rabove "w' rabove "I"
ri ght vbar

%

| eft vbar

<r/np

right vbar

The push instruction accepts an i mmedi ate, register, segnent register, or
menory operand. Segnment operands cannot be used with the push w
i nstruction.

"push" %

| eft vbar "w' rabove "I"

right vbar

%

| eft vbar

<i med> | above <r/n» | above <seg>
right vbar

The exchange instruction swaps the constants of each operand:

"xchg" %

| eft vbar "b" rabove "w' rabove "I"
right vbar

%

| eft vbar

<reg,r/m rabove <r/mreg>

right vbar

Move instructions defined for register and nmenory operands:

n rT.Dvll %

| eft vbar

"b" rabove "wW' rabove "|"
right vbar

| Copyright IBM Corp. 1985, 1991
3.10.3-1

Programming Tools and Interfaces
Instructions
%
| eft vbar
<i nred, r/ m> | above <reg,r/n> | above <r/mreg>
right vbar

Move instructions defined for the special CPU registers:

"movl " %

| eft vbar

<debug, reg> | above <control,reg> | above <test,reg>
%80

<r eg, debug> | above <reg, control > | above <reg, test>
right vbar

Move instructions defined for the segment registers:
"movw' %
| eft vbar
<seg, r/ nme | above <r/m seg>
ri ght vbar

Move instructions defined for zero or sign extensions:

| eft vbar

"nmovzbw' | above "novzbl" | above "novzwl " | above "nobvsbw' | above '

| above "novsw "
right vbar
<r/mreg>

String instructions:

| eft vbar

"novs" | above "cnps" | above "stos" | above "l ods" |above "scas"
%80

"smov" | above "scmp" | above "ssto" | above "slod" |above "ssca"
right vbar

%

| eft vbar

"b" | above "w' | above "I"

ri ght vbar

Set instructions:

| eft vbar

"seta" | above "setae" | above "setb" | above "setbe" | above "setc"
"sete" | above "setg" | above "setge"

%880

"movsbl "

| above

"set|" | above "setle" | above "setna" | above "setnae" | above "setnb"

| above "setnbe" | above "setnc" | above "setne"

%880

"setng" | above "setnge" |above "setnl" |above "setnle" |above
"setno" | above "setnp" | above "setns" |above "setnz"

%880

"seto" | above "setp" | above "setpe" |above "setpo” |above "sets”
"setz"

ri ght vbar

<r/nme

Rotate and shift instructions:

| Copyright IBM Corp. 1985, 1991
3.10.3-2

| above

Programming Tools and Interfaces
Instructions

| eft vbar
"rcl" rabove
"sal" rabove
right vbar

| eft vbar
"b" rabove "wW' rabove "|"

right vbar

| eft vbar

<"%cl,r/nm | above <imed, r/ n» | above <r/ne
right vbar

rcr" rabove "rol" rabove ror

sar" rabove "shl" rabove "shr

S

gned integer nmultiply instructions:

“imul "%

| eft vbar

"w' | above "I"

ri ght vbar

%

Left vbar

<i nmed, reg> | above <imed,r/ mreg>
right vbar

"I mul "%

| eft vbar

%

"b" rabove "w' | above "|"
right vbar

% / m

"imul "%

| eft vbar

"w' | above "I"
right vbar

%

rimreg

Bitwi se "and":

"test"%

| eft vbar

"b" | above "w' | above "I"

right vbar

%

| eft vbar

<i nred, r/ m> | above <reg,r/n> | above <r/mreg>
right vbar

I/Oinstructions:

| eft vbar
"in" | above
ri ght vbar
%

| eft vbar
"b" rabove "w' rabove "I"
ri ght vbar

out

| Copyright IBM Corp. 1985, 1991
3.10.3-3

Programming Tools and Interfaces
Instructions
%
| eft vbar
<% | above <i med> | above <("%x")>
right vbar

Cl ear instructions:

"clr"%

| eft vbar

"b" | above "w' | above "I"
right vbar

%

<r/np

Unsi gned (div) and signed (idiv) division, and unsigned multiply:

| eft vbar

"div" | above "idiv" | above "mul"
%80

"not" | above
right vbar
%

| eft vbar
<reg, r/nme | above <r/mreg>
right vbar

neg

Stack pop instructions operate on a register, nenory or segnent register

oper and

"pop" %

| eft vbar

"wW' rabove "I|"
right vbar

%

| eft vbar

<seg> | above <r/n»
right vbar

A nunber of instructions require an operand to be in nenory and do not
accept a register as operand 1:

| eft vbar

"bound" %% "l ea" rabove "l ds" rabove "l es"
98684

"I fs" | above "l gs" | above "Iss"

right vbar

%

| eft vbar

"w' rabove "I"

right vbar

o%remr/ m

Note: The bound instruction generates a S| GPRE exception if the bound
test fails.

Bit scan instructions:

| eft vbar
"bsf" rabove "bsr"

| Copyright IBM Corp. 1985, 1991
3.10.3-4

Programming Tools and Interfaces
Instructions

right vbar

%

| eft vbar

"w' | above "I"
right vbar

%

rim reg

Bit test instructions:

| eft vbar

"btc" | above "bt"
%880

"btr" | above "bts"
right vbar

%

| eft vbar

"w' | above "I"
right vbar

%

| eft vbar

<i med, r/ m> | above <reg,r/nme
right vbar

Doubl e- preci sion shift instructions:

| eft vbar

"shl d" | above "shrd"
right vbar

%

| eft vbar

"w'l above "I"

right vbar

%

| eft vbar

<i med, reg, r/ > | above <reg,r/nme
right vbar

Instruction prefix bytes defined as one-byte instructions:

| eft vbar

"addr 16" | above "datal6" | above "l ock" | above
%80

"repe" | above "repne" | above "repz" |above "repnz"

%80

"seg_cs" |above "seg_ds" | above "seg_es" |above "seg fs"
%80

"seg_gs" | above "seg_ss"

right vbar

rep

Instructions with no operands:

| eft vbar

"aaa" | above "aad" | above "aant | above
| above "cl c¢"

%980

"cld" | above "cli cltd" |above "clts" | above
| above "cwtd" | above "cw|"

%980

aas" | above "cbtw'

cnc

| Copyright IBM Corp. 1985, 1991
3.10.3-5

Programming Tools and Interfaces
Instructions
"daa" | above "das" | above "fwait" | above "hlt"
| above "into" | above "iret"

%80

"l ahf" | above "l eave" | above "nop"

| above "popa" | above "popal " | above" popaw
%80

"popf" | above "popfl" |above "popfw

| above "pusha" | above "pushal " | above "pushaw'
%80

"pushf™ | above "pushfl" | above "pushfw'

| above "sahf" | above "stc" | above "std"
%80

"sti" | above "wait" | above "xlat"

right vbar

Condi tional junp instructions:

| eft vbar

"ja" | above "jae" |above "jb" |above "jbe"
%80

"jc" labove "je" |above "jg" |above "jge"
%80

"jI" labove "jle" |above "jna" |above "jnae"
%80

"jnb" | above "jnbe" |above "jnc" | above "jne"
%80

"jng" | above "jnge" |above "jnl" | above "jnle"
%80

"jno" | above "jnp" |above "jns" |above "jnz"
%80

"jo" labove "jp" |above "jpe jz" | above "jpo"
%80

" s

right vbar

%

addr

Junmp and Cal |l instructions:

| eft vbar

"call" | above "jnp"

right vbar

%

| eft vbar

<adjust(d 3) '*" %%/ n> | above <addr>
right vbar

Long junmp and long call instructions. In the *r/imform the operand is a
far pointer. In the inmediate form the first operand is the selector for
a descriptor and the second operand is the offset into the new segnent.

| eft vbar

“lcall" I above "Ijnmp"

ri ght vbar

%

| eft vbar

<adjust(d 3) '*" %4/ nr | above <i med, i med>
ri ght vbar

| Copyright IBM Corp. 1985, 1991
3.10.3-6

Programming Tools and Interfaces
Instructions for the 80387 Numeric Processor

3.11 Instructions for the 80387 Nuneric Processor
Mul tiply and add instructions with regi ster stack operands:

| eft vbar

"fadd" | above "fnul"

right vbar

| eft vbar

<"Ust,%t"(i)> |l above <"%st,"(i),"¥%t">
right vbar

Multiply and add instructions with a menory operand and the pop option

| eft vbar
"faddp" | above "fmul p"
right vbar

—

"Ust, Wst U <(i)>
Mul tiply and add instructions with a nmenory operand:

"f" %

| eft vbar

"add" | above "nul"
ri ght vbar
%

| eft vbar
“I'" | above
right vbar
%renop

S

"fi"%

| eft vbar

"add" | above "nul"
right vbar

%

left | bracket

wpw

ri ght rbracket
%renop

Di vide and subtract instructions with a single nenory operand:

| eft vbar

"fidiv" | above "fisub"
right vbar

%

left | bracket

"r
ri ght rbracket
%

left | bracket

right rbracket
%renmop

| eft vbar
"fdiv" | above "fsub"
right vbar

| Copyright IBM Corp. 1985, 1991
3.11-1

Programming Tools and Interfaces

Instructions for the 80387 Numeric Processor
%
left | bracket
"r
ri ght rbracket
%
| eft vbar
“I'" | above
right vbar
%renop

S

Di vide and subtract instructions with register stack operands:

| eft vbar

"fdiv" | above "fsub"
right vbar

| eft | bracket

"r
ri ght rbracket

| eft vbar

<"Ust,%t"(i)> |labove <"%t"(i),"¥st">
right vbar

| eft vbar"

"fdiv" | above "fsub"
right vbar

| eft | bracket

"r
ri ght rbracket
" p" -1

"ost, Ust " (i)

Conparison instructions with a single register operand:

Ilfll_|

| eft | bracket
"u
ri ght rbracket
=" cont' -

| eft | bracket
"p
ri ght rbracket
=" Ust" (i)

Nuneri c processor instructions with one register operand:

"ffree"-
"Ust" (i)

Nureri c processor instructions with no operands:

| eft vbar

"f2xmL" | above "fabs" | above "fchs" | above "fclex" |above "fconmpp"
9

"fcos" | above "fdecstp" |above "fincstp" |above "finit" |above "fld1"
9

"fldl 2e" |above "fldl2t" |above "fldl g2" |above "fldln2" |above "fldpi"

| Copyright IBM Corp. 1985, 1991
3.11-2

Programming Tools and Interfaces

Instructions for the 80387 Numeric Processor
980
"fldz" |above "fnclex" |above "fninit" |above "fnop" |above "fpatan”
980
"fpremt | above "fprenl” |above "fptan" |above "frndint" |above "fscal e"
980
"fsetpnt | above "fsin" | above "fsincos" | above "fsqrt” |above "ftst”
980
"fuconpp" | above "fwait" | above "fxam' |above "fxtract" | above
"fyl 2x"
980
"fyl 2xp1"
right vbar

Nuneri c processor instructions with one nenory operand:

| eft vbar

"fld" | above "fstp"

right vbar

%

| eft vbar

"s" |above "I" |above "t"
right vbar

%renop

Nurreri c processor instructions with short real and |long real formats:

| eft vbar

"fst" | above "fcont | above "fconp”
right vbar
%

| eft vbar
"I | above
right vbar
%renop

S

Nuneri c processor instructions with word, |long word, and very |ong word
formats:

| eft vbar

"fild" |above "fistp"

ri ght vbar

%

| eft vbar

“-" labove "I" |above "I1l"
right vbar

%renop

Nurreri c processor Binary Coded Decinal |oad and store:

| eft vbar

"fbld" | above "fbstp"
ri ght vbar

%renop

Nuneri c processor word and |long word integer instructions with one nmenory

oper and:

| eft vbar
"fist" labove "ficont |above "ficomp"
ri ght vbar

| Copyright IBM Corp. 1985, 1991
3.11-3

Programming Tools and Interfaces
Instructions for the 80387 Numeric Processor
%
left | bracket
Wy
ri ght rbracket
%renop

O her nuneric processor instructions with one nenory operand:

| eft vbar

"fsave" | above "fnsave" | above "fstcw' | above "fnstcw'
%%

"fstenv" | above "fnstenv" | above "fstsw' | above "fnstsw'
%%

"fldcw' | above "fl denv" | above "frstor"

right vbar

%renop

| Copyright IBM Corp. 1985, 1991
3.11-4

Programming Tools and Interfaces
Assembler Directives

3.12 Assenbler Directives

Assenbl er directives are specified in a manner simlar to the
specification of instructions. Directives control options of the assenbler
or format and generate data for the code segnents. Certain directives
establish or alter the definitions of synbols.

The directives thenselves are synbols with the type of directive and a
predefined val ue which specifies the particular directive. Both directives
and instructions appear between |abels and operands. The assenbl er
assigns a specific type to such predefined synbols and searches only for
this type between | abel s and operands. Therefore, |abels can have the
same nanes as instructions and directives.

o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +
| Figure 3-5. Directive Summary

o m m e o e m o |
i Directive} Function | Additional Information

R RS o m e e e e e e e e e e e e e o o e e e e e e e m |
. .align | Adjust location counter to i "Alignnment Definition" in

: | boundary. | topic 3.12.1 E
Fomm e oo - o e e e e e e e e e oo o m e e e e oo |
i . bcd i Defines a binary coded decinmal | "Storage Definition” in |
i i val ue. i, topic 3.12.6 i
e e oo o e e e e e e e e e e e e e o o e e e e e e e e e m e m |
. . blkb ! Reserves a block of bytes I "Block Definition" in

| | | topic 3.12.3 |
e e oo o m e e e e e e e e e e e e e o o e e e e e e e e e m |
. bl kd ! Reserves a bl ock of double I "Block Definition" in

| | words. | topic 3.12.3 i
R SRS o m e e e e e e e e e e e e o o e e e e e e e e e e m e m |
. bl kf i Reserves a bl ock of real i "Block Definition" in

| | nunbers. | topic 3.12.3 E
Fomm e oo o e e e e e e e eaaoa-- o m o m e e e iaao-- |
1. bl ki i Reserves a bl ock of |ongs i "Block Definition" in

i | i, topic 3.12.3 i
R SRS o m e e e e e e e e e e e e e o o e e e e e e e e e e m |
1. bl kw | Reserves a bl ock of words i "Block Definition" in

| | | topic 3.12.3 |
e e oo - o m e e e e e e e e e e e e e e o o e e e e e e e e e m |
. . bss I Switches to the bss section. i "Program Section (Segnent) |
| | i Control” in topic 3.12.2

| | i and "Block Definition" in

| | | topic 3.12.3 |
e e oo - o e e e e e e e e e e e e a o o e e e e e e e e m |
. . byte ! Defines bytes. | "Storage Definition" in !
| | | topic 3.12.6 |
e e oo - o m e e e e e e e e e e e e e e e o o e e e e e e e e e e m |
| .comm ! Defines a common bl ock I "Block Definition" in !
| | | topic 3.12.3 |
e e e o - o m e e e e e e e e e e e e e o o e e e e e e e e e m e m |
. .data I Switches to the data section | "Program Section (Segnent) |
| | i Control” in topic 3.12.2

R SRS o e e e e e e e e e e e e e a o o e e e e e e e e e m |
! . double | Defines double reals. | "Storage Definition" in !
| | | topic 3.12.6 |
R SRS o e e e e e e e e e e e e e a o o e e e e e e e e e m |
| . dsect ! Defines a record. I "Record Definition" in

| | | topic 3.12.5 |
R SRS o e e e e e e e e e e e a o o e e e e e e e e e e m !

| Copyright IBM Corp. 1985, 1991
3.12-1

Programming Tools and Interfaces
Assembler Directives

el se i Reverses condition to .if. I "Conditional Block" in
i ! topic 3.12.10
__________ e
elseif | Reverse condition to .if plus | "Conditional Block" in
| a new condition. | topic 3.12.10
__________ e
end !l Ends a record | "Record Definition" in
| | topic 3.12.5
__________ e
endi f i Ends .if block. i "Conditional Block" in
i ! topic 3.12.10
__________ e
endm I Ends a nacro. I "Macro Definition" in
| | topic 3.12.8
__________ e
endr i Ends a repeat bl ock. i "Repeat Block" in
| | topic 3.12.9
__________ e
enum I Defines a series of | "Enumeration" in
| identifiers. | topic 3.12.7
__________ e
even | Adjusts the location counter i "Alignment Definition" in
| to an even boundary. | topic 3.12.1
__________ e
extern | Inports or exports a synbol. i "External Definition" in
i ' topic 3.12.11
__________ e
fl oat I Defines real nunbers. | "Storage Definition" in
| | topic 3.12.6
__________ e
gl obl i Alternate name for .extern. I "External Definition" in
i ' topic 3.12.11
__________ e
i dent i Defines a string in the i "Conment Section" in
| comment section. | topic 3.12.4
__________ e
i f i Enters a conditional block. | "Conditional Block"” in
l ' topic 3.12.10
__________ e
.lcoom | Defines a local zero-filled i "Block Definition" in
| object. | topic 3.12.3
__________ e
|ist i Enabl e the source listing. i "External Definition"” in
l ' topic 3.12.11
__________ o
| ong i Defines |ong nunbers. | "Storage Definition" in
| | topic 3.12.6
__________ e
nacr o I Defines a nacro. | "Macro Definition" in
| | topic 3.12.8
__________ e
nlist i Disables the source listing. | "External Definition" in
l ' topic 3.12.11
__________ e
. noopt I Turns of f the span | "Optimzation" in
| optim zation. | topic 3.12.13
__________ e
.optim | Turns on the span | "Optimzation" in
| optim zation. | topic 3.12.13
__________ e

| Copyright IBM Corp. 1985, 1991
3.12-2

Programming Tools and Interfaces
Assembler Directives
Repeats the foll ow ng
st at ement s.

"Repeat Bl ock” in
topic 3.12.9

. set ! Assigns a val ue. I "Assignnent" in

| i ! topic 3.12.12

Fommm e oo o e o e e e e e oo oo o e m e e e e eeoo-oo--
i\ .string | Defines a string. | "Storage Definition" in

: | | topic 3.12.6

Fommm e oo o e o e e e e e oo oo o e m e e e e eeoo-oo--
. text | Switches to the text section i "Program Section (Segnent)
| i I Control" in topic 3.12.2
Fommm e oo o e o e o e eeooo-- ot e e e e e oo
. .val ue ! Defines words. | "Storage Definition" in

| : | topic 3.12.6

Fommm e oo o e o e o e eeooo-- ot e e e e e oo

.version | Defines version strings. "Commrent Section" in

: topic 3.12.4
e e e e e e e mm e e mmmmmemmmemmemeEmmmmemsmmemmmmmasmmme e memmmemmmmmmmmmmmm———-———
Subt opi cs
3.12.1 Alignment Definition
3.12.2 Program Section (Segnent) Control
3.12.3 Block Definition
3.12.4 Conment Section
3.12.5 Record Definition
3.12.6 Storage Definition
3.12.7 Enuneration
3.12.8 Macro Definition
3.12.9 Repeat Bl ock
3.12.10 Conditional Bl ock
3.12.11 External Definition
3.12.12 Assi gnment
3.12.13 Optimzation

| Copyright IBM Corp. 1985, 1991
3.12-3

Programming Tools and Interfaces
Alignment Definition

3.12.1 Alignnment Definition

e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
. .align .byte | These directives advance the | ocation

. .align .value | counter to an addressing boundary

. .align .long | specified by the keyword or constant

. .align .float | expression. The boundary is such that the

. .align .double | location counter is evenly divisible by

| .even | the first expression or the size of the

. .align expr [,expr] ! object referred to by the keyword.

oo m e e e e e eeoo- o m e o e e e e e e e e e e memeeoo -
e e e e e e e mm e mmemmmemsmmeemmemmeEmmmememmmemmmmeammmemmmmemmmemmmmmmmmmmmm———-——a

The | ocation counter is advanced to the boundary specified by the first
paranmeter. As the |ocation counter is advanced, the segment is normally
filled with nop instructions. A second expr paraneter is optionally
accepted and is then used as the fill val ue.

Al'l expressions must be constant and nust be defined in pass one.

The .even directive is equivalent to a .align 2 directive.

| Copyright IBM Corp. 1985, 1991
3.121-1

Programming Tools and Interfaces
Program Section (Segment) Control

3.12.2 Program Section (Segnent) Contro

o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +
. text	These directives divert generated object
.data	code into the specified program section.
.bss	
o oo m e o |
o m o o o o o m e e e e e e o e o e e o eema—aoo-- +

The assenbl er supports two program sections for initialized object code.
These sections are naned text and data. The bss section, the third
program section, contains only space that has not been initialized. Each
program section is assenbl ed separately and the final object contains all
the text section object code followed by all of the data section code.

. text Assenbly continues in the text segnent.
.data Assenbly continues in the data segnent.

Note: The -R option suppresses the .data directive and assenbl es all
statenents in the text segnent. (See "Comand Format" in topic 3.13 for
addi tional information).

| Copyright IBM Corp. 1985, 1991
3.12.2-1

Programming Tools and Interfaces
Block Definition

3.12.3 Block Definition

. bl kb expr . These directives reserve space for expr

. bl kw expr . objects of the indicated size. If no

. bl kI expr | expression is present, one such |ocation

. bl kf expr | is reserved. In the text or data sections,
. bl kd expr | bytes of zeros are generated.

The bl ock directives reserve space for objects of the indicated size.

Wien a block directive is used within a .dsect (record definition), the

| ocation counter is advanced by the required anount of space. |In the text
and data sections, bytes of zeros are assenbled in the object nodule.

When i ndependent and uninitialized or zero-initialized variables are
specified with the block directives (or with directives such as .byte O
the object file must contain the actual bytes of clear data. The
following directives are nore appropriate for the definition of
zero-filled object.

o m o o o o o m e e e e e e e o e o e o e e e e e e e e e e e e o e e e e e e e eema—ao-o +
i\ .commid, expr | These directives reserve space in the '
. .lcommid, expr | menory inmage w thout requiring space in |
. . bss id,expr ! the object file. !
o o m m e |
o m o o o o m e e e e e e e e o e o eemaoaoo-o +

The type of the synbol is set to an undefined external type and the val ue
is set to expr. Such synbols may be redefined as program section synbols
in the nodul e where they appear or in other nodules that will be conbi ned
with the Iink editor. [If no such program section synbols appear, the

I i nker defines undefined synbols with non-zero val ues as comon bl ocks in
the final image file's bss segnent. The length of the comon bl ock is
taken fromthe synbol's values (which would norrmally be the synbol's
address). VWhen nmany identically naned common bl ocks are present, the

i nker defines a single block with the size of the highest valued common
synbol .

This processing nmakes it possible to declare a common bl ock in many
different nodules, and to initialize that block (optionally) in only one
nmodul e. Wien a nodule initializes a synbol that is a common bl ock in

anot her nodul e, the synbol is defined in the text or data segnent, and the
common references select the text or data object after link editing.

The cost in space and tine of using a common block is simlar to a
reference to any other type of synmbol. It is reasonable to declare every
external variable (even integers and characters) as a separate conmon

bl ock.

The synbol is defined as a local bss |ocation and expr bytes are reserved.
This directive is useful for allocating objects which are not initialized
(or initialized to zero) and not export ed.

| Copyright IBM Corp. 1985, 1991
3.12.3-1

Programming Tools and Interfaces
Comment Section

3.12.4 Comment Secti on

e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
| .version string i These directives put the string values in

, .ident string i the comment section.

oo m e e e e e eeoo- o m e o e e e e e e e e e e memeeoo -
e e e e e e e mm e mmemmmemsmmeemmemmeEmmmememmmemmmmeammmemmmmemmmemmmmmmmmmmmm———-——a

The assenbl er supports an optional conment section.

| Copyright IBM Corp. 1985, 1991
3.124-1

Programming Tools and Interfaces
Record Definition

3.12.5 Record Definition

. dsect | This directive is used to define records |
(label's) (directives) i and structures. The | ocation counter
(1 abel s) (assignnents) | begins at zero in each dsect, and is :
. . i incremented according to block directives.
I
I

The purpose of the dsect directive is to assign increasing constant val ues
to the labels. The dsect is a dunmy program section where code may not be
generated. The only tasks all owed are: assigning |abels, aligning
directives and bl ocking directives. A dsect begins with the .dsect
directive and ends with the .end directive. It is useful for defining
records, stacks, and frame structures.

| Copyright IBM Corp. 1985, 1991
3.125-1

Programming Tools and Interfaces
Storage Definition

3.12.6 Storage Definition

o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +
. . byte | These directives initialize bytes of the |
. .string ! text or data segnents. The directives

. .value | accept a list of expressions or string :
. long | constants. [Each expression may be |
. float | preceded by a repeat count. :
i .doubl e : !
o o m m e |
o m o o o o o m e e e e e o e o e o e e e o eemamao-- +

The general format of a storage definition directive is:
directive [[(expr)] expr]

The repeat count is an optional expression enclosed in parenthesis (). A
list of expressions follows. Each expression allocates a |ocation of the
specified size. A string constant may appear in an expression. |In this
case, each character specification within the string constant generates an
obj ect of the size specified by the directive.

