

 AIX Operating System
 for the PS/2 and System/370
 Technical Reference

 Volumes 1 and 2

 Document Number SC23-2300-01

Copyright IBM Corp. 1985, 1991

 --
 AIX Operating System
 for the PS/2 and System/370

 Technical Reference

 Volumes 1 and 2

 Document Number SC23-2300-01

 --

Copyright IBM Corp. 1985, 1991

Edition Notice
 Third Edition (March 1991)

 This edition applies to Version 1.2.1 of the IBM Advanced Interactive
 Executive for the System/370 (AIX/370), Program Number 5713-AFL, and
 for Version 1.2.1 of the IBM Advanced Interactive Executive for the
 Personal System/2 (AIX PS/2), Program Number 5713-AEQ, and to all
 subsequent releases until otherwise indicated in new editions or
 technical newsletters. Make sure you are using the correct edition
 for the level of the product.

 Order publications through your IBM representative or the IBM branch
 office serving your locality. Publications are not stocked at the
 address given below.

 A form for reader's comments appears at the back of this publication.
 If the form has been removed, address your comments to:

 IBM Corporation, Department 52QA MS 911
 Neighborhood Road
 Kingston, NY 12401
 U.S.A.

 When you send information to IBM, you grant IBM a nonexclusive right
 to use or distribute the information in any way it believes
 appropriate without incurring any obligation to you.

 ¦ Copyright International Business Machines Corporation 1985, 1991.
 All rights reserved.
 ¦ Copyright Locus Computing Corporation 1988
 ¦ Copyright INTEL 1986, 1987
 ¦ Copyright AT&T Technologies 1984, 1987, 1988
 Note to U.S. Government Users -- Documentation related to restricted
 rights -- Use, duplication or disclosure is subject to restrictions
 set forth in GSA ADP Schedule Contract with IBM Corp.

AIX Operating System Technical Reference
Edition Notice

¦ Copyright IBM Corp. 1985, 1991
EDITION - 1

Notices
 References in this publication to IBM products, programs, or services do
 not imply that IBM intends to make these available in all countries in
 which IBM operates. Any reference to an IBM product, program, or service
 is not intended to state or imply that only IBM's product, program, or
 service may be used. Any functionally equivalent product, program, or
 service that does not infringe any of IBM's intellectual property rights
 or other legally protectible rights may be used instead of the IBM
 product, program, or service. Evaluation and verification of operation in
 conjunction with other products, programs, or services, except those
 expressly designated by IBM, are the user's responsibility.

 IBM may have patents or pending patent applications covering subject
 matter in this document. The furnishing of this document does not give
 you any license to these patents. You can send license inquiries, in
 writing, to the IBM Director of Commercial Relations, IBM Corporation,
 Purchase, NY 10577.

 Subtopics
Trademarks and Acknowledgements

AIX Operating System Technical Reference
Notices

¦ Copyright IBM Corp. 1985, 1991
FRONT_1 - 1

Trademarks and Acknowledgements

 The following trademarks apply to this book:

 � UNIX is a registered trademark of UNIX System Laboratories, Inc. i
 the USA and other countries. of AT&T in the United States of America
 and other countries.

 � AIX is a registered trademark of International Business Machine
 Corporation.

 � DEC VT100 and DEC VT220 are trademarks of Digital Equipmen
 Corporation.

 � Portions of the code and documentation were developed at th
 Electrical Engineering and Computer Sciences Department at the
 Berkeley campus of the University of California under the auspices of
 the Regents of the University of California.

 � IBM is a registered trademark of the International Business Machine
 Corporation.

 � Personal System/2 and PS/2 are registered trademarks of th
 International Business Machines Corporation.

 � System/370 is a trademark of the International Business Machine
 Corporation.

AIX Operating System Technical Reference
Trademarks and Acknowledgements

¦ Copyright IBM Corp. 1985, 1991
FRONT_1.1 - 1

About This Book
 This book describes the programming interface to the Advanced Interactive
 Executive (AIX) Operating System and provides reference information on AIX
 Operating System subroutines, system calls, file formats, and special
 files. Most of the facilities described apply equally well to either AIX
 PS/2 or AIX/370. When a facility is not common to both systems, it is so
 indicated.

 Subtopics
Who Should Read This Book
What You Should Know
4.3BSD Compatibility
How to Use This Book
Related Publications

AIX Operating System Technical Reference
About This Book

¦ Copyright IBM Corp. 1985, 1991
PREFACE - 1

Who Should Read This Book
 This book is written for experienced programmers who want to write
 application programs and systems software for the AIX Operating System.

AIX Operating System Technical Reference
Who Should Read This Book

¦ Copyright IBM Corp. 1985, 1991
PREFACE.1 - 1

What You Should Know
 To use this book effectively, you should have an understanding of computer
 programming concepts and be an experienced C programmer. You should also
 be familiar with using AIX or UNIX System V commands, system calls,
 subroutines, file formats, and special files. If you are not already
 familiar with AIX or UNIX System V, see Using the AIX Operating System and
 the AIX Operating System Commands Reference.

 If you have selected a language (through the LANG environment variable)
 which supports multibyte characters, you may need to know about
 information related specifically to the input of multibyte characters.
 Where differences from the base system (supporting US-English and European
 locales) exist, they are pointed out throughout this book.

AIX Operating System Technical Reference
What You Should Know

¦ Copyright IBM Corp. 1985, 1991
PREFACE.2 - 1

4.3BSD Compatibility
 AIX Release 1.2 incorporates many of the capabilities commonly available
 with 4.3BSD systems. However, the completeness and detail of the specific
 implementation may not be identical with that available in the latest BSD
 systems.

 AIX integrates the BSD features which were available in 1987, although
 selected updates have been used to address particular issues.
 Specifically, AIX 1.2 does not include the 4.3BSD enhancements from the
 Tahoe and Mt. Xinu versions of BSD.

 AIX is a cohesive blend of features derived from AIX/RT, System V, BSD,
 and NFS (from Sun Microsystems). All of these capabilities are compatible
 with the POSIX standard as defined in the Portable Operating System
 Interface for Computer Environments (POSIX), IEEE 1003.1-1988. The
 details of implementation are in the following order of precedence:

 1. POSIX compatibility
 2. System V SVVS compatibility
 3. AIX/RT compatibility
 4. 4.3BSD compatibility.

 To handle the conflicting demands of these different standards, AIX 1.2
 makes design compromises, and in many cases, these conflicts are resolved
 with 4.3BSD.

 This document accurately reflects the details of implementation chosen for
 the AIX product family.

AIX Operating System Technical Reference
4.3BSD Compatibility

¦ Copyright IBM Corp. 1985, 1991
PREFACE.3 - 1

How to Use This Book
 This book has two volumes. Each volume contains a complete table of
 contents, list of figures, and an index for both volumes. Volume 1 gives
 you an overview of the various subsystems discussed in this book and
 describes the C language interface to the operating system calls. Volume
 2 includes descriptions of the formats of various system and user files.
 It also introduces you to such facilities as text processing macro
 packages and describes the Advanced Display Graphics Support Library.

 This book also contains four appendixes, including a glossary. Use the
 glossary to look up unfamiliar terms that are used in this book.

 This Technical Reference includes all AIX Operating System facilities
 (system calls, subroutines, file formats, and special files). The
 facilities are presented in alphabetic order for easy retrieval. A
 detailed description of the use and function of each facility is given
 along with examples, where appropriate. In some cases, a given facility
 does not have a separate entry but is listed under a major facility. If
 you have difficulty finding a particular facility, look it up in the
 index.

 Subtopics
 Highlighting

AIX Operating System Technical Reference
How to Use This Book

¦ Copyright IBM Corp. 1985, 1991
PREFACE.4 - 1

Highlighting
 This book uses different type styles to identify certain kinds of
 information. Following is a description of the various type styles that
 are used:

 � System call names, file names, and structure names are printed in bold
 type.

 � Variables and parameters are printed in italic type.

 � Constants appear in the descriptive text in UPPERCASE LETTERS

 � Information that you type or that appears on your display screen i
 printed in monospace type.

 � New terms introduced in the text are printed in boldface italic type.
 These terms are defined on first use in the text or in the glossary.

AIX Operating System Technical Reference
Highlighting

¦ Copyright IBM Corp. 1985, 1991
PREFACE.4.1 - 1

Related Publications
 For additional information, you may want to refer to the following
 publications:

 � AIX C Language Reference, SC23-2058, describes the C programming
 language and contains reference information for writing programs in C
 language that run on the AIX Operating System.

 � AIX C Language User's Guide, SC23-2057, describes how to develop,
 link, and execute C language programs. This book also describes the
 operating dependencies of C language and shows how to use C
 language-related software utilities and other program development
 tools.

 � AIX Commands Reference, SC23-2292 (Vol. 1) and SC23-2184 (Vol. 2),
 lists and describes the AIX/370 and AIX PS/2 Operating System
 commands.

 � AIX Guide to Multibyte Character Set (MBCS) Support, GC23-2333,
 explains the basic concepts of AIX multibyte character set (MBCS)
 support and refers to other AIX books that contain more detailed
 information.

 � Managing the AIX Operating System, SC23-2293, describes such
 system-management tasks as adding and deleting user IDs, creating and
 mounting file systems, backing up the system, repairing file system
 damage, and setting up an electronic mail system and other networking
 facilities.

 � AIX Programming Tools and Interfaces, SC23-2304, describes the
 programming environment of the AIX Operating System and includes
 information about operating system tools that are used to develop,
 compile, and debug programs.

 � AIX Operating System TCP/IP User's Guide, SC23-2309, describes the
 features of TCP/IP and shows how to install and customize the program.
 It includes reference information on TCP/IP commands that are used to
 transfer files, manage the network, and log into remote systems.

 � AIX PS/2 INed, SC23-2001, shows how to use the INed editor to create,
 access, and store files. This book also includes reference
 information on INed commands and a listing of INed error messages.

 � AIX PS/2 INmail/INnet/INftp User's Guide, SC23-2076, describes the
 INmail/INnet/INftp/Connect programs and shows how to use these
 programs to send mail to and receive mail from local and remote
 computer systems. This book also shows how to transfer files to and
 from other computer systems installed on the network.

 � AIX PS/2 Keyboard Description and Character Reference, SC23-2037,
 describes the characters and keyboards supported by the AIX PS/2
 Operating System. This book also provides information on keyboard
 position codes, keyboard states, control code points, code-sequence
 processing, and non-spacing character sequences.

 Subtopics
Other Publications

AIX Operating System Technical Reference
Related Publications

¦ Copyright IBM Corp. 1985, 1991
PREFACE.5 - 1

Other Publications

 � Personal System/2 Hardware Interface Technical Reference, S68X-2330.

AIX Operating System Technical Reference
Other Publications

¦ Copyright IBM Corp. 1985, 1991
PREFACE.5.1 - 1

Table of Contents
 TITLE Title Page
 COVER Book Cover
 EDITION Edition Notice
 FRONT_1 Notices
 FRONT_1.1 Trademarks and Acknowledgements
 PREFACE About This Book
 PREFACE.1 Who Should Read This Book
 PREFACE.2 What You Should Know
 PREFACE.3 4.3BSD Compatibility
 PREFACE.4 How to Use This Book
 PREFACE.4.1 Highlighting
 PREFACE.5 Related Publications
 PREFACE.5.1 Other Publications
 CONTENTS Table of Contents
 FIGURES Figures
 1.0 Volume 1. System Calls and Subroutines
 1.1 Chapter 1. AIX Operating System
 1.1.1 About This Chapter
 1.1.2 Kernel Functions and Structure
 1.1.3 Kernel Features
 1.1.3.1 Bootstrap
 1.1.4 Process Control
 1.1.4.1 User and Kernel Modes
 1.1.4.2 Memory Addressing
 1.1.4.2.1 User Mode
 1.1.4.2.2 Shared Segment
 1.1.4.2.3 Kernel Mode
 1.1.4.3 Process Data Structures
 1.1.4.3.1 Creation and Execution
 1.1.4.3.2 Parent and Child Processes
 1.1.4.3.3 States of a Process
 1.1.4.4 Priority Computation
 1.1.4.5 Signals
 1.1.5 File System Management
 1.1.5.1 Types of Files
 1.1.5.1.1 Directory Files
 1.1.5.1.2 Ordinary Files
 1.1.5.1.3 Special files
 1.1.5.1.4 Symbolic Links
 1.1.5.1.5 Hidden Directories
 1.1.5.2 File System Layout
 1.1.5.3 Block 0
 1.1.5.4 Super block
 1.1.5.5 I-list
 1.1.5.5.1 Inode Addresses
 1.1.5.6 I-number Allocation
 1.1.5.7 Data Blocks
 1.1.5.8 Free-block List
 1.1.5.9 Allocating Blocks
 1.1.5.9.1 Directory Contents
 1.1.5.10 Path Name Resolution
 1.1.5.10.1 Full Path
 1.1.5.10.2 Relative Path
 1.1.5.10.3 File System Data Structures
 1.1.6 I/O Control
 1.1.6.1 Kernel Trap Routine
 1.1.6.2 System Call Switch Table
 1.1.6.3 File I/O Subsystem
 1.1.6.4 Buffer Subsystem

AIX Operating System Technical Reference
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 1

 1.1.6.5 Device Switch Table
 1.1.6.6 Kernel Device Driver
 1.1.6.7 Common Routines
 1.1.6.7.1 Creat and Open
 1.1.6.7.2 Close
 1.1.6.7.3 Read and Write
 1.1.6.8 I/O Data Structures
 1.1.6.9 Device Management
 1.1.6.9.1 Device Drivers
 1.1.6.9.2 Major Device Number
 1.1.6.9.3 Minor Device Number
 1.1.6.10 Requests for Device I/O
 1.2 Chapter 2. System Calls and Subroutines
 1.2.1 About This Chapter
 1.2.2 System Calls
 1.2.2.1 Input/Output
 1.2.2.2 File Maintenance
 1.2.2.3 Process Control
 1.2.2.4 Process Identification
 1.2.2.5 System Administration
 1.2.2.6 Cluster Communication
 1.2.2.7 File System Replication
 1.2.2.8 TCP/IP Communication
 1.2.2.9 Signals
 1.2.2.10 Semaphores, Message Queues, and Shared Memory Segments
 1.2.3 Subroutines
 1.2.4 Syntax
 1.2.5 Header Files
 1.2.6 a64l, l64a
 1.2.7 abort
 1.2.8 abs
 1.2.9 accept
 1.2.10 access
 1.2.11 acct
 1.2.12 acosh, asinh, atanh
 1.2.13 adjtime
 1.2.14 alarm
 1.2.15 alphasort
 1.2.16 assert
 1.2.17 async_daemon
 1.2.18 bcmp, bzero, ffs
 1.2.19 bessel: j0, j1, jn, y0, y1, yn
 1.2.20 bind
 1.2.21 brk, sbrk
 1.2.22 BSD4.3 library
 1.2.22.1 BSD4.3 library Routines
 1.2.22.2 Porting 4.3BSD Applications to AIX
 1.2.22.2.1 4.3BSD Include Files
 1.2.22.2.2 Specific Information on BSD4.3 library Routines
 1.2.22.2.3 4.3BSD TTY Devices
 1.2.23 bsearch
 1.2.24 catclose
 1.2.25 catgets
 1.2.26 catgetmsg
 1.2.27 catopen
 1.2.28 cbrt, exp, expm1, log, log10, log1p, pow, sqrt
 1.2.29 cd
 1.2.30 cddir
 1.2.31 cfgadev
 1.2.32 cfgaply

AIX Operating System Technical Reference
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 2

 1.2.33 cfgcadsz
 1.2.34 cfgcclsf
 1.2.35 cfgcdlsz
 1.2.36 cfgcopsf
 1.2.37 cfgcrdsz
 1.2.38 cfgddev
 1.2.39 cfgetospeed, cfsetospeed, cfgetispeed, cfsetispeed
 1.2.40 chdir
 1.2.41 chfstore
 1.2.42 chhidden
 1.2.43 chlwm
 1.2.44 chmod, fchmod
 1.2.45 chown, fchown
 1.2.46 chroot
 1.2.47 clock
 1.2.48 close, closex
 1.2.49 connect
 1.2.50 conv
 1.2.51 copysign
 1.2.52 crypt, encrypt, setkey
 1.2.53 ctermid
 1.2.54 ctime, localtime, gmtime, asctime, tzset
 1.2.55 ctype
 1.2.56 curses
 1.2.56.1 Routines
 1.2.56.2 Terminfo Level Subroutines
 1.2.56.3 termcap Compatibility Routines
 1.2.56.4 Attributes
 1.2.56.5 Function Keys
 1.2.57 cuserid
 1.2.58 dbm
 1.2.59 difftime
 1.2.59.1 Output
 1.2.60 directory: opendir, readdir, telldir, seekdir, rewinddir, closedir
 1.2.61 dirstat
 1.2.62 disclaim
 1.2.63 drand48
 1.2.64 dup
 1.2.65 dup2
 1.2.66 dustat
 1.2.67 ecvt, fcvt, gcvt
 1.2.68 end, etext, edata
 1.2.69 erf, erfc
 1.2.70 errunix
 1.2.71 exec: execl, execv, execle, execve, execlp, execvp
 1.2.72 exect
 1.2.73 exit, _exit
 1.2.74 extended curses library
 1.2.74.1 Terminology
 1.2.74.2 Linking the Extended Curses Routines
 1.2.74.3 Header Files
 1.2.74.4 Naming Conventions
 1.2.74.5 Parameters
 1.2.74.6 Return Values
 1.2.74.7 The Extended Curses Routines
 1.2.75 fabort
 1.2.76 fclear
 1.2.77 fclose, fflush
 1.2.78 fcntl, flock, lockf
 1.2.79 feof, ferror, clearerr, fileno

AIX Operating System Technical Reference
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 3

 1.2.80 finite, logb, scalb
 1.2.81 floor, ceil, fmod, fabs, rint
 1.2.82 fopen, freopen, fdopen
 1.2.83 fork, vfork
 1.2.84 fread, fwrite
 1.2.85 frexp, ldexp, modf
 1.2.86 fseek, rewind, ftell
 1.2.87 fsync, fcommit
 1.2.88 ftruncate, truncate
 1.2.89 ftw
 1.2.90 gamma, lgamma
 1.2.91 getc, fgetc, getchar, getw, getwc, fgetwc, getwchar
 1.2.92 getcwd
 1.2.93 getdtablesize
 1.2.94 getenv, NLgetenv
 1.2.95 getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent
 1.2.96 getgrent, getgrgid, getgrnam, setgrent, endgrent
 1.2.97 getgroups
 1.2.98 gethostbyaddr, gethostbyname, sethostent, endhostent
 1.2.99 gethostid, sethostid
 1.2.100 gethostname, sethostname
 1.2.101 getitimer, setitimer
 1.2.102 getlocal, setlocal
 1.2.103 getlogin
 1.2.104 getmntent, setmntent, addmntent, endmntent, hasmntopt
 1.2.105 getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent
 1.2.106 getopt
 1.2.107 getpagesize
 1.2.108 getpass
 1.2.109 getpeername
 1.2.110 getpid, getpgrp, getppid
 1.2.111 getpriority, setpriority, nice
 1.2.111.1 Compatibility Note
 1.2.112 getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent
 1.2.113 getpw
 1.2.114 getpwent, getpwuid, getpwnam, setpwent, endpwent
 1.2.115 getrlimit, setrlimit, vlimit
 1.2.116 getrusage, vtimes
 1.2.117 gets, fgets, getws, fgetws
 1.2.118 getservent, getservbyname, getservbyport, setservent, endservent
 1.2.119 getsites
 1.2.120 getsockname
 1.2.121 getsockopt, setsockopt
 1.2.122 getspath, setspath
 1.2.123 gettimeofday, settimeofday, ftime
 1.2.124 getuid, geteuid, getgid, getegid
 1.2.125 getuinfo
 1.2.126 getut: getutent, getutid, getutline, pututline, setutent, endutent, utmpname
 1.2.127 getwd
 1.2.128 getxperm, setxperm
 1.2.129 getxvers, setxvers
 1.2.130 hsearch, hcreate, hdestroy
 1.2.131 htonl, htons, ntohl, ntohs
 1.2.132 hypot, cabs
 1.2.133 index, rindex
 1.2.134 inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof
 1.2.135 initgroups
 1.2.136 insque, remque
 1.2.137 ioctlx, ioctl, gtty, stty
 1.2.137.1 Compatibility Interface

AIX Operating System Technical Reference
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 4

 1.2.138 kill, kill3, killpg
 1.2.139 l3tol, ltol3
 1.2.140 labs
 1.2.141 ldahread
 1.2.142 ldclose, ldaclose
 1.2.143 ldfcn
 1.2.144 ldfhread
 1.2.145 ldgetname
 1.2.146 ldlread, ldlinit, ldlitem
 1.2.147 ldlseek, ldnlseek
 1.2.148 ldohseek
 1.2.149 ldopen, ldaopen
 1.2.150 ldrseek, ldnrseek
 1.2.151 ldshread, ldnshread
 1.2.152 ldsseek, ldnsseek
 1.2.153 ldtbindex
 1.2.154 ldtbread
 1.2.155 ldtbseek
 1.2.156 link
 1.2.157 listen
 1.2.158 localeconv
 1.2.159 logname
 1.2.160 lsearch, lfind
 1.2.161 lseek
 1.2.162 malloc, free, realloc, calloc, valloc, alloca, mallopt, mallinfo
 1.2.163 matherr
 1.2.164 mbstring
 1.2.165 mbtowc, mbstowcs, mbstomb
 1.2.166 memory: memccpy, memchr, memcmp, memcpy, memset, bcopy
 1.2.167 migrate
 1.2.168 mkdir
 1.2.169 mknod, mknodx, mkfifo
 1.2.169.1 Compatibility Interfaces
 1.2.170 mktemp
 1.2.171 monitor, monstartup, moncontrol
 1.2.172 mount
 1.2.173 msgctl
 1.2.174 msgget
 1.2.175 msghelp
 1.2.176 msgimed
 1.2.177 msgqued
 1.2.178 msgrcv
 1.2.179 msgrtrv
 1.2.180 msgsnd
 1.2.181 msgxrcv
 1.2.182 NCcollate, NCcoluniq, NCeqvmap, _NCxcol, _NLxcol
 1.2.183 NCctype
 1.2.184 NCstring
 1.2.185 netctrl
 1.2.186 NLcatgets
 1.2.187 NLcatopen
 1.2.188 NLchar
 1.2.189 NLescstr, NLunescstr, NLflatstr
 1.2.190 NLgetctab
 1.2.191 NLgetfile
 1.2.192 nlist
 1.2.193 NLstring
 1.2.194 NLstrtime
 1.2.195 NLtmtime
 1.2.196 NLxin

AIX Operating System Technical Reference
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 5

 1.2.197 NLxout
 1.2.198 nl_langinfo
 1.2.199 open, openx, creat
 1.2.200 pad: sflip, sflipa, lflip, lflipa, get_howflip, PAD, PADOPEN, PADCLOSE
 1.2.200.1 PADDING MACROS
 1.2.200.2 BYTE FLIPPING ROUTINES
 1.2.201 pathconf, fpathconf
 1.2.202 pause
 1.2.203 perror
 1.2.204 pipe
 1.2.205 plock
 1.2.206 plot
 1.2.207 popen, pclose, rpopen
 1.2.208 printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf, wsprintf
 1.2.209 probe
 1.2.210 profil
 1.2.211 programmers workbench library
 1.2.212 ptrace
 1.2.213 putc, putchar, fputc, putw, putwc, putwchar, fputwc
 1.2.214 putenv
 1.2.215 putpwent
 1.2.216 puts, fputs, putws, fputws
 1.2.217 qsort
 1.2.218 quota
 1.2.219 raccept
 1.2.220 raise
 1.2.221 rand, srand
 1.2.222 random, srandom, initstate, setstate
 1.2.223 rcmd, rresvport, ruserok
 1.2.224 read, readv, readx
 1.2.225 readlink
 1.2.226 reboot
 1.2.227 recv, recvfrom, recvmsg
 1.2.228 regcmp, regex
 1.2.229 regex: re_comp, re_exec
 1.2.230 regexp: compile, step, advance
 1.2.231 Remote Procedure Call (RPC)
 1.2.231.1 The RPC Protocol
 1.2.231.2 The RPC Message Protocol
 1.2.231.2.1 Message Protocol Structure
 1.2.231.2.2 Record Marking in the Messages
 1.2.231.2.3 Authentication
 1.2.231.2.4 The Portmap Program
 1.2.231.2.5 RPC Subroutines
 1.2.232 Remote Procedure Call Service Routines
 1.2.232.1 Remote Procedure Call Service Routines Available as Library Routines
 1.2.233 rename
 1.2.234 resolver: res_mkquery, res_send, res_init, dn_comp, dn_expand, getshort, getlong, putshort, putlong
 1.2.235 rexec
 1.2.236 rexec: rexecl, rexecv, rexecle, rexecve, rexeclp, rexecvp
 1.2.237 rfork
 1.2.238 rmdir
 1.2.239 run: runl, runv, runle, runve, runlp, runvp
 1.2.240 scandir
 1.2.241 scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf, wsscanf
 1.2.242 select
 1.2.243 semctl
 1.2.244 semget
 1.2.245 semop
 1.2.246 send, sendto, sendmsg

AIX Operating System Technical Reference
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 6

 1.2.247 setbuf, setvbuf
 1.2.248 setbuffer, setlinebuf
 1.2.249 setgroups
 1.2.250 setjmp, longjmp, _setjmp, _longjmp
 1.2.251 setlocale
 1.2.251.1 The category Option
 1.2.251.2 The locale Option
 1.2.252 setpgid, setpgrp, setsid
 1.2.253 setquota
 1.2.254 setreuid, setregid
 1.2.255 setuid, setgid
 1.2.256 setxuid
 1.2.257 sfent, sfnum, sfname, sfctype, sfxcode, setsf, endsf
 1.2.258 shmat
 1.2.259 shmctl
 1.2.260 shmdt
 1.2.261 shmget
 1.2.262 shutdown
 1.2.263 sigaction, sigvec, signal
 1.2.264 sigemptyset, sigfillset, sigaddset, sigdelset, sigismember
 1.2.265 siginterrupt
 1.2.266 sigpending
 1.2.267 sigprocmask, sigsetmask, sigblock
 1.2.268 sigstack
 1.2.269 sigsuspend, sigpause
 1.2.270 sin, cos, tan, asin, acos, atan, atan2
 1.2.271 sinh, cosh, tanh
 1.2.272 site
 1.2.273 sleep
 1.2.274 snap
 1.2.275 socket
 1.2.276 socketpair
 1.2.277 sockets library
 1.2.277.1 Socket Routines
 1.2.277.2 Overview of Sockets
 1.2.277.3 Socket Names
 1.2.277.4 Related Network Publications
 1.2.278 spools()
 1.2.279 spropin
 1.2.280 sputl, sgetl
 1.2.281 ssignal, gsignal
 1.2.282 statx, fstatx, stat, fstat, fullstat, ffullstat, lstat
 1.2.282.1 Compatibility Interfaces
 1.2.283 stdio
 1.2.284 stdipc: ftok
 1.2.285 stime
 1.2.286 strcoll, strncoll, strxfrm, mbscoll, mbsncoll, wcscoll, wcsncoll
 1.2.287 strftime
 1.2.288 string
 1.2.289 strstr
 1.2.290 strtod, atof
 1.2.291 strtol, atol, atoi
 1.2.292 swab
 1.2.293 swapctl
 1.2.294 symlink
 1.2.295 sync
 1.2.296 sysconf
 1.2.297 syslog, openlog, closelog, setlogmask
 1.2.298 system
 1.2.299 tcgetattr, tcsetattr

AIX Operating System Technical Reference
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 7

 1.2.300 tcgetpgrp, tcsetpgrp
 1.2.301 tcsendbreak, tcdrain, tcflush, tcflow
 1.2.302 termdef
 1.2.303 time
 1.2.304 times
 1.2.305 tmpfile
 1.2.306 tmpnam, tempnam
 1.2.307 trace_on
 1.2.308 trcunix
 1.2.309 tsearch, tdelete, twalk
 1.2.310 ttyname, isatty, fullttyname
 1.2.311 ttysite
 1.2.312 ttyslot
 1.2.313 ulimit
 1.2.314 umask
 1.2.315 umount, fumount
 1.2.316 uname, unamex
 1.2.317 ungetc, ungetwc
 1.2.318 unlink, rmslink, remove
 1.2.319 usrinfo
 1.2.320 ustat
 1.2.321 utime
 1.2.322 utimes
 1.2.323 varargs
 1.2.324 vprintf, vfprintf, vsprintf, NLvprintf, NLvfprintf, NLvsprintf
 1.2.325 wait, waitpid
 1.2.326 wait3
 1.2.327 wcstring
 1.2.328 wctomb, wcstombs
 1.2.329 wc_collate, wc_coluniq, wc_eqvmap, _wcxcol, _mbxcol, _wcxcolu, _mbxcolu
 1.2.330 write, writex
 1.2.331 writev
 1.2.332 XDR (External Data Representation)
 1.2.332.1 XDR Subroutines
 1.2.332.1.1 XDR Data Type Representation
 1.2.332.1.2 XDR Library Routines
 1.2.332.1.3 Filter Primitives
 1.2.332.1.4 Non-Filter Primitives
 1.2.332.1.5 XDR Operation Directions
 1.2.332.1.6 Data Stream Access
 1.2.332.1.7 Standard I/O Streams
 1.2.332.1.8 Memory Streams
 1.2.332.1.9 Record Streams
 1.2.332.1.10 Implementation of New XDR Streams
 1.2.332.1.11 Passing Linked Lists Using XDR
 1.2.333 Network Information Service Client Interface
 1.2.333.1 How NIS Works
 1.2.333.2 NIS Maps
 1.2.333.3 NIS Client Interface Routines
 2.0 Volume 2. Files and Device Drivers
 2.3 Chapter 3. File Formats
 2.3.1 About This Chapter
 2.3.2 a.out
 2.3.2.1 Common Object File Format
 2.3.2.2 File Header
 2.3.2.3 Auxiliary Header
 2.3.2.4 Section Headers
 2.3.2.5 Relocation Data
 2.3.2.6 Line Number Data
 2.3.2.7 Symbol Table Data

AIX Operating System Technical Reference
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 8

 2.3.2.8 Symbol Value
 2.3.2.9 Storage Classes
 2.3.2.10 Auxiliary Entry Format
 2.3.2.11 Strings Table
 2.3.2.12 Access Routines
 2.3.3 acct
 2.3.4 ar
 2.3.5 attributes
 2.3.6 autolog
 2.3.7 backup
 2.3.7.1 Header Types
 2.3.7.2 Header Sequence
 2.3.7.3 Header Format
 2.3.7.4 Volume Headers
 2.3.7.5 Index Headers
 2.3.7.6 Bit Maps
 2.3.7.7 Location Headers
 2.3.7.8 File Headers
 2.3.7.9 End of Volume or Backup
 2.3.7.10 Backup History
 2.3.8 cc.cfg
 2.3.9 connect.con
 2.3.9.1 Connection Options
 2.3.9.2 Line Options and Parameters
 2.3.9.3 System Options
 2.3.9.4 Diagnostics
 2.3.9.5 Login Script
 2.3.9.6 Talker Program
 2.3.10 core
 2.3.11 cpio
 2.3.12 .cshrc, .login
 2.3.13 ddi
 2.3.13.1 Keywords
 2.3.14 descriptions
 2.3.15 devinfo
 2.3.16 dir
 2.3.16.1 Compatibility Interfaces
 2.3.17 errfile
 2.3.18 filesystems
 2.3.18.1 File System Attributes
 2.3.19 fonts
 2.3.19.1 Annotated Text Font Format
 2.3.19.1.1 Annotated Text Font Header
 2.3.19.1.2 Annotated Text Font Raster Mosaics
 2.3.19.1.3 Annotated Text Font Look-up Table
 2.3.19.1.4 Annotated Text Font Files
 2.3.19.2 Geometric Text Font Format
 2.3.19.2.1 Geometric Text Font Definition File
 2.3.19.3 rtfont File Format
 2.3.19.3.1 Header Structure for rtfont Format
 2.3.19.3.2 Character Index Array for rtfont Format
 2.3.19.3.3 Character Index Example
 2.3.19.3.4 Character Glyph Structure for rtfont Format
 2.3.19.3.5 Bounds Structure for rtfont Format
 2.3.20 fs
 2.3.21 fsmap
 2.3.21.1 Network File System Attributes
 2.3.22 fspec
 2.3.23 fstore
 2.3.24 gettydefs

AIX Operating System Technical Reference
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 9

 2.3.25 gps
 2.3.26 group
 2.3.27 history
 2.3.28 inittab
 2.3.28.1 File Format
 2.3.28.2 inittab Parameters
 2.3.29 inode
 2.3.30 kaf
 2.3.30.1 Control over Display and Modification of the Keyword
 2.3.30.2 User Input Validation
 2.3.31 loads
 2.3.32 master
 2.3.32.1 AIX Driver Stanzas
 2.3.32.2 System Parameter Stanzas
 2.3.32.3 Site-Specific Parameters
 2.3.33 message
 2.3.34 mh-alias
 2.3.34.1 File Format
 2.3.35 mh-format
 2.3.35.1 Escapes
 2.3.35.2 mhl.format
 2.3.36 mh-mail
 2.3.37 mhook
 2.3.38 mh-profile
 2.3.39 mh-tailor
 2.3.40 mntent, mtab
 2.3.41 netparams
 2.3.42 openfiles
 2.3.43 options
 2.3.44 passwd
 2.3.44.1 Passwords
 2.3.45 plot
 2.3.46 ports
 2.3.46.1 File Format
 2.3.46.2 Port-Control Parameters
 2.3.46.3 Other Port Parameters
 2.3.47 predefined
 2.3.48 profile
 2.3.49 qconfig
 2.3.50 rasconf
 2.3.51 RPC
 2.3.52 sccsfile
 2.3.52.1 Checksum
 2.3.52.2 Delta Table
 2.3.52.3 User Names
 2.3.52.4 Flags
 2.3.52.5 Comments
 2.3.52.6 Body
 2.3.53 sendmail.cf
 2.3.53.1 Special Macros
 2.3.54 site
 2.3.55 sitegroup
 2.3.56 system
 2.3.56.1 Special File Stanzas
 2.3.56.2 System Parameter Stanzas
 2.3.57 System.Netid
 2.3.58 tar
 2.3.59 terminfo
 2.3.59.1 Types of Capabilities
 2.3.59.2 List of Capabilities

AIX Operating System Technical Reference
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 10

 2.3.59.3 Preparing Descriptions
 2.3.59.4 Basic Capabilities
 2.3.59.5 Parameterized Strings
 2.3.59.6 Cursor Motions
 2.3.59.7 Area Clears
 2.3.59.8 Insert/Delete Line
 2.3.59.9 Insert/Delete Character
 2.3.59.10 Highlighting, Underlining, and Visual Bells
 2.3.59.11 Keypad
 2.3.59.12 Tabs and Initialization
 2.3.59.13 Miscellaneous Strings
 2.3.59.14 Indicating Terminal Problems
 2.3.59.15 Similar Terminals
 2.3.59.16 Data Base File Names
 2.3.60 utmp, wtmp, .ilog
 2.4 Chapter 4. Miscellaneous Facilities
 2.4.1 About This Chapter
 2.4.2 ascii
 2.4.3 data stream
 2.4.3.1 Hardware limitation
 2.4.3.2 Nonspacing Characters
 2.4.3.3 Controls
 2.4.3.3.1 Single-Byte Controls
 2.4.3.3.2 Multi-Byte Controls
 2.4.4 display symbols
 2.4.4.1 Hardware limitation
 2.4.5 ebcdic
 2.4.6 environment
 2.4.6.1 Basic Environment
 2.4.6.2 International Character Support Environment
 2.4.6.3 The Basic Environment
 2.4.6.3.1 International Character Support Environment
 2.4.7 eqnchar
 2.4.8 fcntl.h
 2.4.9 greek
 2.4.10 langinfo.h
 2.4.11 limits.h
 2.4.12 locale.h
 2.4.13 math.h
 2.4.14 mbcs.h
 2.4.15 mm
 2.4.16 mptx
 2.4.17 mv
 2.4.18 netgroup
 2.4.19 nl_types.h
 2.4.20 param.h
 2.4.21 stdarg.h
 2.4.22 stat.h
 2.4.23 stddef.h
 2.4.24 stdlib.h
 2.4.25 string.h
 2.4.26 TERM
 2.4.27 types.h
 2.4.28 values.h
 2.5 Chapter 5. Special Files
 2.5.1 About This Chapter
 2.5.2 asy
 2.5.2.1 Minor Device Numbers
 2.5.3 cdrom
 2.5.3.1 ioctl Operations

AIX Operating System Technical Reference
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 11

 2.5.4 ceti
 2.5.5 ckd
 2.5.6 cpcmd
 2.5.7 error
 2.5.8 fba
 2.5.9 fd
 2.5.9.1 ioctl Operations
 2.5.9.2 Error Messages
 2.5.10 hd
 2.5.10.1 ioctl Operations
 2.5.11 hft
 2.5.11.1 Contents of hft Section
 2.5.11.2 Open/Close
 2.5.11.2.1 Creating a New Virtual Terminal
 2.5.11.2.2 Determining the New Terminal's Channel Number
 2.5.11.2.3 Redirecting Input and Output
 2.5.11.2.4 Switching between Virtual Terminals
 2.5.11.3 Input
 2.5.11.3.1 Using the Mouse
 2.5.11.4 Output
 2.5.11.4.1 Keyboard Send-Receive Mode (KSR)
 2.5.11.4.2 Monitor Mode (MOM)
 2.5.11.4.3 Controlling Sound through the Speaker
 2.5.11.5 ioctl Operations
 2.5.11.5.1 Query I/O Error (HFQEIO)
 2.5.11.5.2 Enter Monitor Mode (HFSMON)
 2.5.11.5.3 Exit Monitor Mode (HFCMON)
 2.5.11.5.4 Get Virtual Terminal ID (HFGETID)
 2.5.11.5.5 Get Channel Number (HFGCHAN)
 2.5.11.5.6 Query (HFQUERY)
 2.5.11.6 Screen Manager ioctls
 2.5.11.6.1 Query Screen Manager (HFQSMGR)
 2.5.11.6.2 Control Screen Manager (HFCSMGR)
 2.5.11.7 Virtual Terminal Commands
 2.5.11.7.1 VTD Control Structure
 2.5.11.7.2 Set KSR Color Palette
 2.5.11.7.3 Change Fonts
 2.5.11.7.4 Set Cursor Representation
 2.5.11.7.5 Set Keyboard LEDs
 2.5.11.7.6 Set Protocol Modes
 2.5.11.8 Configuring the Virtual Terminal
 2.5.11.8.1 Initial State
 2.5.11.8.2 Reconfigure (HFRCONF)
 2.5.11.8.3 Set User-Defined Character Set
 2.5.11.8.4 Set Echo and Break Maps (HFSECHO)
 2.5.11.8.5 Set Keyboard Map (HFSKBD)
 2.5.11.9 termio Support
 2.5.11.10 select Support
 2.5.11.11 Considerations for hft Emulation
 2.5.11.12 AIX PS/2 HFT Compatibility with AIX RT
 2.5.11.12.1 Compatibility Table
 2.5.11.12.2 Byte-Ordering Considerations
 2.5.11.12.3 Sample Programs from AIX RT hft
 2.5.11.12.4 DOS Merge
 2.5.12 ilans
 2.5.13 keyboard
 2.5.13.1 US 101-Key Keyboard Translate Table
 2.5.13.2 Keystroke Control Sequences for System Functions
 2.5.14 lp
 2.5.14.1 ioctl Operations

AIX Operating System Technical Reference
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 12

 2.5.15 lp
 2.5.16 mem, kmem
 2.5.17 mt
 2.5.18 nvram
 2.5.19 null
 2.5.20 osm
 2.5.21 pty
 2.5.21.1 select Support
 2.5.21.2 ioctl Operations
 2.5.22 punch
 2.5.23 reader
 2.5.24 RIC
 2.5.24.1 Supporting Commands
 2.5.24.2 The ARTIC Card Memory Dump
 2.5.24.3 The New ioctl System Calls
 2.5.24.4 Special Considerations
 2.5.24.5 Dealing With Interrupts (ARTIC card --> Application Program)
 2.5.24.6 Synchronous Interrupts
 2.5.24.7 Asynchronous Interrupts
 2.5.24.8 Processing the Interrupts
 2.5.24.9 Special Considerations
 2.5.25 st
 2.5.25.1 Using BACKUP, CPIO, TAR and TCTL
 2.5.25.2 Internals
 2.5.25.3 Error Conditions
 2.5.26 swap
 2.5.27 tape
 2.5.28 termio
 2.5.28.1 select Support
 2.5.28.2 Getting and Setting Terminal Attributes
 2.5.28.3 ioctl Operations
 2.5.28.4 BSD Compatibility
 2.5.28.4.1 Line Disciplines
 2.5.28.4.2 The Control Terminal
 2.5.28.4.3 Process groups
 2.5.28.4.4 Modes
 2.5.28.4.5 Input Editing
 2.5.28.4.6 Input Echoing and Redisplay
 2.5.28.4.7 Output Processing
 2.5.28.4.8 Uppercase Terminals and Hazeltines
 2.5.28.4.9 Flow Control
 2.5.28.4.10 Line Control and Breaks
 2.5.28.4.11 Interrupt Characters
 2.5.28.4.12 Job Access Control
 2.5.28.4.13 Summary of Modes
 2.5.28.5 Interaction of AIX and BSD Interfaces
 2.5.29 trace
 2.5.30 tty
 2.6 Chapter 6. Advanced Display Graphics Support Library
 2.6.1 About This Chapter
 2.6.2 Overview
 2.6.2.1 Definitions
 2.6.2.2 Concepts
 2.6.2.3 Attributes
 2.6.2.3.1 Common Attributes
 2.6.2.3.2 Unique Attributes
 2.6.2.4 Cursor Operations
 2.6.2.5 Coordinate Clipping and Transformation
 2.6.3 Functional Categories of Subroutines
 2.6.3.1 Control

AIX Operating System Technical Reference
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 13

 2.6.3.2 Output
 2.6.3.3 Service
 2.6.3.4 Pixel Block Transfer
 2.6.3.5 Cursor
 2.6.3.6 Attribute
 2.6.3.7 Input
 2.6.3.8 Query
 2.6.4 Writing GSL Application Programs
 2.6.4.1 Displays
 2.6.4.2 Printers and Plotters
 2.6.4.3 Using the GSL Libraries
 2.6.4.3.1 Notes on the lpp.linkgsl Shell Script
 2.6.4.3.2 Example lpp.linkgsl Shell Script
 2.6.4.3.3 GSL Hardcopy Error Codes
 2.6.5 gsbply
 2.6.6 gscarc
 2.6.6.1 Parameters
 2.6.7 gscatt
 2.6.7.1 Parameters
 2.6.8 gsccnv
 2.6.8.1 Parameters
 2.6.9 gscir
 2.6.9.1 Parameters
 2.6.10 gsclrs
 2.6.11 gscmap
 2.6.11.1 Parameters
 2.6.12 gscrca
 2.6.12.1 Parameters
 2.6.13 gsdjply
 2.6.13.1 Parameters
 2.6.14 gseara
 2.6.14.1 Parameters
 2.6.15 gsearc
 2.6.15.1 Parameters
 2.6.16 gsecnv
 2.6.16.1 Parameters
 2.6.17 gsecur
 2.6.18 gsell
 2.6.18.1 Parameters
 2.6.19 gseply
 2.6.20 gsevds
 2.6.20.1 Parameters
 2.6.21 gseven
 2.6.21.1 Parameters
 2.6.22 gsevwt
 2.6.22.1 Parameters
 2.6.23 gsfatt
 2.6.23.1 Parameters
 2.6.24 gsfci
 2.6.24.1 Parameters
 2.6.25 gsfell
 2.6.25.1 Parameters
 2.6.26 gsfply
 2.6.26.1 Parameters
 2.6.27 gsfrec
 2.6.27.1 Parameters
 2.6.28 gsgtat
 2.6.28.1 Parameters
 2.6.29 gsgtxt
 2.6.29.1 Parameters

AIX Operating System Technical Reference
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 14

 2.6.30 gsinit
 2.6.30.1 Parameters
 2.6.31 gslatt
 2.6.31.1 Parameters
 2.6.32 gslcat
 2.6.32.1 Parameters
 2.6.33 gsline
 2.6.33.1 Parameters
 2.6.34 gslock
 2.6.35 gslop
 2.6.35.1 Parameters
 2.6.36 gsmask
 2.6.36.1 Parameters
 2.6.37 gsmatt
 2.6.37.1 Parameters
 2.6.38 gsmcat
 2.6.38.1 Parameters
 2.6.39 gsmcur
 2.6.39.1 Parameters
 2.6.40 gsmult
 2.6.40.1 Parameters
 2.6.41 gspcls
 2.6.42 gsplym
 2.6.42.1 Parameters
 2.6.43 gspoly
 2.6.43.1 Parameters
 2.6.44 gspp
 2.6.44.1 Parameter
 2.6.45 gsqdsp
 2.6.45.1 Parameter
 2.6.46 gsqfnt
 2.6.46.1 Parameter
 2.6.47 gsqgtx
 2.6.47.1 Parameters
 2.6.48 gsqlext
 2.6.48.1 Parameter
 2.6.49 gsqloc
 2.6.49.1 Parameters
 2.6.50 gsrrst
 2.6.50.1 Parameters
 2.6.51 gsrsav
 2.6.51.1 Parameters
 2.6.52 gstatt
 2.6.52.1 Parameters
 2.6.53 gsterm
 2.6.54 gstext
 2.6.54.1 Parameters
 2.6.55 gsulns
 2.6.55.1 Parameters
 2.6.56 gsunlk
 2.6.57 gsxblt
 2.6.57.1 Parameters
 2.6.58 gsxcnv
 2.6.58.1 Parameters
 2.6.59 gsxptr
 2.6.59.1 Parameters
 2.6.60 gsxtat
 2.6.60.1 Parameters
 2.6.61 gsxtxt
 2.6.61.1 Parameters

AIX Operating System Technical Reference
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 15

 A.0 Appendix A. Error Codes
 B.0 Appendix B. Writing a Queuing System Backend
 B.1 Introduction
 B.1.1 Interaction Between Qdaemon and Backend
 B.1.2 The -statusfile Parameter
 B.1.3 Burst Pages
 B.1.4 Extra Copies
 B.1.5 Job Status Information
 B.1.6 Charge for the Job
 B.1.7 Exit Codes
 B.1.8 Return Error Messages
 B.1.9 Set State to WAITING
 B.1.10 Terminate on Receipt of SIGTERM
 B.1.11 Backend Routines in libqb
 C.0 Appendix C. Writing Device Drivers
 C.1 Introduction
 C.2 Device Driver Concepts
 C.2.1 General Considerations in AIX Device Drivers
 C.2.1.1 Non-preemption
 C.2.1.2 Context
 C.2.1.3 Buffering Data
 C.2.1.4 Transferring Data to a Device
 C.2.1.5 Deadlocks and Races
 C.2.2 Entry Points
 C.2.3 Major/Minor Device Numbers and Special Files
 C.2.4 Multiplexed Devices
 C.2.5 Autoconfigured and Non-autoconfigured Device Drivers
 C.2.6 Header Files Used in AIX Device Drivers
 C.3 AIX/370 I/O Concepts
 C.3.1 370-XA I/O
 C.3.2 AIX/370 Device Drivers
 C.3.2.1 AIX/370 I/O Subroutines
 C.4 Types of Device Drivers
 C.4.1 Basic Device Driver Template
 C.4.1.1 Entry Points
 C.4.1.2 Basic Template Kernel Subroutines and Data Structures
 C.4.1.3 devdata Data Structure
 C.4.2 Character Device Drivers
 C.4.2.1 Character Device Driver Data Structures
 C.4.2.2 Character Device Driver Entry Points
 C.4.3 Block Device Drivers
 C.4.3.1 Block Device Data Structures
 C.4.3.2 Block Device Driver Entry Points
 C.4.3.3 Block Device Driver Data Flow
 C.4.3.4 Block Device Kernel Subroutines
 C.4.4 TTY Device Drivers
 C.4.4.1 TTY Device Driver Data Structures
 C.4.4.2 tty Structures
 C.4.4.3 clist
 C.4.4.4 cblock
 C.4.4.5 ccblocks
 C.4.4.6 ttychars
 C.4.4.7 ttymaps
 C.4.4.8 TTY Device Driver Entry Points
 C.4.4.9 TTY Device Driver Data Flow
 C.4.4.10 Line Discipline Routines
 C.4.4.11 Installing Line Discipline Routines:
 C.4.4.12 TTY Device Driver Kernel Subroutines
 C.4.5 Network Device Drivers
 C.4.6 Network Device Driver Data Structures

AIX Operating System Technical Reference
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 16

 C.4.6.1 mbufs
 C.4.6.2 Network Interface Structure (ifnet)
 C.4.6.3 IP Address Structures
 C.4.6.4 ARP Structures
 C.4.7 Network Device Driver Procedure Handles
 C.4.7.1 Input Processing
 C.4.8 Kernel Subroutines for Network Device Drivers
 C.4.8.1 mbuf Handling
 C.4.9 ARP Routines for Network Device Drivers
 C.5 ARTIC General Driver Support Routines
 C.6 Kernel Subroutines and Macros
 C.6.1 Data Transfer Kernel Routines
 C.6.1.1 Moving Data for Character I/O
 C.6.1.2 Moving Data between User and Kernel Space
 C.6.1.3 Moving User Instructions between User and Kernel Space
 C.6.1.4 Manipulating Kernel Bulk Data
 C.6.1.5 Transferring Data to and from an Adapter
 C.6.1.6 Virtual Address Space Management for DMA Devices
 C.6.2 Process Suspension and Timing
 C.6.2.1 sleep and wakeup
 C.6.2.2 Sleep and Signal Handling
 C.6.2.3 Kernel Timers
 C.6.2.4 Non-Cancellable Timers
 C.6.2.5 Cancellable Timers
 C.6.2.6 Signals
 C.6.3 Memory Allocation and Deallocation
 C.6.4 Error Handling and Tracing
 C.6.4.1 Logging Messages to the Console
 C.6.4.2 Logging Messages to the Error Logger
 C.6.4.3 Reflecting Errors to the User
 C.6.4.4 Taking the System Down
 C.6.4.5 Trace Logging
 C.6.5 Masking Interrupts
 C.6.6 Determining Major and Minor Numbers
 C.6.7 Determining Superuser
 C.7 AIX Kernel Debugger (AIX PS/2)
 C.7.1 Configuring the Kernel Debugger into a System
 C.7.2 Using the Kernel Debugger
 C.7.3 Command Descriptions
 C.7.3.1 Examining and Modifying Machine State
 C.7.3.2 Debugging Kernel Code
 C.7.3.3 Displaying Operating System Information
 C.7.3.4 Special Functions
 C.8 Driver Configuration and Initialization
 C.8.1 Adding a Device Driver into AIX Kernel
 C.8.2 Driver Configuration Components
 C.8.3 Adding Devices Support for Device Drivers
 C.8.4 Parameters Passed to a Customization Helper
 C.8.5 Parameters Passed to a Special Processing Routine
 C.8.6 Adding Descriptions for Device Command to Display
 C.8.7 Adding Choices for the Devices Command to Display
 D.0 Appendix D. Glossary
 INDEX Index

AIX Operating System Technical Reference
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 17

Figures
 2-1. Default Error-Handling Procedures 1.2.163
 2-2. How to Assign Program Numbers 1.2.231.1
 3-1. Example of Annotated Text Font Storage 2.3.19.1.3
 3-2. Example of an rtfont Pel Box 2.3.19.3.5
 3-3. Information Record Format 2.3.27
 4-1. Octal ASCII Character Set 2.4.2
 4-2. Hexadecimal ASCII Character Set 2.4.2
 4-3. Code Page P0 2.4.3.1
 4-4. EBCDIC Character Set 2.4.5
 4-5. EBCDIC and ASCII Character Set Exceptions 2.4.5
 5-1. Screen Manager Ring Examples 2.5.11.6.2
 5-2. Bit Positions of ASCII Controls in Echo Map 2.5.11.8.4
 5-3. Stored memory differences between RT and PS/2 2.5.11.12.2
 5-4. Position Codes for Remapping a Keyboard 2.5.13
 6-1. Categories of Functions to Which Common Attributes
 Apply 2.6.2.3.1
 6-2. Default Attribute Values 2.6.2.3.2
 C-1. AIX/370 Device Driver Model C.1
 C-2. AIX PS/2 Device Driver Model C.1
 C-3. AIX/370 Path Management C.3.1
 C-4. 370-XA Path Management C.3.1
 C-5. Overview of Device Driver Types C.4
 C-6. Overview of Block Device Data Structures C.4.3.1
 C-7. Line discipline commands C.4.4.10
 C-8. Overview of AIX Network Device Drivers C.4.5
 C-9. Overview of mbuf Chains C.4.6.1
 C-10. Overview of mbuf Page Clusters C.4.6.1
 C-11. Relationship among the arpcom, ifnet and ifaddr
 Structures C.4.6.4
 C-12. AIX Configuration Overview C.8.2

AIX Operating System Technical Reference
Figures

¦ Copyright IBM Corp. 1985, 1991
FIGURES - 1

 1.0 Volume 1. System Calls and Subroutines

 Subtopics
 1.1 Chapter 1. AIX Operating System
 1.2 Chapter 2. System Calls and Subroutines

AIX Operating System Technical Reference
Volume 1. System Calls and Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.0 - 1

 1.1 Chapter 1. AIX Operating System

 Subtopics
 1.1.1 About This Chapter
 1.1.2 Kernel Functions and Structure
 1.1.3 Kernel Features
 1.1.4 Process Control
 1.1.5 File System Management
 1.1.6 I/O Control

AIX Operating System Technical Reference
Chapter 1. AIX Operating System

¦ Copyright IBM Corp. 1985, 1991
1.1 - 1

 1.1.1 About This Chapter

 This overview of the AIX Operating System is divided into three sections.
 The first section describes process management, creation, and scheduling.
 The second section is a description of the file system. The final section
 introduces I/O control and the I/O subsystem.

AIX Operating System Technical Reference
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
1.1.1 - 1

 1.1.2 Kernel Functions and Structure
 The kernel component of the AIX Operating System manages application
 program access to system-wide hardware and software resources. This
 component also provides an extended process environment and a usable and
 stable file system.

 The kernel is mostly written in C language with some assembler language
 where necessary. The kernel provides services such as process control,
 file system management, input/output (I/O) control, and communication
 between processes and other miscellaneous facilities. Some of the kernel
 functions are discussed in sections that follow.

 The kernel performs the following major functions:

 � File System Managemen

 - File: open, close, read, write, change owner, get/change
 statistics, seek
 - File system: mount, umount, get statistics
 - Directory: change working directory, change root directory, make a
 directory, add or remove a link to a file
 - Security: access permissions
 - File replication: control where files are stored

 � Process Managemen

 - Start and termination: fork a process, terminate this process,
 kill another process, kill a process group
 - Set process group
 - Informational: enable/disable accounting, get ID (process, parent,

AIX Operating System Technical Reference
Kernel Functions and Structure

¦ Copyright IBM Corp. 1985, 1991
1.1.2 - 1

 group), get times
 - Priority suggestion
 - Wait for child process to terminate
 - Lock data, text or stack in memory
 - Execute a new program
 - Signals: enable/disable signals, route signals to user routines,
 wait for a signal
 - Semaphores: create semaphore, get semaphore ID, perform semaphore
 operations, delete semaphore

 � Input/Output Contro

 - Device initialization: allocate, start, and terminate devices
 - Device control: initiate and control transfer of data
 - Interrupt handling: respond to device interrupts

 � Memory Managemen

 - Private memory: grow, shrink
 - Shared memory: create, attach, delete

 � Time Managemen

 - Set time
 - Get time

 � Resource Managemen

 - Set and get user and group IDs
 - Set and get user limits

 � Cluster Managemen

 - Add or remove a site from the cluster
 - Determine which sites are in the cluster
 - Control where processes execute
 - Determine the execution site of a process

AIX Operating System Technical Reference
Kernel Functions and Structure

¦ Copyright IBM Corp. 1985, 1991
1.1.2 - 2

 1.1.3 Kernel Features

 The kernel has the following features:

 � Device Error Loggin
 � File System Enhancement
 � Virtual Memor
 � Enhanced Signal
 � Customization Facilities

 The system commands and utilities are programs that operate in
 unprivileged mode and use system calls to the kernel resources to perform
 functions. System calls to the operating system kernel are utilized to
 assist in the completion of the function or to actually perform the
 function. The system commands and utilities are divided into several
 categories based on the type of service performed:

 User Access Control Controls user access to the system

 System Status/Management Provides system status

 Program Development Provides program development aids

 Exchange Utilities Provides exchange of files with other
 systems

 Migration Aids Provides data interpretation between
 systems

 Information Handling Provides data manipulation services

 Communication Provides intra-system communications
 services

 Activity Monitoring and Accounting Provides system trace and statistics

 Directory Management Provides directory manipulation
 services

 File Management Provides file manipulation services

 Queue Management Provides queue manipulation services

 System Customization Adds and deletes devices:

 � Changes device information
 � Displays configuration information

 Subtopics
 1.1.3.1 Bootstrap

AIX Operating System Technical Reference
Kernel Features

¦ Copyright IBM Corp. 1985, 1991
1.1.3 - 1

 1.1.3.1 Bootstrap

 Before the kernel can run, it must be loaded into main memory of the
 machine. The bootstrap program is responsible for locating the kernel in
 the <LOCAL> file system, reading it into memory, and giving it control.
 The bootstrap program, boot, is loaded in by a smaller bootstrap program,
 boot0. boot0 resides in the first 512 bytes of the active partition on
 the hard disk. This partition contains the VTOC (Volume Table of
 Contents) which describes the minidisks on the hard disk, a backup
 duplicate VTOC, the boot program itself, and a badblock minidisk (for
 ST506 systems only), in that order. This partition may also contain other
 minidisks.

 With AIX PS/2, when the system is powered on or rebooted, the machine
 checks for a diskette in the first drive and attempts to boot from the
 diskette. If there is no diskette, the machine loads and executes the
 first sector (512 bytes) of the active partition of the first fixed disk.
 With AIX/370, the system always boots from the fixed disk. For AIX, this
 is the boot0 program, which then finds and executes the bootstrap program.
 The AIX boot program, once loaded into memory, automatically loads
 /unix.std from the file system of the bootable AIX minidisk (the <LOCAL>
 file system resides on the bootable AIX minidisk). The bootstrap program
 gives the kernel control at its start entry point, thus completing the
 boot process. See "Creation and Execution" in topic 1.1.4.3.1 for
 additional information.

AIX Operating System Technical Reference
Bootstrap

¦ Copyright IBM Corp. 1985, 1991
1.1.3.1 - 1

 1.1.4 Process Control
 A process is an instance of a program in execution. A program can be
 defined as an ordered set of instructions referred to as code and an
 execution environment including data and a stack.

 A process as viewed by the operating system is the current state of the
 program that it is executing. This state includes a memory image (the
 logical layout of its parts in memory), the program text, program data
 variables used, register values, and other status of operating system
 resources (open files, pending signals, and so on) used by the process.

 A process may be running a user program, an operating system utility, or
 part of the operating system. While a process is running or active, it
 may request services to be performed by the kernel. These services are
 typically initiated or performed in whole by the requesting process as it
 executes inside the kernel.

 A process need not be resident in memory at all times. The kernel manages
 the physical memory, allocating and deallocating memory as required by
 multiple processes. A process image is said to be paged out of memory by
 having a portion of its memory image copied on a permanent storage device
 (disk). When there is insufficient physical memory, a process can be
 moved in whole or swapped to external storage.

 Subtopics
 1.1.4.1 User and Kernel Modes
 1.1.4.2 Memory Addressing
 1.1.4.3 Process Data Structures
 1.1.4.4 Priority Computation
 1.1.4.5 Signals

AIX Operating System Technical Reference
Process Control

¦ Copyright IBM Corp. 1985, 1991
1.1.4 - 1

 1.1.4.1 User and Kernel Modes

 An executing process can be either in user mode or kernel mode. In user
 mode, a user program executes. In kernel mode, kernel code executes.
 When an executing user program (also called a user process) requires a
 function to be performed by the operating system, or needs to access
 system resources, it transfers into kernel mode by making a system call.
 A process in kernel mode has full control of the operating system. When
 the kernel (process executing in the kernel) completes the requested
 service, it usually returns to the user mode of the process.

 A process in user mode can be preempted or taken out of execution at any
 time. In contrast, a process in kernel mode cannot be involuntarily
 preempted by another process. Thus, a process in kernel mode runs until
 it voluntarily relinquishes control of the processor (such as when waiting
 for a kernel resource or when starting an I/O operation) by relinquishing
 control to the kernel scheduler or by switching back to user mode (such as
 at the end of a system call).