When a repeat count is present, it nmust be constant and defined when in
pass one. The next expression is assenbled the indicated nunber of tines.

. byte Assenbl e bytes

.string Equi valent to .byte plus a final zero byte
. val ue Assenbl e 16-bit short words

.l ong Assenbl e 32-bit |ong words

. Tl oat assenble 32-bit floating constants

. doubl e assenbl e 64-bit floating constants

| This directive generates a 10-byte |

I (80-bit) decimal string in the current |

| section. This directive is not valid for

, the .bss section. :
I
I

Exanpl es using the storage directives foll ow

. byte PR R v /| store three stars

. byte (3)"*' /| store three stars

. byte tEwwn /| store three stars

. byte (3)"***" /| store three stars

. doubl e 1 /[store double 1

. val ue 1,2,3 /[store three words
.val ue (3)1,(3)2,(3)3 [/ store nine words

. Tl oat O 3. 14159 / store a 4 byte rea

. doubl e O 3. 14159265 / store an 8 byte rea
.string "hel | o" /[store a 6 byte string

| Copyright IBM Corp. 1985, 1991
3.126-1

Programming Tools and Interfaces
Enumeration

3.12.7 Enuneration

o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +
i\ .enumid | This directive is used to define a list of |
: i synmbols with scal ar val ues begi nni ng at |
: | zero and increasing by one over the list. |
o o m m e |
o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +

The general format of the .enumdirective is:
.enunf synmbol [=expr]]

The directive defines synbols as constants with increasing val ues.

Normal ly, the first synmbol's value is zero with subsequent val ues each
greater by one. Any synbol may be foll owed by an assignnment to reset the
sequence to an arbitrary expression.

Exanpl es using the .enumdirectives follow

, ; define a=0Q b=1, ¢c=2

.enum a,b,c
x=5,vy,z ; define x=b5,y=6, z=7

.enum

| Copyright IBM Corp. 1985, 1991
3.12.7-1

Programming Tools and Interfaces
Macro Definition

3.12.8 Macro Definition

| This directive enters a macro definition. |
I Assenbl er statenents are collected until a
i matching .endmdirective is processed.

The .macro directive assigns a nanme and a |l ocal parameter list to a
sequence of assenbler statements. The paraneter |ist consists of
identifiers separated by commas or white space.

After a matching .endmdirective is processed, the assenbl er recognizes
the name of the macro and substitutes the saved assenbl er statenents.
This procedure is said to invoke the nmacro and is known as . nmacro
expansi on. Actual parameters are supplied when the macro is invoked, and
there nmust be the sane nunber of actual parameters as there are
identifiers in the paraneter list of the macro definition.

Actual paraneters are separated by comas.

The .endm directive nust be the first synbol on its line; no | abels are
permtted.

During macro expansion, all references to a paraneter of the definition
are replaced by the correspondi ng actual paraneter. The resulting
assenbl er statenment is not scanned for further parameter matches. |[|f one
macro calls another, the paraneters of the first invocation are hidden
fromthat of the inner.

A macro may itself contain macro definitions. In this case the inner
definition is processed only when the nmacro is | ater expanded.

Wien a nmacro is invoked, the name of the macro appears in the |isting.

The expansi on of the macro and the correspondi ngly generated object code
are then listed. The directives, .nlist and .nmacro, can be used to
disable the listing of the macro expansion. (See "External Definition” in
topic 3.12.11).

Exanpl es using the .macro directives follow.

. macro checkval ue val ue errornsg

crpl $0, val ue [if value is zero,
j nz $cva
pushl $nsg
call error /print error nessage
jm cv4 /and conti nue
neg: string errornsg
cv4:
endm

checkval ue % 0X8(%bp), "second val ue must not be zero-n"

| Copyright IBM Corp. 1985, 1991
3.128-1

Programming Tools and Interfaces
Repeat Block

3.12.9 Repeat Bl ock

o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +
| .rept expr | This directive specifies a bl ock of |
R | assenbly statenments which are to be |
i . endr i repeated the nunmber of tinmes specified by

I I I
i 1 expr. [
o o m m e |
o m o o o o o m e e e e e o e o e o e e e o eemamao-- +

The expression nust be constant and nust be defined during pass one.
Repeat bl ocks may occur within repeat blocks. 1In this case, the inner
repeat block is expanded once for each expansion of the next outer bl ock
The repeat count of an inner block is evaluated at each expansion of the
i nner bl ock.

The .endr directive nust be the first synbol on its line; no | abels are
permtted.

Repeat bl ocks may be contained within nmacro definitions, or definitions
may be contained within blocks, but no other overlap is possible.

(hj ect code resulting fromthe assenbly of a repeat bl ock never appears in
the listing. The source text of a repeat block appears in the listing no
nore than once.

Exanpl es using the .rept directives follow

.macro factorial num

subl %esi, %esi [fact =0
nmovl $num %ebx [tnmp = num
.rept num
leal (%bx, %si), %esi [fact = fact + tnp
leal -0x1 (%bx), %ax
novl % ax, %ebx [tmp = tmp - 1
. endr
.endm

factorial 20

| Copyright IBM Corp. 1985, 1991
3.129-1

Programming Tools and Interfaces
Conditional Block

3.12.10 Conditional Bl ock

o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +
. L i foexpr { The .if directive specifies a block of |
. .else | assenbly statements which are to be |
. .endif | assenbled only if expr is non-zero. The

. LI foexpr . reverse condition to the .else block, and

. .elseif expr | the reverse of the condition plus a new |
. .endif I condition applies to an .elseif block. !
o o m m e |
o m o o o o o m e e o e e e e o o e e o eemaoaoo-- +
The expr is evaluated. It nust be constant and defined within pass one.

If its value is non-zero, the block of statenents is assenbled normally.

O herwi se, the generation of code, the definition of synmbols and | abels,
and the processing of directives are suppressed until a matching .endif is
processed. The .else directive may be used to reverse the condition and
begi n assenbling statenents only if the matching .if was false. The
.elseif directive is equivalent to a .else followed by a second .if,
except that only one .endif is required to term nate the bl ock.

Condi tional blocks may occur w thin conditional blocks.

The conditional block is always listed, but no object code |listing appears
for blocks which are not assenbl ed.

| Copyright IBM Corp. 1985, 1991
3.12.10-1

Programming Tools and Interfaces
External Definition

3.12.11 External Definition

o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +
. .externid ... | These directives are used to inport |
. .globl id... | synbols defined in other nodules and to i
| I export synbols defined within the assenbly |
| I nodul e. :
o oo m e o |
o m o o o o o m e e e e e e o e o e e o eema—aoo-- +
The .extern directive defines a list of synbols as external. |If such a

synbol is defined within the nodule as a constant or program section
synbol, the effect is to make the value and type available to the link
editor. Oherwise, the synbol is an undefined-external, and the linker is
instructed to inmport the synbol and relocate any references to it.

The list of symbols nay be separated with commas, spaces, or tabs.
The .extern and .globl directives are equivalent.
Exanpl es using the .extern directives follow.

.extern start

.extern sin,cos,fun
.extern procl proc?2

| Copyright IBM Corp. 1985, 1991
3.1211-1

Programming Tools and Interfaces
Assignment

3.12.12 Assignnent

{ This directive sets the value of the
i, synbol id to expr. This is equivalent to
| an assignnent.

.set id,expr

Use the .set directive as shown bel ow
.set mysynb, 4

This will set the value of the synbol, nysynmb, to 4 in that file's synbol
table. It is equivalent to specifying the assignment:

nmysynb=4

| Copyright IBM Corp. 1985, 1991
3.12.12-1

Programming Tools and Interfaces

Optimization
3.12.13 Optim zation
o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +
i . noopt | These directives are used to turn off and |
i, .optim ! on span optim zations. !
o o m m e |
o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +

Not e: The assenbl er passes these directives in passl and uses the | ast
one specified for assenbling the entire nodule. Span optim zations cannot
be selectively turned on and off for sections of a nodule.

| Copyright IBM Corp. 1985, 1991
3.12.13-1

Programming Tools and Interfaces
Command Format

3. 13 Conmmand For mat

oo SyNtaAX ---mmmmmmmmmmmmmm oo oo oo mmm- oo +

@
»
o
°
—+
o
S
=
©
c
~+
I
-
@

The assenbl er conbi nes each specified input file and produces a single
out put object nodule. The nanme of the output file is based on the |ast
input file name. If the input file nanme ends in a ".s," the output file
nane is created by replacing the ".s" with a ".0" extension. Oherw se
the ".0" extension is appended to the input file nane. |If the input file
nane is greater than 12 characters, the file name is truncated to 12
characters and the ".0" extension is appended.

A nunber of options may be specified.

-a Does not automatically inmport any synbols that are referenced
in but are otherw se undefined. |[|ssues an error message for
this case.

-R Suppresses any .data directives; all code is assenbled in the

text segnent.

-1 [file] Generates a source listing. |If the optional file is specified,
the source listing is witten to that file. Do not |eave a
space between the -| and the file nane.

-o file Sets the nanme of the output nodule to file.

-sO Generates the long formfor all forward references and the

short form where possible, for backward references.

-sl Runs one extra pass, in which nost of the forward references
are reduced to the shortest possible form

-s2 Runs as nmany passes as are necessary to generate the short form
for all qualifying forward references.

| Copyright IBM Corp. 1985, 1991
3.13-1

Programming Tools and Interfaces
Chapter 4. AIX/370 Assembler

4.0 Chapter 4. Al X/ 370 Assenbl er

Subt opi cs

4.1 Contents

4.2 About This Chapter

4.3 Using the Assenbl er Language
4 Differences

4.
4.5 Restrictions

| Copyright IBM Corp. 1985, 1991
40-1

Programming Tools and Interfaces
Contents

4.1 Contents

| Copyright IBM Corp. 1985, 1991
41-1

Programming Tools and Interfaces
About This Chapter

4.2 About This Chapter

Thi s chapter explains the differences that exist between the Basic
Assenbl er Language for Systeni 370 and the Basic Assenbl er Language for
Al X/'370. Refer to the OS/VS-DOS/VS-VM 370 Assenbl er Language for

addi ti onal information.

| Copyright IBM Corp. 1985, 1991
42-1

4.3 Using the Ass

Programming Tools and Interfaces
Using the Assembler Language

enbl er Language

The as (assenbler) has the form

as [-options] f

The followi ng table shows the options that are valid for

Assenbl er Languag
1 Option |
o e +
. -0 objfile |
l |
o e +
i -1 listfile I
o e +
i -T dnu |
| |
o e +
i -D |
I I
I |
o e +
b -j int n

o e +
i -nn l
o e +
-t |
I I
I |
I I
I |
I I
I |
o e +
Y |
I I
I |
I I
I |
o e +
| - Xa i
o e +
1 -b |
o e +
1 -C |
I I
I |
o e +
i =S n l
I I
I |
o e +
-dl i
I I
I |
o e +
i -m |

il enane

e:

The object of the assenbly is left in

the file objfile.

Sets the origin of the text segnent to

t he deci nal nunber dnu.

Uses di fferent version of the |ine and

bcall built-in nacros.

Si ze of the synbol table in "buckets."

Tinmes the assenbler. Also counts and

prints the nunber of |ines processed

and the nunber of |ines expanded from

macr os.

Causes the version nunber of the
assenbl er being run to be witten on
standard error.

Uses the xa instruction set.

Fi xed format inspection (for exanple,

card format).

Tab size. Used only with the -C
opti on.

Renpves |ine number entries fromthe
symbol table.

the Al X/ 370

In addition, you can use cc command (conpiler) to conpile assenbler

| anguage files.

Note: The Al X Assenblers are intended sinmply to support the conpilers.

t support all the functions of assenblers specifically

or assenbly | anguage programm ng. dbx can disassenbl e
enerated code, but it uses the Al X assenbler to do this.
some restrictions apply to assenbly code generated by

They do no
desi gned f
compiler g
Ther ef ore,

| Copyright IBM Corp. 1985, 1991
43-1

Programming Tools and Interfaces
Using the Assembler Language

t hi's net hod.

| Copyright IBM Corp. 1985, 1991
43-2

Programming Tools and Interfaces
Differences

4.4 Differences

Subt opi cs

Lower case Support
Hex Nunbers

Segnent s

Escapes

Preprocessor Support
Identifier Synbols
Macro Definitions
CSECT Synbol s
Free--form | nput

N el et stk s
kot ek et et ataks
OCoOoO~NOUIA,WNPE

| Copyright IBM Corp. 1985, 1991
44 -1

Programming Tools and Interfaces
Lowercase Support

4.4.1 Lowercase Support

The | owercase support allows any uppercase programto be mapped in its
entirety to | owercase with mninal effect on the resulting program The
differences that are detectable in the a.out file are:

0 Literals where |owercase letters are represented as C

0 Synbols in the synbol table are in the sane case as they were in th
source program

Subt opi cs
4.4.1.1 I nplications

| Copyright IBM Corp. 1985, 1991
441-1

Programming Tools and Interfaces
Implications

4.4.1.1 Inplications

O

Operation codes: All operation codes are nmapped arbitrarily to
upper case before recognition search begins. For exanple, you cannot
define two macros with the sane name (one in | owercase and one in
uppercase; such as BILL and bill).

Synbol s: Synbols are entered into the synbol table as they are found
in the source program Therefore, you can have two distinct symnbols
with BILL and bill.

Attributes: Attributes may appear in |owercase. The attribute t'
returns the | owercase equivalent of the attribute T . For exanpl e,

Al F (T"&X EQ '"U).
wor ks as wel |l as
aif (t'& eq "u").

System vari abl e synbols: \Wen a variable synbol such as &SYSLIST is
supported, then &syslist is also supported. Only one version of the
vari abl e actually exists (uppercase); however, the | ookup procedure
searches for variable synbols beginning with sys twi ce (raw form and
once after mapping to uppercase).

M scel | any: Lowercase may al so be used in self-defining terns, DC
constants (such as c'#'), and in hex constants (such as X a0') with
the sanme neaning as its uppercase equival ent.

| Copyright IBM Corp. 1985, 1991
441.1-1

Programming Tools and Interfaces
Hex Numbers

4.4.2 Hex Nunbers
The '0Ox' convention is not honored because its effect can be obtained with
the standard x'..."' convention.

| Copyright IBM Corp. 1985, 1991
442-1

Programming Tools and Interfaces
Segments

4.4.3 Segnents

An Al X/ 370 a.out file is partitioned into three segnents: text, data, and
bss.

The segnents and their associ ated pseudo-ops are as foll ows:
Segnent ' Label ed pseudo- ops
t ext CSECT
dat a PSECT
bss ZSECT

These pseudo-ops can be used to provide the effect of nultiple |ocation
counters (as they can be in the standard Basi c Assenbl er Language). Thus:

A CSECT

code Al
B PSECT

code Bl
C CSECT

code C1
A CSECT

code A2

END

pl aces A2 after Al and before Cl in the text region and places Bl in the
dat a region.
The Dsect pseudo-op is also inplenented. The sane | abel nmay appear on
only one SECT-type pseudo-op (CSECT, PSECT, ZSECT, or DSECT). By default

the null |abel is associated with the CSECT at the start of the program
Therefore, a null-Iabeled PSECT, ZSECT, OR DSECT is in error.

| Copyright IBM Corp. 1985, 1991
443-1

Programming Tools and Interfaces
Escapes

4. 4.4 Escapes

Wthin character literals (for exanple, tokens of the formC ...') the
backsl ash (\) character is treated as an escape and the usual C escapes
are honored (such as, \n, \b, \t, etc.). Note that the only two escape
mechani sns are the double quote ('') for compatibility with BAL, and the C
escapes.

| Copyright IBM Corp. 1985, 1991
444-1

Programming Tools and Interfaces
Preprocessor Support

4.4.5 Preprocessor Support

The output of the preprocessor normally contains # s identifying original
source |ine nunbers. These are understood by the assenbler. However, a
synmbol may not consist of the # character al one.

| Copyright IBM Corp. 1985, 1991
445-1

Programming Tools and Interfaces
Identifier Symbols

4.4.6 ldentifier Synbols

In addition to | ower and uppercase letters, nunerics, and national
characters ($, @ #), identifiers nay contain the underscore (_)
character.

| Copyright IBM Corp. 1985, 1991
446-1

Programming Tools and Interfaces
Macro Definitions

4.4.7 Macro Definitions

Macr os need not appear before the first CSECT (as is required in BAL) but
only before their first use. Their nanmes may conflict with and override
exi sting instructions and pseudo- ops.

| Copyright IBM Corp. 1985, 1991
447 -1

Programming Tools and Interfaces
CSECT Symbols
4.4.8 CSECT Synbol s

CSECTs do not automatically becone externally known, so the function of
mul tiple location counter usage and external identification can be
separated. This can always be done with an ENTRY statenent.

| Copyright IBM Corp. 1985, 1991
448-1

Programming Tools and Interfaces
Free--form Input

4.4.9 Free--form | nput

Except for the -C and -s options, a conplete break is made fromthe card
i mage processing. Therefore, a continuation is not indicated by a
non- bl ank in colum 72, and colums 73 - 80 are not used for sequence
identification. In addition, blank lines are permtted and a new |ine
termnates a statenent.

| Copyright IBM Corp. 1985, 1991
449-1

Programming Tools and Interfaces
Restrictions

4.5 Restrictions

Subt opi cs

.1 Op-codes

. 2 Pseudo- ops

.3 Attributes

.4 Assenbl er Synbol s

.5 Macros

.6 Conditional Assenbly Instructions

e
g1 o1 o101 0101

| Copyright IBM Corp. 1985, 1991
45-1

Programming Tools and Interfaces
Op-codes

4.5.1 Op-codes

The Al X/ 370 Assenbl er Language does not recognize the foll ow ng op-codes:

CFC
LAB
M/CI N
SIE
STAM
UPT

| Copyright IBM Corp. 1985, 1991
451-1

Programming Tools and Interfaces
Pseudo-ops

4.5. 2 Pseudo- ops

The Al X/ 370 Assenbl er Language does not recogni ze the follow ng
pseudo- ops:

AMODE
ACTR
AREAD
covo
COM
com
CcoPY
CXD
DXD

| CTL

| SEQ
LOCTR
VHELP
OPSYN
POP
PUNCH
PUSH
REPRO
RVODE
START

The foll owi ng pseudo-ops are recogni zed but no action is taken:
EJECT
PRI NT
SPACE
TI TLE
The foll owi ng pseudo-ops have restrictions:
DC Modifiers S and E are not supported; nor are types L, P, Z, S, or Q
EQU The optional |ength and type argunents are ignored.
MEND Cannot contain a sequence synbol .

MNOTE The severity number, if present, is ignored.

WKTRN |s treated as EXTRN

| Copyright IBM Corp. 1985, 1991
452-1

Programming Tools and Interfaces
Attributes

4.5.3 Attributes
The followi ng attri butes are not support ed:

SI
II
The following attributes are partially supported:
KI
N
TI

Note: These three attributes can only be applied to variable synbols
(& synbol s) .

The following two attributes can only be applied to synbols previously
encount ered when used in a conditional assenbly statenent:

TI

LI

| Copyright IBM Corp. 1985, 1991
453-1

Programming Tools and Interfaces
Assembler Symbols

4.5.4 Assenbl er Synbol s
Set Synbols: Arrays of set synmbols are not allowed.

System Vari abl e Synbols: The follow ng systemvariable synbols are
supported:

&SYSECT
&SYSLI ST
&SYSNDX

| Copyright IBM Corp. 1985, 1991
454-1

Programming Tools and Interfaces
Macros

4.5.5 Macros

An operation field within a macro may not contain a variable synbol .

| Copyright IBM Corp. 1985, 1991
455-1

Programming Tools and Interfaces
Conditional Assembly Instructions

4.5.6 Conditional Assenbly Instructions

Branchi ng backwards via conditional assenbly instructions (AG and AIF) is
not permtted in open code.

| Copyright IBM Corp. 1985, 1991
456-1

Programming Tools and Interfaces
Chapter 5. Linking Your Programs - Using the Id Command

5.0 Chapter 5. Linking Your Prograns - Using the |d Command

Subt opi cs

Contents

About This Chapter

Li nk Editor

Menory Configuration

Section

Addr esses

Bi ndi ng

hject File

Usi ng the Link Editor

.10 Link Editor Command Language
.11 Notes and Speci al Consi derations

RSO RSRSRG RO R RO RSN
OCoONOOOITP~WNPE

| Copyright IBM Corp. 1985, 1991
50-1

Programming Tools and Interfaces
Contents

5.1 Contents

| Copyright IBM Corp. 1985, 1991
51-1

Programming Tools and Interfaces
About This Chapter

5.2 About This Chapter

Thi s chapter describes how the Iink editor creates executable object files
and processes synbolic debugging information. It also contains information
on how to use the link editor and the |link editor comrand | anguage.

| Copyright IBM Corp. 1985, 1991
52-1

Programming Tools and Interfaces
Link Editor

5.3 Link Editor

The link editor creates executable object files by conbining object files,
perform ng rel ocation, and resol ving external references.

It al so processes symnbolic debugging information. The inputs to the link
editor are relocatable object files produced by any of the follow ng:

0 The C conpiler cc
O The assenbler as
O The previous link editor run

The link editor conbines these object files to formeither a rel ocatable
or an absolute (executable) object file.

Al t hough you can control the link-edit process as described in "Link
Edi t or Conmmand Language” in topic 5.10 you may not require this degree of
flexibility. The |Id command | anguage and the description in Al X/ 370
Command Reference nmanual are sufficient to understand how to use the
conmand.

The | d conmand | anguage al |l ows you to:

0 Specify the nmenory configuration of the machine

0 Conbine object file sections in particular fashions

0 Specify the files to be bound to specific addresses or within specifi
portions of menory.

a Define or redefine global synmbols at link edit time

| Copyright IBM Corp. 1985, 1991
53-1

Programming Tools and Interfaces
Memory Configuration

5.4 Menory Configuration

Virtual menory is partitioned into configured and non-configured nmenory.
The default is to treat all nenory as configured. Non-configured nmenory
is treated as "reserved" or "unusable" by the link editor. Nothing can
ever be linked into non-configured menory. Therefore, specifying a
certain menory range to be non-configured is one way of marking the
addresses (in that range) "illegal"™ or "nonexistent” with respect to the
Iinking process. You nust explicitly specify nenory configurations other
than the defaul t.

Note: Unless otherw se specified, all information is this chapter is
described with respect to the configured address space.

| Copyright IBM Corp. 1985, 1991
54-1

Programming Tools and Interfaces
Section

5.5 Section

A section of an object file is the smallest unit of relocation and nust be
a contiguous block of nmenory. A section is identified by starting address
and a size. Information describing all the sections in a file is stored
in "section headers" at the start of the file. Sections frominput files
are combined to form out put sections that contain executable text, data,

or a mxture of both. Although there may be hol es or gaps between input
sections and between output sections, storage is allocated contiguously

wi thin each output section and may not overlap a hole in nmenory.

| Copyright IBM Corp. 1985, 1991
55-1

Programming Tools and Interfaces
Addresses

5.6 Addresses

The physical address of a section or synbol is the relative offset from
address zero of the address space. The physical address of an object is
not necessarily the location at which it is placed when the process is
execut ed; because of paging, the address is with respect to address zero
of the virtual space, and the system perforns another address transl|ation.

| Copyright IBM Corp. 1985, 1991
56-1

Programming Tools and Interfaces
Binding
5.7 Binding

It is often necessary to have a section begin at a specific, predefined
address in the address space. The process of specifying this starting
address is called binding, and the section in question is said to be
"bound to" or "bound at" the required address. Wile binding is nost
rel evant to output sections, it is also possible to bind gl obal synbols
Wi th an assignnment statenent in the |d command | anguage.

| Copyright IBM Corp. 1985, 1991
57-1

Programming Tools and Interfaces
Object File

5.8 hject File

hject files are produced both by the assenbler (typically as a result of
calling the conpiler) and by the link editor. The link editor accepts
rel ocatabl e object files as input and produces an output object file that
may or may not be relocatable. Under special circunstances, the input
object files given to the link editor can al so be absolute files.

Fil es produced fromthe conpiler/assenbl er always contain the foll ow ng
t hree sections:

.text Contains the instruction text (for example, executable
i nstructions).

.data Contains initialized data vari abl es.

. bss Contains non-initialized data vari abl es.

G obal non-initialized data is treated as common and the section (.bss or
.data) is not bound until Iink-tinme.

| Copyright IBM Corp. 1985, 1991
58-1

Programming Tools and Interfaces
Using the Link Editor

5.9 Using the Link Editor
To invoke the link editor, issue the conmand:
Id [options] filenanel fil enane2..
Files passed to the link editor nust be one of the foll ow ng:
O Ooject file
O Archive libraries containing object file
0 Text source files containing |d directives.

The link editor uses the "magic nunber” (in the first two bytes of the
file) to determ ne which type of file is encountered. |If the link editor
does not recognize the magi c nunber, it assunmes the file is a text file
containing link editor directives and attenpts to parse it.

I nput object files and archive libraries of object files are |inked
together to forman output object file. |If there are no unresol ved
references, this file is executable.

Note: In this chapter, an input file containing directives is referred to
as an ifile, while object files have the follow ng form

name. o
The nanmes of actual input object files need not follow this convention

If you want to link the object files filel.o and file2.0, enter the
fol | owi ng command:

Id filel.o file2.0

No directives to the link editor are needed. |If no errors are encountered
during the Iink edit, the output is placed in the default file a.out. The
sections of the input files are conbined in order. That is, if filel.o
and fil e2. 0 each contains the standard sections .text, .data, and .Dbss,
the output object file will contain themas well. The output .text
section is a concatenation of .text fromfilel.o and .text fromfile2.o.
The .data and .bss sections are fornmed simlarly. On Al X/ 370, the out put
.text section is then bound at address 0x0000a8 except with option -ss.
The output .data and .bss sections are link-edited together into

conti guous addresses (the particul ar address dependi ng on the particul ar
processor).

Instead of entering the nanes of files to be link edited (as well as |d
options on the command line), this information can be placed into an
ifile. The ifile can be passed to |d. For exanple, if you frequently |ink
the object files file 1.0, file 2.0, and file3.0 with the sane options f1
and f2 by entering the command:

ld -m-r file 1.o file2.0 file3.0
you can alternatively create an ifile containing the statements:
-m

-r
filel.o

| Copyright IBM Corp. 1985, 1991
59-1

Programming Tools and Interfaces
Using the Link Editor

file2.0
file3.0

Then you only need to issue the conmand:

Idifile
You can specify sone of the object files to be link-edited in the ifile
and others on the command |ine and/or some options in the ifile and others
on the command line. [Input object files are link edited in the order they

are encountered, whether this occurs on the command line or in an ifile.
As an exanple, if a command |ine were:

Id filel.oifile file2.0
and the ifile contained:

file3.0
filed.o

then the order of link editing would be: filel.o, file3.0, file4.0, and
file2.0. Note fromthis exanple that an ifile is read and processed
i mredi ately upon being encountered in the conmand |i ne.

Options may be interspersed with file names both on the command |ine and

inan ifile. The ordering of options is only significant for the -1 and
-L options when specifying libraries. The -| option is a shorthand
notation for specifying an archive library (an archive library is a
collection of object files). As with object files, libraries are searched

as they are encountered. The -L option specifies an alternative directory
for searching for libraries. Therefore, to be effective, a -L option nust
appear before any -1 options.

Al |d options nust be preceded by a hyphen (-) whether in the ifile or on
the Id conmand line. Options that have an argunent (except for the -|
option) are separated fromthe argunent by white space (bl anks or tabs).
The following |Id flags may be specific on Al X/ 370.

-e sym Defines the primary entry point of the output file to be the
synbol given by the argunent sym See "Changing the Entry Point"
intopic 5.11.1 for a discussion on how the option is used.

-f fill Sets the default fill value. This value is used to fill holes
formed within output sections. Also, it is used to initialize
i nput .bss sections when they are conbined with other non-.bss
i nput sections. The argunment fill is a 2-byte constant. |If this
option is not used, the default fill-value is zero.

-1 [key] Specifies an archive library file as input. The optiona
argunment is a character string (less than 7 characters)
imediately following the -1 w thout any intervening white space.
By default, libraries are located /lib and /usr/lib. |If the
argunment is omtted, the standard systemlibrary libc.a is
selected. Because a library is searched when its nane is
encountered, the placenent of this option on the command line is
i mportant. The given archive library nmust contain valid object
files as its nenbers.

-m Produces a map or listing of the input/output sections (including
hol es) on the standard out put.

| Copyright IBM Corp. 1985, 1991
59-2

-0 nane
-r

-S

-Ss

-u sym
- X

-L dir
-N

-V

-VS num
-Xa
The fol
- Bhum
-d

- Dnum

Programming Tools and Interfaces
Using the Link Editor

Nanes the output object file. The argument name is the nane of
the file to be used as the output file. The default output object
file nane is a.out. The nanme can be a full or partial system

pat hnane.

Retains relocation entries in the output object file. Relocation
entries nust be saved if the output file is to be used as an input
file in a subsequent |d call. When this option is used,

unresol ved references do not prevent the creation of an out put
object file.

Strips line nunber entries and synbol table information fromthe
out put object file. Relocation entries (-r option) are
nmeani ngl ess wi thout the synmbol table, hence use of -s precludes
the use of -r. Al synbols are stripped, including global and
undefi ned synbol s.

Cenerates an executable aligned in 64k byte segnments. The default
segnentation is 1MB

I ntroduces an unresol ved external synbol into the output file's
synbol table. The argunment symis the name of the synbol. This
is useful for linking entirely froma library because initially
the synbol table is enpty and an unresolved reference is needed to
force the linking of an initial routine fromthe library.

Does not preserve any |local (non-global) synmbols in the output
synbol table; enters external and static synmbols only. This
option saves some space in the output file.

Changes the algorithmfor searching for libraries. Looks in dir
before | ooking in the default | ocation. This option is useful for
finding libraries that are not in the standard library directory.
To be effective, this option nmust appear before the -| option

Pl aces the data section imediately following the text section in
menory and stores the magi ¢ nunber 0407 in the system header
This prevents the text from being shared (the default).

Prints on the standard error output a " version id" identifying

the I'ink editor being run.

Takes num as a deci mal version nunber identifying the a.out file
that is produced. The version stanp is stored in the system
header .

Produces an XA/ 370 execut abl e.

owing |d flags may be specified on Al X PS/ 2:

Makes numthe starting address for the uninitialized data (bss)
segnent of the output file. The default starting address is the
first storage unit after the end of the data segnent. Not al
architectures support the separation of data and bss segnents.
Defines common storage, even if you have specified the -r flag.

Makes numthe starting address for the initialized data segment of
the output file. The default starting address begins at |ocation

| Copyright IBM Corp. 1985, 1991
59-3

- el abel

- Hhum

- Tnum

-Zstr

Programming Tools and Interfaces
Using the Link Editor
O (if the i flagis in effect), at the first storage unit after
the end of the text segnment, or, if the -n flag is in effect, at
the next page or segnent boundary.

Makes | abel the entry point of the executable output file.

Note: The cc command on Al X/ 370 prepends an underscore to synbol
names, while Al X PS/2 does not.

Makes num the boundary, usually the page size, to which the text
segnent must be padded if it has a different protection than does
the data segnment. Specify this paraneter only to override the
default value for the given architecture.

Assigns text and data segnments to separate address spaces in
menory, with the text segnent read-only (if the architecture
supports read-only nenory) and shared anong all users. The data
segnment starts at location O unless set with the -pflag. |If the
architecture does not support separate

instruction and data space, this flag is treated as if it were the
-n flag. (This option cannot be used with the -K flag.) The -
flag is useful primarily when you are |inking executabl es
(cross-conpiling) on different nmachines.

Loads the a.out header into the first bytes of the text segnent,
foll owed by the text segnents fromthe object nodules. This flag
causes pages of executable files to be aligned on pages in the
filesystemso that they can be demand paged on systens that
support paging. This flag provides mapped file support for the
text and data segnents.

Note: This flag is required for progranms to execute on the PS/ 2
and is normally set by the cc command.

Makes the text segment read-only--if the architecture supports
read-only nenory--and shared anong all users running the file.

The data segnment starts at the first segnment boundary follow ng
the end of the text unless set with the -Dflag. On architectures
which only permt read-only text with separate text and data
spaces, the -n flag is treated as if it were the -i flag. (This
opti on cannot be used with the -i flag.)

Makes num the starting address for the text segnent of the output
file. 1f not specified, the text segnment begins at |ocation zero.

Prefixes with str the names specified by the -1 key. For exanple,
wWth -Z/test and -1xyz, the | d conmand | ooks for the file
/test/lib/llbxyz.a or, if that file does not exist,
/text/usr/lib/libxyz.a. The ordinary directories are not
searched. This flag is nost useful when cross-conpiling.

| Copyright IBM Corp. 1985, 1991
59-4

Programming Tools and Interfaces
Link Editor Command Language

5.10 Link Editor Command Language

Subt opi cs

5.10.1 Expressions

5.10.2 Assignnment Statements

5.10.3 Specifying a Menory Configuration

5.10.4 Section Definition Directives

5.10.5 File Specifications

5.10.6 Loading a Section at a Specified Address
5.10.7 Aligning an Qutput Section

5.10.8 G ouping Sections Toget her

5.10.9 Creating Holes within Qutput Sections
5.10.10 Creating and Defining Synbols at Link-Edit Tine
5.10.11 Allocating a Section into Nanmed Menory
5.10.12 Initialized Section Holes or .bss Sections

| Copyright IBM Corp. 1985, 1991
5.10-1

Programming Tools and Interfaces
Expressions

5.10.1 Expressions

In the Al X/ 370 Assenbl er Language, expressions nmay contain:

0O Constant
0 d obal synbol
0 Mst of the basic C I|anguage operators

Subt opi cs

5.10.1.1 Constants
5.10.1.2 d obal Synbols
5.10.1.3 Operators

| Copyright IBM Corp. 1985, 1991
5.10.1-1

Programming Tools and Interfaces
Constants

5.10.1.1 Constants
Constants are as in C Therefore, a number is recognized as a deci nal
unless it is preceded by one of the follow ng:

0 oct al
0x hexadeci mal
(0):4 hexadeci mal

Note: O is the digit zero.

Al nunbers are treated as |long integers.

| Copyright IBM Corp. 1985, 1991
5.10.1.1-1

Programming Tools and Interfaces
Global Symbols

5.10.1.2 d obal Synbols

Synmbol s nanes nmay contain uppercase or |lowercase letters, digits, and the
underscore (_). Synbols within an expression have the value of the
address of the symbol only. The link editor does not performany of the
fol | ow ng:

0 Synbol table |ookup to find the contents of a synbo
0 The dinensionality of an arra
O Structure elenents declared in a C program

A | ex-generated i nput scanner is used by the link editor to identify
synbol s, nunbers, operators, and so on. Therefore, the foll owi ng nanes
are reserved and unavail abl e as synmbol nanes or section nanes:

align ALI GN

assign ASSI GN

bl ock BLOCK
DSECT

group GROUP

I

| en

| ength LENGTH
VEMORY
NOLOAD

0

org

origin ORIGN

phy PHY

range RANGE
REQ ON
SECTI ONS

Spare SPARE
TV

| Copyright IBM Corp. 1985, 1991
5.10.1.2-1

Programming Tools and Interfaces
Operators

5.10.1.3 Operators

Figure 5-1 shows the operators that are supported, in order of precedence
fromhigh to | ow

Figure 5-1. Synbols and Functions
of Operators

These operators have the sane neaning as in the C|anguage. Refer to
Al X/ 370 C Language Reference for additional information. Operators on the
same |ine have the sane precedence.

| Copyright IBM Corp. 1985, 1991
5.10.1.3-1

Programming Tools and Interfaces
Assignment Statements

5.10. 2 Assignnent Statements

External synbols may be defined and assi gned addresses via the assi gnnment
statenent. The syntax of the assignnent statements is

synbol = expression;
or
synbol op= expression;
where op is one of the operators +, -, *, or /.
Assi gnnment statements must be term nated by a sem col on.

Al assignment statements (with the exception of the one case described in
the foll ow ng paragraph) are evaluated after allocation has been
perforned. This occurs after all input-file-defined synbols are relocated
but before the actual relocation of the text and data itself. Therefore,
if an assignnent statenent expression contains any synbol name, the
address used for that synbol in the evaluation of the expression reflects
the synbol address in the output object file. References within text and
data (to synbols given a value through an assi gnnent statenent) access
this |atest assigned value. Assignnent statenents are processed in the
same order in which they are received by the link editor.

Assi gnnment statenments are normal |y placed outside the scope of
section-definition directives (see "Section Definition Directives" in
topic 5.10.4). However, the special synbol ".", can occur only within a
section-definition directive. This synbol refers to the current R address
of the link editor location counter. Thus, assignnent expressions
involving "." are evaluated during the allocation phase of |ink editing.
Assigning a value to the "." synbol within a section-definition directive
increments/resets the link editor l|ocation counter and can create "hol es”
within the section, as described in "Section Definition Directives" in
topic 5.10.4. Assigning the value of the "." synmbol to a conventiona
synbol permts the final allocated address (of a particular point within

the link-edit run) to be saved.
align is provided as a shorthand notation to allow alignnent of a synbol
to an n-byte boundary within an output section, where n is a power of 2.
For exampl e, the expression
align (n)
is equivalent to
(. +n-1) &(n - 1)
Li nk editor expressions may have either an absolute or a relocatable
value. When the link editor creates a synbol through an assi gnment
statenent, the synbol's value takes on that type of expression according
to the follow ng rules:
O An expression with a single relocatable synbol (and zero or nor
constants or absolute synbols) is relocatable. The value is in
relation to the section of the referenced synbol.

O Al other expressions have absol ute val ues

| Copyright IBM Corp. 1985, 1991
5.10.2-1

Programming Tools and Interfaces
Specifying a Memory Configuration

5.10.3 Specifying a Menory Configuration

MEMORY directives are used to specify:

O The total size of the virtual space of the target machin

0 The configured and non-configured areas of the virtual space

If no directives are supplied, the link editor assunes that all nmenory is
configured. The size of the default nenory is dependent upon the target
machi ne.

By nmeans of MEMORY directives, an arbitrary nanme of up to eight characters
is assigned to a virtual address range. Qutput sections can then be
forced to be bound to virtual addresses wthin specifically naned nmenory
areas. Menory names may contain uppercase or |owercase letters, digits,
and the special characters $, ., or _. These nenory-range names are used
only by the link editor and are not carried in the output file synbo

tabl e or headers.

VWhen MEMORY directives are used, all virtual nenory not described in those
directives is considered to be non-configured. Non-configured nmenory is
not used in the link editor's allocation process; therefore, nothing can
be link-edited, bound, or assigned to any address wi thin non-configured
nmenory.

As an option on the MEMORY directive, attributes may be associated with a
naned nmenory area. This restricts the nmenory areas (with specific
attributes) to which an output section can be bound. The attributes
assigned to output sections in this manner are recorded in the appropriate
sections in the appropriate section headers in the output file. The
supported attributes are:

readabl e menory

witable nenory

executable, (instructions may reside in this nmenory)
initializable, (stack areas are typically not initialized).

TXzd

If no attributes are specified on a MEMORY directive or if no MEMORY
directives are supplied, nenory areas assune the attributes of W R |,
and X

The syntax of the MEMORY directive is:

MEMORY
{
nanel (attr): origin = nl, length = n2
nane2 (attr): origin = n3, length = n4
}

The keyword origin (or org or o) nust precede the origin of a nenory
range, and |ength (or len or |) nust precede the length as shown in the
precedi ng exanple. The origin operand refers to the virtual address of
the nenory range. Oigin and length are entered as |long integer constants
in either decimal, octal, or hexadeciml (standard C syntax). Oigin and
I ength specifications, as well as individual MEMORY directives, may be
separated by white space or a comm.

By specifying MEMORY directives, the link editor is informed that nmenory
is configured in sonme manner other than the default. For exanple, if it

| Copyright IBM Corp. 1985, 1991
5.10.3-1

Programming Tools and Interfaces
Specifying a Memory Configuration

is necessary to prevent anything frombeing linked to the first 0X10000
words of nmenory, use a MEMORY directive simlar to the follow ng:

MEMORY
{

}

valid : org = 0x10000, |len = OxFEOOOO

| Copyright IBM Corp. 1985, 1991
5.10.3-2

Programming Tools and Interfaces
Section Definition Directives

5.10.4 Section Definition Directives
The purpose of the SECTIONS directive is to:
0 Describe how input sections are to be conbi ne

0 Direct where to place output sections (both in relation to each othe
and the entire virtual nmenory space)

0 Permt the renam ng of output sections

When no SECTIONS directives are given (default), all input sections of the
same nane appear in an output section of that nanme. For exanple, if a
nunber of object files fromthe conpiler are |linked, each containing the

t hree sections

O . text
O . dat a
0 . bss

the output object file also contains three sections

O . text
O . dat a
0 . bss

If two object files are Iinked (one that contains sections sl and s2 and
the ot her containing sections s3 and s4), the output object file contains
the four sections sl1l, s2, s3, and s4. The order of these sections would
depend on the order in which the link editor sees the input files.

The basic syntax of the SECTIONS directive is:

SECTI ONS

{
sechanel:
{

file_specifications,
assi gnnment _st atement s

}
sechane2:
{
file_specifications,
assi gnnent _st at enent s
}
and so on

}

The various types of section-definition directives are explained in the
remai nder of this chapter.

| Copyright IBM Corp. 1985, 1991
5.104-1

Programming Tools and Interfaces
File Specifications

5.10.5 File Specifications
Wthin a section-definition, the files and sections of files to be
included in the output section are listed in the order in which they are

to appear in the output section. Sections froman input file are
speci fied by:

filename (secnane)
or
filename (secnanml sechan®...)

Sections of an input file are separated either by white space or commas,
as are the file specifications.

If a file nane appears with no sections listed, then all sections fromthe
file are linked into the current output section. For exanple:

SECTI ONS
{

out secl:

filel.o (secl)
file2.0
file3.o (secl, sec?)

}

The input sections appear in the output section in the sequence given by
out secl:

1. Section secl fromfile filel.o

2. Al sections fromfile2.0 (in the order they appear in the file)

3. Section secl fromfile file3.p

4. Section sec2 fromfile file3.o.

If there are additional input files that contain input sections also naned
out secl, these sections are linked follow ng the |last section nanmed in the
section-definition outsecl. |If there are any other input sections in

filel.o or file3.0 they will be placed in output sections with the same
nanes as the input sections.

| Copyright IBM Corp. 1985, 1991
5.105-1

Programming Tools and Interfaces
Loading a Section at a Specified Address

5.10.6 Loading a Section at a Specified Address

Bi nding of an output section to a specific virtual address is done by
using a link editor option as shown in the foll ow ng exanpl e:

SECTI ONS
{

out sec addr:

{
}

and so on

}

The addr is the binding address expressed a a C constant. |f outsec does
not fit at addr (perhaps because of holes in the menory configuration or
because outsec is too large to fit wi thout overl appi ng sone ot her out put
section), the link editor issues an appropriate error nessage.

So |l ong as output sections do not overlap and there is enough space, they
can be bound anywhere in configured menmory. The SECTI ONS directives
defining output sections need not be given to the link editor in any
particul ar order.

The link editor does not ensure that each section's size consists of an
even nunber of bytes, or that each section starts on an even byte
boundary.

However, the assenbler ensures that the size (in bytes) of a section is
evenly divisible by 4. You can use the link editor directives to force a
section to start on an odd byte boundary. But this is not recomended
because when a section starts on an odd byte boundary, the section's
contents are either accessed incorrectly or are not executed properly.
When you specify an odd byte boundary, the |link editor issues a warning
nessage.

| Copyright IBM Corp. 1985, 1991
5.10.6-1

Programming Tools and Interfaces
Aligning an Output Section

5.10.7 Aligning an Qutput Section
You can request that an output section be bound to a virtual address that
falls on an n-byte boundary (where n is a power of 2) by using the ALIGN
opti on:

ALl GN\(n)
i s equivalent to specifying a bonding address of

(.+n-1) &(n - 1)

For exanpl e,

SECTI ONS
{
out sec ALl GN(0x20000) :
{
}
and so on

}

The out put section outsec is not bound to any given addresses but is
linked so sone virtual address that is a multiple of 0x20000 (for exanple,
at address 0x0, 0x20000, 0x40000, 0x60000, and so on).

| Copyright IBM Corp. 1985, 1991
5.10.7 -1

Programming Tools and Interfaces
Grouping Sections Together

5.10.8 G ouping Sections Toget her

The link editor default allocation algorithmperforns the follow ng
processes:

1. Links all input .text sections together into one output section. This
output section is called .text and is bound to an address of 0xO.

2. Links all input .data sections together into one output section. This
out put section is called .data and is bound to an address aligned to a
machi ne dependent constant. |If the magic nunber (octal) is:

0407 The text segnent is not shared. The data segnment is contiguous
to the text segnent.
0410 The data segnment begins at the next segnent boundary.

A segment in Al X/ 370 is 256 4k pages (0x100000). Using |d with the
-ss option, a segnment is 16 4k pages (0x10000).

3. Links all input .bss sections together into one output section. This
output section is called .bss and is allocated so it imediately
foll ows the output section .data.

Note: The output section .bss is not given any particul ar address
al i gnnent .

If you specify a SECTIONS directive, this default allocation will not be
per f or ned.

The default allocation of the link editor is equivalent to supplying the
follow ng directive:

SECTI ONS
{
.text @ { }
GROUP ALIGN(align_value):
{
.data c{}
. bss {1}
}
}

where align_value is a machi ne dependent constant; in Al X/ 370 a segment
size is 0x100000. G@GROUP ensures that the two output sections, .data and
.bss, are allocated (grouped) together. Bonding or alignnment information
is supplied only for the group and not for the output sections contained
within the group. The sections naking up the group are allocated in the
order listed in the directive.

If .text, .data, and .bss are to be placed in the sane segnment, the
following SECTIONS directive is used:

SECTI ONS
{
GROUP
{
. text {1}
.data c{}
. bss {}
}

| Copyright IBM Corp. 1985, 1991
5.10.8-1

Programming Tools and Interfaces
Grouping Sections Together

}

Note that the three output sections (.text, .data, and .bss) still exist,
but they are now allocated into consecutive virtual nenory.

To bind to 0xC0000, use:
GROUP 0xC0000 : {
To align to 0x10000, use
GROUP ALI G\(0x10000) : {
Wth this addition, first the output section .text is bound at 0xCO000 (or
is aligned to 0x10000); then the remai ning menbers of the group are
all ocated in order of their appearance into the next avail able nenory

| ocati ons.

When the GROUP directive is not used, each output section is treated as an
i ndependent entity.

SECTI ONS

{
. text c{}
.data ALI GN(0x20000): { }
. bss c

}

The .text section starts at virtual address OxO and the .data section at a
virtual address aligned to 0x20000. The .bss section follows inmediately
after the .text section if there is enough space. |If there is not, it
follows the.data section.

The order in which output sections are defined to the |ink editor cannot
be used to force a certain allocation order in the output file.

| Copyright IBM Corp. 1985, 1991
5.10.8-2

Programming Tools and Interfaces
Creating Holes within Output Sections

5.10.9 Creating Holes within Qutput Sections

The special synmbol . (dot) appears only within section definitions and
assi gnment statenents. \When it appears on the left side of an assi gnment
statenent, the link editor's | ocation counter is increnented or reset and
a hole is left in the output section. Holes built into output sections in
this manner take up physical space in the output file and are initialized

using a fill character (either the default fill character (0x00) or a
supplied fill character). See the definition of the -f option in "Link
Edi t or Conmand Language"” in topic 5.10 and the discussion of filling holes

in "Initialized Section Holes or .bss Sections” in topic 5.10.12.

Consi der the follow ng section-definition:

Cut sec:
{
. +=0x1000;
fl. o(.text)
. +=0x100;
f2.0(.text)
. = align (4);
f3.0 (.text).
{
The effect of this definition is:
0 A 0x1000 byte hole, filled with the default fill character, is left a
the beginning of the section. Input file fi1.0(.text) is linked after
this hole.