 The above generalities do not hold for interrupts and exceptions.
 Interrupts are hardware or software signals that divert the processor to a
 special software routine. Exceptions or faults are unexpected events
 which are caused by a process.

 All interrupts are serviced in kernel mode. If an interrupt occurs while
 the processor is executing a user mode process, a switch to kernel mode
 occurs for the duration of the interrupt service.

 The most common form of interrupt is the device interrupt, also known as
 an I/O (input/output) interrupt. The system timer is a timing device
 which produces interrupts at fixed intervals. The interrupt routine for
 the system clock checks the priority and CPU usage of the processes and
 may preempt a process executing in user mode to implement a fair
 scheduling policy based on time slicing. This routine enables the
 processor to be shared fairly among many users.

 Other device interrupts typically are serviced by device drivers that are
 kernel routines which perform device-specific processing. A typical
 device interrupt handler might post completion of I/O operations, start
 the next waiting operation, and notify the system that processes waiting
 for I/O completion can now be scheduled for further execution.

AIX Operating System Technical Reference
User and Kernel Modes

¦ Copyright IBM Corp. 1985, 1991
1.1.4.1 - 1

 1.1.4.2 Memory Addressing

 Memory management is performed by the AIX kernel. The AIX kernel and
 hardware support provide a paged virtual memory system. This means that
 each process can have separate virtual address space which is mapped into
 portions of physical memory pages. This allows each process to be much
 larger than the entire physical memory of the machine.

 The virtual-to-physical address mapping is handled by the hardware memory
 management unit of the machine. When a process accesses virtual memory
 that is not associated with a physical memory page (not mapped), a page
 fault occurs which creates the necessary mapping; often by reading the
 processes' image from external storage. Page faulting, like other I/O
 operations, may cause the process to lose control of the CPU while it
 waits for I/O to complete. This allows the CPU to perform other non-I/O
 operations on behalf of other processes while I/O happens. (I/O is a
 magnitude slower than CPU operations). The memory required by the kernel
 is always mapped and never causes page faults. (On System/370s there may
 exist an additional level of address mapping when the machine is not
 configured V=R).

 Subtopics
 1.1.4.2.1 User Mode
 1.1.4.2.2 Shared Segment
 1.1.4.2.3 Kernel Mode

AIX Operating System Technical Reference
Memory Addressing

¦ Copyright IBM Corp. 1985, 1991
1.1.4.2 - 1

 1.1.4.2.1 User Mode

 A process in user mode accesses the following virtual segments while
 running. These segments are used to store information.

 Text segment This segment is mapped and is addressable by a process in
 user mode. The text segment occupies the low addresses in
 the virtual address space of a process. This segment
 usually contains the user program code that executes. The
 information in this segment originates from the load module
 that executed an exec system call. (The exec system call
 is briefly discussed later). During execution, this
 segment is read-only, and a single copy of it is shared by
 all processes executing the same code.

 Data segment This segment is mapped and is addressable by a process in
 user mode. The data segment of a user process begins on
 the logical boundary above the text segment. The process
 has read and write access to this segment. This segment is
 not shared by other processes and its size can be extended
 using a brk system call. The data segment contains an
 initialized portion used for data variables such as arrays,
 and a portion called bss, which is initialized to zeros.

 Stack segment The stack segment is mapped and is addressable by a process
 in user mode. This segment of a user process starts at a
 high address in the process virtual address space and
 automatically grows in size toward the data segment as
 needed. This segment contains the run-time stack for a
 program, and user programs can write to it.

AIX Operating System Technical Reference
User Mode

¦ Copyright IBM Corp. 1985, 1991
1.1.4.2.1 - 1

 1.1.4.2.2 Shared Segment

 In addition to the text, data, and stack segments that each process uses,
 a process can create and/or attach itself to segments that are accessible
 by other processes. These segments are called shared segments. A set of
 system calls are available for using shared segments. When a shared
 segment is created or attached, the shared segment becomes part of the
 address space of the requesting process.

 Shared segments can be used in either a read-only mode or in a read-write
 mode. There is no implicit serialization support when two or more
 processes access the same shared segment. If one process reads from a
 particular area of a shared segment, it is the responsibility of the two
 (or more) processes to coordinate their accesses to the shared area.

 The load module may also specify additional text and data segments
 associated with shared libraries. Shared library text segments are just
 like ordinary text segments. Shared library data segments are initialized
 with data from the shared library, but the segments themselves are
 writable by the process and are not shared. The addresses at which the
 segments are mapped are specified in the shared library file.

AIX Operating System Technical Reference
Shared Segment

¦ Copyright IBM Corp. 1985, 1991
1.1.4.2.2 - 1

 1.1.4.2.3 Kernel Mode

 The following areas are addressable by a process in kernel mode:

 � Process-specific memory (see below
 � All of the kernel code and data

 The following areas contain all the data about a process needed by the
 kernel when the process is active:

 Text Contains kernel program code that executes. It is read
 only by the kernel.

 Global data Can be addressed by any process while in kernel mode.
 It contains tables, such as the open file table and
 process table, and other data, such as buffer pointers,
 maintained by the kernel.

 Per-process data Sometimes called the user structure, user area, u.area,
 user block, or u.block. It is a portion of the user
 process stack segment. This area is paged with the
 process. It contains process information, such as the
 current list of files opened by the process and
 arguments to the current system call. This information
 occupies the top of the kernel stack.

 Kernel stack Paged with the user process. The kernel maintains a
 stack for each process. It saves the process
 information such as the call chain and local variables
 used by the kernel for the user process. The kernel
 stack is kept adjacent to the user block.

AIX Operating System Technical Reference
Kernel Mode

¦ Copyright IBM Corp. 1985, 1991
1.1.4.2.3 - 1

 1.1.4.3 Process Data Structures

 Most process management performed by the kernel is table searching and
 modification. The kernel maintains several tables to coordinate the
 running of many processes. The following diagram shows the tables
 maintained by the kernel to manage processes.

 The process table contains an entry for each process that is created.
 This table contains the data needed when the process is not running. The
 structure of this table can be found in the /usr/include/sys/proc.h file
 in the file system. This table is always in memory so the kernel can
 manage events for the process. Each table entry details the state of a
 process. The state information includes the segment IDs of the process,
 the identification number of the process, and the identification of the
 user running the process. There is one table entry for each process;
 therefore, the number of processes that can be created is determined by
 the size of the table, which is specified as a customized parameter, procs
 in the /etc/master file. Process creation causes an entry in the process
 table and process termination frees an entry in the table. One table
 entry is reserved for a process with superuser authority. A process is
 recognized as superuser process and is granted special privileges if its
 effective user ID (UID) is 0.

 Each process has its own copy of the unshared segments of the process, but
 some segments, such as text, can be shared. Sharing program text allows
 more effective use of memory. To keep track of shared and unshared
 segments, the system maintains a vseg table. The structure of this table
 can be found in /usr/include/sys/vseg.h. A vseg table entry contains
 pointers to the page tables for the segment and the number of processes
 sharing this entry (which is 1 for unshared segments). When the number is
 reduced to 0, the entry is freed along with the segment. A vseg entry is
 allocated for each virtual segment of a process. The first process
 executing a shared text segment causes a new vseg entry to be allocated

AIX Operating System Technical Reference
Process Data Structures

¦ Copyright IBM Corp. 1985, 1991
1.1.4.3 - 1

 and the segment to be created. A second process executing an already
 allocated text segment causes the number in the vseg table to be
 incremented.

 The user structure (also called per-process data area or user block)
 contains information that must be accessible while the process executes.
 One user structure is allocated for each active process. The user
 structure is directly accessible to the kernel routines. This structure
 can be found at /usr/include/sys/user.h in the file system. This block
 contains information such as user and group identification numbers for
 determining file access privileges, pointers into the system file table
 for the files opened by the process, and a list of actions to be taken for
 various signals. The user structure is part of the user stack segment.
 This chapter makes reference to entries in the user structure as u.xxxx,
 where xxxx is the structure member.

 Subtopics
 1.1.4.3.1 Creation and Execution
 1.1.4.3.2 Parent and Child Processes
 1.1.4.3.3 States of a Process

AIX Operating System Technical Reference
Process Data Structures

¦ Copyright IBM Corp. 1985, 1991
1.1.4.3 - 2

 1.1.4.3.1 Creation and Execution

 When the /unix.std file is found (see "Bootstrap" in topic 1.1.3.1), it is
 loaded and executed. First, it initializes disk data structures such as
 the free-list blocks, I/O buffer pool, the pool of character buffers, and
 the list of available inodes.

 After the initialization is complete, the kernel starts to build the first
 process (process 0), also known as the swapper. The swapper is not created
 by the fork system call like other processes and it does not contain all
 the parts of a process. It is a unique process that contains only a data
 structure to be used by the kernel. Process 0 is the first entry in the
 process table and active only when the processor is in kernel mode. It is
 the first system process and is also responsible for scheduling. Process
 0 creates the init process (process 1) and some special kernel processes
 by forking within the kernel. One of these kernel processes (process 2)
 is the pager (or page daemon) which is responsible for maintaining a
 supply of free memory pages. The remaining kernel processes support the
 Transparent Computing Facility.

 Process 0, process 2, and the TCF kernel processes are incomplete process
 images, in that they contain no user code. Process 1 is the first
 completed process image and the ancestor of all subsequent processes. At
 this point no process will run until the swapper dispatches the first
 process ready to run. Process 1 executes an exec system call to overlay

AIX Operating System Technical Reference
Creation and Execution

¦ Copyright IBM Corp. 1985, 1991
1.1.4.3.1 - 1

 itself with code from the /etc/init file.

 As previously stated, all other processes are descendents of the init
 process. The init process first performs file system checks on the root
 and <LOCAL> file systems. Its subsequent operation is controlled by the
 file /etc/inittab, which runs the system startup scripts and controls the
 multi-user mode. The startup scripts are responsible for performing
 integrity checks, doing any necessary cleanup, mounting the normal file
 systems, enabling standard ports. After system startup runs successfully,
 the init process creates a getty using the fork system call for each
 enabled port specified in the /etc/inittab file. The init process
 performs the exec system call to getty which determines appropriate
 terminal speeds and modes by consulting the file /etc/ports. The getty
 program performs the exec system call to login to validate the user's
 password, and set the user ID (UID), the group ID (GID), the current
 directory, and so on. The login program executes the shell or the program
 specified in the /etc/passwd file as the first program to be run after
 login. The shell runs in the same process created by init. The shell
 performs the fork system call, which creates new processes for every
 command. While the system is running, the init process sleeps waiting for
 the termination of any of its child processes. When a user logs off, init
 creates a new getty via a fork.

AIX Operating System Technical Reference
Creation and Execution

¦ Copyright IBM Corp. 1985, 1991
1.1.4.3.1 - 2

 1.1.4.3.2 Parent and Child Processes

 A process can, for various reasons, create a copy of itself by issuing the
 fork system call. When this occurs, the original process is called the
 parent process and the newly created process is called the child process.
 The major difference between the original process, the parent, and the
 created process, the child, is that they have different process
 identification numbers, parent process identification numbers, and time
 accounting information.

 The fork system call causes the total number of system processes to
 increase by causing a new process, the child, to be created. Besides the
 differences mentioned previously, each receives a different value from the
 fork system call. (The child receives the value 0 and the parent receives
 the ID of the child process.) The two processes share open files and each
 process can determine whether it is the parent or the child by the value
 received. The parent may or may not wait for any of its child processes
 to terminate.

 The exec system call causes the process to overlay the information it
 contains with new information. During an exec system call the process
 exchanges current text and data segments for new data and text segments.
 The total number of system processes does not change, only the process
 that issued the exec is affected. After the exec system call, the process
 identification number is the same and open files remain open (except
 close-on-exec files).

 The exit system call terminates the process that issued the exit. All
 files accessed by that process are closed and the waiting parent is
 notified. A zombie process is a terminated process whose entry remains in
 the process table. The parent process is responsible for clearing the
 entry from the process table. In the case of a child whose parent has
 terminated, the process table is cleared upon exit and no zombie process
 is created. If accounting is enabled, exit writes an accounting record.

 The wait system call suspends the calling process until a child process
 exits, a child stops in trace mode (the child is traced by its parent), or
 the caller receives a signal. A wait system call passes termination
 status to the parent process, 1 byte (high) passed by exit and 1 byte
 (low) of system status. This system call also removes zombies from the
 process table.

 The following scenario discusses a parent process and child process
 relationship and the system calls to synchronize them.

 A parent process executes a fork system call, producing a new process.
 The new process executes an exec system call creating a child process with
 a new identity. This is similar to the sequence shell uses when it runs a
 program. The wait system call causes a parent process to wait for the
 child to finish processing. When running interactively, the shell process
 executes a fork system call, the child process (shell running in the new
 process) executes an exec system call for the required program, and the
 parent process (shell) executes a wait system call to wait for the child
 to finish running. When the child executes an exit system call, the
 parent causes the process table entry for the child to be removed and
 prompts for another command. When running in the background, the shell
 process simply prints the process ID of the child and does not wait for
 the child process to terminate. See the following diagram for the
 relationship of the parent and child processes as described when they run
 interactively.

AIX Operating System Technical Reference
Parent and Child Processes

¦ Copyright IBM Corp. 1985, 1991
1.1.4.3.2 - 1

AIX Operating System Technical Reference
Parent and Child Processes

¦ Copyright IBM Corp. 1985, 1991
1.1.4.3.2 - 2

 1.1.4.3.3 States of a Process

 A process can be in one of many states. A process can be ready to run,
 running, sleeping (waiting on an event), stopped, or ended. The scheduler
 determines which order the competing processes execute. The following
 diagram shows the process states and the events that change the states.

 Only one user process is active or running at any given time. All other
 user processes are suspended from running. For example, a process that is
 waiting for any of its child processes to end waits for an event that is
 the address of its own process table entry. When a process terminates, it
 signals the event represented by the process table entry of its parent.

AIX Operating System Technical Reference
States of a Process

¦ Copyright IBM Corp. 1985, 1991
1.1.4.3.3 - 1

 When the event occurs, the process is awakened. When a process is
 awakened, it is ready to run, which means it is eligible to be dispatched.
 Normally, processes run to completion unless they sleep. They sleep for
 reasons such as waiting for input or output to complete, waiting for a
 locked resource to become available, waiting for an event to occur or
 signals from other processes. At each timer interrupt, the timer
 interrupt routine examines the process queues, and may cause a process
 switch. When a process is sleeping, it may be swapped out of memory. The
 process switch routine will not restart a process that is swapped out. It
 checks that kernel and user data for a process are addressable before it
 restarts the process.

 A process that relinquishes control of the processor is usually waiting
 for some I/O to be performed. In that case, the process, while inside the
 kernel, issues a sleep call specifying chan, which is usually the address
 of the kernel data structure, and specifies a wakeup priority. It
 normally remains in a sleep state until a wakeup call is issued specifying
 the same chan. If the wakeup priority is low enough for the signal to be
 processed, the process is awakened and restarted in the same mode prior to
 sleep. Sometimes many processes may be waiting on the same event to
 occur, such as memory allocation. Since this is possible, when the
 process returns from sleep, it must first check that the event or resource
 was not seized by another process waiting on the same chan. If the
 resource is not available, the process issues another sleep call. A
 process may also be stopped, either because it is being traced (see
 "ptrace" in topic 1.2.212) or because it received a signal whose current
 action is to stop the process (see "sigaction, sigvec, signal" in
 topic 1.2.263).

AIX Operating System Technical Reference
States of a Process

¦ Copyright IBM Corp. 1985, 1991
1.1.4.3.3 - 2

 1.1.4.4 Priority Computation

 Each process has an assigned priority. User processes are assigned low
 priorities. The scheduler uses the process priorities to dispatch
 processes. It dynamically calculates process priorities to select the
 inactive (but ready-to-run) process to run when the currently active
 process stops. A kernel process that is sleeping always sleeps at a
 priority higher than any user process. System processes also have higher
 priority than any user process. Since a system process always runs in
 kernel mode, it is not able to be preempted.

 User process priorities are assigned by an algorithm based on the ratio of
 the amount of compute time to real time recently used by the process. At
 every tick of the system timer, the p_cpu field (processor usage) in the
 process table for the running process is incremented. The compute time to
 real-time ratio is updated every second. Using negative exponential
 distribution, the kernel decreases p_cpu by half its value for every
 process at or above the base user level and recalculates the priority of
 the processes. Processes that accumulated a lot of execution time have
 less priority than processes with very little execution time. A user
 process can execute a nice system call to induce a bias in the
 calculation. Ordinary user processes can only decrease their priority,
 while root user processes can either increase or decrease their priority.

AIX Operating System Technical Reference
Priority Computation

¦ Copyright IBM Corp. 1985, 1991
1.1.4.4 - 1

 1.1.4.5 Signals

 A signal is an event that interrupts the normal execution of a process.
 The set of signals is defined by the AIX system, and they are listed in
 the discussion of "sigaction, sigvec, signal" in topic 1.2.263. All
 signals have the same priority.

 A process can specify a signal handler subroutine, which is to be called
 when a signal occurs. It can also specify that a signal is to be blocked
 or ignored or that a default action is to be taken by the system when a
 signal occurs.

 A global signal mask defines the set of signals currently blocked from
 delivery to a process. The signal mask for a process is initialized from
 that of its parent. It can be changed with a sigprocmask or sigsuspend
 system call. While a signal handler is executing for a given signal, the
 signal that caused it to be called is blocked, but other signals can
 occur. When the handler finishes, the signal is again unblocked.

 Normally, signal handlers execute on the current stack of the process.
 This can be changed, on a per-signal basis, so that signal handlers
 execute on a special signal stack.

 When a signal is sent to a process, it is added to a set of signals
 pending for the process. If the signal is not currently blocked, it is
 delivered to the process. When a signal is delivered, the following
 actions occur:

 1. The current state of the process execution context is saved.

 2. A new signal mask is calculated, which remains in effect for the
 duration of the process's signal handler or until a sigprocmask or
 sigsuspend system call is made. The new mask is formed by logically
 ORing the current signal mask, the signal being delivered, and the
 signal mask associated with the handler to be called.

 3. If the signal handler is to execute on the signal stack, then the
 current stack is changed to the signal stack.

 4. The signal handler is called. The parameters that are passed to the
 handler are defined in the following description.

 The signal-handler subroutine can be declared as follows:

 handler (sig, code, scp)
 int sig, code;
 struct sigcontext *scp;

 The sig parameter is the signal number. The code parameter provides
 additional information about certain signals. The scp parameter
 points to the sigcontext structure that is later used to restore the
 process's previous execution context. The sigcontext structure is
 defined in signal.h.

 5. If the signal-handling routine returns normally, the previous context
 is restored and the process resumes at the point at which it was
 interrupted. The handler can cause the process to resume in a
 different context by calling the longjmp subroutine. (For information
 on how to save and restore the execution context, see "setjmp,
 longjmp, _setjmp, _longjmp" in topic 1.2.250.)

AIX Operating System Technical Reference
Signals

¦ Copyright IBM Corp. 1985, 1991
1.1.4.5 - 1

 After a fork system call, the child process inherits all signals, the
 signal mask, and the signal stack from its parent.

 The exec system calls reset all caught signals to the default action.
 Signals that cause the default action continue to do so. Ignored signals
 continue to be ignored, the signal mask remains the same, and the signal
 stack state is reset.

 When the longjmp subroutine is called, the process leaves the signal stack
 if it is currently on it and restores the signal mask to the state when
 the corresponding setjmp call was made. See "sigaction, sigvec, signal"
 in topic 1.2.263 for enhanced signal information.

 The operating system has five signal classes:

 � Hardware signals occur as the result of conditions such as arithmeti
 exceptions, illegal instruction execution, or memory protection
 violations.

 � Software signals are generally user-initiated interrupts
 Termination, quit, and kill are signal types that represent various
 levels of user or program-initiated signals to a process. In
 addition, timer expiration can be signaled with software-driven alarm
 signals.

 � A process can be notified of an event that occurred based on som
 descriptor, or nonblocking operation that completes. A process can
 also request a catastrophic condition signal.

 � Processes can be stopped, restarted, or can receive notification o
 state changes in a child process.

 � Processes can receive threshold warnings when the processing unit tim
 limit or a file size limit is reached.

 The kernel also contains additions and modifications to enhance the
 unsolicited interrupt signal system for kernel-to-process communications.

AIX Operating System Technical Reference
Signals

¦ Copyright IBM Corp. 1985, 1991
1.1.4.5 - 2

 1.1.5 File System Management

 Files within the file system are grouped into directories, and the
 directories are organized into a hierarchy. At the top of the hierarchy
 is a directory called the root directory. This directory is designated as
 / (slash). The root directory contains some system-related files and
 standard directories such as /bin, /usr, /dev, /etc, and /lib. Files can
 be attached anywhere within the hierarchy of directories.

 A file is a one-dimensional array of bytes uniquely identified by a global
 file system (gfs) number and an inode number (i-number). Data within the
 file is located in blocks. The logical blocks in the AIX file system are
 4096 bytes long.

 Subtopics
 1.1.5.1 Types of Files
 1.1.5.2 File System Layout
 1.1.5.3 Block 0
 1.1.5.4 Super block
 1.1.5.5 I-list
 1.1.5.6 I-number Allocation
 1.1.5.7 Data Blocks
 1.1.5.8 Free-block List
 1.1.5.9 Allocating Blocks
 1.1.5.10 Path Name Resolution

AIX Operating System Technical Reference
File System Management

¦ Copyright IBM Corp. 1985, 1991
1.1.5 - 1

 1.1.5.1 Types of Files

 AIX file system files can be directory files, ordinary files, symbolic
 links, or special files. All files have read, write, and execute
 permissions for the owner, group, and others. The read, write and execute
 permissions on a file are granted to a process if one or more of the
 following are true:

 � The effective user ID of the process is 0. This user is said to hav
 superuser authority.

 � The effective user ID of the process matches the user ID of the owne
 of the file and the appropriate access bit of the owner portion (700
 octal or 0x01c0) of the file mode is set.

 � The effective user ID of the process does not match the user ID of th
 owner of the file, and the effective group ID of the process or one of
 the group IDs in the concurrent group list of the process matches the
 group of the file and the appropriate access bit of the group portion
 (070 octal or 0x38) of the file mode is set.

 � The effective user ID of the process does not match the user ID of th
 owner of the file, and the effective group ID of the process does not
 match the group ID of the file, and the appropriate access bit of the
 other portion (007 octal or 0x07) of the file mode is set.

 Otherwise, the corresponding permissions are denied. The group ID of a
 newly created file or directory is the effective group ID of the process
 unless the ISgroup ID is turned on in the parent directory. In this case,
 the file inherits the group ID of the directory.

 In a directory, however, the read, write, and execute permissions are
 interpreted differently from ordinary files. Read permission for a
 directory indicates that standard utility programs are allowed to open and
 read the information in the directory. Write permission for a directory
 indicates that files in the directory can be created or removed. Execute
 permission for a directory indicates that a user can search the directory
 for a file name. Denying search privileges for a directory provides
 protection against using files in that directory. A request to change
 location into a directory where execute permission is denied cannot be
 performed.

 AIX permits file names to be up to 255 characters long. It is possible
 for one file to have several names. Any printable character other than /
 (slash) can be used in the name. Names containing unprintable characters,
 space characters, tabs, and shell metacharacters are not recommended. The
 AIX file system reserves file names
 . (dot) and .. (dot dot); therefore these names cannot be used as file
 names.

 Subtopics
 1.1.5.1.1 Directory Files
 1.1.5.1.2 Ordinary Files
 1.1.5.1.3 Special files
 1.1.5.1.4 Symbolic Links
 1.1.5.1.5 Hidden Directories

AIX Operating System Technical Reference
Types of Files

¦ Copyright IBM Corp. 1985, 1991
1.1.5.1 - 1

 1.1.5.1.1 Directory Files

 The AIX file system hierarchy centers around directory files. Directory
 files contain lists of files. The AIX operating system maintains the
 directory files. Executing programs can read the directory files, but AIX
 prevents programs from directly changing directory files to protect the
 information in the directory files. Programs may add entries to
 directories by requesting the system to create a file. The system is
 responsible for making the changes to directory files. Files listed in a
 directory can be ordinary files, directory files, or special files.

 Because the internal format of directories is complex and uses
 variable-length fields, it is best to access directories with the opendir,
 readdir, and related library routines (see "directory: opendir, readdir,
 telldir, seekdir, rewinddir, closedir" in topic 1.2.60). These routines
 parse directory contents into convenient structures for you. They are
 quite efficient and programs using them are portable among all computers
 using the AIX Operating System.

AIX Operating System Technical Reference
Directory Files

¦ Copyright IBM Corp. 1985, 1991
1.1.5.1.1 - 1

 1.1.5.1.2 Ordinary Files

 Ordinary files are attached to directories. An ordinary file might
 contain an executable program, document text, or other types of
 information that can be processed. There are two types of ordinary files:
 text files and binary files. Text files normally contain ASCII (American
 Standard Code for Information Interchange) characters. Binary files
 contain 256 possible values for each byte. Text files can easily be
 shared between an AIX/370 process and an AIX PS/2 process. Binary files,
 however, often require special programming to be shared between AIX/370
 and AIX PS/2 processes. This is because of hardware differences in the
 way bytes are ordered within 16-bit and 32-bit numeric values. The
 System/370 architecture stores the first addressable byte of a 16-bit or
 32-bit number as the high order byte, while the 80386 architecture stores
 the first addressable byte as the low order byte. AIX provides routines
 to assist applications in accessing binary files (see " pad: sflip,
 sflipa, lflip, lflipa, get_howflip, PAD, PADOPEN, PADCLOSE" in
 topic 1.2.200).

AIX Operating System Technical Reference
Ordinary Files

¦ Copyright IBM Corp. 1985, 1991
1.1.5.1.2 - 1

 1.1.5.1.3 Special files

 Special files are used to provide a convenient channel for accessing input
 and output (I/O) mechanisms to devices. For each I/O device, including
 memory, there is a special file. Most special files are found in the /dev
 directory. Special files provide an interface between application
 programs and the AIX kernel routines dealing with the devices. The names
 of the special files indicate the type of devices with which they are
 associated. Special files are read and written just like ordinary files,
 except read and write requests activate the associated device.

 There are two types of special files: character and block. Some devices,
 such as a terminal, handle one character at a time. The character special
 files provide access to character I/O devices. Some I/O devices, such as
 a disk, transfer data in blocks at a time for efficiency. The block
 special files provide access to block I/O devices. A character special
 file can also be created for a block I/O device. This provides a raw
 interface to the device. The raw interface is usually more efficient than
 the block interface since data often can be copied directly between the
 process's address space and the device.

 No characters are stored in a special file. When a directory that
 contains special files is listed, it identifies major and minor device
 numbers associated with the device rather than file length. The major
 device number identifies the type of I/O device that the file references.
 The minor device identifies the specific device when multiple devices of
 the same type exist, such as terminals.

 A pipe is a special type of file used for simple one-way interprocess
 communication. It is created and opened with the pipe system call and
 operated on with the read and write system calls. A FIFO special file is
 similar to a pipe, except that it is named in the file system. It is
 created with the mknod or mkfifo system call and opened with the open
 system call. Data written to a pipe or FIFO (first-in first-out) special
 file is read on a first-in first-out basis. Facilities are provided to
 make read system calls wait until data is available in the pipe, and write
 system calls wait until data is removed from a full pipe.

 Sockets are part of a more extensive interprocess communication facility.
 A socket is an endpoint for two-way communication between processes. Each
 socket has queues for sending and receiving data.

 Sockets are typed according to their communication properties. These
 properties include whether messages sent and received at a socket require
 the name of the partner, whether communication is reliable, the format
 used in naming message recipients, and so on.

 Each instance of the system supports some collection of socket types;
 consult "socket" in topic 1.2.275 for more information about the types
 available and their properties.

 Each instance of the system supports some number of sets of communication
 protocols. Each protocol set supports addresses of a certain format. An
 Address Family is a set of addresses for a specific group of protocols.
 Each socket has an address chosen from the address family in which the
 socket was created.

AIX Operating System Technical Reference
Special files

¦ Copyright IBM Corp. 1985, 1991
1.1.5.1.3 - 1

 1.1.5.1.4 Symbolic Links

 A symbolic link is like a regular file, except it contains the name of
 another file or directory. When a symbolic link is encountered, the
 contents of the symbolic link is concatenated with the remaining portion
 of the path name to create a new path name. The system restarts the path
 name expansion with this new path name. If the contents of the symbolic
 link is a path name that begins with a slash (/), the name is expanded
 starting at the root directory; if not, the directory containing the
 symbolic link is the starting point for further name expansion.

 When the system encounters a symbolic link whose first component is the
 string <LOCAL>/, the system substitutes the current value of the process's
 <LOCAL> alias (see "getlocal, setlocal" in topic 1.2.102) for that
 component and continues the path name evaluation. The directories /tmp
 and /dev are normally symbolic links which use the <LOCAL> alias. In this
 way each machine in a TCF cluster can have a separate /tmp and /dev.
 Other uses are similar, like using them for the system administration
 files. In this way compatibility of the application is maximized and at
 the same time availability is maximized as the files can be maintained on
 the site to which they apply. The <LOCAL> alias can vary from process to
 process so the use of this alias with symbolic links creates a path name
 that in different processes may result in a given path name's naming
 different objects.

AIX Operating System Technical Reference
Symbolic Links

¦ Copyright IBM Corp. 1985, 1991
1.1.5.1.4 - 1

 1.1.5.1.5 Hidden Directories

 A hidden directory is a regular directory which is treated specially
 during path name expansion. A hidden directory is constructed by making a
 regular directory and then issuing the chhidden system call with the
 regular directory as an argument.

 Normally, when a hidden directory is encountered during the evaluation of
 a path name, the system uses the process's site path (see "getspath,
 setspath" in topic 1.2.122) to automatically select a component within the
 hidden directory. This evaluation operates as follows: for each element
 in the site path, starting with the first, the system determines whether
 the specified site, or a site of the specified type, is available. If so,
 the hidden directory is searched for the component name of the selected
 machine type. The first time this procedure results in a match to a file
 within the hidden directory, that file is selected and the evaluation
 completes.

 Only regular and special files are permitted in hidden directories. In
 particular, this excludes from hidden directories symbolic links and
 directories (regular or hidden).

 Some system calls are defined to disable the hidden directory mechanism
 when their path names are evaluated, thus treating a hidden directory as
 though it were a regular directory. In addition, the character @ may be
 placed at the end of a file name to disable the hidden directory mechanism
 for that file. All system calls will remove the final character from a
 path name component if that final character is an @, regardless of whether
 the file name names a hidden directory. One must use @@ at the end of a
 path name component to name a file which actually does end with @.

AIX Operating System Technical Reference
Hidden Directories

¦ Copyright IBM Corp. 1985, 1991
1.1.5.1.5 - 1

 1.1.5.2 File System Layout

 For this discussion, the device that contains the file system is a
 minidisk with logical data blocks of 4096 bytes. Therefore, a unit of
 disk storage or block is 4096 bytes. Blocks are numbered sequentially
 from the beginning of the minidisk, starting with 0. A file system is
 logically separated into four sections as shown in the following figure.

AIX Operating System Technical Reference
File System Layout

¦ Copyright IBM Corp. 1985, 1991
1.1.5.2 - 1

 1.1.5.3 Block 0

 The file system does not use block 0. This block usually contains system
 bootstrap information.

AIX Operating System Technical Reference
Block 0

¦ Copyright IBM Corp. 1985, 1991
1.1.5.3 - 1

 1.1.5.4 Super block

 Block 1 is the super block. See "fs" in topic 2.3.20 for a detailed
 description of the contents of this structure. This block is used to keep
 track of the file system. Some of the file system information contained
 in the super block is:

 � File system size in logical block
 � File system nam
 � Number of blocks reserved for inode
 � The inode lis
 � The free-block lis
 � The global file system (gfs) number

AIX Operating System Technical Reference
Super block

¦ Copyright IBM Corp. 1985, 1991
1.1.5.4 - 1

 1.1.5.5 I-list

 Blocks 2 through n are the i-list, which contains structures relating a
 file to the data blocks on disk. The size of this section depends on the
 size of the mounted file system. Each structure, called an inode, is 512
 bytes long. Each inode designates a file. See "inode" in topic 2.3.29
 for the detailed content of the inode structure of an ordinary file or
 directory. Each inode structure is sequentially numbered from 1 to a
 maximum number, as defined in the super block. Each index number, or
 i-number, designates a 512-byte inode and is used as an offset within the
 i-list. I-number 1, the first 512 bytes, is not allocated by the file
 system. I-number 2 is the inode of the root directory. The remaining
 i-numbers are allocated by the file system. If a file is less than 384
 bytes long, the data of the file is stored in the inode. The inode
 contains information about each file such as:

 � Mode and type of fil
 � Length of fil
 � ID numbers of owner and grou
 � Relevant dates and time
 � Number of link
 � Location of file block
 � Data for small file
 � Number of blocks allocated

 Subtopics
 1.1.5.5.1 Inode Addresses

AIX Operating System Technical Reference
I-list

¦ Copyright IBM Corp. 1985, 1991
1.1.5.5 - 1

 1.1.5.5.1 Inode Addresses

 An inode contains thirteen 4-byte disk addresses. The following figure
 shows the use of the disk addresses in the inode.

 Addresses 1 through 10 point directly to the first 10 disk blocks in the
 file. Addresses in indirect blocks are 4 bytes long. If the file is
 larger than 10 blocks, address 11 points to a first level indirect block
 containing the next blocksize÷4 block addresses in the file. This is
 called indirect addressing. An indirect block contains 4096÷4 or 1024
 addresses. A larger file requires use of the address 12. This address
 points to a second-level indirect block, which contains addresses of up to
 blocksize ÷ 4 first-level indirect blocks. If a file could be larger,
 address 13 would be required. This address would point to a third-level
 indirect block, which would contain the addresses of up to blocksize ÷ 4
 second-level indirect blocks. (Since AIX uses 4096-byte blocks and file
 offsets must be specified by a 32-bit number, it is not possible to create
 a file which requires triple indirection.) Any of these addresses can be
 0, indicating holes in the file, which are read as binary zeros. Indirect
 block numbers can be 0 when the file contains large holes.

AIX Operating System Technical Reference
Inode Addresses

¦ Copyright IBM Corp. 1985, 1991
1.1.5.5.1 - 1

 1.1.5.6 I-number Allocation

 The file system tracks free i-numbers that are available. It maintains a
 list of inodes available for allocation in the super block. The super
 block contains the following information to allocate free i-numbers.

 � s_inode, an array containing the next free i-numbers to be allocated
 to files.

 � s_ninode, the count of free i-numbers in the array. This is used as
 an index into the s_inode array.

 � s_tinode, the total number of inodes in the file system.

 Allocating an i-number to a file when s_ninode is greater than 0, s_ninode
 is decremented to get the next available i-number from s_inode. If
 s_inode[s_ninode] is 0, the next free i-numbers available from the i-list
 are placed onto the array and another attempt to allocate is made.
 Freeing an i-number when s_ninode[s_ninode] is less than maximum, places
 the freed i-number into the array and the count increments.

AIX Operating System Technical Reference
I-number Allocation

¦ Copyright IBM Corp. 1985, 1991
1.1.5.6 - 1

 1.1.5.7 Data Blocks

 The last section of the file system consists of data blocks, which contain
 data stored in files, indirect blocks that point to other data or indirect
 blocks for large files, or blocks that are available for data. These
 blocks are 4096 bytes long. The inode contains the addresses of the data
 blocks that are already used in files. Otherwise, the data blocks are
 free and available for allocation to a file.

AIX Operating System Technical Reference
Data Blocks

¦ Copyright IBM Corp. 1985, 1991
1.1.5.7 - 1

 1.1.5.8 Free-block List

 The file system maintains a list of all free blocks in a free-block list.
 The free-block list is a linked list of pointer blocks. A free block is a
 block that is not allocated to the super block, inodes, indirect blocks,
 or files. Blocks are allocated dynamically to a file when needed from the
 data block section of the file system. In order to track data-block
 allocation, the super block contains the following:

 � s_free, an array of free block addresses.

 � s_nfree, the number of free blocks in the s_free array. This is used
 as an index into the s_free array.

 � s_tfree, the total number of free blocks available in the file system.

AIX Operating System Technical Reference
Free-block List

¦ Copyright IBM Corp. 1985, 1991
1.1.5.8 - 1

 1.1.5.9 Allocating Blocks

 Each pointer block in the free-block list contains a count of the number
 of entries in the block, up to 600, and the address of the next pointer
 block. If the pointer has a value of 0, this indicates the last pointer
 block in the file system. The first long integer in each pointer block is
 the number, up to 600, of free blocks addressed in the block. The next
 long integer is the address of the next pointer block available. The next
 599 long integers contain the addresses of 599 free blocks. The following
 figure shows the relationship of the free-block list and s_free array.

 The file system allocates free blocks using the s_free array of pointers
 in the super block. The pointer block information is copied into the
 s_free array in the super block as follows. s_free[0] contains the
 address of the next pointer block in the free-block list. The remainder
 of the s_free array contains addresses of the free blocks in this pointer
 block. s_free[s_nfree-1] contains the address of the next free block
 available to be allocated.

 Allocating a block causes s_nfree to be decremented to locate the next
 available block. If decrementing s_nfree caused its value to become 0,
 this indicates that more blocks are not available in the s_free array.
 Therefore, the address found is the location of the next pointer block.
 File system management reads the pointer block into the super block,
 placing its first long integer in s_nfree and copying the next 600 long
 integers, which are addresses, into the s_free array. If the location of
 the next free block is 0, indicating the end of the chain, then new blocks
 are not available in the file system. This indicates a file system
 out-of-space error condition.

 When a block is freed and s_nfree has a value less than 600, the new block

AIX Operating System Technical Reference
Allocating Blocks

¦ Copyright IBM Corp. 1985, 1991
1.1.5.9 - 1

 address is added to the s_free array and s_nfree is incremented. When a
 block is freed and s_nfree equals 600, s_nfree and the s_free array are
 copied into the freed block and the value s_nfree becomes 0. The file
 system manager updates the s_free array as previously described when
 s_nfree was equal to 0.

 When changes are made to an existing file, AIX uses a shadow page
 mechanism which means that changes are written to newly allocated blocks
 rather than to the existing blocks of a file. This mechanism allows the
 disk version of a file to remain intact in the unlikely event of a system
 crash or power failure. It also enables the atomic file commit mechanism
 (see "fsync, fcommit" in topic 1.2.87).

 Subtopics
 1.1.5.9.1 Directory Contents

AIX Operating System Technical Reference
Allocating Blocks

¦ Copyright IBM Corp. 1985, 1991
1.1.5.9 - 2

 1.1.5.9.1 Directory Contents

 A directory file is like an ordinary file except that it cannot be written
 by a user. See "dir" in topic 2.3.16 for a detailed description of a
 directory. A bit in the inode identifies the file as a directory file.
 The directory contains an entry for each file or subdirectory within it.
 A directory block contains one or more directory entries. A directory
 entry is a variable length record described by the dirent structure. Each
 directory entry is between 16 and 1024 bytes in length and either
 describes a file whose name length is between 1 and 255 bytes, or is an
 unused entry. The first four bytes of each directory entry are the
 i-number for the file. The next two bytes hold the length of the entire
 entry (rounded up to the nearest multiple of 16). The next two bytes hold
 the actual length of the file name (not including NULL padding). The
 remaining bytes of the directory entry hold the null-terminated file name.

 For compatibility with other systems, programs which read directories with
 the read system call are presented with directory entries in the old,
 16-byte directory entry format. To see the true contents of a directory,
 a program must use the readdir or readx routines.

AIX Operating System Technical Reference
Directory Contents

¦ Copyright IBM Corp. 1985, 1991
1.1.5.9.1 - 1

 1.1.5.10 Path Name Resolution

 A path name through the file system is a route of directories and inodes.
 A direct path starts at the file system root. A relative path starts at
 the current directory. The last name in the path references a file. The
 following example shows the resolution of a direct path; the resolution of
 a relative path is similar.

 Subtopics
 1.1.5.10.1 Full Path
 1.1.5.10.2 Relative Path
 1.1.5.10.3 File System Data Structures

AIX Operating System Technical Reference
Path Name Resolution

¦ Copyright IBM Corp. 1985, 1991
1.1.5.10 - 1

 1.1.5.10.1 Full Path

 The following describes accessing a file with a full path name. Consider
 the path name /w/z. This path starts at the root directory. It leads
 from the root directory to the directory w and then to the file z.

 1. Read address 1 of i-number 2 (root) for the address of the root
 directory.

 2. Read the inode for the root directory.

 3. Use the information in the root directory to search the root directory
 for the name w and its i-number.

 4. Read the i-number for w.

AIX Operating System Technical Reference
Full Path

¦ Copyright IBM Corp. 1985, 1991
1.1.5.10.1 - 1

 5. Use the information in the w inode to search the w directory for the
 file named z and its i-number.

 6. Read the inode for z. The addresses for the file blocks assigned to
 the files start at di_addr within the inode. The first 10 are direct
 addresses as previously described; the last three are indirect.

AIX Operating System Technical Reference
Full Path

¦ Copyright IBM Corp. 1985, 1991
1.1.5.10.1 - 2

 1.1.5.10.2 Relative Path

 Consider the relative path name ..(dot dot)/x/y. The path leads from the
 current directory, to the parent of the current directory, to the parent
 subdirectory x, and finally to the file named y in the directory x. In
 order to follow this path, the system performs the following steps:

 1. Read the inode of the current directory.

 2. Use the information in the inode for the current directory to search
 the current directory for the name .. (dot dot) and its i-number.

 3. Read the i-number for .. (dot dot).

 4. Use the information in the .. (dot dot) inode to search the parent
 directory for the file named x and its i-number.

 5. Read the inode for x.

 6. Use the information in the x inode to search the x directory for the
 file named y and its i-number.

 7. Read the inode for y. The addresses for the file blocks assigned to
 this file start at di_addr within the inode. The first 10 are direct
 addresses as previously described; the last three are indirect.

AIX Operating System Technical Reference
Relative Path

¦ Copyright IBM Corp. 1985, 1991
1.1.5.10.2 - 1

 1.1.5.10.3 File System Data Structures

 The kernel maintains structures in memory, along with the super block, to
 access files in the file system. These structures include the inode table
 and file table.

 Access to the files in the system begins at the per-process data region in
 a process (user structure). System calls provide access to file system
 services for user processes. The most common functions performed are
 open, create, read, write, lseek, and close. The user structure contains
 an array, u.u_ofile, that is indexed by file descriptor values. This
 array of entries contains the addresses of the file table entries for each
 file opened or created by the process and used for I/O operations.
 Descendants of the process inherit the contents of the u.u_ofile array.
 The following figure shows the data structure relationships for accessing
 two files. The format of the user structure is found in
 /usr/include/sys/user.h.

 All operations on files are performed with the aid of the corresponding
 inode table entry. When the system accesses a file, it locates the
 corresponding inode (see "Path Name Resolution" in topic 1.1.5.10),
 allocates an entry in the inode table and reads the inode into memory.
 The entry in the inode table is the current version of the inode and is
 the focus of file system activity. The structure of an inode entry is
 found in /usr/include/sys/inode.h. The inode table contains the key
 information for accessing a file including flags, owner, mode, mounted-on
 device, i-number, and location of file blocks.

 Another table the kernel maintains in memory for accessing files is the
 file table. The structure of a file table entry is found in the

AIX Operating System Technical Reference
File System Data Structures

¦ Copyright IBM Corp. 1985, 1991
1.1.5.10.3 - 1

 /usr/include/sys/file.h file in the file system. A file table entry is
 associated with open and creat calls for each file. Each entry in the
 file table contains the read/write offset of the file and a pointer to an
 inode. The user process maintains a file table entry for each file it
 opened or created. After a fork, the two processes share the file table
 entries. A separate open of a file that is already open shares the inode
 table entry but has distinct file table entries.

AIX Operating System Technical Reference
File System Data Structures

¦ Copyright IBM Corp. 1985, 1991
1.1.5.10.3 - 2

 1.1.6 I/O Control

 The kernel and user processes use calls to the system to access the I/O
 subsystem. System calls that perform I/O usually cause the calling
 process to be suspended (it relinquishes control of the hardware
 processor) while the I/O is being performed. Another process that is
 ready to run is dispatched.

 The AIX kernel sends requests to the hardware devices using I/O device
 commands.

 Each physical device that is attached to the system must communicate with
 the AIX kernel via a device driver. The AIX device drivers deal directly
 with actual device interrupts and directly place requests on the hardware
 bus.

 Each AIX device driver is activated by a basic I/O system call (open,
 read, write, ioctl, close, and so on) from the application level.

 The AIX device driver routine for the particular device class performs the
 requested I/O function to a device command. There are two basic device
 classes, one for block-oriented devices, and one for character-oriented
 devices.

 Each AIX device driver is addressed by individual applications via a
 system call interface. The application builds device-dependent commands
 and data streams, and invokes the appropriate AIX device driver. To
 accomplish the system call, the device driver maps the system call inputs
 into commands to the device.

 The AIX device drivers perform basic device error determination by reading
 device status to determine exception conditions. The following
 illustration shows an overview of the relationship in the control flow of
 the I/O subsystem.

AIX Operating System Technical Reference
I/O Control

¦ Copyright IBM Corp. 1985, 1991
1.1.6 - 1

 Subtopics
 1.1.6.1 Kernel Trap Routine
 1.1.6.2 System Call Switch Table
 1.1.6.3 File I/O Subsystem
 1.1.6.4 Buffer Subsystem
 1.1.6.5 Device Switch Table
 1.1.6.6 Kernel Device Driver
 1.1.6.7 Common Routines
 1.1.6.8 I/O Data Structures
 1.1.6.9 Device Management
 1.1.6.10 Requests for Device I/O

AIX Operating System Technical Reference
I/O Control

¦ Copyright IBM Corp. 1985, 1991
1.1.6 - 2

 1.1.6.1 Kernel Trap Routine
 Each system call is interpreted as a request to perform a predetermined
 function. The function to be performed is determined by a trap handler in
 the kernel. This kernel trap routine is called in other instances besides
 system call handling. This routine also runs in cases of error conditions
 or interrupt handling.

 During a system call, any error indicators are reset and the process
 return status is saved. Next, the system call is used to determine a
 system call number. (An integer value is assigned for each type of system
 call.)

AIX Operating System Technical Reference
Kernel Trap Routine

¦ Copyright IBM Corp. 1985, 1991
1.1.6.1 - 1

 1.1.6.2 System Call Switch Table
 The system call number is used as an index into the system call switch
 table. This table contains the address for the specific handler routine
 that handles the call. A call is made to the system call handler routine,
 which receives the parameters supplied by the user program along with the
 system call. This routine copies the parameters out of the user part of
 the process to the kernel part of the process.

AIX Operating System Technical Reference
System Call Switch Table

¦ Copyright IBM Corp. 1985, 1991
1.1.6.2 - 1

 1.1.6.3 File I/O Subsystem

 The system call switch table contains many entry points into the file I/O
 subsystem. Common entry points used are open, close, read, write, lseek
 and ioctl system calls. The file I/O subsystem determines whether the
 system call is to gain access to an ordinary file, a block special file,
 or a character special file. In the case of special files, this subsystem
 translates the file name into a major and minor number, which is used to
 select the device and/or routine.

AIX Operating System Technical Reference
File I/O Subsystem

¦ Copyright IBM Corp. 1985, 1991
1.1.6.3 - 1

 1.1.6.4 Buffer Subsystem

 The buffer subsystem maintains a system buffer pool that is used by block
 devices to read and write data. Requests for blocks found in the pool
 are returned immediately to the requester. If blocks are not found in the
 pool, the least recently used (LRU) buffer is freed and allocated.

AIX Operating System Technical Reference
Buffer Subsystem

¦ Copyright IBM Corp. 1985, 1991
1.1.6.4 - 1

 1.1.6.5 Device Switch Table

 The device switch table is used as an interface to the device drivers.
 The device driver major number is used to select the proper routine. The
 minor number selects one of multiple subdevices. See "Device Management"
 in topic 1.1.6.9 for more details about device drivers.

AIX Operating System Technical Reference
Device Switch Table

¦ Copyright IBM Corp. 1985, 1991
1.1.6.5 - 1

 1.1.6.6 Kernel Device Driver

 The device driver in the kernel issues I/O directly to the device. When
 the device driver has completed its task, it returns back to the process.

 When the device routine returns, the return status is copied back into the
 user part of the process and the process resumes running. Some
 rescheduling of processes can occur upon return from kernel mode due to
 interrupts or errors while processing the system call. Execution starts
 in the program immediately after the system call unless an error occurs.

AIX Operating System Technical Reference
Kernel Device Driver

¦ Copyright IBM Corp. 1985, 1991
1.1.6.6 - 1

 1.1.6.7 Common Routines

 Kernel and user processes use calls to kernel routines as an interface to
 the I/O subsystem. These routines must prepare the system internal tables
 in order to ensure proper performance. These routines are invoked using
 system calls. The following describes the common routines used and their
 effects on tables maintained by the operating system.

 Subtopics
 1.1.6.7.1 Creat and Open
 1.1.6.7.2 Close
 1.1.6.7.3 Read and Write

AIX Operating System Technical Reference
Common Routines

¦ Copyright IBM Corp. 1985, 1991
1.1.6.7 - 1

 1.1.6.7.1 Creat and Open

 The creat and open routines create and/or open a file for reading or
 writing and return a file descriptor for the opened file. First, the file
 system directory is scanned to locate the named file. An inode is created
 if not found and an entry is placed in an inode table. This entry is
 somewhat different from the inode as it exists on the disk. It contains a
 count of the users (used by close) and other incore-only information.
 There is one inode table entry for a given file. An inode table entry
 exists for an open file, the current directory of a process, or a
 directory file over which a file system is mounted.

 For each open file, an entry in the array u.u_ofile exists in the user
 structure. The read, write or any other routines that perform operations
 on the opened file use the file descriptor returned as an index into this
 array. Array entries are pointers to corresponding entries in the file
 table that is maintained by the system.

 Each creat or open of a file causes one file table entry to be created.
 If a file is opened by more than one process, this table contains multiple
 entries. After a process performs a fork system call, the resulting
 processes share the same entry of the opened file in the table. The fork
 system call increments the reference count entry in the table. This count
 is used by close to determine when the entry can be removed from the
 table. Additionally, it contains a pointer to an inode.

AIX Operating System Technical Reference
Creat and Open

¦ Copyright IBM Corp. 1985, 1991
1.1.6.7.1 - 1

 1.1.6.7.2 Close

 The close routine is called each time a process closes a file. When the
 last process closes the file, the inode table entry is removed. In some
 instances, buffers containing data for the file that are queued but not
 written, are written to the file before the close completes.

AIX Operating System Technical Reference
Close

¦ Copyright IBM Corp. 1985, 1991
1.1.6.7.2 - 1

 1.1.6.7.3 Read and Write

 The read and write routines use parameters supplied by the user and the
 file table entry to set the variables u.u_base, u.u_count, and u.u_offset
 (in the user structure). These variables contain the user address of the
 I/O target area, the byte count for the transfer, and the current location
 within the file. It may be necessary to transform the current location
 into a logical block number or physical block number depending on the
 target.

AIX Operating System Technical Reference
Read and Write

¦ Copyright IBM Corp. 1985, 1991
1.1.6.7.3 - 1

 1.1.6.8 I/O Data Structures

 The operating system maintains data structures to track I/O processing to
 and from devices. The following figure shows these data structures and
 their relative relationship.

 When an open or creat occurs, an entry is made in the file table. This
 table is referenced by pointers from the user structure using file
 reference numbers passed to system calls.

 Another data structure is the inode table, which contains one entry for
 each active inode. Each entry maintains an open count and a link count,
 which is used by close. This table is referenced by device number and
 i-number. The entry in this table is created by the open routine and
 removed by the close routine (when the open count and link count are 0).
 The inode table array of a file is found by following a series of
 pointers. The first pointer is in the user structure, which points to a
 file table entry, which points to the inode table entry. (See above
 figure.)

 The user structure contains information accessed by the user process,
 kernel, and the device driver routines to perform device I/O requests.
 The elements of this block are needed when performing I/O.

 Buf is a table of buffer headers maintained by the kernel and used for
 data read from or written to block devices. Each buffer header has

 � Flags (to show status information

 � Device and block-number fields (to identify which disk block has bee
 read into this buffer, or which disk block is to be written out from
 this buffer)

 � The pointer to the attached file system buffe

 � Forward and backwards pointers (to maintain two doubly linked lists
 the b list, which links buffers on one of several buffer hash chains
 to speed buffer lookup, and the av list which links buffers that are
 available for reuse).

 The structure of the buffer header can be found in the file
 /usr/include/sys/buf.h in the file system.

AIX Operating System Technical Reference
I/O Data Structures

¦ Copyright IBM Corp. 1985, 1991
1.1.6.8 - 1

 1.1.6.9 Device Management

 The operating system uses special files, sometimes called device files, to
 refer to specific hardware devices and device drivers. Special files, at
 first glance, appear to be files just like any other. They have path
 names that appear in a directory, and they have the same access protection
 as ordinary files. They can be used in almost every way that ordinary
 files can be used. However, an ordinary file is a logical grouping of
 data recorded on disk, but a special file corresponds to a device (such as
 a line printer), a logical subdevice (such as a large section of disk
 drive), or a pseudo-device (such as the physical memory of the computer,
 /dev/mem, or the null file, /dev/null). By convention, all special files
 supplied with AIX are located in the /dev directory.

 Subtopics
 1.1.6.9.1 Device Drivers
 1.1.6.9.2 Major Device Number
 1.1.6.9.3 Minor Device Number

AIX Operating System Technical Reference
Device Management

¦ Copyright IBM Corp. 1985, 1991
1.1.6.9 - 1

 1.1.6.9.1 Device Drivers

 A device driver is a set of routines that are installed as part of the AIX
 kernel to control the transmission of data to and from a device. The
 major interface between the kernel and the device drivers is through the
 device switch table.

AIX Operating System Technical Reference
Device Drivers

¦ Copyright IBM Corp. 1985, 1991
1.1.6.9.1 - 1

 1.1.6.9.2 Major Device Number

 A major device number designates which device driver in the operating
 system is to handle I/O requests. The major device number for each device
 is assigned in the /etc/master file, which is used in system configuration
 (see the config command in AIX Operating System Commands Reference).

AIX Operating System Technical Reference
Major Device Number

¦ Copyright IBM Corp. 1985, 1991
1.1.6.9.2 - 1

 1.1.6.9.3 Minor Device Number

 The interpretation of the minor device number is entirely dependent on the
 particular device driver. The minor device number is frequently used to
 index an array that contains information about each of several virtual
 devices or subdevices.

AIX Operating System Technical Reference
Minor Device Number

¦ Copyright IBM Corp. 1985, 1991
1.1.6.9.3 - 1

 1.1.6.10 Requests for Device I/O

 The operating system controls the processing of all user I/O requests and
 device interrupts. When a user program requests I/O to a device using
 system calls, control is transferred to the kernel. If the system call is
 to a device (not an ordinary file), the path pointer points to a special
 file. Special files describe the device and indicate to the system that
 the call is for a device. If the requested file is a special file, the
 system records the major and minor device numbers in the inode table
 entry.

 All devices attached to the system are controlled by device drivers. The
 device drivers contain routines that specify the functions that can be
 performed by a device, such as read, write, open, and close. Each device
 has a set of driver routines that can be accessed by the kernel via a
 device switch table. The kernel uses the major device number designated
 in a corresponding special file as an index into the device switch table
 as shown in the next diagram. The minor number, which is passed as a
 parameter, selects one of a class of devices (such as a diskette drive)
 from a group of devices or specifies device characteristics.

AIX Operating System Technical Reference
Requests for Device I/O

¦ Copyright IBM Corp. 1985, 1991
1.1.6.10 - 1

 After the kernel creates the inode table entry for the device, all
 references to the device use the inode number assigned to that device
 until the device is closed.

 The following describes an overview of the processing of an I/O request to
 a device. When a call is made to a device, the kernel first runs the
 device-independent routines needed for the I/O request. Then, it
 determines the proper device driver routine to invoke for the required
 device-dependent process using the major number. Next, it calls the
 appropriate device driver routine. The requested I/O function is
 performed, control returns to the kernel. The kernel finishes processing
 the I/O request and returns control and any values to the user program.

 When a device signals an interrupt to the processor (indicating I/O
 request completed), control is transferred to the interrupt vector in low
 memory. The interrupt vector first transfers control to the interrupt
 handler, which performs device-independent interrupt processing. Next,
 the device-dependent interrupt handler, which is part of the device driver
 software, is invoked. The interrupt handler processes the interrupt and
 returns control to the kernel. The kernel returns control to the process
 that had control of the processor at the time of the interrupt.