O The text of input file f2,.0 begins at 0x100 bytes follow ng the end of
fl.0o(.text).

O The text f3.0 is linked to start at the next full word boundary
followng the text of f2. 0 with respect to the begi nning of outsec.

For the purposes of allocating and aligning addresses w thin an out put
section, the link editor treats the output section as if it began at
address zero. As a result, in the previous exanple, if outsec is |inked
to start at an odd address, then the part of outsec built fromf3.0 (text)
text also starts at an odd address. This occurs even though f3.0 (.text)
is aligned to a full word boundary. This is prevented by specifying an
alignnment factor for the entire output section

outsec ALIGN(4) : {...

Not e: The assenbl er al ways pads the sections it generates to a full word
| ength making explicit alignment specifications unnecessary. This also
holds true for the conpilers.
Expressions that decrenment "." are illegal. For exanple, subtracting a
value fromthe | ocation counter is not allowed because overwites are not
al l oned. The npbst common operators in expressions that assign a value to
"." are += and align.

| Copyright IBM Corp. 1985, 1991
5.109-1

Programming Tools and Interfaces
Creating and Defining Symbols at Link-Edit Time

5.10.10 Creating and Defining Synmbols at Link-Edit Tinme

The assignnment statenent of the link editor can be used to give synbols a
value that is link-edit dependent. There are three types of assignments:

O Use of "." to adjust link editor's location counter during allocatio
(refer to "Assignnment Statenents” in topic 5.10.2 and "Creating Hol es
W thin Qutput Sections"” in topic 5.10.9).

0 Use of "." to assign an allocation-dependent value to a synbo

0 Assignnment of an allocation-dependent value to a synbo

Using "." to assign an allocation-dependent value to a synbol provides a

means to assign addresses (known only after allocation) to synbols. For
exanpl e:

SECTI ONS
{
outsecl: {...}
out sec2:
{
filel.o (sl)
s2 start = .;
file2.0 (s2)
s2 end = .- 1;
}

}

The synbol s2 start is defined to be the address of file2.0 (s2) and
s2 end is the address of the last byte of file2.0 (s2).

Consi der the foll ow ng exanpl e:

SECTI ONS
{
out secl:
{
filel.o (.data)
mark = .;
.oF= 4
file2.0 (.data)
}
}

In this exanple, the synbol mark is created and is equal to the address of
the first byte beyond the end of file2.0's .data section. Four bytes are
reserved for a future run-tine initialization of the synbol mark. The
type of the synmbol is integer (32 bits).

Assi gnnent instructions involving "." nust appear w thin SECTI ONS
definitions because they are evaluated during allocation. Assignnent
i nstructions that do not involve "." can appear within SECTI ONS

definitions but typically do not. Such instructions are evaluated after
all ocation is conplete. Reassignnent of a defined synbol to a different
address i s dangerous.

For example, if a synmbol within .data is defined, initialized, and
referenced within a set of object files being link-edited, the synbo
table entry for that synbol is changed to reflect the new, reassigned

| Copyright IBM Corp. 1985, 1991
5.10.10-1

Programming Tools and Interfaces
Creating and Defining Symbols at Link-Edit Time
physi cal address. However, the associated initialized data is not noved
to the new address. The link editor issues warni ng nessages for each
defi ned synbol that is being redefined within an ifile. However,
assi gnments of absol ute values to new synbols are safe because there are
no references or initialized data associ ated the synbol.

| Copyright IBM Corp. 1985, 1991
5.10.10- 2

Programming Tools and Interfaces
Allocating a Section into Named Memory

5.10. 11 Allocating a Section into Named Menory

It is possible to specify that a section be linked (somewhere) within a
specific naned nenory (as previously specified on a MEMORY directive.)
The > notation is borrowed fromthe redirected output concept.

For exanpl e,

MEMORY

{
memnt: 0=0x000000 1=0x10000
men2 (RW: 0=0x020000 1=0x40000
men8 (RW: 0=0x070000 1=0x40000

mem: 0=0x120000 1=0x04000
}
SECTI ONS
{
outsecl: { fl.o(.data) } > menl
outsec2: { f2.o(.data) } > nmenB
}

This directs the link editor to place outsecl anywhere within the nenory
area naned nmenl (sonewhere within the address range 0x0-OFFFF or
0x120000- 0x123FF). The outsec2 is to be placed sonewhere in the address
range 0x70000- OXAFFFF.

| Copyright IBM Corp. 1985, 1991
5.10.11-1

Programming Tools and Interfaces
Initialized Section Holes or .bss Sections

5.10.12 Initialized Section Holes or .bss Sections

Wien holes are created within a section (as in the exanple in "Link Editor
Command Language" in topic 5.10), the link editor normally puts bytes of
zero as fill. By default, .bss sections are not initialized at all; that
is, noinitialized data (not even zeroes) is generated for any .bss
section by the assenbler nor supplied by the link editor.

Initialization options can be used in a SECTIONS directive to set such
hol es or output .bss sections to an arbitrary 2-byte pattern. Such
initialization options apply only to .bss sections or holes. As an
exanmpl e, an application mght want a non-initialized data table to be
initialized to a constant value without reconpiling the .o file or a hole
in the text area to be filled with a transfer to an error routine.

Ei ther specific areas within an output section or the entire output
section may be specified as being initialized. However, because no text
is generated for a non-initialized .bss section, if part of such a section
isinitialized, then the entire section is initialized. Therefore, if a
.bss section is to be conbined with a .text or data section (both of which
are initialized) or if part of an output .bss section is to be
initialized, then one of the following will be true:

0 Explicit initialization options nust be used to initialize all .bss
sections in the output section.

0 The link editor will use the default fill value to initialize all .bss
sections in the output section.

Consider the following Iink editor ifile:

SECTI ONS
{

secl
{
fl.o
. =+0x200;
f2.0 (.text)
} =OxDFFF
sec?2:
{
fl.0 (.bss)
f2.0 (.bss) = 0x1234
}

sec3:

{
f3.0 (.bss)

} = OXFFFF
sec4.

f4.0 (.bss)

}

In the precedi ng exanple, the 0x200 byte hole in section secl is filled
with the value OxDFFF. In section sec2 f1.0(.bss) is initialized to the
default fill value of 0x00, and f2.0o(.bss) is initialized to 0x1234. A
.bss sections within sec3 as well as all holes are initialized to OxFFFF
Section sec4 is not initialized; that is, no data is witten to the object

| Copyright IBM Corp. 1985, 1991
5.10.12-1

Programming Tools and Interfaces
Initialized Section Holes or .bss Sections

file for this section.

| Copyright IBM Corp. 1985, 1991
5.10.12 -2

Programming Tools and Interfaces
Notes and Special Considerations

5.11 Notes and Speci al Consi derations

Subt opi cs

5.11.1 Changing the Entry Poi nt

5.11.2 Use of Archive Libraries

5.11.3 Dealing with Holes in Physical Menory
5.11.4 Al'location Al gorithm

5.11.5 Increnental Link Editing

5.11. 6 DSECT, COPY, and NOLOAD Secti ons
5.11.7 Qutput File Bl ocking

5.11.8 Non-rel ocatable Input Files

5.11.9 Syntax Diagramfor Input Directives

| Copyright IBM Corp. 1985, 1991
511-1

Programming Tools and Interfaces
Changing the Entry Point

5.11.1 Changing the Entry Poi nt

The a.out header contains a field for the (primary) entry point of the
file. This field is set using one of the following rules (listed in the
order they are applied):

1. The value of the synbol " _start", if present, is used.

2. The value of the synmbol "_main", if present, is used.

3. The value zero is used.

Thus, an explicit entry point can be assigned to this a.out header field
by using an assignnment instruction in an ifile of the form

_Start = expression;

If the link editor is called through cc, a startup routine is
automatically linked in. Then, when the programis executed, the exit
systemcall is called after the main routine finishes to close file
descriptors and do other cleanup. Therefore, you nust be careful when
calling the link editor directly or when changing the entry point. You
must supply the startup routine or nmake certain that the program al ways
calls exit rather than falling through the end. Oherw se, the program
wi || dunmp core.

| Copyright IBM Corp. 1985, 1991
511.1-1

Programming Tools and Interfaces
Use of Archive Libraries

5.11.2 Use of Archive Libraries

Each nmenber of an archive library (such as, libc.a) is a conplete object
file and usually consists of the standard three sections:

O .text
O . dat a
O . bss

Archive libraries are created through the use of the ar command from
object files generated by running cc or as.

An archive library is always processed using selective inclusion; only
t hose nenbers that resolve existing undefined synbol references are taken
fromthe library for link editing.

Li braries can be placed both inside and outside section definitions. 1In
both cases, a nenber of the library is included for |inking whenever

0 There exists a reference to a synbol defined in that nenber

0 The reference is found by the link editor prior to the actual scannin
of the library.

VWhen a |library nmenber is included by searching the library inside a

SECTIONS directive, all input sections fromthe nenber are included in the
out put section being defined. Wen a library nenber is included by
searching the library outside of a SECTIONS directive, all input sections

fromthe nenber are included into the output section with the sane nane.
That is, the .text section of the nenber goes into .data, the .bss section
of the nenber into .bss, and so on. |If necessary, new output sections are
defined to provide a place to put the input sections.

It is inmportant to note the follow ng:

1. Specific nmenbers of a library cannot be referenced explicitly in an
ifile.

2. The default rules for the placenent of nenbers and sections cannot be
overridden when they apply to archive library nenbers.

The -1 option is a shorthand notation for specifying an input file com ng
froma predefined set of directories and having a predefined nane. By
convention, such files are archive libraries but they do no have to be.
Furthernore, archive libraries can be specified without using the -|
option by sinply giving the full or relative path nane.

The ordering of archive libraries is inportant because to extract a nenber
fromthe library it nust satisfy a reference that is known to be
unresolved at the tinme the library is searched. Archive |ibraries can be
specified nore than once and are searched every tinme they are encountered.
Archive files have a synbol table at the beginning of the archive. The
link editor will cycle through this synbol table until it has detern ned
that it cannot resolve any nore references fromthat |ibrary.

Consi der the foll ow ng exanpl e:

1. The input file filel.o and file2.0 each contain a reference to the
external function FCN

| Copyright IBM Corp. 1985, 1991
511.2-1

Programming Tools and Interfaces
Use of Archive Libraries

2. lInput filel.o contains a reference to synbol ABC.
3. Input file2.0 contains a reference to synbol XYZ.
4. Library liba.a, nmenber 0, contains a definition of XYZ
5. Library libc.a, nenber 0, contains a definition of ABC
6. Both libraries have a nenber 1 that defines FCN
If you enter the |d comuand this way:

Id filel.o -la file2.0 -lc

then the FCN references are satisfied by |iba.a, nenber 1, ABC is obtained
fromlibc.a, nmenber 0, and XYZ is obtained from|liba.a, nenber O.

If you enter the |d comuand this way:
Id filel.o file2.0 -lc -la

then the FCN references are satisfied by |ibc.a, nenber 1, ABC is obtained
fromlibc.a, nmenber 0, and XYZ is obtained fromliba.a, nmenber O.

The -u option is used to force the Iinking of library nenbers when the
link-edit run does not contain an actual external reference to the
menbers. For exampl e,

ld -uroutl -la

creates an undefined synmbol called routl in the link editor's gl oba
synbol table. [If any nmenber of library |iba.a defines this synbol, that
menber (and perhaps other nmenbers as well) is extracted. Wthout the -u
option, there would have been no trigger to cause the link editor to
search the archive library.

| Copyright IBM Corp. 1985, 1991
5.11.2-2

Programming Tools and Interfaces
Dealing with Holes in Physical Memory

5.11.3 Dealing with Holes in Physical Menory

VWhen nenory configurations are defined such that non-configured areas
exist in the virtual menory, each application or user nust assune the
responsibility of form ng output sections that will fit into nenory. For
exanpl e, assune that menory is configured as follows:

MEMORY
{
nmeml: o = 0x00000 1 = 0x02000
neng: o0 = 0x40000 1 = 0x05000
nens: o = 0x20000 1 = 0x10000
}
The files f1.0, f2.0, . . .fn.o each contain the standard three sections

.text, .data, and .bss. Now suppose the combined .text section is 0x12000
bytes. There is no configured area of nmenory in which this section can be
pl aced. Appropriate directives nust be supplied to break up the .text

out put section so the link editor may do allocation. For exanple:

SECTI ONS
{
txt1:
{
fl.o0 (.text)
f2.0 (.text)
f3.0 (.text)
}
t xt 2:
{
fd4.0 (.text)
f5.0 (.text)
f6.0 (.text)
}
etc
}

| Copyright IBM Corp. 1985, 1991
511.3-1

Programming Tools and Interfaces
Allocation Algorithm

5.11.4 Al'l ocation Al gorithm

An output section is forned either as a result of a SECTIONS directive or
by conbi ning i nput sections of the same nane. An output section can have
zero or nore input sections conprising it. After the conposition of an
out put section is determned, it nust then be allocated into configured
virtual nmenory. The link editor uses an algorithmthat attenpts to
mninze fragmentati on of nmenory thereby increasing the possibility that a
link-edit run will be able to allocate all output sections within the
specified virtual menory configuration. The algorithm proceeds as
fol | ows:

1. Any output sections for which explicit binding addresses were
specified are all ocated.

2. Any output sections to be included in a specific naned nenory are
allocated. In both this and the succeeding step, each output section
is placed into the first avail able space within the (naned) menory
with alignment taken into consideration.

3. Qutput sections not handl ed by one of the above steps are all ocat ed.

If all menory is contiguous and configured (the default case), and no
SECTI ONS directives are given, then output sections are allocated in the
order they appear to the link editor, normally .text. .data, .Dbss.

O herwi se, output sections are allocated in the order they were defined or
made known to the link editor into the first avail able space they fit.

| Copyright IBM Corp. 1985, 1991
511.4-1

Programming Tools and Interfaces
Incremental Link Editing

5.11.5 Increnental Link Editing

As previously nentioned, the output of the link editor can be used as an
input file to subsequent link-edit runs provided that the relocation
information is retained (-2 option). Large applications may find it
desirable to partition their C prograns into subunits, |ink each subunit
i ndependently, and then link edit the entire application. This is shown
in the follow ng exanple.

Step 1
Id -r -o outfilel ifilel
[* ifilel */
SECTI ONS
{
sul :
{
fl.0
f2.0
fn. o
}
}
Step 2:
Id -r -o outfile2 ifile2
[* ifile2 */
SECTI ONS
{
su2
{
gl.o
g2.0
gn.o
}
}
Step 3:

ld -m-o0 final.out outfilel outfile2

By judiciously form ng subunits, applications may achieve a form of

incremental link editing whereby it is necessary to re-link only a portion

of the total link edit when a few prograns are reconpil ed.
To apply this technique, there are two rules that you nust adhere to:

Intermediate |ink edits should contain only SECTI ONS decl arati ons and
be concerned only with the formati on of output sections from i nput
files and input sections. No binding of output sections should be
done in these runs.

O Al allocation and nenory directives, as well as any assignnen
statenents, are included only in the final link-edit run.

| Copyright IBM Corp. 1985, 1991
5.11.5-1

Programming Tools and Interfaces
DSECT, COPY, and NOLOAD Sections

5.11. 6 DSECT, COPY, and NOLOAD Secti ons

Sections may be given a type in a section definition shown in the
foll ow ng exanpl e:

SECTI ONS
{ namel 0x200000 (DSECT) : {filel.o}
name2 0x400000 (COPY) : {filel.o}
names 0x600000 (NOLOAD) : {filel. o}
}

The DSECT option creates what is called a dummy section. A dumry section
has the foll ow ng properties:

O It does not participate in the nenory allocation for output sections
As a result, it does not take up any nmenory and does not show up in
the nmenory map (the -moption) generated by the link editor.

O It may overlay other output sections and even non-configured menory
DSECTs may overl ay other DSECTs.

O The global synbols defined within the dumry section are relocate
normal ly. That is, they appear in the output file's synbol table with
the sane value they would have had it the DSECT were actually | oaded
at its virtual address. DSECT-defined synbols may be referenced by
ot her input sections. Undefined external synbols found within a DSECT
cause specified archive libraries to be searched and any nenbers which
define such synbols are link edited normally (not in the DSECT or as a
DSECT) .

O None of the section contents, relocation infornation, or |ine nunbe
information associated with the section is witten to the output file.

In the precedi ng exanple, none of the sections fromfilel.o are

all ocated, but all synbols are relocated as though the sections were
link edited at the specific address. Qher sections could refer to
any of the global synbols and they are resol ved correctly.

A copy section created by the COPY option is simlar to a dummy section.
The only difference between the two is that the contents of a copy section
and all associated information is witten to the output file.

A section with the type of NOLOAD differs in only one respect froma
normal out put section:

O Its text and/or data is not witten to the output file

A NOLOAD section is allocated virtual space, appears in the nmenory map
and so on.

| Copyright IBM Corp. 1985, 1991
5.11.6-1

Programming Tools and Interfaces
Output File Blocking

5.11.7 CQutput File Bl ocking

The BLOCK option (applied to any output section or GROUP directive) is
used to direct the Iink editor to align a section at a specified byte
offset in the output file. It has no effect on the address at which the
section is allocated nor on any part of the link-edit process. It is only
used to adjust the physical position of the section in the output file.

SECTI ONS
{
_text BLOCK(0x200) ()
.data ALI G\(0x20000) BLOCK(0x200) : { }

}

Wth this SECTIONS directive, the link editor ensures that each section,
.text and .data is physically witten at a file offset which is a nultiple
of 0x200 (at an offset of 0, 0x200, 0x400,..., and so on in the file).

| Copyright IBM Corp. 1985, 1991
5.11.7-1

Programming Tools and Interfaces
Non-relocatable Input Files

5.11.8 Non-rel ocatable I nput Files

If a file produced by the link editor is intended to be used in a
subsequent link-edit run, the first link-edit run nmust have the -r option
set. This preserves relocation information and permts the sections of
the file to be relocated by the subsequent |ink-edit run

When the link editor detects an input file that does not have rel ocation
or synbol table information, a warning nessage is given. Such information
can be renoved by the link editor (see the -s option in the part "Link

Edi tor Command Language" in topic 5.10) or by the strip command. However,
the link-edit run continues using the non-relocatable input file.

For such a link edit to be successful (to actually and correctly link edit
all input files, relocate all synmbols, resolve unresol ved references, and
so on), two conditions on the non-relocatable input files nust be net:

O Each input file nust have no unresol ved external references

O Each input file nust be bound to the exact sane virtual address as
was bound to in the link-edit run that created it.

Note: |If these two conditions are not nmet for all non-rel ocatable input
files, no error messages are issued. Therefore, you nust use extreme care
when supplying such input files to the Iink editor

| Copyright IBM Corp. 1985, 1991
5.11.8-1

Programming Tools and Interfaces
Syntax Diagram for Input Directives

.11.9 Syntax Diagramfor Input Directives

Figure 5-2. Syntax Diagramfor Input Directives

D rectives Po-> . Expanded Directives
____________________ e
<file> bo-> ' { <cmd> }
____________________ e
<cnd> Po-> | <menory>
Po-> | <sections>
;-3 | <assi gnnent >
Po-> 1 <filenanme>
bo-> 1 <flags>
____________________ e
<nenory> -> MEMORY { <nenory_spec>

{[,] <menory_spec> }}

____________________ e
<nenory_spec> Po-> I <name> [<attributes>]
| ! <origin_spec>[,] <length_spec>
____________________ e
<attributes> ;o-> D C{ RWIXT)
____________________ e
<ori gi n_spec> ;o-> | <origin> = <long>
____________________ e
<l ent h_spec> ;o-> | <length> = <l ong>
____________________ e
<ori gi n> ;o-> i ORIG@ N o]Jorg|origin
____________________ e
<l engt h> o> i LENGTH | |l en| | ength
____________________ e
<secti ons> o> | SECTIONS { { <sec_or_group>} }
____________________ e
<sec_or_group> Po-> | <section>| <group>|<library>
____________________ e
<gr oup> ;o-> | GROUP <group_options> : {
| ! <section_list>} [<mem spec>]
____________________ e
<section_list> Po-> | <section> { [,] <section>}
____________________ e
<section> o> I <name> <sec_options> : {
| | <statenent list>}
! L [<fill>] [<nmem spec>]
____________________ e
<group_opti ons> ;o-> | [<addr>] [<align_option>]
____________________ e
<sec_options> ;o-> | [<addr>] [<align_option>]
! I [<bl ock_option>] [<type_option>]
____________________ e
<addr > bo-> . <l ong>
____________________ e
<al i gn_opti on> o> ! <align> (<long>)
____________________ e
<al i gn> o> | ALI G\ align
____________________ e
<bl ock_opti on> Po-> i <block> (<long>)
____________________ e
<bl ock> o> i BLOCK] bl ock
____________________ e
<type_option> o> I (DSECT) | (NOCLQAD) | (COPY)

| Copyright IBM Corp. 1985, 1991
5.11.9-1

Programming Tools and Interfaces
Syntax Diagram for Input Directives

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 — 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1~ 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 VAN 1 1 1 1 1 1 1 1 1 1 1

1 1 [1 1 VAN 1 1 1 1 1 1 1 1

1 1 ()] 1 1 - 1 1 1 VAN 1 1 1 1

1 1 [R— 1 1 1 O 1 1 1 - 1 1 1 1

1 1 [p— 1 1 1 X 1 1 1 1 O 1 1 1 1

1 1 1 | 1 1 1 O 1 1 1 1 X 1 1 1 1

1 1 1 m 1o Vv 1 1 1 1 O 1 1 1 1

1 1 1 1 1 1 1 1 1 Vv 1 1 1 ANN AN AN

1 1 1 @© A VAN 1 1 1 1 1 1 1 _mgg m m

1 1 T _m_ Qo 1 1 1 VAN 1 1 — 1 1 cC C

1 1 vV 1 1 1 O 1 1 1 QO 1 1 W. 1 © O O © ©

1 1 1 1 @ 1 | 1 1 1 1 O 1 I 1 W 1 C C

1 1 [— [= 1 € 1 1 1 1 | 1 N 1 — 1 V.V V \Y \Y

1 1 AN VAR e 1 T | >N 1 — 1 — L . 1

1 1 (7 B p— 1 1 [1 1 1 - 1 1 1 (] — 1 r ANN N N

1 1 L . N 1 =)] 1 1~ 1 1 @© 1 Vv 1 +— V 1 O O O (¢}] (¢}] N

1 1 —_ 1 N — 1 -1)] 1 1 — 1 & 1 —_ 1 Vv 1 1 O O O (&) (&) m

1 1 3 m C e 1 @© 1 I | [1 Vv 1 A 1 © © @© © ©

1 1 o]>m 1 1 Vv 1 [3 1 1 O 1 —_— 1 ~ —~ Q. 1 Q0O O o o ©

1 r A .— 1 @© > IS Y A 1 o — Vv 1 N 1 o . NN n A (%) (7] c
A mrl r SN = C _m VAN — | 1 1 1 — 1 N = | 1 [_m | | e

1 mv_ a..l 1 e_lag_ A = _m> A U T T 1 >W S <__ 1 \wv\/ mvpy_ _..l..l..la +— — ..m

1 1 = 1 —_ = .= 1 1 1 1 — - 1 O —_ 1 X = 1

1 O €@ 1 —.—QO n m 1 0 =T m [| Qe — VvV — 1 nmlea 1 _lmlmlmn m m o

i — 1 VV I im0 @ Vo 0 @+ T X O o~ 0 — 1l P O@—V S v 1 1 VVVYV Vv v \Y
Vo Tl e=V -0 1 ©C 1 - 1 — 0 1 &S 1 e — 1 O 1 ——A wl_lna u_l_efhlmorStUZHFLMN
1 AN D VeV Vo 0 0 VIV Vo - VV i x + Al & — VV VoV 1 — 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1

F+ et e + et et et e e et e F o F et -
1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

r A AN AN NN o N0 N N A A A AN D NNANNNNANNNN DO NNNNANN DN D NNNNNNNNNNNNNNNN
[T T T T R | I T T T N R | L T T S T T T T T S S S SN (NN (RN TR (RN (R (RN (NN T TR TN TR (R T (N TN TR TN T TN TN T T TN TN BT BN B B
1 1 1 1 1 1 1 1 1 1 1 1 1 1

F+ et e + -+ -+ e+ e e e F o o
1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 AN 1 1 1 1 1 1 1 1

1 1 VAN VAN [— 1 A 1 VAN 1 1 1

1 VAN [— [C 1 Qg 1 1 Q 1 A

1 1 O 1 C o N m 1 1 O 1 1 O 1 Qg

1 1 O 1 m [1 1 | 1 1 | 1 1 O

1 1 O 1 I — 1 = 1 C [\ T == 1 >N 1 1 I+ A

AN S_] 1 |+ @+ D O D A VAN 1 Mw 1 W >N !