AIX Operating System Technical Reference
Requests for Device I/O

¦ Copyright IBM Corp. 1985, 1991
1.1.6.10 - 2

 1.2 Chapter 2. System Calls and Subroutines

 Subtopics
 1.2.1 About This Chapter
 1.2.2 System Calls
 1.2.3 Subroutines
 1.2.4 Syntax
 1.2.5 Header Files
 1.2.6 a64l, l64a
 1.2.7 abort
 1.2.8 abs
 1.2.9 accept
 1.2.10 access
 1.2.11 acct
 1.2.12 acosh, asinh, atanh
 1.2.13 adjtime
 1.2.14 alarm
 1.2.15 alphasort
 1.2.16 assert
 1.2.17 async_daemon
 1.2.18 bcmp, bzero, ffs
 1.2.19 bessel: j0, j1, jn, y0, y1, yn
 1.2.20 bind
 1.2.21 brk, sbrk
 1.2.22 BSD4.3 library
 1.2.23 bsearch
 1.2.24 catclose
 1.2.25 catgets
 1.2.26 catgetmsg
 1.2.27 catopen
 1.2.28 cbrt, exp, expm1, log, log10, log1p, pow, sqrt
 1.2.29 cd
 1.2.30 cddir
 1.2.31 cfgadev
 1.2.32 cfgaply
 1.2.33 cfgcadsz
 1.2.34 cfgcclsf
 1.2.35 cfgcdlsz
 1.2.36 cfgcopsf
 1.2.37 cfgcrdsz
 1.2.38 cfgddev
 1.2.39 cfgetospeed, cfsetospeed, cfgetispeed, cfsetispeed
 1.2.40 chdir
 1.2.41 chfstore
 1.2.42 chhidden
 1.2.43 chlwm
 1.2.44 chmod, fchmod
 1.2.45 chown, fchown
 1.2.46 chroot
 1.2.47 clock
 1.2.48 close, closex
 1.2.49 connect
 1.2.50 conv
 1.2.51 copysign
 1.2.52 crypt, encrypt, setkey
 1.2.53 ctermid
 1.2.54 ctime, localtime, gmtime, asctime, tzset
 1.2.55 ctype
 1.2.56 curses
 1.2.57 cuserid

AIX Operating System Technical Reference
Chapter 2. System Calls and Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2 - 1

 1.2.58 dbm
 1.2.59 difftime
 1.2.60 directory: opendir, readdir, telldir, seekdir, rewinddir, closedir
 1.2.61 dirstat
 1.2.62 disclaim
 1.2.63 drand48
 1.2.64 dup
 1.2.65 dup2
 1.2.66 dustat
 1.2.67 ecvt, fcvt, gcvt
 1.2.68 end, etext, edata
 1.2.69 erf, erfc
 1.2.70 errunix
 1.2.71 exec: execl, execv, execle, execve, execlp, execvp
 1.2.72 exect
 1.2.73 exit, _exit
 1.2.74 extended curses library
 1.2.75 fabort
 1.2.76 fclear
 1.2.77 fclose, fflush
 1.2.78 fcntl, flock, lockf
 1.2.79 feof, ferror, clearerr, fileno
 1.2.80 finite, logb, scalb
 1.2.81 floor, ceil, fmod, fabs, rint
 1.2.82 fopen, freopen, fdopen
 1.2.83 fork, vfork
 1.2.84 fread, fwrite
 1.2.85 frexp, ldexp, modf
 1.2.86 fseek, rewind, ftell
 1.2.87 fsync, fcommit
 1.2.88 ftruncate, truncate
 1.2.89 ftw
 1.2.90 gamma, lgamma
 1.2.91 getc, fgetc, getchar, getw, getwc, fgetwc, getwchar
 1.2.92 getcwd
 1.2.93 getdtablesize
 1.2.94 getenv, NLgetenv
 1.2.95 getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent
 1.2.96 getgrent, getgrgid, getgrnam, setgrent, endgrent
 1.2.97 getgroups
 1.2.98 gethostbyaddr, gethostbyname, sethostent, endhostent
 1.2.99 gethostid, sethostid
 1.2.100 gethostname, sethostname
 1.2.101 getitimer, setitimer
 1.2.102 getlocal, setlocal
 1.2.103 getlogin
 1.2.104 getmntent, setmntent, addmntent, endmntent, hasmntopt
 1.2.105 getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent
 1.2.106 getopt
 1.2.107 getpagesize
 1.2.108 getpass
 1.2.109 getpeername
 1.2.110 getpid, getpgrp, getppid
 1.2.111 getpriority, setpriority, nice
 1.2.112 getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent
 1.2.113 getpw
 1.2.114 getpwent, getpwuid, getpwnam, setpwent, endpwent
 1.2.115 getrlimit, setrlimit, vlimit
 1.2.116 getrusage, vtimes
 1.2.117 gets, fgets, getws, fgetws

AIX Operating System Technical Reference
Chapter 2. System Calls and Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2 - 2

 1.2.118 getservent, getservbyname, getservbyport, setservent, endservent
 1.2.119 getsites
 1.2.120 getsockname
 1.2.121 getsockopt, setsockopt
 1.2.122 getspath, setspath
 1.2.123 gettimeofday, settimeofday, ftime
 1.2.124 getuid, geteuid, getgid, getegid
 1.2.125 getuinfo
 1.2.126 getut: getutent, getutid, getutline, pututline, setutent, endutent, utmpname
 1.2.127 getwd
 1.2.128 getxperm, setxperm
 1.2.129 getxvers, setxvers
 1.2.130 hsearch, hcreate, hdestroy
 1.2.131 htonl, htons, ntohl, ntohs
 1.2.132 hypot, cabs
 1.2.133 index, rindex
 1.2.134 inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof
 1.2.135 initgroups
 1.2.136 insque, remque
 1.2.137 ioctlx, ioctl, gtty, stty
 1.2.138 kill, kill3, killpg
 1.2.139 l3tol, ltol3
 1.2.140 labs
 1.2.141 ldahread
 1.2.142 ldclose, ldaclose
 1.2.143 ldfcn
 1.2.144 ldfhread
 1.2.145 ldgetname
 1.2.146 ldlread, ldlinit, ldlitem
 1.2.147 ldlseek, ldnlseek
 1.2.148 ldohseek
 1.2.149 ldopen, ldaopen
 1.2.150 ldrseek, ldnrseek
 1.2.151 ldshread, ldnshread
 1.2.152 ldsseek, ldnsseek
 1.2.153 ldtbindex
 1.2.154 ldtbread
 1.2.155 ldtbseek
 1.2.156 link
 1.2.157 listen
 1.2.158 localeconv
 1.2.159 logname
 1.2.160 lsearch, lfind
 1.2.161 lseek
 1.2.162 malloc, free, realloc, calloc, valloc, alloca, mallopt, mallinfo
 1.2.163 matherr
 1.2.164 mbstring
 1.2.165 mbtowc, mbstowcs, mbstomb
 1.2.166 memory: memccpy, memchr, memcmp, memcpy, memset, bcopy
 1.2.167 migrate
 1.2.168 mkdir
 1.2.169 mknod, mknodx, mkfifo
 1.2.170 mktemp
 1.2.171 monitor, monstartup, moncontrol
 1.2.172 mount
 1.2.173 msgctl
 1.2.174 msgget
 1.2.175 msghelp
 1.2.176 msgimed
 1.2.177 msgqued

AIX Operating System Technical Reference
Chapter 2. System Calls and Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2 - 3

 1.2.178 msgrcv
 1.2.179 msgrtrv
 1.2.180 msgsnd
 1.2.181 msgxrcv
 1.2.182 NCcollate, NCcoluniq, NCeqvmap, _NCxcol, _NLxcol
 1.2.183 NCctype
 1.2.184 NCstring
 1.2.185 netctrl
 1.2.186 NLcatgets
 1.2.187 NLcatopen
 1.2.188 NLchar
 1.2.189 NLescstr, NLunescstr, NLflatstr
 1.2.190 NLgetctab
 1.2.191 NLgetfile
 1.2.192 nlist
 1.2.193 NLstring
 1.2.194 NLstrtime
 1.2.195 NLtmtime
 1.2.196 NLxin
 1.2.197 NLxout
 1.2.198 nl_langinfo
 1.2.199 open, openx, creat
 1.2.200 pad: sflip, sflipa, lflip, lflipa, get_howflip, PAD, PADOPEN, PADCLOSE
 1.2.201 pathconf, fpathconf
 1.2.202 pause
 1.2.203 perror
 1.2.204 pipe
 1.2.205 plock
 1.2.206 plot
 1.2.207 popen, pclose, rpopen
 1.2.208 printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf, wsprintf
 1.2.209 probe
 1.2.210 profil
 1.2.211 programmers workbench library
 1.2.212 ptrace
 1.2.213 putc, putchar, fputc, putw, putwc, putwchar, fputwc
 1.2.214 putenv
 1.2.215 putpwent
 1.2.216 puts, fputs, putws, fputws
 1.2.217 qsort
 1.2.218 quota
 1.2.219 raccept
 1.2.220 raise
 1.2.221 rand, srand
 1.2.222 random, srandom, initstate, setstate
 1.2.223 rcmd, rresvport, ruserok
 1.2.224 read, readv, readx
 1.2.225 readlink
 1.2.226 reboot
 1.2.227 recv, recvfrom, recvmsg
 1.2.228 regcmp, regex
 1.2.229 regex: re_comp, re_exec
 1.2.230 regexp: compile, step, advance
 1.2.231 Remote Procedure Call (RPC)
 1.2.232 Remote Procedure Call Service Routines
 1.2.233 rename
 1.2.234 resolver: res_mkquery, res_send, res_init, dn_comp, dn_expand, getshort, getlong, putshort, putlong
 1.2.235 rexec
 1.2.236 rexec: rexecl, rexecv, rexecle, rexecve, rexeclp, rexecvp
 1.2.237 rfork

AIX Operating System Technical Reference
Chapter 2. System Calls and Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2 - 4

 1.2.238 rmdir
 1.2.239 run: runl, runv, runle, runve, runlp, runvp
 1.2.240 scandir
 1.2.241 scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf, wsscanf
 1.2.242 select
 1.2.243 semctl
 1.2.244 semget
 1.2.245 semop
 1.2.246 send, sendto, sendmsg
 1.2.247 setbuf, setvbuf
 1.2.248 setbuffer, setlinebuf
 1.2.249 setgroups
 1.2.250 setjmp, longjmp, _setjmp, _longjmp
 1.2.251 setlocale
 1.2.252 setpgid, setpgrp, setsid
 1.2.253 setquota
 1.2.254 setreuid, setregid
 1.2.255 setuid, setgid
 1.2.256 setxuid
 1.2.257 sfent, sfnum, sfname, sfctype, sfxcode, setsf, endsf
 1.2.258 shmat
 1.2.259 shmctl
 1.2.260 shmdt
 1.2.261 shmget
 1.2.262 shutdown
 1.2.263 sigaction, sigvec, signal
 1.2.264 sigemptyset, sigfillset, sigaddset, sigdelset, sigismember
 1.2.265 siginterrupt
 1.2.266 sigpending
 1.2.267 sigprocmask, sigsetmask, sigblock
 1.2.268 sigstack
 1.2.269 sigsuspend, sigpause
 1.2.270 sin, cos, tan, asin, acos, atan, atan2
 1.2.271 sinh, cosh, tanh
 1.2.272 site
 1.2.273 sleep
 1.2.274 snap
 1.2.275 socket
 1.2.276 socketpair
 1.2.277 sockets library
 1.2.278 spools()
 1.2.279 spropin
 1.2.280 sputl, sgetl
 1.2.281 ssignal, gsignal
 1.2.282 statx, fstatx, stat, fstat, fullstat, ffullstat, lstat
 1.2.283 stdio
 1.2.284 stdipc: ftok
 1.2.285 stime
 1.2.286 strcoll, strncoll, strxfrm, mbscoll, mbsncoll, wcscoll, wcsncoll
 1.2.287 strftime
 1.2.288 string
 1.2.289 strstr
 1.2.290 strtod, atof
 1.2.291 strtol, atol, atoi
 1.2.292 swab
 1.2.293 swapctl
 1.2.294 symlink
 1.2.295 sync
 1.2.296 sysconf
 1.2.297 syslog, openlog, closelog, setlogmask

AIX Operating System Technical Reference
Chapter 2. System Calls and Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2 - 5

 1.2.298 system
 1.2.299 tcgetattr, tcsetattr
 1.2.300 tcgetpgrp, tcsetpgrp
 1.2.301 tcsendbreak, tcdrain, tcflush, tcflow
 1.2.302 termdef
 1.2.303 time
 1.2.304 times
 1.2.305 tmpfile
 1.2.306 tmpnam, tempnam
 1.2.307 trace_on
 1.2.308 trcunix
 1.2.309 tsearch, tdelete, twalk
 1.2.310 ttyname, isatty, fullttyname
 1.2.311 ttysite
 1.2.312 ttyslot
 1.2.313 ulimit
 1.2.314 umask
 1.2.315 umount, fumount
 1.2.316 uname, unamex
 1.2.317 ungetc, ungetwc
 1.2.318 unlink, rmslink, remove
 1.2.319 usrinfo
 1.2.320 ustat
 1.2.321 utime
 1.2.322 utimes
 1.2.323 varargs
 1.2.324 vprintf, vfprintf, vsprintf, NLvprintf, NLvfprintf, NLvsprintf
 1.2.325 wait, waitpid
 1.2.326 wait3
 1.2.327 wcstring
 1.2.328 wctomb, wcstombs
 1.2.329 wc_collate, wc_coluniq, wc_eqvmap, _wcxcol, _mbxcol, _wcxcolu, _mbxcolu
 1.2.330 write, writex
 1.2.331 writev
 1.2.332 XDR (External Data Representation)
 1.2.333 Network Information Service Client Interface

AIX Operating System Technical Reference
Chapter 2. System Calls and Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2 - 6

 1.2.1 About This Chapter

 This chapter gives detailed information about each of the system calls
 that are available in the AIX Operating System and the subroutines (also
 called functions) that are available in standard AIX subroutine libraries.
 System calls provide controlled access to the operating system kernel.

 The programming interface to the system calls is identical to that of
 subroutines. Thus, as far as a C language program is concerned, a system
 call is merely a subroutine call. The real difference between a system
 call and a subroutine is the type of operation it performs. When a
 program invokes a system call, a mode switch takes place so that the
 called routine has access to the operating system kernel's delicate
 information. The routine then operates in kernel mode to perform a task
 on behalf of the program. In this way, access to the delicate system
 information is restricted to a pre-defined set of routines whose actions
 can be controlled.

 The operations performed by system calls are frequently more basic or
 "primitive" than those of subroutines. Many subroutines use system calls
 to perform more complex tasks. For example, the open, close, read, and
 write system calls perform very simple I/O operations; but many programs
 use a standard set of I/O subroutines that add data buffering to the I/O
 performed by the system calls. (See " stdio" in topic 1.2.283 for details
 about the Standard I/O Package.)

 When an error occurs, most system calls return a value of -1 and set an
 external variable named errno to identify the error. The errno.h header
 file declares the errno variable and defines a constant for each of the
 possible error conditions. A complete listing of these error codes and
 their meanings can be found in Appendix A, "Error Codes." The specific
 meanings of the error codes that apply to each system call are listed in
 the "Error Conditions" section of each system call entry.

 For an explanation of the "Syntax" section of each entry, see "Syntax" in
 topic 1.2.4. For an explanation of header files, see "Header Files" in
 topic 1.2.5.

AIX Operating System Technical Reference
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
1.2.1 - 1

 1.2.2 System Calls

 The following discussion is divided into sections that discuss groups of
 system calls that perform various operations.

 Subtopics
 1.2.2.1 Input/Output
 1.2.2.2 File Maintenance
 1.2.2.3 Process Control
 1.2.2.4 Process Identification
 1.2.2.5 System Administration
 1.2.2.6 Cluster Communication
 1.2.2.7 File System Replication
 1.2.2.8 TCP/IP Communication
 1.2.2.9 Signals
 1.2.2.10 Semaphores, Message Queues, and Shared Memory Segments

AIX Operating System Technical Reference
System Calls

¦ Copyright IBM Corp. 1985, 1991
1.2.2 - 1

 1.2.2.1 Input/Output

 The following system calls perform the basic input/output for all types of
 devices:

 access Determines whether the process has permission to access a
 file.
 close Closes a file associated with a file descriptor.
 closex close associated also with a character device driver.
 creat Creates a new file or replaces an existing file with an
 empty one.
 dup Duplicates an open file descriptor.
 fabort Cancels file changes.
 fclear Clears space in a file, freeing unused disk space.
 fcommit Commits file changes.
 fsync Forces changes to a file to be written to the disk.
 ftruncate Shortens a file.
 ioctl Controls I/O devices.
 ioctlx ioctl with additional device specific information.
 lockf Locks a region of a file from access by other processes.
 lseek Moves the read/write pointer of a file.
 open Opens a file or device for reading or writing.
 openx open with additional status provided.
 pipe Creates a pipe.
 read Reads data from a file, directory, socket, or device.
 readx read with communication with character device drivers.
 select Waits for an input/output to occur.
 truncate Makes a file shorter.
 write Writes data to a file, socket, or device.
 writex write with communication with char device drivers.

AIX Operating System Technical Reference
Input/Output

¦ Copyright IBM Corp. 1985, 1991
1.2.2.1 - 1

 1.2.2.2 File Maintenance

 The file maintenance calls change the access permissions of files, create
 directories, mount file systems, and perform a variety of other
 operations:

 chdir Changes the current directory.
 chhidden Changes the hidden attributes of a directory.
 chmod Changes the access permission mode of a file.
 chown Changes the owner and group IDs of files associated with a
 path name.
 chroot Changes the directory considered to be the root directory.
 dirstat Gets file status information for multiple files in a
 directory.
 fchmod Changes file access permissions.
 fchown Changes the owner and group IDs of files associated with a
 file descriptor.
 fcntl Controls open file descriptors and sockets.
 fstat, fstatx Provides information about a file associated with a file
 descriptor.
 link Creates an additional directory entry for an existing file.
 mkdir Creates a new directory.
 mknod Creates a special file that describes a device or a FIFO.
 mknodx Creates a special file that describes a device on a
 specific TCF cluster site.
 mount Mounts a file system.
 readlink Reads the contents of a symbolic link.
 rename Renames a directory or a file within a file system.
 rmdir Removes a directory.
 rmslink Removes a symbolic link.
 stat, statx Provides information about a file associated with a path
 name.
 symlink Creates a symbolic link to a file or directory.
 sync Forces all changes in the file system to be written to
 disk.
 umask Sets the file creation mask.
 umount Unmounts a file system.
 unlink Removes a directory entry.
 ustat Gets file system statistics.
 utime Set the access and modification times of a file.

AIX Operating System Technical Reference
File Maintenance

¦ Copyright IBM Corp. 1985, 1991
1.2.2.2 - 1

 1.2.2.3 Process Control

 The following system calls control creating, operating, and stopping
 processes:

 brk Changes the data segment space allocation.
 disclaim Disclaims content of a memory address range.
 exec Replaces the current process image with a new program.
 exit Terminates the current process.
 fork Creates and starts a child process.
 getpriority Gets program scheduling priority.
 migrate Moves a process to another cluster site.
 nice Determines or changes the execution priority of a process.
 plock Locks a process in memory.
 profil Starts and stops execution profiling.
 ptrace Traces execution of a child process.
 rexec Replaces the current process image with a new program on
 another site.
 rfork Creates and starts a child process on another cluster site.
 run Creates and starts a child process that runs a new program
 on a cluster site.
 sbrk Changes data segment space allocation.
 setpriority Sets program scheduling priority.
 wait Waits for a child process to stop or terminate.
 waitpid Obtains status information pertaining to a child process.
 wait3 Waits for a child process to stop or terminate.

AIX Operating System Technical Reference
Process Control

¦ Copyright IBM Corp. 1985, 1991
1.2.2.3 - 1

 1.2.2.4 Process Identification

 The following system calls get and set the IDs and limits of a process:

 getegid Gets the effective group ID.
 geteuid Gets the effective user ID.
 getgid Gets the real group ID.
 getgroups Gets the group access list.
 getlocal Gets the name of the <LOCAL> file system of a process.
 getpgrp Gets the process group ID.
 getpid Gets the process ID.
 getppid Gets parent process ID.
 getspath Gets the process site execution path.
 gettimeofday Gets the current time in microsecond precision.
 getuid Gets the real user ID.
 getxperm Gets the process site execution permission.
 setgid Sets the real and effective group IDs.
 setgroups Sets the group access list.
 setlocal Manages the <LOCAL> alias.
 setpgid Sets the process group ID.
 setpgrp Sets the process group ID.
 setsid Sets the session ID.
 setspath Sets the process site execution path.
 settimeofday Sets the current time in microsecond precision.
 setuid Sets the real and effective user IDs.
 setxperm Sets the process site execution permission.
 setxuid Uses real uid or gid on subsequent invocations of exec or
 run.
 site Gets the execution site of a process.
 stime Sets the current time.
 sysconf Retrieves the value of a system limit or option.
 tcgetpgrp Gets the foreground process group ID.
 tcsetpgrp Sets the foreground process group ID.
 time Gets the current time.
 times Gets process and child process times.
 ulimit Gets and sets the process's user limits.
 uname Gets the name of the current AIX system.
 unamex Gets the name of the current AIX system in binary form.
 usrinfo Gets and sets user information about the owner of a
 process.

AIX Operating System Technical Reference
Process Identification

¦ Copyright IBM Corp. 1985, 1991
1.2.2.4 - 1

 1.2.2.5 System Administration

 The following system calls support overall system operation.

 acct Enables and disables process accounting.
 reboot Causes a system reboot.
 swapctl Controls swap devices.

AIX Operating System Technical Reference
System Administration

¦ Copyright IBM Corp. 1985, 1991
1.2.2.5 - 1

 1.2.2.6 Cluster Communication

 The following system calls support communication between cluster sites:

 getsites Gets information about other cluster sites.
 netctrl Gets and sets cluster communication parameters.
 probe Probes another cluster site.

AIX Operating System Technical Reference
Cluster Communication

¦ Copyright IBM Corp. 1985, 1991
1.2.2.6 - 1

 1.2.2.7 File System Replication

 The following system calls support replicated file systems:

 chfstore Changes the replication attributes of a file.
 chlwm Changes the low water mark of a replicated file system.
 dustat Gets file system statistics.
 raccept Waits until file system recovery is required.
 spropin Causes the latest version of a file to be propagated.

AIX Operating System Technical Reference
File System Replication

¦ Copyright IBM Corp. 1985, 1991
1.2.2.7 - 1

 1.2.2.8 TCP/IP Communication

 The following system calls support TCP/IP communication:

 accept Accepts an incoming connection.
 bind Binds a name to a socket.
 connect Connects to a socket.
 gethostname Gets the internet name of the host.
 getsockname Gets the name of a socket.
 getsockopt Gets the options of a socket.
 gethostid Gets the internet address of a host.
 listen Listens for connections on a socket.
 receive Receives data from a socket.
 sethostname Sets the internet name of the host.
 setsockopt Sets the options of a socket.
 sethostid Sets the internet address of a host.
 send Sends data to a socket.
 shutdown Shuts down a socket connection.
 socket Creates a socket.
 socketpair Creates a pair of connected sockets.

AIX Operating System Technical Reference
TCP/IP Communication

¦ Copyright IBM Corp. 1985, 1991
1.2.2.8 - 1

 1.2.2.9 Signals

 Signals are sent to processes when exceptional events occur. A signal
 interrupts the activity that a process is performing and causes it to take
 a special action. For example, when a user presses the Alt-Pause key
 sequence at a workstation, the SIGINT signal is sent to the user's
 processes. Normally, this causes them to terminate, but each process can
 arrange to ignore the signal, or to take some other action. The signals
 that can occur are defined in the sys/signal.h header file, and they are
 further described in "sigaction, sigvec, signal" in topic 1.2.263.

 Standard signal processing is compatible with UNIX System V and is
 described in more detail in "sigaction, sigvec, signal" in topic 1.2.263.
 The following system calls handle standard signal processing:

 alarm Sets the process's alarm clock.
 kill Sends a signal to one or more processes.
 pause Suspends the process until a signal arrives.
 signal Sets the action to take when the process receives a signal.

 Enhanced signal processing adds several useful features to the facility.
 It is described in more detail in "sigaction, sigvec, signal" in
 topic 1.2.263. The following system calls control enhanced signal
 processing:

 sigaction Sets the action to take when the process receives a signal.
 sigpending Examines pending signals.
 sigprocmask Sets or changes the process signal mask.
 sigreturn Returns from a signal handler.
 sigstack Specifies an alternate stack upon which to process signals.
 sigsuspend Atomically changes the set of blocked signals and waits for
 an interrupt.

AIX Operating System Technical Reference
Signals

¦ Copyright IBM Corp. 1985, 1991
1.2.2.9 - 1

 1.2.2.10 Semaphores, Message Queues, and Shared Memory Segments

 In addition to signals, the AIX Operating System provides three facilities
 that provide flexible interprocess communication (IPC): semaphores,
 message queues, and shared memory segments. Details about the philosophy
 and use of each these facilities is beyond the scope of this book.

 The following system calls deal with message queues, semaphores, or shared
 memory:

 msgctl semop
 msgget shmat
 msgop shmctl
 semctl shmdt
 semget shmget

 All three facilities are accessed in a similar manner. The steps are
 outlined here in approximately the order that they appear in programs:

 1. The user specifies a key to identify the individual semaphore set or
 the message queue or shared segment to be accessed. This key is
 analogous to a file name in that it has been previously agreed upon to
 identify a specific data structure.

 The key IPC_PRIVATE (defined in the sys/ipc.h header file) is a
 special key value that specifies that the data structure is to be
 private to the current process.

 Keys can be generated by any algorithm as long as the same algorithm
 is used by all processes on the system. The ftok subroutine provides
 a standard algorithm for generating IPC keys. (See " stdipc: ftok" in
 topic 1.2.284 for information about this subroutine.)

 2. System calls whose names end with -get (semget, msgget, and shmget)
 use the key to obtain access to the requested data structure. The
 -get system calls are analogous to open: each returns an integer
 identifier (analogous to a file descriptor) that identifies the data
 structure for access with other system calls.

 Normally, if the semaphore, message queue, or shared segment does not
 already exist, then the -get system call creates the necessary data
 structure. If another process has already created the data structure
 by calling the same -get system call with the same key, then the
 identifier of that data structure is returned. This action can be
 modified with the semflg, msgflg, or shmflg parameter.

 However, if IPC_PRIVATE is specified as the key, a private data
 structure is created. No key exists with which to identify this data
 structure, so only processes that have its identifier can access it.
 The current process must pass the identifier to other processes that
 are to access it. For example, the identifier can be passed to a
 child process through the argv argument vector (see "exec: execl,
 execv, execle, execve, execlp, execvp" in topic 1.2.71 for details).

 3. Shared memory segments must next be attached using the shmat system
 call.

 4. The semop system call accesses semaphores. Message queues are
 accessed by msgsnd, msgrcv, and msgxrcv. Programs can access shared
 memory segments as regular memory through the pointer returned by the

AIX Operating System Technical Reference
Semaphores, Message Queues, and Shared Memory Segments

¦ Copyright IBM Corp. 1985, 1991
1.2.2.10 - 1

 shmat system call.

 5. System calls whose names end with -ctl (semctl, msgctl, and shmctl)
 perform a variety of control operations on the data structure. These
 control operations include getting status information and changing the
 access permissions. The data structure associated with each type of
 IPC identifier is defined in the description of the corresponding -ctl
 system call.

 6. When no longer in use, shared memory segments must be detached using
 the shmdt system call.

 7. The IPC identifier and the associated data structure should then be
 removed from the system with the IPC_RMID operation of the
 corresponding -ctl system call.

 Each IPC data structure contains an ipc_perm structure, which contains
 access permission information. The ipc_perm structure is defined in the
 sys/ipc.h header file, and it contains the following members:

 ushort uid; /* Owner's user ID */
 ushort gid; /* Owner's group ID */
 ushort cuid; /* Creator's user ID */
 ushort cgid; /* Creator's group ID */
 ushort mode; /* Access permission mode */
 ushort seq; /* Slot usage sequence number */
 key_t key; /* Key */

 The access permission mechanism resembles the one for files, except that
 execute permission does not exist for IPC facilities. The semget, msgget,
 and shmget system calls set the initial permissions when they create new
 IPC data structures. Also, the user (group) permissions apply if the
 process's effective user (group) ID matches either uid (gid) or cuid
 (cgid). The permissions can be changed with the corresponding -ctl system
 calls. The uid and gid fields identify the user and group that own the
 file for determining whether a given process may access a data structure.
 The cuid and cgid fields identify the process that created the data
 structure, and they cannot be changed.

 The mode field is constructed by logically ORing one or more of the
 following values. Note that these values are defined in the sys/stat.h
 header file and that they are a subset of the access permissions that
 apply to files.

 S_IRUSR Permits the process that owns the data structure to read it.
 S_IWUSR Permits the process that owns the data structure to modify it.
 S_IRGRP Permits the group associated with the data structure to read
 it.
 S_IWGRP Permits the group associated with the data structure to modify
 it.
 S_IROTH Permits others to read the data structure.
 S_IWOTH Permits others to modify the data structure.

 For more information about the interprocess communication facilities, see
 AIX Programming Tools and Interfaces.

AIX Operating System Technical Reference
Semaphores, Message Queues, and Shared Memory Segments

¦ Copyright IBM Corp. 1985, 1991
1.2.2.10 - 2

 1.2.3 Subroutines

 Each subroutine entry contains a "Library" section that indicates the
 library where the subroutine is stored. Subroutines are stored in
 libraries to conserve storage space and to make the program linkage
 process more efficient. A library (sometimes called an archive) is a data
 file that contains copies of a number of individual files and control
 information that allows them to be accessed individually.

 The libraries that contain the subroutines described in this book are
 located in the /lib and /usr/lib directories. By convention, all of them
 have names of the form libname.a, where name identifies the specific
 library.

 You do not need to do anything special to use subroutines from the
 Standard C Library (libc.a) or the Run-time Services Library (librts.a).
 The cc command automatically searches these libraries for subroutines that
 a program needs. However, if you use subroutines from another library,
 you must tell the compiler to search that library. If your program uses
 subroutines from the library libname.a, compile your program with the flag
 -lname. The following example compiles the program myprog.c, which uses
 subroutines from the libdbm.a:

 cc myprog.c -ldbm

 You can specify more than one -l flag, but they must be specified after
 any other flags. See the cc command in AIX Operating System Commands
 Reference for details.

 The libraries discussed in the book are:

 � Standard C Library libc.a)
 � Standard I/O Library libc.a)
 � Internet Library libc.a)
 � Run-time Services Library librts.a)
 � Math Library libm.a)
 � Programmers Workbench Library libPW.a)
 � Curses Library libcurses.a)
 � Extended Curses Library libcur.a)
 � Database Library libdbm.a)
 � Queued Backend Subroutine Library libqb.a)
 � Lex Library libl.a)
 � Yacc Library liby.a)
 � 4.3BSD Compatibility Library libbsd.a)
 � Graphics Libraries libplot.a, libprint.a, lib300.a, lib300s.a,
 lib4014.a, lib450.a, libdumb.a, librt0.a)
 � Advanced Display Graphics Support Library libgsl.a)
 � Object File Access Routine Library libld.a)

 The Standard I/O subroutines are actually contained in the Standard C
 Library (libc.a). These subroutines implement a buffered I/O system on
 top of the basic I/O provided by the system calls. For more information
 about these subroutines, see " stdio" in topic 1.2.283.

 The Internet subroutines and system calls are also contained in the
 standard C library (libc.a). These subroutines and system calls support
 Internet protocols (IP). For more information on Internet subroutines and
 system calls, see "sockets library" in topic 1.2.277.

AIX Operating System Technical Reference
Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.3 - 1

 1.2.4 Syntax

 The "Syntax" section of each system call and subroutine entry in this book
 gives the syntax needed to invoke it. The following conventions are used
 in this section:

 Boldface type shows text to be entered exactly as shown.

 Italic type shows parameters that should be replaced with actual
 values.

 [] (square brackets) enclose optional parameters.

 ... (an ellipsis) follows a parameter that can be repeated any number
 of times.

 The information shown in each "Syntax" section is usually the set of
 declarations as they might appear in the actual C language definition of
 the call or subroutine. These declarations give you more information than
 showing the exact calling sequence as it appears in a user program.

 Consider the following example of a subroutine entry:

 #include <stdio.h>

 FILE *fopen (path, type)
 char *path, *type;

 The #include statement names a header file that contains definitions
 needed by the subroutine. See "Header Files" in topic 1.2.5 for more
 information.

 The first line following the #include statement shows the data type of the
 return value (FILE *), the name of the subroutine (fopen), and the
 parameters that it takes (path and type). The following lines indicate
 the data type of each parameter. The fact that the name FILE is in all
 capitals indicates that this data type is defined in the stdio.h header
 file.

 This subroutine might actually be used in a program like this:

 #include <stdio.h>
 ...
 main ()
 {
 FILE *inputfile;
 char filename [] = "test.data";
 ...
 inputfile = fopen (filename, "r+");
 ...
 }

 Note that the type of both parameters is stated as char * (pointer to
 character), but that the value given for each is actually a pointer to a
 character string (an array of characters). In the C language, pointers
 and arrays are treated similarly so that the notations *p and p[0] are
 generally interchangeable. Thus, when this book shows a parameter of type
 char *, a character string is frequently required. Check the
 "Description" section to make sure.

AIX Operating System Technical Reference
Syntax

¦ Copyright IBM Corp. 1985, 1991
1.2.4 - 1

 Because fopen returns a type other than int, the subroutine must be
 declared so that the compiler knows this information. In this particular
 case, it is already declared for you in the header file. Sometimes,
 however, you may need to declare a system call or subroutine yourself.
 For this example, the declaration would take the form:

 FILE *fopen();

 Such a declaration should be put before any references to the system call
 or subroutine. Note that the declaration resembles the syntax shown in
 this book, except that the parameters are omitted and a semicolon is added
 to the end.

 See AIX C Language User's Guide and AIX C Language Reference or another C
 language manual for more detailed information about pointers, arrays, and
 subroutine declarations.

AIX Operating System Technical Reference
Syntax

¦ Copyright IBM Corp. 1985, 1991
1.2.4 - 2

 1.2.5 Header Files

 Many system calls and subroutines require that header files be included in
 the programs that use them. When this is the case, the #include
 statements needed are shown in the "Syntax" section of the call or
 subroutine entry. Consider the following example:

 #include <stdio.h>

 When a program is being compiled, this #include statement inserts the text
 of the stdio.h header file into the source program. The < > delimiters
 indicate that the file is located in the /usr/include directory. All of
 the header files used by the system calls and subroutines described in
 this book are located in /usr/include or in one of its subdirectories.

 The header files contain definitions of constants and macros that the C
 language preprocessor interprets. The #include statements must precede
 all references in your program to the constants and macros that the header
 files define. Most of the time you can simply put all of the #include
 statements together at the top of the program. If you use several calls
 or subroutines that require the same header files, then each file should
 be included only once. If a system call or subroutine requires more than
 one header file, be careful to enter the #include statements in the order
 shown.

 By convention, the names of most of the constants are in capital letters.
 Therefore, a name that appears in this book in capitals (for example,
 EFAULT) is a constant defined in a header file. A few constants are not
 named in capitals, notably stdin, stdout, and stderr, which are defined in
 stdio.h.

 The constant NULL is commonly used to denote a null pointer value. This
 book sometimes mentions NULL when discussing system calls and subroutines
 that do not require header files. If you compile a program and get an
 error message indicating that NULL is not defined, insert the following
 statement before the first NULL in your program:

 #define NULL 0

 In addition to constants, header files sometimes define macros and data
 types. Macros take parameters and resemble subroutines, but there are
 several differences:

 � You must not type a space between the macro name and the ope
 parenthesis that follows it. For example, the macro call getc(...) is
 valid, but getc (...) is not. The preprocessor does not recognize the
 second of these as a macro, and so it does not make the proper
 substitution.

 � You cannot take the address of a macro with the C language & operator.

 � The parameters of a macro are evaluated in a different manner fro
 those of a subroutine. See AIX C Language User's Guide and AIX C
 Language Reference or another C language manual for details about
 parameter evaluation.

 Certain macros are implemented both as subroutines and macros. To use
 macros as subroutines, use the #undef C Preprocessor directive to undefine
 the macro (first include the appropriate header file).

AIX Operating System Technical Reference
Header Files

¦ Copyright IBM Corp. 1985, 1991
1.2.5 - 1

 1.2.6 a64l, l64a

 Purpose
 Converts between long integers and base-64 ASCII strings.

 Library
 Standard C Library (libc.a)

 Syntax

 char *l64a (l)
 long a64l (s) long l;
 char *s;

 Description
 The a64l and l64a subroutines maintain numbers stored in base-64 ASCII
 characters. This is a notation in which long integers are represented by
 up to six characters, each character representing a digit in a base-64
 notation.

 The following characters are used to represent digits:

 . represents 0.
 / represents 1.
 0--9 represent 2--11.
 A--Z represent 12--37.
 a--z represent 38--63.

 Note: Base-64 ASCII strings' lowest bit is the left-most bit, not the
 right-most bit.

 The a64l subroutine takes a pointer to a null-terminated character string
 containing a value in base-64 representation and returns the corresponding
 long value. If the string pointed to by the s parameter contains more
 than six characters, the a64l subroutine uses only the first six. The
 a64l subroutine does not check for invalid ASCII characters such as @ or
 %. Also, for any base-64 ASCII string larger than zzzzz/ or 2147483647,
 the a64l subroutine does not return the expected value.

 Conversely, the l64a subroutine takes a long parameter and returns a
 pointer to the corresponding base-64 representation. If the l parameter
 is 0, then the l64a subroutine returns a pointer to a null string.

 For any base-64 ASCII string larger than zzzzz/ or 2147483647, the l64a
 subroutine does not return the expected value. The value returned by l64a
 is a pointer into a static buffer, the contents of which are overwritten
 by each call.

AIX Operating System Technical Reference
a64l, l64a

¦ Copyright IBM Corp. 1985, 1991
1.2.6 - 1

 1.2.7 abort

 Purpose
 Generates a SIGABRT signal to terminate the current process.

 Library
 Standard C Library (libc.a)

 Syntax

 int abort ()

 Description
 The abort subroutine causes a SIGABRT signal to be sent to the current
 process, usually terminating the process and producing a memory dump.

 It is possible for the abort subroutine to return control if SIGABRT is
 caught or ignored. In this case, abort returns the value returned by the
 kill system call.

 If SIGABRT is neither caught nor ignored, and if the current directory is
 writable, the abort subroutine produces a memory dump in a file named core
 in the current directory. The shell then displays the message:

 abort - core dumped

 Related Information
 In this book: "exit, _exit" in topic 1.2.73, "kill, kill3, killpg" in
 topic 1.2.138, and "sigaction, sigvec, signal" in topic 1.2.263.

 The dbx command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
abort

¦ Copyright IBM Corp. 1985, 1991
1.2.7 - 1

 1.2.8 abs

 Purpose
 Returns the absolute value of an integer.

 Library
 Standard C Library (libc.a)

 Syntax

 int abs (i)
 int i;

 Description
 The abs subroutine returns the absolute value of its integer operand.

 Note: A twos-complement integer can hold a negative number whose absolute
 value is too large for the integer to hold. When given this
 largest negative value, the abs subroutine returns the same value.

 Related Information
 In this book: "floor, ceil, fmod, fabs, rint" in topic 1.2.81.

AIX Operating System Technical Reference
abs

¦ Copyright IBM Corp. 1985, 1991
1.2.8 - 1

 1.2.9 accept

 Purpose
 Accepts a connection on a socket.

 Syntax

 #include <sys/types.h>
 #include <sys/socket.h>

 int accept (s, addr, addrlen)
 int s;
 struct sockaddr *addr;
 int *addrlen;

 Description
 The accept system call extracts the first connection on the queue of
 pending connections, creates a new socket with the same properties as s,
 and allocates a new file descriptor for that socket. If no pending
 connections are present on the queue and the calling socket is not marked
 as nonblocking, accept blocks the caller until a connection is present.
 If the socket specified by s is marked nonblocking and there are no
 connections pending on the queue, accept returns an error as described
 below. The accepted socket cannot be used to accept more connections.
 The original socket, s, remains open and can accept more connections.

 The s parameter is a socket that was created with the socket system call,
 was bound to an address with the bind system call, and has issued a
 successful call to the listen system call.

 The addr parameter is a result parameter that is filled in with the
 address of the connecting entity, as known to the communications layer.
 The exact format of addr is determined by the domain in which the
 communication occurs. The addrlen parameter initially contains the amount
 of space pointed to by the addr parameter. On return, it contains the
 actual length (in bytes) of the address returned. This system call is
 used with connection-based socket types, such as SOCK_STREAM.

 Before calling the accept system call, you can find out if the socket is
 ready to accept the connection by doing a read select with the select
 system call.

 Return Value

 Upon successful completion, the nonnegative socket descriptor of the
 accepted socket is returned. A socket marked nonblocking with the
 O_NONBLOCK flag or the FIONBIO ioctl returns a value of -1 and sets errno
 to EAGAIN in the situation where is would otherwise have blocked.

 A socket marked with the O_NDELAY flag returns ZERO in the situation where
 it would otherwise have blocked.

 Error Conditions
 The system call fails if one or more of the following are true:

 EBADF The s parameter is not valid.

 ENOTSOCK The s parameter refers to a file, not a socket.

 EOPNOTSUPP The referenced socket is not of type SOCK_STREAM.

AIX Operating System Technical Reference
accept

¦ Copyright IBM Corp. 1985, 1991
1.2.9 - 1

 EFAULT The addr parameter is not in a writable part of the user
 address space.

 EAGAIN The socket is marked nonblocking with the O_NONBLOCK flag or
 the FIONBIO ioctl in the situation where it would otherwise
 have blocked.

 Related Information
 In this book: "bind" in topic 1.2.20, "connect" in topic 1.2.49, "listen"
 in topic 1.2.157, "select" in topic 1.2.242, and "socket" in
 topic 1.2.275.

AIX Operating System Technical Reference
accept

¦ Copyright IBM Corp. 1985, 1991
1.2.9 - 2

 1.2.10 access

 Purpose
 Determines the accessibility of a file.

 Syntax

 #include <unistd.h>

 int access (path, amode)
 char *path;
 int amode;

 Description
 The access system call checks the accessibility of the file specified by
 the path parameter. If path refers to a symbolic link, the access system
 call returns information about the file pointed to by the symbolic link.

 Access permission to all components of the path parameter is determined by
 using the real user ID instead of the effective user ID and the concurrent
 group set (without the effective group ID) along with the real group ID.

 The bit pattern contained in amode is constructed by logically ORing the
 following values:

 R_OK Checks read permission.
 W_OK Checks write permission.
 X_OK Checks execute (search) permission.
 F_OK Checks to see if the file exists.

 The owner of a file has access checked with respect to the owner read,
 write, and execute mode bits. Members of the file's group other than the
 owner have access checked with respect to the group mode bits. All others
 have access checked with respect to the other mode bits.

 Return Value
 If the requested access is permitted, a value of 0 is returned. If the
 requested access is denied, a value of -1 is returned and errno is set to
 indicate the error.

 Error Conditions
 Access to the file is denied if one or more of the following are true:

 ENOTDIR A component of the path prefix is not a directory.

 ENOENT Read, write, or execute (search) permission is requested for a
 null path name.

 ENOENT The named file does not exist.

 EACCES Search permission is denied on a component of the path prefix.

 EACCES Permission bits of the file mode do not permit the requested
 access.

 EROFS Write access is requested for a file on a read-only file system.

 ETXTBSY Write access is requested for a pure procedure (shared text)
 file that is being executed.

AIX Operating System Technical Reference
access

¦ Copyright IBM Corp. 1985, 1991
1.2.10 - 1

 EFAULT The path parameter points to a location outside of the process's
 allocated address space.

 ESTALE The process's root or current directory is located in an NFS
 virtual file system that has been unmounted.

 ENAMETOOLONG
 A component of the path parameter exceeded NAME_MAX characters
 or the entire path parameter exceeded PATH_MAX characters.

 ENOENT A hidden directory was named, but no component inside it matched
 the process's current site path list.

 ENOENT A symbolic link was named, but the file to which it refers does
 not exist.

 ELOOP A loop of symbolic links was detected.

 ENFILE The system inode table is full.

 If the Transparent Computing Facility is installed on your system, access
 can also fail if one or more of the following are true:

 ESITEDN1 path cannot be accessed because a site went down.

 ESITEDN2 The operation was terminated because a site failed.

 ENOSTORE path is a name relative to the working directory, but no site
 which stores this directory is currently up.

 ENOSTORE A component of path is replicated but is not stored on any site
 which is currently up.

 EROFS Write access is requested for a file on a replicated file system
 in which the primary copy is unavailable.

 EINTR A signal was caught during the access system call. This can
 occur if the internal open of this file is suspended during
 topology change.

 Related Information
 In this book: "chmod, fchmod" in topic 1.2.44 and "statx, fstatx, stat,
 fstat, fullstat, ffullstat, lstat" in topic 1.2.282.

AIX Operating System Technical Reference
access

¦ Copyright IBM Corp. 1985, 1991
1.2.10 - 2

 1.2.11 acct

 Purpose
 Enables and disables process accounting.

 Syntax

 int acct (path)
 char *path;

 Description
 The acct system call enables the accounting routine when the path
 parameter specifies a valid path name of a file and no errors occur during
 the system call. The path name specifies the file to which accounting
 records are written for each process as it terminates. (For information
 about the accounting file, see "acct" in topic 2.3.3.) When the path
 parameter is 0 or NULL, the acct system call disables the accounting
 routine.

 Warning: To ensure accurate accounting, each node must have its own
 accounting file, which can be located on any node in the network.

 The effective user ID of the calling process must be superuser to use the
 acct system call.

 Return Value
 Upon successful completion, acct returns a value of 0. If acct fails, a
 value of -1 is returned, and errno is set to indicate the error.

 Error Conditions
 The acct system call fails if one or more of the following are true:

 EPERM The effective user ID of the calling process is not superuser.

 EBUSY An attempt is made to enable accounting when it is already
 enabled.

 ENOTDIR A component of the path parameter is not a directory.

 ENOENT Any component of the accounting file's path name does not exist.

 EACCES Any component of the path parameter denies search permission.

 EACCES The file named by the path parameter is not an ordinary file.

 EISDIR The named file is a directory.

 EROFS The named file resides on a read-only file system.

 EFAULT The path parameter points to a location outside of the process's
 allocated address space.

 ENAMETOOLONG
 A component of the path parameter exceeded NAME_MAX characters
 or the entire path parameter exceeded PATH_MAX characters.

 ENOENT A hidden directory was named, but no component inside it matched
 the process's current site path list.

 ENOENT A symbolic link was named, but the file to which it refers does

AIX Operating System Technical Reference
acct

¦ Copyright IBM Corp. 1985, 1991
1.2.11 - 1

 not exist.

 ELOOP A loop of symbolic links was detected.

 ENOSPC The file system is out of inodes.

 ENFILE The system inode table is full.

 ETXTBSY Write access is requested for a pure procedure (shared text)
 file that is being executed.

 If the Transparent Computing Facility is installed on your system, acct
 can also fail if one or more of the following are true:

 ESITEDN1 path cannot be accessed because a site went down.

 ESITEDN2 The operation was terminated because a site failed.

 EINTR A signal was caught during the acct system call.

 ENOSTORE path is a name relative to the working directory, but no site
 which stores this directory is currently up.

 ENOSTORE A component of path is replicated but is not stored on any site
 which is currently up.

 EROFS Write access is requested for a file on a replicated file system
 in which the primary copy is unavailable.

 Related Information
 In this book: "acct" in topic 2.3.3, "exit, _exit" in topic 1.2.73 and
 "sigaction, sigvec, signal" in topic 1.2.263.

 The acct command in AIX Operating Commands Reference.

AIX Operating System Technical Reference
acct

¦ Copyright IBM Corp. 1985, 1991
1.2.11 - 2

 1.2.12 acosh, asinh, atanh

 Purpose
 Inverse hyperbolic functions.

 Library
 Math Library (libm.a)

 Syntax

 #include <math.h>

 double acosh (x)
 double x;

 double asinh (x)
 double x;

 double atanh (x)
 double x;

 Description
 These subroutines acosh, asinh, atanh compute the designated inverse
 hyperbolic functions for real arguments.

 The acosh subroutine returns the value HUGE and sets error to ED8M if the
 argument is less than 1.

 The atanh subroutine returns the reserved operand if the argument has
 absolute value bigger than or equal to 1.

 Related Information
 In this book: "cbrt, exp, expm1, log, log10, log1p, pow, sqrt" in
 topic 1.2.28, and "math.h" in topic 2.4.13.

AIX Operating System Technical Reference
acosh, asinh, atanh

¦ Copyright IBM Corp. 1985, 1991
1.2.12 - 1

 1.2.13 adjtime

 Purpose
 Corrects the time to allow synchronization of the system clock.

 Syntax

 #include <sys/time.h>

 adjtime (delta, olddelta)
 struct timeval *delta;
 struct timeval *olddelta;

 Description
 The adjtime system call makes small adjustments to the system time, as
 returned by gettimeofday, advancing or retarding it by the timeval delta.
 If delta is negative, the clock is slowed down by incrementing it more
 slowly than normal until the correction is complete. If delta is
 positive, a larger increment than normal is used. The skew used to
 perform the correction is generally a fraction of one percent. Thus, the
 time is always a monotonically increasing function. A time correction
 from an earlier call to adjtime may not be finished when adjtime is called
 again. If olddelta is nonzero, the structure pointed to contains, upon
 return, the number of microseconds still to be corrected from the earlier
 call.

 This call may be used by time servers that synchronize the clocks of
 computers in a local area network. Such time servers would slow down the
 clocks of some machines and speed up the clocks of others to bring them to
 the average network time.

 The call adjtime is restricted to use by the superuser.

 Return Value
 Upon successful completion, a value of 0 is returned. If the adjtime
 system call fails, a value of -1 is returned and errno is set to indicate
 the error.

 Error Conditions
 The adjtime system call fails if one or more the following are true:

 EFAULT The delta or olddelta parameters point to a location outside of
 the process's allocated address space.

 EPERM The effective user ID of the calling process is not superuser.

 Related Information
 In this book: "gettimeofday, settimeofday, ftime" in topic 1.2.123.

 The date command in AIX Operating System Commands Reference.

 The discussion of timed and timedc in AIX TCP/IP User's Guide.

AIX Operating System Technical Reference
adjtime

¦ Copyright IBM Corp. 1985, 1991
1.2.13 - 1

 1.2.14 alarm

 Purpose
 Sets a process's alarm clock.

 Syntax

 unsigned int alarm (secs)
 unsigned int secs;

 Description
 The alarm subroutine sets a timer which causes a SIGALRM signal to be
 delivered to the calling process after the number of real-time seconds
 specified by the secs parameter have elapsed. After the SIGALRM signal is
 delivered the timer is turned off.

 Unless caught, blocked, or ignored the SIGALRM signal will cause the
 process to terminate. (See "sigaction, sigvec, signal" in topic 1.2.263
 for more information about signals.)

 Alarm requests are not stacked; successive calls reset the alarm timer.
 If the secs parameter is 0 the alarm timer is turned off, cancelling any
 pending alarm request.

 Because of process scheduling delays, the actual time lapse between
 setting the timer and getting the SIGALRM signal may be more than
 requested.

 The alarm timer value is inherited through the exec system call. The child
 process after a fork system call will have its alarm timer turned off.

 If the Transparent Computing Facility is installed, the alarm timer is
 preserved through migrate and rexec system calls and during migrates
 caused by SIGMIGRATE.

 The alarm subroutine is a simplified interface to the setitimer system
 call. See "getitimer, setitimer" in topic 1.2.101 for more information.

 Return Value
 The alarm subroutine returns the number of seconds previously remaining on
 the alarm timer, or 0 if the timer was not running. (Note that because
 timer values are inherited through exec, the timer may already be running
 when a program begins to execute.)

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, "getitimer, setitimer" in topic 1.2.101, "pause" in
 topic 1.2.202, and "sigaction, sigvec, signal" in topic 1.2.263 .

AIX Operating System Technical Reference
alarm

¦ Copyright IBM Corp. 1985, 1991
1.2.14 - 1

 1.2.15 alphasort

 Purpose
 Provides a comparison function for sorting alphabetically.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sys/types.h>
 #include <dirent.h>

 int alphasort (dir1, dir2)
 struct dirent **dir1, **dir2;

 Description
 The alphasort subroutine alphabetically compares the d_name members of the
 two dirent structures pointed to by the dir1 and dir2 parameters. This
 subroutine can be passed as the compar parameter to either the scandir or
 qsort subroutine, or a user-supplied subroutine can be used instead. (See
 "qsort" in topic 1.2.217 and "scandir" in topic 1.2.240 for more
 information.)

 Return Value
 The alphasort subroutine returns the following values:

 Less than 0 If the d_name member pointed to by the dir1 parameter is
 lexically less than the d_name member pointed to by the
 dir2 parameter.

 0 If the d_name members pointed to by dir1 and dir2 are
 equal.

 Greater than 0 If the d_name member pointed to by the dir1 parameter is
 lexically greater than the d_name member pointed to by
 the dir2 parameter.

 Related Information
 In this book: "qsort" in topic 1.2.217 and "scandir" in topic 1.2.240.

AIX Operating System Technical Reference
alphasort

¦ Copyright IBM Corp. 1985, 1991
1.2.15 - 1

 1.2.16 assert

 Purpose
 Verifies a program assertion.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <assert.h>

 void assert (expression)
 int expression;

 Description
 The assert macro puts diagnostics into a program. If expression is false
 (zero), then assert writes the following message on the standard error
 output and aborts the program:

 Assertion failed: expression, file filename, line linenum

 In the error message, filename is the name of the source file and linenum
 is the source line number of the assert statement.

 If you compile a program with the preprocessor option -DNDEBUG, or with
 the preprocessor control statement #define NDEBUG ahead of the #include
 <assert.h> statement, assertions will not be compiled into the program.

 Related Information
 In this book: "abort" in topic 1.2.7.

 The cpp command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
assert

¦ Copyright IBM Corp. 1985, 1991
1.2.16 - 1

 1.2.17 async_daemon

 Purpose
 Performs asynchronous block input/output operations for an NFS client.

 Syntax
 void async_daemon ()

 Description

 The async_daemon system call performs the asynchronous block I/O
 operations for NFS clients. If NFS is installed on your system,
 async_daemon is called by the biod command from the /etc/rc.nfs file when
 the system starts. Once started, async_daemon loops continuously and does
 not return.

 Related Information
 The biod command in AIX Operating System Commands Reference.

 The NFS configuration section in Managing the AIX Operating System.

AIX Operating System Technical Reference
async_daemon

¦ Copyright IBM Corp. 1985, 1991
1.2.17 - 1

 1.2.18 bcmp, bzero, ffs

 Purpose
 Performs byte operations on strings of variable length.

 Library
 Standard C Library (libc.a)

 Syntax

 int bcmp (string1, string2, intgffs (integer)
 char *string1, *string2; int integer;
 int length;

 void bzero (string, length)
 char *string;
 int length;

 Description
 These functions perform various operations on variable length strings of
 bytes. They do not check for null bytes as the routines in string. (See
 "string" in topic 1.2.288 for a description of those routines.)

 The bcmp subroutine compares the bytes in string1 with the bytes in
 string2. The bcmp subroutine returns a 0 value if the two strings are
 identical and a nonzero value otherwise. Both strings are assumed to be
 length bytes long.

 The bzero subroutine places the number of bytes set to 0 that the length
 parameter specifies into the string pointed to by string.

 The ffs subroutine finds the first set bit in the integer passed to it and
 returns the number of that bit. Bits are numbered starting at 1 from the
 least significant bit. A return value of 0 indicates that the value
 passed is 0.

 For more information on the memcmp and memset subroutines, which can be
 used to perform the same functions as bcmp and bzero, respectively, and on
 the bcopy subroutine, see "memory: memccpy, memchr, memcmp, memcpy,
 memset, bcopy" in topic 1.2.166.

 Related Information
 In this book: "memory: memccpy, memchr, memcmp, memcpy, memset, bcopy" in
 topic 1.2.166 and "string" in topic 1.2.288.

AIX Operating System Technical Reference
bcmp, bzero, ffs

¦ Copyright IBM Corp. 1985, 1991
1.2.18 - 1

 1.2.19 bessel: j0, j1, jn, y0, y1, yn

 Purpose
 Computes Bessel functions.

 Library
 Math Library (libm.a)

 Syntax

 #include <math.h>

 double j0 (x) double y0 (x)
 double x; double x;

 double j1 (x) double y1 (x)
 double x; double x;

 double jn (n, x) double yn (n, x)
 int n; int n; double x;
 double x;

 Description
 The j0 and j1 subroutines return Bessel functions of x of the first kind,
 of orders 0 and 1, respectively. jn returns the Bessel function of x of
 the first kind of order n.

 The y0 and y1 subroutines return the Bessel functions of x of the second
 kind, of orders 0 and 1, respectively. yn returns the Bessel function of
 x of the second kind of order n. The value of x must be positive.

 Non-positive parameters cause y0, y1, and yn to return the value HUGE, to
 set errno to EDOM, and to write a message to the standard error output
 indicating a DOMAIN error.

 Parameters that are too large in magnitude cause j0, j1, y0, and y1 to
 return as much of the result as possible, to set errno to ERANGE, and to
 write a message to the standard error output indicating a TLOSS error.

 You can change these error-handling procedures with the matherr
 subroutine.

 Error Conditions
 The j0, j1, jn, y0, y1, and yn subroutines fail if one or more of the
 following is true:

 EDOM The value of x is NaN.

 ERANGE The value of x was too large in magnitude.

 Related Information
 In this book: "matherr" in topic 1.2.163.

AIX Operating System Technical Reference
bessel: j0, j1, jn, y0, y1, yn

¦ Copyright IBM Corp. 1985, 1991
1.2.19 - 1

 1.2.20 bind

 Purpose
 Binds a name to a socket.

 Syntax

 #include <sys/types.h>
 #include <sys/socket.h>

 int bind (s, name, namelen)
 int s;
 struct sockaddr *name;
 int namelen;

 Description

 The bind system call assigns a name to an unnamed socket. When a socket
 is created with the socket system call, it belongs to the address family
 specified in the socket call, but has no name assigned yet. The bind
 system call requests that name be assigned to the socket.

 Note that all named sockets must have unique names. A socket does not
 have to have a name before it can make a connection to another socket, and
 a socket returned by the accept system call already has a name assigned to
 it by the call.

 Note: Sockets in the AF_UNIX address family create a name in the file
 system name space that must be deleted by the caller (using unlink)
 when it is no longer needed.

 Note: If the Transparent Computing Facility is installed, socket naming
 is not unique across the cluster; each machine has its own name
 space of sockets.

 Return Value
 Upon successful completion, a value of 0 is returned. If the bind system
 call fails, a value of -1 is returned, and errno is set to indicate the
 error.

 Error Conditions
 The system call fails if one or more of the following are true:

 EBADF The s parameter is not valid.

 ENOTSOCK The s parameter refers to a file, not a socket.

 EADDRNOTAVAIL
 The specified address is not available from the local machine.

 EADDRINUSE
 The specified address is already in use.

 EINVAL The socket is already bound to an address.

 EACCES The requested address is protected, and the current user does
 not have permission to access it.

 EFAULT The name parameter points to a location outside of the process's
 allocated address space.

AIX Operating System Technical Reference
bind

¦ Copyright IBM Corp. 1985, 1991
1.2.20 - 1

 EINVAL The namelen parameter exceeds MLEN (see <sys/mbuf.h>).

 The following errors are specific to binding names in the AF_UNIX address
 family.

 ENOTDIR A component of the path name is not a directory.

 ENOENT A prefix component of the path name does not exist.

 ELOOP A loop of symbolic links was detected.

 EIO An I/O error occurred while making the directory entry or
 allocating the inode.

 EROFS The name would reside in a read-only file system.

 EISDIR A null path name was specified.

 ENOSPC The file system is out of inodes, or the directory in which the
 socket is to be added does not have room for the new entry and
 cannot be extended.

 EACCES Search permission is denied for a component of the path.

 EACCES The directory in which the file is to be created does not permit
 writing.

 If the Transparent Computing Facility is installed on your system, bind
 can also fail if one or more of the following are true:

 ESITEDN1 path cannot be accessed because a site went down.

 ESITEDN2 The operation was terminated because a site failed.

 ENOSTORE path is a name relative to the working directory, but no site
 which stores this directory is currently up.

 ENOSTORE A component of path is replicated but is not stored on any site
 which is currently up.

 EROFS Write access is requested for a file on a replicated file system
 in which the primary copy is unavailable.

 EINTR A signal was caught during the system call.

 Related Information
 In this book: "connect" in topic 1.2.49, "getsockname" in topic 1.2.120,
 "listen" in topic 1.2.157, and "socket" in topic 1.2.275.

AIX Operating System Technical Reference
bind

¦ Copyright IBM Corp. 1985, 1991
1.2.20 - 2

 1.2.21 brk, sbrk

 Purpose
 Changes data segment space allocation.

 Syntax

 char *sbrk (incr)
 int brk (endds) int incr;
 char *endds;

 Description
 The brk and sbrk system calls dynamically change the amount of space
 allocated for the calling process's data segment. (For information about
 data segments, see "exec: execl, execv, execle, execve, execlp, execvp"
 in topic 1.2.71.)

 The change is made by resetting the process's break value and allocating
 the appropriate amount of space. The break value is the address of the
 first location beyond the current end of the data segment. The amount of
 allocated space increases as the break value increases. The newly
 allocated space is initialized to 0. The break value can be automatically
 rounded up to a size appropriate for the memory management architecture.

 The brk system call sets the break value to the value of the endds
 parameter and changes the allocated space accordingly.

 The sbrk system call adds to the break value the number of bytes contained
 in the incr parameter and changes the allocated space accordingly. The
 incr parameter can be a negative number, in which case the amount of
 allocated space is decreased.

 Return Value
 Upon successful completion, the brk system call returns a value of 0, and
 the sbrk system call returns the old break value. If the brk or the sbrk
 system calls fail, a value of -1 is returned and errno is set to indicate
 the error.

 Error Conditions
 The brk and the sbrk system calls fail and the allocated space remains
 unchanged if one or more of the following are true:

 ENOMEM The requested change will allocate more space than is allowed by
 a system-imposed maximum. (For information on the
 system-imposed maximum on memory space, see "getrlimit,
 setrlimit, vlimit" in topic 1.2.115 and "ulimit" in
 topic 1.2.313.)

 ENOMEM The requested change will set the break value to a value greater
 than the lowest stack address or to a value greater than the
 start address of any attached shared memory segment. (For
 information on shared memory operations, see "shmat" in
 topic 1.2.258, "shmdt" in topic 1.2.260, and "shmget" in
 topic 1.2.261.)

 EINVAL The endss or incr parameters would free more data space than had
 been allocated.

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in

AIX Operating System Technical Reference
brk, sbrk

¦ Copyright IBM Corp. 1985, 1991
1.2.21 - 1

 topic 1.2.71, "shmat" in topic 1.2.258, "shmdt" in topic 1.2.260,
 "getrlimit, setrlimit, vlimit" in topic 1.2.115, and "ulimit" in
 topic 1.2.313.

AIX Operating System Technical Reference
brk, sbrk

¦ Copyright IBM Corp. 1985, 1991
1.2.21 - 2

 1.2.22 BSD4.3 library

 Purpose
 Describes the 4.3BSD functions provided by AIX.

 Library
 Standard C Library (libc.a)
 Math Library (libm.a)
 BSD Compatibility (libbsd.a)

 Description
 This section provides a list of 4.3BSD routines supported in AIX and
 information to help application programmers port 4.3BSD programs to AIX.
 Some of these routines can be found in libbsd.a and most of the rest in
 libc.a. The location and full description of each of the 4.3BSD routines
 can be found in the appropriate alphabetical location in this chapter.

 Even if you are familiar with 4.3BSD programming, you should read this
 entire section before porting existing programs or writing new AIX
 programs that use BSD4.3 library functions. Once you have read this
 section, you can refer back to specific discussions or to the individual
 routine descriptions as needed.