[[—— 1 m [G T, 1 O = - 1 1 1= 1 O

1 —_— 1 m 1 @© 1 T 9 0 »m -1 0 T Q 1 & (- 1 © . @®©

[m [—— I T | oo © 0 X [J—) © =

14— 1 ()] € 0 — 1 @®© i — 1 © « O . 0 1 O [—— [R RV,

VoV Vv V..V .V V. . V. .V .V Vv Vv VoV

1 1 1 1 1 1 1 1 1 1 1 1 1 1

F+ et e + -+ -+ e+ o e e F e + et -

Copyright IBM Corp. 1985, 1991
5.11.9-2

Programming Tools and Interfaces
Syntax Diagram for Input Directives

| -> 1 -S

o> L=V

;-3 | - VS<wht _space> <l ong>

> 4 -a

o> Io-X
____________________ e
<name> ;-3 i Any valid synbol nane.
____________________ e
<l ong> ;-3 i Any valid |long integer constant.
____________________ e
<wht _space> Po-> i Bl anks, tabs, and new i nes.
____________________ e
<fil enane> P> i Any valid Al X/ 370 filename. This may

| i include a full or partial pathnane.
____________________ e
<pat hnane> -> Any valid Al X/ 370 pathnane (full or

partial). linking |d command

| Copyright IBM Corp. 1985, 1991
5.11.9-3

Programming Tools and Interfaces
Chapter 6. PS/2 Disassembler

6.0 Chapter 6. PS/2 Disassenbler

Subt opi cs

6. 1 CONTENTS

6.2 About This Chapter
6.3 I ntroduction

6.4 Using the Disassenbl er

| Copyright IBM Corp. 1985, 1991
6.0-1

Programming Tools and Interfaces
CONTENTS

6. 1 CONTENTS

| Copyright IBM Corp. 1985, 1991
6.1-1

Programming Tools and Interfaces
About This Chapter

6.2 About This Chapter

This chapter discusses how to invoke the disassenbler and how to

di sassenbl e previously conmpiled Al X PS/2 C, VS Pascal, or VS FORTRAN
prograns. This chapter also discusses the nenus that can be used to
define options for the disassenbler. The exanples shown in this chapter
use Al X PS/2 C prograns.

| Copyright IBM Corp. 1985, 1991
6.2-1

Programming Tools and Interfaces
Introduction

6.3 I ntroduction

Note: The disassenbler only works with 80386 object files conpiled on a
PS/2. It does not read or process 370 object files.

The di sassenbl er produces assenbly | anguage |istings for prograns
previously conpiled by ALX PS/2 C, VS Pascal, or VS FORTRAN. Wth the
di sassenbl er, binary code nodul es created by high-1evel |anguages can be
translated into their assenbly | anguage equival ents, with synbolic
references to external entry points.

The assenbly | anguage out put may optionally include:

0 Absolute address listin

O Hex code listin

O User types listin

O User variable listin

0 Assenbly | anguage source format accepted by the assenbler (se
Chapter 3, "PS/2 Assenbler").

O Labels indicating high-Ievel |anguage statenent nunbers

Note: These | abels are not generated when conpile-tine optimnzation
is used. For nore information on command |ine options, refer to the
appropriate | anguage Users Cui de.

The disassenbler is flexible and easy to use. It can be executed in a
variety of ways to suit your needs.

Subt opi cs
6.3.1 Notational Conventions
6.3.2 Preparation

| Copyright IBM Corp. 1985, 1991
6.3-1

Programming Tools and Interfaces
Notational Conventions

6. 3.1 Notational Conventions

The fol |l owi ng notational conventions are used in this chapter:

O

Information that is optional is enclosed in brackets ([]). Bracket
encl osed in quotation marks specify actual bracket characters.

I[tens in bold print nust be typed exactly as shown.

Variable information that the user nmust supply is in italic.

| Copyright IBM Corp. 1985, 1991
6.31-1

Programming Tools and Interfaces
Preparation

6.3.2 Preparation

The Al X PS/ 2 conpilers can optionally generate additional synbolic
information. To generate this synbolic information for a AIX PS/2 C
program conpile the program s source code as follows:

cc -c d+ Cmin.c
This will produce a file called Cmain.o, which will consist of object code

resulting from Cmin.c, plus additional synbolic information generated
fromCmin.c as a result of the d+ option.

| Copyright IBM Corp. 1985, 1991
6.3.2-1

Programming Tools and Interfaces
Using the Disassembler

6.4 Using the Disassenbl er

The di sassenbl er can be executed in the foll owi ng ways:

0 Wth options supplied on the command line, o

0 Wth options supplied via the nenu system

The di sassenbl er can operate on either the object file (Cmain.o) or the
executable file (Cmain). Although the synbolic information generated as a
result of the d+ option is not necessary, the function of the disassenbler
becones |imted without it. The disassenbler uses this information to:

0 Cenerate the user type declarations

0 Cenerate the user variable |location infornmation

O Cenerate |l abels at the start of each user statenent

O Alowthe user to disassenble a single entry point (as well as th
entire file).

0 Produce unique synbol nanes so that the output fromthe disassenble
can optionally be reassenbl ed.

If an executable file is made up fromtwo or nore separately conpil ed
units, the follow ng situations are possible:

O Each conpilation unit was conpiled with d+ and each .o includes
associ ated synbolic information. This is the normal case. Ful
synmbolic information is supported for all entry points.

O Not every o file includes associated d+ synmbolic information. This
coul d occur when some nodule was not conplied with d+. |In this case,
full symbolic information is limted to the entry points contained in
t he nodul es whi ch have associ ated d+ infornmation.

VS Pascal Exanple

0
1

2 Usi ng Menus

3

4 VS FORTRAN Exanpl e

| Copyright IBM Corp. 1985, 1991
6.4-1

Programming Tools and Interfaces
From the Command Line

6.4.1 Fromthe Command Li ne

The di sassenbler is

i nvoked fromthe conmand |ine using one or nore

options. The defaults for the disassenbler are as foll ows:

0 Qutput is displayed to the scree

O Al user entry points are disassenbl e

0 The output cannot be reassenble

0 Address listing

is generate

0 Hex code listing is generate

O User type listing is generate

0 User variable listing is generate

0 Warning nessages are printed

If you do not want to use the defaults, you nust specify options.

The format for running the di sassenbler with options supplied on the

command line is:

+--- syntax --------

wher e:

fil ename[. o]

option

-e entry-poi nt name

dis [options] filenane[. 0]

Specifies the file to be disassenbled. The file to be
di sassenbl ed can be either the executable file
(filenanme) or the object file (filenane.o). A
directory path may be specified with either a fil enane
or a filenane[.o] as shown bel ow.

fusr/bin/filenane
May be any of the follow ng:

Specifies the entry point to be disassenbled. An
entry point is the name of a function, procedure,
subroutine, program or FORTRAN entry statenent in the
user's program The entry point name is case
sensitive. Al Pascal and FORTRAN entry point names
must be specified in |lower case. |If you use this
option, you cannot use the -r option to reassenble the
code.

The output of the di sassenbl ed program can be
assenbl ed using the Assenbler. Only object files are
accepted with this switch. An executable file will be
rejected with the error nmessage:

CANNOT DI SASSEMBLE AN EXECUTABLE FOR REASSEMBLY

| Copyright IBM Corp. 1985, 1991
6.41-1

Programming Tools and Interfaces
From the Command Line

The entire file is always disassenbled (the -e switch
is ignored). The output does not contain:

0 Address listing

O Hex code listing

O User type listing

O User variable |isting.

Di sassenbl ed programinstructions can be nmodified in
any way, but disassenbled data can only be nodified
with no addition or deletion.

You cannot use this option with the -e options.

This option is not available through the nenu system

-o filenane Specifies the output file for di sassenbl ed code.

-w Suppr esses the displaying of warning nessages. This
option is not avail able through the nmenu system

Note: Wien the disassenbler is invoked fromthe command line, it by
default will wite to standard output. Therefore, if you wish the the
output to go to a file, you nust redirect standard output as shown in the
foll ow ng exanpl e:

dis -r nyfile.o > nyfile.s
O, you can use the -o option as shown in this exanple:

dis -r nyfile.o -o nyfile.s
In the above examples, the commands will disassenble all the user entry
points in nyfile.o and wite the output to nyfile.s. The nyfile.s file
can be reassenbl ed.

Subt opi cs
6.4.1.1 Exanple

| Copyright IBM Corp. 1985, 1991
6.41-2

Programming Tools and Interfaces
Example

6.4.1.1 Exanpl e

The followi ng code is contained in file Cmain.c:

void subl ()
{
printf (\% "n", "Entered subl");
}
void sub2 ()
{
printf (\% "n", "Entered sub2");
}
int main (argc, argv)
i nt argc;

char *argv[];
if (*argv[1l]=="1")
subl ();
el se
sub2 ();
exit (0);
}
To conpile the C programcontained in the file Cmin.c, enter:
cc -c d+ Cmin.c
To di sassenbl e the object file, enter:

dis Chain.o

The di sassenbl ed output will resenble:

ENTRY PO NT: Cmai n. subl

TYPE LI ST:
NONE.
VARl ABLE LI ST:
NONE.
subl:
% subl 1:
0xO0: 55 pushl Y%ebp
Ox1: 8b ec nmovl Y%esp, Y%ebp
% subl_2:
0x3: 68 5¢ 00 00 00 pushl $% Dohr cR
0x8: 68 6a 00 00 00 pushl $% DohrcR + Oxe
Oxd: e8 ee ff ff ff cal | printf
0x12: 83 c4 08 add| $8, %esp
% subl_ 3:
% subl _exit:
0x15: c¢9 | eave
0x16: c3 ret

ENTRY PO NT: Cmai n. sub2

| Copyright IBM Corp. 1985, 1991
6.4.11-1

Programming Tools and Interfaces

Example
TYPE LI ST:
NONE.
VARI ABLE LI ST:
NONE.
sub2:
% sub2_1:
0x18: 55 pushl Yebp
0x19: 8b ec nov| Yesp, Y%bp
% sub2_2:
Ox1b: 68 70 00 00 00 pushl $% DohrcR + 0x14
0x20: 68 7e 00 00 00 pushl $% DohrcR + 0x22
Ox25: e8 d6 ff ff ff cal | printf
Ox2a: 83 c4 08 addl $8, %esp
% sub2_3:
% sub2_exit:
Ox2d: c9 | eave
Ox2e: c3 ret

ENTRY PO NT: Cmain.main -- returns: signed 4 byte INT

TYPE LI ST:
10 = PONTER to 8
8 = PO NTER to unsigned 1 byte CHARACTER

VARl ABLE LI ST:
argc : signed 4 byte INT
| ocated in %bp+0x8
argv : 10
| ocated in %bp+0xc

mai n:
% mai n_1:
0x30: 55 pushl Yebp
0x31: 8b ec nov| Yesp, Y%bp
% mai n_2:
0x33: 8b 45 Oc nov| Oxc(%bp), %Y%ax
0x36: 8b 40 04 nov| Ox4(%ax), %Yeax
0x39: Of b6 00 novzbl (%eax), %eax
Ox3c: 83 f8 31 cnpl $49, %Y%eax
Ox3f: 75 07 j nz % mai n_4
% mai n_3:
Ox41l: e8 ba ff ff ff cal | sub1l
0x46: eb 05 jm % mai n_5
% mai n_4:
Ox48: e8 cb ff ff ff cal | sub2
% mai n_5:
Ox4d: 68 00 00 00 00 pushl $0
0x52: e8 a9 ff ff ff call exit
0x57: 83 c4 04 addl $4, Y%esp
% nmai n_6:
% mai n_exit:
Ox5a: c¢9 | eave
Ox5b: ¢3 ret

GL.OBAL' s OMNER: Cmai n

| Copyright IBM Corp. 1985, 1991
6.41.1-2

Programming Tools and Interfaces
Example

TYPE LI ST:
NONE.

VARI ABLE LI ST:
NONE.

If the previous exanple was di sassenbl ed using the -e option, that is:
dis -e subl Cmain.o

only the subl subroutine would be disassenbled. The disassenbl ed out put
cannot be reassenbl ed when this option is used.

Note: Wien the optim zation option is used, statenent nunber |abels are
not printed.

| Copyright IBM Corp. 1985, 1991
6.4.1.1-3

Programming Tools and Interfaces
Using Menus

6.4.2 Using Menus

The di sassenbl er can be invoked by the commuand:

dis

The di sassenbl er pronpts you through the possible options using a series

of screens. These screens allow the user to utilize many functions of the
di sassenbler in a sinplified form

*x% | NPUT FILE ***

Enter the nanme of the file you want to di sassenble
(or gto quit):
==>

The di sassenbler verifies that the submtted programis a valid binary
file. It then reads the corresponding d+ information. [If no
corresponding d+ information is found, the disassenbler issues a warning
message and pronpts for the output destination. Wthout d+ information,
the disassenbled file will have very limted synbolic capabilities and the
result cannot be reassenbled. When valid d+ information is found, the
next menu displ ayed is:

Do you want to reassenble the output (y or n):
==>

If the input file is an object file (.0 file), answering "yes" in the
above screen causes the entire file to to be disassenbled. A "no" answer
will display the follow ng nenu.

%% ENTRY POINT ***

| Copyright IBM Corp. 1985, 1991
6.42-1

Programming Tools and Interfaces
Using Menus
Enter the nunber corresponding to the entry point you want to di sassenbl e
(or gto quit).

ALL USER ENTRY PO NTS in Crain.o
Cmai n. mai n
Cmai n. subl
Cmai n. sub2

WN O

Note: Only the entry points defined in nodules conpiled with the d+ flag
wi || be displayed.

Select an Entry Point to start disassenbling the submtted program The
final menu is displayed:

Enter the nanme of the output file, or press Enter to display the output
on the screen.
==>

After you have conpl eted the disassenbling, you will not be returned to
the main menu screen. You can either disassenble another file, or you can
enter g (Quit) to exit.

| Copyright IBM Corp. 1985, 1991
6.42-2

6.4.3 VS Pasca

Programming Tools and Interfaces

VS Pascal Example

Exanpl e

The follow ng code is contained in the file Pmain. p:

PROGRAM exanpl e (i nput, out put);

PROCEDURE subl

BEG N

VWRI TELN (' entered subl');

END,

PROCEDURE sub2?;

BEG N

VWRI TELN (' entered sub2');

END,

BEG N

IF (argv [1]7[1] ="'1")

THEN
subl
ELSE
sub2;
END.

To conpile the VS Pascal

cc d+ Pmain.p -o Pmain

To di sassenbl e the executable file,

dis Pnain

The di sassenbl ed output will

ENTRY PO NT: examnpl e. subl

TYPE LI ST:

NONE.

VARI ABLE LI ST:

NONE.

subl:
% subl 1:

0Ox110:
Ox111:

% subl_2:

0x113:
0x118:
Ox11le:
0x123:
0x128:
0x12b:
0x130:
0x136:
0x13b:

55
8b

68
ff

68
e8
83
e8
ff

68
68

ec

fe
35
c9
fa
c4
38
35
b8
00

ff ff ff

a4 34 40 00
0d 40 00

11 00 00

Oc

01 00 00

a4 34 40 00
0d 40 00

00 00 00

| Copyright IBM Corp. 1985, 1991

resenbl e:

enter:

pushl
nmovl

pushl
pushl
pushl
call
addl|
call
pushl
pushl
pushl

program contained in the file Pmain.p,

Y%ebp
Y%esp, Y%ebp

$-2
0x4034a4
$4197833
r_openw
$12, Y%esp
r_iochk
0x4034a4
$4197816
$0

enter:

Programming Tools and Interfaces
VS Pascal Example

0x140: e8 83 01 00 00 call r_wWsv
0x145: 83 c4 Oc add| $12, %esp
0x148: e8 1b 01 00 00 cal | r_iochk
Ox14d: ff 35 a4 34 40 00 pushl 0x4034a4
0x153: e8 d4 06 00 00 cal | r_wn
0x158: 83 c4 04 addl $4, Y%esp
Ox15b: e8 08 01 00 00 cal | r_iochk
% subl_ 3:
% subl _exit:
0x160: c9 | eave
0x161: c3 ret

ENTRY PO NT: exanpl e. sub2

TYPE LI ST:
NONE.
VARI ABLE LI ST:

NONE.

sub2:

% sub2_1:
0x164: 55 pushl Y%ebp
0x165: 8b ec nmovl Y%esp, Y%ebp

% sub2_2:
0x167: 68 fe ff ff ff pushl $-2
Oxl1l6c: ff 35 a4 34 40 00 pushl 0x4034a4
0x172: 68 e9 0d 40 00 pushl $4197865
0x177: e8 a0 11 00 00 cal | r_openw
0x17c: 83 c4 Oc add| $12, %esp
0x17f: e8 e4 00 00 00 call r_iochk
0x184: ff 35 a4 34 40 00 pushl 0x4034a4
Ox18a: 68 d8 0d 40 00 pushl $4197848
0x18f: 68 00 00 00 00 pushl $0
0x194: e8 2f 01 00 00 cal l r_Wsv
0x199: 83 c4 Oc add| $12, %esp
0x19c: e8 c7 00 00 00 call r_iochk
Oxlal: ff 35 a4 34 40 00 pushl 0x4034a4
Oxla7: e8 80 06 00 00 cal | r_wn
Oxlac: 83 c4 04 addl $4, Y%esp
Oxlaf: e8 b4 00 00 00 call r_iochk

% sub2_3:

% sub2_exit:
Ox1b4: c9 | eave
Ox1b5: ¢3 ret

ENTRY PO NT: exanpl e

TYPE LI ST:
NONE.

VARI ABLE LI ST:
NONE.

exanpl e:
% exanpl e_1:
0x1b8: e8 33 00 00 00 call . P860421

| Copyright IBM Corp. 1985, 1991
6.43-2

Programming Tools and Interfaces
VS Pascal Example

Ox1lbd: 55 pushl Yebp
Ox1lbe: 8d 2d 50 40 40 00 | eal 0x404050, %bp
% exanpl e_2:
Ox1lc4: al a8 34 40 00 nov| 0x4034a8, %ax
Ox1c9: 8b 00 nov| (%eax), %eax
Ox1lcb: 66 Of b6 48 04 novzbw Ox4(%ax), %x
0x1d0: 66 83 f9 31 cmpw $49, %X
Ox1d4: 75 07 j nz % exanpl e_4
% exanpl e_3:
Ox1d6: e8 35 ff ff ff cal | subil
Ox1ldb: eb 05 jmp % exanpl e_5
% exanpl e_4:
Ox1ldd: e8 82 ff ff ff cal | sub2
% exanpl e_5:
% exanpl e_exit:
Ox1le2: e8 4b 00 00 00 call r_term
Oxle7: 5d popl Yebp
Ox1e8: e8 46 00 00 00 call r_end
Oxled: c3 ret

| Copyright IBM Corp. 1985, 1991
6.43-3

Programming Tools and Interfaces

VS FORTRAN Example

6.4.4 VS FORTRAN Exanpl e

The followi ng code is contained in the file Fmain.f:

subroutine test (i)

+ 2

entry xyz
i = 0i**2

return
end

program exanpl e

i nt ege

r nonth, day,
common /date/ nonth, day,

year
year

month = day + year

cal |
end

To conpile the VS FORTRAN program contained in the file Fmain.f,

cc d+ Fna

To di sassenbl e the executable file,

dis Fnain

The di sassenbl ed output will

ENTRY PO

TYPE LI
NONE.

in.f

NT:

ST:

t est (nont h)

-0 Fmain

t est

VARl ABLE LI ST:
i . signed 4
| ocat ed

test:

0Ox110:
0x113:
Ox1lla:

%test 1.

Ox11le:
0x120:
0x123:
0x125:

XyZ:
%test 2.

0x127:
Ox12a:
Ox12e:

% test 3.

0x135:
0x137:
Ox13a:

83
66
8b

8b
83
89
eb

83
8b
66

8b
of
89

ec
c7
54

02
cO
02
Oe

ec
54
c7

02
af
02

by
in

08
44
24

02

08

24
44

cO

enter:

resenbl e:

- returns:

te | NTEGER
directly in %bp+0x8

subl
novw
nmov|

24 02 00 00
Oc

nmov|
addl
nmov|

jmp

subl
nmov|
novw

Oc
24 02 01 00

nmov|
i mul |
nmov|

| Copyright IBM Corp. 1985, 1991
6.44-1

signed 4 byte | NTEGER

$8, %esp

$0, 0Ox2(%esp)
Oxc(%esp), %edx
(%dx), %ax
$2, Y%eax
Yeax, (%edx)
%test 3

$8, %esp
Oxc(%esp), %edx
$1, Ox2(%esp)

(%edx), %eax
Y%eax, %Yeax
Y%eax, (%edx)

enter:

Programming Tools and Interfaces
VS FORTRAN Example

% test 4.
%test exit:
Ox13c: 66 8b 44 24 02 novw 0x2(%esp), %Yax
0x141: 66 0Ob cO orw %ax, %Yax
0x144: 74 Oa jz % | abel _4
0x146: 66 83 cO ff addw $-1, Y%ax
Ox14a: 75 04 j nz % | abel _4
Ox14c: 83 c4 08 add| $8, %esp
Ox14f: c3 ret
% | abel _4:
0x150: 83 c4 08 add| $8, %esp
0x153: c¢3 ret
ENTRY PO NT: example -- returns: 4 byte REAL*4
TYPE LI ST:
NONE.
VARl ABLE LI ST:
day : signed 4 byte | NTEGER
| ocated in _date_ +0x4
nonth : signed 4 byte | NTEGER
| ocated in _date_+0x0
year signed 4 byte | NTEGER
| ocated in _date_ +0x8
exanpl e:
0x154: e8 57 2c 00 00 cal | . P860421
0x159: 55 pushl Yebp
Ox15a: 8b ec nov| Yesp, Y%bp
Ox15c: 68 01 00 00 00 pushl $1
0x161: e8 3a 09 00 00 cal | f 8541
0x166: 83 c4 04 addl $4, Y%esp
% exanpl e_1:
0x169: al 5c¢ 2d 40 00 nmovl 0x402d5c, %eax
Ox16e: 03 05 58 2d 40 00 add| 0x402d58, %ax
0x174: a3 54 2d 40 00 nmovl %eax, 0x402d54
% exanpl e_2:
0x179: 68 54 2d 40 00 pushl $4205908
Ox17e: e8 8d ff ff ff call t est
0x183: 83 c4 04 addl $4, Y%esp
% exanpl e_3:
% exanpl e_exit:
0x186: e8 41 0Ob 00 00 cal | f rtsfn
0x18b: e8 62 2c 00 00 call r_term
0x190: c9 | eave
0x191: e8 5d 2c 00 00 call r_end
0x196: c3 ret

| Copyright IBM Corp. 1985, 1991

6.44-2

Programming Tools and Interfaces
Chapter 7. Using the Subroutine Libraries

7.0 Chapter 7. Using the Subroutine Libraries

Subt opi cs

CONTENTS

About This Chapter

System Li braries

The C Library

Run Ti me Services Library
Mat h Li brary

Shared Libraries

NNNNNNN
NoOUhWN R

| Copyright IBM Corp. 1985, 1991
70-1

Programming Tools and Interfaces
CONTENTS

7.1 CONTENTS

| Copyright IBM Corp. 1985, 1991
71-1

Programming Tools and Interfaces
About This Chapter

7.2 About This Chapter

Thi s chapter describes the subroutine libraries that are included with the
Al X Operating System It describes the follow ng commonly used |ibraries:

Clibrar

Math i brar

Run tinme services librar
Shared library

[

Refer to Al X Operating System Techni cal Reference for conplete technical
i nformati on about by function within the library.

| Copyright IBM Corp. 1985, 1991
72-1

Programming Tools and Interfaces
System Libraries

7.3 System Libraries

The systemlibraries are collections of commonly used functions and
decl arations. You can use themin a programto avoid creating the
functions for each new program Figure 7-1 lists the systemlibraries.

To use the library functions:

O Include any declarations for the variables that the library routine
use in the program

O Link the library routines with the programfiles after the programi
conpiled, or in the sanme process using the cc command.

Note: You should not store your files in the follow ng systemlibraries
because you could lose the files if you reinstall or update the Al X
Operating System You should instead keep your files in your own separate
library.

Figure 7-1. Sunmary of System Libraries
Nane Pat h Name cc flag Functi on

CGCeneral C Libraries:

Clibrary /[1ib/libc.a Not Comon C
required | anguage

subroutines for
file access,
string
operati ons,
charact er
operati ons,
menory
al l ocation and
ot her
functions.

Run Time Services fusr/lib/librts.a Not Support system

library Requi red servi ces such
as system
configurati on,
messages, trace
and error |og

support .

Math library [1ib/libma -Ilm Mat herat i cal
functions using
sof twar e
routines to
perform

fl oati ng- poi nt
arithnetic.

Pr ogr amrer Wor kbench /1ib/libPWa -1 PW M scel | aneous

library operating
system
functions.

Termnal 1/0O Libraries:

| Copyright IBM Corp. 1985, 1991
73-1

Programming Tools and Interfaces
System Libraries

curses library fusr/lib/libcurses.a -Ilcurses
Ext ended curses fusr/lib/libcur.a -l cur
library

O her Libraries:

Dat a Base Subroutine fusr/lib/libdbm a -1 dbm

library

Queue Backend {fusr/1ib/libgb.a -1 gb

Subroutine library

lex library fusr/lib/libl.a -

yacc library fusr/lib/liby.a -ly

BSD conpatibility fusr/lib/libsd. a -1 bsd

library

Graphics libraries fusr/lib/libplot.a - | pl ot
fusr/lib/libprint.a -Ilprint
fusr/lib/libgsl.a -1 gsl
fusr/lib/libld. a -1ld

Subt opi cs

7.3.1 Including Declarations

| Copyright IBM Corp. 1985, 1991
7.3-2

Cont r ol
functions for
witing data to
and getting
data fromthe

t er m nal

screen.

Cont r ol
functions for
witing data to
and getting
data fromthe
term nal screen
that support
color, nmultiple
w ndows, and an
enhanced
character set.

Dat a base
subrouti nes.

Subroutines for
queue backends.

Subroutines for
progr ans
created by the
| ex program
generat or.

Subroutines for
progr ans
created by the
yacc program
generat or.

Refer to the
di scussi on of
BSD libraries
in the Al X
Operating
System

Techni cal
Ref er ence

Refer to plot
in the Al X
Techni cal
Ref er ence

Al so see
Chapter 6 of

t he same book.

Programming Tools and Interfaces
System Libraries
7.3.2 Linking the Library Routines
7.3.3 Library Descriptions

| Copyright IBM Corp. 1985, 1991
7.3-3

Programming Tools and Interfaces
Including Declarations

7.3.1 Including Declarations

Sonme functions require a set of declarations to operate properly. You
must specifically request that these declarations be included in a
program The system stores some declaration files, called header files,
in the /fusr/include directory. To include a header file, use the
following directive within a C |anguage program

#i ncl ude <file. h>
where file is the nane of one of the header files. Put all header file

directives at the beginning of all files being conpiled that use the
header file.

| Copyright IBM Corp. 1985, 1991
7.31-1

Programming Tools and Interfaces
Linking the Library Routines

7.3.2 Linking the Library Routines

When you conpile a program the cc programuses the |d programto search
the C language library to |ocate and include functions that are used in
the program To locate and include functions fromother libraries,
specify these libraries on the conmand |ine when starting the cc conmand.
For exampl e, when using functions of the math library, request that the
math library be searched by including the argunent:

-Ilm
on the command |ine, such as:

cc file.c -Im
Use this nmethod for all functions that are not part of the C | anguage
library. Using this nmethod, the conpiler searches the Clibrary after

searching the specified |libraries. Refer to the description of the Id

command in Al X Operating System Conmands Reference for infornation about
linking other libraries to a program

| Copyright IBM Corp. 1985, 1991
7.32-1

Programming Tools and Interfaces
Library Descriptions

7.3.3 Library Descriptions

The rest of this chapter describes the functions and header files of the
libraries. Each library description begins with howto include the
functions and/or header files in a program Then, each function is listed
and briefly described. Following the listing are descriptions of the
header files associated with these functions (if any).

| Copyright IBM Corp. 1985, 1991
7.33-1

Programming Tools and Interfaces
The C Library

7.4 The C Library

The C library routines performthe follow ng types of services:

O

O

O

O

O

The conpiler |oads the functions of the Clibrary automatically.

| nput / out put contro
String mani pul atio
Character manipul atio
Ti me function

M scel | aneous functi ons

you nust include any required declarations in the program

Subt opi cs

NNNNNNNNNNNNNNNSNN
Phrhhrbhbhbibhbabhhrbhibbibb

1 I nput/Qutput Control

2 String Routines

3 String Manipul ation

4 Menory Mani pul ation

5 Character Manipul ation
6 Tine

7 Numerical Conversion

8 Group File Access

9 Password File Access
10 Parameter Access

11 Hash Tabl e Managenent
12 Binary Tree Managenent
13 Tabl e Managenent

14 Menory All ocation

15 Pseudo-random Nunber GCeneration
16 Signal Handling

17 M scel | aneous

| Copyright IBM Corp. 1985, 1991
74-1

However ,

Programming Tools and Interfaces
Input/Output Control

7.4.1 | nput/CQutput Control

The input and output (I1/0O functions provide buffered I/O for a program
that is easier to use than using the read and wite systemcalls (see
Chapter 8, "Using System Calls"). Do not specify any special flag to the
conmpiler to use the I/O control functions.

I nclude the header file for these functions in the program To include a
header file, use the follow ng statenent:

#i ncl ude <stdio. h>
Al'l include statenents should be near the beginning of the first file

bei ng conpiled, usually in the declarations section before main(), and
nmust occur before using any library functions.

Subt opi cs

7.4.1.1 Using |I/O Routines
7.4.1.2 1/ 0O Routines Descriptions
7.4.1.3 File Access

7.4.1.4 File Status

7.4.1.5 | nput

7.4.1.6 CQutput

7.4.1.7 Directory Access

7.4.1.8 M scel | aneous

7.4.1.9 1/ 0O Header File

| Copyright IBM Corp. 1985, 1991
74.1-1

Programming Tools and Interfaces
Using I/O Routines

7.4.1.1 Using I/0O Routines

The systemtreats devices as if they were files for input and output. Any
of the /O systemcalls or library routines can send data to or from
either a device or a file. You nust al so open and cl ose a device the sane
as a file.

Some of the I/Olibrary routines are actually nmacros defined in a header
file, and some are object nodules of functions. |In many cases the library
contains a function and a macro that do the sane type of operation

Consi der the foll ow ng points when deciding which to use:

O You cannot set a breakpoint for a macro using the debug program
0 Functions rmay have side effects to avoid

0 Macros usually are faster than the functions because the preprocesso
replaces the macros with actual lines of code in the program

O Macros result in larger object code after being conpiled

Sone of the I/O routines use stdin and stdout as their input and out put
channel. Moyst of the routines, however, allow you to specify a file for
the source or destination of the data transfer. Sone specify the file
using a file pointer (which points to a structure containing the file
nane); others accept a file descriptor (a positive integer assigned to the
file when it is opened).

Figure 7-2 sunmarizes some inportant characteristics of the input and
out put routines. The colum headi ngs nean:

Operation The nanme of the I/O routine or systemcall

Macr o/ Function System Call indicates that the operation is a systemcall.
Function indicates that the operation is a library function.
Macro indicates that the operation is available as a nacro,
t hough ANSI requires that all nacros be avail able as
functions too.

| nput/ Qut put The source and/or destination of the operation is either a
file that you can Specify or it uses stdio (standard input
and out put).

Formatt ed The resulting data streamis formatted (Yes) or not
formatted (No).

Operation Type The data type of the information being transferred: byte,
character (1-byte char), extended character (4-byte
wchar t), word (4-bytes) or string. Sonme conversion
operations accept one type of information as input and then
output a different type of information.

Figure 7-2. Conparison of 1/0O Operations

Oper ati on Macr o/ Functi on I nput / Qut put Format t ed Operation Type
r ead System Cal | Speci fy No Byt e
wite System Cal | Speci fy No Byt e
fread Functi on Speci fy No Byt e
fwite Functi on Speci fy No Byt e

| Copyright IBM Corp. 1985, 1991
74.11-1

printf
fprintf
sprintf
scanf

f scanf

weprintf
wef printf
wespri ntf
wecscanf
wef scanf

unget c
uget wx
getc

get we
get char
get wchar
fgetc

f get we
putc

put we
put char
put wchar
fputc

f put we

get w
put w

gets

get ws
fgets
fgetws
puts

put ws
fputs
f put ws
sscanf

wesscanf

Functi
Functi
Functi
Functi
Functi

Functi
Functi
Functi
Functi
Functi

Functi
Functi
Macr o
Macr o
Macr o
Macr o
Functi
Functi
Macr o
Macr o
Macr o
Macr o
Functi
Functi

Functi
Functi

Functi
Functi
Functi
Functi
Functi
Functi
Functi
Functi
Functi

Functi

Programming Tools and Interfaces

on
on
on
on
on

on
on
on
on
on

on
on

on
on

on
on

on
on

on
on
on
on
on
on
on
on
on

on

Using I/0O Routines

stdio
Speci fy
Speci fy
stdio
Speci fy

stdio
Speci fy
Speci fy
stdio
Speci fy

Speci fy
Speci fy
Speci fy
Speci fy
stdio

stdio

Speci fy
Speci fy
Speci fy
Speci fy
stdio

stdio

Speci fy
Speci fy

Speci fy
Speci fy

stdio
stdio
Speci fy
Speci fy
stdio
stdio
Speci fy
Speci fy
Speci fy

Speci fy

7411-2

Yes
Yes
Yes
Yes
Yes

~56566566566 656 66566566566566566565

(72}

&
(7]

| Copyright IBM Corp. 1985, 1991

Byt e
Byt e
Byt e
Byt e
Byt e

wchar _t
wchar _t
wchar _t
wchar _t
wchar _t

Byt e
wchar _t
Byt e
wchar _t
Byt e
wchar _t
Byt e
wchar _t
Byt e
wchar _t
Byt e
wchar _t
Byt e
wchar _t

Wor d
Wor d

String
wchar _t
String
wchar _t
String
wchar _t
String
wchar _t
String

wchar _t

string
string
string

string

string

Programming Tools and Interfaces
I/O Routines Descriptions

7.4.1.2 1/ 0O Routines Descriptions

The 1/O routine descriptions are grouped into the foll ow ng categories:

O File acces

O File statu

0 I npu

0 Qutpu

0 M scell aneous

In the follow ng descriptions, streaminput and output refers to
sequential input and output using open file pointers. The terns stdin and

stdout refer to the device or file that is currently assigned as standard
i nput or standard out put.

| Copyright IBM Corp. 1985, 1991
74.1.2-1

Programming Tools and Interfaces
File Access

7.4.1.3 File Access

fcl ose
f dopen
fileno

f open

freopen
f seek
pcl ose
popen
renove
rew nd

set buf

Cl oses an open stream
Associ ates streamw th an opened file.
Returns a file descriptor associated with an open stream

Opens a streamwi th specified permssions. A streamis what
f open returns.

Substitutes naned file in place of open stream
Repositions stream pointer.

Cl oses a stream opened by popen

Creates a pipe as a stream between two processes.
Deletes a file.

Repositions stream poi nter at beginning of file.

Turns buffering to streamon and off.

| Copyright IBM Corp. 1985, 1991
7413-1

Programming Tools and Interfaces
File Status

7.4.1.4 File Status

clearerr Resets error condition on stream

f eof Tests for end of file on stream
ferror Tests for error condition on stream
ftell Returns current stream pointer.

| Copyright IBM Corp. 1985, 1991
74.14-1

Programming Tools and Interfaces
Input

7.4.1.5 | nput

fgetc

f get we

fgets
fgetws
fread

f scanf
getc
get we
get char
get wchar
gets
get ws
getw
scanf
sscanf
unget c

unget we

Reads next character fromstream (function for the nmacro getc).

Reads next wi de character fromstream (function for the macro
getwc) .

Reads string from stream

Reads string of wi de characters from stream

Reads from stream buffered.

Reads using format from stream

Ret urns next character from stream
Ret urns next wi de character from stream
Ret urns next character from stdin.
Returns next wi de character from stdin.
Reads string from stdin.

Reads string of wi de characters from stdin.
Reads word from stream

Reads using format from stdin.
Reads using format from string.
Puts one character back to stream

Puts one wi de character back to stream

| Copyright IBM Corp. 1985, 1991
7415-1

7.4.1.6 CQutput

fflush
fprintf
fputc

f put we

fputs

f put ws
fwite
printf
put c
put we
put char
put wchar
put s
put ws
put w

sprintf

Wites

Wites

Wites

Wites

put we) .

Wites

Wites

Wites

Wites

Wites

Wites

Wites

Wites

Wites

Wites

Wites

Wites

Programming Tools and Interfaces
Output

all currently buffered characters from stream
using format to stream
next character to stream (function for the macro putc).

next w de character to stream (function for the macro

string to stream

string of wide characters to stream
to stream buffered.

using format to stdout.

next character to stream

next wi de character to stream

next character to stdout.

next wi de character to stdout.
string to stdout.

string of wide characters to stdout.

word to stream

using format to string.

| Copyright IBM Corp. 1985, 1991
74.16-1

Programming Tools and Interfaces
Directory Access

7.4.1.7 Directory Access

These functions provide access to directories. Use these routines to scan
or read directories.

Function Description

opendi r Open a directory for reading.
readdir Read a directory entry.

rewi nddir Start scanning the directory again.
scandir Review a directory.

seekdir Seek to a location in a directory.
telldir Find the offset in the directory.

| Copyright IBM Corp. 1985, 1991
74.1.7-1

Programming Tools and Interfaces
Miscellaneous

7.4.1.8 M scel | aneous

These functions perform services that do not appear in any of the previous
cat egori es.

You do not need to specify any special option to the conpiler to use these
functions. There is no header file for these functions.

Function Description

abort Causes an | OT signal to be sent to the process.

abs Returns the absol ute integer val ue.

assert Verifies a program assertion (place diagnostics into a
program .

In addition, the following Iist contains m scellaneous functions:

ctermd Returns file name for controlling termnal.

getl ogin Returns | ogin name for owner of current process.
getuinfo Fi nds the val ue associated with a user information nane.
| ogname Returns the | ogin name of the user.

system Execut es system conmmand.

tnpfile Creates tenporary file using node consi derations.

| Copyright IBM Corp. 1985, 1991
7418-1

Programming Tools and Interfaces
I/O Header File

7.4.1.9 |/ O Header File

The I/ O header file is stdio.h in the /usr/include directory. This file
contains macro definitions and parameters that the /O library routines
use. The shell automatically opens the following files:

stdin Standard i nput file
st dout Standard output file
stderr Standard error file.

| Copyright IBM Corp. 1985, 1991
7419-1

Programming Tools and Interfaces
String Routines

7.4.2 String Routines

The string routines include the foll ow ng:

nmbdwi dt h

bl en

Cets display width of a nmultibyte character

CGets length of a multibyte character.

nbsadvance Advances pointer to next character.

nbscat

nmbschr

nbscnp

nbscpy

nmbscspn

nbsl en
nmbsnbs

nbsncat

nmbsncnp

nbsncpy

nmbspbr k

nmbsrchr

nbsspn

nbst ok
nbst onb
nmbst owcs
nbt owc
wei ndx
wcscat

weschr

Appends multibyte character string to nmultibyte character
string.
Finds nultibyte character in string.

Conmpares multibyte characters in strings based on the binary
ordering of the characters.

Copies multibyte character string multibyte character string.

Returns the length in bytes of the initial segment of the string
pointed to by the sl paraneter that does NOT consist entirely of
characters fromthe string pointed to by the s2 paraneter

Ret urns nunber of characters in string s.
Locates strings.

Concatenates string pointed to by s2 to the end of string
pointed to by sl1. Copies a maxi mum of nchar nultibyte
characters.

Conmpares multibyte characters in strings based on the binary
ordering of the characters.

Copies string on to string up to a maxi num nunber of characters.

Locates the first occurrence in the string pointed to by s1 of
any character fromthe string pointed to by s2.

Return pointer to the |last occurrence of the nultibyte char
in string 's'.

c

Returns the bytes in length of the initial segnent of the string
pointed to by sl paranmeter that consists entirely of characters
fromthe string pointed to by paraneter s2.

Parses a string of nultibyte characters into tokens.

Converts a nultibyte character into an nbchar _t.

Converts a string of nultibyte chars into string of wchar t.
Converts a nmultibyte character into a wchar _t.

Returns an index value for a wi de character.

Appends wi decharacter string to a wi decharacter string.

Searches for the first occurrence of w decharacter c in string

| Copyright IBM Corp. 1985, 1991
742-1

wescnp

wcscpy

wcscspn

wesspn

wcsncat

wesnenp

wesncpy

wespbr k

wesr chr

wesspn

west ok

west onbs
WCSWCS
wct onb

wexcol

Programming Tools and Interfaces
String Routines

sp.

Conpares two wi decharacter strings based on the binary ordering
of the characters.

Copi es wi decharacter string to wi decharacter string.

Finds the length of the initial portion of w decharacter string
sl of wide characters not in w decharacter string s2.

Det ermi nes the nunber of w decharacters in a w decharacter
string.

Appends a count of w decharacters of one string to another
string.

Compares a specific nunber of w de characters in one
wi decharacter string to another w decharacter string. The
conpari son is based on the binary ordering of the characters.

Copi es a specific nunber of w de characters from one
wi decharacter string to another w decharacter string.

Returns pointer to the first occurrence in the string pointed to
by the sl paraneter of any character fromthe string pointed to
by the s2 paraneter.

Locates a wide character in a wi decharacter string.

Ret urns nunber of wi de characters in the initial segnment of a
string.

Returns a pointer to an occurrence of a text token in the string
pointed to by the sl paraneter. The s2 paraneter specifies a
set of token delimters. At the found character in sl1, a NULL
character is replaced and a pointer to the first w de character
of the text token is returned.

Converts a string of wide chars into string of nmultibyte chars.
Locates strings.

Converts a wide character into a nultibyte character.

Fi nds uni que collating value or replacenent string for
character.

| Copyright IBM Corp. 1985, 1991
7.4.2-2

Programming Tools and Interfaces
String Manipulation

7.4.3 String Manipul ation

The string mani pul ati on functions incl ude:

0 Locate a character position within a strin
O Copy a strin

0 Concatenate string

0 Conpare string

O Translate a strin

0 Measure a string

The first group of functions require that header files be included in your
program and that particular |libraries be referenced. The regexp
functions, conpile, step, and advance, require the inclusion of header
files. regexp.h provides standard singlebyte character functionality;

NLr egexp. h nust be included for international character support. The
regcnp and regex functions are in |ibPW a.

conpil e Compi l es a regul ar expression for use by advance and step
Qutput is encoded in a |ocal e-i ndependent manner.

step Using a variable set by conpile, matches a regul ar expression
to the beginning of a string. Supports conpiling a nunber of
regul ar expressions (using conpile) before attenpting a
mat ch.

advance Advances recursively to match the rest of the string to the
rest of the expression, supporting netacharacters in a
regul ar expression. The advance function consults the |ocale
and uses the current collating sequence. |Its use is purely
for support of the conpile and step functions.

regcnp Conpil es a regul ar expression for use by regex. Qutput is
encoded in a | ocal e-i ndependent manner.

regex Executes a conpil ed regul ar expression against a string. The
locale is consulted and the current collating sequence is
used.

Note that these functions are to be used in nmatched sets:

conpi | e produces | ocal e-i ndependent output. This is processed by step
and advance, which consults the |locale and adjust their processing
accordi ngly.

regcnp produces | ocal e-i ndependent output which is exclusively for use
by regex. regex consults the |ocale and processes the expressions
passed to it according to the current collating sequence.

Al of the following functions are in libc.a. To use these string
routines you do not need to specify any special flag to the compiler or

i nclude any particular header file in your program If you want the
conpil er to check your usage, however, you should include string.h in your
prograny it contains the prototypes for these functions.

| Copyright IBM Corp. 1985, 1991
743-1

nbst owcs
wcst onbs
strcat
wcscat
nbscat
strchr
weschr
nmbschr

strcnp

wescnp

nbscnp

strcpy
wecscpy
nmbscpy

strcspn

wcscspn

NLst rcspn

strstr
strlen
wesl en
nbsl en
nbsdl en

wesdl en

strncat

wsncat

nbsncat

Programming Tools and Interfaces
String Manipulation

Converts a string of chars to whcar_t's.

Converts a string of wchar t's to chars.

Concat enates two strings.

Concatenates two strings of wchar t's.

Concatenates two strings of chars.

Searches string for character

Searches string for wchar t's.

Searches string for char

Compares two strings using internal representations.

Conpares two strings of wchar t's using the current collation
sequence.

Conpares two strings of chars using the current collation
sequence.

Copi es string over string.
Copi es wchar _t string over wchar _t string.
Copi es string over string.

Returns the length of initial string not containing the
conpared set of characters.

Returns the length in characters of initial string not
containing the conpared set of wchar t's.

Returns the length in bytes of initial string not containing
the conpared set of code points.

Locates a substring.

Returns the length of string.

Returns the length in characters of string of wchar t's.
Returns the length of string in bytes.

Returns the nunber of display columms occupied by a string.

Ret urns the nunber of display columms occupied by a string of
wchar _ts.

Concatenates up to a specified nunber of bytes from one
string to another string.

Concatenates up to a specified nunber of wchar t's from one
string to another string.

Concatenates up to a specified nunber of bytes from one
string to another string.

| Copyright IBM Corp. 1985, 1991
7.4.3-2

strncnp

wesnenp

nmbsncnp

st rncpy

wesncpy

nbsncpy

st rpbrk

wespbr k

nmbspbr k

strrchr
wesr chr
nmbsrchr

strspn

wesspn

nbsspn

strtok

west ok

nmbst ok

NLescstr

NLunescstr

NLfl at str

Programming Tools and Interfaces
String Manipulation

Compares up to a specified nunber of bytes fromone string
wi th another string.

Compares up to a specified nunber of wchar t's from one
string with another string.

Compares up to a specified nunber of bytes fromone string
wi th another string.

Copies up to a specified nunber of bytes fromone string to
anot her string.

Copies up to a specified nunber of wchar t's fromone string
to anot her string.

Copies up to a specified nunber of bytes fromone string to
anot her string.

Searches string for any of a set of bytes.

Searches code point string for the first occurrence of any of
a set of chars.

Searches string for the first occurrence of any of a set of
code points.

Searches string backwards for character
Searches string for the |ast occurrence of an wchar t.
Searches string for the |last occurrence of a code point.

Returns the length of an initial string containing a set of
byt es.

Returns the length of an initial string of wchar t's
contai ning the set of code points.

Returns the length in bytes of an initial string containing
the set of code points.

Searches string for a token separated by any of a set of
byt es.

Searches string for a token separated by any of a set of w de
characters.

Searches string for a token separated by any of a set of
nmbchar ts.

Converts a string possibly containing extended characters
into ASCI| bytes, preserving character information by
converting each NLchar into a menonic string of ASCI | bytes.

Converts a string of ASCI| bytes, possibly containing escape
sequences representing extended characters, into a string in
whi ch any escape sequences are converted to NLchars.

Converts a character string possibly containing extended

| Copyright IBM Corp. 1985, 1991
7.4.3-3

Programming Tools and Interfaces
String Manipulation
characters into ASCI|I bytes, preserving character appearance
by converting each code point to an ASCI|I character it
resenbl es.

| Copyright IBM Corp. 1985, 1991
743-4

Programming Tools and Interfaces
Memory Manipulation

7.4.4 Menory Manipul ation

The nmenory functions operate on arrays of characters in nenory called
menory areas. The menory mani pul ation functions include:

O Locating a character within a nenory are
O Copying characters between nenory area
0 Conparing contents of nenory area

0 Setting a nenory area to a val ue

You do not need to specify any special flag to the conpiler to use the
menory functions.