 Subtopics
 1.2.22.1 BSD4.3 library Routines
 1.2.22.2 Porting 4.3BSD Applications to AIX

AIX Operating System Technical Reference
BSD4.3 library

¦ Copyright IBM Corp. 1985, 1991
1.2.22 - 1

 1.2.22.1 BSD4.3 library Routines
 The following table lists the 4.3BSD library routines that

AIX Operating System Technical Reference
BSD4.3 library Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.22.1 - 1

 1.2.22.2 Porting 4.3BSD Applications to AIX
 This section provides programmers with the information necessary to use
 the 4.3BSD functions provided by AIX. It explains how to use the libc.a
 library and suggests some of the changes that may be needed to port 4.3BSD
 programs to AIX.

 In general, when porting you should try to use makefile changes whenever
 possible, changing the original source code only when absolutely
 necessary. Changes you may want to make in the makefile include:

 When compiling

 � Add a -D_BSD to your compile command to obtain 4.3BSD
 behavior in include files.

 When linking

 � To access the BSD4.3 library routines, link with
 /usr/lib/libbsd.a.

 An alternative to defining -D_BSD and -lbsd explicitly on the cc command
 line is to define the environment variable BSD in your shell. This
 environment variable instructs cc to place these items on the command line
 for you automatically.

 If you must modify your source code, for the cpp C language preprocessor,
 enclose your changes in ifdef statements similar to the following:

 #ifdef _BSD
 <code for 4.3BSD specific version>
 #else
 <code for AIX specific version>
 #endif

 Note: The define for the AIX Operating System is _AIX.

 There are two versions of signal and two versions of sigvec, one each in
 libbsd.a and libc.a. The versions of signal and sigvec in libbsd.a
 conform to 4.3BSD behavior: for example, caught signals are not reset,
 signal restarts certain system calls and sigvec restarts certain system
 calls by default. The versions of signal and sigvec in libc.a conform to
 the behavior of earlier versions of AIX.

 The AIX signal implementation has been enhanced to support 63 signals
 through the sigaction system call. All 4.3BSD signals, except SIGVTALRM,
 have signal numbers less than or equal to 32 and can be used with sigvec
 and signal. SIGVTALRM has a signal number of 34 and must be used with the
 sigaction system call. See "sigaction, sigvec, signal" in topic 1.2.263
 for more information.

 Subtopics
 1.2.22.2.1 4.3BSD Include Files
 1.2.22.2.2 Specific Information on BSD4.3 library Routines
 1.2.22.2.3 4.3BSD TTY Devices

AIX Operating System Technical Reference
Porting 4.3BSD Applications to AIX

¦ Copyright IBM Corp. 1985, 1991
1.2.22.2 - 1

 1.2.22.2.1 4.3BSD Include Files

 For most applications, the include files on the following list contain the
 necessary 4.3BSD definitions and structures. Just be sure to use -D_BSD
 when compiling your programs.

 Although the include file sys/errno.h contains definitions for ENOTEMPTY
 and EWOULDBLOCK, no AIX system call returns these error numbers. Instead,
 EAGAIN is returned where a 4.3BSD application would expect EWOULDBLOCK,
 and EEXIST is returned by the rename and rmdir system calls rather than
 ENOTEMPTY. If _BSD is defined prior to including sys/errno.h, EWOULDBLOCK
 is automatically defined to EAGAIN. Then place the following definitions
 in your program after including sys/errno.h:

 #undef ENOTEMPTY
 #define ENOTEMPTY EEXIST

 General Include Files Network Include Files

 fcntl.h arpa/ftp.h
 math.h arpa/inet.h
 sgtty.h arpa/nameser.h
 strings.h arpa/telnet.h
 sysexits.h arpa/tftp.h
 sys/dir.h net/af.h
 sys/file.h net/if.h
 sys/ioctl.h net/if_arp.h
 sys/msgbuf.h netinet/in.h
 sys/param.h netinet/in_systm.h
 sys/resource.h netinet/in_var.h
 sys/signal.h netdb.h
 sys/socket.h resolv.h
 sys/syslog.h sys/un.h
 sys/time.h
 sys/ttychars.h
 sys/ttydev.h
 sys/types.h
 sys/uio.h
 sys/wait.h

AIX Operating System Technical Reference
4.3BSD Include Files

¦ Copyright IBM Corp. 1985, 1991
1.2.22.2.1 - 1

 1.2.22.2.2 Specific Information on BSD4.3 library Routines

 A few of the 4.3BSD library routines function differently in AIX. This
 section provides you with details of these differences for a few routines,
 then gives you a list of individual routine descriptions that also contain
 information on such differences.

 strcpyn Calls to this subroutine must be replaced with the strncpy
 subroutine.

 strcatn Calls to this subroutine must be replaced with the strncat
 subroutine.

 If your 4.3BSD program uses any of the subroutines on the following list,
 refer to the full description of that routine in this chapter before
 porting.

 flock
 killpg
 setbuffer, setlinebuf
 syslog
 utimes

AIX Operating System Technical Reference
Specific Information on BSD4.3 library Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.22.2.2 - 1

 1.2.22.2.3 4.3BSD TTY Devices

 The AIX TTY driver also supports the 4.3BSD TTY interfaces. See "termio"
 in topic 2.5.28 for more information.

 If your 4.3BSD program uses the curses library, libcurses.a, TTY issues
 should be handled at that level. Note, however, that AIX uses the
 terminfo subroutine instead of the termcap subroutine that is used in
 4.3BSD.

 When writing or updating code that gets and uses ptys, keep in mind that:

 � AIX uses an extended naming convention for ptys.

 In 4.3BSD, the master pseudo-terminal name is taken from the set
 /dev/ptyp-r 0-9a-f, and the slave pseudo-terminal name is taken from
 the set /dev/ttyp-r 0-9a-f. In AIX, the master pseudo-terminal is
 referred to as the controller; its name is taken from the set
 /dev/ptyp-zA-Z 0-9a-f. The slave pseudo-terminal is referred to as
 the server; its name is taken from the set /dev/ttyp-zA-Z 0-9a-f.

 � ptys may be obtained differently in AIX from 4.3BSD.

 When ptys are configured into the system using the devices command,
 the user has the choice of enabling a logger (that is, a getty
 process) on the server side of a pty. This is not necessary (and must
 not be done) for remote login applications such as Telnet. However,
 other applications may expect a logger to be enabled. The /etc/ports
 file contains a stanza for each pty for which a logger has been
 enabled.

 See the special file, "pty" in topic 2.5.21 for more information.

 Related Information
 In this book: "sockets library" in topic 1.2.277.

 The descriptions of individual BSD commands in AIX Operating System
 Commands Reference.

 The descriptions of individual BSD commands in AIX TCP/IP User's Guide.

AIX Operating System Technical Reference
4.3BSD TTY Devices

¦ Copyright IBM Corp. 1985, 1991
1.2.22.2.3 - 1

 1.2.23 bsearch

 Purpose
 Performs a binary search.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <stdlib.h>

 void *bsearch(key, base, nmemb, size, compar)
 void *key, *base;
 int nmemb;
 size_t size;
 int (*compar) (void*, void*);

 Description
 The bsearch subroutine is a binary search routine generalized from Donald
 E. Knuth's The Art of Computer Programming, Volume 3, 6.2.1, Algorithm
 B. (*) It returns a pointer into a table indicating where a datum is
 found.

 The table must already be sorted in increasing order according to the
 provided comparison function compar. The key parameter points to the
 datum to be sought in the table. The base parameter points to the element
 at the base of the table. The nmemb parameter is the number of elements
 in the table. The compar parameter is a pointer to the comparison
 function, which is called with two parameters that point to the elements
 being compared.

 The comparison function must compare its parameters and return a value as
 follows:

 � If the first parameter is less than the second parameter, compar must
 return a value less than 0.
 � If the first parameter is equal to the second parameter, compar must
 return 0.
 � If the first parameter is greater than the second parameter, compar
 must return a value greater than 0.

 The comparison function need not compare every byte, so arbitrary data can
 be contained in the elements in addition to the values being compared.

 The pointers key and base should be of type pointer-to-element, and cast
 to type pointer-to-character. Although declared as type
 pointer-to-character, the value returned should be cast into type
 pointer-to-element.

 Return Value
 If the key is found in the table, the bsearch returns a pointer to the
 element found. If the key cannot be found in the table, then bsearch
 returns the value NULL.

 Related Information
 In this book: "hsearch, hcreate, hdestroy" in topic 1.2.130, "lsearch,
 lfind" in topic 1.2.160, "qsort" in topic 1.2.217, and "tsearch, tdelete,
 twalk" in topic 1.2.309.

AIX Operating System Technical Reference
bsearch

¦ Copyright IBM Corp. 1985, 1991
1.2.23 - 1

 (*) Reading, Massachusetts: Addison-Wesley, 1981.

AIX Operating System Technical Reference
bsearch

¦ Copyright IBM Corp. 1985, 1991
1.2.23 - 2

 1.2.24 catclose

 Purpose
 Close a message catalog previously opened for access.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <nl_types.h>

 int catclose (catd)
 nl_catd catd;

 Description
 The catclose subroutine closes the message catalog associated with the
 catalog descriptor catd. Any memory associated with the catalog
 descriptor is freed up at this time.

 Return Value
 A 0 (zero) is returned upon successful close of the catalog; a -1 if an
 error occurred. A failure may be due to an invalid catalog descriptor.

 Related Information
 The gencat and mkcatdefs commands in AIX Operating System Commands
 Reference.

 The message catalog description in Managing the AIX Operating System.

 In this book: "catgets" in topic 1.2.25, "catgetmsg" in topic 1.2.26 and
 "catopen" in topic 1.2.27.

AIX Operating System Technical Reference
catclose

¦ Copyright IBM Corp. 1985, 1991
1.2.24 - 1

 1.2.25 catgets

 Purpose
 Retrieve a message from an open message catalog.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <nl_types.h>

 char *catgets (catd, set_num, msg_num, s)
 nl_catd catd;
 int set_num, msg_num;
 char *s;

 Description
 The catgets subroutine retrieves a message from an open message catalog.
 The catd parameter is a catalog descriptor returned from a successful
 catopen, set_num and msg_num specify the set and message from the catalog
 to retrieve, and s is a default string to return if the specified message
 cannot be retrieved. A pointer to the message from the catalog is
 returned upon success. If the call fails for any reason, a pointer to the
 default string is returned.

 Return Value
 The message retrieved by the catgets subroutine is held in a static data
 location so the data is overwritten on successive calls to catgets. It is
 up to the user program to copy the message returned to a local buffer to
 save the message.

 Related Information
 The gencat and mkcatdefs commands in AIX Operating System Commands
 Reference.

 The message catalog description in Managing the AIX Operating System.

AIX Operating System Technical Reference
catgets

¦ Copyright IBM Corp. 1985, 1991
1.2.25 - 1

 1.2.26 catgetmsg

 Purpose
 Retrieve a message from an open message catalog into a buffer.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <nl_types.h>

 char *catgetmsg (catd, set_num, msg_num, buf, buflen)
 nl_catd catd;
 int set_num, msg_num;
 char *buf;
 int buflen;

 Description
 The catgetmsg subroutine reads a message from an open message catalog into
 a buffer. The catd catalog descriptor is returned from a successful
 catopen, set_num and msg_num specify the set and message from the catalog
 to retrieve, and buf is a user defined buffer to store the message and
 buflen in bytes. The catgetmsg subroutine attempts to read up to buflen-1
 bytes of a message string into buf. The message is specified by the
 set_num and msg_num parameters. The message in buf is terminated with a
 NULL byte. catgetmsg does not split a multibyte character. This may lead
 to the message being truncated with up to buflen-4 bytes placed in buf
 before the NULL byte.

 Return Value
 A pointer to buf is returned upon success of catgetmsg. A NULL pointer is
 returned upon any failure.

 Related Information
 The gencat and mkcatdefs commands in the AIX Operating System Commands
 Reference. The message catalog description in Managing the AIX Operating
 System.

AIX Operating System Technical Reference
catgetmsg

¦ Copyright IBM Corp. 1985, 1991
1.2.26 - 1

 1.2.27 catopen

 Purpose
 Open a message catalog.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <nl_types.h>

 nl_catd catopen (filename, parm)
 char *filename;
 int parm

 Description
 The catopen subroutine opens a message catalog, which must be done before
 a message can be extracted using catgets or catgetmsg.

 The catalog descriptor nl_catd is defined in nl_types.h.. The filename
 parameter is the name of the catalog to open and the parm parameter is
 reserved for future use and should be set to zero. The results of setting
 this field to any other value is undefined. If no / (slash) is in the
 filename, then NLSPATH is used to resolve the path. If there is one or
 more / (slash) in the filename, an absolute path is assumed.

 Return Value
 A valid catalog descriptor (nl_catd) is returned if the catalog is
 successfully opened; a -1 if an error occurred. The catopen routine may
 fail due to an invalid pathname for the catalog, or if more than
 NL_MAXOPEN catalogs are currently open.

 Error Conditions
 The catopen subroutine will fail if the following is true:

 ENOMEM Insufficient storage space is available.

 Related Information
 In this book: "environment" in topic 2.4.6.

 The gencat and mkcatdefs commands in AIX Operating System Commands
 Reference.

 The message catalog description in Managing the AIX Operating System.

 In this book: "catclose" in topic 1.2.24, "catgets" in topic 1.2.25 and
 "catgetmsg" in topic 1.2.26.

AIX Operating System Technical Reference
catopen

¦ Copyright IBM Corp. 1985, 1991
1.2.27 - 1

 1.2.28 cbrt, exp, expm1, log, log10, log1p, pow, sqrt

 Purpose
 Computes exponential, logarithm, power, square root and cube root
 functions.

 Library
 Math Library (libm.a)

 Syntax

 #include <math.h>

 double cbrt (x) double log10 (x)
 double x; double x;

 double exp (x) double log1p (x)
 double x; double x;

 double expm1 (x) double pow (x, y)
 double x; double x, y;

 double log (x) double sqrt (x)
 double x; double x;

 Description
 The cbrt subroutine returns the cube root of x.

 The exp subroutine to returns e(x).

 The expm1 subroutine returns log (1+x).

 The log subroutine returns the natural logarithm of x,
 ln x
 . The value of x must be positive.

 The log10 subroutine returns the logarithm base 10 of x,
 log sub 10 % x
 . The value of x must be positive.

 The log1p subroutine returns log (1+x).

 The pow subroutine returns x(y). The values of x and y may not both be 0.
 If x is negative or 0, then y must be an integer.

 The sqrt subroutine returns the square root of x. The value of x cannot
 be negative.

 Note: The expm1 and log1p subroutines are useful to guarantee that
 financial calculations of ((1+x(n)-1/ x (expm1(n* log1p (x))/x are
 accurate when x is very small (for example, small daily interest
 rates). They also make it easier to write accurate inverse
 hyperbolic functions.

 Error Conditions
 The exp, log, log10, and sqrt subroutines can perform either of the
 following types of error handling. The pow subroutine always handles

AIX Operating System Technical Reference
cbrt, exp, expm1, log, log10, log1p, pow, sqrt

¦ Copyright IBM Corp. 1985, 1991
1.2.28 - 1

 errors according to the second method. Both types of error handling allow
 you to define special actions to be taken when an error occurs.

 1. For cbrt, exp, log, log10, and sqrt, exception handling will be
 performed according to ANSI/IEEE standard 754 for binary
 floating-point arithmetic by default.

 If a hardware floating-point processor is installed in your system,
 then using this option can provide greater performance in addition to
 IEEE exception handling. This mode instructs the C compiler to
 generate code that avoids the overhead of the math library subroutines
 by generating math coprocessor code in-line.

 2. The second method is matherr error handling, as described on page
 1.2.163. The default error-handling procedures for these subroutines
 are as follows:

 cbrt If x is negative, cbrt returns the value 0, sets errno to EDOM
 and writes an error message to the standard error output.

 exp If the correct value overflows, exp returns HUGE and sets errno
 to ERANGE.

 expm1 If the correct value overflows, expm1 returns HUGE but does not
 modify errno.

 log If x is negative or 0, log returns the value -HUGE, sets errno
 to EDOM if x is negative and to ERANGE if x is 0, and writes an
 error message to the standard error output.

 log10 If x is negative or 0, log10 returns the value -HUGE, sets
 errno to EDOM if x is negative and to ERANGE if x is 0, and
 writes an error message to the standard error output.

 log1p If x is less than -1, then log1p returns the value QNaN. If x
 equals -1, then log1p returns the value -HUGE. In neither case
 is errno set.

 pow If x is negative or 0 and y is not an integer, or if x and y
 are both 0, pow returns the value 0, sets errno to EDOM, and
 writes an error message to the standard error output. If the
 correct value overflows, pow returns HUGE and sets errno to
 ERANGE.

 sqrt If x is negative, sqrt returns the value 0, sets errno to EDOM,
 and writes an error message to the standard error output.

 This second method of error handling is invoked by including the -z option
 on the cc command line.

 Related Information
 In this book: "hypot, cabs" in topic 1.2.132, "matherr" in topic 1.2.163,
 and "sinh, cosh, tanh" in topic 1.2.271.

AIX Operating System Technical Reference
cbrt, exp, expm1, log, log10, log1p, pow, sqrt

¦ Copyright IBM Corp. 1985, 1991
1.2.28 - 2

 1.2.29 cd

 Purpose
 Provides access to CD ROM files.

 Syntax

 int cdopen (path) #include <sys/types.h>
 char *path;
 off_t cdlseek (cdfd, offset, whence)
 int cdalias (alias, devname) int cdfd;
 char *alias, *devname; off_t offset;
 int whence;
 int cdread (cdfd, buf, nbytes)
 int cdfd;
 char *buf; #include <sys/stat.h>
 unsigned nbytes;
 int cdstat (path, buf)
 int cdclose (cdfd) char *path;
 int cdfd; struct stat *buf;

 Description
 The cd routines provide basic access to a compact disk read-only memory
 (CD ROM) device, at the same level as system calls. The routines are
 distinct from standard system calls because a CD ROM is not organized as a
 normal file system. The routines may be linked with a C program with the
 library option -lcd.

 The cdopen routine opens the CD ROM file named by its path argument and
 returns an integer descriptor to be used in subsequent cdread calls. Note
 that letters in the file names on a CD ROM are restricted to upper case.
 However, cdopen translates its argument to upper case before attempting
 the open, so the path argument is effectively case-insensitive. If the
 path to cdopen is absolute, the first component must be an alias for a CD
 ROM device. If it is relative, the default device /cd0 is assumed.

 The cdalias routine is used to establish mount points for CD ROM devices.
 The alias argument is a name which may be used as the first element in
 paths in subsequent cdopen and cdstat calls. The dev argument is a device
 name to which the alias is mapped. After the call cdalias
 ("/cd2","/dev/cd1");, for example, a reference to /cd2/x as a CD ROM file
 name would refer to file x on the CD ROM device, /dev/cd1. There is one
 default alias, which maps cd0 to /dev/cd0.

 The cdread routine operates just as read. It attempts to read nbytes from
 the CD ROM file associated with cdfd into the buffer referenced by buf.
 The read starts at a position in the file give by a file pointer
 associated with cdfd. Upon return from cdread, this pointer is updated by
 the number of bytes actually read.

 The cdclose routine closes the CD ROM file associated with cdfd.

 The cdlseek routine alters the file position pointer associated with cdfd
 by the amount offset as follows:

 � If whence is 0, the pointer is set to offset bytes from the start of
 the file.

 � If whence is 1, the pointer is set to the current position plus
 offset, which may be negative to move backward.

AIX Operating System Technical Reference
cd

¦ Copyright IBM Corp. 1985, 1991
1.2.29 - 1

 � If whence is 2, the pointer is set to the size of the file plus
 offset. The offset should not be greater than zero.

 The cdstat routine is not implemented in the first phase. The cdstat
 routine may be used to obtain information about a CD ROM file.
 Information about the file named by path is returned in the structure
 referenced by buf. The cdstat routine performs the same internal mapping
 of letters to upper case as does cdopen. The structure used by cdstat is
 identical to that used by the normal stat request. However, some fields
 do not contain useful information due to the read-only nature of the
 device. A CD ROM file never shows write permission for any class of user.
 All three time stamps (creation, last modification and last access) are
 the same. Note that the user and group ID's of a file pertain to the
 environment in which it was recorded.

 Return Value

 If cdopen, cdalias, cdlseek, or cdstat fail, a value of -1 is returned and
 errno is set to indicate the error.

 The cdread routine normally returns the number of bytes read. It returns
 0 at EOF. On error, it returns -1 and sets errno to indicate the error.

 Error Conditions
 The cdopen routine fails if one or more of the following are true:

 ENXIO Device associated with this special file path does not exist or
 the resulting device number is out of range.

 EBUSY Device is busy.

 EMFILE Maximum number of cdrom devices which are currently open.

 ENOENT Failed to find the default alias name in the cdrom mount table.

 The cdalias routine fails if one or more of the following are true:

 EINVAL Alias name alias already in the alias list or alias name too long
 or incorrectly formed.

 EINVAL Device name devname too long.

 ENXIO Device name devname is not a character special file.

 The cdread routine fails if one or more of the following are true:

 EBADF The resulting file descriptor is not a valid open file
 descriptor.

 EIO Physical I/O error occurred.

 EINVAL A nbytes value of less than 0 is specified.

 EFAULT The buf value points to a location outside of the process
 allocated address space.

 The cdclose routine fails if the following are true:

 EBADF The resulting file descriptor is not a valid open file

AIX Operating System Technical Reference
cd

¦ Copyright IBM Corp. 1985, 1991
1.2.29 - 2

 descriptor.

 The cdlseek routine fails if one or more of the following are true:

 EINVAL The whence value is invalid.

 EINVAL The offset value is invalid.

 EBADF The resulting file descriptor is not a valid open file
 descriptor.

 The cdstat routine fails if one or more of the following are true:

 ENXIO Device associated with this special file path does not exist or
 the resulting device number is out of range.

 EBUSY Devise is busy.

 EMFILE Maximum number of cdrom devices which are currently open.

 ENOENT Failed to find the default alias name in the cdrom mount table.

 File

 /dev/cd0 Default CD ROM device.

 Related Information
 In this book: "cddir" in topic 1.2.30, "read, readv, readx" in
 topic 1.2.224, and "stat.h" in topic 2.4.22.

AIX Operating System Technical Reference
cd

¦ Copyright IBM Corp. 1985, 1991
1.2.29 - 3

 1.2.30 cddir

 Purpose
 Provides access to CD ROM directories.

 Syntax

 #include <sys/types.h>
 #include <dirent.h>
 #include <cddir.h>

 cddir *cdopendir (path)
 char *path;

 struct dirent *cdreaddir (dirp)
 cddir *dirp;

 struct cdextdir *cdreadext (dirp)
 cddir *dirp;

 void cdrewinddir (dirp)
 cddir *dirp;

 void cdclosedir (dirp)
 cddir *dirp;

 Description
 The cddir subroutines provide access to the directory structures on a
 compact disk, read-only memory (CD ROM) in the same fashion as the
 directory routines do for normal files. The CD ROM routines are distinct
 because a CD ROM is not organized as a normal file system. The routines
 may be linked with a C program with the library option -lcd.

 The cdopendir routine opens the CD ROM directory named by path and returns
 a pointer to identify the directory for subsequent operations.

 Directory entries may be read with either cdreadext or cdreaddir,
 depending on the type of information required. Successive calls read
 successive directory entries. cdreadext returns a pointer to a structure
 containing all information associated with a CD ROM file directory entry,
 while cdreaddir returns a pointer to a standard dirent structure.
 cdreaddir is provided for ease in converting code which currently uses the
 directory interface. Calls to cdreadext and cdreaddir may be freely
 intermixed.

 Warning: These routines return pointers to static data areas which are
 overwritten by subsequent calls.

 The cdextdir structure will change between phase 1 and phase 2 of
 development, since it has not yet been used with extended attribute CD ROM
 records.

 cdrewinddir resets the position in the indicated directory to the
 beginning. A subsequent cdreadext or cdreaddir returns information about
 the first directory entry.

 cdclosedir closes the indicated directory entry and releases associated
 internal data structures.

 Files

AIX Operating System Technical Reference
cddir

¦ Copyright IBM Corp. 1985, 1991
1.2.30 - 1

 /dev/cd0 default CD ROM device

 /usr/lib/libcd.a CD ROM library

 Related Information
 In this book: "cd" in topic 1.2.29 and "directory: opendir, readdir,
 telldir, seekdir, rewinddir, closedir" in topic 1.2.60.

AIX Operating System Technical Reference
cddir

¦ Copyright IBM Corp. 1985, 1991
1.2.30 - 2

 1.2.31 cfgadev

 Purpose
 Adds a device.

 Library
 Run-time Services Library (librts.a)

 Syntax

 #include <cfg01.h>

 int cfgadev (master, system, xstanza, vstanza, dstanza, vflag, cflag)
 char *master, *system, *xstanza, *vstanza, *dstanza;
 int vflag, cflag;

 Description
 The cfgadev subroutine adds information about devices and device drivers
 to the system configuration.

 The master parameter points to the full path name of the master file. The
 system parameter points to the full path name of the system file. These
 files are usually /etc/master and /etc/system, respectively.

 The xstanza, vstanza, and dstanza parameters point to buffers that contain
 the text of attribute file stanzas. Any one or two of these parameters
 can be NULL pointers, indicating that a stanza of that type is not to be
 added, but at least one of them must point to a stanza buffer.

 The xstanza parameter points to an AIX device driver stanza to be added to
 the master file. If the major device number is missing from the stanza,
 then the cfgadev subroutine generates a new one.

 The vstanza parameter is not used but is retained for compatibility with
 the RT/AIX.

 The dstanza parameter points to a device stanza to be added to the system
 file. It also generates a minor device number if only the prefix (c or b)
 is supplied or if the value is not unique.

 The vflag parameter is either 1 (for yes) or 0 (for no), indicating
 whether to execute the osconfig command after the device stanza is added.
 If the vflag parameter is 1, then cfgadev executes the osconfig command
 with the -a stname flag, where stname is the name of the device stanza.
 The osconfig command then processes this stanza for driver addition and
 produces a shell procedure. The cfgadev subroutine then runs this shell
 procedure, which creates the special file /dev/stname, where stname is the
 name of the device stanza in the system file. If the osconfig command
 returns an error, then all stanzas that were added to the master and
 system files are deleted.

 The cflag parameter is either 1 (for no) or 0 (for yes), for osconfig to
 call customize helpers when adding devices.

 If the device stanza pointed to by the dstanza parameter contains the
 specproc keyword, then the program specified by the value of this keyword
 is executed to perform any special processing required when adding this
 device. The value of the specproc keyword must be the full path name of
 an executable file. The following arguments are passed to the program
 using the argv mechanism described in "exec: execl, execv, execle,

AIX Operating System Technical Reference
cfgadev

¦ Copyright IBM Corp. 1985, 1991
1.2.31 - 1

 execve, execlp, execvp" in topic 1.2.71. All of them are passed as
 character strings.

 argv[0] The full path name of the special-processing program
 argv[1] The full path name of the master file
 argv[2] The full path name of the system file
 argv[3] The name of the device stanza
 argv[4] The character string "a", indicating addition.

 If the special processing program fails, the device is still added to the
 system, but additional steps may be required before it can be used.

 Return Value
 Upon successful completion, the value CFG_SFUL is returned. If the
 cfgadev subroutine fails, then one of the following values is returned:

 CFG_BFIC An input stanza is incomplete, or necessary information is
 missing.

 CFG_BFNA A failure occurred while adding a stanza to the master or
 system file.

 CFG_BFSM An input stanza buffer cannot be updated because the buffer is
 too small.

 CFG_CLSE An error was detected while trying to close a file.

 CFG_FCOR The master or system file is set up incorrectly.

 CFG_MALF Memory allocation failed because of insufficient space.

 CFG_MAXM The maximum number of minor device numbers has been reached
 for the driver associated with the device being added.

 CFG_MPRE The prefix of the device's minor number is neither b nor c.

 CFG_OPNE An error was detected while trying to open a file.

 CFG_SLPF Special processing failed. The device was added but may
 require some additional steps before it can be used.

 CFGT_VLNG A major device number could not be generated to complete an
 input stanza.

 CFG_VCFG The osconfig command failed.

 CFG_REBOOT AIX must be rebooted by calling the cfgaply routine, although
 cfgadev was successful. cfgadev will return CFG_REBOOT after
 a stanza is added to /etc/master with the mandatory attribute
 set to TRUE or after adding the first stanza associated with a
 device driver into /etc/system.

 CFG_RBSLPF Special processing failed and a AIX reboot must be performed.

 Related Information
 In this book: "attributes" in topic 2.3.5, "master" in topic 2.3.32, and
 "system" in topic 2.3.56.

 The osconfig command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
cfgadev

¦ Copyright IBM Corp. 1985, 1991
1.2.31 - 2

 1.2.32 cfgaply

 Purpose
 Applies configuration information.

 Library
 Run-time Services Library (librts.a)

 Syntax

 #include <cfg03.h>

 int cfgaply (restart)
 int restart;

 Description
 The cfgaply subroutine rebuilds the AIX kernel by executing the newkernel
 command.

 The restart parameter indicates whether to restart the system after the
 subroutine completes. If restart is a nonzero value, the system is
 restarted after completion.

 Return Value
 If the restart parameter is nonzero, the system is restarted, and the
 cfgaply subroutine does not return. If restart is 0 and cfgaply completes
 successfully, it returns the value CFG_SUCC. If the cfgaply subroutine
 itself fails, then the following value is returned:

 CFG_AMKF The newkernel command failed.

 Files

 <LOCAL>/unix
 <LOCAL>/unix.std
 <LOCAL>/unix.last

 Related Information

 The config command in AIX Operating System Commands Reference.

 The newkernel command in Managing the AIX Operating System.

AIX Operating System Technical Reference
cfgaply

¦ Copyright IBM Corp. 1985, 1991
1.2.32 - 1

 1.2.33 cfgcadsz

 Purpose
 Adds or replaces a stanza in an attribute file.

 Library
 Run-time Services Library (librts.a)

 Syntax

 #include <cfg04.h>

 int cfgcadsz (atfile, stanza, stname, after)
 CFG__SFT *atfile;
 char *stanza;
 char *stname;
 char *after;

 Description
 The cfgcadsz subroutine adds a new stanza or replaces an existing stanza
 in an attribute file. (For details about attribute files, see
 "attributes" in topic 2.3.5.)

 The atfile parameter points to an open attribute file structure. The
 stanza parameter points to the buffer that contains the stanza to be
 written. The stname parameter points to the name of the stanza to be
 added to the file.

 The after parameter points to the name of the stanza after which the new
 stanza is to be inserted. If this parameter is NULL, then the stanza is
 added to the end of the file.

 All information that is repeated in the default stanza of the attribute
 file is removed from the new stanza before it is written to the file.

 The calling program must have an effective user ID of superuser to access
 system customization files such as /etc/master, /etc/system, and
 /etc/predefined.

 Return Value
 Upon successful completion, the value CFG_SUCC is returned. If the
 cfgcadsz subroutine fails, the following value is returned:

 CFG_ECLS An error occurred while closing a file.

 CFG_EOPN An error occurred while opening a file.

 CFG_SPCE Memory allocation failed because of insufficient space.

 CFG_UNIO An unrecoverable I/O error occurred during processing.

 Related Information
 In this book: "cfgadev" in topic 1.2.31, "cfgcclsf" in topic 1.2.34,
 "cfgcdlsz" in topic 1.2.35, "cfgcopsf" in topic 1.2.36, "cfgcrdsz" in
 topic 1.2.37, and "attributes" in topic 2.3.5.

AIX Operating System Technical Reference
cfgcadsz

¦ Copyright IBM Corp. 1985, 1991
1.2.33 - 1

 1.2.34 cfgcclsf

 Purpose
 Closes an attribute file.

 Library
 Run-time Services Library (librts.a)

 Syntax

 #include <cfg04.h>

 int cfgcclsf (atfile)
 CFG__SFT *atfile;

 Description
 The cfgcclsf subroutine closes an attribute file. (For details about
 attribute files, see "attributes" in topic 2.3.5.)

 The atfile parameter points to an open attribute file structure.

 The calling program must have an effective user ID of superuser to access
 system customization files such as /etc/master, /etc/system, and
 /etc/predefined.

 Return Value
 Upon successful completion, the value CFG_SUCC is returned. If the
 cfgcclsf subroutine fails, then the following value is returned:

 CFG_UNIO Unrecoverable I/O error occurred during processing.

 Related Information
 In this book: "cfgcadsz" in topic 1.2.33, "cfgcdlsz" in topic 1.2.35,
 "cfgcopsf" in topic 1.2.36, "cfgcrdsz" in topic 1.2.37, and "attributes"
 in topic 2.3.5.

AIX Operating System Technical Reference
cfgcclsf

¦ Copyright IBM Corp. 1985, 1991
1.2.34 - 1

 1.2.35 cfgcdlsz

 Purpose
 Deletes a stanza from an attribute file.

 Library
 Run-time Services Library (librts.a)

 Syntax

 #include <cfg04.h>

 int cfgcdlsz (atfile, stname)
 CFG__SFT *atfile;
 char *stname;

 Description
 The cfgcdlsz subroutine deletes a stanza from an attribute file. (For
 details about attribute files, see "attributes" in topic 2.3.5.)

 The atfile parameter points to an open attribute file structure. The
 stname parameter points to the name of the stanza to be deleted from the
 file.

 The calling program must have an effective user ID of superuser to access
 system customization files such as /etc/master, /etc/system, and
 /etc/predefined.

 Return Value
 Upon successful completion, the value CFG_SUCC is returned. If the
 cfgcdlsz subroutine fails, one of the following values is returned:

 CFG_ECLS An error occurred while closing a file.

 CFG_EOPN An error occurred while opening a file.

 CFG_SPCE Memory allocation failed because of insufficient space.

 CFG_SZBF The file contains a stanza that is larger than the maximum
 allowable stanza size.

 CFG_SZNF The requested stanza to be deleted was not found in the file.

 CFG_UNIO An unrecoverable I/O error occurred during processing.

 Related Information
 In this book: "cfgcadsz" in topic 1.2.33, "cfgcclsf" in topic 1.2.34,
 "cfgcopsf" in topic 1.2.36, "cfgcrdsz" in topic 1.2.37, "cfgddev" in
 topic 1.2.38, and "attributes" in topic 2.3.5.

AIX Operating System Technical Reference
cfgcdlsz

¦ Copyright IBM Corp. 1985, 1991
1.2.35 - 1

 1.2.36 cfgcopsf

 Purpose
 Opens an attribute file.

 Library
 Run-time Services Library (librts.a)

 Syntax

 #include <cfg04.h>

 CFG__SFT *cfgcopsf (path)
 char *path;

 Syntax
 The cfgcopsf subroutine opens an attribute file for update. (For details
 about attribute files, see "attributes" in topic 2.3.5.)

 The path parameter points to the full path name of the file to be opened.

 The cfgcopsf subroutine calls the fopen subroutine to open the file for
 update. If the call to fopen is successful, cfgcopsf allocates a CFG__SFT
 structure. This structure contains the file descriptor returned by fopen,
 a pointer to a default stanza buffer for reads, a pointer to an array of
 indexes in a default stanza buffer, and the full path name of the file
 that was opened.

 The calling program must have an effective user ID of superuser to access
 system customization files such as /etc/master, /etc/system, and
 /etc/predefined.

 Return Value
 Upon successful completion, the cfgcopsf subroutine returns a pointer to
 an open attribute file structure. If the cfgcopsf subroutine fails, it
 returns a NULL pointer.

 Related Information
 In this book: "cfgcadsz" in topic 1.2.33, "cfgcclsf" in topic 1.2.34,
 "cfgcdlsz" in topic 1.2.35, "cfgcrdsz" in topic 1.2.37, "fopen, freopen,
 fdopen" in topic 1.2.82, and "attributes" in topic 2.3.5.

AIX Operating System Technical Reference
cfgcopsf

¦ Copyright IBM Corp. 1985, 1991
1.2.36 - 1

 1.2.37 cfgcrdsz

 Purpose
 Reads an attribute file stanza.

 Library
 Run-time Services Library (librts.a)

 Syntax

 #include <cfg04.h>

 int cfgcrdsz (atfile, stanza, nbytes, stname)
 CFG__SFT *atfile;
 char *stanza;
 int nbytes;
 char *stname;

 Description
 The cfgcrdsz subroutine reads one stanza from an attribute file. A
 specific stanza may be requested, or the next stanza in the file can be
 read. When a stanza is read, any information contained in a default
 stanza preceding it in the file is added to the information returned in
 the buffer. (For details about attribute files, see "attributes" in
 topic 2.3.5.)

 The atfile parameter points to an open attribute file structure.

 The stanza parameter points to the buffer into which the stanza will be
 read.

 The nbytes parameter is the size in bytes of the buffer pointed to by the
 stanza parameter.

 The stname parameter points to a string containing the name of the stanza
 to be read. If this parameter is a NULL pointer, then the next stanza in
 the file is read.

 The calling program must have an effective user ID of superuser to access
 system customization files such as /etc/master, /etc/system, and
 /etc/predefined.

 Return Value
 Upon successful completion, the value CFG_SUCC is returned. If the
 cfgcrdsz subroutine fails, then one of the following values is returned:

 CFG_EOF The next stanza was requested, but the end of the file has been
 reached.

 CFG_SZNF The requested stanza was not found in the file.

 CFG_SZBF The requested stanza is longer than nbytes bytes.

 CFG_UNIO Unrecoverable I/O error occurred during processing.

 Related Information
 In this book: "cfgcadsz" in topic 1.2.33, "cfgcclsf" in topic 1.2.34,
 "cfgcdlsz" in topic 1.2.35, "cfgcopsf" in topic 1.2.36, and "attributes"
 in topic 2.3.5.

AIX Operating System Technical Reference
cfgcrdsz

¦ Copyright IBM Corp. 1985, 1991
1.2.37 - 1

 1.2.38 cfgddev

 Purpose
 Deletes a device.

 Library
 Run-time Services Library (librts.a)

 Syntax

 #include <cfg01.h>

 int cfgddev (master, system, dstname, vflag, cflag)
 char *master, *system, *dstname;
 int vflag;
 int cflag;

 Description
 The cfgddev subroutine deletes information about devices and device
 drivers from the system configuration.

 The master parameter points to the full path name of the master file. The
 system parameter points to the full path name of the system file. These
 files are usually /etc/master and /etc/system, respectively. The dstname
 parameter points to a string containing the name of the stanza in the
 system file of the device to be deleted.

 The vflag parameter is either 1 (for yes) or 0 (for no). If the vflag
 parameter is 1, then cfgddev executes the osconfig command with the
 -d dstname flag. The osconfig command then processes the named stanza for
 driver deletion and produces a shell procedure. The cfgddev subroutine
 then runs this shell procedure to delete the special file (/dev file) for
 the device. If the osconfig command returns an error, then the device is
 not deleted.

 The cflag parameter is either 1 (for no) or 0 (for yes), for osconfig to
 call customize helpers when deleting devices.

 If the device stanza named by the dstname parameter contains the specproc
 keyword, then the program specified by the value of this keyword is
 executed to perform any special processing required when deleting this
 device. The value of the specproc keyword must be the full path name of
 an executable file. The following arguments are passed to the program
 using the argv mechanism described in "exec: execl, execv, execle,
 execve, execlp, execvp" in topic 1.2.71. All of them are passed as
 character strings.

 argv[0] The full path name of the special-processing program
 argv[1] The full path name of the master file
 argv[2] The full path name of the system file
 argv[3] The name of the device stanza
 argv[4] The character string "d", indicating deletion.

 If the special processing program fails, then the device is still deleted
 from the system, but some additional steps may be required to clean up the
 system.

 The device stanza associated with the deleted device is then deleted from
 the system file.

AIX Operating System Technical Reference
cfgddev

¦ Copyright IBM Corp. 1985, 1991
1.2.38 - 1

 Return Value
 Upon successful completion, the value CFG_SUCC is returned. If the
 cfgddev subroutine fails then one of the following values is returned:

 CFG_CLSE An error was detected while trying to close a file.

 CFG_DVND The device could not be deleted from the system file.

 CFG_DVNF The device to be deleted cannot be found in the system file.

 CFG_FCOR The master or system file is set up incorrectly.

 CFG_MALF Memory allocation failed because of insufficient space.

 CFG_OPNE An error was detected while trying to open a file.

 CFG_SLPF Special processing failed. The device is deleted, but some
 additional steps may be required to clean up the system.

 CFG_OCFG The osconfig command failed.

 CFG_REBOOT AIX must be rebooted by calling the cfgaply routine, although
 cfgddev was successful. cfgddev will return CFG_REBOOT if the
 last stanza in /etc/system associated with a AIX device driver
 is deleted and the mandatory attribute in the driver's
 /etc/master stanza is set to false.

 CFG_RBSLPF Special processing failed and a AIX reboot must be performed.

 Related Information
 In this book: "attributes" in topic 2.3.5, "master" in topic 2.3.32, and
 "system" in topic 2.3.56.

 The osconfig command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
cfgddev

¦ Copyright IBM Corp. 1985, 1991
1.2.38 - 2

 1.2.39 cfgetospeed, cfsetospeed, cfgetispeed, cfsetispeed

 Purpose
 Get and set the input and output baud rates.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <termios.h>

 speed_t cfgetospeed(termios_p)
 struct termios *termios_p;

 speed_t cfsetospeed(termios_p, speed)
 struct termios *termios_p;
 speed_t speed;

 speed_t cfgetispeed(termios_p)
 struct termios *termios_p;

 speed_t cfsetispeed(termios_p, speed)
 struct termios *termios_p;
 speed_t speed;

 Description
 cfgetospeed returns the output baud rate store in the termios structure to
 which termios_p points.

 cfsetospeed sets the output baud rate stored in the termios structure to
 which termios_p points to speed.

 cfgetispeed returns the input baud rate stored in the termios structure.

 cfsetispeed sets the input baud rate stored in the termios structure to
 speed.

 Return Value
 Both cfsetispeed and cfsetospeed return 0 if successful and -1 to indicate
 an error.

 Error Conditions
 The cfsetispeed and cfsetospeed subroutines will fail if the following is
 true:

 EINVAL The speed is not a valid baud rate.

 Related Information
 In this book, "tcgetattr, tcsetattr" in topic 1.2.299, "tcsendbreak,
 tcdrain, tcflush, tcflow" in topic 1.2.301, and "tcgetpgrp, tcsetpgrp" in
 topic 1.2.300.

AIX Operating System Technical Reference
cfgetospeed, cfsetospeed, cfgetispeed, cfsetispeed

¦ Copyright IBM Corp. 1985, 1991
1.2.39 - 1

 1.2.40 chdir

 Purpose
 Changes the current directory.

 Syntax

 int chdir (path)
 char *path;

 Description
 The chdir system call changes the current directory to the directory
 specified by the path parameter. The current directory, also called the
 current working directory, is the starting point of searches for path
 names that do not begin with a / (slash).

 Warning: After changing into a directory that uses a symbolic link,
 attempts to traverse the tree using ".." may produce unexpected results.
 ".." refers to the hard link parent of the directory, obtained by deleting
 the last element from path, not the symbolic link parent.

 Note: If the working directory is a directory stored only on sites which
 are no longer available, it is not possible to use chdir to change
 into its subdirectories and using chdir .. to change to the parent
 directory will only work if the parent directory is stored on an
 available site.

 Return Value
 Upon successful completion, the chdir system call returns a value of 0.
 If the chdir system call fails, a value of -1 is returned and errno is set
 to indicate the error.

 Error Conditions
 The chdir system call fails and the current directory remains unchanged if
 one or more of the following are true:

 ENOTDIR A component of the path parameter is not a directory.

 ENOENT The named directory does not exist.

 EACCES Search permission is denied for any component of the path
 parameter.

 EFAULT The path parameter points to a location outside of the process's
 allocated address space.

 ESTALE The process's root or current directory is located in an NFS
 virtual file system that has been unmounted.

 ENAMETOOLONG
 A component of the path parameter exceeded NAME_MAX characters
 or the entire path parameter exceeded PATH_MAX characters.

 ENOENT A hidden directory was named, but no component inside it matched
 the process's current site path list.

 ENOENT A symbolic link was named, but the file to which is refers does
 not exist.

 ELOOP A loop of symbolic links was detected.

AIX Operating System Technical Reference
chdir

¦ Copyright IBM Corp. 1985, 1991
1.2.40 - 1

 If the Transparent Computing Facility is installed on your system, chdir
 can also fail if one or more of the following are true:

 ESITEDN1 The path cannot be accessed because a site went down.

 ESITEDN2 The operation was terminated because a site failed.

 ENOSTORE The path is a name relative to the current directory, but no
 site which stores this directory is currently up.

 ENOSTORE A component of path is replicated but is not stored on any site
 which is currently up.

 EINTR A signal was caught during the chdir system call.

 Related Information
 In this book: "chroot" in topic 1.2.46.

 The cd command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
chdir

¦ Copyright IBM Corp. 1985, 1991
1.2.40 - 2

 1.2.41 chfstore

 Purpose
 Changes replicated storage attribute of a file.

 Syntax

 #include <sys/types.h>

 int chfstore (path, fstore)
 char *path;
 fstore_t fstore;

 Description
 The chfstore system call sets the replicated storage attribute of the file
 named by path to the bit pattern contained in fstore. If the file does
 not reside on a replicated file system, chfstore has no effect and does
 not return an error.

 The fstore bits are used to determine whether a copy of a file is stored
 in a nonprimary, nonbackbone copy of a replicated file system. Each copy
 of a replicated file system contains an fstore field in the super block.
 The system stores the file on those copies where the bitwise AND of the
 file's fstore field and the copy's fstore field is nonzero.

 If the last component of path is a symbolic link, chfstore changes the
 fstore bits on the symbolic link rather than the file pointed to by the
 symbolic link.

 The effective user ID of the process must match the owner of the file or
 be superuser to change the fstore of a file.

 Return Value

 Upon successful completion, a value of 0 is returned. Otherwise, a value
 of -1 is returned and errno is set to indicate the error.

 Error Conditions
 The chfstore system call fails and the replicated storage attribute is
 unchanged if one or more of the following are true:

 EPERM The effective user ID does not match the owner of the file and
 the effective user ID is not superuser.

 EROFS The named file resides in a replicated file system in which the
 primary copy is unavailable, or in a replicated file system
 which has been mounted read-only.

 ENOTDIR A component of the path prefix is not a directory.

 ENOENT The named file does not exist.

 ENOENT A null path name is provided.

 ENOENT A hidden directory is named, but no component inside it matches
 the process's current site path list.

 ENOENT A symbolic link is named, but the file to which it refers does
 not exist. (Since chfstore does not follow a symbolic link when
 it is the last component of the path, this error cannot occur on

AIX Operating System Technical Reference
chfstore

¦ Copyright IBM Corp. 1985, 1991
1.2.41 - 1

 the last component).

 EACCES Search permission is denied on a component of the path prefix.

 EFAULT path points outside the process's allocated address space.

 If the Transparent Computing Facility is installed on your system chfstore
 could fail if the following is true:

 EINTR A signal was caught during the chfstore system call. This can
 occur if the internal open of this file is suspended because of
 a topology change.

 ESITEDN1 path cannot be accessed because a site went down.

 ESITEDN2 The operation was terminated because a site failed.

 ENOSTORE path is a name relative to the working directory, but no site
 which stores this directory is currently up.

 ENOSTORE A component of path is replicated but is not stored on any site
 which is currently up.

 ELOOP A loop of symbolic links was detected. Since chfstore does not
 follow a symbolic link when it is the last component of the
 path, this error cannot occur on the last component.

 Related Information
 In this book: "fs" in topic 2.3.20.

 The chfstore and store commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
chfstore

¦ Copyright IBM Corp. 1985, 1991
1.2.41 - 2

 1.2.42 chhidden

 Purpose
 Changes the hidden attribute of a directory.

 Syntax

 int chhidden(dirname,hideflag)
 char *dirname;
 int hideflag;

 Description
 The chhidden system call allows the superuser to turn a normal directory
 into a hidden directory or vice versa. If hideflag is not zero, the
 directory pointed to by dirname is converted to a hidden directory. If it
 is zero, the directory is converted to a normal directory.

 When using chhidden to reference a directory which is already a hidden
 directory it is unnecessary for dirname to explicitly name the hidden
 directory (using the @ notation) as chhidden does not expand hidden
 directory references.

 The chhidden system call does not enforce the restriction that only
 regular and special files can appear in a hidden directory (see "Hidden
 Directories" in topic 1.1.5.1.5). Applications which use this call are
 required to make the necessary checks and enforce this rule.

 Return Value

 Upon successful completion, a value of 0 is returned. Otherwise, a value
 of -1 is returned, and errno is set to indicate the error.

 Error Conditions
 Possible errors:

 EPERM The calling process lacks superuser privileges.

 ENOTDIR dirname does not name a directory.

 EROFS The named directory resides on a read-only file system.

 ENOTDIR A component of the path prefix of dirname is not a directory.

 ENOENT The named file does not exist.

 ENOENT A null path name was provided.

 ENOENT A symbolic link was named, but the file to which it refers does
 not exist.

 EACCES Search permission is denied on a component of the path prefix of
 dirname.

 EFAULT dirname points outside the process's allocated address space.

 ELOOP A loop of symbolic links was detected.

 If the Transparent Computing Facility is installed on your system,
 chhidden can also fail if one or more of the following are true:

AIX Operating System Technical Reference
chhidden

¦ Copyright IBM Corp. 1985, 1991
1.2.42 - 1

 ESITEDN1 dirname cannot be accessed because a site went down.

 ESITEDN2 The operation was terminated because a site failed.

 ENOSTORE dirname is a name relative to the working directory, but no site
 which stores this directory is currently up.

 ENOSTORE A component of dirname is replicated but is not stored on any
 site which is currently up.

 EROFS Write access is requested for a file on a replicated file system
 in which the primary copy is unavailable.

 EINTR A signal was caught during the system call.

 Examples

 In the example below an @ is given at the end of the directory name. This
 is necessary for the statx system call but not for chhidden, since
 chhidden does not pass through hidden directories.

 /* This program changes a hidden directory into a regular
 directory or changes a regular directory into a hidden directory. */

 #include <sys/types.h>
 #include <sys/stat.h>
 main()
 {

 char fname[50];
 struct stat stat;

 strcpy(fname,"/tmp/hidtest@");
 if (statx(fname, &stat, sizeof(struct stat), STX_HIDDEN) != 0) {
 printf("bad statx\n");
 exit(1);
 }
 if (S_ISHIDDEN (stat.st_mode))
 chhidden(fname,0);
 else
 chhidden(fname,1);
 }

 Related Information
 In this book: "stat.h" in topic 2.4.22 and "mkdir" in topic 1.2.168.

AIX Operating System Technical Reference
chhidden

¦ Copyright IBM Corp. 1985, 1991
1.2.42 - 2

 1.2.43 chlwm

 Purpose
 Updates the low-water mark of a file system.

 Syntax

 #include <sys/types.h>

 commitcnt_t chlwm(gfs, site, lwm)
 gfs_t gfs;
 siteno_t site;
 commitcnt_t lwm;

 Description
 The chlwm system call sets the low-water mark of the local site's copy of
 the file system identified by gfs to the greater of lwm and the current
 file system's low-water mark. It returns the previous low-water mark.

 If site is not the local site, the low-water mark is returned, but the
 remote file system is not changed.

 The low-water mark is a field in the superblock of a replicated file
 system copy which records which changes have already been propagated to
 this copy from the primary copy. It is normally updated by the AIX kernel
 as changes made to the primary copy are automatically propagated to the
 copy. When propagation is done outside the kernel by the file system
 reconciliation procedure (primrec), the final step in this process is to
 adjust the low-water mark with this call. Other programs are not expected
 to use this system call. For more information on replicated file systems
 see "Distributed File Systems Overview" in AIX/370 Administration Guide.

 You must have superuser authority to call chwlm().

 Error Conditions
 If chlwm fails, it returns a value of -1 and sets the following error
 codes:

 EPERM The user was not superuser.

 EBADST The site was 0.

 ENOSTORE The specified file system is not a replicated file system.

 ENOSTORE The specified file system was not mounted.

 EINVAL The specified file system was not mounted at site or is not a
 replicated file system.

 ESITEDN1 The site cannot be accessed because a site went down.

 ESITEDN2 The operation was terminated because a site failed.

 Related Information
 In this book: "spropin" in topic 1.2.279, "raccept" in topic 1.2.219, and
 "fs" in topic 2.3.20.

 The primrec and recmstr commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
chlwm

¦ Copyright IBM Corp. 1985, 1991
1.2.43 - 1

 1.2.44 chmod, fchmod

 Purpose
 Changes file access permissions.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sys/stat.h>

 int chmod (path, mode) int fchmod (fd, mode)
 char *path; int fd, mode;
 int mode;

 Description
 The chmod system call sets the access permissions of the file specified by
 the path parameter.

 The fchmod system call sets the access permissions on the open file
 specified by the file descriptor parameter fd. If path names a symbolic
 link, chmod sets the access permissions on the file to which the symbolic
 link points. If path names a hidden directory, chmod sets the access
 permission on a selected file within the hidden directory. The access
 permissions of the file are set according to the bit pattern specified by
 the mode parameter.

 To change file access permissions, the effective user ID of the calling
 process must either be superuser or match the ID of the file's owner.

 The mode parameter is constructed by logically ORing one or more of the
 following values, which are defined in the sys/stat.h header file:

 S_ISUID Sets the process's effective user ID to the file's owner on
 execution.
 S_ISGID Sets the process's effective group ID to the file's group on
 execution.
 S_ISVTX Saves text image after execution.
 S_ENFMT Enables enforcement-mode record locking.
 S_IRUSR Permits the file's owner to read it.
 S_IWUSR Permits the file's owner to write to it.
 S_IXUSR Permits the file's owner to execute it (or to search the
 directory).
 S_IRGRP Permits the file's group to read it.
 S_IWGRP Permits the file's group to write to it.
 S_IXGRP Permits the file's group to execute it (or to search the
 directory).
 S_IROTH Permits others to read the file.
 S_IWOTH Permits others to write to the file.
 S_IXOTH Permits others to execute the file (or to search the directory).

 Other mode values exist that can be set with the mknod system call, but
 not with chmod or fchmod. A complete list of the possible file mode
 values and other useful macros appears in "stat.h" in topic 2.4.22.

 Setting S_ISVTX on a shared executable file prevents the system from
 unmapping the program text segment of the file when its last user

AIX Operating System Technical Reference
chmod, fchmod

¦ Copyright IBM Corp. 1985, 1991
1.2.44 - 1

 terminates. Thus, when the next process executes it, the text need not be
 read from the file system. It is simply paged in, saving time. The
 calling process must have superuser authority to set the S_ISVTX mode bit
 on a regular file.

 Setting S_ISVTX on a directory marks that directory such that only the
 following users may remove files from the directory:

 1. the owner of the directory, or

 2. the owner of the files, or

 3. a process with superuser authority.

 Setting S_ISVTX on a character special file marks that file as a multiplex
 special file. Multiplex special files are special files which appear to
 the system to be a directory full of special files and are used to
 implement virtual devices such as /dev/hft. See "hft" in topic 2.5.11.

 Setting S_ENFMT (which has the same value as S_ISGID) on a regular file,
 while setting no execute permission bits, marks the file such that all
 file locks placed on the file with fcntl, lockf or flock are treated as
 enforced record locks (see "fcntl.h" in topic 2.4.8). It is undefined
 what the behavior is if the S_ENFMT mode bit is changed on a file which
 has existing record locks. Attempts to do this in subsequent releases of
 AIX may result in an error being returned.

 Setting S_ISGID on a directory marks the directory in BSD compatibility
 mode, causing files and directories subsequently created within the
 directory to inherit their group IDs from this directory. Otherwise,
 newly created files and directories inherit their group IDs from the
 effective group ID of the process which created them.

 Setting S_ISGID on a regular file along with one of the three execute
 permission bits enables the set-group-ID behavior of exec. This is
 permitted only if the calling process has superuser authority or if one of
 the IDs in the calling process's group access list matches the group ID
 file. Otherwise, the S_ISGID bit is cleared (see "getgroups" in
 topic 1.2.97 or "setgroups" in topic 1.2.249 for more information about
 group access lists).

 Return Value
 Upon successful completion, the chmod and fchmod system calls return a
 value of 0. If the chmod or fchmod system call fails, a value of -1 is
 returned, and errno is set to indicate the error.

 Error Conditions
 The chmod system call fails and the file permissions remain unchanged if
 one or more of the following is true:

 ENOTDIR A component of the path parameter is not a directory.

 ENOENT The named file does not exist.

 EACCES A component of the path parameter has search permission denied.

 EFAULT The path parameter points to a location outside of the process's
 allocated address space.

 ENAMETOOLONG

AIX Operating System Technical Reference
chmod, fchmod

¦ Copyright IBM Corp. 1985, 1991
1.2.44 - 2

 A component of the path parameter exceeds NAME_MAX characters or
 the entire path parameter exceeds PATH_MAX characters.

 ENOENT A hidden directory is named, but no component inside it matches
 the process's current site path list.

 ENOENT A symbolic link is named, but the file to which it refers does
 not exist.

 ELOOP A loop of symbolic links is detected.

 ENOSTORE The path is a name relative to the working directory, but no
 site which stores this directory is currently up.

 EINTR A signal is caught during the chmod system call.

 The fchmod system call fails and file permissions remain unchanged if one
 or more of the following are true:

 EBADF The descriptor is not valid.

 EINVAL fd refers to a socket, not to a file.

 The chmod and fchmod system calls fail and file permissions remain
 unchanged if one or more of the following are true:

 EPERM The effective user ID does not match the ID of the owner of the
 file or the ID of superuser.

 EROFS The named file resides on a read-only file system.

 ESTALE The process's root or current directory is located in an NFS
 virtual file system that has been unmounted.

 If the Transparent Computing Facility is installed on your system, chmod
 can also fail if one or more of the following are true:

 ESITEDN1 The specified file cannot be accessed because a site failed.

 ESITEDN2 The operation was terminated because a site failed.

 ENOSTORE The file specified by fd or a component of the path is
 replicated but is not stored on any site which is currently up.

 EROFS Write access is requested for a file on a replicated file system
 in which the primary copy is unavailable.

 EIO An I/O error occurs while reading from or writing to a file
 system.

 Related Information
 In this book: "chown, fchown" in topic 1.2.45, "getgroups" in
 topic 1.2.97, "mknod, mknodx, mkfifo" in topic 1.2.169, and "setgroups" in
 topic 1.2.249.

 The chmod command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
chmod, fchmod

¦ Copyright IBM Corp. 1985, 1991
1.2.44 - 3

 1.2.45 chown, fchown

 Purpose
 Changes the owner and group IDs of files associated with a path name or
 with a file descriptor.

 Library
 Standard C Library (libc.a)

 Syntax

 int fchown (fd, owner, group)
 int chown (path, owner, groint fd;
 char *path; uid_t owner;
 uid_t owner; gid_t group;
 gid_tgroup;

 Description
 The chown and fchown system calls change the owner ID and/or the group ID
 of the file named by the path parameter or of the open file named by the
 fd parameter, respectively. If the named file is a symbolic link, the
 owner ID and/or group ID of the symbolic link itself are changed, not
 those of the file pointed to by the symbolic link.

 The owner and group IDs of the named file are set to the numeric values
 contained in the owner and group parameters, respectively.

 If either the owner or group parameter has the value (uid_t)-1 or
 (gid_t)-1, respectively the corresponding ID in the named file is left
 unchanged.

 A process can change the ownership of a file only if its effective user ID
 is the superuser. The group ID may be changed if the effective user ID of
 the process is superuser or matches the file's owner ID. In the latter
 case, the group ID may only be changed to the value of the process's
 effective group ID or a value in the process's concurrent group list.

 Return Value
 Upon successful completion, a value of 0 is returned. If the chown or
 fchown system call fails, a value of -1 is returned, and errno is set to
 indicate the error.

 Error Conditions
 The chown system call fails and the owner ID and the group ID of the named
 file remain unchanged if one or more of the following are true:

 ENOTDIR A component of the path prefix is not a directory.

 ENOENT The named file does not exist.

 EACCES Search permission is denied on a component of the path prefix.

 ENOENT A symbolic link was named, but the file to which it refers does
 exist. Since chown does not follow a symbolic link when it is
 the last component of the path, this error cannot occur on the
 last component.

 EFAULT The path parameter points to a location outside of the process's
 allocated address space in an NFS virtual file system that has
 been unmounted.

AIX Operating System Technical Reference
chown, fchown

¦ Copyright IBM Corp. 1985, 1991
1.2.45 - 1

 ENAMETOOLONG
 A component of the path parameter exceeded NAME_MAX characters
 or the entire path parameter exceeded PATH_MAX characters.

 ENOENT A hidden directory was named, but no component inside it matched
 the process's current site path list.

 ELOOP A loop of symbolic links was detected. Since chown does not
 follow symbolic links in the last component of the path, this
 error cannot occur on the last component.

 ENOSTORE The path is a name relative to the working directory, but no
 site which stores this directory is currently up.

 EINTR A signal was caught during the system call.

 The fchown system call fails and the owner ID and group ID of the named
 file remain unchanged if one or more of the following are true:

 EBADF fd does not refer to a valid file descriptor

 EINVAL fd refers to a socket, not a file.

 The chown and fchown system calls fail and the owner ID and group ID of
 the named file remain unchanged if one or more of the following are true:

 EPERM The effective user ID does not match the owner of the file and
 the effective user ID is not superuser.

 EROFS The named file resides on a read-only file system.

 ESTALE The process's root or current directory is located

 If the Transparent Computing Facility is installed on your system, chown
 can also fail if one or more of the following are true:

 ESITEDN1 The specified file cannot be accessed because a site went down.

 ESITEDN2 The operation was terminated because a site failed.

 ENOSTORE The file specified by fd or a component of path is replicated
 but is not stored on any site which is currently up.

 EROFS Write access is requested for a file on a replicated file
 system in which the primary copy is unavailable.

 EIO An I/O error occurred while reading from or writing to the file
 system.

 Related Information
 In this book: "chmod, fchmod" in topic 1.2.44, "statx, fstatx, stat,
 fstat, fullstat, ffullstat, lstat" in topic 1.2.282, and "stat.h" in
 topic 2.4.22.

 The chown command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
chown, fchown

¦ Copyright IBM Corp. 1985, 1991
1.2.45 - 2

 1.2.46 chroot

 Purpose
 Changes the effective root directory.

 Syntax

 int chroot (path)
 char *path;

 Description
 The chroot system call causes the directory named by the path parameter to
 become the effective root directory. The effective root directory is the
 starting point when searching for a file whose path name begins with /
 (slash). The current directory is not affected by the chroot system call.

 The effective user ID of the calling process must be superuser to change
 the effective root directory.

 The .. (dot-dot) entry in the effective root directory is interpreted to
 mean the effective root directory itself. Thus, .. (dot-dot) cannot be
 used to access files outside the subtree rooted at the effective root
 directory.

 The chroot system call simulates a call to setlocal with the process's
 current <LOCAL> alias, and as a result, the alias is re-evaluated within
 the new root directory. If the new root directory does not contain a
 directory named by the process's current <LOCAL> alias, subsequent
 references to symbolic links which begin with "<LOCAL>" return an ENOENT
 error.

 Return Value
 Upon successful completion, a value of 0 is returned. If the chroot
 system call fails, a value of -1 is returned, and errno is set to indicate
 the error.

 Error Conditions
 The chroot system call fails and the effective root directory remains
 unchanged if one or more of the following are true:

 ENOTDIR Any component of the path name is not a directory.

 ENOENT The named directory does not exist.

 EPERM The effective user ID of the calling process is not superuser.

 EFAULT The path parameter points to a location outside of the process's
 allocated address space.

 ESTALE The process's root or current directory is located in an NFS
 virtual file system that has been unmounted.

 ENAMETOOLONG
 A component of the path parameter exceeded NAME_MAX characters,
 or the entire path parameter exceeded PATH_MAX characters.

 ENOENT A hidden directory was named, but no component inside it matched
 the process's current site path list.

 ENOENT A symbolic link was named, but the file to which it refers does

AIX Operating System Technical Reference
chroot

¦ Copyright IBM Corp. 1985, 1991
1.2.46 - 1

 not exist.

 ENOENT A NULL path name was provided.

 ELOOP A loop of symbolic links was detected.

 If the Transparent Computing Facility is installed on your system, chroot
 can also fail if one or more of the following are true:

 ESITEDN1 The path cannot be accessed because a site went down.

 ESITEDN2 The operation was terminated because a site failed.

 ENOSTORE The path is a name relative to the working directory, but no
 site which stores this directory is currently up.

 ENOSTORE A component of path is replicated but not stored on any site
 which is currently up.

 EINTR A signal was caught during the chroot system call.

 Related Information
 In this book: "chdir" in topic 1.2.40, "getlocal, setlocal" in
 topic 1.2.102.

 The chroot command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
chroot

¦ Copyright IBM Corp. 1985, 1991
1.2.46 - 2

 1.2.47 clock

 Purpose
 Reports CPU time used.

 Library
 Standard C Library (libc.a)

 Syntax

 long clock ()

 Description
 The clock subroutine returns the amount of CPU time (in microseconds) used
 since the first call to clock.

 The time reported is the sum of the user and system times of the calling
 process and its terminated child processes for which it has executed a
 wait system call or a system subroutine.

 Note: The value returned by the clock subroutine is defined in
 microseconds for compatibility with systems that have CPU clocks
 with very high resolution. Because of this, the value returned
 wraps around after accumulating approximately 2147 seconds of CPU
 time (about 36 minutes).

 Related Information
 In this book: "system" in topic 1.2.298, "times" in topic 1.2.304, and
 "wait, waitpid" in topic 1.2.325.

AIX Operating System Technical Reference
clock

¦ Copyright IBM Corp. 1985, 1991
1.2.47 - 1

 1.2.48 close, closex

 Purpose
 Closes the file associated with a file descriptor.

 Syntax

 int close (fildes)
 int fildes;

 int closex (fildes, ext)
 int fildes, ext;

 Description
 The close and closex system calls close the file associated with the file
 descriptor fildes.

 The fildes parameter is a file descriptor obtained from a creat, open,
 dup, fcntl, or pipe system call. The ext parameter provides communication
 with character device drivers that require additional information or
 return additional status. Each driver interprets the ext parameter in a
 device-dependent way, either as a value or as a pointer to a communication
 area. Drivers must apply reasonable defaults when the ext parameter is 0.

 If the file is open in O_DEFERC mode, changes are made permanent by using
 the commit mechanism at some point after the file is closed. The commit
 operation implicit in close is done asynchronously, and consequently,
 problems such as I/O errors and losses of file servers may go unreported.
 In these situations, the content of the file is rolled back to the
 previously committed version (see "fabort" in topic 1.2.75).

 Programs which desire synchronous error reporting and a guarantee that the
 changes to the file have been made permanent should use the fcommit system
 call explicitly before using close.

 If the file is open for writing using more than one file descriptor (by
 this process or in conjunction with other processes) the commit semantics
 described above apply only if the O_DEFERC flag is set on for all opens.
 Any other open or creat system call may cause the file contents to be
 permanently updated periodically (see "sync" in topic 1.2.295).

 All locks held on the file by the calling process, whether they are
 applied using this file descriptor or another one, are released when the
 file is closed (see "fcntl, flock, lockf" in topic 1.2.78). If the fildes
 parameter is associated with a mapped file and if no other process has
 attached this mapped file, it is unmapped.

 Return Value
 Upon successful completion, a value of 0 is returned. If the close system
 call fails, a value of -1 is returned, and errno is set to indicate the
 error.

 Error Conditions
 The close and closex system calls fail if the following is true:

 EBADF The fildes parameter is not a valid open file descriptor.

 Related Information
 In this book: "open, openx, creat" in topic 1.2.199, "dup" in
 topic 1.2.64, "exec: execl, execv, execle, execve, execlp, execvp" in

AIX Operating System Technical Reference
close, closex

¦ Copyright IBM Corp. 1985, 1991
1.2.48 - 1

 topic 1.2.71, "fcntl, flock, lockf" in topic 1.2.78, "pipe" in
 topic 1.2.204, and "socket" in topic 1.2.275.

AIX Operating System Technical Reference
close, closex

¦ Copyright IBM Corp. 1985, 1991
1.2.48 - 2

 1.2.49 connect

 Purpose
 Initiates a connection on a socket.

 Syntax

 #include <sys/types.h>
 #include <sys/socket.h>

 int connect (s, name, namelen)
 int s;
 struct sockaddr *name;
 int namelen;

 Description
 The parameter s is a socket. If it is of type SOCK_DGRAM, this system
 call specifies the peer with which the socket is to be associated.
 Datagrams are to be sent to this address, and it is the only address from
 which datagrams are to be received.

 If the socket is of type SOCK_STREAM, this system call attempts to make a
 connection to another socket. The other socket is specified by name,
 which is an address in the communication space of the socket. Each
 communication space interprets the name parameter in its own way.

 Generally, stream sockets may successfully connect only once; datagram
 sockets may use connect multiple times to change their association.
 Datagram sockets may dissolve the association by connecting to an invalid
 address, such as a null address.

 Return Value

 Upon successful completion, a value of 0 is returned. If the connect
 system call fails, a value of -1 is returned, and errno is set to indicate
 the error.

 Error Conditions
 The connect system call fails if one or more of the following are true:

 EBADF The s parameter is not valid.

 ENOTSOCK The s parameter refers to a file, not a socket.

 EADDRNOTAVAIL The specified address is not available from the local
 machine.

 EAFNOSUPPORT The addresses in the specified address family cannot be
 used with this socket.

 EISCONN The socket is already connected.

 ETIMEDOUT The establishment of a connection timed out before a
 connection was made.

 ECONNREFUSED The attempt to connect was rejected.

 ENETUNREACH The network is not reachable from this host.

 EADDRINUSE The specified address is already in use.

AIX Operating System Technical Reference
connect

¦ Copyright IBM Corp. 1985, 1991
1.2.49 - 1

 EFAULT The addr parameter is not in a writable part of the user
 address space.

 EINPROGRESS The socket is marked nonblocking and the connection cannot
 be completed immediately. Using the select system call,
 completion can be determined by selecting the socket for
 writing.

 EALREADY The socket is marked nonblocking and a previous connection
 attempt has not yet completed.

 The following errors are specific to connecting names in the AF_UNIX
 address family.

 ENAMETOOLONG
 A component of the path name exceeded NAME_MAX characters, or
 the entire path name exceeded PATH_MAX characters.

 ENOTDIR A component of the path name is not a directory.

 EINVAL The path name contains a character with the high-order bit set.

 ENOENT The named socket does not exist.

 ELOOP A loop of symbolic links was detected.

 EACCES Search permission is denied for a component of the path prefix.

 EACCES Write access to the named socket is denied.

 Related Information
 In this book: "accept" in topic 1.2.9, "getsockname" in topic 1.2.120,
 "select" in topic 1.2.242, and "socket" in topic 1.2.275.

AIX Operating System Technical Reference
connect

¦ Copyright IBM Corp. 1985, 1991
1.2.49 - 2

 1.2.50 conv

 Purpose
 Translates characters.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <ctype.h>
 #include <NLctype.h>

 int toupper (c) int NCtoupper (x)
 int c; int x;

 int tolower (c) int NCtolower (x)
 int c; int x;

 int _toupper (c) int _NCtoupper (x)
 int c; int x;

 int _tolower (c) int _NCtolower (x)
 int c; int x;

 int toascii (c) int NCtoNLchar (x)
 int c; int x;

 int NCesc (xp, cp) int NCunesc (cp, xp)
 NLchar *xp; char *cp;
 char *cp; NLchar *xp;

 wchar_t towlower (c) int NCflatchr (x)
 wchar_t c; int x;
 wchar_t towupper (c)
 wchar_t c;

 wchar_t towascii (c)
 wchar_t c;

 Description
 The NCxxxxxxx subroutines translate all characters, including extended
 characters, as code points (see "Introduction to International Character
 Support" in Managing the AIX Operating System). The other subroutines
 translate traditional ASCII characters only.

 The toupper and the tolower subroutines have as domain the range of the
 getc subroutine: from -1 through 255.

 If the parameter of the toupper subroutine represents a lowercase letter,
 the result is the corresponding uppercase letter. If the parameter of the
 tolower subroutine represents an uppercase letter, the result is the
 corresponding lowercase letter. All other values in the domain are
 returned unchanged.

 The _toupper and _tolower routines are macros that accomplish the same
 thing as toupper and tolower, but they have restricted domains and they
 are faster. _toupper requires a lowercase letter as its parameter; its

AIX Operating System Technical Reference
conv

¦ Copyright IBM Corp. 1985, 1991
1.2.50 - 1

 result is the corresponding uppercase letter. _tolower requires an
 uppercase letter as its parameter; its result is the corresponding
 lowercase letter. Values outside the domain cause undefined results.

 The value of x is in the domain of any legal NLchar in a value range from
 0 to NLCHARMAX inclusive, or a special value of -1 (which represents EOF).

 If the parameter of the NCtoupper subroutine represents a lowercase letter
 according to the current collating sequence configuration, the result is
 the corresponding uppercase letter. If the parameter of the NLtolower
 subroutine represents an uppercase letter according to the current
 collating sequence configuration, the result is the corresponding
 lowercase letter. All other values in the domain are returned unchanged.

 The _NCtoupper and _NCtolower routines are macros that accomplish the same
 thing as NCtoupper and NCtolower, but have restricted domains and are
 faster. _NCtoupper requires a lowercase letter as its parameter; its
 result is the corresponding uppercase letter. _NCtolower requires an
 uppercase letter as its parameter; its result is the corresponding
 lowercase letter. Values outside the domain cause undefined results.

 The toascii macro yields the value of its parameter with all bits that are
 not part of a standard ASCII character turned off. It is intended for
 compatibility with other systems.

 The NCtoNLchar macro yields the value of its parameter with all bits
 turned off that are not part of an NLchar.

 The NCesc macro converts the NLchar value xp into one or more ASCII bytes
 stored in the character array pointed to by cp. If the NLchar represents
 an extended character, it is converted into a printable ASCII escape
 sequence that uniquely identifies the extended character. NCesc returns
 the number of bytes it wrote. See "display symbols" in topic 2.4.4 for a
 list that shows the escape sequence for each character.

 The inverse conversion is performed by the NCunesc macro, translating an
 ordinary ASCII byte or escape sequence starting at cp into a single NLchar
 at xp. NCunesc returns the number of bytes it read.

 The NCflatchr macro converts its parameter value into the single ASCII
 byte that most closely resembles the parameter character in appearance.
 If no ASCII equivalent exists, it converts the parameter value to a ?
 (question mark).

 Note: In the multibyte environment, the NCesc, NCunesc, and NCflatchr
 subroutines are provided for backward compatibility and support
 code page pc850 only.

 If the parameter of the towupper subroutine is a wide lower case
 character, the result is the corresponding upper case wide character. If
 the parameter of the towlower subroutine is a wide upper case character,
 the result is the corresponding lower case wide character. All other
 parameters passes are returned unchanged.

 Related Information
 In this book: "ctype" in topic 1.2.55, "getc, fgetc, getchar, getw,
 getwc, fgetwc, getwchar" in topic 1.2.91, and "display symbols" in
 topic 2.4.4.

 "Introduction to International Character Support" in Managing the AIX

AIX Operating System Technical Reference
conv

¦ Copyright IBM Corp. 1985, 1991
1.2.50 - 2

 Operating System.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
conv

¦ Copyright IBM Corp. 1985, 1991
1.2.50 - 3

 1.2.51 copysign

 Purpose
 Copies the sign of a double-precision floating-point number.

 Library
 Math Library (libm.a)

 Syntax

 #include <math.h>

 double copysign (x, y)
 double x, y;

 Description
 The copysign subroutine copies the sign of one double-precision
 floating-point number to another. The x parameter contains the number to
 be changed to the sign of y parameter.

 Return Value
 The copysign subroutine returns x with the same sign as y.

AIX Operating System Technical Reference
copysign

¦ Copyright IBM Corp. 1985, 1991
1.2.51 - 1

 1.2.52 crypt, encrypt, setkey

 Purpose
 Encrypts user passwords.

 Library
 Standard C Library (libc.a)

 Syntax

 void encrypt (block, edflag)
 char *crypt (key, salt) char *block;
 char *key, *salt; int edflag;
 void setkey (key)
 char *key;

 Description
 The crypt and encrypt subroutines encrypt user passwords. They are based
 on a hashing encryption algorithm with variations intended to frustrate
 the use of hardware-implemented key searches. These subroutines are
 provided for compatibility with UNIX system implementations, and no
 assertion is made about the strength of the algorithm.

 The key parameter is a user's typed password. The salt parameter is a
 two-character string chosen from the set [a-zA-Z0-9./].

 The salt parameter is used to perturb the hashing algorithm in one of 4096
 different ways, after which the password is used as the key to repeatedly
 encrypt a constant string. The return value points to the encrypted
 password. The first two characters of the return value are the string
 entered in the salt parameter.

 The crypt subroutine uses a character array of length 64 containing only
 the values (char) 0 and (char) 1. This string is divided into groups of
 eight characters each, and the low-order bit in each group is ignored.
 This provides a 56-bit key, which is set into the machine by crypt.

 The other subroutines provide a somewhat primitive access to the actual
 hashing algorithm.

 The key parameter to setkey is a character array of length 64, containing
 only the characters with numerical value 0 and 1. If this string is
 divided into groups of eight, the low-order bit in each group is ignored,
 leading to a 56-bit key which is set into the machine.

 The block parameter to the encrypt subroutine is also a 64-character array
 containing only the values (char) 0 and (char) 1. encrypt modifies this
 array in place, producing a similar array that has been subjected to the
 hashing algorithm using the key set by crypt or setkey. If the edflag
 parameter is 0, the argument is encrypted; if nonzero, it is decrypted.

 Note: Depending on license agreements, the setkey function and the
 decrypt capability of encrypt may be disabled.

 Return Value
 The crypt subroutine returns a pointer to the encrypted password. The
 first two characters of it are the same as the salt parameter.

 Note: The return value points to static data that is overwritten by
 subsequent calls.

AIX Operating System Technical Reference
crypt, encrypt, setkey

¦ Copyright IBM Corp. 1985, 1991
1.2.52 - 1

 Error Conditions
 The crypt, encrypt, and setkey subroutines fail if the following is true:

 ENOSYS This functionality is not supported in this implementation.

 Related Information
 In this book: "getpass" in topic 1.2.108 and "passwd" in topic 2.3.44.

 The login and passwd commands in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
crypt, encrypt, setkey

¦ Copyright IBM Corp. 1985, 1991
1.2.52 - 2

 1.2.53 ctermid

 Purpose
 Generates a file name for terminal.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <stdio.h>

 char *ctermid (s)
 char *s;

 Description
 The ctermid subroutine generates the path name of the controlling terminal
 for the current process and stores it in a string.

 If the s parameter is a NULL pointer, the string is stored in an internal
 static area and the address is returned. The next call to ctermid
 overwrites the contents of the internal static area.

 If the s parameter is not a NULL pointer, it points to a character array
 of at least L_ctermid elements as defined in the stdio.h header file. The
 path name is placed in this array and the value of s is returned.

 The difference between the ctermid and ttyname subroutines is that ttyname
 must be handed a file descriptor and returns the actual name of the
 terminal associated with that file descriptor, while ctermid returns a
 string (/dev/tty) that refers to the terminal if used as a file name.
 Thus ttyname is useful only if the process already has at least one file
 open to a terminal.

 Related Information
 In this book: " ttyname, isatty, fullttyname" in topic 1.2.310.

AIX Operating System Technical Reference
ctermid

¦ Copyright IBM Corp. 1985, 1991
1.2.53 - 1

 1.2.54 ctime, localtime, gmtime, asctime, tzset

 Purpose
 Converts date and time to string representation.

 Library
 Standard C Library (libc.a)

 Syntax
 #include <time.h>

 char *ctime (clock) char *asctime (tm)
 long *clock; struct tm *tm;

 struct tm *localtime (clock)void tzset ()
 long *clock;
 extern long timezone;
 struct tm *gmtime (clock) extern int daylight;
 long *clock; extern char *tzname[2];

 Description
 The ctime subroutine converts a time value pointed to by the clock
 parameter, which represents the time in seconds since 00:00:00 Greenwich
 Mean Time (GMT), January 1, 1970, into a 26-character string in the
 following form:

 Sun Sep 16 01:03:52 1973\n\0

 The width of each field is always the same as shown here.

 The localtime subroutine converts the long integer pointed to by the clock
 parameter, which contains the time in seconds since 00:00:00 GMT, January
 1, 1970, into a tm structure. localtime adjusts for the time zone and for
 daylight saving time, if it is in effect.

 The gmtime subroutine converts the long integer pointed to by the clock
 parameter into a tm structure containing the Greenwich Mean Time, which is
 the time that AIX uses. The gmtime routine always sets tm_isdst to FALSE;
 localtime must be used to inquire about daylight savings time.

 The tm structure is defined in the time.h header file, and it contains the
 following members:

 int tm_sec; /* Seconds (0 - 59) */
 int tm_min; /* Minutes (0 - 59) */
 int tm_hour; /* Hours (0 - 23) */
 int tm_mday; /* Day of month (1 - 31) */
 int tm_mon; /* Month of year (0 - 11) */
 int tm_year; /* Year - 1900 */
 int tm_wday; /* Day of week (Sunday = 0) */
 int tm_yday; /* Day of year (0 - 365) */
 int tm_isdst; /* Nonzero = Daylight saving time */

 The asctime subroutine converts a tm structure to a 26-character string of
 the same format as ctime.

 If the TZ environment variable is defined, its value overrides the default
 time zone, which is the U.S. Eastern time zone. See "environment" in
 topic 2.4.6 for the format of the time zone information specified by TZ.

AIX Operating System Technical Reference
ctime, localtime, gmtime, asctime, tzset

¦ Copyright IBM Corp. 1985, 1991
1.2.54 - 1

 TZ is usually set when the system is started up. Its value is defined in
 either /etc/environment or /etc/profile. It can also be set by the user
 as a regular environment variable for performing alternate time zone
 conversions.

 The tzset subroutine sets the timezone, daylight, and tzname external
 variables to reflect the setting of TZ. tzset is called by ctime and
 localtime, and it can also be called explicitly by an application program.

 The timezone external variable contains the difference, in seconds,
 between GMT and local standard time. For example, timezone is 5 ¦ 60 ¦ 60
 for U.S. Eastern Standard Time.

 The daylight external variable is nonzero if an alternate timezone is
 defined in the TZ environment variable. By default, this conversion
 follows the standard U.S. conventions; other conventions can be specified.
 The default conversion algorithm adjusts for the peculiarities of U.S.
 daylight saving time in 1974 and 1975. See "environment" in topic 2.4.6
 for information about specifying alternate daylight saving time
 conventions.

 The tzname external variable contains the name of the standard time zone
 (tzname[0]) and of the time zone when daylight saving time is in effect
 (tzname[1]). For example:

 char *tzname[2] = {"EST", "EDT"};

 The time.h header file contains declarations of all these subroutines,
 externals, and the tm structure.

 Warning: The return values point to static data that is overwritten by
 each call.

 Related Information
 In this book: "time" in topic 1.2.303, "getenv, NLgetenv" in
 topic 1.2.94, "NLstrtime" in topic 1.2.194, "NLtmtime" in topic 1.2.195,
 "profile" in topic 2.3.48, and "environment" in topic 2.4.6.

AIX Operating System Technical Reference
ctime, localtime, gmtime, asctime, tzset

¦ Copyright IBM Corp. 1985, 1991
1.2.54 - 2

 1.2.55 ctype

 Purpose
 Classifies characters.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <ctype.h>

 int isalpha (c) int isspace (c)
 int c; int c;

 int isupper (c) int ispunct (c)
 int c; int c;

 int islower (c) int isprint (c)
 int c; int c;

 int isdigit (c) int isgraph (c)
 int c; int c;

 int isxdigit (c) int iscntrl (c)
 int c; int c;

 int isalnum (c) int isascii (c)
 int c; int c;

 int iswalpha (c) int iswupper (c)
 wchar_t c; wchar_t c;

 int iswlower (c) int iswdigit (c)
 wchar_t c; wchar_t c;

 int iswxdigit (c) int iswalnum (c)
 wchar_t c; wchar_t c;

 int iswspace (c) int iswpunct (c)
 wchar_t c; wchar_t c;

 int iswprint (c) int iswgraph (c)
 wchar_t c; wchar_t c;

 int iswcntrl (c) int iswascii (c)
 wchar_t c; wchar_t c;

 Description
 The ctype macros classify character-coded integer values by table lookup.
 Each of these macros returns a nonzero value for TRUE and 0 for FALSE.

 The ctype character macros examine the least significant byte of the
 parameter passed to them. Their use should be limited to an ASCII
 environment.

 The isascii macro is defined for all integer values. The other macros
 return a meaningful value only if isascii returns TRUE for the same c

AIX Operating System Technical Reference
ctype

¦ Copyright IBM Corp. 1985, 1991
1.2.55 - 1

 value, or if c is EOF. (See " stdio" in topic 1.2.283 for information
 about the value EOF.)

 Each of these macros also can be found in libc.a as subroutines.

 The following list shows the set of values for which each macro returns a
 nonzero (TRUE) value:

 isalpha c is a letter.

 isupper c is an uppercase letter.

 islower c is a lowercase letter.

 isdigit c is a digit in the range [0-9].

 isxdigit c is a hexadecimal digit in the range [0-9], [A-F] or [a-f].

 isalnum c is alphanumeric (a letter or a digit).

 isspace c is a space, tab, carriage return, new-line, vertical tab, or
 form-feed character.

 ispunct c is a punctuation character (neither a control character nor
 alphanumeric).

 isprint c is a printing character, ASCII space (040 or 0x20) through ~
 (0176 or 0x7E).

 isgraph c is a printing character, like isprint but, unlike isprint,
 isgraph returns FALSE (0) for the space character.

 iscntrl c is an ASCII DEL character (0177 or 0x7F) or an ordinary
 control character (less than 040 or 0x20).

 isascii c is an ASCII character whose value is in the range 0-0177
 (0-0x7F), inclusive.

 The wide character ctype macros classify characters according to the rules
 of the coded character set defined by character type information in the
 program's locale (category LC_TYPE). You should also call these wide
 character macros if you are in the C locale.

 The following list specifies the set of values for which each wide
 character ctype macro returns a nonzero (TRUE) value:

 iswalpha (c) c is an upper or lower case process code character.

 iswupper (c) c is an upper case process code character.

 iswlower (c) c is a lower case process code character.

 iswdigit (c) c is a process code digit in the range [0-9].

 iswxdigit (c) c is a hexadecimal process code digit in the range [0-9],
 [A-F], or [a-f].

 iswalnum (c) c is a process code alphanumeric.

 iswspace (c) c is a process code space, tab, carriage return, new-line,

AIX Operating System Technical Reference
ctype

¦ Copyright IBM Corp. 1985, 1991
1.2.55 - 2

 vertical tab, or form-feed character.

 iswpunct (c) c is a process code punctuation (neither a control
 chracter nor alphanumeric).

 iswprint (c) c is a printable process code character.

 iswgraph (c) c is a printable process code character like iswprint, but
 iswgraph returns FALSE (0) for the space character.

 iswcntrl (c) c is an ordinary process code control character.

 iswascii (c) c is a process code ASCII character.

 Related Information
 In this book: "NCctype" in topic 1.2.183, "ascii" in topic 2.4.2,
 "setlocale" in topic 1.2.251, and "data stream" in topic 2.4.3.

 "Introduction to International Character Support" in Managing the AIX
 Operating System and the ctab command in AIX Operating System Commands
 Reference.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
ctype

¦ Copyright IBM Corp. 1985, 1991
1.2.55 - 3

 1.2.56 curses

 Purpose
 Controls cursor movement and windowing.

 Library
 Curses Library (libcurses.a)

 Syntax

 #include <curses.h>
 #include <term.h>

 Description

 Note: The curses package of subroutines is included here only for
 compatibility with existing programs. For information about the
 enhanced screen-handling subroutine library, see "extended curses
 library" in topic 1.2.74. The system calls curses and extended
 curses cannot both be used by the same program.

 The curses subroutine package updates the screen with reasonable
 optimization. The term.h header file is only needed if terminfo level
 routines are needed (see "Terminfo Level Subroutines" in topic 1.2.56.2).

 In order to initialize the routines, the routine initscr must be called
 before any of the other routines that deal with windows and screens are
 used. The routine endwin should be called before exiting. To get
 character-at-a-time input without echoing, call the nonl, cbreak, and
 noecho routines. Most interactive, screen-oriented programs require the
 character-at-a-time input without echoing.

 The full curses interface permits manipulation of data structures called
 windows, which can be thought of as two-dimensional arrays of characters
 representing all or part of a screen. Default windows called stdscr and
 curscr are supplied, and others can be created with the newwin routine.
 Windows are referred to by variables declared WINDOW *. The type WINDOW
 is defined in curses.h to be a C structure. These data structures are
 manipulated with the routines described below, among which the most basic
 are move and addch, which modify stdscr. After manipulating the data
 structures, the refresh subroutine is called, which updates the screen to
 look like stdscr. Routines beginning with the new definition of w allow
 window specification. Routines not beginning with a w affect stdscr. For
 further information about video mode support, see "Configuring the Virtual
 Terminal" in topic 2.5.11.8.

 Minicurses is a subset of curses that does not allow manipulation of more
 than one window. To invoke this subset, use -DMINICURSES as a cc option.
 This level is smaller and faster than the full curses.

 If the environment variable TERMINFO is defined, any program using curses
 checks for a local terminal definition before checking in
 /usr/lib/terminfo. For example, if TERM is set to vt100, the compiled
 file is normally found in /usr/lib/terminfo/v/vt100. (The directory name
 v is copied from the first letter of vt100 to avoid creating huge
 directories.) If, for example, TERMINFO is set to /usr/mark/myterms,
 curses first checks /usr/mark/myterms/v/vt100. If this file does not
 exist, curses then checks /usr/lib/terminfo/v/vt100. This is useful for
 developing experimental definitions or when write permission in
 /usr/lib/terminfo is not available.

AIX Operating System Technical Reference
curses

¦ Copyright IBM Corp. 1985, 1991
1.2.56 - 1

 The following parameter names are of the type.

 int win, p1, p2, p3;
 char *str;
 int p1, p2, p3;

 Note: The plotting library, plot and the curses library, curses both use
 the names erase and move. The curses versions are macros. If you
 need both libraries, put the plot code in a different source file
 than the curses code, or include the following statements in the
 plot code:

 #undef move()
 #undef erase()

 Subtopics
 1.2.56.1 Routines
 1.2.56.2 Terminfo Level Subroutines
 1.2.56.3 termcap Compatibility Routines
 1.2.56.4 Attributes
 1.2.56.5 Function Keys

AIX Operating System Technical Reference
curses

¦ Copyright IBM Corp. 1985, 1991
1.2.56 - 2

 1.2.56.1 Routines

 The routines listed here can be called when using the full curses. Those
 marked with an asterisk can be called when using minicurses.

 Note: In the following routines, flag is a Boolean variable and should
 have a value of TRUE or FALSE.

 addch(int ch);* Add the character ch to stdscr (like putchar),
 wrapping to the next line at the end of a line.

 waddch(window *win, int ch);
 Add the character ch to win.

 mvwaddch(window *w, int y, int x, int ch);
 Move cursor position to (y, x) then add the character
 ch to win.

 addstr(int str);* Call addch with each character in str.

 mvaddstr(int y, int x; int str);
 Move cursor position to (y, x) then add str.

 waddstr(window *win, int str);
 Add the string str to win.

 mvwaddstr(window *win, int y, int x, int str);
 Move cursor position to (y, x) then add the string
 str to win.

 attroff(int attrs); Turn off the attributes named in attrs.

 attron(int attrs); Turn on the attributes named in attrs.

 attrset(int attrs); Set current attributes to those specified in attrs.

 baudrate ();* Set current terminal speed.

 beep ();* Sound beep on terminal.

 box(window *win, int vert, int hor);
 Draw a box around edges of win. The vert and hor
 parameters are the characters to use for vertical and
 horizontal edges of the box.

 cbreak ();* Set cbreak mode.

 nocbreak ();* Unset cbreak mode.

 clear (); Clear stdscr.

 clearok(window *win, int bf);
 Clear screen before next redraw of win.

 clrtobot (); Clear to bottom of stdscr.

 clrtoeol (); Clear to end of line on stdscr.

 delay_output(int ms);*
 Insert ms millisecond pause in output.

AIX Operating System Technical Reference
Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.56.1 - 1

 nodelay(window *win, int bf);
 Enable nodelay input mode through getch.

 delch (); Delete a character from stdscr.

 deleteln (); Delete a line from stdscr.

 delwin(window *win); Delete window win.

 doupdate (); Update screen from all wnoutrefresh.

 echo ();* Set echo mode.

 noecho ();* Unset echo mode.

 endwin ();* End window modes.

 erase (); Erase stdscr.

 erasechar (); Return user's erase character.

 fixterm (); Restore terminal to in curses state.

 flash (); Flash screen or beep.

 flushinp ();* Throw away any type-ahead.

 getch ();* Get a character from tty.

 getstr(int *str); Get a string through stdscr.

 gettmode (); Establish current tty modes.

 getyx(window *win, int y, int x);
 Get (y, x) coordinates.

 has_ic (); Returns the value of TRUE if terminal can insert
 characters.

 has_il (); Returns the value of TRUE if terminal can insert
 lines.

 idlok(window *win, int bf);*
 Use terminal's insert/delete line if flag!=0.

 inch (); Get character at current (y, x) coordinates.

 initscr ();* Initialize screens.

 insch(c); Insert a character.

 insertln (); Insert a line.

 intrflush(window *win, int bf);*
 Interrupt flush output if flag is true.

 keypad(WINDOW *win, int flag);*
 Enable keypad and function keys.

AIX Operating System Technical Reference
Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.56.1 - 2

 killchar (); Return current user's kill character.

 leaveok(window *win, int flag);
 Permit cursor to be left anywhere after refresh if
 FALSE for win; otherwise cursor must be left at
 current position.

 longname (); Return verbose name of terminal.

 meta(window *win, int flag);
 Allow metacharacters on input if FALSE.

 move(int y, int x); Moves cursor to (y, x) on stdscr.

 mvaddch(int y, int x, int ch);
 Move cursor position to (y, x) then add ch.

 mvcur(int oldrow, int oldcol, int newrow, int newcol);
 Move cursor from current position to another
 position.

 mvdelch(int y, int x);
 Move cursor position to (y, x) then delete a
 character.

 mvgetch(int y, int x);
 Move cursor position to (y, x) then get a character
 from tty.

 mvgetstr(int y, int x, int str);
 Move cursor position to (y, x) then get a string
 through stdscr.

 mvinch(int y, int x,);
 Move cursor position to (y, x) then get the character
 at current (y, x) coordinates.

 mvinsch(int y, int x, int c);
 Move cursor position to (y, x) then insert the
 character c.

 mvprintw(int y, int x, int fmt, int args);
 Move cursor position to (y, x) then get printf on
 stdscr.

 mvscanw(int y, int x, int fmt, int args);
 Move cursor position to (y, x) then scan through
 stdscr.

 mvwdelch(window, *win, int y, int x);
 Move cursor position to (y, x) then delete a
 character from win.

 mvwgetch(window *win, int y, int x);
 Move cursor position to (y, x) then get a character
 through win.

 mvwgetstr(window *win, int y, int x, int str);
 Move cursor position to (y, x) then get a string
 through win.

AIX Operating System Technical Reference
Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.56.1 - 3

 mvwin(window *win, int by, int bx);
 Move win so that the upper left-hand corner is
 located at (y, x).

 mvwinch(window *win, int y, int x);
 Move cursor position to (y, x) then get the character
 at current (y, x) in win.

 mvwinsch(window *win, int y, int x, int c);
 Move cursor position to (y, x) then insert the
 character c into win.

 mvwprint(window *win, int y, int x, char *fmt, int args);
 Move cursor position to (y, x) then printf on stdscr.

 mvwscanw(window *win, int y, int x, char *fmt, int args);
 Move cursor position to (y, x) then scanf through
 stdscr.

 window * newpad(int nlines, int ncols);
 Create a new pad with given dimensions.

 struct screen *newterm(char *type, FILE *outfd, FILE *infd);
 Set up new terminal of given type to output on fd.

 window *newwin(int nlines, int ncols, int by, int bx);
 Create a new window.

 nl ()*; Set newline mapping.

 nonl ()*; Unset newline mapping.

 overlay(window *win1, window *win2);
 Overlay win1 on win2.

 overwrite(window *win1, window *win2);
 Overwrite win1 on top of win2.

 printw(char *fmt, va_dcl);
 Printw on stdscr.

 raw ();* Set raw mode.

 refresh ();* Make curscr look like stdscr.

 prefresh(window *pad, int pminrow, int pmincol, int sminrow, int smincol,
 int
 smaxrow, int smaxcol);
 Refresh from pad starting with given upper left
 corner of pad with output to given portion of screen.

 pnoutrefresh(WINDOW *pad, int pminrow, int pmincol, int sminrow, int
 smincol, int
 smaxrow, int smaxcol);
 Refresh like prefresh, but with no output until
 doupdate is called.

 noraw ();* Unset raw mode.

AIX Operating System Technical Reference
Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.56.1 - 4

 resetterm ();* Set tty modes to out of curses state.

 resetty ();* Reset tty flags to stored value.

 saveterm ();* Save current modes as in curses state.

 savetty ();* Store current tty flags.

 scanw(char *fmt, va_dcl);
 Scanf through stdscr.

 scroll(window *win); Scroll win one line.

 scrollok(window *win, int bf);
 Allow terminal to scroll if flag=FALSE.

 set_term(char *type);
 Enable talk to terminal new.

 setscrreg(int t, int b)
 Set user scrolling region to lines short t through
 short b.

 setterm(char *type); Establish terminal with a given type.

 standend ()* Clear standout mode attribute.

 standout ()* Set standout mode attribute.

 subwin(window *orig, int num_lines, int num_cols, int begy, int begx);
 Create a subwindow.

 touchwin(window *win);
 Forces the next call to refresh() to write the
 entire window.

 traceoff () Turn off debugging trace output.

 traceon () Turn on debugging trace output.

 typeahead(int fd); Check file descriptor fd to check type-ahead.

 unctrl(ch)* Use printable version of ch.

 wattroff(window *win, int attrs);
 Turn off attrs in win.

 wattron(WINDOW *win, int attrs);
 Turn on attrs in win.

 wattrset(window *win, int attrs);
 Set attributes in win to attrs.

 wclear(WINDOW *win); Clear win.

 wclrtobot(WINDOW *win);
 Clear to bottom of win.

 wclrtoeol(WINDOW *win);
 Clear to end of line on win.

AIX Operating System Technical Reference
Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.56.1 - 5

 wdelch(WINDOW *win); Delete the character at the current cursor
 coordinates in win.

 wdeleteln(WINDOW *win);
 Delete line from win

 werase(WINDOW *win); Erase win.

 wgetch(WINDOW *win); Get a character through win.

 wgetstr(WINDOW *win, char *str);
 Get the string str through win.

 winch(WINDOW *win); Get the character at current cursor coordinates in
 win.

 winsch(WINDOW *win, chtype c);
 Insert the character c into win.

 winsertln(WINDOW *win);
 Insert line into win.

 wmove(WINDOW *win, int y, int x);
 Move the cursor to (y, x) coordinates on win.

 wnoutrefresh(WINDOW *win);
 Refresh but no screen output.

 wprintw(WINDOW *win, char *fmt, va_dcl);
 printf on win.

 wrefresh(WINDOW *win);
 Make screen look like win.

 wscanw(WINDOW *win, char *fmt, va_dcl);
 scanf through win.

 wsetscrreg(WINDOW *win, int t, int b);
 Set scrolling region of win to lines short t through
 short b.

 wstandend(WINDOW *win);
 Clear standout attribute in win.

 wstandout(WINDOW *win);
 Set standout attribute in win.

AIX Operating System Technical Reference
Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.56.1 - 6

 1.2.56.2 Terminfo Level Subroutines

 These routines should be called by programs that have to deal directly
 with the terminfo data base. Due to the low level of this interface, its
 use is discouraged. The header files curses.h and term.h should be
 included (in that order) to get the definitions for these strings,
 numbers, and flags. You should call setupterm before using any of the
 other terminfo subroutines. This defines the set of terminal-dependent
 variables defined in the terminfo file.

 If the program needs only one terminal, you can specify the -DSINGLE flag
 to the C compiler. This results in static references instead of dynamic
 references to capabilities. The result is smaller code, but only one
 terminal can be used at a time for the program.

 Capabilities with a Boolean value have the value 1 if the capability is
 present and 0 if it is not. Numeric capabilities have a value of -1 if
 the capability is missing and a value of 0 or greater if it is present.
 String capabilities have a NULL value if the capability is missing and
 otherwise have type char * and point to a character string that contains
 the capability. Special character codes that use the backslash and
 circumflex characters (\ and ^) are transformed into the appropriate ASCII
 characters. Padding information of the form $<time>, and parameter
 information beginning with % (percent) are left uninterpreted. The tputs
 routine interprets padding information and tparm interprets parameter
 information.

 All terminfo strings (including the output of tparm) should be printed
 with tputs or putp. Before exiting, reset_shell_mode should be called to
 restore the tty modes. Programs desiring shell escapes can call
 reset_shell_mode before the shell is called and reset_prog_mode after
 returning from the shell.

 delay_output (int ms);
 Sets the output delay, in milliseconds.

 def_prog_mode ();
 Saves the current terminal mode as program mode, in cur_term->Nttyb.

 def_shell_mode ();
 Saves the shell mode as normal mode, in cur_term->Ottyb.
 def_shell_mode is called automatically by setupterm.

 putp(char *str);
 Calls tputs(str, 1, _outchar).

 reset_prog_mode ();
 Puts the terminal into program mode.

 reset_shell_mode ();
 Puts the terminal into shell mode. All programs must call
 reset_shell_mode before they exit. The higher-level routine endwin
 automatically does this.

 setupterm(char *term, int filenum, int *erret);
 Reads in the data base. term is a character string that specifies the
 terminal name. If term is 0, then the value of the TERM environment
 variable is used.
 One of the following status values is stored into the integer pointed
 to by erret:

AIX Operating System Technical Reference
Terminfo Level Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.56.2 - 1

 1 Successful completion
 0 No such terminal
 -1 An error occurred while locating the terminfo data base.

 If the erret parameter is 0, then no status value is returned, and an
 error causes setupterm to print an error message and exit, rather than
 return. filenum is the file descriptor of the terminal being used for
 output. setupterm calls termdef to determine the number of lines and
 columns on the display. If termdef cannot supply this information,
 then setupterm uses the values in the terminfo data base. The simplest
 call is setupterm(0, 1, 0), which uses all the defaults.

 After the call to setupterm, the global variable cur_term is set to
 point to the current structure of terminal capabilities. It is
 possible for a program to use more than one terminal at a time by
 calling setupterm for each terminal and saving and restoring cur_term.

 The setupterm subroutine also initializes the global variable ttytype,
 an array of characters to the value of the list of names for the
 terminal. The list comes from the beginning of the terminfo
 description.

 char *tparm(char *str, int p1, int p2, ... int p9)
 Instantiates the string str with parameters p[i]. The character string
 returned has the given parameters applied.

 tputs(char *cp, int affcnt, int (*outc) ());
 Applies padding information to string cp. affcnt is the number of
 lines affected, or 1 if not applicable. outc is a putchar-like routine
 to which the characters are passed one at a time.

 Some strings are of a form like $<20>, which is an instruction to pad
 for 20 milliseconds.

 vidputs(int newmode, int (*outc) ());
 Outputs the string to put terminal in video attribute mode attrs.
 Characters are passed to the putchar-like routine outc. The attrs are
 defined in <curses.h>. The previous mode is retained by this routine.

 vidattr(int newmode);
 Like vidputs, but outputs through putchar.

AIX Operating System Technical Reference
Terminfo Level Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.56.2 - 2

 1.2.56.3 termcap Compatibility Routines

 These routines are included for compatibility with programs that require
 termcap. Their parameters are the same as for termcap, and they are
 emulated using the terminfo data base.

 int tgetent(char *bp, char *name);
 Looks up the termcap entry for name. name is a terminal name; bp is
 ignored. Calls setupterm.

 int tgetflag(char *id);
 Returns the Boolean entry for id. id is a 2-character string that
 contains a termcap identifier.

 int tgetnum(char *id);
 Returns the numeric entry for id. id is a 2-character string that
 contains a termcap identifier.

 char * tgetstr(char *id, char *area);
 Returns the string entry for id. id is a 2-character string that
 contains a termcap identifier. The area parameter is ignored.

 char * tgoto(char *cap, int col, int row);
 Applies parameters to the given cap. Calls tparm.

 tputs(char *cp, int affcnt, int (*outc) ());
 Applies padding to cap calling outc as putchar.

AIX Operating System Technical Reference
termcap Compatibility Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.56.3 - 1

 1.2.56.4 Attributes

 The following video attributes can be passed to the routines attron,
 attroff, and attrset. Not all attributes are currently supported on all
 terminals (see "Possible graphic renditions of VGA adapter" in
 topic 2.5.11.7.3).

 A_STANDOUT The terminal's best highlighting mode
 A_UNDERLINE Underlined
 A_REVERSE Reverse video
 A_BLINK Blinking
 A_DIM Half bright
 A_BOLD Extra bright or bold
 A_INVIS Invisible (blanked or zero-intensity)
 A_PROTECT Protected
 A_ALTCHARSET Alternate character set
 A_NORMAL Normal attributes

AIX Operating System Technical Reference
Attributes

¦ Copyright IBM Corp. 1985, 1991
1.2.56.4 - 1

 1.2.56.5 Function Keys

 The following function keys might be returned by getch if keypad has been
 enabled. Note that not all of these are currently supported due to lack
 of definitions in terminfo, or due to the terminal not transmitting a
 unique code when the key is pressed.

 KEY_BREAK Break key (unreliable)
 KEY_DOWN Down-arrow key
 KEY_UP Up-arrow key
 KEY_LEFT Left-arrow key
 KEY_RIGHT Right-arrow key
 KEY_HOME Home key
 KEY_BACKSPACE Backspace (unreliable)
 KEY_F(n) Function key Fn, where n is an integer from 0 to 12
 KEY_DL Delete line
 KEY_IL Insert line
 KEY_DC Delete character
 KEY_IC Insert character or enter insert mode
 KEY_EIC Exit insert character mode
 KEY_CLEAR Clear screen
 KEY_EOS Clear to end of screen
 KEY_EOL Clear to end of line
 KEY_SF Scroll 1 line forward
 KEY_SR Scroll 1 line backwards (reverse)
 KEY_NPAGE Next page
 KEY_PPAGE Previous page
 KEY_STAB Set tab
 KEY_CTAB Clear tab
 KEY_CATAB Clear all tabs
 KEY_ENTER Enter or send (unreliable)
 KEY_SRESET Soft (partial) reset (unreliable)
 KEY_RESET Reset or hard reset (unreliable)
 KEY_PRINT Print or copy
 KEY_LL Home down or bottom (lower left)
 KEY_A1 Upper left key of keypad
 KEY_A3 Upper right key of keypad
 KEY_B2 Center key of keypad
 KEY_C1 Lower left key of keypad
 KEY_C3 Lower right key of keypad

 Related Information
 In this book: "extended curses library" in topic 1.2.74, "termdef" in
 topic 1.2.302, and "terminfo" in topic 2.3.59.

AIX Operating System Technical Reference
Function Keys

¦ Copyright IBM Corp. 1985, 1991
1.2.56.5 - 1

 1.2.57 cuserid

 Purpose
 Gets the alphanumeric user name associated with the current process.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <stdio.h>

 char *cuserid (s)
 char *s;

 Description
 The cuserid subroutine generates a character string representing the user
 name of the owner of the current process.

 If the s parameter is a NULL pointer, then the character string is stored
 into an internal static area, the address of which is returned.

 If the s parameter is not a NULL pointer, then the character string is
 stored into the array pointed to by the s parameter. This array must
 contain at least L_cuserid characters. L_cuserid is a constant defined in
 the stdio.h header file.

 If the user name cannot be found, the cuserid subroutine returns a NULL
 pointer; if the s parameter is not a NULL pointer, then a null character
 ('\0') is stored into s[0].

 Related Information
 In this book: "getlogin" in topic 1.2.103, "getpwent, getpwuid, getpwnam,
 setpwent, endpwent" in topic 1.2.114, and " stdio" in topic 1.2.283.

AIX Operating System Technical Reference
cuserid

¦ Copyright IBM Corp. 1985, 1991
1.2.57 - 1

 1.2.58 dbm

 Purpose
 Performs data base operations.

 Library
 Database Library (libdbm.a)

 Syntax

 int dbminit (file) datum firstkey ()
 char *file;
 datum nextkey (key)
 datum fetch (key) datum key;
 datum key;
 typedef struct
 int store (key, content) {
 datum key, content; char *dptr;
 int dsize;
 int delete (key) } datum;
 datum key;

 Description
 The dbm subroutines maintain a data base of key-content pairs. These
 subroutines can handle very large data bases and access keyed items in one
 or two file-system accesses.

 The key parameter is a pointer to data specified by the content parameter.
 The sum of the sizes of the key-content pairs must not exceed the internal
 block size of 1024 bytes. All key-content pairs that hash together must
 fit on a single block. The store subroutine returns an error if a disk
 block fills with inseparable data.

 The key and the content parameters are described by the typedef datum
 structure. The datum structure refers to a string of bytes, the length of
 which is specified by the dsize field. The string is pointed to by the
 dptr field. The dptr pointers returned by these subroutines point to
 static storage that changes with subsequent calls. The strings can
 contain binary data or normal ASCII characters.

 The data base is stored in two files. One file is a directory that
 contains a bit map and is suffixed with .dir. The second file contains
 all data and is suffixed with .pag. The .pag file contains holes that
 increase its apparent size to about four times its actual size. You
 cannot copy a .pag file using the standard utilities such as cp and cat
 without first filling these holes.

 Before you can access a data base, you must open the data base with the
 dbminit subroutine. The file.dir, and file.pag files must already exist
 before you call dbminit. You can create an empty data base by creating
 zero-length .dir and .pag files.

 After the data base is opened with the dbminit subroutine, you can use the
 fetch subroutine to access the data that is pointed to by the key
 parameter. You can use the store subroutine to write the data specified
 by the content parameter to a file and to specify the key to be used to
 access that data with the key parameter.

 The delete subroutine removes the key specified by the key parameter and
 the data to which that key points. The delete subroutine does not

AIX Operating System Technical Reference
dbm

¦ Copyright IBM Corp. 1985, 1991
1.2.58 - 1

 actually reclaim the file space, but it does make it available for reuse.

 The firstkey and nextkey subroutines make a linear pass through all of the
 keys in a data base. The firstkey subroutine returns the first key in the
 data base. The nextkey subroutine returns the next key in the data base.
 For example, the following code makes a linear pass through a data base:

 for (key = firstkey(); key.dptr != NULL; key = nextkey(key))
 {
 ...
 }

 The order of keys that are returned by firstkey and nextkey depend on the
 hashing function.

 Return Value
 All of the dbm subroutines that return an int value return 0 upon
 successful completion, and they return a negative value if an error
 occurs. Subroutines that return a datum value indicate an error by
 setting the dptr field to NULL.

AIX Operating System Technical Reference
dbm

¦ Copyright IBM Corp. 1985, 1991
1.2.58 - 2

 1.2.59 difftime

 Purpose
 Computes time difference.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <time.h>

 double difftime (time2,time1)
 time_t time2, time1;

 Description
 The difftime macro computes the difference between time2 and time1. The
 difftime macro returns the elapsed time in seconds from time1 to time2 as
 a double precision number. Type time_t is defined in the time.h header
 file.

 Example
 The following example shows a timing application using difftime. The
 example calculates how long it takes to find the prime numbers from 2 to
 10000.

 #include <time.h>
 #include <stdio.h>
 #define runs 1000
 #define arr_size 10000

 int mark[arr_size];

 main ()
 {
 time_t start, finish;
 int i, loop, n, num;

 time (&start);
 for (loop = 0; loop < runs; loop++)
 for (n = 0; n < arr_size; n++)
 mark [n] = 0;
 for (num = 0, n = 2; n<arr_size; n++)
 if (!mark[n]) {
 for (i = 2*n; i <arr_size; i +=n)
 mark[i] = -1;
 ++num;
 }
 time (&finish);
 printf ("\nProgram takes %f seconds to find %d primes.\n",
 difftime (finish,start)/runs,num);
 }

 Subtopics
 1.2.59.1 Output

AIX Operating System Technical Reference
difftime

¦ Copyright IBM Corp. 1985, 1991
1.2.59 - 1

 1.2.59.1 Output
 The program takes 0.106000 seconds to find 1229 primes.

AIX Operating System Technical Reference
Output

¦ Copyright IBM Corp. 1985, 1991
1.2.59.1 - 1

 1.2.60 directory: opendir, readdir, telldir, seekdir, rewinddir, closedir

 Purpose
 Performs operations on directories.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sys/types.h>
 #include <dirent.h>

 DIR *opendir (dirname) void seekdir (dirp, loc)
 char *dirname; DIR *dirp;
 long loc;
 struct dirent *readdir (dirp)
 DIR *dirp; void rewinddir (dirp)
 DIR *dirp;
 long telldir (dirp)
 DIR *dirp; int closedir (dirp)
 DIR *dirp;

 Description
 The opendir subroutine opens the directory designated by the dirname
 parameter and associates a directory stream with it. The closedir
 subroutine terminates a directory stream and closes the underlying file
 descriptor.

 The opendir subroutine returns a pointer to the DIR structure of the
 directory stream. NULL is returned when dirname cannot be accessed, or
 when not enough memory is available to hold the whole stream. If dirname
 is not a directory, NULL is returned and errno is set to ENOTDIR.

 The readdir subroutine returns a pointer to the next directory entry.
 When it reaches the end of the directory, or when it detects an invalid
 seekdir operation, readdir returns NULL. The telldir subroutine returns
 the current location associated with the specified directory stream.

 The seekdir subroutine sets the position of the next readdir operation on
 the directory stream.

 Note: Values from telldir are valid only for the duration of the opendir
 operation from which the DIR pointer was derived. If a directory
 is closed and reopened, the position of the directory stream is
 reset. Therefore, if you want to continue reading from the
 location of the directory prior to close, you should save the value
 of a telldir made before closing the directory. After reopening
 the directory, use seekdir to determine the previous value of
 telldir.

 The rewinddir subroutine resets the position of the specified directory
 stream to the beginning of the directory.

 A -1 is returned if dirp does not refer to an open directory stream;
 otherwise, 0 is returned.

 Warning: It is recommended that these subroutines be used to access a

AIX Operating System Technical Reference
directory: opendir, readdir, telldir, seekdir, rewinddir, closedir

¦ Copyright IBM Corp. 1985, 1991
1.2.60 - 1

 directory rather than using the open and read system calls. See ulimit
 and read for a description of the special AIX behavior of the read system
 call on directories.

 Examples
 The following code illustrates a search of a directory for entry name:

 len = strlen(name);
 dirp = opendir(".");
 for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp))
 if (dp->d_namlen == len && !strcmp(dp->d_name, name)) {
 closedir(dirp);
 return FOUND;
 }
 closedir(dirp);
 return NOT_FOUND;

 Error Conditions
 The opendir, readdir, and closedir subroutines fail if one or more of the
 following are true:

 EACCES Search permission is denied for any component of dirname or read
 permission is denied for dirname.

 ENAMETOOLONG
 The length of the dirname string exceeds PATH_MAX, or a pathname
 component is longer than NAME_MAX.

 ENOENT The dirname argument points to the name of a file which does not
 exist.

 ENOTDIR A component of dirname is not a directory.

 EMFILE Too many file descriptors are currently open for the process.

 ENFILE Too many files are currently open in the system.

 ENOENT The dirname argument points to an empty string.

 EBADF The dirp argument does not refer to an open directory stream.

 Related Information
 In this book: "close, closex" in topic 1.2.48, "lseek" in topic 1.2.161,
 "open, openx, creat" in topic 1.2.199, "read, readv, readx" in
 topic 1.2.224, "scandir" in topic 1.2.240, and "dir" in topic 2.3.16.

AIX Operating System Technical Reference
directory: opendir, readdir, telldir, seekdir, rewinddir, closedir

¦ Copyright IBM Corp. 1985, 1991
1.2.60 - 2

 1.2.61 dirstat

 Purpose
 Gets file status information for multiple files in a directory.

 Syntax

 #include <sys/dirstat.h>

 int dirstat (fildes, buf, bufsize)
 int fildes;
 struct dirstat *buf;
 unsigned int bufsize;

 Description
 The dirstat system call returns status information on multiple files
 within a directory. Its arguments are a file descriptor to a directory
 which has been opened for reading, a pointer to a buffer, and the size of
 the buffer in bytes. The buffer should be large enough to hold at least
 one dirstat structure and one NAME_MAX + 1 (256) byte character string.
 On each call, dirstat packs as many dirstat structures as possible into
 the user's buffer, and advances the file pointer associated with fildes.
 It returns a count of the number of structures in the buffer, unless an
 error occurs, in which case a -1 is returned and the file pointer is not
 advanced.

 When dirstat encounters a symbolic link, the link is not followed and
 status information about the link itself is returned. Similarly, dirstat
 does not slide through a hidden directory; status information about the
 hidden directory itself is returned. When dirstat encounters a mount
 point, status information is returned for the root directory of the
 mounted file system. In particular, when performing a dirstat call on the
 root directory of a mounted file system, both the "." and ".." entries
 correspond to the root directory of the mounted file system.

 If dirstat encounters an error while attempting to get the file status of
 some particular inode within the directory, it marks the corresponding
 dirstat structure's dir_stat.st_ss field with a -1 and sets
 dir_stat.st_errno to the error number encountered. The only other fields
 valid when the dir_stat.st_ss field is -1 are dir_nam_len, dir_rec_len,
 dir_stat.st_ino, and the directory entry name returned by DIRST_NAME()
 macro.

 The structure which dirstat returns is given below. The fields of the
 stat structure (dir_stat) are described in "stat.h" in topic 2.4.22. The
 dir_nam_len field gives the length of the name, including the trailing
 null character. In general, dirstat uses less than NAME_MAX characters
 for the name. Instead, dirstat puts the next structure on the first
 four-byte boundary following the null-terminated name field of the current
 structure. This makes it impossible to access the buffer as an array of
 dirstat structures. Programmers should use the DIRST_ADV macro provided
 in dirstat.h to advance a pointer through the list of structures. This
 macro uses the dir_rec_len field to allow for future expansion of the
 dirstat structure without requiring the recompilation of old programs.

 Programmers should use the DIRST_NAME macro provided in dirstat.h to
 obtain the name associated with a particular entry in the list. The macro
 takes a pointer to an entry in the list, and returns a pointer to the
 associated name. This macro should always be used to access the name,
 since it uses the dir_rec_len field to allow for future expansion of the

AIX Operating System Technical Reference
dirstat

¦ Copyright IBM Corp. 1985, 1991
1.2.61 - 1

 dirstat structure without requiring the recompilation of old programs.

 The dirstat structure is given below:

 short dir_nam_len; Length of name
 short dir_rec_len; Length of dirstat structure and name
 struct stat dir_stat; Stat structure similar to that returned by
 statx

 Return Value
 Upon successful completion, a count of dirstat structures in the buffer is
 returned. Otherwise, a value of -1 is returned and errno is set to
 indicate the error.

 Error Conditions
 The dirstat system call fails if one or more of the following are true:

 EFAULT buf points outside the process's allocated address space.

 EBADF fildes is not a valid open file descriptor.

 ENOTDIR fildes is not a file descriptor for a directory open for read.

 ESITEDN1 The site or sites on which the directory is stored are now down.

 EINVAL bufsize is smaller than the smallest legal return value, that
 is, smaller than the size of struct dirstat plus the space
 required for the smallest legal file name.

 ENAMETOOLONG
 The directory contains a file whose name plus a dirstat
 structure does not fit in the provided bufsize bytes. This
 error cannot occur if bufsize is at least the size of struct
 dirstat + NAME_MAX + 1.

 Errors returned in dir_stat.st_errno correspond to those returned by
 statx, see "statx, fstatx, stat, fstat, fullstat, ffullstat, lstat" in
 topic 1.2.282.

 Related Information

 In this book: "stat.h" in topic 2.4.22 and "statx, fstatx, stat, fstat,
 fullstat, ffullstat, lstat" in topic 1.2.282.

AIX Operating System Technical Reference
dirstat

¦ Copyright IBM Corp. 1985, 1991
1.2.61 - 2

 1.2.62 disclaim

 Purpose
 Disclaims content of a memory address range.

 Syntax

 #include <sys/shm.h>

 int disclaim (addr, length, flag)
 char *addr;
 unsigned int length, flag;

 Description

 The disclaim system call marks an area of memory that has content that is
 no longer needed. This allows the system to discontinue paging the memory
 area.

 The addr parameter points to the beginning of the memory area, and the
 length parameter specifies its length in bytes. The flag parameter must
 be the value ZERO_MEM, which indicates that each memory location in the
 address range is to be set to 0.

 Return Value
 Upon successful completion, the disclaim system call returns a value of 0.
 If it fails, it returns a value of -1 and sets errno to indicate the
 error.

 Error Conditions

 The disclaim system call fails if one or more of the following is true:

 EFAULT The calling process does not have write access to the area of
 memory that begins at address and extends for length bytes.

 EINVAL The value of the flag parameter is not valid.

 Related Information
 In this book: "shmat" in topic 1.2.258 and "shmctl" in topic 1.2.259.