I nclude the header file for these functions in the program To include a
header file, use the follow ng statenent:

#i ncl ude <menory. h>
Al'l include statenments should be near the beginning of the first file
bei ng conpiled, usually in the declarations section before nmain(), and
must occur before using any library functions.
The nmenory routines performthe foll ow ng functions:
nenccpy Copi es characters fromone nenory area to anot her, stopping at

the first occurrence of a specified character or after a
speci fied nunber of characters are copied

mencpy Copi es a specified nunber of characters fromone nenory area to
anot her.
menchr Finds the first occurrence of a specified character in a nmenory

area, and returns a pointer to that character.

mencnp Compares the contents of two nenory areas up to a specified
maxi mum nunber of characters.

menset Sets the contents of a nmenory area to a specified val ue.

| Copyright IBM Corp. 1985, 1991
7.4.4-1

Programming Tools and Interfaces
Character Manipulation

7.4.5 Character Mnipul ation

The character mani pul ation functions and nmacros test and transl ate ASCI |
characters.

The character mani pul ati on functions and rmacros are grouped into the
foll ow ng categories:

O Character testin
O Character translatio

O Character coll ation

Subt opi cs

7.4.5.1 Character Testing
7.4.5.2 Character Translation
7.4.5.3 Character Collation
7.4.5.4 Character Header File

| Copyright IBM Corp. 1985, 1991
745-1

Programming Tools and Interfaces
Character Testing

7.4.5.1 Character Testing

Use the follow ng functions and macros to find out the type of a
character; punctuation, al phabetical and case querying functions for
wchar t values may vary depending on the current collation table:

i sal num I's
i sal pha I's
i sasci i I's
iscntrl I's
isdigit I's
i sgraph I's
i sl ower I's
i sprint I's
i spunct I's
i sspace I's
i supper I's
i sxdigit I's
i swal num I's
i swal pha I's
i swentrl I's
i swdi git I's
i swgr aph I's
i sw ower I's

swpri nt I's

swpunct I's

swspace I's

swupper I's

swxdi gi t I's
NG sal pha I's
NCi supper I's
NG sl ower I's

NG sdi gi t I's

character al phanuneric?

character al phabetic?

character ASCII?

character a control character?

character a digit?

character a printing character (not including space)?
character a | owercase letter?

character a printing character (including space)?
character a punctuation character?

character a white space character?

character an uppercase character?

character a hexadecimal digit?

wchar t al phanuneric?

wchar t al phabetic?

wchar t a control character?

wchar t a digit?

wchar t a printing character (not including space)?
wchar t a |owercase letter?

wchar t a printing character (including space)?
wchar t a punctuation character?

wchar t a white space character?

wchar t an uppercase character?

wchar t a hexadecimal digit?

NLchar an al phabetical character?

NLchar an uppercase al phabetical character?
NLchar a | owercase al phabetical character?

NLchar a decimal digit?

| Copyright IBM Corp. 1985, 1991
7451-1

NCi sxdi git
NG sal num

NCi sspace

NCi spunct

NCi spri nt

NCi sgr aph

NG scntrl

wec_eqvmap

Programming Tools and Interfaces
Character Testing

I's NLchar a hexadecinmal digit?
I's NLchar an al phabetical character or digit?

I's NLchar a space, tab, carriage return, newine, vertical
tab, or formfeed character?

I's NLchar a punctuation character?

I's NLchar a printing character (including the space
character)?

Is NLchar a printing character (excluding the space
character)?

I's char or wchar t an ASCI| delete character (0177) or an
ordinary ASCII control character other than the single-shift
characters that indicate an extended character.

I's the character an wchar t that begins an (collation val ue)
equi val ence class? (Returns non-zero if it is, and O if it
is not.) (The character nmust be processed by wc_col uniq
first. See below)

| Copyright IBM Corp. 1985, 1991
7.451-2

Programming Tools and Interfaces
Character Translation

7.4.5.2 Character Transl ation

Use these functions to translate characters fromone formto anot her:

toasci i Converts integer to ASCII character.
t ol ower Converts character to | owercase.

t oupper Converts character to uppercase.
wct ol ower Converts wchar_t to | owercase.

wct oupper Converts wchar t to uppercase.

| Copyright IBM Corp. 1985, 1991
7452-1

Programming Tools and Interfaces
Character Collation

7.4.5.3 Character Coll ation

Redefinabl e character collation is a feature provided for internationa

character

support. Collation is performed by macros using a collation

file created froma collation table by ctab conmand

wc_col | ate

wc_col uni g

wec_eqvmap

Returns the collating value of the character for which it is
cal | ed.

Assi gns a uni que sequential value to characters in
equi val ence cl asses, so that all characters have a uni que
val ue for use by wc_eqvmap.

Returns a non-zero value if the unique collation val ue
produced by wc_col uni g begi ns an equival ence class, which is
a set of characters that can be treated as identical in sone
collating contexts. Oherwise, it returns O.

| Copyright IBM Corp. 1985, 1991
7453-1

Programming Tools and Interfaces
Character Header File

7.4.5.4 Character Header File

The character header file is ctype.h in the /usr/include directory. It
contains macro definitions and data declarations that the string functions
use.

| Copyright IBM Corp. 1985, 1991
7454-1

Programming Tools and Interfaces
Time
7.4.6 Tine
The tinme functions access and reformat the current systemdate and tine.
You do not need to specify any special flag to the conpiler to use the
time functions.

I nclude the header file for these functions in the program To include a
header file, use the follow ng statenent:

#i ncl ude <tinme. h>
Al'l include statenments should be near the beginning of the first file
bei ng conpiled, usually in the declarations section before nmain(), and

nmust occur before using any library functions.

These functions (except tzset) convert a tinme such as the tinme returned by
the time system call

asctine Returns string representation of date and ti ne.

ctine Returns string representation of date and tinme, given integer
form

difftime Conputes time difference.

gntine Returns G eenwi ch Mean Ti ne.

|ocaltinme Returns |ocal tine.

tzset Sets tinme zone field fromenvironnent variable.

Subt opi cs
7.4.6.1 Tinme Header File

| Copyright IBM Corp. 1985, 1991
746-1

Programming Tools and Interfaces
Time Header File

7.4.6.1 Tinme Header File

The header file for the tinme functions is tinme.h in the /fusr/include
directory. It includes declarations for variables that the tinme functions
use, such as:

tm A structure that the gntine and |ocaltinme functions return.

daylight An integer that is nonzero to use Daylight Savings Tine
conver si ons.

t znane A character that defines the nanme of tinme zones. The system
overrides this variable if the TZ variables are defined in the
system environnent. Setting the TZ variabl e changes the val ues
defined in the header file for daylight, tinmezone and tznane.

Functions that define a | arge nunber of tinme-related variables are al so
supported in the tinme.h header file. For exanple:

ctine Converts the structure for tine (a value in seconds since
00: 00: 00 Greenwi ch Mean Tine, January 1, 1970) into a
character string for day, date, and tine.

NLstrtine Using the structures of ctinme, formats tine and date data into
strings using an international character support format
establ i shed by environnent variabl es.

NLt nti me Takes a string and sets a tinme structure. The string data is
handl ed in formats established by environment variables for
i nternational character support.

| Copyright IBM Corp. 1985, 1991
746.1-1

Programming Tools and Interfaces
Numerical Conversion

7.4.7 Nunerical Conversion

These functions perform nunerical conversion. You do not need to specify
any special flag to the conmpiler or include a header file to use these
functi ons.

a64l Converts string to base 64 ASCl I

at of Converts string to floating.

at oi Converts string to integer

at ol Converts string to |ong.

frexp Splits floating into manti ssa and exponent.
| 3t ol Converts 3-byte integer to |ong.

Itol 3 Converts long to 3-byte integer.

| dexp Conbi nes manti ssa and exponent.

| 64a Converts base 64 ASCI| to string.

nmodf Splits mantissa into integer and fraction

| Copyright IBM Corp. 1985, 1991
74.7-1

Programming Tools and Interfaces
Group File Access

7.4.8 Goup File Access

These functions access the group file. You do not need to specify any
special flag to the conpiler to use these functions.

I nclude the header file for these functions in the program To include a
header file, use the follow ng statenent:

#i ncl ude <grp. h>
Al'l include statenents should be near the beginning of the first file
bei ng conpiled, usually in the declarations section before nmain(), and
must occur before using any library functions.
endgrent Closes group file being processed.
getgrent Gets next group file entry.
getgrgid Returns next group with matching gid.
getgrnam Returns next group with matchi ng nane.

setgrent Rew nds group file being processed.

| Copyright IBM Corp. 1985, 1991
748-1

Programming Tools and Interfaces
Password File Access

7.4.9 Password File Access

These functions search and access information stored in the password file
/ et c/ passwd.

I nclude the header file for these functions in the program To include a
header file, use the follow ng statenent:

#i ncl ude <pwd. h>
Al'l include statenents should be near the beginning of the first file
bei ng conpiled, usually in the declarations section before nmain(), and
must occur before using any library functions.
endpwent Cl oses password file being processed.
get pw Sear ches password file for user ID.
get pwent Gets next password file entry.
get pwnam Returns next entry w th matchi ng nane.
getpwiid Returns next entry with matching user ID

put pwent Wites entry on stream

set pwent Rew nds password file being accessed.

| Copyright IBM Corp. 1985, 1991
749-1

Programming Tools and Interfaces
Parameter Access

7.4.10 Paraneter Access

These functions get several different types of paraneters fromthe system
You do not need to specify any special flag to the conpiler or include any
header file to use these functions.

get opt Gets next option fromoption list in conmand.
get cwd Returns string representation of current directory.
get env Returns string val ue associ ated with environment variabl e.

NLgetenv Returns string value associated with international character
support environnment vari able.

get pass Reads string fromterm nal w thout echoing.

| Copyright IBM Corp. 1985, 1991
7.4.10-1

Programming Tools and Interfaces
Hash Table Management

7.4.11 Hash Tabl e Managenent

These functi ons manage hash search tables. You do not need to specify any
special flag to the conpiler or include any header file to use these
functi ons.

hcreate Creates hash table.

hdestroy Destroys hash table.

hsear ch Searches hash table for entry.

| Copyright IBM Corp. 1985, 1991
74.11-1

Programming Tools and Interfaces
Binary Tree Management

7.4.12 Binary Tree Managenent

These functions nanage a binary tree. You do not need to specify any
special flag to the conpiler or include any header file to use these

functi ons.
tdel ete Del etes nodes from binary tree.

tsearch Searches binary tree.

t wal k Wal ks through a binary tree to a specified |evel, and perforns a
specified action at each node of the tree.

| Copyright IBM Corp. 1985, 1991
74.12-1

Programming Tools and Interfaces
Table Management

7.4.13 Tabl e Managenent

These functions nmanage a table. The table is a two-di nensional character
array. The first subscript defines the maxi mum nunber of entries in the
table. The second subscript defines the width (or length) of a single
entry. These functions do not allocate storage. Be sure to allocate
sufficient nenory before using these functions.

You do not need to specify any special flag to the conpiler or include any
header file to use these functions.

bsearch Searches tabl e using binary search.
| search Searches tabl e using |inear search.

gsort Sorts table using quicker-sort algorithm

| Copyright IBM Corp. 1985, 1991
7.4.13-1

Programming Tools and Interfaces
Memory Allocation

7.4.14 Menory Allocation
These functions allocate or free nmenory fromthe program

You do not need to specify any special flag to the conpiler or include any
header file to use these functions.

cal | oc Al'l ocates zeroed storage.
free Frees previously allocated storage.
mal | oc Al l ocat es storage.

real |l oc Changes size of allocated storage.

| Copyright IBM Corp. 1985, 1991
7.4.14 -1

Programming Tools and Interfaces
Pseudo-random Number Generation

7.4.15 Pseudo-random Nunber GCeneration

These functions generate pseudo-random nunbers. The functions that end
W th 48 use a pseudo-random nunber generator based upon the |inear
congruential algorithmand 48-bit integer arithnmetic. The rand and srand
functions use a multiplicative congruential random nunber generator with
period of 2(32).

You do not need to specify any special flag to the conpiler or include any
header file to use these functions.

dr and48 Returns a random double , n, in the interval:
0 =n< 1.
| cong48 Sets paraneters for drand48, |rand48, and nrand48.
| rand48 Returns a randomlong, n, in the interval:
0 = n < 2(31)
nrand48 Returns a randomlong, n, in the interval:
-2(31) = n < 2(31)
rand Returns a randominteger, n, in the interval:
0 = n < 2(15)
seed48 Seeds the generator for drand48, |rand48, and nrand48.
srand Seeds the generator for rand.

srand48 Seeds the generator for drand48, |rand48, and nrand48.

| Copyright IBM Corp. 1985, 1991
7.4.15-1

Programming Tools and Interfaces
Signal Handling

7.4.16 Signal Handling

These functions sinulate the functions avail able fromthe signal handling
functions provided by the systemcalls for signals described in "Signa
Calls" in topic 8. 5.1. These functions indicate error handling to other
processes, and conmmuni cate with ot her cooperating processes.

You do not need to specify any special flag to the conpiler to use these
functions.

I nclude the header file for these functions in the program To include a
header file, use the follow ng statenent:

#i ncl ude <signal . h>
Al'l include statenments should be near the beginning of the first file
bei ng conpiled, usually in the declarations section before nmain(), and
must occur before using any library functions.

These decl arations define ASCII names for each of the software signals.

gsi gnal Sends a software signal
rai se Sends a signal .
ssi gnal Arranges for handling of software signals.

| Copyright IBM Corp. 1985, 1991
7.4.16-1

Programming Tools and Interfaces
Miscellaneous

7.4.17 M scel | aneous

These functions perform services that do not appear in any of the previous
cat egori es.

You do not need to specify any special flag to the conpiler or include any
header file to use these functions.

abort
abs
ecvt
fcvt
gcvt

isatty

| abs

nmoni t or

swab

ttyname

ttysite

Sends an 1Ol (I/Otermnate) signal to the process.
Returns the absol ute integer val ue.

Converts double to string.

Converts double to string using FORTRAN format.
Converts double to string using FORTRAN F or E fornat.

Tests whether integer file descriptor is associated with a
term nal .

Returns the absolute | ong integer val ue.

Causes process to record a histogram of program counter
| ocati on.

Swaps and copi es bytes.

Returns the path nanme of terminal associated with integer file
descri ptor.

Finds the site nunber of the term nal associated with integer
file descriptor.

| Copyright IBM Corp. 1985, 1991
7.4.17-1

Programming Tools and Interfaces
Run Time Services Library

7.5 Run Tinme Services Library

The run time services |library routines allow you to access the foll ow ng
system functions from your program

0 Configuration service
0 Message service

0 Trac

0 Error |ogging

The functions are in the file /usr/lib/librts.a which is one of the
default libraries, so you can use the following command line entry to | oad
t he needed functions when |inking a C |anguage program

cc file.c

I ncl ude header files,

Operating System Techni ca
as wel |

routine,
cf gadev
cf gami
cfgaply
cfgcadsz
cfgccl sf
cfgcdl sz
cf gcopsf
cfgcrdsz
cf gddev
cf gdmi
errunix
ndverify
nmsghel p
nsgi ned
nsgqued
nmsgrtrv
trace_on

trc_start

as

as needed, when using these routines. See Al X
Ref erence for the header files needed wt
detail ed i nfornati on about their use.

Adds a devi ce.

Adds a m ni di sk.

Applies configuration information.

Adds or

replaces a stanza in an attribute file.

Closes an attribute file.

Del etes a stanza froman attribute file.

Opens an attribute file.

Reads an attribute file stanza.

Del etes a devi ce.

Del etes a nini di sk.

Logs errors that occur when running a program

Controls wite-verify operation for a mnidisk.

Retri eves

Retri eves

Retri eves

Retri eves

Checks whet her trace channe

and di spl ays a predefined hel p nessage.
and out puts a predefined i medi ate nessage.
and out puts a predefined queued nessage.
text for i nsert or

a message, hel p.

i s enabl ed.

Lets a process start a trace daenon.

| Copyright IBM Corp. 1985, 1991
75-1

h each

Programming Tools and Interfaces
Run Time Services Library

trc_stop Lets a process stop a trace daenon.
trcuni x Records trace log entries for a program

The library also contains other routines that these routines use to
performtheir functions.

| Copyright IBM Corp. 1985, 1991
75-2

Programming Tools and Interfaces
Math Library

7.6 Math Library

The math |ibrary consists of functions and a header file. Use the
follow ng command |line entry to tell the cc command to |ocate and | oad the
needed functions when it |inks a C |anguage program

cc file.c -Im

I nclude the header file for these functions in the program To include a
header file, use the follow ng statenent:

#i ncl ude <mat h. h>

Al'l include statenents should be near the beginning of the first file
bei ng conpiled, usually in the declarations section before nmain(), and
must occur before using any library functions.

The math header file is math.h in the /usr/include directory. This file
contains definitions for functions and nmacros that the math library
routines use. Al functions in the math library return double precision
val ues.

The functions are grouped into the follow ng categori es:

Trigononetric function
Bessel function

Hyper bolic function

M scel | aneous functions

[

ubt opi cs
1 Trigonometry
2 Bessel

3 Hyperbolic

4

S
-
7
7
7 M scel | aneous

b
. 6.
. 6.
. 6.
. 6.

| Copyright IBM Corp. 1985, 1991
76-1

Programming Tools and Interfaces
Trigonometry

7.6.1 Trigononetry

These functions conpute angles (in decinmal radi an neasure), sines,
cosi nes, and tangents. Al of these values are expressed in double
precision. The file math. h declares the val ues as doubl e.

acos Returns arc cosi ne.

asin Returns arc sine.

at an Returns arc tangent.

at an2 Returns arc tangent of a ratio.

cos Ret urns cosi ne.

hypot Returns the square root of the sum of the squares of two
nunber s.

sin Ret urns si ne.

tan Returns tangent.

| Copyright IBM Corp. 1985, 1991
76.1-1

Programming Tools and Interfaces
Bessel

7.6.2 Bessel

These functions cal cul ate bessel functions of the first and second ki nds
of several orders for real values. The bessel functions are:

jo, j1, jn, y0, y1, and yn

For descriptions of the functions, see bessel in Al X Operating System
Techni cal Reference.

| Copyright IBM Corp. 1985, 1991
76.2-1

Programming Tools and Interfaces
Hyperbolic

7.6.3 Hyperbolic

These functions conpute the hyperbolic sine, cosine, and tangent for rea
val ues.

cosh Ret urns hyperbolic cosine.
si nh Ret urns hyperbolic tangent.
tanh Ret urns hyperbolic tangent.

| Copyright IBM Corp. 1985, 1991
76.3-1

Programming Tools and Interfaces
Miscellaneous

7.6.4 M scel | aneous

These functions do not fall into any of the previously defined categories.
ceil Returns the snmallest integer not |ess than a given val ue.
exp Returns the exponential function of a given val ue.
f abs Returns the absolute value of a given val ue.
fl oor Returns the largest integer not greater than a given val ue.
f mod Returns the remai nder produced by the division of two given
val ues.
gamma Returns the natural |log of gamma as a function of the absolute

val ue of a given val ue.

| og Returns the natural |ogarithmof a given val ue.

pow Returns the result of a given value raised to another given
val ue.

sqrt Returns the square root of a given val ue

| Copyright IBM Corp. 1985, 1991
764-1

Programming Tools and Interfaces
Shared Libraries

7.7 Shared Libraries

Wth traditional libraries, each programhas a private copy of the library
code linked into the program The Al X shared library facility lets
mul ti pl e processes share the sane copy of library code napped into main
menory. This facility is available on PS/2 only. The prograns are |inked
as before, but instead of including the library code, a special section
(.1ib) is added to the program It contains the nanmes of the shared
libraries to be used during program execution

Shared libraries offer the follow ng benefits:

O Progranms that use shared libraries may use | ess di sk space because th
library code is not linked into each executabl e program

0 Processes that use shared libraries may require | ess main nenor
because the shared library code is only mapped into rmain nenory once.

0 The systemnmay require less tine to | oad prograns that use share
i braries because the shared library code may already be in main
nmenory.

0 Fewer page faults nmay be generated when shared |libraries are use
because the shared library code may already be in main nenory. This
can result in reduced disk activity which in turn can sonetines result
in better response tine.

A shared library is divided into the following two parts:
O Ahost library fi
O Atarget library file

The host library resenbles an archive file that is used during the |ink
edit of a program The target library resenbles an a.out file. It is
used during the execution of a program The Al X Operating System ensures
that the required target libraries are in the address space of the
executing program

Subt opi cs
7.7.1 Conparing Shared and Archive Libraries
2 Calls to a Shared Library

Usi ng a Shared Library

7.7.
7.7.3
7.7.4 Creating a Shared Library

| Copyright IBM Corp. 1985, 1991
7.7-1

Programming Tools and Interfaces
Comparing Shared and Archive Libraries

7.7.1 Conparing Shared and Archive Libraries

A host-shared library is simlar to an archive library in several ways.
Each of themare archive files. This neans that they contain text and
data synbols that are either defined and exported, or referenced and
inmported. Wen linking a program the link editor searches the library
for synbol definitions that resolve the program s external references.
When all these references have been resol ved, the program can be nade
executable. This is referred to as static |inking.

The differences between a shared library and an archive library are how
the synbolic references are resolved. To produce an a.out file using an
archive library, the link editor copies the library into appropriate .text
and .data sections in the programis object file. In contrast, to produce
an a.out file using a shared library, the link editor does not copy any
code fromthe library into the programs object file. Instead, it creates
a special section called .lib in the programis object file. This section
identifies the target-shared |library code needed at run tinme to resolve
the external references. Wen the Al X Operating System executes the
resulting a.out file, it uses the information in the .lib section to |oad
the required shared library code into nenory.

To denonstrate how space is saved, consider what happens when severa

a.out files need the same code froma library. Wen static linking with an
archive library, each programgets its own copy of the library. This
results in duplication of the sane code on the disk for each a.out file,
and in nenory when the prograns are executed. |In contrast, when a shared
library is used, only the .lib section is added to the program thus

savi ng di sk space. Wen executed, the target library is |oaded in nmenory,
where several prograns can share the library code, thus saving nmenory.

Note: In sonme cases, a shared library could add space to an executabl e,
and require nore nmenory. \When linking to a host shared library, all the
library routines are included. This neans that a routine that is not
referenced by the programw |l be included, and any additional references
made by that routine nust be included. |If a programrequires a data
region for a particular target library routine, it gets a copy of the data
region for the entire shared library. Each process gets a private copy of
those pages of the shared library's data region which are referenced by
that process. Only the text section is shared anong processes.

Therefore, if a programonly references a few library nenbers, it may be
better to link with an archive library that copies only those routines.

| Copyright IBM Corp. 1985, 1991
7.7.1-1

Programming Tools and Interfaces
Calls to a Shared Library

7.7.2 Calls to a Shared Library

Shared libraries all ow you to update the shared |ibrary code w thout
having to link the progranms already using it. This is inplenented by use
of a branch table. For an archive library, the link editor resolves
external references by binding the address of the synbol to the reference.
For a shared library, each synbol is associated with an absol ute address
of a branch table. These addresses do not change when the shared library
code is updated. An external reference is bound to that address by the
link editor. Each branch table address |abels a junp instruction to the
actual code for the synbol. This indirect reference allows for
flexibility in shared |ibrary support.

| Copyright IBM Corp. 1985, 1991
7.72-1

Programming Tools and Interfaces
Using a Shared Library

7.7.3 Using a Shared Library

Linking a file with a shared library is the same process as linking to an
archive library. The only difference is the nanme of the library
referenced. To deternine whether a program has been |inked to a shared
l'ibrary, use the dunp command (refer to the Al X Operating System Comrands
Ref erence Manual for additional information on this command). The -h flag

di spl ays all the program section headers. |If a .lib section is defined,
then a shared library has been Iinked to the program The -L flag
di spl ays the contents of the .|ib section, giving you the name of the

target shared library.

Usi ng the dbx command, you can debug a programthat has been |inked to a
shared |ibrary; however, you cannot debug the routines in the shared
library. You may find debugging easier if you re-link your programwth
an archive version of the shared library.

| Copyright IBM Corp. 1985, 1991
7.73-1

Programming Tools and Interfaces
Creating a Shared Library

7.7.4 Creating a Shared Library

To create a shared library, you nust first create a shared library
specification file. Next, you run the shlib2 conmmand to build the host
and target libraries.

Note: This section assunes you are famliar with building an archive
library.