AIX Operating System Technical Reference
disclaim

¦ Copyright IBM Corp. 1985, 1991
1.2.62 - 1

 1.2.63 drand48

 Purpose
 Generates uniformly distributed pseudo-random number sequences.

 Library
 Standard C Library (libc.a)

 Syntax

 double drand48 () long jrand48 (xsubi)
 unsigned short xsubi[3];
 double erand48 (xsubi)
 unsigned short xsubi[3]; void srand48 (seedval)
 long seedval;
 long lrand48 ()
 unsigned short *seed48 (seed16v)
 long nrand48 (xsubi) unsigned short seed16v[3];
 unsigned short xsubi[3];
 void lcong48 (param)
 long mrand48 (); unsigned short param[7];

 Description
 This family of subroutines generates pseudo-random numbers using the
 linear congruential algorithm and 48-bit integer arithmetic.

 The drand48 and erand48 subroutines return nonnegative double-precision
 floating-point values uniformly distributed over the range of y values
 such that 0.0 = y < 1.0.

 The lrand48 and nrand48 subroutines return nonnegative long integers
 uniformly distributed over the range of y values such that 0 = y < 2(31).

 The mrand48 and jrand48 subroutines return signed long integers uniformly
 distributed over the range of y values such that -2(31) = y < 2(31).

 The srand48, seed48 and lcong48 subroutines initialize the random-number
 generator. Programs should invoke one of them before calling drand48,
 lrand48 or mrand48. (Although it is not recommended practice, constant
 default initializer values are supplied automatically if the drand48,
 lrand48 or mrand48 subroutines are called without first calling an
 initialization subroutine.) The erand48, nrand48 and jrand48 subroutines
 do not require that an initialization subroutine to be called first.

 All the subroutines work by generating a sequence of 48-bit integer
 values, X[i], according to the linear congruential formula:

 X sub <n + 1> = (aX sub n + c) sub <mod m> %%%% n ge 0

 The parameter m = 2(48); hence 48-bit integer arithmetic is performed.
 Unless the lcong48 subroutine has been called, the multiplier value a and
 the addend value c are:

 a = '5DEECE66D' sub 16 = '273673163155' sub 8

 c = 'B' sub 16 = '13' sub 8

 The value returned by the drand48, erand48, lrand48, nrand48, mrand48, and
 jrand48 subroutines is computed by first generating the next 48-bit X[i]

AIX Operating System Technical Reference
drand48

¦ Copyright IBM Corp. 1985, 1991
1.2.63 - 1

 in the sequence. Then the appropriate number of bits, according to the
 type of data item to be returned, are copied from the high-order (most
 significant) bits of X[i] and transformed into the returned value.

 The drand48, lrand48 and mrand48 subroutines store the last 48-bit X[i]
 generated into an internal buffer; that is why they must be initialized
 prior to being invoked.

 The erand48, nrand48 and jrand48 subroutines require the calling program
 to provide storage for the successive X[i] values in the array pointed to
 by the xsubi parameter. That is why these routines do not have to be
 initialized; the calling program merely has to place the desired initial
 value of X[i] into the array and pass it as a parameter.

 By using different parameters, the erand48, nrand48, and jrand48
 subroutines allow separate modules of a large program to generate several
 independent sequences of pseudo-random numbers. In other words, the
 sequence of numbers that one module generates does not depend upon how
 many times the subroutines are called by other modules.

 The initializer subroutine srand48 sets the high-order 32 bits of X[i] to
 the 32 bits contained in its parameter. The low order 16 bits of X[i] are
 set to the arbitrary value 330E[16].

 The initializer subroutine seed48 sets the value of X[i] to the 48-bit
 value specified in the array pointed to by the seed16v parameter. In
 addition, seed48 returns a pointer to a 48-bit internal buffer that
 contains the previous value of X[i]. that is used only by seed48. The
 returned pointer allows you to restart the pseudo-random sequence at a
 given point. Use the pointer to copy the previous X[i] value into a
 temporary array. Later you can call seed48 with a pointer to this array
 to resume where the original sequence left off.

 The lcong48 subroutine specifies the initial X[i] value, the multiplier
 value a, and the addend value c. The parameter array elements param[0-2]
 specify X[i], param[3-5] specify the multiplier a, and param[6] specifies
 the 16-bit addend c. After lcong48 has been called, a subsequent call to
 either srand48 or seed48 restores the standard a and c as specified
 previously.

 Related Information
 In this book: "rand, srand" in topic 1.2.221.

AIX Operating System Technical Reference
drand48

¦ Copyright IBM Corp. 1985, 1991
1.2.63 - 2

 1.2.64 dup

 Purpose
 Duplicates an open file descriptor.

 Syntax

 int dup (fildes)
 int fildes;

 Description
 The dup system call returns a new file descriptor for the file descriptor
 pointed to by the fildes parameter. The fildes parameter is a file
 descriptor obtained from a creat, open, dup, fcntl, or pipe system call,
 or from the socket or socketpair subroutine. The dup system call returns
 a new file descriptor having the following in common with the original:

 � The same open file or pip
 � The same file pointer (that is, both file descriptors share one fil
 pointer)
 � The same access mode (read, write or read/write
 � The same file status flag
 � The same locks

 The new file descriptor is set to remain open across exec system calls.
 If the Transparent Computing Facility is installed, the new file
 descriptor is also set to remain open across rexec and run system calls.
 (For more information about file control, see "fcntl, flock, lockf" in
 topic 1.2.78.)

 The file descriptor returned is the lowest one available.

 Return Value
 Upon successful completion, a file descriptor (nonnegative integer) is
 returned. If the dup system call fails, a value of -1 is returned, and
 errno is set to indicate the error.

 Error Conditions
 The dup system call fails if one or more of the following are true:

 EBADF fildes is not a valid open file descriptor.

 EMFILE Two hundred (200) file descriptors are currently open.

 Related Information
 In this book: "close, closex" in topic 1.2.48, "dup2" in topic 1.2.65,
 "exec: execl, execv, execle, execve, execlp, execvp" in topic 1.2.71,
 "fcntl, flock, lockf" in topic 1.2.78, "open, openx, creat" in
 topic 1.2.199, "pipe" in topic 1.2.204, "socket" in topic 1.2.275, and
 "socketpair" in topic 1.2.276.

AIX Operating System Technical Reference
dup

¦ Copyright IBM Corp. 1985, 1991
1.2.64 - 1

 1.2.65 dup2

 Purpose
 Duplicates an open file descriptor.

 Syntax

 int dup2 (oldfd, newfd)
 int oldfd, newfd;

 Description
 The dup2 system call duplicates the file descriptor, oldfd, to the new
 file descriptor, newfd. When you specify a value of newfd that is already
 in use, the descriptor is deallocated as if a close system call had been
 issued.

 The oldfd parameter is a small nonnegative integer index in the descriptor
 table. Its value must be less than the size of the descriptor table
 obtained by the getdtablesize subroutine.

 Note: Since newfd and oldfd are duplicate references to an open file once
 the dup2 system call has been called, the read, write, and lseek
 system calls move a single pointer into that file. Append mode and
 both non-blocking I/O and asynchronous I/O options are then shared
 between the references. Therefore, if you want to place a separate
 pointer in the file, you should issue an additional open system
 call to obtain a different object reference instead of using the
 dup2 system call.

 The new file descriptor is set to remain open across exec system calls.
 If the Transparent Computing Facility is installed, the new file
 descriptor is also set to remain open across rexec and run system calls.
 (For more information about file control, see "fcntl, flock, lockf" in
 topic 1.2.78.)

 Return Value
 When the call succeeds, a file descriptor (nonnegative integer) is
 returned. If the dup2 system call fails, a value of -1 is returned, and
 errno is set to indicate the error.

 Error Conditions
 The dup2 system call fails if one or more of the following is true:

 EBADF The oldfd parameter is not a valid open file descriptor.

 EBADF The newfd parameter is not between 0 and 199, which is the valid
 range for file descriptors.

 Related Information
 In this book: "accept" in topic 1.2.9, "close, closex" in topic 1.2.48,
 "dup" in topic 1.2.64, "fcntl, flock, lockf" in topic 1.2.78,
 "getdtablesize" in topic 1.2.93, "open, openx, creat" in topic 1.2.199,
 "pipe" in topic 1.2.204, "socket" in topic 1.2.275, and "socketpair" in
 topic 1.2.276.

AIX Operating System Technical Reference
dup2

¦ Copyright IBM Corp. 1985, 1991
1.2.65 - 1

 1.2.66 dustat

 Purpose
 Gets file system statistics.

 Syntax

 #include <sys/types.h>
 #include <dustat.h>

 int dustat (gfs, packno, buffer, length)
 gfs_t gfs;
 pckno_t packno;
 struct dustat *buffer;
 int length;

 Description
 The dustat system call returns information about a mounted file system.
 The gfs argument is a global file system number identifying a device
 containing a mounted file system. If the file system is not replicated,
 the packno argument is ignored; otherwise, it specifies the particular
 pack for which information is desired. The buffer is a pointer to a
 dustat structure, length bytes long, with the following format:

 fstore_t du_fstore; /* copy's fstore flags */
 commitcnt_t du_hwm; /* high-water mark for commits */
 commitcnt_t du_lwm; /* low-water mark for commits */
 daddr_t du_fsize; /* size of entire volume */
 union du_mix {
 daddr_t dum_tfree; /* number of free blocks */
 dev_t dum_majmin /* major-minor #'s of the device */
 } DU_mix;

 ino_t du_tinode; /* # of free inodes */
 short du_bsize; /* size of blocks */
 pckno_t du_pckno; /* pack # of this copy of */
 /* a replicated gfs */
 ino_t du_isize; /* address of first data block. */
 siteno_t du_site; /* site where this copy */
 /* is mounted. */
 unsigned short du_flags; /* from s_flags */

 char du_inopb; /* inodes per block */
 char du_version; /* data format of fs */
 char du_packcnt; /* number of valid entries in */
 /* du_dpacklst */
 char du_dummy[5]; /* for future use */
 char du_fsmnt[32]; /* name of this file system */
 char du_fpack[8]; /* name of this physical vol */
 struct dpacklst du_dpacklst[MAXPACKNO];
 /* array of packlists, info on other */
 /* mounted copies of this gfs */

 The following defines are automatically made for easy access:

 #define du_majmin DU_mix.dum_majmin
 #define du_tfree DU_mix.dum_tfree

AIX Operating System Technical Reference
dustat

¦ Copyright IBM Corp. 1985, 1991
1.2.66 - 1

 and the dpacklst structure consists of:

 fstore_t dpk_fstore;
 siteno_t dpk_site;
 unsigned short dpk_flags;
 pckno_t dpk_pack;
 short dpk_dummy; /* future expansion */

 The dustat system call interprets a pack number (packno argument) of 0 as
 the CSS's pack and a pack number of -1 as the local site's pack. In the
 latter case, the major-minor field (du_majmin) of the dustat structure is
 filled in; otherwise, the free block field (du_tfree) is filled in.

 The dustat system call does not report the actual number of inodes
 allocated when run on nonprimary packs of replicated file systems. Only
 the primary copy will show the correct number of inodes allocated.

 Return Value
 Upon successful completion, a value of 0 is returned. Otherwise, a value
 of -1 is returned, and errno is set to indicate the error.

 Error Conditions
 The dustat system call fails if one or more of the following are true:

 ENOSTORE gfs specifies a replicated file system, and packno is -1, but
 there is no local copy of the file system.

 EINVAL gfs is not in the range of valid file system numbers.

 EINVAL The device is not mounted, or the specified pack is not
 available.

 EFAULT buffer points outside the process's allocated address space.

 EFAULT The length parameter to dustat is not the same as size of
 (struct dustat).

 EINTR The call is interrupted by a signal.

 ESITEDN1 The site which had this pack mounted has left the current
 partition.

 ESITEDN2 The operation was terminated because a site failed.

 Related Information
 In this book: "ustat" in topic 1.2.320 and "fs" in topic 2.3.20.

AIX Operating System Technical Reference
dustat

¦ Copyright IBM Corp. 1985, 1991
1.2.66 - 2

 1.2.67 ecvt, fcvt, gcvt

 Purpose
 Converts a floating-point number to a string.

 Library
 Standard C Library (libc.a)

 Syntax

 char *ecvt (value, ndigit, dchar,*gcvt)(value, ndigit, buf)
 double value; double value;
 int ndigit, *decpt, *sign; int ndigit;
 char *buf;
 char *fcvt (value, ndigit, decpt, sign)
 double value;
 int ndigit, *decpt, *sign;

 Description
 The ecvt, fcvt, and gcvt subroutines convert floating-point numbers to
 strings.

 The ecvt subroutine converts the value parameter to a null-terminated
 string and returns a pointer to it. The ndigit parameter specifies the
 number of digits in the string. The low-order digit is rounded. ecvt
 sets the int pointed to by the decpt parameter to the position of the
 decimal point relative to the beginning of the string. (A negative number
 means the decimal point is to the left of the digits given in the string).
 The decimal point itself is not included in the string. The ecvt
 subroutine also sets the int pointed to by the sign parameter to a nonzero
 value if the value parameter is negative and sets it to 0 otherwise.

 The fcvt subroutine functions identically to ecvt, except that ndigit
 produces the number of digits to the right of the decimal point only; if
 the number is =17, there may be truncation or imprecision.

 The gcvt subroutine converts the value parameter to a null-terminated
 string, stores it in the array pointed to by the buf parameter, and then
 returns buf. gcvt attempts to produce a string of ndigit significant
 digits in FORTRAN F-format. If this is not possible, then E-format is
 used. gcvt suppresses trailing zeros. The string is ready for printing,
 complete with minus sign, decimal point, or exponent, as appropriate.

 The ecvt, fcvt, and gcvt subroutines represent the following special
 values that are specified in ANSI/IEEE standard 754-1985 for binary
 floating-point arithmetic:

 Quiet NaN QNaN
 Signalling NaN SNaN
 ±&infinity. INF

 The sign associated with each of these values is stored into the sign
 parameter; zero can also be positive or negative.

 Note: In the F-format ndigit is the number of digits desired after the
 decimal point. Very large numbers will produce a very long string
 of digits before the decimal point and then ndigit digits after the
 decimal point. Generally it is better to use gcvt or ecvt for
 large numbers.

AIX Operating System Technical Reference
ecvt, fcvt, gcvt

¦ Copyright IBM Corp. 1985, 1991
1.2.67 - 1

 Warning: All three subroutines store the strings in a static area of
 memory whose contents are overwritten each time one of the subroutines is
 called.

 Related Information
 In this book: "a64l, l64a" in topic 1.2.6, "frexp, ldexp, modf" in
 topic 1.2.85, "printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf,
 wsprintf" in topic 1.2.208, and "scanf, fscanf, sscanf, NLscanf, NLfscanf,
 NLsscanf, wsscanf" in topic 1.2.241.

AIX Operating System Technical Reference
ecvt, fcvt, gcvt

¦ Copyright IBM Corp. 1985, 1991
1.2.67 - 2

 1.2.68 end, etext, edata

 Purpose
 Defines the last location of a program.

 Library
 None

 Syntax

 extern end;
 extern etext;
 extern edata;

 Description
 The external names end, etext, and edata are defined by the loader for all
 programs. They are not subroutines, but identifiers associated with the
 following addresses:

 etext The first address following the program text
 edata The first address following the initialized data region
 end The first address following the data region that is not
 initialized.

 The break value of the program is the first location beyond the data.
 When a program begins running, this location coincides with end. However,
 many factors can change the break value, including:

 � The brk system call
 � The malloc subroutine
 � The standard input/output subroutine
 � The -p flag on the cc command.

 Therefore, use sbrk(0), not end, to determine the break value of the
 program.

 Related Information
 In this book: "brk, sbrk" in topic 1.2.21, "malloc, free, realloc,
 calloc, valloc, alloca, mallopt, mallinfo" in topic 1.2.162, and " stdio"
 in topic 1.2.283.

 The cc command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
end, etext, edata

¦ Copyright IBM Corp. 1985, 1991
1.2.68 - 1

 1.2.69 erf, erfc

 Purpose
 Computes the error and complementary error functions.

 Library
 Math Library (libm.a)

 Syntax

 #include <math.h>

 double erf (x) double erfc (x)
 double x; double x;

 Description
 The erf subroutine returns the error function of x, defined as:

 The erfc subroutine returns 1.0 - erf(x). The erfc subroutine is
 provided because of the extreme loss of relative accuracy if erf(x) is
 called for large values of x and the result is subtracted from 1.0. For
 example, 12 decimal places are lost when calculating (1.0 - erf(5)).

 Error Conditions
 The erf and erfc subroutines fail if the following is true:

 EDOM The value of x is NaN.

 Related Information
 In this book: "cbrt, exp, expm1, log, log10, log1p, pow, sqrt" in
 topic 1.2.28.

AIX Operating System Technical Reference
erf, erfc

¦ Copyright IBM Corp. 1985, 1991
1.2.69 - 1

 1.2.70 errunix

 Purpose
 Logs application errors.

 Library
 Run-time Services Library (librts.a)

 Syntax

 int errunix (buf, cnt)
 char *buf;
 unsigned short cnt;

 Description
 The errunix subroutine invokes the application error device driver to
 record an error log entry. errunix is a C run-time subroutine. Device
 drivers should use the errsave kernel subroutine to log error messages.

 If the error device driver is not open, errunix opens it. Then the error
 log entry is written to it.

 The buf parameter points to a buffer that contains the following
 information:

 1. A word (int) that contains the class, subclass, mask, and type of the
 message, as defined in the discussion of "error" in topic 2.5.7.

 2. An int that specifies the number of words of dependent data for the
 error log entry, including this int itself.

 3. Words that contain the dependent information for the error log entry.
 The number of dependent data words must be one less than the word
 count specified immediately before them.

 The other fields of the error log header (length, date and time, time
 extended, and node name) are supplied for you automatically.

 The cnt parameter specifies the number of bytes in the buffer pointed to
 by buf. The cnt parameter must be a multiple of 4.

 Return Value
 Upon successful completion, a value of 0 is returned. If the errunix
 subroutine fails, an error message is written to the standard error
 output, and a value of -1 is returned.

 File

 /dev/error

 Related Information
 In this book: "error" in topic 2.5.7.

AIX Operating System Technical Reference
errunix

¦ Copyright IBM Corp. 1985, 1991
1.2.70 - 1

 1.2.71 exec: execl, execv, execle, execve, execlp, execvp

 Purpose
 Executes a file.

 Syntax

 int execl (path, arg0 [, argint.execv)(path, argv)
 char *path, *arg0, *arg1,...char *path, *argv [];

 int execle (path, arg0 [, arint.execve,(path, argv, envp)
 char *path, *arg0, *arg1,...charn*path,;*argv [], *envp [];

 int execlp (file, arg0 [, arint.execvp)(file, argv)
 char *file, *arg0, *arg1,...char *file, *argv [];

 Description
 The exec system call, in all its forms, executes a new program in the
 calling process. This call does not create a new program, but overlays
 the current program with a new one, which is called the new process image.
 The new process image file can be one of three file types:

 � An executable binary file in a.out format (see "a.out" in topic 2.3.2)

 � An executable text file that contains a shell procedure (only execlp
 and execvp allow this type of new process image file)

 � A file that names an executable binary file or shell procedure to b
 run.

 The last of the types mentioned is recognized by a header with the syntax:

 #! path [string]

 The #! is the file's magic number, which identifies the file type. The
 path parameter is the path name of the file to be executed. The string
 parameter is an optional character string that contains no tab or space
 characters. The header must be terminated with a new-line character.
 When invoked, the new process is passed path as argv[0]. This is followed
 by the optional parameter string and the name of the new process image
 file. The rest of the arguments passed are the same as those passed to
 the exec system call.

 The parameters for the exec system calls are defined as follows:

 path This parameter points to the path name of the new process image
 file.

 file This parameter points to the name of the new process image file.
 Unless file is a full path name, the path prefix for the file is
 obtained by searching the directories named in the PATH environment
 variable. The initial environment is supplied by the shell.

 Note that execlp and execvp take file parameters, but the rest of
 the exec system calls take path parameters. (For information about
 the environment, see "environment" in topic 2.4.6 and the sh and
 csh commands in AIX Operating System Commands Reference.)

 arg0 [, arg1,...]
 These parameters point to null-terminated character strings. The

AIX Operating System Technical Reference
exec: execl, execv, execle, execve, execlp, execvp

¦ Copyright IBM Corp. 1985, 1991
1.2.71 - 1

 strings constitute the argument list available to the new process.
 By convention, at least arg0 must be present, and it must point to
 a string that is the same as path or its last component.

 argv This parameter is an array of pointers to null-terminated character
 strings. These strings constitute the argument list available to
 the new process. By convention, argv must have at least one
 element, and it must point to a string that is the same as path or
 its last component. The last element of argv is a NULL pointer.

 envp This parameter is an array of pointers to null-terminated character
 strings. These strings constitute the environment for the new
 process. The last element of envp is a NULL pointer.

 When a C program is executed, it receives the following parameters:

 main (argc, argv, envp)
 int argc;
 char *argv [], *envp [];

 Here argc is the argument count, and argv is an array of character
 pointers to the arguments themselves. By convention, the value of argc is
 at least one, and argv[0] points to a string containing the name of the
 new process image file.

 The main routine of a C language program automatically begins with a
 run-time start-off routine. This routine sets a global variable named
 environ so that it points to the environment array passed to the program
 in envp. You can access this global variable by including the following
 declaration in your program:

 extern char **environ;

 The execl, execv, execlp, and execvp system calls use environ to pass the
 calling process's current environment to the new process.

 File descriptors open in the calling process remain open in the new
 process, except for those whose close-on-exec flag is set. For those file
 descriptors that remain open, the file pointer is unchanged. (For
 information about file control, see "fcntl, flock, lockf" in
 topic 1.2.78.)

 If the new process requires shared libraries, exec attaches each shared
 library image to the new process address space. (See AIX Programming
 Tools and Interfaces.) Shared libraries are searched for in the
 directories listed in the LIBPATH environment variable.

 The exec system calls reset all caught signals to the default action.
 Signals that cause the default action continue to do so after exec.
 Ignored signals remain ignored, the signal mask remains the same, and the
 signal stack state is reset. (For information about signals, see
 "sigaction, sigvec, signal" in topic 1.2.263.)

 If the set-user-ID mode bit of the new process image file is set, exec
 sets the effective user ID of the new process to the owner ID of the new
 process image file. Similarly, if the set-group-ID mode bit of the new
 process image file is set, the effective group ID of the new process is
 set to the group ID of the new process image file. The real user ID and
 real group ID of the new process remain the same as those of the calling
 process. (For information about the set-ID modes, see "chmod, fchmod" in

AIX Operating System Technical Reference
exec: execl, execv, execle, execve, execlp, execvp

¦ Copyright IBM Corp. 1985, 1991
1.2.71 - 2

 topic 1.2.44.) The effective user ID and the effective group ID are saved
 (as the saved set-user-ID and the saved set-group-ID) for use by the
 setuid function and for signal delivery permissions.

 The shared libraries attached to the calling process are not attached to
 the new process.

 Profiling is disabled for the new process. (For information about
 profiling, see "profil" in topic 1.2.210.)

 The new process inherits the following attributes from the calling
 process:

 � Nice value (see "getpriority, setpriority, nice" in topic 1.2.111)
 � Process I
 � Parent process I
 � Process group I
 � semadj values (see "semop" in topic 1.2.245)
 � TTY group ID (see "exit, _exit" in topic 1.2.73 and "sigaction,
 sigvec, signal" in topic 1.2.263)
 � Trace flag (see request 0 of "ptrace" in topic 1.2.212)
 � Time left until an alarm clock signal (see "alarm" in topic 1.2.14)
 � Current director
 � Root director
 � <LOCAL> alias pathname (see "getlocal, setlocal" in topic 1.2.102)
 � File mode creation mask (see "umask" in topic 1.2.314)
 � File locks (see "fcntl, flock, lockf" in topic 1.2.78)
 � System resource limits (see "getrlimit, setrlimit, vlimit" in
 topic 1.2.115 and "ulimit" in topic 1.2.313)
 � utime, stime, cutime, and cstime (see "times" in topic 1.2.304)
 � xvers string (see "getxvers, setxvers" in topic 1.2.129)
 � Site path (see "getspath, setspath" in topic 1.2.122)
 � Execution site permissions (see "getxperm, setxperm" in
 topic 1.2.128).

 The name of the new process image file may refer to a hidden directory.
 Hidden directories are normally used in a Transparent Computing Facility
 cluster to enable execution of the correct process image for a given
 machine type. Without TCF, however, hidden directories can be used to
 allow execution of different versions of a program without changing the
 program name (see "getxvers, setxvers" in topic 1.2.129).

 If the Transparent Computing Facility is installed, the following
 information also applies.

 After the exec system call, the calling process executes on a site
 determined by the machine type on which the new process image must run and
 by the site path.

 If the name of the new process image file refers to a hidden directory,
 exec first selects the new process image file by following the usual
 hidden directory path search rules, determined by prior calls to getspath.
 The selected new process image file is examined to determine on what type
 of site it may run. Then the site path is searched until the
 corresponding machine type or a site of the appropriate type is found. If
 a specific site is found, the exec system call executes a new program at
 that site. If an entry for the machine type is found, the exec system
 call executes a new program at a site of that type, using the local site
 if possible. The user must have permission to move processes to the
 destination site (see "getxperm, setxperm" in topic 1.2.128).

AIX Operating System Technical Reference
exec: execl, execv, execle, execve, execlp, execvp

¦ Copyright IBM Corp. 1985, 1991
1.2.71 - 3

 The user level code is responsible for maintaining a site path which is
 compatible with the user's permissions and the current network partition.
 If the contents of the site path cause the system to choose a new process
 image file for which there is no permissible site in the current
 partition, then the system call exec fails.

 The utime, stime, cutime, and cstime (see "times" in topic 1.2.304) are
 preserved by the exec system call if the process remains on the same site.
 If it moves to a new site, they are changed accordingly to the following
 rules:

 cutime += utime;

 cstime += stime;

 utime = 0;

 stime = 0;

 Note: Processes may not execute to another site if:

 1. They have too many (85 or more) child processes.
 2. They have a file open which is marked as being in error (for
 instance, the storage site is not on the cluster network)
 3. They have made use of semaphores or messages operations (see
 "Semaphores, Message Queues, and Shared Memory Segments" in
 topic 1.2.2.10)
 4. There are any TCP/IP sockets open (see "TCP/IP Communication"
 in topic 1.2.2.8).

 Return Value
 Upon successful completion, exec does not return because the calling
 process image is overlaid by the new process image. If exec returns to
 the calling process, then it returns the value -1 and sets errno to
 indicate the error.

 Error Conditions
 The exec system call fails and returns to the calling process if one or
 more of the following are true:

 ENOENT One or more components of the new process image file's path name
 do not exist.

 ENOTDIR A component of the path prefix of the new process image file is
 not a directory.

 EACCES Search permission is denied for a directory listed in the path
 prefix of the new process image file.

 EACCES The new process image file is not an ordinary file.

 EACCES The mode of the new process image file denies execution
 permission.

 ENOEXEC The exec system call is not an execlp or execvp, and the new
 process image file has the appropriate access permission but has
 an invalid magic number in its header.

 ENOEXEC The new process image file has a valid magic number in its

AIX Operating System Technical Reference
exec: execl, execv, execle, execve, execlp, execvp

¦ Copyright IBM Corp. 1985, 1991
1.2.71 - 4

 header, but the header is damaged or is incorrect for the
 machine on which the file is to be run.

 ETXTBSY The new process image file is a pure procedure (shared text)
 file that is currently open for writing by some process.

 ENOMEM The new process requires more memory than is allowed by the
 system-imposed maximum MAXMEM.

 E2BIG The number of bytes in the new process's argument list is
 greater than the system-imposed limit. This limit is defined as
 NCARGS in the sys/param.h header file.

 EFAULT The path, argv, or envp parameter points to a location outside
 of the process's allocated address space.

 In addition, some errors can occur when using the new process file after
 the old process image has been overwritten. These errors include problems
 in setting up new data and stack registers, problems in mapping a shared
 library, or problems in reading the new process file. Because returning
 to the calling process is not possible, the system sends the SIGKILL
 signal to the process when one of these errors occurs.

 ESTALE The process's root or current directory is located in an NFS
 virtual file system that has been unmounted.

 ENAMETOOLONG
 A component of the path parameter exceeded NAME_MAX characters
 or the entire path parameter exceeded PATH_MAX characters.

 ENOENT A hidden directory was named, but no component inside it matched
 the process's current site path list.

 ENOENT A symbolic link was named, but the file to which it refers does
 not exist.

 ELOOP A loop of symbolic links was detected.

 EIO A physical I/O error occurred.

 If a shared library cannot be attached, one of more of the following is
 true:

 ELIBMAX More than 10 shared libraries are specified by the new process
 image file.

 ELIBSCN The specification of shared libraries in the .lib section of the
 new process image file is not in the correct format (see "a.out"
 in topic 2.3.2).

 ELIBACC A shared library specified by the new process image file cannot
 be opened.

 ELIBBAD A shared library file is not in correct a.out format (see
 "a.out" in topic 2.3.2).

 If the Transparent Computing Facility is installed on your system, the
 exec system call can also fail if one or more of the following are true:

 ESITEDN1 path cannot be accessed because a site went down.

AIX Operating System Technical Reference
exec: execl, execv, execle, execve, execlp, execvp

¦ Copyright IBM Corp. 1985, 1991
1.2.71 - 5

 ENOSTORE path is a name relative to the working directory, but no site
 which stores this directory is currently up.

 EINTR A signal was caught during the system call.

 ENOSTORE A component of path is replicated but is not stored on any
 site which is currently up.

 ESITEDN1 The site chosen for the exec is down.

 EPERM Execute permission is not granted for any of the sites chosen
 by the site path.

 ELDWRG The exec system call tried to execute on a site that is the
 wrong machine type for the new process image.

 ETABLE On either the new site or the old site, the system's PID-site
 table, which is used to keep track of remote processes and
 process groups, is full.

 ELOCALONLY The calling process may not use exec to execute a new program
 at another site because it is using local only resources, such
 as semaphores, or it has too many child processes.

 ENLDEV The process may not execute on the designated site because one
 of its open file descriptors is for a local-only object such
 as a socket or a non-tty character special file.

 In addition, the process may be killed with a SIGKILL signal if a system
 error occurs very late in the process of reading in the new process image.
 These system errors include being out of text table space and getting a
 disk read error while reading the new process image file.

 Examples

 1. To run a command and pass it a parameter:

 execlp("li", "li", "-al", 0);

 The execlp system call searches each of the directories listed in the
 PATH environment variable for the li command, and then it overlays the
 current process image with this command. execlp does not return,
 unless the li command cannot be executed. Note that this example does
 not run the shell command processor, so operations interpreted by the
 shell, such as using wildcard characters in file names, are not valid.

 2. To run the shell to interpret a command:

 execl("/bin/sh", "sh", "-c", "li -l *.c", 0);

 This runs the sh (shell) command with the -c parameter, which
 indicates that the following parameter is the command to be
 interpreted. (See the discussion of sh in AIX Operating System
 Commands Reference for details about this command.) This example uses
 execl instead of execlp because the full path name /bin/sh is
 specified, making a PATH search unnecessary.

 Running a shell command in a child process is generally more useful
 than simply using exec, as shown here. The simplest way to do this is

AIX Operating System Technical Reference
exec: execl, execv, execle, execve, execlp, execvp

¦ Copyright IBM Corp. 1985, 1991
1.2.71 - 6

 to use the system subroutine. See "system" in topic 1.2.298 for
 information about this subroutine.

 3. The following is an example of a new process file that names a program
 to be run:

 #! /bin/awk -f
 { for (i = NF; i > 0; --i) print i }

 If this file is named reverse, then typing the following command on
 the command line:

 reverse chapter1 chapter2

 causes the following command to be run:

 /bin/awk -f reverse chapter1 chapter2

 Note that the exec system calls use only the first line of the new
 process image file and ignore the rest of it. Also, awk interprets
 the text that follows a # (number sign) as a comment. (See the awk
 command in AIX Operating System Commands Reference for more
 information.)

 Related Information
 In this book: "alarm" in topic 1.2.14, "chmod, fchmod" in topic 1.2.44,
 "exit, _exit" in topic 1.2.73, "fcntl, flock, lockf" in topic 1.2.78, "
 fork, vfork" in topic 1.2.83, "getpriority, setpriority, nice" in
 topic 1.2.111, "profil" in topic 1.2.210, "ptrace" in topic 1.2.212,
 "semop" in topic 1.2.245, "shmat" in topic 1.2.258, "sigaction, sigvec,
 signal" in topic 1.2.263, "system" in topic 1.2.298, "times" in
 topic 1.2.304, "ulimit" in topic 1.2.313, "umask" in topic 1.2.314,
 "varargs" in topic 1.2.323, "a.out" in topic 2.3.2, and "environment" in
 topic 2.4.6.

 The csh and shlib2 commands in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
exec: execl, execv, execle, execve, execlp, execvp

¦ Copyright IBM Corp. 1985, 1991
1.2.71 - 7

 1.2.72 exect

 Purpose
 Executes a file in trace mode.

 Library
 Berkeley Compatibility Library (libbsd.a)

 Syntax

 int exect (path, argv, envp)
 char *path, argv [], *envp [];

 Description
 The exect subroutine is included for compatibility with older programs
 being traced with the ptrace command. Newer debuggers eliminate the
 requirement for this function. The program being executed is forced into
 hardware single-step mode.

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71 and "ptrace" in topic 1.2.212.

 The ptrace command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
exect

¦ Copyright IBM Corp. 1985, 1991
1.2.72 - 1

 1.2.73 exit, _exit

 Purpose
 Terminates a process.

 Syntax

 void exit (status) void _exit (status)
 int status; int status;

 Description
 The exit system call terminates the calling process and causes the
 following to occur:

 � All of the file descriptors open in the calling process are closed
 Since exit terminates the process, any errors encountered during these
 close operations go unreported.

 � If the parent process of the calling process is executing a wait
 system call, it is notified of the termination of the calling process
 and the low-order eight bits (that is, bits 0377 or 0xFF) of status
 are made available to it. See "wait, waitpid" in topic 1.2.325.

 � If the parent process of the calling process is not executing a wait
 system call, and if the parent hasn't set its SIGCHLD signal to
 SIG_IGN, then the calling process is transformed into a zombie
 process. A zombie process is a process that occupies a slot in the
 process table, but has no other space allocated to it either in user
 or kernel space. The process table slot that it occupies is partially
 overlaid with time accounting information to be used by the times
 system call. (See "times" in topic 1.2.304 and the sys/proc.h header
 file.)

 � The parent process ID of all of the calling process's existing chil
 processes is set to -1. This is done to avoid confusion between
 processes which are the real child processes of the init process and
 processes which are orphaned; this is useful in a Transparent
 Computing Facility cluster. getppid will return a 1 if the parent ID
 is -1 (see "getpid, getpgrp, getppid" in topic 1.2.110). Zombie child
 processes of the exiting process are destroyed.

 � Each attached shared memory segment is detached and the value o
 shm_nattach in the data structure associated with its shared memory
 identifier is decremented by 1.

 � For each semaphore for which the calling process has set a semadj
 value, that semadj value is added to the semval of the specified
 semaphore. (See "semop" in topic 1.2.245 about semaphore operations.)

 � If the process has a process lock, text lock, or data lock, an unlock
 is performed. (See "plock" in topic 1.2.205.)

 � An accounting record is written on the accounting file if the system'
 accounting routine is enabled. (See "acct" in topic 1.2.11 for
 information about enabling accounting routines.)

 � If the calling process is a session leader, then the SIGHUP signal is
 sent to each process that has a process group ID equal to that of the
 calling process. In other words, if exit is called by the process
 group leader for the controlling terminal (typically the shell), then

AIX Operating System Technical Reference
exit, _exit

¦ Copyright IBM Corp. 1985, 1991
1.2.73 - 1

 SIGHUP is sent to all of the processes associated with that terminal.

 Note: Note that since the C-shell starts each job in its own process
 group, jobs left in the background when a login csh exits, will
 not be sent SIGHUP.

 � If any child processes of the calling process are stopped, they ar
 sent SIGHUP and SIGCONT signals.

 � Locks set by the lockf system call are removed. (See "fcntl, flock,
 lockf" in topic 1.2.78 about file locks.)

 The exit subroutine causes cleanup actions, including flushing of standard
 I/O buffers, to occur before the process exits. The _exit system call
 bypasses all cleanup.

 Note: The effect of exit can be modified by the setting of the SIGCHLD
 signal in the parent process. See "sigaction, sigvec, signal" in
 topic 1.2.263.

 Related Information
 In this book: "acct" in topic 1.2.11, "sigaction, sigvec, signal" in
 topic 1.2.263, "times" in topic 1.2.304, and "wait, waitpid" in
 topic 1.2.325.

AIX Operating System Technical Reference
exit, _exit

¦ Copyright IBM Corp. 1985, 1991
1.2.73 - 2

 1.2.74 extended curses library

 Purpose
 Controls cursor movement and windowing.

 Library
 Extended Curses Library (libcur.a)

 Syntax

 #include <cur01.h>

 Description

 The Extended Curses subroutines control input and output to a workstation,
 performing optimized cursor movement, windowing, and other functions.
 This package is based on the curses subroutine package, which is included
 in most UNIX-compatible systems. The curses subroutines are also included
 in AIX for complete compatibility with existing programs (see "curses" in
 topic 1.2.56). However, curses and Extended Curses cannot both be used by
 the same program.

 The enhancements provided by Extended Curses include:

 � A wider range of display attribute
 � Generalized drawing of boxe
 � Terminal-independent input data processin
 � Extended window contro
 � Pane, panel, and field concept
 � Support for extended character
 � Handling of locator input

 Subtopics
 1.2.74.1 Terminology
 1.2.74.2 Linking the Extended Curses Routines
 1.2.74.3 Header Files
 1.2.74.4 Naming Conventions
 1.2.74.5 Parameters
 1.2.74.6 Return Values
 1.2.74.7 The Extended Curses Routines

AIX Operating System Technical Reference
extended curses library

¦ Copyright IBM Corp. 1985, 1991
1.2.74 - 1

 1.2.74.1 Terminology

 window The internal representation of what a portion of the display
 may look like at some point in time. Windows can be any
 size from the entire display screen to a single character.

 screen A window that is large as the display screen. A screen
 named stdscr is automatically provided.

 terminal Sometimes called a terminal screen. A special screen that
 is the Extended Curses package's understanding of what the
 workstation's display screen currently looks like. The
 terminal screen is identified by a window named curscr,
 which should not be accessed directly by the user. Instead,
 changes should be made to stdscr (or a user-defined screen)
 and then refresh (or wrefresh) should be called to update
 the terminal.

 presentation space
 The array that contains the data and attributes associated
 with a window.

 pane An area of the display that shows all or part of the data
 contained in a presentation space associated with that pane.

 active pane The pane in which the text cursor is positioned. A pane
 must be active before you can do input.

 panel A group of one or more panes that are treated as a unit.
 The panes of a panel are displayed together, erased
 together, and usually represent a unit of information to a
 person using the application. A panel is represented on the
 display as a rectangular area that is tiled (completely
 filled) with panes.

 field An area in a presentation space into which the program
 accepts input.

 extended character
 A character other than 7-bit ASCII that can be represented
 in either 1 or 2 bytes. (See "data stream" in topic 2.4.3.)

 NLSCHAR Represents an mbchar_t (unsigned long) character stored in
 four bytes. It is used for both interface data (arguments
 to library functions) and internal representation of a
 character.

 When a double display width character needs to be displayed where only a
 single display width space is available, then a partial-character
 indicator is displayed instead. The partial-character indicator is the @
 (at sign), and it is represented by the constant pd_char.

 See the discussion of Extended Curses in AIX Programming Tools and
 Interfaces, and "Introduction to International Character Support" in
 Managing the AIX Operating System for more detailed information about
 these concepts.

AIX Operating System Technical Reference
Terminology

¦ Copyright IBM Corp. 1985, 1991
1.2.74.1 - 1

 1.2.74.2 Linking the Extended Curses Routines

 The Extended Curses routines also call terminfo subroutines, which are
 located in the Curses Library (libcurses.a). Therefore, compile programs
 that use Extended Curses routines with the flags -lcur and -lcurses.

AIX Operating System Technical Reference
Linking the Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.2 - 1

 1.2.74.3 Header Files

 � The cur00.h header file replaces curses.h when converting programs
 that use the original curses package to Extended Curses.

 � All of the routines require the cur01.h header file.

 � The key codes returned by getch are defined in cur02.h.

 � The cur03.h header file defines attribute priority codes, and is not
 needed by application programs.

 � The unctrl routine requires cur04.h.

 � The routines that manage panes and panels (the routines whose name
 begin with ec) also require the cur05.h header file.

AIX Operating System Technical Reference
Header Files

¦ Copyright IBM Corp. 1985, 1991
1.2.74.3 - 1

 1.2.74.4 Naming Conventions

 The new routines added to the original curses package begin with the
 letters ec.

 Many routines operate on stdscr, the standard screen, by default.
 Corresponding routines that allow you to specify a window have the same
 name, prefixed with the letter w. For example, addch adds a character to
 stdscr, while waddch allows you to specify the window. Sometimes a
 routine beginning with p also exists, such as paddch, which allows you to
 specify a pane.

 Some routines also allow you to specify cursor movement with the action to
 be performed. These routines have a prefix of mv. Thus, addch becomes
 mvaddch, waddch becomes mvwaddch, and paddch becomes mvpaddch. Each of
 these routines is equivalent to calling move or wmove before performing
 the operation.

 The various prefixed forms of the routines are implemented as macros. In
 each case, the routine beginning with w is the base subroutine from which
 the others are defined.

AIX Operating System Technical Reference
Naming Conventions

¦ Copyright IBM Corp. 1985, 1991
1.2.74.4 - 1

 1.2.74.5 Parameters

 The following declarations serve for all of the routines:

 char ch *string;
 NLSCHAR xc;
 int line, col, firstline, firstcol;
 int numlines, numcols, numchars, length, mode;
 bool boolf;
 WINDOW *win, *win1, *win2, *oldwin, *newwin;
 PANE *pane;
 PANEL *panel;

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
1.2.74.5 - 1

 1.2.74.6 Return Values

 Unless otherwise noted, each routine returns a value of type int that is
 either OK (indicating successful completion) or ERR (if an error is
 encountered).

AIX Operating System Technical Reference
Return Values

¦ Copyright IBM Corp. 1985, 1991
1.2.74.6 - 1

 1.2.74.7 The Extended Curses Routines

 The Extended Curses routines are listed here alphabetically, except that
 routines with w, p, and mv prefixes are listed with the corresponding
 routine that does not have these prefixes.

 addch (xc)
 waddch (win, xc)
 paddch (pane, xc)
 mvaddch (line, col, xc)
 mvwaddch (win, line, col, xc)
 mvpaddch (pane, line, col, xc)

 The xc parameter is a value of type NLSCHAR.

 The addch routine adds the NLSCHAR specified by the xc parameter on
 the window at the current (line, col) coordinates. paddch adds the
 character to the presentation space for the pane specified by the
 pane parameter. If the character is '\n' (new-line character), the
 line is cleared to the end, and the current (line, col) coordinates
 are changed to the beginning of the next line. A '\r' (return
 character) moves the current position to the beginning of the
 current line on the window. A '\t' (tab character) is expanded into
 spaces in the normal tabstop positions of every eighth column.

 Adding a character to the lower right corner of a window that
 includes the lower right corner of the display causes many terminals
 to scroll the entire display image up one line. If adding a
 character or a character attribute causes such scrolling to occur,
 addch makes the change on the window but does not mark it for
 wrefresh purposes; addch returns the value ERR.

 A double display width character must be added to addch in a single
 call. If adding a character would cause that character to split
 across two lines, the system appends a blank to the end of the
 current line and adds the entire character at the beginning of the
 following line. If an added character overwrites half an existing
 two-byte character, the system replaces the remaining half of that
 existing character with a blank.

 addstr (string)
 waddstr (win, string)
 paddstr (pane, string)
 mvaddstr (line, col, string)
 mvwaddstr (win, line, col, string)
 mvpaddstr (pane, line, col, string)

 The addstr routine adds the string pointed to by the string
 parameter on the window at the current (line, col) coordinates. The
 string can contain single-shift control codes.

 Upon successful completion, addstr returns OK and the current
 (line, col) coordinates point to the location just beyond the end of
 the string. The addstr routine returns ERR if an attempt is made to
 add a character to the lower right corner of a window that includes
 the lower right corner of the display. In this case, addstr writes
 as much of the string on the window as possible.

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 1

 waddfld (win, string, length, numlines, numcols, mode, xc)

 The waddfld routine adds data to a field within a window. The
 current coordinates specify the upper-left corner of the field in
 the window. The numlines and numcols parameters specify the number
 of lines and columns in the field, respectively. The length
 parameter specifies the length of the data. The mode parameter
 specifies the attribute for the field output. The xc parameter
 specifies the NLSCHAR that is used to fill the remainder of the
 field after the data has been added to it. The xc parameter must be
 in single display width; otherwise ERR is returned.

 If the string contains a '\n' (new-line character), the fill
 character is added to the remainder of the columns on that line of
 the field, and the remainder of the data is added starting at the
 first column of the next line of the field. A '\r' (return
 character) changes the current position to the beginning column of
 the field. A '\t' (tab character) is expanded with fill characters
 up to the next normal tabstop position within the field.

 The waddfld routine follows the same rules as addch for adding
 double display width characters.

 beep ()

 The beep routine sounds the speaker or bell at the workstation.

 box (win, System V, hor)
 NLSCHAR System V, hor;

 The box routine draws a box around the window specified by the win
 parameter. box uses the NLSCHAR specified by the System V parameter
 to draw the vertical sides of the box, and the NLSCHAR specified by
 the hor parameter for drawing the horizontal lines and corners.

 If the window includes the lower right corner of the display and
 scrollok is not set, then the lower right corner of the box is not
 shown on the window, and the box routine returns ERR.

 The box routine is a macro that invokes superbox.

 cbox (win)

 The cbox routine draws a box around the window specified by the win
 parameter. The characters used are those defined in
 /usr/lib/terminfo (type 1 box characters) or defaulted during the
 initialization.

 The cbox routine is implemented as a macro that invokes superbox.

 The cbox routine returns ERR if the window includes the lower right
 corner of the display and scrollok is not set on.

 chgat (numchars, mode)
 wchgat (win, numchars, mode)

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 2

 pchgat (pane, numchars, mode)
 mvchgat (line, col, numchars, mode)
 mvwchgat (win, line, col, numchars, mode)
 mvpchgat (pane, line, col, numchars, mode)

 The chgat routine changes the attributes of the next numchars
 characters on the window starting from the current (line, col)
 coordinates. The attributes are changed to the attributes specified
 by the mode parameter. This routine does not wrap around to the
 next line; however, specifying a value for the numchars parameter
 that would cause a line wrap is not an error.

 The mode parameter is one or more of the attributes defined by the
 global attribute variables. More than one attribute may be
 specified by logically ORing them together. The following example
 changes the attributes of the next 10 characters to bold blue
 characters on a black background:

 chgat (10, BOLD | F_BLUE | B_BLACK)

 The range of columns to be changed should include entire characters.
 The numchars variable refers to the number of single or double width
 display characters. If the current (line, col) position is on the
 second column of a double display width character, clearing begins
 at position col -1.

 The chgat routine returns ERR if the change forces scrolling and
 scrollok is not set on for the window.

 clear ()
 wclear (win)

 The clear routine resets the entire stdscr window to blank
 characters. clear sets the current (line, col) coordinates to
 (0, 0).

 clearok (scr, boolf)
 WINDOW *scr;

 The clearok routine sets the clear flag for the screen specified by
 the scr parameter. If the boolf parameter is TRUE, the screen is
 cleared on the next call to refresh or wrefresh. If the boolf
 parameter is FALSE, the screen is not cleared on the next call to
 refresh or wrefresh. This only works on screens, and, unlike clear,
 does not alter the contents of the screen. If the scr parameter is
 curscr, the next refresh will cause a clear-screen, even if the
 window passed to refresh is not a screen.

 The clearok routine returns ERR if the window is not a full-screen
 window.

 clrtobot ()
 wclrtobot (win)

 The clrtobot routine erases the window from the current (line, col)
 coordinates to the bottom. clrtobot leaves the current (line, col)
 coordinates unchanged. This does not force a clear-screen sequence

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 3

 on the next refresh. If the current (line, col) position is on the
 second column of a double display width character, clearing begins
 at position col -1.

 The clrtobot routine always returns the value OK.

 clrtoeol ()
 wclrtoeol (win)

 The clrtoeol routine clears the window from the current (line, col)
 coordinates to the end of the current line. The current (line, col)
 coordinates are not changed. If the current (line, col) position is
 on the second column of a double display width character, clearing
 begins at position col -1.

 The clrtoeol routine always returns the value OK.

 colorend ()
 wcolorend (win)

 The colorend routine returns the terminal to NORMAL mode. By
 default, NORMAL is usually defined as (F_WHITE | B_BLACK).

 The colorend routine is a macro that invokes xstandend.

 The colorend routine always returns the value OK.

 colorout (mode)
 wcolorout (win, mode)

 The colorout routine sets the current standout bit-pattern of the
 window (win->_csbp) to the attribute specified by the mode
 parameter. Characters added to the window after such a call will
 have mode as their attribute. The mode parameter is constructed by
 logically ORing together attributes that are declared in the cur01.h
 header file that are supported by the terminal.

 The colorout routine overrides the current setting of the window and
 works in conjunction with almost all of the routines that cause
 output to be placed on the window.

 The colorout routine is a macro that invokes xstandout.

 The colorout routine always returns the value OK.

 cresetty (boolf)

 The cresetty routine resets the terminal to the state saved by the
 last call to csavetty. Use this routine after the completion of a
 program that uses the terminal as a simple terminal. If the boolf
 parameter is TRUE, then the data in curscr is redisplayed.

 crmode ()
 nocrmode ()

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 4

 The crmode routine turns off the canonical processing of input by
 the system device driver. When canonical processing is off, data is
 made available without waiting for a '\n' (new-line character).
 nocrmode enables canonical processing by the system device driver.

 The wgetch routine, which is used for all Extended Curses input,
 forces the equivalent of crmode before requesting input if echoing
 is active, and reinstates the original status on exit. If you are
 using echo, you should issue a call to either crmode or raw to avoid
 multiple calls by wgetch.

 The crmode routine differs from raw in that crmode has no effect on
 output data processing and does not disable signal processing by the
 device driver.

 The crmode routine always returns the value OK.

 csavetty (boolf)

 The csavetty routine saves the current Extended Curses state so that
 it can later be reset by cresetty. Use this routine before running
 a program that uses the terminal as a simple terminal. If the boolf
 parameter is TRUE, then the following status is set before saving
 the terminal status: crmode, noecho, meta, nonl, and keypad (TRUE).

 delay

 See nodedelay on page 1.2.74.7.

 delch ()
 wdelch (win)
 mvdelch (line, col)
 mvwdelch (win, line, col)

 The delch routine deletes the character at the current (line, col)
 coordinates. Each character after the deleted character on the line
 shifts to the left, and the last characters become blank.

 The delch routine always returns the value OK.

 deleteln ()
 wdeleteln (win)

 The deleteln routine deletes the current line. Every line below the
 current line moves up, and the bottom line becomes blank. The
 current (line, col) coordinates remain unchanged.

 The deleteln routine always returns the value OK.

 delwin (win)

 The delwin routine deletes the window specified by the win
 parameter. All resources used by the deleted window are freed for
 future use.

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 5

 If a window has a subwindow allocated inside of it, the deletion of
 the window does not affect the subwindow even though the subwindow
 is invalidated. Therefore, subwindows must be deleted before the
 outer windows are deleted.

 The delwin routine always returns the value OK.

 dounctrl (boolf)

 The dounctrl routine turns the printing of control characters on or
 off. If the boolf parameter is TRUE, then the printing is turned
 on; if FALSE, printing is turned off. By default, dounctrl
 processing is initially turned off. The unctrl routine defined in
 cur04.h is used to get the string of printable characters being
 printed. Control characters become the printable character
 represented by the control character plus 0x40, preceded by a ^
 (circumflex).

 drawbox (win, line, col, numlines, numcols)

 The drawbox routine draws a box with the upper left corner located
 at the position specified by the line and col parameters. The
 numlines parameter specifies the number of rows to be used by the
 box, and the numcols parameter specifies the number of columns to be
 used by the box.

 The characters used to draw the box are either those specified in
 the terminfo file, or those defaulted at initialization.

 The drawbox routine returns ERR if part or all of the box is outside
 the window, or the box addresses the lower right corner of the
 screen and scrollok is not on.

 #include <cur05.h>
 ecactp (pane, boolf)

 The ecactp routine specifies the active pane in a panel. The pane
 specified by the pane parameter is made the active pane if the boolf
 parameter is TRUE. If an active pane has been previously
 designated, then the border of that pane is reset to the inactive
 display mode, and the border of the pane specified by the pane
 parameter is set to the active display mode. If the boolf parameter
 is FALSE, then the border of the pane specified by the pane
 parameter is set to the inactive display mode.

 #include <cur05.h>
 ecadpn (pane, win)

 The ecadpn routine adds the window specified by the win parameter to
 the list of windows that can be presented in the pane specified by
 the pane parameter. No visible action occurs as a result of this
 routine. A call to ecaspn must be made after ecadpn to change the
 data associated with the pane display.

 The ecadpn routine returns ERR if the system is unable to allocate
 the storage required.

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 6

 #include <cur05.h>
 ecaspn (pane, win)

 The ecaspn routine makes the window specified by the win parameter
 the current window for display in the pane specified by the pane
 parameter. A refresh call for the pane or panel is needed to cause
 the data to be presented on the display. The viewport associated
 with the pane is positioned with the top left corner of the viewport
 at the top left corner of the data for the window.

 The ecaspn routine returns ERR if the window specified by the win
 parameter was not previously associated with this pane using ecadpn.

 #include <cur05.h>
 WINDOW *ecblks ()

 The ecblks routine returns a pointer to a window that is filled with
 blanks. This window is intended to be used as a filler for panes
 that have no real content. It requires less storage than normal
 windows because all lines will always contain blanks.

 Do not modify or delete this window.

 #include <cur05.h>
 PANEL *ecbpls (numlines, numcols, firstline, firstcol, title, divdim, border,
 short numlines, numcols, firstline, firstcol;
 char *title;
 char divdim, border;

 The ecbpls routine builds a panel structure.

 The numlines parameter specifies the panel size in rows.

 The numcols parameter specifies the panel size in columns.

 The firstline parameter specifies the panel's origin on the
 display's upper left corner row coordinate.

 The firstcol parameter specifies the panel's origin on the display's
 upper left corner column coordinate.

 The title parameter points to a title string. The title is shown
 centered in the top border. If no title is desired, this parameter
 should be NULL.

 The divdim parameter specifies the dimension along which this panel
 is to be divided: either Pdivtyv (vertical) or Pdivtyh
 (horizontal).

 The border parameter indicates whether or not this panel is to have
 a border: either Pbordry (yes) or Pbordrn (no).

 The pane parameter points to the first pane that defines the
 divisions of this panel.

 All parameters should be given as defined here. However, they are

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 7

 not checked or used until a call is made to ecdvpl. An application
 may modify values put into this structure until it calls ecdvpl.

 Upon successful completion, a pointer to the new panel is returned.
 ecbpls returns ERR if there is not enough storage available.

 #include <cur05.h>
 PANE *ecbpns (numlines, numcols, ln, ld, divdim, ds, du, border, lh, lv)
 short numlines, numcols, ds;
 PANE *ln, *ld, *lh, *lv;
 char divdim, du, border;

 The ecbpns routine builds a pane structure.

 The numlines parameter specifies the number of rows in the
 presentation space for the pane.

 The numcols parameter specifies the number of columns in the
 presentation space for the pane.

 The ln parameter points to a neighboring pane either above or to the
 left.

 The ld parameter points to the start of a chain for divisions of the
 pane.

 The divdim parameter specifies the dimension of the pane along which
 division is to occur. This parameter is used if and only if the ld
 parameter is not NULL. Valid values for this parameter are Pdivpnv
 (vertical dimension) and Pdivpnh (horizontal dimension).

 The ds and du parameters together specify the size of this pane as
 part of the division of a parent pane:

 du Vertical or Horizontal Size of the Pane

 Pdivszc The size is specified by the ds parameter.
 Pdivszp The size is ds ÷ 10000 of the available space. For
 example, if ds is 5000, then the row or column size is
 half of the available space.
 Pdivszf The pane has a floating size. The value of the ds
 parameter is not used.

 If you specify NULL for the ld parameter or if you are not sure
 which value to use for du, specify Pdivszf for the du parameter.

 The border parameter specifies whether or not this pane has a
 border: either Pbordry (yes) or Pbordrn (no).

 The lh parameter points to a pane that is to scroll with this pane
 when the pane scrolls horizontally.

 The lv parameter points to a pane that is to scroll with this pane
 when the pane scrolls vertically.

 If the ln parameter is not NULL, the divs field of the pane
 structure being built receives the value that was in the ln.divs
 field. The ln.divs field is modified to point to the new pane
 structure being built.

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 8

 If the lh and the lv parameters are not NULL, they are used to link
 the new structure to the specified structures and to link the
 specified structures to the new structure. The links thus created
 form a ring that includes all panes that scroll together.

 Upon successful completion, a pointer to the new pane structure is
 returned. ecbpns returns ERR if a error is detected during
 processing.

 #include <cur05.h>
 ecdfpl (panel, boolf)

 The ecdfpl routine creates the Extended Curses WINDOW structures
 needed to define the specified panel.

 At the time this routine is invoked, all size and location
 specifications of the panel and its constituent panes must be
 properly set. ecdfpl does not examine any of the division size
 specifications or the scroll link specifications.

 The fpane pointer in the indicated PANEL structure must point to the
 first leaf pane for the panel, and the subsequent nxtpn pointers
 from that pane must form a loop back to the first leaf pane. (This
 is done by ecdvpl.)

 A WINDOW structure is built for the panel specified by the panel
 parameter. This WINDOW has a size that corresponds to the size of
 the panel. For each of the panes in the subsequent chain, a
 separate WINDOW structure is built with a size that corresponds to
 the specified presentation space size or the viewport size,
 whichever is larger.

 If borders are specified for any of the panes, those borders are
 drawn on the WINDOW for the panel. All corners are checked and, if
 needed, proper junction characters are used to draw the corner.

 The boolf parameter indicates whether to suppress the creation of
 presentation spaces for the panes. If the value is TRUE,
 presentation spaces are not created. If FALSE, presentation spaces
 are created.

 The ecdfpl routine returns ERR if sufficient storage is not
 available for the WINDOW structures being created.

 #include <cur05.h>
 ecdppn (pane, oldwin, newwin)

 The ecdppn routine adds, drops or replaces a presentation space for
 a pane.

 First, if the oldwin parameter is not NULL, then ecdppn drops oldwin
 from the list of windows that are alternatives for the pane
 specified by the pane parameter. The previous association should
 have been established using edadpn. If the oldwin parameter is
 NULL, then no window is dropped.

 Next, if the newwin parameter is not NULL, then ecdppn adds newwin

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 9

 as a valid pane for this window, replacing oldwin, if it was
 associated with the pane specified by the pane parameter. (See
 ecadpn for a better way to add a pane).

 The ecdppn routine always returns the value OK.

 #include <cur05.h>
 ecdspl (panel)

 The ecdspl routine releases all of the data structures associated
 with the panel specified by the panel parameter. The released data
 structures are returned to the free pool. The released data
 structures include the panel structure, all associated pane
 structures, any window structures associated with the panes, any
 auxiliary window structures associated with the panes, and all
 private control structures used by Extended Curses.

 #include <cur05.h>
 ecdvpl (panel)

 The ecdvpl routine assigns a real size and relative position to all
 the panes defined for the panel specified by the panel parameter.
 All of the panes must be linked to the panel. The structure of a
 tree is followed to determine the sizes for each pane.

 The direction of the first set of divisions and the size of the
 first set of divisions is determined. This information is used to
 control the division algorithm. Using the size along the direction
 of division, first, the total space for the interior of panes is
 determined by counting the panes and their borders. Next, any panes
 with fixed size are given the space indicated by the divsz field in
 the pane structure. The remaining available space is then assigned
 to the panes that have specified a proportional size. Finally, any
 space that remains is assigned to those panes that specified a
 floating size. Once the sizes are determined, the origin for each
 pane relative to the panel origin is determined and entered into the
 PANE structure. A final pass is made over the list of panes in the
 current division, and, for each that is itself divided, the process
 is repeated.

 If adjacent panes both have a border specified, the border space is
 shared between them.

 If all of the panes have a fixed size and the total is less than the
 available space, there will be space that cannot be accessed by the
 application in the resulting structure.

 If, after allocating space to the proportional panes, there is space
 remaining and no floating panes are in the current set, the
 remaining free space is allocated to the proportional panes.

 The ecdvpl routine returns ERR and the structures are invalid for
 use by ecdfpl if one or more of the following occur:

 � The total size specified for fixed panes exceeds the space
 available.
 � The total fractions specified for the proportional panes exceed
 a total of 1.

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 10

 � The number of panes exceeds the number of positions available.

 #include <cur05.h>
 ecflin (pane, firstline, firstcol, numlines, numcols, pat, xc, buf, mask)
 NLecflin (pane, firstline, firstcol, numlines, numcols, pat, xc, buf,
 length, mask) char *pat, *buf, *mask;
 MBecflin (pane, firstline, firstcol, numline, numcols, xc, buf, length,
 validcheck, validfunc) int *validfunc;

 The ecflin, NLecflin, and MBecflin routines input field data to a
 pane. ecflin is retained to preserve traditional functionality.
 NLceflin, which supports code set pc850 only, is retained for
 backward compatibility, and MBecflin is provided for international
 character set support.

 NLecflin works like ecflin, but has an additional parameter, length,
 which specifies the length of the buffer in which the input data is
 stored.

 The ecflin routine inputs field data to the pane pointed to by the
 pane parameter. The firstline and the firstcol parameters specify
 the upper left corner of the field in the current window being shown
 in the pane. The numcols parameter specifies the number of columns
 in the field, and the numlines parameter specifies the number of
 rows in the field.

 The buf parameter points to a buffer into which input data is
 stored. The buffer must be at least numlines ¦ numcols characters
 long.

 The xc parameter specifies the first NLSCHAR to be entered into the
 field. If the xc parameter is a null character, it is ignored.

 The pat and mask parameters specify the set of characters that are
 to be accepted as valid input.

 The position in the field may not always correspond to the position
 in the input buffer. Input is accepted from the terminal as long as
 the cursor remains within the bounds of the field. However, if the
 input buffer is filled before the cursor exits the field, input
 processing stops and ecflin returns.

 Cursor movement that moves the cursor outside the field is allowed
 and is reflected on the display. If cursor movement places the
 cursor in a position where data input would cause the input buffer
 to overflow, input processing stops. Any data keys entered are
 checked against the character set specified by the pat parameter.
 If the data character is acceptable, then it is echoed. If the
 character is not acceptable, then the ecflin routine returns its
 value.

 Insert and delete keys are honored and data is shifted within the
 field as needed. If the field spans more than one line and
 insertions or deletions are made, then data that is shifted out of
 one line of the field is shifted into the end of the next line.
 Data shifted out of the field is lost. When characters are deleted,
 null characters are shifted into the end of the field.

 The pat parameter points to a string that indicates the set of

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 11

 characters that is acceptable as valid input. These characters
 include all code points of the P0 code page (see "display symbols"
 in topic 2.4.4). The string is formed of these codes:

 U Uppercase letters: 'A'--'Z' plus the accented uppercase
 letters from code page P0.
 L Lowercase letters: 'a'--'z' plus the accented lowercase
 letters from code page P0.
 N Numeric characters: '0'--'9'.
 A Alphanumeric characters: 'A'--'Z', 'a'--'z', and '0'--'9' plus
 the accented letters from code pages P0, P1, and P2.
 B Blank (space character--0x20).
 P Printable characters: blank--'¬' (0x20--0x7E).
 G Graphic characters: '!'--'¬' (0x21--0x7E).
 X Hexadecimal characters: '0'--'9', 'A'--'F', and 'a'--'f'.
 C Control Characters:
 � Cursor Up, Cursor Down, Cursor Left, Cursor Right
 � Backspace
 � Back-tab (to first position of field)
 � Insert (enable or disable insert mode)
 � Delete (delete current character)
 � New-line (to left column and down one line)
 D Default characters:
 � 0x20--0x7E
 � 0x80--0xFF
 � Controls, as defined for code C.
 Z Application-specified character set
 + Allows characters indicated by following codes.
 - Does not allow characters indicated by following codes.

 If the first character of pat is + or -, the set of characters
 specified by the rest of the string is added to (+) or taken from
 (-) the default characters (which can also be specified with D). If
 the first character in this string is not + or -, then the set of
 characters specified by pat replaces the default. After the first
 character, the sets indicated are allowed unless preceded by a -
 (minus sign). For example:

 "PC-L" Allows the printable and control characters, except for
 lowercase letters.
 "-CBN" Allows all of the default characters, except for control
 characters, blanks, or numeric characters.

 If the pat string contains a Z, then the array pointed to by the
 mask parameter specifies a character validity mask. This array must
 be exactly 64 bytes long (512 bits), where each bit corresponds to a
 character code as returned by wgetch. The bytes in the array
 correspond as follows:

 Bytes 0--31 P0 characters 0x00--0xFF
 Bytes 32--63 Keycodes 0x100--0x1FF

 If a given bit is set to 1, then the corresponding character is
 accepted (for +Z) or rejected (for -Z). If a bit is set to 0, then
 the acceptance status of the corresponding character, as determined
 by the rest of pat, is not changed.

 Upon successful completion, the code associated with the last input
 that terminated input is returned.

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 12

 The ecflin routine returns ERR if one or more of the following are
 true:

 � There is an error in the parameters.
 � The firstline parameter is outside the window.
 � The firstcol parameter is outside the window.
 � The numcols parameter is too large.
 � The numlines parameter is too large.

 The MBecflin routine works like the NLecflin routine, except that it
 also handles multiple byte and double display width character input.
 The definitions of the parameters pane, firstline, firstcol,
 numline, numcols, xc, buf, and length are the same as those
 described for NLecflin.

 When validcheck is TRUE, MBecflin calls the routine validfunc (c)
 where c is the input code, and checks the return value from it. If
 the return value is TRUE, c is considered valid and processing
 continues; otherwise, c is considered invalid and processing
 terminates.

 When validcheck is FALSE, MBecflin performs a default validity check
 in which any input data code not defined in the current locale is
 considered invalid (that is, _mblen returns a value of -1). c may
 be data code in NLSCHAR (mbchar_t, file code), or keypad code
 defined in cur02.h.

 The routine validfunc must be defined by the user for the validity
 check, and a conversion from file code to wide code might be
 required in the routine to achieve code independence.

 When an entered character overwrites half of an existing double
 display width character, the system replaces the remaining half of
 that existing character with a blank. If a character is inserted
 when the cursor is positioned at the second column of a double
 display width character, the cursor is adjusted to the first column
 of that character before insertion. A deletion, on the other hand,
 always deletes a whole character regardless of how many columns it
 occupies.

 When a double display width character is entered at the last column
 of any line but the last line, the character enters the input
 buffer. On the screen, however, it is replaced by two
 partial-character indicators (@@), appearing at the last column of
 the current line, and at the beginning column of the next line
 respectively. Note that this is only a display-time feature. The
 original character is still kept as is in the input buffer. For
 example, during the editing session in the insertion mode, if there
 are insertions or deletions before that character, the character
 will be displayed normally whenever it is assigned two consecutive
 columns.

 echo ()
 noecho ()

 The echo routine causes the terminal to echo characters to the
 display. If echo is set on, wgetch places all input into the data
 structure for the window.

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 13

 The noecho routine turns echo off. If echo is turned off,
 characters are not written to the display.

 #include <cur05.h>
 ecpnin (pane, boolf, xc)

 The ecpnin routine causes the pane to accept keyboard input. The
 pane specified by the pane parameter is scrolled, if necessary, to
 ensure that the cursor is visible on the display. Keyboard input is
 then accepted. If the boolf parameter is TRUE and if the input
 character is a simple cursor movement, then the resulting cursor
 position is reflected on the display. Further input is then read
 from the terminal. If the boolf parameter is FALSE, or if the input
 character is not a simple cursor movement, then the value of the
 input character is returned.

 The xc parameter specifies the first NLSCHAR to be assumed from the
 display. If xc is a null character, then it is ignored.

 This routine tracks the locator cursor if locator tracking is
 enabled (see "trackloc" in topic 1.2.74.7).

 void ecpnmodf (pane)

 The ecpnmodf macro marks the panel that contains the pane specified
 by the pane parameter as modified. This information is used by
 ecrfpl to determine whether a panel needs to be written to the
 display.

 #include <cur05.h>
 ecrfpl (panel)

 The ecrfpl routine refreshes the panel specified by the panel
 parameter. If that panel is partially obscured by other panels,
 then those panels are also written to the display. If the panel
 parameter is NULL, then all panels that have been marked as modified
 (with ecpnmodf) are written. If any panels have been removed (with
 ecrmpl), then all panels are written.

 #include <cur05.h>
 ecrfpn (pane)

 The ecrfpn routine refreshes the pane specified by the pane
 parameter on the display. If the pane is the active pane, then the
 window might be scrolled to ensure that the cursor is visible. If
 the pane is not active, then the window is not scrolled.

 The ecrfpn routine always returns the value OK.

 #include <cur05.h>
 ecrlpl (panel)

 The ecrlpl routine returns the structures associated with the panel
 specified by the panel parameter to the free storage pool. This

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 14

 includes all window structures associated with the panes of the
 panel, all Extended Curses private structures, and any added window
 structures. The panel and associated pane structures are not
 released and can be reused.

 The ecrlpl routine always returns the value OK.

 #include <cur05.h>
 ecrmpl (panel)

 The ecrmpl routine removes the panel specified by the panel
 parameter from the list of panels that are currently being
 displayed. If the panel is not currently in that list, no action is
 taken and no error is returned. This routine should be followed by
 a call to ecrfpl to update the display.

 The ecrmpl routine always returns the value OK.

 #include <cur05.h>
 ecscpn (pane, numlines, numcols)

 The ecscpn routine causes the pane specified by the pane parameter
 to be scrolled over the underlying window the distance indicated by
 the numcols and the numlines parameters. The numcols parameter
 specifies the distance to scroll horizontally and the numlines
 parameter specifies the distance to scroll vertically. These
 parameters can be positive or negative and may imply a movement that
 positions the viewport partially or completely off the window. If
 such a position results from the scroll, the scroll stops after
 moving as far in the indicated direction as possible. Positive
 values move to the right or down. Negative values move to the left
 or up.

 If there are other panes linked to the pane specified, those panes
 will also scroll an amount necessary to maintain the identical
 horizontal or vertical positioning on the respective windows. If
 the resulting position requires placing the viewport partially or
 completely off the window, the scroll request terminates at the edge
 of the window.

 #include <cur05.h>
 ecshpl (panel)

 The ecshpl routine shows the panel specified by the panel parameter
 on the terminal.

 If the specified panel is currently the top panel, no action is
 taken and no error is returned. If there is another top panel, the
 active pane in that panel is changed to the inactive state. The
 specified panel is placed at the top of the panel chain. This
 routine should be followed by a call to ecrfpl to update the
 display.

 The ecshpl routine always returns the value OK.

 #include <cur05.h>

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 15

 ectitl (title, line, col)
 char *title;

 The ectitl routine creates or modifies the title panel. The title
 panel is always visible, that is, on top of any other panels. The
 title parameter points to a character string that is displayed as
 the new title. If title is NULL, then any existing title is
 removed. The line and col parameters specify the coordinates for
 the upper left corner of the title panel. If firstline is not
 valid, then it defaults to 1. If firstcol is not valid, then the
 title will be centered.

 endwin ()

 The endwin routine ends window routines before exiting. Ending
 window routines before exiting restores the terminal to the state it
 was before initscr (or gettmode and setterm) was called. endwin
 should always be called before exiting. endwin does not exit.

 erase ()
 werase (win)
 perase (pane)

 The erase routine clears the window and sets it to blanks without
 setting the clear flag. Similarly, werase erases the window
 specified by the win parameter, and perase erases the pane specified
 by the pane parameter. This is analogous to the clear routine,
 except that it does not cause a clear-screen sequence to be
 generated on a refresh.

 extended (boolf)

 The extended routine turns on and off the combining of input bytes
 into multibyte extended characters. If the boolf parameter is TRUE,
 then this input processing is turned on; if FALSE, then it is turned
 off. By default, extended processing is initially turned on.

 flash ()

 The flash routine displays a visual bell on the terminal screen if
 one is available. If a visual bell is not available, then flash
 toggles the terminal speaker or bell.

 The flash routine always returns the value OK.

 fullbox (win, vert, hor, topl, topr, botl, botr)
 NLSCHAR vert, hor, topl, topr, botl, botr;

 The fullbox routine puts box characters on the edges of the window.
 The vert parameter specifies the NLSCHAR to use for the vertical
 sides. The hor parameter specifies the NLSCHAR to use for the
 horizontal lines. The topl and the topr parameters specify the
 NLSCHARs to use for the top left and the top right corners. The
 botl and the botr parameters specify the NLSCHARs to use for the
 bottom left and the bottom right corners.

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 16

 The fullbox routine returns ERR if an attempt is made to scroll when
 scrollok is not active.

 The fullbox routine does not accept double display width characters.
 If a double width character is used, the fullbox routine substitutes
 a single display character and draws the box. The system returns
 ERR.

 The fullbox routine is a macro that invokes superbox.

 #include <cur02.h>

 NLSCHAR getch ()
 NLSCHAR wgetch (win)
 NLSCHAR mvgetch (line, col)
 NLSCHAR mvwgetch (win, line, col)

 The getch routine gets a character from the terminal and echoes it
 on the window, if necessary. If noecho has been set, then the
 window does not change. noecho and either crmode or raw must be set
 for Extended Curses to know what is actually on the terminal. If
 these settings are not correct, wgetch sets noecho and crmode and
 resets them to the original mode when done.

 Upon completion, the NLSCHAR for the data key or one of the
 following values is returned:

 KEY_NOKEY nodelay is active and no data is available.
 KEY_xxxx keypad is active and a control key was recognized. See
 the cur02.h header file for a complete list of the key
 codes that can be returned.
 ERR Echoing the character would cause the screen to scroll
 illegally.

 #include <cur02.h>

 NLSCHAR getstr (string)
 NLSCHAR wgetstr (win, string)
 NLSCHAR mvgetstr (line, col, string)
 NLSCHAR mvwgetstr (win, line, col, string)

 The getstr routine gets a string through the window and stores it in
 the location pointed to by the string parameter. The string may
 contain single-shift control codes. The area pointed to must be
 large enough to hold the string. getstr calls wgetch to get the
 characters until a new-line character or some other control
 character is encountered.

 Upon completion, one of the following values is returned:

 OK The input string was terminated with a new-line
 character.
 KEY_NOKEY nodelay is active and no data is available.
 KEY_xxxx The input string ended with a control key, and the
 code for this key was returned. See the cur02.h
 header file for a complete list of the key codes that

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 17

 can be returned.
 ERR The string caused the screen to scroll illegally.

 gettmode ()

 The gettmode routine issues the needed control operation to the
 display device driver to save the processing flags in a fixed global
 area. gettmode is invoked by initscr and is not normally called
 directly by applications.

 getyx (win, line, col)

 The getyx routine stores the current (line, col) coordinates of
 window specified by the win parameter into the variables line and
 col. Because getyx is a macro and not a subroutine, the names of
 line and col are passed, rather than their addresses.

 Upon successful completion, line and col contain the current row and
 column coordinates for the cursor in the specified window.

 NLSCHAR inch ()
 NLSCHAR winch (win)
 NLSCHAR mvinch (line, col)
 NLSCHAR mvwinch (win, line, col)

 The inch routine returns the NLSCHAR at the current (line, col)
 coordinates on the specified window. No changes are made to the
 window.

 Upon successful completion, the code for the character located at
 the current cursor location is returned.

 WINDOW *initscr ()

 The initscr routine performs screen initialization. initscr must be
 called before any of the screen routines are used. It initializes
 the terminal-type data, and without it, none of the Extended Curses
 routines can operate properly.

 If standard input is not a tty, initscr sets the specifications to
 the terminal whose name is pointed to by Def_term (initially
 "dumb"). If the value of the bool global variable My_term is TRUE,
 Def_term is always used.

 If standard input is a terminal, the specifications for the terminal
 named in the environment variable TERM are used. These
 specifications are obtained from the terminfo description file for
 that terminal.

 The initscr routine creates the structures for stdscr and curscr and
 saves the pointers to those structures in global variables with the
 corresponding names.

 Upon successful completion, a pointer to stdscr is returned.

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 18

 insch (xc)
 winsch (win, xc)
 mvwinsch (win, line, col, xc)
 mvinsch (line, col, xc)

 The insch routine inserts the NLSCHAR specified by the xc parameter
 into the window at the current (line, col) coordinates. Each
 character after the inserted character shifts to the right and the
 last byte on the line disappears.

 If the current position is at the second column of a double display
 width character, the position is moved left to the first byte of
 that character before the specified NLSCHAR is inserted.

 If a double display width character is inserted at the last column
 of the window, nothing is done and ERR is returned; otherwise the
 insch routine always returns the value OK.

 insertln ()
 winsertln (win)

 The insertln routine inserts a line above the current line. Each
 line below the current line is shifted down, and the bottom line
 disappears. The current line becomes blank and the current (line,
 col) coordinates remain unchanged.

 The insertln routine always returns the value OK.

 keypad (boolf)

 The keypad routine turns on and off the mapping of key sequences to
 single integers. If the boolf parameter is TRUE, input processing
 is turned on. If the boolf parameter is FALSE, input processing is
 turned off. By default, input processing is initially turned off.

 When turned on, sequences of characters from the terminal are
 translated into integers that are defined in the cur02.h header
 file.

 The codes available on a given terminal are determined by the
 terminfo terminal description file.

 The keypad routine always returns the value OK.

 leaveok (win, boolf)

 The leaveok routine sets a flag, used by the window specified by the
 win parameter, which controls where the cursor is placed after the
 window is refreshed. If the boolf parameter is TRUE, when the
 window is refreshed, the cursor is left at the last point where a
 change was made on the terminal, and the current (line, col)
 coordinates for the window specified by the win parameter are
 changed accordingly. If the (line, col) coordinates are outside the
 window, the coordinates are forced to (0, 0). If the boolf
 parameter is FALSE, when the window is refreshed, the cursor is
 moved to the current (line, col) coordinates within the window. The

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 19

 controlling flag is initially set to FALSE.

 The leaveok routine always returns the value OK.

 char *longname ()

 The longname routine returns a pointer to a static area that
 contains the long (full) name of the terminal as it appears in the
 terminfo entry for the terminal.

 meta ()
 nometa ()

 The meta routine prevents the stripping of the eighth bit of each
 keyed character.

 The nometa routine causes the eighth or most-significant bit of each
 keyed character to be stripped. Not all terminals support the
 stripping of bits.

 The meta and nometa routines always return the value OK.

 move (line, col)
 wmove (win, line, col)

 The move routine changes the current (line, col) coordinates of the
 window to the coordinates specified by the line and col parameters.

 The move routine returns ERR if the destination for the cursor is
 outside the window or viewport.

 mvcur (line, col, newline, newcol)
 int line, col, newline, newcol;

 The mvcur routine moves the terminal's cursor from the coordinates
 specified by the line and col parameters to the coordinates
 specified by the newline and newcol parameters. The line and col
 parameters must specify the current coordinates.

 It is possible to use this optimization without the benefit of the
 screen routines. In fact, mvcur should not be used with the screen
 routines. Use move and refresh to move the cursor position and
 inform the screen routines of the move.

 mvwin (win, line, col)

 The mvwin routine moves the position of the viewport or the
 subwindow specified by the win parameter from its current starting
 coordinates to the coordinates specified by the line and col
 parameters. The line parameter specifies the row on the display for
 the top row of the window. The col parameter specifies the column
 on the display for the first column of the window.

 The mvwin routine returns ERR if a part of the window position is
 outside the bounds of the window on which the viewport is defined.

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 20

 WINDOW *newview (win, numlines, numcols)

 The newview routine creates a new window that has the number of
 lines specified by the numlines parameter and the number of columns
 specified by the numcols parameter. The new window is a viewport of
 the window specified by the win parameter and starts at the current
 (line, col) coordinates of the window specified by the win
 parameter. The resulting window's initial position on the display
 is set to (0, 0).

 The viewport window returned by newview is a special subwindow that
 is suitable for viewport scrolling. Viewport scrolling here refers
 to the type of scrolling that is characteristic of full-screen
 editors.

 Because the returned viewport window is a subwindow, any change made
 in either window in the area covered by the viewport window appears
 in both windows. Both windows actually share the relevant storage
 area. A viewport window cannot be scrolled using scroll.

 Other than the exceptions noted above, viewport windows behave like
 subwindows.

 Upon successful completion, a pointer to the control structure for
 the new viewport is returned.

 The newview routine returns ERR if the window specified by the win
 parameter is a subwindow or a viewport, or if sufficient storage is
 not available for the new structures.

 WINDOW *newwin (numlines, numcols, firstline, firstcol)

 The newwin routine creates a new window that contains the number of
 lines specified by the numlines parameter and the number of columns
 specified by the numcols parameter. The new window starts at the
 coordinates specified by the firstline and the firstcol parameters.

 If the numlines parameter is 0, that dimension is set to (LINES -
 firstline). If the numcols parameter is 0, that dimension is set to
 (COLS - firstcol). Therefore, to get a new window of dimensions
 (LINES ¦ COLS), use:

 newwin (0, 0, 0, 0)

 The size specified for the window can exceed the size of the real
 display. In this case, a viewport or subwindow must be used to
 present the data from the window on the terminal.

 Upon successful completion, a pointer to the new window structure is
 returned.

 The newwin routine returns ERR if any of the parameters are invalid,
 or if there is insufficient storage available for the new structure.

 nl ()
 nonl ()

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 21

 The nl routine sets the terminal to nl mode. When in nl mode, the
 system maps '\r' (return characters) to '\n' (new-line or line-feed
 characters). If the mapping is not done, refresh can do more
 optimization. nonl turns nl mode off.

 The nl routine and nonl do not affect the way in which waddch
 processes new-line characters.

 The nl and nonl routines always return the value OK.

 nodelay (boolf)

 The nodelay routine controls whether read requests wait for input if
 no keystroke is available. If the boolf parameter is FALSE, then
 the read routines wait for operator input. This is the default
 setting. If the boolf parameter is TRUE, then the read routines
 return immediately if no keyboard data is available.

 If nodelay is set (TRUE) and if no keystroke is available from the
 keyboard, then getch returns KEY_NOKEY, which is defined in the
 cur02.h header file.

 The nodelay routine always returns the value OK.

 overlay (win1, win2)

 The overlay routine overlays the window specified by the win1
 parameter on the window specified by the win2 parameter. The
 contents of the window specified by the win1 parameter, insofar as
 they fit, are placed on the window specified by the win2 parameter
 at their starting (line, col) coordinates. This is done
 nondestructively; that is, blanks on the win1 window leave the
 contents of the space on the win2 window untouched.

 The overlay routine moves data only if the data is nonblank or if
 the display attribute is different.

 The only data that is considered for moving from the win1 window to
 the win2 window is data that occupies display positions that are
 common to both windows.

 The overlay routine is implemented as a macro that invokes overput,
 which uses waddch to transfer the data from window to window.

 The overlay routine returns ERR if an attempt is made to write to
 the lower right corner of the display and scrollok is FALSE.

 overwrite (win1, win2)

 The overwrite routine copies data from the window specified by the
 win1 parameter to the window specified by the win2 parameter. The
 contents of the win1 window, insofar as they fit, are placed on the
 win2 window at their starting (line, col) coordinates. This is done
 destructively; that is, blanks on the win1 window become blanks on
 the win2 window.

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 22

 Only the data that occupies positions on the display that are common
 to the two windows is moved from the win1 window to the win2 window.

 The overwrite routine is implemented as a macro that invokes overput
 which uses waddch to transfer the data from window to window.

 The overwrite routine returns ERR if an attempt is made to write to
 the lower right corner and scrollok is FALSE.

 printw (fmt [, value,...])
 wprintw (win, fmt [, value,...])
 char *fmt;

 The printw routine performs a printf on the window using the format
 control string specified by the fmt parameter and the values
 specified by the value parameters. The output to the window starts
 at the current (line, col) coordinates. Use the field width options
 of printf to avoid leaving things on the window from earlier calls.
 See "printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf,
 wsprintf" in topic 1.2.208 for details.

 The printw routine returns ERR if it causes the screen to scroll
 illegally.

 raw ()
 noraw ()

 The raw routine sets the terminal to raw mode. In raw mode,
 canonical processing by the device driver and signal processing are
 turned off. The noraw routine turns off raw mode.

 The raw and noraw routines always return the value OK.

 refresh ()
 wrefresh (win)

 The refresh routine synchronizes the terminal screen with the
 window. If the window is not a screen, then only the part of the
 display covered by it is updated. refresh checks for possible
 scroll errors at display time.

 The refresh routine returns ERR if the change specified is in the
 last position of a window that includes the lower right corner of
 the display, or if it would cause the screen to scroll illegally.
 If it would cause the screen to scroll illegally, refresh updates
 whatever can be updated without causing the scroll.

 resetty (boolf)

 The resetty routine restores the terminal status flags that were
 previously saved by savetty. If the boolf parameter is TRUE, then
 the screen is cleared in addition to resetting the terminal.
 resetty is performed automatically by endwin and is not normally
 called directly by applications.

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 23

 savetty ()

 The savetty routine saves the current terminal status flags.
 savetty is performed automatically by initscr and is not normally
 called directly by applications.

 scanw (fmt [, pointer,...])
 wscanw (win, fmt [, pointer,...])
 char *fmt;

 The scanw routine performs a scanf through the window using the
 format control string specified by the fmt parameter. scanw uses
 wgetstr to obtain the string, then invokes the internal routine for
 scanf to process the data. See "scanf, fscanf, sscanf, NLscanf,
 NLfscanf, NLsscanf, wsscanf" in topic 1.2.241 for details.

 scroll (win)

 The scroll routine moves the data in the window specified by the win
 parameter up one line and inserts a new blank line at the bottom.

 scrollok (win, boolf)

 The scrollok routine sets the scroll flag for the window specified
 by the win parameter. If the boolf parameter is TRUE, then
 scrolling is allowed. The default setting is FALSE, which prevents
 scrolling.

 sel_attr (set)
 int *set;

 The sel_attr routine allows you to change the selection and priority
 of attributes for the run-time terminal. The set parameter points
 to a null-terminated integer array that contains display attribute
 values from the cur03.h header file in the order that you want them
 regardless of whether or not they are available on the terminal.

 Groups of attributes (colors and fonts) cannot be split in the
 array. For instance, all foreground colors specified must be in
 adjacent locations in the array.

 The first element of a group of attributes must be the default color
 or font of the terminal. For example, the first foreground color
 specified is usually F_WHITE, and the first background color
 specified is usually B_BLACK.

 It is recommended that sel_attr only be called before initscr. If
 sel_attr is called after initscr, then the routine setup_attr should
 be called after calling sel_attr. If sel_attr is called after data
 has been added to a window, the values in the associated attribute
 array for that window may denote different attributes than the
 original attributes used when displaying the data (except NORMAL
 which remains constant). A subsequent refresh of the window shows
 the different attributes only if the data has been modified or if a
 total refresh has been forced by a previous call to touchwin.

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 24

 The sel_attr routine always returns the value OK.

 setterm (name)
 char *name;

 The setterm routine sets the terminal characteristics to be those of
 the terminal specified by the name parameter. setterm is called by
 initscr so you do not normally have to use it unless you wish to use
 just the cursor motion optimizations.

 setup_attr ()

 The setup_attr routine creates the display attribute masks assigned
 to the attribute variables declared in the cur01.h header file. The
 priorities of the attributes determine how the masks are created.

 This routine is called by initscr and is not normally called by
 applications. This routine should only be called following a call
 to sel_attr which follows a call to initscr.

 standend ()
 wstandend (win)

 The standend routine stops displaying characters in standout mode.

 standout ()
 wstandout (win)

 The standout routine starts displaying characters in standout mode.
 Any characters added to the window are put in standout mode on the
 terminal if the terminal has that capability. The first available
 attribute as determined by sel_attr is used for standout. This is
 normally the reverse attribute when the default display attribute
 priority is used.

 The standout routine always returns the value OK.

 WINDOW *subwin (win, numlines, numcols, firstline, firstcol)

 The subwin routine creates a subwindow in the window pointed to by
 the win parameter. The subwindow has the number of lines specified
 by the numlines parameter and the number of columns specified by the
 numcols parameter. The new subwindow starts at the coordinates
 specified by the firstline and the firstcol parameters. Any change
 made to the window or the subwindow in the area covered by the
 subwindow is made to both windows.

 The firstline and firstcol parameters are specified relative to the
 overall screen, not to the relative (0, 0) of the window specified
 by the win parameter.

 If the numlines parameter is 0, then the lines dimension is set to
 (LINES - firstline). If the numcols parameter is 0, then the column
 dimension is set to (COLS - firstcol).

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 25

 Upon successful completion, a pointer to the control structure for
 the new subwindow is returned.

 The subwin routine returns ERR if the window specified by the win
 parameter already has a subwindow, or if there is insufficient
 storage for the new control structure.

 superbox (win, line, col, numlines, numcols, System V, hor, topl, topr, botl, botr)
 NLSCHAR System V, hor, topl, topr, botl, botr;

 The superbox routine draws a box on the window specified by the win
 parameter. The line and col parameters specify the starting
 coordinates for the box. The numlines parameter specifies the depth
 of the box. The numcols parameter specifies the width of the box.
 The System V parameter specifies the NLSCHAR to use for vertical
 delimiting. The hor parameter specifies the NLSCHAR to use for
 horizontal delimiting. The topl, topr, botl, and botr parameters
 specify the NLSCHARs to use for the top left corner, the top right
 corner, the bottom left corner, and the bottom right corner,
 respectively.

 If the window specified by the win parameter is a _SCROLLWIN window
 and scrolling is not allowed, then the bottom right corner is not
 put on the window.

 The superbox routine uses addch to place the characters on the
 window.

 The superbox routine returns ERR if the defined box is outside the
 window, or an attempt is made to write to the lower right corner of
 the display when scrollok is off.

 touchwin (win)

 The touchwin routine makes it appear as if every location on the
 window specified by the win parameter has been changed. This is
 useful when overlapping windows are to be refreshed. A subsequent
 refresh request considers all portions of the window as potentially
 modified. If touchwin is not used, then only those positions of the
 window that have been addressed by an addch are inspected.

 trackloc (boolf)

 The trackloc routine turns on and off the tracking of the locator
 cursor on the screen. If the boolf parameter is TRUE, then locator
 tracking is turned on; if FALSE, then it is turned off. By default,
 locator tracking is initially turned on.

 The keycode KEY_LOCESC is returned from getch when a locator report
 is input. The locator report is stored in the global char array
 ESCSTR, which is 128 bytes long.

 Locator tracking is handled by the ecpnin routine.

 tstp ()

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 26

 The tstp routine saves the current tty state and then put the
 process to sleep. When the process is restarted, the tty state is
 restored and then wrefresh (curscr) is called to redraw the screen.
 initscr sets the signal SIGTSTP to trap tstp.

 The tstp routine always returns the value OK.

 #include <cur04.h>

 char *unctrl (ch)

 The unctrl routine returns a string that represents the value of the
 ch parameter. Control characters become the lowercase equivalents
 preceded by a ^ (circumflex). Other letters are unchanged. This
 function supports only the P0 characters 0x00 through 0x7F.

 Upon successful completion, a pointer to the string for the
 parameter character is returned.

 vscroll (win, numlines, numcols)

 The vscroll routine scrolls the viewport specified by the win
 parameter on the window.

 The numlines parameter specifies the direction and amount to scroll
 up or down. If the numlines parameter is positive, the viewport
 scrolls down the number of lines specified. If the numlines
 parameter is negative, the viewport scrolls up the number of lines
 specified.

 The numcols parameter specifies the direction and amount to scroll
 left or right. If the numcols parameter is positive, the viewport
 scrolls to the right the number of characters specified. If the
 numcols parameter is negative, then the viewport scrolls to the left
 the number of characters specified.

 The vscroll routine always scrolls as much of a requested scroll as
 possible. Specifying a parameter with a magnitude larger than that
 of the underlying window is not an error.

 The vscroll routine calls touchwin if any scrolling is done.

 The vscroll routine returns ERR if the window specified by the win
 parameter is not a window created by a call to newview.

 File

 /usr/lib/terminfo/?/* Compiled terminal capability data base.

 Related Information
 In this book: "curses" in topic 1.2.56 and "terminfo" in topic 2.3.59.

 The discussion of Extended Curses in AIX Programming Tools and Interfaces.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
The Extended Curses Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.74.7 - 27

 1.2.75 fabort

 Purpose
 Aborts or undoes file changes.

 Syntax

 int fabort (fildes)
 int fildes

 Description
 The fabort system call aborts data changes made to the file specified by
 the fildes parameter. The file must be a regular file, not a pipe or
 special file, and the file descriptor must either be open for write and
 defer commit (O_WRONLY | O_DEFERC) or read/write and defer commit (O_RDWR
 | O_DEFERC). If the file has not changed since it was last committed (see
 "fsync, fcommit" in topic 1.2.87), the fabort system call has no effect.

 The file's content is restored to the state of the file after the last
 fsync system call. Changes made to the file's content since the last
 fsync are undone. Changes made to the file's mode, owner, or access and
 modification times are not undone, however, by this system call. The file
 remains open so further changes may be made.

 Note: The file offset pointer for this and any other of the file's open
 file descriptors are unchanged by fabort and actually may point
 beyond the end of the file since the file size is reset.

 If the file is newly created (not just truncated), fabort undoes all of
 the changes to the file, leaving a zero-length file, but does not undo the
 file creation.

 If the file is open for writing in defer-commit mode by more than one
 process, fabort undoes the changes made to the file by all of the
 processes since the last fsync performed by any one of the processes.
 Also, since commit operations implied by the close system call are not
 done until the last close of the file, fabort undoes any changes between
 the last fsync and a close that is not the last close of the file. The
 use of the lockf system call is recommended to coordinate multiple
 writers.

 Warning: If the file is opened in defer-commit mode by some processes and
 opened for write, but not in defer-commit mode, by other processes, the
 results of the fabort system call are undefined.

 Return Value
 Upon successful completion, a value of 0 is returned. If the fabort
 system call fails, a value of -1 is returned, and errno is set to indicate
 the error.

 Error Conditions
 The fabort system call fails and the file is not modified if one or more
 the following are true:

 EAGAIN Another process holds an enforced mode record lock on this file.

 EBADF The fildes parameter is not a valid file descriptor for a
 regular file.

 EBADF The fildes parameter does not specify an open file.

AIX Operating System Technical Reference
fabort

¦ Copyright IBM Corp. 1985, 1991
1.2.75 - 1

 EIO An I/O error occurred. The file content is still rolled back.

 ENOSPC The file system ran out of space. The file content is still
 rolled back.

 ESITEDN1 The operation could not be done because contact with the storage
 site is lost. The file content is still rolled back unless the
 problem is only a network communication problem and there are
 other processes with this file open for writing which have not
 lost contact with the storage site.

 ESITEDN2 The operation was terminated because a site failed.

 Related Information
 In this book: "chmod, fchmod" in topic 1.2.44, "chown, fchown" in
 topic 1.2.45, "close, closex" in topic 1.2.48, "exit, _exit" in
 topic 1.2.73, "fsync, fcommit" in topic 1.2.87, "fcntl, flock, lockf" in
 topic 1.2.78, "open, openx, creat" in topic 1.2.199, and "utime" in
 topic 1.2.321.

AIX Operating System Technical Reference
fabort

¦ Copyright IBM Corp. 1985, 1991
1.2.75 - 2

 1.2.76 fclear

 Purpose
 Clears space in a file, freeing unused disk space.

 Syntax

 long fclear (fildes, nbytes)
 int fildes;
 unsigned long nbytes;

 Description
 The fclear system call zeros the number of bytes specified by the nbytes
 parameter starting at the current position of the file open on file
 descriptor fildes. This function differs from the logically equivalent
 write operation in that it returns full blocks of binary zeros to the file
 system, constructing holes in the file. The seek pointer of the file is
 advanced by nbytes.

 If you fclear past the end of a file, the rest of the file is cleared, and
 the seek pointer is advanced by nbytes. The file size is updated to
 include this new hole, which leaves the current file position at the byte
 immediately beyond the new end-of-file. Successful completion of the
 fclear system call clears the set-user-ID and set-group-ID attributes of
 the file.

 Return Value
 Upon successful completion, a value of nbytes is returned. If the fclear
 system call fails, a value of -1 is returned, and errno is set to indicate
 the error.

 Error Conditions
 The fclear system call fails if one or more of the following are true:

 EIO I/O error.

 EBADF The fildes option is not a valid file descriptor open for
 writing.

 EINVAL The file is a FIFO, directory, or special file.

 EAGAIN The write operation in fclear failed, due to an enforced write
 lock on the file.

 If the Transparent Computing Facility is installed on your system, fclear
 can also fail if one or more of the following are true:

 ESITEDN1 The storage site is down or has gone down since this file
 descriptor was issued.

 ESITEDN2 The operation was terminated because a site failed.

 Related Information
 In this book: "ftruncate, truncate" in topic 1.2.88.

AIX Operating System Technical Reference
fclear

¦ Copyright IBM Corp. 1985, 1991
1.2.76 - 1

 1.2.77 fclose, fflush

 Purpose
 Closes or flushes a stream.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <stdio.h>

 int fclose (stream) int fflush (stream)
 FILE *stream; FILE *stream;

 Description
 The fclose subroutine writes buffered data to the stream specified by the
 stream parameter and then closes the stream.

 The fclose subroutine is automatically called for all open files when the
 exit system call is invoked.

 The fflush subroutine writes any buffered data for the stream specified by
 the stream parameter and leaves the stream open.

 Return Value
 Upon successful completion, both the fclose and the fflush subroutines
 return a value of 0. If either of these subroutines fails for any reason,
 it returns the value EOF.

 Error Conditions
 The fclose and fflush subroutines fail if one or more of the following are
 true:

 EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying
 stream and the process is delayed in the write operation.

 EBADF The file descriptor underlying stream is not valid.

 EFBIG An attempt was made to write to a file that exceeds the
 process's file size limit or the maximum file size.

 EINTR The function was interrupted by a signal.

 EIO The process is a member of a background process group attempting
 to write to its controlling terminal, TOSTOP is set, the process
 is neither ignoring nor blocking SIGTTOU and the process group
 of the process is orphaned.

 ENOSPEC There was no free space remaining on the device containing the
 file.

 EPIPE An attempt is made to write to a pipe or FIFO that is not open
 for reading by any process. A SIGPIPE signal is also sent to
 the process.

 Related Information
 In this book: "close, closex" in topic 1.2.48, "exit, _exit" in

AIX Operating System Technical Reference
fclose, fflush

¦ Copyright IBM Corp. 1985, 1991
1.2.77 - 1

 topic 1.2.73, "fopen, freopen, fdopen" in topic 1.2.82, "setbuf, setvbuf"
 in topic 1.2.247, and " stdio" in topic 1.2.283.

AIX Operating System Technical Reference
fclose, fflush

¦ Copyright IBM Corp. 1985, 1991
1.2.77 - 2

 1.2.78 fcntl, flock, lockf

 Purpose
 Controls open file and socket descriptors.

 Syntax

 #include <unistd.h>

 int (lockf, (d, cmd, arg)
 int d, cmd, arg;

 Description
 The fcntl system call performs controlling operations on the open file or
 socket specified by the d parameter.

 The d parameter is an open file descriptor obtained from a creat, open,
 dup, fcntl, or pipe system call, or a socket descriptor from a socket or
 socketpair system call. The arg parameter is a variable that depends on
 the value of the cmd parameter.

 The following cmds get a descriptor or associated flags or set those
 flags:

 F_DUPFD Returns a new descriptor as follows:

 � Lowest numbered available descriptor greater than or equal
 to arg

 � Same object reference as the original descriptor

 � Same file pointer as the original file (that is, both file
 descriptors share one file pointer)

 � Same access mode (read, write or read/write)

 � Same locks

 � Same file status flags (that is, both file descriptors share
 the same file status flags)

 � The close-on-exec flag associated with the new descriptor is
 set to remain open across exec system calls.

 F_GETFD Gets the flags of the descriptor d.

 F_SETFD Sets the close-on-exec flag associated with the d parameter to
 the value of the low-order bit of arg (0 or 1 as for F_GETFD).

 F_GETFL Gets the file status flags of the file descriptor d.

 F_SETFL Sets the file status flags to the value of the arg parameter.
 Only the flags O_NDELAY, O_NONBLOCK, O_APPEND, and O_ASYNC can
 be set. If you attempt to set any other flags with F_SETFL, the
 fcntl system call does not set the flags and returns without an
 error message. O_ASYNC enables the SIGIO signal to be sent to
 the process or process group specified by the F_SETOWN when I/O
 is possible.

 F_GETOWN Gets the process ID or process group ID set to receive SIGIO and

AIX Operating System Technical Reference
fcntl, flock, lockf

¦ Copyright IBM Corp. 1985, 1991
1.2.78 - 1

 SIGURG signals; process group IDs are returned as negative
 values.

 F_SETOWN Sets the process ID or process group ID to receive SIGIO and
 SIGURG signals. A process group ID is specified by giving arg
 as a negative value; a positive value is a process ID.

 When using the file locking and unlocking cmds (F_GETLK, F_SETLK, and
 F_SETLKW), the arg parameter is a pointer to a structure of type flock.
 The flock structure pointed to by the arg parameter describes the lock and
 is defined in the fcntl.h header file. It contains the following members:

 short l_type; /* F_RDLCK, F_WRLCK, F_UNLCK */
 short l_whence; /* flag for starting offset */
 long l_start; /* relative offset in bytes */
 long l_len; /* if 0 then until EOF */
 unsigned long l_sysid; /* node ID */
 pid_t l_pid; /* returned with F_GETLK */

 l_type Describes the type of lock. Possible values are F_RDLCK, F_WRLCK,
 and F_UNLCK.

 l_whence Defines the starting point of the relative offset, l_start. A
 value of 0 indicates the start of the file, 1 selects the current
 position, and 2 indicates the end of the file.

 l_start Defines the relative offset in bytes, measured from the starting
 point in l_whence.

 l_len Specifies the number of consecutive bytes to be locked.

 l_sysid Contains the ID of the node that already has a lock placed on the
 area defined by the fcntl system call. This field is returned
 only when the F_GETLK cmd is used.

 l_pid Contains the ID of a process that already has a lock placed on the
 area defined by the fcntl system call. This field is returned
 only when the F_GETLK cmd is used.

 The following cmds use the flock structure and perform operations
 associated with file locks:

 F_GETLK Gets the first lock that blocks the lock described in the flock
 structure pointed to by arg. If a lock is found, the retrieved
 information overwrites the information in this structure. If no
 lock is found that would prevent this lock from being created,
 then the structure is passed back unchanged except that the lock
 type is set to F_UNLCK.

 F_SETLK Sets or clears a file lock according to the flock structure
 pointed to by arg. F_SETLK is used to establish read (F_RDLCK)
 and write (F_WRLCK) locks, as well as to remove either type of
 lock (F_UNLCK). F_RDLCK, F_WRLCK, and F_UNLCK are defined by
 the fcntl.h header file. If a read or write lock cannot be set,
 fcntl returns immediately with an error value of -1.

 F_SETLKW Works like F_SETLK except that if a read or write lock is
 blocked by existing locks, the process sleeps until the section
 of the file is free to be locked.

AIX Operating System Technical Reference
fcntl, flock, lockf

¦ Copyright IBM Corp. 1985, 1991
1.2.78 - 2

 When a read lock has been set on a section of a file, other processes may
 also set read locks on that section or subsets of it. A read lock
 prevents any other process from setting a write lock on any part of the
 protected area. The file descriptor on which a read lock is being placed
 must have been opened with read access.

 A write lock prevents any other process from setting a read lock or a
 write lock on any part of the protected area. Only one write lock and no
 read locks may exist for a specific section of a file at any time. The
 file descriptor on which a write lock is being placed must have been
 opened with write access.

 Locks may start and extend beyond the current end of a file but may not be
 negative relative to the beginning of the file. A lock may be set to
 extend to the end of the file by setting l_len to 0. If such a lock also
 has l_start and l_whence set to 0, the whole file is locked.

 Some general rules about file locking include:

 � Changing or unlocking part of a file in the middle of a locked sectio
 leaves two smaller sections locked at each end of the originally
 locked section.

 � When the calling process holds a lock on a file, that lock is replace
 by later calls to fcntl.

 � All locks associated with a file for a given process are removed whe
 a file descriptor for that file is closed by the process or the
 process holding the file descriptor ends.

 � Locks are not inherited by a child process after executing a fork
 system call.

 If the Transparent Computing Facility is installed, the following also
 applies to use of fcntl:

 � If the file being locked is a replicated file, the primary copy mus
 be available, even if the file is open for read and another copy can
 otherwise still be used. This restriction is necessary to guarantee
 that no two processes on sites in different network partitions hold
 conflicting locks on the same file at the same time.

 � The loss of the site storing the file (storing the primary copy, i
 the file is replicated) causes a process that holds locks on the file
 to lose those locks. If not caught or ignored, this signal causes the
 process to be terminated.

 Notes:

 1. In addition to fcntl, the lockf system call can also be used to set
 write (exclusive) locks.

 2. Deadlocks due to file locks in a distributed system are not always
 detected. When such deadlocks are possible, the programs requesting
 the locks should set timeout timers.

 Compatibility Interfaces

AIX Operating System Technical Reference
fcntl, flock, lockf

¦ Copyright IBM Corp. 1985, 1991
1.2.78 - 3

 The following additional interfaces are provided:

 � lockf (fildes, F_LOCK, size) is equivalent to fcntl (fildes, F_SETLKW,
 flock) where flock has:

 l_type = F_WRLCK
 l_whence = 1
 l_start = (size >= 0) ? 0 : size
 l_len = (size >= 0) ? size : -size;

 � lockf (fildes, F_TLOCK, size) is equivalent to fcntl (fildes, F_SETLK,
 flock) where flock is as for F_LOCK:

 l_type = F_WRLCK
 l_whence = 1
 l_start = (size >= 0) ? 0 : size
 l_len = (size >= 0) ? size : -size;

 � lockf (fildes, F_ULOCK, size) is equivalent to fcntl (fildes, F_SETLK,
 flock) where flock is as for F_LOCK, except l_type is F_UNLCK:

 l_type = F_UNLCK
 l_whence = 1
 l_start = (size >= 0) ? 0 : size
 l_len = (size >= 0) ? size : -size;

 � lockf (fildes, F_TEST, size) is equivalent to fcntl (fildes, F_GETLCK,
 flock) where flock is as for F_LOCK:

 l_whence = 1
 l_start = (size >= 0) ? 0 : size
 l_len = (size >= 0) ? size : -size;
 except that the return value is established as:

 - if no conflicting lock exists, lockf returns 0.
 - if a conflicting lock exists, lockf returns -1 and sets errno to
 EAGAIN.

 The commands, F_LOCK, F_TLOCK, F_ULOCK, and F_TEST are defined in
 <sys/lockf.h>.

 � For 4.3BSD compatibility, the flock interface is also supported. To
 use flock, compile with the Berkeley Compatibility Library (libbsd.a).

 flock (fd, operation)

 where operation is the inclusive OR of LOCK_SH, LOCK_EX and,
 possibly, LOCK_NB, or LOCK_UN, is equivalent to fcntl (fildes,
 cmd, flock)

 where cmd is F_SETLK (or, F_SETLKW if LOCK_NB is set) and flock is
 set follows:

 l_type = F_RDLCK if LOCK_SH.
 l_type = F_WRLCK if LOCK_EX.
 l_type = F_UNLCK if LOCK_UN.
 l_whence = 0
 l_start = 0
 l_len = 0

AIX Operating System Technical Reference
fcntl, flock, lockf

¦ Copyright IBM Corp. 1985, 1991
1.2.78 - 4

 Return Value
 Upon successful completion, the value returned depends on the value of the
 cmd parameter as follows:

 cmd Return Value

 F_DUPFD A new descriptor
 F_GETFD The value of the flag (only the low-order bit is
 defined)
 F_GETLK A value other than -1
 F_SETFD A value other than -1
 F_GETFL The value of file flags
 F_SETFL A value other than -1
 F_SETLK A value other than -1
 F_SETLKW A value other than -1
 F_GETOWN A process ID or a negative process group ID.
 Process group IDs are never 1
 F_SETOWN A value other than -1.

 If the fcntl system call fails, a value of -1 is returned, and errno is
 set to indicate the error.

 Error Conditions
 The fcntl system call fails if one or more of the following are true:

 EBADF The d parameter is not a valid open file descriptor.

 EBADF A read lock (F_RDLCK) is attempted on a file open only for
 writing (O_WRONLY) or a write lock (F_WRLCK) is attempted on a
 file open only for reading (O_RDONLY).

 EMFILE The cmd parameter is F_DUPFD and 200 file descriptors are
 currently open.

 EACCES The cmd parameter is F_SETLK, the l_type parameter is F_RDLCK,
 and the segment of the file to be locked is already write-locked
 by another process.

 EACCES The cmd parameter is F_SETLK, the l_type parameter is F_WRLCK,
 and the segment of a file to be locked is already read-locked or
 write-locked by another process.

 Note: Because in the future errno may be set to EAGAIN rather
 than to EACCES for the two errors described above,
 programs should expect and test for both values.

 EDEADLK The cmd parameter is F_SETLKW, the lock is blocked by some lock
 from another process. Putting the calling process to sleep
 while waiting for that lock to become free would cause a
 deadlock.

 ENOLCK The cmd parameter is F_SETLK or F_SETLKW, the type of lock is
 F_RDLCK or F_WRLCK, and there are no more file locks available.
 (Too many segments are already locked.)

 EINVAL The cmd parameter is F_GETLK, F_SETLK, or F_SETLKW and the arg
 parameter or the data it points to is not valid.

AIX Operating System Technical Reference
fcntl, flock, lockf

¦ Copyright IBM Corp. 1985, 1991
1.2.78 - 5

 EINVAL The cmd parameter is F_DUPFD and the arg parameter is negative
 or greater than 199.

 If the Transparent Computing Facility is installed on your system, fcntl
 can also fail if one or more of the following are true:

 ESITEDN1 The site which stores this file is now or has been down.

 ESITEDN2 The operation was terminated because a site failed.

 ETXTBSY An attempt was made to lock a region of a file which is
 currently being executed. This error is only for replicated
 files and only in situations where obtaining a lock at the
 primary copy of a replicated file system would interfere with
 processes which are currently executing this program.

 ENOSTORE An attempt was made to lock a replicated file which has already
 been deleted.

 EROFS A lock is requested for a file in a replicated file system in
 which the primary copy is unavailable.

 ENFILE The system inode table at the current synchronization site is
 full.

 Related Information
 In this book: "close, closex" in topic 1.2.48, "exec: execl, execv,
 execle, execve, execlp, execvp" in topic 1.2.71, "fcntl, flock, lockf,"
 "open, openx, creat" in topic 1.2.199, and "fcntl.h" in topic 2.4.8.

AIX Operating System Technical Reference
fcntl, flock, lockf

¦ Copyright IBM Corp. 1985, 1991
1.2.78 - 6

 1.2.79 feof, ferror, clearerr, fileno

 Purpose
 Checks the status of a stream.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <stdio.h>

 int feof (stream) void clearerr (stream)
 FILE *stream; FILE *stream;

 int ferror (stream) int fileno (stream)
 FILE *stream; FILE *stream;

 Description
 These macros inquire about the status of a stream. Each of these macros
 also can be found in libc.a as subroutines.

 The feof macro inquires about end-of-file. If EOF has previously been
 detected reading the input stream specified by the stream parameter, a
 nonzero value is returned. Otherwise, a value of 0 is returned.

 The ferror macro inquires about input/output errors. If an I/O error has
 previously occurred when reading from or writing to the stream specified
 by the stream parameter, a nonzero value is returned. Otherwise, a value
 of 0 is returned.

 The clearerr macro resets the error indicator and the EOF indicator to 0
 for the stream specified by the stream parameter.

 The fileno macro returns the integer file descriptor associated with the
 input pointed to by the stream parameter.

 Note: Since these routines are implemented as macros, they cannot be
 declared or redeclared without first undefining the macro (after
 including stdio.h).

 Error Conditions
 The feof, ferror, and fileno subroutines fail if one or more of the
 following are true:

 EBADF The file descriptor underlying stream is not valid.

 EBADF The stream argument is not a valid stream.

 Related Information
 In this book: "fopen, freopen, fdopen" in topic 1.2.82, "open, openx,
 creat" in topic 1.2.199, and " stdio" in topic 1.2.283.

AIX Operating System Technical Reference
feof, ferror, clearerr, fileno

¦ Copyright IBM Corp. 1985, 1991
1.2.79 - 1

 1.2.80 finite, logb, scalb

 Purpose
 Used in floating point calculations.

 Library
 Standard C Library (libm.a)

 Syntax

 #include <math.h>

 int finite (x)
 double x;

 double logb (x)
 double x;

 double scalb (x, n)
 double x;
 int n;

 Description
 These subroutines are required for, or recommended by the IEEE standard
 754 for floating point arithmetic.

 finite(x) = 1 only when -infinity < x < +infinity.
 finite(x) = 0 otherwise (when |x| = infinity or x is NaN ().

 logb(x) returns x exponent n, a signed integer converted to
 double-precision floating point. It is set to 1 < |x|/2**n <2 unless x=0
 or |x|=infinity.

 scalb(x, n) = x*(2**n) computed, for integer n, without first computing
 2**n.

 Related Information
 In this book: "floor, ceil, fmod, fabs, rint" in topic 1.2.81, and
 "math.h" in topic 2.4.13.

AIX Operating System Technical Reference
finite, logb, scalb

¦ Copyright IBM Corp. 1985, 1991
1.2.80 - 1

 1.2.81 floor, ceil, fmod, fabs, rint

 Purpose
 Computes floor, ceiling, remainder, and absolute value functions.

 Library
 Math Library (libm.a)

 Syntax

 #include <math.h>

 double floor (x) double fmod (x, y)
 double x; double x, y;

 double ceil (x) double fabs (x)
 double x; double x;
 #include <stdlib.h>
 #include <limits.h>

 double rint (x)
 double x;

 Description
 The floor subroutine returns the largest integer (as a double) not greater
 than the x parameter.

 The ceil subroutine returns the smallest integer not less than the x
 parameter.

 The fmod subroutine returns the remainder of x ÷ y. More precisely, this
 value is x if the y parameter is 0. Otherwise, it is the number f with
 the same sign as x such that x = iy + f for some integer i, and |f| < |y|.

 The fabs subroutine returns the absolute value of x, |x|.

 The rint subroutine returns one of the two nearest floating point integers
 to x. Which integer is returned is determined by the current floating
 point rounding mode.

 If the current rounding mode is round toward -&infinity., then rint(x) is
 identical to floor(x).

 If the current rounding mode is round toward +&infinity., then rint(x) is
 identical to ceil(x).

 If the current rounding mode is round to nearest, then rint(x) rounds to
 the nearer of the two nearest floating point integers.

 If the current rounding mode is round toward zero, then rint(x) is
 equivalent to truncating the fractional bits of x.

 Note: The default floating point rounding mode is round towards zero.

 Error Conditions
 The floor, ceil, fmod, and fabs subroutines fail if one or more of the
 following are true:

AIX Operating System Technical Reference
floor, ceil, fmod, fabs, rint

¦ Copyright IBM Corp. 1985, 1991
1.2.81 - 1

 EDOM The value of x is NaN.

 EDOM The argument y is zero or one of the arguments is NaN.

 ERANGE The result would cause an overflow.

 Related Information
 In this book: "abs" in topic 1.2.8.

AIX Operating System Technical Reference
floor, ceil, fmod, fabs, rint

¦ Copyright IBM Corp. 1985, 1991
1.2.81 - 2

 1.2.82 fopen, freopen, fdopen

 Purpose
 Opens a stream.

 Library
 Standard I/O Library (libc.a)

 Syntax
 #include <stdio.h>

 FILE *fopen (path, type) FILE *fdopen (fildes, type)
 char *path, *type; int fildes;
 char *type;
 FILE *freopen (path, type, stream)
 char *path, *type;
 FILE *stream;

 Description
 The fopen subroutine opens the file named by the path parameter and
 associates a stream with it. fopen returns a pointer to the FILE
 structure of this stream.

 The path parameter points to a character string that contains the name of
 the file to be opened.

 The type parameter points to a character string that has one of the
 following values:

 "r" Open the file for reading
 "w" Truncate or create a new file for writing
 "a" Append (open for writing at end of file, or create for writing)
 "r+" Open for update (reading and writing)
 "w+" Truncate or create for update
 "a+" Append (open or create for update at end of file)

 The freopen subroutine substitutes the named file in place of the open
 stream. The original stream is closed whether or not the open succeeds.
 freopen returns a pointer to the FILE structure associated with stream.
 The freopen subroutine is typically used to attach the pre-opened streams
 associated with stdin, stdout, and stderr to other files.

 The fdopen subroutine associates a stream with a file descriptor obtained
 from an open, dup, creat, or pipe system call. These system calls open
 files but do not return pointers to FILE structures. Many of the standard
 I/O library subroutines require pointers to FILE structures. Note that
 the type of stream specified must agree with the mode of the open file.

 When you open a file for update, you can perform both input and output
 operations on the resulting stream. However, an output operation cannot
 be directly followed by an input operation without an intervening fseek or
 rewind. Also, an input operation cannot be directly followed by an output
 operation without an intervening fseek, rewind, or an input operation that
 encounters the end of the file.

 When you open a file for append (that is, when type is "a" or "a+"), it is
 impossible to overwrite information already in the file. You can use
 fseek to reposition the file pointer to any position in the file, but when
 output is written to the file, the current file pointer is ignored. All

AIX Operating System Technical Reference
fopen, freopen, fdopen

¦ Copyright IBM Corp. 1985, 1991
1.2.82 - 1

 output is written at the end of the file and causes the file pointer to be
 repositioned to the end of the output.

 If two separate processes open the same file for append, each process can
 write freely to the file without destroying the output being written by
 the other. The output from the two processes is intermixed in the order
 in which it is written to the file. Note that if the data is buffered,
 then it is not actually written until it is flushed.

 If the fopen or freopen subroutine fails, a NULL pointer is returned.

 Error Conditions
 The fopen and freopen subroutines fail if one or more of the following are
 true:

 EACCES Search permission is denied on a component of the path prefix,
 or the file exists and the permissions specified by mode are
 denied, or the file does not exist and write permission is
 denied for the parent directory of the file to be created.

 EINTR A signal was caught during the fopen function.

 EISDIR The named file is a directory and mode requires write access.

 EMFILE FOPEN_MAX file descriptors, directories and message catalogs are
 currently open in the calling process.

 ENAMETOOLONG
 The length of the filename string exceeds PATH_MAX or a pathname
 component is longer than NAME_MAX.

 ENFILE The system file table is full.

 ENOENT The named file does not exist or the filename argument points to
 an empty string.

 ENOSPC The directory or file system that would contain the new file
 cannot be expanded; the file that was to be created does not
 exist.

 ENOTDIR A component of the path prefix is not a directory.

 ENXIO The named file is a character special or block special file, and
 the device associated with this special file does not exist.

 EROFS The named file resides on a read-only file system and mode
 requires write access.

 EINVAL The value of the mode argument is not valid.

 ENOMEM Insufficient storage space is available.

 ETXTBSY The file is a pure procedure (shared text) file that is being
 executed and mode requires write access.

 The fdopen subroutine fails if one or more of the following is true:

 EBADF The fildes argument is not a valid file descriptor.

 EINVAL The mode argument is not a valid mode.

AIX Operating System Technical Reference
fopen, freopen, fdopen

¦ Copyright IBM Corp. 1985, 1991
1.2.82 - 2

 ENOMEM Insufficient space to allocate a buffer.

 Related Information
 In this book: "fclose, fflush" in topic 1.2.77, "fseek, rewind, ftell" in
 topic 1.2.86, "open, openx, creat" in topic 1.2.199, "setbuf, setvbuf" in
 topic 1.2.247, and " stdio" in topic 1.2.283.

AIX Operating System Technical Reference
fopen, freopen, fdopen

¦ Copyright IBM Corp. 1985, 1991
1.2.82 - 3

 1.2.83 fork, vfork

 Purpose
 Creates a new process.