Subt opi cs

7.7.4.1 The Shared Library Specification File
7.7.4.2 The shlib2 Conmand

7.7.4.3 The shlibrpt Command

7.7.4.4 A Sanple Shared Library

7.7.4.5 Quidelines

7.7.4.6 Choosing Library Menbers

7.7.4.7 Witing Code to a Shared Library
7.7.4.8 lnporting Synbols

7.7.4.9 Tuning Shared Library Code

7.7.4.10 Archive and Shared Library Conpatibility
7.7.4.11 Shared Library Upward Conpatibility

| Copyright IBM Corp. 1985, 1991
7.74-1

Programming Tools and Interfaces
The Shared Library Specification File

7.7.4.1 The Shared Library Specification File

The shared library specification file is required by the shlib2 command.
It is a user created file that defines the necessary information to build
a shared library. The following directives are defined in the shared
library specification file:

#address section address

Specifies the start address of the given target file section
The start address of the .text and .data sections are defined
with this directive.

The foll owi ng shows the defined address ranges for Al X

o m o m o o o o o e o e e e e e e e e e e e o e e e e e e e e e e e m e ma—a—o - +
| OxDO000000 - OxD7FFFFFF | Avail able for Users |
o o |

| OxDB000000 - OxDFFFFFFF | Reserved for AIX libraries

o m o m o o o o o e o e e e e e e e e e e e o e e e e e e e e e e e m e ma—a—o - +

Note: Several shared libraries can define the sanme virtua
addresses as long as they are not linked in the sanme program
Conflicts occur only within a single process, not anbng separate
processes.

#target path

#br anch

#obj ect s

Specifies the path nane of the target shared library. This is
the |l ocation where the operating system | ooks for the shared
l'ibrary during execution. Nornally, path will be an absol ute
path nanme, but it does not have to be.

Note: Only use this directive once.

Specifies the beginning of the branch table specifications.
They are in the followi ng fornat:

synmbol position

where synbol is the nane of an externally defined function, and
position is the position of the synbol's branch table entry.
position is an integer (i.e. 1), or range of integers (i.e.
2-10). Al positions nust be specified from1 to the highest
position, and no position can be duplicat ed.

A synbol that has nore than one position associated with it, is
defined as the highest position given. The other positions are
consi dered enpty slots that can be replaced by new symnbol s.
Note: Only use this directive once.

Specifies the nanes and order of the object files put into the

target shared library.

Note: Only use this directive once.

#init object

Specifies that the given object file requires initialization
code, as defined by initialization specifications. They are in

| Copyright IBM Corp. 1985, 1991
7.74.1-1

Programming Tools and Interfaces
The Shared Library Specification File

the followi ng format:
poi nt er synbol

where pointer is a pointer to the inported synmbol and nust be
defined in the object file. Each initialization sets the
pointer to its default value. The generated initialization code
is simlar to the follow ng format:

poi nt er =&synbol ;
Any initialization specifications for a given object file nust

be defined together. Miltiple specifications of the same object
file are not all owed.

#i dent string
Specifies a string to be included in the .coment section of the
target library and each nenber of the host l|ibrary.

Note: Only use this directive once.

#it
Specifies a conment |ine.

| Copyright IBM Corp. 1985, 1991
7.74.1-2

Programming Tools and Interfaces
The shlib2 Command

7.7.4.2 The shli b2 Command

The shlib2 command is used to build both the host and target libraries.
Thi s conmand i nvokes the assenbler, as, and link editor, |d, as part of
its processing. See the AIX Operating System Commands Reference Manua
for nore informati on on these comands. The syntax of the shlib2 comuand
is as foll ows:

shlib2 -s file -t target [-h host] [-n] [-q]

-s file Specifies the shared library specification file. This required
file contains all the information necessary to create a shared
library. |Its contains the branch table specifications for the
target, the path nanme in which the target should be install ed,
the start addresses of text and data for the target, the
initialization specifications for the host, and the |ist of
object files to be included in the shared library. See "The
Shared Library Specification File" above.

-t target Specifies the nane of the target shared library. Wen target is
noved to the target machine, it should be installed at the
| ocation given in the specification file (see the #target
directive in the section "The Shared Library Specification
File").

Note: A new target shared library will not be generated if the
-n option is specified.

-h host Specifies the nane of the host shared library. |[If this option
is not given, then the host shared library will not be produced.

-n Prevents a new target shared |library from being generated. This
option is useful when producing only a new host shared library.
The -t option must still be supplied since a version of the
target shared library is needed to build the host shared
l'ibrary.

-q Suppresses the printing of certain warni ng nessages.

| Copyright IBM Corp. 1985, 1991
7.742-1

Programming Tools and Interfaces
The shlibrpt Command

7.7.4.3 The shlibrpt Conmmand

The shlibrpt command is a tool to help you create a shared library
specification file. The input required is alist of .o files that are to
conprise a shared library. shlibrpt generates the follow ng

0 A shared library specification file tenplat
O Aninport.c file tenplat

O Aninport.h file tenplat

O A conplete cross reference

The output of the shlibrpt command nust be edited to create the fina
versions of required files for input to the shlib2 comand. The tenplate
files contain token itens encl osed by angl e brackets < > that need to be
replaced. These include the type of a variable and the |evel of
indirection. These two itens cannot be determned fromthe object files.
The token for the level of indirectionis [*]. The rule is that the use
of inmported variables/routines adds one extra |evel of indirection. This
extra level is taken care of in the template. You must fill in the
original level of indirection.

The shlibrpt command requires that all .o files have a synbol table. |If
they are assenbly files, the assenbler source code nust contain the .file
assenbly directive; otherwi se, the cross reference may fail

| Copyright IBM Corp. 1985, 1991
7.743-1

Programming Tools and Interfaces
A Sample Shared Library

7.7.4.4 A Sanple Shared Library

In the follow ng exanple, we will build a shared library to show the
procedure that you should follow and point out certain problemareas. The
exanpl e we have chosen is that of a message queue nanager. The exanple
consists of three files queue.h, global.c, and queue.c.

/* queue.h - definition of the queue structure used in the queue manager */

struct queue {
struct queue *next ;
char *qgnsg ;

b
typedef struct queue QUEUE ;
/* global.c - global variables used in the nessage queue manager */
#i ncl ude "queue. h"
QUEUE *qghead 0 ;

QUEUE *qt ai | 0 ;
unsi gned int gcount = 0 ;

/* queue.c - queue manager exanple */

#i ncl ude <stdio. h>
#i ncl ude "queue. h"

#defi ne SUCCESS 1
#defi ne FAI LURE O

/* external routines */
extern char *call oc()
*mal | oc() ,

*strepy() ;

externint fprintf() ,
strlien() ;

extern void free() ;

/* external variables */
QUEUEe* ghead, *qtail
i nt xgcount ;

/* add a nessage to the tail of the queue */

addq(nessage)
*message ;

{
regi ster QUEUE *newrenbr ;

newnenbr = (QUEUE *) calloc(1, sizeof (QUEUE));
if (newrenbr == NULL) {
fprintf(stderr, "Qut of nmenory\n") ;
return(FAILURE) ;

| Copyright IBM Corp. 1985, 1991
7.74.4-1

Programming Tools and Interfaces
A Sample Shared Library

if (ghead == NULL) {/* initial - no nenbers */

ghead = /* update head & tail */
gtail = newrenbr
}
el se {
gtail ->next = newrenbr ; [* forge link */
gtail = newrenbr ; /* advance tail ptr */
}

newrenbr->qnmeg = nmalloc(strlen(nmessage) + 1) ;
if (newnenbr->qgnsg == NULL) {

fprintf(stderr, "Qut of nmenmory\n") ;

return(FAILURE) ;

}

++qcount ;
return((int) strcpy(newrenbr->qnsg, nessage)) ;
}
/* remove a nessage fromthe head of the queue */
rog()
{ regi ster QUEUE *qcur ;

if ((gcur = ghead) == NULL)

return(FAILURE) ; /* enpty queue */
ghead = ghead- >next ; /* new queue head */
free(qcur->qnsg) ; /* free space for queue nenmber */
free(qcur) ;
--qcount ; /* new queue count */

return(SUCCESS) ;
}

/* flush the entire message queue */

flushqg(fdes)
FI LE *fdes

{

while (gcount) {
fprintf(fdes, ghead->qmsg) ;
rmg()

Note: The global.c file is suggested for ease of maintenance. |f any new
gl obal variables are needed as part of an update to the shared |ibrary,
they can be added to the end of the old definitions. This preserves the
ol d synbol s’ addresses.

To aid in the building of a shared library, we can use the shlibrpt
command. First we conmpile the source files to produce the object files
gl obal . 0 and queue. o:

| Copyright IBM Corp. 1985, 1991
7.74.4-2

Programming Tools and Interfaces
A Sample Shared Library

cc -c queue.c global.c
Then use shlibrpt to get a report file for editing:
shli brpt queue.o gl obal.o > REPORT
The report file consists of four sections:
O A shared library specification fi
O An inport.h tenplat
O An inport.c tenplat
O A cross reference
Note: For this small exanple, the cross reference is not needed and wl|
not be shown here. However, for a large collection of files it is very

usef ul .

After editing the report file, the three files we will be using in
creating the sanple shared library are shown in the foll ow ng exanpl e.

<spec filenanme> - specification file for shared library <name>

#address .text <start of text>
#address .data <start of data>

#target <target |ibrary nane>
object files in library:

#obj ect s
i mport.o
gl obal . o
gueue. o
Branch Table Entries :
#branch
addq 1
fl ushqg 2
rng 3
| nported Synbol s:
i mport.o
<lib nane>_ _iob
_<lib name>_call oc call oc
_<lib nane>_fprintf fprintf
_<lib nane>_free free
_<lib nane>_mal | oc mal | oc
_<lib nane>_strcpy strcpy
_<lib nane>_strlen strlen

** END OF SPEC FI LE TEMPLATE **

/* inport.h - tenplate for macro re-definitions */

#define _iob (*_<lib nane>_ _iaob)
#define calloc (*_<lib name>_call oc)
#define fprintf (*_<lib nane>_fprintf)
#define free (*_<lib name>_free)

| Copyright IBM Corp. 1985, 1991
7.74.4-3

Programming Tools and Interfaces
A Sample Shared Library
#define malloc (*_<lib name>_mall oc)
#define strcpy (*_<lib name>_strcpy)
#define strlen (*_<lib nane>_strlen)

extern <type>
extern <type>
extern <type>

[*]_iob();
[*]
[*]
extern <type> [*]
[*]
[*]
[*]

calloc();
fprintf();
free();
mal | oc();

strcpy();
strlen();

extern <type>
extern <type>
extern <type>

[*** END OF | MPORT. H FI LE TEMPLATE ***/
/* inport.c - tenplate for inported synbol initialization */

<type> [*](*_<lib name>_ _iob)() = 0 ;
<type> [*]1(*_<lib name>_calloc)() = 0 ;
<type> [*]1(*_<lib name>_fprintf)() =0 ;
<type> [*](*_<lib name>_free)() =0
<type> [*]1(*_<lib name>_nmalloc)() = 0 ;
<type> [*]1(*_<lib name>_strcpy)() = 0 ;
<type> [*](*_<lib name>_strlen)() = 0 ;

[*** END OF | MPORT. C FI LE TEMPLATE ***/

Further editing is needed to get these three files into the final form
needed to build a shared library. Beginning with the specification file,
we must choose the addresses for the library's .text and .data sections.
From the segnents reserved for private use we choose the follow ng

t ext: 0xD0000000
dat a: 0xD0400000

Not e: These regi on addresses nust be on a page table boundary, which is
0x400000 for Al X on the PS/2.

Next, we choose the full path nane for our target shared library. 1In this
exanple, we will choose the current directory with the library nane of
libg_s so the full path name for the target is ./libqg_s.

Finally, we replace the <lib nanme> tokens in the #init directive of the
specification file with our chosen library nane, libg. Using the library
nane as a prefix to the inported synbol pointers reduces the chance of a
nane conflict occurring. Wth these changes, the final specification file
appears as shown bel ow

Note: In the list of object files (#objects), inport.o is first. This is
because inported data files should be defined first to preserve future
compatibility. OQherwise, a change in the size of static data in queue.o
woul d change the addresses of the external data synbols.

libg.sl - specification file for shared library |ibg_s

#address .text 0OxDO0O0000O
#address .data 0xD0400000

#target ./libg_s

object files in library:

| Copyright IBM Corp. 1985, 1991
7.74.4-4

Programming Tools and Interfaces
A Sample Shared Library

#obj ect s
i mport.o
gl obal . o
gueue. o
Branch Table Entries :
#branch
addq 1
fl ushqg 2
rng 3
| nported Synbol s:
i mport.o
libg _iob
_libg_calloc call oc
_libg_fprintf fprintf
_libg_free free
_libg_mall oc mal | oc
_libg_strcpy strcpy
_libg_strlen strlen

Since it is convenient to have a common source base for both shared and
unshared versions of a library, we have the inport.h file. W change the
original source code to add a conditional statenment that includes the
inport.h file when a shared library version is to be nade.

Fol | ow ng the same procedure as in the specification file, we will replace
all occurrences of the token <lib name> with the library nane |ibg. The
shlibrpt command anal yzed the object files of the library to produce the
import.h file. Since there is no information in the object file that

i ndicates the type of an inported variable, we nmust check the source file
or Al X docunentation to deternmine the type. W then replace the <type>
token with the appropriate type of the inported variable. Next, we nust
determne the level of indirection of the inported variable. For exanple,
the routine calloc() returns a pointer to a char, so in the inport.h file,
we have the declaration

extern char *call oc()

The shlibrpt command al so cannot determne if an external reference is
made to a function or to a variable in the .data section. Therefore,
shlibrtp assunes that all references external to the shared library are to
external functions. This is true for the mgjority of external references.
In our example; however, we have one exception to this rule. The variable
_iob is actually a reference to an array defined in stdio.h. This nmakes
the declaration in inport.h redundant. Therefore, in the edited file

i nport.h which appears bel ow, we have renoved the extern declaration for

i ob.

/* inport.h - macro re-definitions for |ibqg */

#defi ne _iob (*_libg_ _iob)

#defi ne call oc (*_libg_calloc)
#def i ne fprintf (*_libg_fprintf)
#def i ne free (*_libg_free)

#defi ne mal | oc (*_libg_mall oc)
#defi ne strcpy (*_libg_strcpy)
#def i ne strlen (*_libg_strlen)

extern char *calloc();
extern int fprintf();

| Copyright IBM Corp. 1985, 1991
7.74.4-5

extern
extern
extern
extern

Final ly,

Programming Tools and Interfaces
A Sample Shared Library
void free();
char *mal | oc();
char *strcpy();
int strlen();

we need a source file to hold the definitions of the inported

synbol pointers. This is the purpose of the inport.c file which appears
in edited formbelow Note the correction to the declaration of the
pointer to iob. Also note the inclusion of stdio.h. This is necessary
since the type FILE is defined in this include file.

/* i mported synbol

import.c - initialization for libg */

#i ncl ude <stdi o. h>

FILE (*_libg_ _iob)[]=

char *(*_libg_calloc)() = 0;
int (*_libg_fprintf)() =0 ;
void (*_libg_free)() = 0 ;
char *(*_libg_malloc)() = 0 ;
char *(*_libg_strcpy)() = 0 ;
int (*_libg_strlen)() =0 ;

A fragment of the nodified source file queue.c appears below. For this

exanple, the only difference between it and the original is the inclusion

of the new include file inport.h which nust be included before stdio. h.
/-k

queue.c - nodified queue nanager exanple */

#i ncl ude "inport.h"

<st di 0. h>
"queue. h"

#i ncl ude
#i ncl ude

Now we are ready to build the sanple shared library. First, we wll
conmpil e the source files:

cc -c inport.c global.c queue.c
Then we use shlib2 to build both our host and target libraries:

shlib2 -s libg.sl -t libg_s -h libg_s.a
Presumng all of the source files conpile correctly,
I ine shown above will create both the host library,

target library, Iibg_s.

the shlib2 command
libg_s.a, and the

In order to test the correct operation of the |ibg shared library, we
created the foll owing test program

/* qtest.c - test programusing exanple lib Iibg */

#i ncl ude <stdi o. h>

mai n()

{

char nsgbuf[256];

| Copyright IBM Corp. 1985, 1991
7.74.4-6

Programming Tools and Interfaces
A Sample Shared Library

register int i ;

addq("This is test O\n") ;
flushqg(stderr) ;

for (i=1,; i<11 ; ++i) "
sprintf(nsgbuf, "This is test %\n", i) ;

addq(nsgbuf) ;
}

flushqg(stderr) ;

}

The foll owi ng conmand conpiles and links the test programw th the shared
library, giving it the nane qtest.

cc -0 gtest gtest.c libg_s.a
Finally we run the test program by using the conmand:

/ gt est

| Copyright IBM Corp. 1985, 1991
7.74.4-7

Programming Tools and Interfaces
Guidelines

7.7.4.5 @idelines

The gui del i nes described here stress ways to increase sharing code while
avoi di ng the disadvantages of a shared library. The guidelines also stress
upward conpatibility.

You should keep in mnd the following restrictions to building a shared
library. These restrictions involve static |inking.

0 Exported synbols have fixed addresses. Therefore, if an exporte
synmbol noves, you have to re-link all prograns that use the shared
library and dat a.

O If the library's text changes for one process at run tine, it change
for all processes. Only the data can change because each process has
a private copy of the shared |ibraries data section.

O If the library uses a synbol directly, that synbol's run tinme valu
(address) nust be known when the library is built.

O Inported synbols cannot be referenced directly. Their addresses ar
not known when you build the library, and they can be different for
di fferent processes. You can use inported synbols by adding an
indirection through a pointer in the library's data.

| Copyright IBM Corp. 1985, 1991
7.745-1

Programming Tools and Interfaces
Choosing Library Members

7.7.4.6 Choosing Library Menbers

The nenbers of a shared library determne the efficiency of the library.
Each routine should be considered to see if it is best used in a shared or
archive library. The follow ng guidelines may help you in creating the
list of objects for a shared library:

O Include large, frequently used routine

0 Exclude infrequently used routine

0 Exclude routines that use too nmuch static dat
0 Exclude routines that conplicate maintenanc
O Include routines the library itself needs

The large, frequently used routines are best used in a shared library.
They save di sk space for individual programs, and save nmenory when
concurrent processes share the sane code.

Infrequently referenced routines in a shared |library can degrade
perfornmance, especially on paging systens. Because all the routines in a
shared library are loaded in nmenory, a page fault nay be nore likely to
occur if a called function is surrounded by unrelated library code. If a
shared library has unrelated functions, and unrel ated processes nake
randomcalls to those functions, the locality of reference may be
decreased, causing nore paging activity.

Routines that define static data increase the size of processes. Each
process that uses a shared library gets its own private copy of all the
library's data, regardl ess of how much of the data is actually needed.
Therefore, you should not include routines that require a lot of static
data. You can inport global data, if necessary, but not local, static
dat a.

Al exported synbols nust renmain at constant addresses. The branch table
makes this easy for text synbols, but data synmbols do not have an

equi val ent nmechani sm The nore data a library has, the nore likely sone of
themw || have to change size. Any change in the size of exported data nay
af fect synbol addresses and break compatibility. Avoid such routines as

t hey conplicate naintenance

You may wi sh to consider including all the routines referenced by existing
library routines. This would nmake the shared library self-contained. You
shoul d, however, take into consideration the previously nentioned

gui delines first.

| Copyright IBM Corp. 1985, 1991
7.746-1

Programming Tools and Interfaces
Writing Code to a Shared Library

7.7.4.7 Witing Code to a Shared Library

Code written to work in a shared library will also work in an archive
library. However, the reverse is not true because a shared |library nust
explicitly handle inported synbols. Code should be witten to be
conmpati bl e between the two types of libraries, and to be conpatibl e
between different versions of shared libraries.

Note: An archive version may be slightly bigger and sl ower.
The followi ng guidelines will help you attain this goal

O Mnimze gl obal dat

0 Define text and global data in separate source file

O Initialize gl obal dat

O Preserve branch table order

In a shared library, all external data synbols are gl obal; neaning they
are visible to applications. This can conplicate mai ntenance because the
addresses of external variables nmust remain constant. Therefore, you
should try to reduce the use of gl obal data.

One way to reduce the use of global data is to use automatic (stack)
vari abl es instead of permanent storage. You can also use static data,
which is not visible outside the library.

Data buffers can be allocated at run time instead of defined at conpile
time. This reduces the size of the library's data region for al

processes, and saves nenory so that only the processes that actually need
the buffers get them It also allows the size of the buffer to change

wi thout affecting conpatibility. Statically allocated buffers cannot
change size without affecting the addresses of other synbols and, perhaps,
breaki ng conpatibility.

Static data can affect conpatibility when m xed with gl obal data. When
the size of static data changes, it shifts the addresses of any gl oba
vari abl es declared after it. This can be within the same object file, or
in any object files linked after it.

To prevent data synbol addresses from noving, you can separate text from
gl obal data. |If new exported variables are needed, they can be added at
the end of the old definitions to preserve the old synbols addresses. It
hel ps to group all exported data synmbols and place them at | ower addresses
than the static data. This is controlled by the order of the list of
object files in the shared library specification file. Place the object
files containing the global data definitions at at the top of the list.

Note: There is no penalty for a shared library to define all globals in a
single file. There is however, an inpact to an archive library version
usi ng the sane code.

Initializing variables is another way to prevent their address from
changing. The order of uninitialized variables may not be consistent from
one link edit to the next. However, the link editor will not change the
order of the initialized variables, thus allowing a |library devel oper to
preserve conpatibility. Therefore, you should initialize exported

vari abl es, including the pointers for inported synbols. Even though this

| Copyright IBM Corp. 1985, 1991
7.74.7-1

Programming Tools and Interfaces
Writing Code to a Shared Library
uses nore disk space in the target shared library, the expansion is
limted to a single file.

The order of the specification file branch table should be maintained with
previous versions of the shared library. You should add any new function
only at the end of the branch table. As long as previous assignnments are
not changed, existing prograns do not have to be re-linked with the new
version of the shared library.

| Copyright IBM Corp. 1985, 1991
7.74.7-2

Programming Tools and Interfaces
Importing Symbols

7.7.4.8 lnporting Synbols

Symbol s defined outside a shared |ibrary cannot be directly accessed by
the shared library routines. However, a nmechani smexists where you can
define pointers in the data area and have theminitialized to the address
of the inported synbols. This allows you to access inported synbols
indirectly, delaying synbol binding until run tinme. Both text and data
synbol s can be inported. A shared |ibrary cannot contain unresol ved
references. Therefore, any undefined synbols nust be inported. The

i nported symbol s can cone fromthe user's code, another library, or even
the shared library itself.

Having a shared library inport its own synbols is useful if you wish to
all ow redefinition of these synmbols. A routine can be re-defined outside
the shared library and still be used by other routines within the shared
library. This provides full conpatibility between a shared and equi val ent
archive library.

Shared library code is different fromarchive library code because of

i mporting synmbols. The references to external synbols would change to
becone an indirect reference to the inport symbol pointers. This
difference in the source code can be hidden through the use of nmacro
definitions. You could define different versions of a header file; one
for a shared library that contains the nmacro definitions, and one for an
archive library that would be enpty. The -1 flag to the cpp conmand woul d
specify the appropriate directory fromwhich to get the header file.

Anot her way to keep common source code is to only define the shared
library header file, and conditionally include it in the source code. In
this case, you would use the -D flag to cpp to define the conditiona

vari abl e when you make the shared library version. To conplete the
transformation to shared library code, the pointer to the inmport synbol
must be defined and initialized to zero. This can be done in a separate C
source file to maintain source conpatibility. "A Sanple Shared Library"
in topic 7.7.4.4 shows you the nechanics of inporting synbols.

Al'l inported synbol pointers should have initialization code defined in
the specification file. shlib2 adds rel ocatable code that perforns the
inmport initialization to the specified object file in the host shared
library. It creates an unresolved reference to nmake sure the synbol being
inported gets resolved. Wien the link editor extracts the object file
fromthe host library, the rel ocatable code goes into the executable file.
It resolves the unresolved references and collects all initialization
code. Wen the file is executed, the systemstartup routi ne executes the
initialization code which sets the library pointers to their appropriate
values. This is done before the process calls min.

You may wish to consider witing C source files that define inported
synmbol pointers singly or in related groups to reduce unnecessary | oadi ng.
This will give the link editor a finer granularity to use when it resolves
the synmbols. Oherwise, the link editor may resol ve synbols that are not
required.

| Copyright IBM Corp. 1985, 1991
7.748-1

Programming Tools and Interfaces
Tuning Shared Library Code

7.7.4.9 Tuning Shared Library Code

Shared library code can be tuned by grouping routines so they share the
same page in nenory. To get information on the static and dynam c cal