 Syntax

 pid_t fork ()

 pid_t vfork ()

 Description
 The fork system call creates a new process. The new process (child
 process) is an exact copy of the calling process (parent process). The
 created child process inherits the following attributes from the parent
 process:

 � Environmen
 � Close-on-exec flags (see "exec: execl, execv, execle, execve, execlp,
 execvp" in topic 1.2.71)
 � Signal handling settings (that is, SIG_DFL, SIG_IGN, function address)
 � Set-user-ID mode bi
 � Set-group-ID mode bi
 � Profiling on/off statu
 � Nice value (see "getpriority, setpriority, nice" in topic 1.2.111)
 � All attached shared libraries (see shlib command in AIX Operating
 System Commands Reference)
 � Process group I
 � Session I
 � TTY group ID (see "exit, _exit" in topic 1.2.73 and "sigaction,
 sigvec, signal" in topic 1.2.263)
 � Current director
 � Root director
 � File mode creation mask (see "umask" in topic 1.2.314)
 � System resource limits (see "ulimit" in topic 1.2.313)
 � Attached shared memory segments (see "shmat" in topic 1.2.258)
 � <LOCAL> alias pathname (see "getlocal, setlocal" in topic 1.2.102)
 � xvers string (see "getxvers, setxvers" in topic 1.2.129).

 If the Transparent Computing Facility is installed, the following
 attributes are also inherited by the child process:

 � Execution site (see "rfork" in topic 1.2.237 to change execution
 sites)

 � Site path (see "getspath, setspath" in topic 1.2.122)

 � Execution site permissions (see "getxperm, setxperm" in topic 1.2.128)

 � setxuid bits (see "setxuid" in topic 1.2.256).

 The child process differs from the parent process in the following ways:

 � The child process has a unique process ID. The child process ID als
 does not match any active process group ID.

 � The child process has as its parent process ID the process ID of th
 parent process.

AIX Operating System Technical Reference
fork, vfork

¦ Copyright IBM Corp. 1985, 1991
1.2.83 - 1

 � The child process has its own copy of the parent's file descriptors
 However, each of the child process's file descriptors shares a common
 file pointer with the corresponding file descriptor of the parent
 process.

 � All semadj values are cleared. (For information about semadj values,
 see "semop" in topic 1.2.245.)

 � Process locks, text locks and data locks are not inherited by th
 child. (For information about locks, see "plock" in topic 1.2.205.)

 � The child process's trace flag (see the discussion of request 0 o
 "ptrace" in topic 1.2.212) is false regardless of the value of the
 parent process's trace flag.

 � The child process's utime, stime, cutime, and cstime are set to 0.
 (See "times" in topic 1.2.304.)

 � Any pending alarms are cleared in the child. (See "alarm" in
 topic 1.2.14.)

 If the Transparent Computing Facility is installed, the fork system
 call only creates a new process on the local site (see "rfork" in
 topic 1.2.237).

 Compatibility Note

 The vfork system call is supported as a compatibility interface for older
 BSD programs, and can be used by compiling with Berkeley Compatibility
 Library (libbsd.a). Its function is superceded by fork. The 4.3BSD
 documentation warned that programs should not rely upon the unusual memory
 sharing semantics of vfork, since eventually "proper system sharing
 mechanisms" would be implemented. Accordingly, in AIX, fork and vfork
 have identical behavior.

 Return Value
 Upon successful completion, fork returns a value of 0 to the child process
 and returns the process ID of the child process to the parent process. If
 fork fails, a value of -1 is returned to the parent process, no child
 process is created, and errno is set to indicate the error.

 Error Conditions
 The fork system call fails if one or more of the following are true:

 EAGAIN The system-imposed limit on the total number of processes
 executing would be exceeded.

 EAGAIN The system-imposed limit on the total number of processes
 executing for a single user would be exceeded.

 ENOMEM There is not enough space left for this process.

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, "exit, _exit" in topic 1.2.73, "getpriority, setpriority,
 nice" in topic 1.2.111, "getspath, setspath" in topic 1.2.122, "getxvers,
 setxvers" in topic 1.2.129, "getxperm, setxperm" in topic 1.2.128, "plock"
 in topic 1.2.205, "ptrace" in topic 1.2.212, "rfork" in topic 1.2.237,
 "semop" in topic 1.2.245, "setxuid" in topic 1.2.256, "shmat" in
 topic 1.2.258, "sigaction, sigvec, signal" in topic 1.2.263, "times" in

AIX Operating System Technical Reference
fork, vfork

¦ Copyright IBM Corp. 1985, 1991
1.2.83 - 2

 topic 1.2.304, "ulimit" in topic 1.2.313, "umask" in topic 1.2.314, and
 "wait, waitpid" in topic 1.2.325.

 The shlib2 command in AIX Operating System Commands Reference.

 Purpose
 Sets and reads the 80387 control word.

 Library
 Math Library (libm.a)

 Syntax

 #include <sys/fpcontrol.h>

 void fp_control(x) void fp_restore()
 unsigned int(x)
 void fp_exunmask(x)
 void fp_exmask(x) unsigned int(x)
 unsigned int(x)
 void fp_precision(x)
 void fp_round(x) unsigned int(x)
 unsigned int(x)
 unsigned int fp_getex()
 unsigned int fp_getcw()
 unsigned int fp_getround()
 unsigned int fp_getprecision()
 unsigned int fp_getsw()

 Description
 The fp_control subroutine takes as an argument a new value for the 80387
 control word.

 The fp_exmask subroutine takes as an argument a bit mask corresponding to
 the bits in the 80387 control word interrupt mask fields. The bits are
 set in the control word causing the corresponding exceptions to be masked.

 The fp_exunmask subroutine takes as an argument a bit mask corresponding
 to the bits in the 80387 control word interrupt mask fields. The bits are
 cleared in the control word causing the corresponding exceptions to be
 unmasked.

 The fp_round subroutine takes as an argument the bit patterns
 corresponding to the bits in the 80387 control word rounding mode field.
 The rounding mode is set to the pattern specified.

 The fp_precision subroutine takes as an argument the bit patterns
 corresponding to the bits in the 80387 control word precision mode field.
 The precision mode is set to the pattern specified.

 The fp_restore subroutine restores the 80387 control word to the value and
 mode which existed before any of the above described subroutines were
 called. If none of the above described subroutines were called, then no
 action is taken.

 The fp_getcw function returns the 80387 control word.

 The fp_getex function returns the exception mask portion of the 80387

AIX Operating System Technical Reference
fork, vfork

¦ Copyright IBM Corp. 1985, 1991
1.2.83 - 3

 control word.

 The fp_getround function returns the rounding mode portion of the 80387
 control word.

 The fp_getprecision function returns the precision mode portion of the
 80387 control word.

 The fp_getsw function returns the 80387 status word.

 As an aid in specifying the exception mask bits and the rounding and
 precision mode bit patterns, a set of definitions has been provided in the
 include file sys/fpcontrol.h.

 Exception masks:

 FPM_INV_OP 0x0001

 FPM_DENORM 0x0002

 FPM_DIVIDE_0 0x0004

 FPM_OVERFLOW 0x0008

 FPM_UNDERFLOW 0x0010

 FPM_PRECISION 0x0020

 Rounding modes:

 FPR_NEAR 0x0000

 FPR_DOWN 0x0400

 FPR_UP 0x0800

 FPR_CHOP 0x0c00

 Precision modes:

 FPP_SINGLE 0x0000

 FPP_DOUBLE 0x0200

 FPP_EXTENDED 0x0300

 These definitions can be used in a variety of ways. They can be ORed
 together to form an argument for the fp_control subroutine. If this is
 the case, any number of the exception mask symbols can be ORed with one of
 each of the rounding and precision mode values. For example:

 fp_control(FPP_SINGLE | FPR_UP | FPM_PRECISION | FP_OVERFLOW);

 selects single-precision results of calculations, rounding up to positive

AIX Operating System Technical Reference
fork, vfork

¦ Copyright IBM Corp. 1985, 1991
1.2.83 - 4

 infinity, and mask exception interrupts for precision and overflow
 exceptions.

 The values can be used in the appropriate subroutine to modify a specific
 part of the 80387 control word. For example:

 fp_precision(FPP_EXTENDED)

 Note: Using a value with a subroutine which is not appropriate could
 produce an undesired result. The values can all be used with the
 fp_control subroutine as described above.

 The values supplied in fpcontrol.h can be used with the fp_getcw,
 fp_getround, fp_getex, and fp_getprecision subroutines to determine what
 is currently selected. For example:

 (fp_getex() & FPM_INV_OP)

 returns a nonzero value if the invalid operation exception is masked.

 (fp_getround() == FPR_CHOP)

 returns a nonzero value if chop (truncate towards zero) rounding mode is
 currently selected in the 80387 control word.

AIX Operating System Technical Reference
fork, vfork

¦ Copyright IBM Corp. 1985, 1991
1.2.83 - 5

 1.2.84 fread, fwrite

 Purpose
 Performs binary input/output.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <stdio.h>

 int fread (ptr, size, nitems, stream)
 void *ptr;
 size_t size;
 size_t nitems;
 FILE *stream;

 int fwrite (ptr, size, nitems, stream)
 void *ptr;
 size_t size;
 size_t nitems;
 FILE *stream;

 Description
 The fread subroutine copies nitems items of data from the input stream
 into an array beginning at the location pointed to by the ptr parameter.
 Each data item has the type *ptr.

 The fread subroutine stops copying bytes if an end-of-file or error
 condition is encountered while reading from the input (1) specified by the
 stream parameter or (2) when the number of data items specified by the
 nitems parameter have been copied. fread leaves the file pointer of
 stream, if defined, pointing to the byte following the last byte read, if
 there is one. The fread subroutine does not change the contents of
 stream.

 The fwrite subroutine appends nitems items of data of the type *ptr from
 the array pointed to by the ptr parameter to the output stream.

 The fwrite subroutine stops writing bytes if (1) an error condition is
 encountered on stream or (2) when the number of items of data specified by
 the nitems parameter have been written. The fwrite subroutine does not
 change the contents of the array pointed to by the ptr parameter.

 Return Value
 The fread and fwrite subroutines return the number of items actually read
 or written. If the nitems parameter is negative or 0, no characters are
 read or written, and a value of 0 is returned.

 Error Conditions
 The fread subroutine fails if one or more of the following are true:

 EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying
 stream and the process would be delayed in the fgetc operation.

 EBADF The file descriptor underlying stream is not a valid file
 descriptor open for reading.

 EINTR The read operation was terminated due to the receipt of a signal

AIX Operating System Technical Reference
fread, fwrite

¦ Copyright IBM Corp. 1985, 1991
1.2.84 - 1

 and no data was transferred.

 EIO The process is a member of a background process attempting to
 read from its controlling terminal, the process is either
 ignoring or blocking the SIGTTIN signal or the process group is
 orphaned.

 ENOMEM Insufficient storage space is available.

 ENXIO A request was made of a non-existent device, or the request was
 outside the capabilities of the device.

 The fwrite subroutine fails if one or more of the following is true:

 EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying
 stream and the process would be delayed in the write operation.

 EBADF The file descriptor underlying stream is not a valid file
 descriptor open for writing.

 EFBIG An attempt was made to write to a file that exceeds the
 process's file size limit or the maximum file size.

 EINTR The write operation was terminated due to the receipt of a
 signal and no data was transferred.

 EIO The process is a member of a background process group attempting
 to write to its controlling terminal, TOSTOP is set, the process
 is neither ignoring nor blocking SIGTTOU and the process group
 of the process is orphaned.

 ENOSPC There was no free space remaining on the device containing the
 file.

 ENXIO A request was made of a non-existent device, or the request was
 outside the capabilities of the device.

 EPIPE An attempt is made to write to a pipe or FIFO that is not open
 for reading by any process. A SIGPIPE signal will also be sent
 to the process.

 ENOMEM Insufficient storage space is available.

 Related Information
 In this book: "fopen, freopen, fdopen" in topic 1.2.82, "getc, fgetc,
 getchar, getw, getwc, fgetwc, getwchar" in topic 1.2.91, "gets, fgets,
 getws, fgetws" in topic 1.2.117, "printf, fprintf, sprintf, NLprintf,
 NLfprintf, NLsprintf, wsprintf" in topic 1.2.208, "putc, putchar, fputc,
 putw, putwc, putwchar, fputwc" in topic 1.2.213, "puts, fputs, putws,
 fputws" in topic 1.2.216, "read, readv, readx" in topic 1.2.224, "scanf,
 fscanf, sscanf, NLscanf, NLfscanf, NLsscanf, wsscanf" in topic 1.2.241, "
 stdio" in topic 1.2.283, and "write, writex" in topic 1.2.330.

AIX Operating System Technical Reference
fread, fwrite

¦ Copyright IBM Corp. 1985, 1991
1.2.84 - 2

 1.2.85 frexp, ldexp, modf

 Purpose
 Manipulates parts of floating-point numbers.

 Library
 Standard C Library (libc.a)

 Syntax

 double frexp (value, eptr) double ldexp (mant, exp)
 double value; double mant;
 int *eptr; int exp;
 double modf (value, iptr)
 double value, *iptr;

 Description
 Every nonzero number can be written uniquely as x ¦ 2(n), where the
 mantissa (fraction), x, is in the range 0.5 = |x| < 1.0, and the exponent,
 n, is an integer. The internal representation of floating-point numbers
 uses this fact, storing a mantissa part and an exponent part.

 The frexp subroutine returns the mantissa of the value parameter and
 stores the exponent in the location pointed to by the eptr parameter.

 The ldexp subroutine returns the quantity mant ¦ 2(exp).

 The modf subroutine returns the signed fractional part of the value
 parameter and stores the integral part in the location pointed to by the
 iptr parameter.

 If the ldexp subroutine overflows, it returns HUGE and sets errno to
 ERANGE.

 Error Conditions
 The modf subroutine fails if the following is true:

 EDOM The argument value is NaN.

 The ldexp subroutine fails if the following is true:

 ERANGE The value to be returned would have caused an overflow or
 underflow.

 The frexp subroutine fails if the following is true:

 EDOM The argument value is NaN or an infinity.

 Related Information
 In this book: "sputl, sgetl" in topic 1.2.280.

AIX Operating System Technical Reference
frexp, ldexp, modf

¦ Copyright IBM Corp. 1985, 1991
1.2.85 - 1

 1.2.86 fseek, rewind, ftell

 Purpose
 Repositions the file pointer of a stream.

 Library
 Standard I/O Library (libc.a)

 Syntax
 #include <stdio.h>

 int fseek (stream, offset, wvoiderewind (stream)
 FILE *stream; FILE *stream;
 long offset;
 int whence; long ftell (stream)
 FILE *stream;

 Description
 The fseek subroutine sets the position of the next input or output
 operation on the I/O stream specified by the stream parameter. The
 position of the next operation is determined by the offset parameter,
 which can be either positive or negative.

 The fseek subroutine sets the file pointer associated with the specified
 stream as follows:

 � If the whence parameter is 0, the pointer is set to the value of the
 offset parameter.

 � If the whence parameter is 1, the pointer is set to its current
 location plus the value of the offset parameter.

 � If the whence parameter is 2, the pointer is set to the size of the
 file plus the value of the offset parameter.

 The fseek subroutine fails if attempted on a file that has not been opened
 using fopen. In particular, fseek cannot be used on a terminal, or on a
 file opened with popen.

 Upon successful completion, fseek returns a value of 0. If fseek fails, a
 nonzero value is returned.

 The rewind subroutine is equivalent to fseek (stream, (long) 0, 0), except
 that it does not return a value.

 The fseek and rewind subroutines undo any effects of the ungetc
 subroutine.

 After an fseek or a rewind, the next operation on a file opened for update
 can be either input or output.

 The ftell subroutine returns the offset of the current byte relative to
 the beginning of the file associated with the named stream.

 Error Conditions
 The fseek subroutine fails if the following is true:

 EINVAL The resulting file-position indicator is set to a negative
 value.

AIX Operating System Technical Reference
fseek, rewind, ftell

¦ Copyright IBM Corp. 1985, 1991
1.2.86 - 1

 The fseek and ftell subroutines fail if the following are true:

 EBADF The stream had data to be flushed but the underlying file is not
 open for writing.

 EFBIG An attempt was made to write a file that exceeds the process's
 file size limit or the maximum file size.

 EINVAL The whence argument is invalid.

 ENOSPC There was no free space remaining on the device containing the
 file.

 ESPIPE The file descriptor underlying stream is associated with a pipe
 or FIFO.

 EAGAIN The O_NONBLOCK flag is set for the file descriptor and the
 process would be delayed in the write operation.

 EINTR The write operation was terminated due to the receipt of a
 signal and no data was transferred.

 EIO An I/O error occurred.

 EPIPE An attempt was made to write to a pipe or FIFO that is not open
 for reading by any process. A SIGPIPE signal will also be sent
 to the process.

 Related Information
 In this book: "fopen, freopen, fdopen" in topic 1.2.82, "lseek" in
 topic 1.2.161, and " stdio" in topic 1.2.283.

AIX Operating System Technical Reference
fseek, rewind, ftell

¦ Copyright IBM Corp. 1985, 1991
1.2.86 - 2

 1.2.87 fsync, fcommit

 Purpose
 Writes changes in a file to permanent storage.

 Syntax

 int fsync (fildes)
 int fildes;

 int fcommit (fildes)
 int fildes;

 Description
 The fsync system call causes all modified data in the file open on fildes
 to be saved to permanent storage. The fcommit system call is a synonym
 for the fsync system call. Saving to permanent storage is sometimes
 called a commit operation.

 An fsync system call can be issued by a process executing at the node on
 which the file is stored or by a process executing at another node. In
 either case, the file is written to permanent storage at the node that
 holds the file.

 If the file is open in O_DEFERC mode, fsync incorporates all data changes
 into a new version of the file. Old pages are freed and become
 unrecoverable. The file must be a regular file, not a pipe or special
 file, and the file descriptor must be open for writing. If the file has
 not been changed since it was open or last committed, this operation has
 no effect.

 The file remains open after the fsync and a subsequent fabort system call
 on this file will roll back the file only to the latest commit checkpoint.
 fsync and fabort only affect the file's content and, except for the file's
 size, modification time and file status change time, the other file
 information is unaffected. Changes effected by system calls such as
 chmod, chown, and utime are atomic and are not aborted by fabort.

 Changes made to a file opened with O_DEFERC are ordinarily made permanent
 when the file is closed or soon after, and thus, an explicit fsync is not
 usually necessary. If the file is open multiple times, the commit occurs
 on the final close of any write file descriptor. If this final close of
 the file is not done explicitly, but instead, the file is closed by exit,
 the file is still committed.

 The fsync system call may be used to make a checkpoint of a file. This
 might be useful to protect against system failure which might cause file
 changes to be undone. Furthermore, if the file is replicated on several
 sites, fsync causes all copies of the file to be updated. For a file that
 continues to be open for a long time, checkpoints will tend to keep the
 copies of the file more closely up to date. This may be important if the
 network later becomes partitioned and some user or process is unable to
 access the latest version of the file. The user still may be able to
 access a more recent version of the file than could have been accessed in
 the absence of the checkpoint.

 The fsync system call does not return until the file has been successfully
 updated at a site storing the file. If the file is replicated, the
 primary copy is written synchronously and other copies of the file are
 updated asynchronously as the other sites storing the file request the

AIX Operating System Technical Reference
fsync, fcommit

¦ Copyright IBM Corp. 1985, 1991
1.2.87 - 1

 changed file. A usage pattern with rapid, repetitive commits on a
 replicated file will probably be inefficient and should be avoided. Rapid
 commits may cause a slow or loaded site to skip a version of a file. If
 this happens, the secondary copy of the file is updated by propagating the
 entire file, rather than by propagating just the changed pages, as would
 be the case if the secondary copy was just one version out of date.

 Warning: If the file is open both in O_DEFERC mode and the default open
 mode (O_DEFERC is not set in the open system call), by the same or
 different processes, changes may be written to permanent storage other
 than when an fsync system call is issued. Concurrent opens of this form
 should be avoided.

 Return Value
 Upon successful completion, fsync returns a value of 0. If fsync fails, a
 value of -1 is returned and errno is set to indicate the error.

 Error Conditions
 The fsync system call fails if one or more of the following are true:

 EIO I/O error.

 EBADF fildes is not a valid file descriptor open for writing.

 EINVAL fildes refers to a socket, not to a file.

 ENOSPC There is no more space left on the file system.

 If the Transparent Computing Facility is installed on your system, fsync
 can also fail if one or more of the following are true:

 ESITEDN1 The storage site is down or has gone down since this file
 descriptor was issued.

 ESITEDN2 The operation was terminated because a site failed.

 Related Information
 In this book: "close, closex" in topic 1.2.48, "fabort" in topic 1.2.75,
 "open, openx, creat" in topic 1.2.199, and "sync" in topic 1.2.295.

AIX Operating System Technical Reference
fsync, fcommit

¦ Copyright IBM Corp. 1985, 1991
1.2.87 - 2

 1.2.88 ftruncate, truncate

 Purpose
 Makes a file shorter.

 Syntax

 int ftruncate (fildes, lengtint truncate (path,length)
 int fildes; char *path;
 off_t length; off_t length;

 Description

 The ftruncate and truncate system calls remove all data beyond length
 bytes from the beginning of the file. The truncate system call operates
 on the file specified in the path parameter. The ftruncate operates on
 the open file specified by the fildes parameter. Full blocks are returned
 to the file system so that they can be used again, and the file size is
 changed to the value of the length parameter. For ftruncate, however, if
 the file was opened with O_DEFERC, changes can be undone with fabort.

 The ftruncate system call does not modify the seek pointer of the file.

 If the length parameter is greater than the size of the file, the file
 size is not changed. Successful completion of the ftruncate or truncate
 system call clears the set-user-ID and set-group-ID attributes of the
 file.

 Return Value
 Upon successful completion, ftruncate and truncate return a value of 0.
 If ftruncate or truncate fails, a value of -1 is returned and errno is set
 to indicate the error.

 Error Conditions
 The ftruncate and truncate system calls fail if one or more of the
 following are true:

 EIO I/O error.

 EINVAL The file is a directory, FIFO, or special file.

 EAGAIN The write operation in ftruncate failed due to an enforced write
 lock on the file.

 The ftruncate system call fails if the following are true:

 EBADF fildes is not a valid file descriptor open for writing.

 The truncate system call fails if the following are true:

 ENOTDIR A component of the path prefix is not a directory.

 ENOENT The named file does not exist.

 EACCES A component of the path prefix denies search permission.

 EACCES Write permission is denied for the named file.

 EISDIR The named file is a directory.

AIX Operating System Technical Reference
ftruncate, truncate

¦ Copyright IBM Corp. 1985, 1991
1.2.88 - 1

 EROFS The named file resides on a read-only file system.

 ETXTBSY The file is a pure-procedure (shared text) file that is being
 executed.

 EFAULT The path parameter points to a location outside of the process's
 allocated address space.

 ENFILE The system file table or inode table is full.

 ENAMETOOLONG
 A component of the path parameter exceeded NAME_MAX characters
 or the entire path parameter exceeded PATH_MAX characters.

 ENOENT A directory in the path prefix does not exist.

 ENOENT A hidden directory was named, but no component inside it matched
 the process's current site path list.

 ENOENT A symbolic link was named, but the file to which it refers does
 not exist.

 ELOOP A loop of symbolic links was detected.

 If the Transparent Computing Facility is installed on your system,
 ftruncate can also fail if one or more of the following are true:

 ESITEDN1 The storage site is down or in the case of ftruncate, has gone
 down since this file descriptor was issued.

 ESITEDN2 The operation was terminated because a site failed.

 If the Transparent Computing Facility is installed on your system,
 truncate can also fail if one or more of the following are true:

 ENOSTORE path is a name relative to the working directory, but no site
 which stores this directory is currently up.

 ENOSTORE A component of path is replicated but not stored on any site
 which is currently up.

 EROFS Write access is requested for a file on a replicated file system
 in which the primary copy is unavailable.

 ENLDEV The named file is a non-tty character special file which
 corresponds to a device physically attached to another site in
 the cluster.

 EINTR A signal was caught during the truncate system call.

 Related Information
 In this book: "fclear" in topic 1.2.76.

AIX Operating System Technical Reference
ftruncate, truncate

¦ Copyright IBM Corp. 1985, 1991
1.2.88 - 2

 1.2.89 ftw

 Purpose
 Walks a file tree.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <ftw.h>

 int ftw (path, fn, depth) int fn (filename, stat_ptr, file_type)
 char *path; char *filename;
 int (*fn) (); struct stat *stat_ptr;
 int depth; int file_type;

 Description
 The ftw subroutine recursively searches the directory hierarchy that
 descends from the directory specified by the path parameter.

 For each file in the hierarchy, the ftw subroutine calls the function
 specified by the fn parameter, passes it a pointer to a null-terminated
 character string containing the name of the file, a pointer to a stat
 structure containing information about the file, and an integer. (For
 information about the stat structure, see "stat.h" in topic 2.4.22.)

 The file_type parameter to fn identifies the file type, and it has one of
 the following values:

 FTW_F Regular file
 FTW_D Directory
 FTW_DNR Directory that cannot be read
 FTW_NS A file for which stat could not be executed successfully.

 If the integer is FTW_DNR, the files and subdirectories contained in that
 directory are not processed.

 If the integer is FTW_NS, the stat structure contents are meaningless. An
 example of a file that causes FTW_NS to be passed to fn is a file in a
 directory for which you have read permission but not execute (search)
 permission.

 The ftw subroutine finishes processing a directory before processing any
 of its files or subdirectories.

 Symbolic links when encountered during the search process are processed
 according to the file type of the file to which they are symbolically
 linked. Processing of a symbolic link to a directory results in the
 invocation of fn on the symbolic link, but processing of the files or
 subdirectories within the symbolically linked directory is not done.

 Hidden directories encountered during the search process are treated in
 the same manner as normal directories. Each hidden directory component
 will be processed in appropriate sequence.

 The ftw subroutine continues the search until the directory hierarchy
 specified by the path parameter is completed, an invocation of the

AIX Operating System Technical Reference
ftw

¦ Copyright IBM Corp. 1985, 1991
1.2.89 - 1

 function specified by the fn parameter returns a nonzero value, or an
 error is detected within ftw, such as an I/O error.

 If the directory hierarchy is completed, the ftw subroutine returns a
 value of 0. If the function specified by the fn parameter returns a
 nonzero value, ftw stops its search and returns the value that was
 returned by the function. If the ftw subroutine detects an error, a value
 of -1 is returned and errno is set to indicate the error.

 The ftw subroutine uses one file descriptor for each level in the tree.
 The depth parameter specifies the maximum number of file descriptors to be
 used. In general, the ftw subroutine runs faster if the value of the
 depth parameter is at least as large as the number of levels in the tree.
 However, the depth parameter must not be greater than the number of file
 descriptors currently available for use. If the value of the depth
 parameter is 0 or negative, the effect is the same as if it were 1.

 Because the ftw subroutine is recursive, it is possible for it to
 terminate with a memory fault due to stack overflow when applied to very
 deep file structures.

 The ftw subroutine uses the malloc subroutine to allocate dynamic storage
 during its operation. If ftw is terminated prior to its completion, such
 as by longjmp being executed by the function specified by the fn parameter
 or by an interrupt routine, then ftw cannot free that storage. The
 storage remains allocated. A safe way to handle interrupts is to store
 the fact that an interrupt has occurred, and arrange to have the function
 specified by the fn parameter return a nonzero value the next time it is
 called.

 Error Conditions
 The ftw subroutine fails if the following are true:

 EACCES Search permission is denied for any component of path or read
 permission is denied for path.

 ENAMETOOLONG
 The length of the path string exceeds PATH_MAX, or a pathname
 component is longer than NAME_MAX.

 ENOENT The path argument points to the name of a file which does not
 exist or points to an empty string.

 ENOTDIR A component of path is not a directory.

 If fn points to a subroutine that encounters errors, additional errno
 values may be set.

 Related Information
 In this book: "malloc, free, realloc, calloc, valloc, alloca, mallopt,
 mallinfo" in topic 1.2.162, "setjmp, longjmp, _setjmp, _longjmp" in
 topic 1.2.250, "sigaction, sigvec, signal" in topic 1.2.263, and "statx,
 fstatx, stat, fstat, fullstat, ffullstat, lstat" in topic 1.2.282.

AIX Operating System Technical Reference
ftw

¦ Copyright IBM Corp. 1985, 1991
1.2.89 - 2

 1.2.90 gamma, lgamma

 Purpose
 Computes the logarithm of the gamma function.

 Library
 Math Library (libm.a)

 Syntax

 #include <math.h>

 extern int signgam;

 double gamma (x)
 double x;

 double lgamma (x)
 double x;

 Description
 The gamma subroutine returns ln(|&Gamma.(x)|) and lgamma returns
 ln&Gamma.(x), where &Gamma.(x) is defined as:

 The sign of &Gamma.(x) is stored in the external integer variable signgam.
 The x parameter cannot be a nonpositive integer.

 If the x parameter is a nonpositive integer, gamma and lgamma return HUGE,
 sets errno to EDOM, and writes a DOMAIN error message to standard error.

 If the correct value overflows, gamma and lgamma return HUGE and sets
 errno to ERANGE.

 You can change the error handling procedures with the matherr subroutine.

 Examples
 The following C program fragment calculates &Gamma.(x) and stores the
 result in y:

 errno = 0;
 y = gamma(x);
 if (errno == 0)
 y = signgam * exp(y);
 else
 perror("Error in gamma function");

 Error Conditions
 The gamma and lgamma subroutines fail if one or more of the following is
 true:

 EDOM The value of x is a non-positive integer or NaN.

 ERANGE The value to be returned would have caused overflow.

 Related Information
 In this book: "matherr" in topic 1.2.163 and "cbrt, exp, expm1, log,
 log10, log1p, pow, sqrt" in topic 1.2.28.

AIX Operating System Technical Reference
gamma, lgamma

¦ Copyright IBM Corp. 1985, 1991
1.2.90 - 1

 1.2.91 getc, fgetc, getchar, getw, getwc, fgetwc, getwchar

 Purpose
 Gets a character, a wide character, or word from an input stream.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <stdio.h>

 int getc (stream) int getchar ()
 FILE *stream;
 int getw (stream)
 int fgetc (stream) FILE *stream;
 FILE *stream;
 wchar_t getwchar ()
 wchar_t getwc (stream)
 FILE *stream;

 wchar_t fgetwc (stream)
 FILE *stream;

 Description
 The getc macro returns the next character (byte) from the input specified
 by the stream parameter and moves the file pointer, if defined, ahead one
 character in stream. getc is a macro and cannot be used where a
 subroutine is necessary; for example, a subroutine pointer cannot point to
 it.

 Because it is implemented as a macro, getc does not work correctly with a
 stream parameter that has side effects. In particular, the following does
 not work:

 getc(*f++)

 In cases like this, use the fgetc subroutine instead.

 The fgetc subroutine performs the same function as getc, but fgetc is a
 genuine subroutine, not a macro. The fgetc subroutine runs more slowly
 than getc, but takes less space.

 The getchar macro returns the next character from the standard input
 stream, stdin. Note that getchar is also a macro.

 The getw subroutine returns the next word (int) from the input specified
 by the stream parameter and increments the associated file pointer, if
 defined, to point to the next word. The size of a word varies from one
 machine architecture to another. The getw subroutine returns the constant
 EOF at end-of-file or when an error occurs. Since EOF is a valid integer
 value, feof and ferror should be used to check the success of getw. The
 getw subroutine assumes no special alignment in the file.

 Because of possible differences in word length and byte ordering from one
 machine architecture to another, files written using putw are
 machine-dependent and may not be readable using getw on a different type
 of processor.

AIX Operating System Technical Reference
getc, fgetc, getchar, getw, getwc, fgetwc, getwchar

¦ Copyright IBM Corp. 1985, 1991
1.2.91 - 1

 The getwchar subroutine is equivalent to getwc with the argument stdin.

 The fgetwc subroutine is equivalent to fgetc except a wide character is
 returned.

 The getwc function obtains the next wide character, if present, from the
 input stream pointed to by stream, and advances the associated file
 position indicator for the stream, if defined. The file position
 indicator is advanced for each multibyte character obtained.

 The fgetwc and the getwchar subroutines return the next wide character
 which corresponds to a multibyte character from the input stream pointed
 to by stream. If the stream is at end-of-file, the end-of-file indicator
 for the stream is set and fgetwc returns WEOF. If a read error occurs,
 the error indicator for the stream is set and fgetwc returns WEOF.

 Return Value
 The getc, fgetc, getchar, and getw return the integer constant EOF at
 end-of-file or error, while the getwc, fgetwc, and getwchar return WEOF at
 end-of-file or error.

 Error Conditions
 These subroutines fail if one or more of the following are true:

 EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying
 stream and the process is delayed in the fgetc() operation.

 EBADF The file descriptor underlying stream is not a valid file
 descriptor open for reading.

 Note: If a wide character routine fails and errno is not set,
 this indicates that the translation from file code to
 wide code has failed.

 EINTR The read operation was terminated due to the receipt of a signal
 and no data was transferred.

 EIO The process is a member of a background process attempting to
 read from its controlling terminal, the process is either
 ignoring or blocking the SIGTTIN signal or the process group is
 orphaned.

 ENOMEM Insufficient storage space is available.

 ENXIO A request was made of a non-existent device, or the request was
 outside the capabilities of the device.

 Related Information
 In this book: "feof, ferror, clearerr, fileno" in topic 1.2.79, "fopen,
 freopen, fdopen" in topic 1.2.82, "fread, fwrite" in topic 1.2.84, "gets,
 fgets, getws, fgetws" in topic 1.2.117, "NLgetctab" in topic 1.2.190,
 "putc, putchar, fputc, putw, putwc, putwchar, fputwc" in topic 1.2.213,
 "scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf, wsscanf" in
 topic 1.2.241, and " stdio" in topic 1.2.283.

AIX Operating System Technical Reference
getc, fgetc, getchar, getw, getwc, fgetwc, getwchar

¦ Copyright IBM Corp. 1985, 1991
1.2.91 - 2

 1.2.92 getcwd

 Purpose
 Gets the path name of the current directory.

 Library
 Standard C Library (libc.a)

 Syntax

 char *getcwd (buf, size)
 char *buf;
 int size;

 Description
 The getcwd subroutine returns a pointer to a string containing the path
 name of the current directory. The value of the size parameter must be at
 least two greater than the length of the path name to be returned.

 If the buf parameter is a NULL pointer, the getcwd subroutine will, using
 the malloc subroutine, obtain the number of bytes of free space as
 specified by the size parameter. In this case, the pointer returned by
 the getcwd subroutine can be used as the parameter in a subsequent call to
 free.

 If the getcwd subroutine fails, NULL is returned and errno is set to
 indicate the error. The getcwd subroutine fails if the size parameter is
 not large enough or if an error occurs in a lower-level function.

 Error Conditions
 If any of the following conditions occur, the getcwd function returns a
 value of NULL and sets errno to the corresponding value:

 EINVAL The size argument is less than or equal to 0.

 ERANGE The size argument is greater than 0 but smaller than the length
 of the path name plus 1.

 EACCES Read or search permission was denied for a component of
 pathname.

 ENOMEM Insufficient storage space is available.

 Related Information
 In this book: "malloc, free, realloc, calloc, valloc, alloca, mallopt,
 mallinfo" in topic 1.2.162 and " popen, pclose, rpopen" in topic 1.2.207.

 The pwd command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
getcwd

¦ Copyright IBM Corp. 1985, 1991
1.2.92 - 1

 1.2.93 getdtablesize

 Purpose
 Gets descriptor table size.

 Syntax

 int getdtablesize ()

 Description
 The getdtablesize system call returns the size of a process descriptor
 table, which has at least 20 slots for each process. Table entries
 consist of small integers starting at 0.

 In AIX, getdtablesize returns NOFILE, which is 200.

 Related Information
 In this book: "close, closex" in topic 1.2.48, "dup" in topic 1.2.64,
 "dup2" in topic 1.2.65, "open, openx, creat" in topic 1.2.199, and
 "select" in topic 1.2.242.

AIX Operating System Technical Reference
getdtablesize

¦ Copyright IBM Corp. 1985, 1991
1.2.93 - 1

 1.2.94 getenv, NLgetenv

 Purpose
 Returns the value of an environment variable.

 Library
 Standard C Library (libc.a)

 Syntax

 char *getenv (name) char *NLgetenv (name)
 char *name; char *name;

 Description

 The getenv subroutine searches the environment list for a string of the
 form name=value. Environment variables are sometimes called shell
 variables since they are frequently set with shell commands.

 Note: NLgetenv is a front-end to the nl_langinfo subroutine, and the
 values returned by nl_langinfo are initialized by calling setlocale
 for the current locale (see "setlocale" in topic 1.2.251 and
 "nl_langinfo" in topic 1.2.198). If nl_langinfo returns a NULL,
 then NLgetenv calls getenv.

 Return Value
 The getenv subroutine returns a pointer to the value in the current
 environment if such a string is present. If such a string is not present,
 a NULL pointer is returned.

 Related Information
 In this book: "NLgetfile" in topic 1.2.191, "putenv" in topic 1.2.214,
 "nl_langinfo" in topic 1.2.198, "setlocale" in topic 1.2.251, and
 "environment" in topic 2.4.6.

 The sh command in AIX Operating System Commands Reference.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
getenv, NLgetenv

¦ Copyright IBM Corp. 1985, 1991
1.2.94 - 1

 1.2.95 getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent

 Purpose
 Gets information about a file system.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <fstab.h>

 struct fstab *getfsent () struct fstab *getfstype (type)
 char *type;

 struct fstab *getfsspec (spint setfsent ()
 char *spec;

 struct fstab *getfsfile (filint endfsent ()
 char *file

 Description
 The getfsent, getfsspec, getfstype, and getfsfile subroutines each return
 a pointer to a structure which contains information about a file system.
 The header file fstab.h describes the structure.

 These routines are provided for 4.3BSD compatibility. Since AIX uses the
 file /etc/filesystems rather than /etc/fstab, these routines expect a file
 as described in "filesystems" in topic 2.3.18. They return a pointer to
 an fstab structure in the static area, which must be copied if it is to be
 saved.

 The getfsent subroutine reads the next record of the file, opening the
 file if necessary.

 The setfsent subroutine opens the file and positions to the first record.

 The endfsent subroutine closes a file.

 The getfsspec and getfsfile subroutines sequentially search from the
 beginning of the file until a matching special file name or file system
 file name is found, or until the end of the file is encountered. The
 getfstype subroutine does likewise, matching on the file system type
 field.

 Return Value
 If an end-of-file condition or an error is encountered on reading,
 subroutines getfsent, getfsspec, getfsfile, and getfstype return a NULL
 pointer. The subroutines setfsent and endfsent return 1 on success and 0
 on error.

 Related Information

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

AIX Operating System Technical Reference
getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent

¦ Copyright IBM Corp. 1985, 1991
1.2.95 - 1

 1.2.96 getgrent, getgrgid, getgrnam, setgrent, endgrent

 Purpose
 Accesses group file entries.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <grp.h>

 struct group *getgrent () struct group *getgrnam (name)
 char *name;
 struct group *getgrgid (gid)
 int gid; void setgrent ()
 void endgrent ()

 Description
 The getgrent, getgrgid, and getgrnam subroutines return a pointer to a
 structure containing the broken-out fields of a line in the /etc/group
 file. The group structure is defined in the grp.h header file, and it
 contains the following members:

 char *gr_name; /* The name of the group */
 char *gr_passwd; /* The encrypted group password */
 gid_t gr_gid; /* The numerical group ID */
 char **gr_mem; /* Array of pointers to member names */

 The getgrent subroutine, when first called, returns a pointer to the first
 group structure in the file. On the next call, it returns a pointer to
 the next group structure in the file. You can call getgrent repeatedly to
 search the entire file.

 The getgrgid subroutine searches from the beginning of the file until it
 finds a numerical group ID matching the gid parameter. The subroutine
 then returns a pointer to the structure in which it was found.

 The getgrnam subroutine searches from the beginning of the file until it
 finds a group name matching the name parameter. The subroutine then
 returns a pointer to the structure in which it was found.

 These subroutines return a pointer to a group structure contained in the
 static area, which must be copied if it is to be saved. If an end-of-file
 condition or an error is encountered on reading, these functions return a
 NULL pointer.

 The setgrent subroutine rewinds the group file to allow repeated searches.

 The endgrent subroutine closes the group file when processing is complete.

 File
 /etc/group

 Error Conditions
 The getgrgid and getgrnam subroutines fail if one or more of the following
 are true:

AIX Operating System Technical Reference
getgrent, getgrgid, getgrnam, setgrent, endgrent

¦ Copyright IBM Corp. 1985, 1991
1.2.96 - 1

 EIO An I/O error has occurred.

 EINTR A signal was caught during the function.

 EMFILE Too many file descriptors are currently open for the process.

 ENFILE The system file table is full.

 Related Information
 In this book: "getlogin" in topic 1.2.103, "getpwent, getpwuid, getpwnam,
 setpwent, endpwent" in topic 1.2.114, and "group" in topic 2.3.26.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

AIX Operating System Technical Reference
getgrent, getgrgid, getgrnam, setgrent, endgrent

¦ Copyright IBM Corp. 1985, 1991
1.2.96 - 2

 1.2.97 getgroups

 Purpose
 Gets the group access list.

 Syntax

 #include <grp.h>

 int getgroups (ngroups, gidset)
 int ngroups, *gidset;

 Description
 The getgroups system call gets the current group access list of the user
 process. The list is stored in the array pointed to by the gidset
 parameter. The ngroups parameter indicates the number of entries that can
 be stored in this array. getgroups never returns more than NGROUPS
 entries. (NGROUPS is a constant defined in the grp.h header file.)

 As a special case, if the ngroups parameter is 0, the number of entries in
 the group access list of the user process is returned. The array pointed
 to by the gidset parameter is not modified.

 Return Value
 Upon successful completion, the getgroups system call returns the number
 of elements stored into the array pointed to by the gidset parameter. If
 getgroups fails, then a value of -1 is returned and errno is set to
 indicate the error.

 Error Conditions
 The getgroups system call fails if the following is true:

 EFAULT The ngroups and gidset parameters specify an array that is
 partially or completely outside of the process's allocated address
 space.

 EINVAL The argument, ngroups, is smaller than the number of entries in
 the current group access list.

 Related Information
 In this book: "initgroups" in topic 1.2.135 and "setgroups" in
 topic 1.2.249.

AIX Operating System Technical Reference
getgroups

¦ Copyright IBM Corp. 1985, 1991
1.2.97 - 1

 1.2.98 gethostbyaddr, gethostbyname, sethostent, endhostent

 Purpose
 Get network host entry.

 Library
 Internet Library (libc.a)

 Syntax
 #include <netdb.h>

 struct hostent *gethostbyaddr(advoidlsethostent(stayopen)
 char *addr; int stayopen;
 int len, type;
 void endhostent()
 struct hostent *gethostbyname(name)
 char *name;

 Description
 The gethostbyname and gethostbyaddr subroutines each return a pointer to
 an object. This object is a hostent structure, which contains information
 obtained from the name server program, or a field from a line in the
 /etc/hosts file (the network host data base). If the local name server is
 not running, these routines do a lookup in /etc/hosts.

 The hostent structure is defined in the netdb.h header file, and it
 contains the following members:

 char *h_name; /* official name of host */
 char **h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char **h_addr_list; /* list of addresses from name server */

 #define h_addr h_addr_list[0] /* address, for backward compatibility */

 The members of this structure are:

 h_name Official name of the host.

 h_aliases A zero terminated array of alternate names for the host.

 h_addrtype
 The type of address being returned. The subroutine always sets
 this value to AF_INET.

 h_length The length, in bytes, of the address.

 h_addr_list
 An array, terminated by 0, of pointers to the network addresses
 for the host. Host addresses are returned in network byte
 order.

 h_addr The first address in h_addr_list, provided for backward
 compatibility.

 The sethostent subroutine allows a request for the use of a connected
 socket using TCP for queries. If the stayopen parameter is nonzero, an
 option is set to send all queries to the name server using TCP and to
 retain the connection after each call to gethostbyname or gethostbyaddr.

AIX Operating System Technical Reference
gethostbyaddr, gethostbyname, sethostent, endhostent

¦ Copyright IBM Corp. 1985, 1991
1.2.98 - 1

 The endhostent subroutine closes the TCP connection.

 The gethostbyname and gethostbyaddr subroutines query the name server or
 search the file sequentially from its beginning until finding a matching
 host name or host address, or until encountering the end of the file.
 Host addresses are supplied in network order.

 Return Value
 The gethostbyname and gethostbyaddr subroutines return a pointer to a
 hostent structure on success.

 Note: The return value points to static data that is overwritten by
 subsequent calls.

 A NULL pointer (0) is returned if an error occurs or the end of the file
 is reached and the h_errno variable is set to indicate the error.

 Error Conditions
 The gethostbyname and gethostbyaddr subroutines fail if one or more of the
 following are true:

 HOST_NOT_FOUND
 The host specified by the name parameter was not found.

 TRY_AGAIN
 The local server did not receive a response from an
 authoritative server. Try again later.

 NO_RECOVERY
 This error code indicates an unrecoverable error.

 NO_ADDRESS
 The requested name is valid but does not have an Internet
 address at the name server.

 Files

 /etc/hosts Host name data base.

 /etc/resolv.conf Name server and domain name data base.

 Related Information
 In this book: "Related Network Publications" in topic 1.2.277.4.

 The discussion of host, named, and resolv.conf in AIX TCP/IP User's Guide.

AIX Operating System Technical Reference
gethostbyaddr, gethostbyname, sethostent, endhostent

¦ Copyright IBM Corp. 1985, 1991
1.2.98 - 2

 1.2.99 gethostid, sethostid

 Purpose
 Gets or sets the unique identifier of the current Internet host.

 Syntax

 int gethostid () int sethostid (hostid)
 int hostid;

 Description

 The gethostid system call returns the 32-bit identifier for the current
 host, as set by sethostid.

 The sethostid system call establishes a 32-bit identifier for the current
 host that is intended to be unique. Often, this is a DARPA Internet
 address for the local machine.

 This system call can only be used by processes with an effective user ID
 of superuser.

 Return Value

 Upon successful completion, the gethostid system call returns the
 identifier for the current host, and the sethostid system call returns a
 value of 0. If the gethostid or sethostid system call fails, a value of
 -1 is returned, and errno is set to indicate the error.

 Error Conditions
 The gethostid or sethostid system call fails if the following is true:

 EINVAL There are no IP interfaces available. IBM AIX TCP/IP is not
 installed on this system.

 The sethostid system call also fails if the following is true:

 EPERM The calling process did not have an effective user ID of
 superuser.

 Related Information
 In this book: "getsockname" in topic 1.2.120.

 The hostname command in AIX TCP/IP User's Guide.

AIX Operating System Technical Reference
gethostid, sethostid

¦ Copyright IBM Corp. 1985, 1991
1.2.99 - 1

 1.2.100 gethostname, sethostname

 Purpose
 Gets or sets the name of the current host.

 Syntax

 int gethostname (name, namelint sethostname (name, namelen)
 char *name; char *name;
 int namelen; int namelen;

 Description

 The gethostname system call returns the standard host name of the current
 host, as set by sethostname. The parameter namelen specifies the size of
 the name array. The returned name is null-terminated unless insufficient
 space is provided.

 The sethostname system call sets the name of the host machine name with
 the length namelen. This system call can only be used by processes with
 an effective user ID of superuser. In the AIX Operating System, the host
 name of a machine is usually set by AIX TCP/IP in its initialization
 program (/etc/rc.tcpip).

 Return Value

 Upon successful completion, a value of 0 is returned. If the gethostname
 or sethostname system call fails, a value of -1 is returned, and errno is
 set to indicate the error.

 Error Conditions
 The system call fails if one or more of the following are true:

 EFAULT The name parameter or namelen parameter gives an address that is
 not valid.

 EPERM The calling process did not have an effective user ID of
 superuser.

 Related Information
 In this book: "gethostid, sethostid" in topic 1.2.99.

 The hostname command in AIX TCP/IP User's Guide.

AIX Operating System Technical Reference
gethostname, sethostname

¦ Copyright IBM Corp. 1985, 1991
1.2.100 - 1

 1.2.101 getitimer, setitimer

 Purpose
 Gets and sets value of internal timer.

 Syntax

 #include <sys/time.h>

 int getitimer (which, value)int setitimer (which, value, ovalue)
 int which; int which;
 struct itimerval *value; struct itimerval *value, *ovalue;

 Description
 The getitimer system call returns the current value of the timer specified
 in which. The setitimer system call sets the timer in which to the
 specified value, returning the previous value of the timer if ovalue is
 not 0.

 The itimerval structure describes the timer value, as defined in the
 sys/time.h header file, and it contains the following members:

 struct timeval it_interval; /* timer interval */
 struct timeval it_value; /* current value */

 Setting it_interval to 0 disables the timer after it expires. An
 it_interval other than 0 specifies a value used to reload it_value when
 the timer expires.

 The it_value disables the timer immediately when set to 0. An it_value
 other than 0 indicates the time of the next timer expiration.

 Time values smaller than the resolution of the system clock are rounded up
 to its resolution, defined by IHZ, which is included in sys/param.h.

 The which parameter is set to one of the following:

 ITIMER_REAL The timer decrements in real time. When it expires, the
 system delivers a SIGALRM signal.

 ITIMER_VIRTUAL The time decrements in process virtual time; it runs only
 when the process is executing. When it expires, the system
 delivers a SIGVTALRM signal.

 ITIMER_PROF The timer decrements both in process virtual time and when
 the operating system is executing on behalf of the process.
 When it expires, the system delivers a SIGPROF signal.

 Return Value
 Upon successful completion, a value of 0 is returned. Otherwise, a value
 of -1 is returned, and errno is set to indicate the error.

 Error Conditions
 The getitimer or setitimer system call fails if one or more of the
 following is true:

 EFAULT The value or ovalue parameter points to a location outside of
 the process's allocated address space.

AIX Operating System Technical Reference
getitimer, setitimer

¦ Copyright IBM Corp. 1985, 1991
1.2.101 - 1

 EINVAL The value parameter specifies a time too large to handle.

 EINVAL The which parameter specifies an illegal value.

 Related Information
 In this book: "gettimeofday, settimeofday, ftime" in topic 1.2.123 and
 "sigaction, sigvec, signal" in topic 1.2.263.

AIX Operating System Technical Reference
getitimer, setitimer

¦ Copyright IBM Corp. 1985, 1991
1.2.101 - 2

 1.2.102 getlocal, setlocal

 Purpose
 Manages the <LOCAL> alias.

 Syntax

 int getlocal(localname, maxlength)
 char *localname;
 int maxlength;

 int setlocal(localname)
 char *localname;

 Description
 The getlocal system call returns the calling process's alias for <LOCAL>.
 The alias path name is returned in the localname buffer. The setlocal
 system call sets the value of the current <LOCAL> alias.

 The <LOCAL> alias is evaluated whenever the system encounters a symbolic
 link beginning with the string <LOCAL>. At that point, it substitutes the
 alias path name for <LOCAL> in the path name and continues path name
 interpretation normally. If the alias has a leading '/', then the name
 evaluation starts from the root directory, otherwise the directory
 containing the symbolic link is used to further evaluate the new name
 (identical to the semantics of ordinary symbolic links).

 Return Value
 Upon successful completion, a value of 0 is returned to the calling
 process. Otherwise, a value of -1 is returned and errno is set to
 indicate the error.

 Results
 The getlocal system call fails if any of the following are true:

 EINVAL The alias name is longer than maxlength (the length of the
 localname buffer).

 EFAULT localname is not a region inside the user's address space.

 The setlocal system call fails if any of the following are true:

 ENOTDIR A component of the path is not a directory.

 ENOENT The path name given does not exist.

 ENOENT A null path name was provided.

 ENOENT A hidden directory was named, but no component inside it matched
 the process's current site path list.

 ENOENT A symbolic link was named, but the file to which it refers does
 not exist.

 EACCES Search permission is denied on a component of the path prefix.

 EFAULT path points outside the process's allocated address space.

 EFAULT The name pointed at by localname is too long (current limit is
 30 characters).

AIX Operating System Technical Reference
getlocal, setlocal

¦ Copyright IBM Corp. 1985, 1991
1.2.102 - 1

 If the Transparent Computing Facility is installed on your system,
 getlocal can also fail if one or more of the following are true:

 ESITEDN1 path cannot be accessed because a site went down.

 ESITEDN2 The operation was terminated because a site failed.

 ENOSTORE path is a name relative to the working directory, but no site
 which stores this directory is currently up.

 ENOSTORE A component of path is replicated but not stored on any site
 which is currently up.

 Related Information
 In this book: "Creation and Execution" in topic 1.1.4.3.1 and "symlink"
 in topic 1.2.294.

AIX Operating System Technical Reference
getlocal, setlocal

¦ Copyright IBM Corp. 1985, 1991
1.2.102 - 2

 1.2.103 getlogin

 Purpose
 Gets the user's login name.

 Library
 Standard C Library (libc.a)

 Syntax

 char *getlogin ()

 Description
 The getlogin subroutine returns a pointer to the login name as found in
 the process's user info area as returned by getuinfo. Use the getlogin
 subroutine in conjunction with the getpwnam subroutine to locate the
 correct password file entry when the same user ID is shared by several
 login names.

 If the getlogin subroutine is called within a process that is not attached
 to a terminal, it returns a NULL pointer. The correct procedure for
 determining the login name is to call cuserid, or to call getlogin and if
 it fails, then to call getpwuid.

 If the login name is not found, getlogin returns a NULL pointer.

 Warning: The getlogin subroutine returns a pointer to a static area that
 is overwritten by successive calls.

 Error Conditions
 The getlogin subroutine fails if one or more of the following are true:

 EMFILE Too many file descriptors are in use by this process.

 ENFILE The system file table is full.

 ENXIO The calling process has no controlling terminal.

 Related Information
 In this book: "cuserid" in topic 1.2.57, "getgrent, getgrgid, getgrnam,
 setgrent, endgrent" in topic 1.2.96, "getpwent, getpwuid, getpwnam,
 setpwent, endpwent" in topic 1.2.114, and "getuinfo" in topic 1.2.125.

AIX Operating System Technical Reference
getlogin

¦ Copyright IBM Corp. 1985, 1991
1.2.103 - 1

 1.2.104 getmntent, setmntent, addmntent, endmntent, hasmntopt

 Purpose
 Gets file system descriptor file entry.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <stdio.h>
 #include <mntent.h>

 struct mntent *getmntent(filint addmntent(filep,mnt)
 FILE *filep; FILE *filep
 struct mntent *mnt;

 FILE *setmntent(filep, type)int endmntent(filep)
 char *filep; FILE *filep;
 char *type;

 char *hasmntopt(mnt, opt)
 struct mntent *mnt;
 char *opt;

 Description
 These routines are used to access the mounted file system description file
 /etc/mtab. In a TCF cluster, /etc/mtab is a symbolic link to a local-only
 file. To find out about file systems mounted on other sites, you must
 specify that site's <LOCAL>/mtab file to setmntent.

 The setmntent routine opens a mounted file system description file and
 returns a file pointer which can then be used with getmntent, addmntent,
 or endmntent. The type argument is the same as in fopen. The getmntent
 routine reads the next line from filep and returns a pointer to an object
 with the following structure containing the broken-out fields of a line in
 the mounted file system description file, <mntent.h>.

 The fields have meanings described in mntent:

 struct mntent {
 char *mnt_fsname; /* file system name */
 char *mnt_dir; /* file system path prefix */
 char *mnt_type; /* ufs, nfs, swap, or xx */
 char *mnt_opts; /* ro, quota, etc. */
 int mnt_freq; /* dump frequency, in days */
 int mnt_checkno; /* check number for parallel fsck */
 char mnt_flags; /* file system flags */
 gfs_t mnt_gfs; /* global file system number */
 pckno_t mnt_pack; /* pack number */
 long mnt_time; /* time when mounted */
 };

 The addmntent routine adds the mntent structure mnt to the end of the open
 file filep. Note that filep has to be opened for writing if this is to
 work. The hasmntopt routine scans the mnt_opts field of the mntent
 structure mnt for a substring that matches opt. It returns the address of

AIX Operating System Technical Reference
getmntent, setmntent, addmntent, endmntent, hasmntopt

¦ Copyright IBM Corp. 1985, 1991
1.2.104 - 1

 the substring if a match is found; otherwise, it returns the value 0. The
 endmntent routine closes the file.

 Warning: The returned mntent structure points to static information that
 is overwritten in each call.

 Return Value
 A NULL pointer (0) is returned if an error occurs or the end of a file is
 reached.

 File
 /etc/mtab

 Related Information
 In this book: "mntent, mtab" in topic 2.3.40.

AIX Operating System Technical Reference
getmntent, setmntent, addmntent, endmntent, hasmntopt

¦ Copyright IBM Corp. 1985, 1991
1.2.104 - 2

 1.2.105 getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent

 Purpose
 Gets network entry.

 Library
 Internet Library (libc.a)

 Syntax
 #include <netdb.h>

 struct netent *getnetent ()void setnetent (stayopen)
 int stayopen;
 struct netent *getnetbyname (name)
 char *name; void endnetent ()
 struct netent *getnetbyaddr (net, type)
 long net;
 int type;

 Description
 The getnetent, getnetbyname, and getnetbyaddr subroutines each return a
 pointer to an object. This object is a netent structure, which contains
 the field of a line in the /etc/networks file (the network data base).
 The netent structure is defined in the netdb.h header file, and it
 contains the following members:

 char *n_name; /* official name of net */
 char **n_aliases; /* alias list */
 int n_addrtype; /* net number type */
 unsigned long n_net; /* net number */

 The members of the structure are defined below:

 n_name Official name of the network.

 n_aliases An array, terminated with a 0, of alternate names for the
 network.

 n_addrtype The type of network number being returned. AF_INET (defined in
 <sys/socket.h>) is the only valid value for this field.

 n_net The network number. Network numbers are returned in machine
 byte order.

 The getnetent subroutine reads the next line of the file. If the file is
 not open, getnetent opens it.

 The setnetent subroutine opens and rewinds the file. If the stayopen
 parameter is 0, the net data base is closed after each call to
 getnetbyname or getnetbyaddr. Otherwise, the file is not closed after
 each call.

 The endnetent subroutine closes the file.

 The net parameter of getnetbyaddr subroutine contains the number of the
 network to be located. The type parameter specifies the address family
 for the network. The only supported value is AF_INET.

 The getnetbyname and getnetbyaddr subroutines search the file sequentially
 from its beginning until:

AIX Operating System Technical Reference
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent

¦ Copyright IBM Corp. 1985, 1991
1.2.105 - 1

 � Finding a matching net name, for getnetbyname

 � Finding a matching net number and type for getnetbyaddr

 � Encountering the end of the file, for either routine

 Network numbers are supplied in host order.

 Return Value

 A pointer to a netent structure is returned on success.

 Note: The return value points to static data that is overwritten by
 subsequent calls.

 A NULL pointer (0) is returned if an error occurs or the end of the file
 is reached.

 File

 /etc/networks Network name data base.

 Related Information

 The discussion of /etc/networks in AIX TCP/IP User's Guide.

AIX Operating System Technical Reference
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent

¦ Copyright IBM Corp. 1985, 1991
1.2.105 - 2

 1.2.106 getopt

 Purpose
 Gets flag letters from the argument vector.

 Library
 Standard C Library (libc.a)

 Syntax

 int getopt (argc, argv, optsextern char *optarg;
 int argc;
 char **argv; extern int optind, opterr;
 char *optstring;

 Description
 The getopt subroutine returns the next flag letter in the argv parameter
 list that matches a letter in the optstring parameter. The getopt
 subroutine is an aid to help programs interpret shell command-line flags
 that are passed to them.

 The optstring parameter is a string of recognized flag letters. If a
 letter is followed by a colon, the flag is expected to take a parameter
 that may or may not be separated from it by white space. The optarg
 external variable is set to point to the start of the flag's parameter on
 return from the getopt subroutine.

 The getopt subroutine places the argv index of the next argument to be
 processed in optind. optind is externally initialized to 1 so that
 argv[0] is not processed.

 When all flags have been processed (that is, up to the first nonflag
 argument), the getopt subroutine returns EOF. The special flag -- (dash
 dash) can be used to delimit the end of the flags; EOF is returned, and --
 is skipped.

 The getopt subroutine prints an error message on stderr and returns
 (int) '?' (question mark) when it encounters a flag letter that is not
 included in the optstring parameter. You can disable this error message
 by setting opterr to 0.

 Examples
 The following code fragment processes the flags for a command that can
 take the mutually exclusive flags a and b, and the flags f and o, both of
 which require parameters.

 #include <unistd.h> /* Needed for access system call constants */
 #include <stdio.h>

 main (argc, argv)
 int argc;
 char **argv;
 {
 int c;
 int aflg=0;
 int bflg=0;
 extern int optind;
 extern char *optarg;
 .
 .

AIX Operating System Technical Reference
getopt

¦ Copyright IBM Corp. 1985, 1991
1.2.106 - 1

 .
 while ((c = getopt(argc, argv, "abf:o:")) != EOF)
 {
 switch (c)
 {
 case 'a':
 if (bflg)
 errflg++;
 else
 aflg++;
 break;
 case 'b':
 if (aflg)
 errflg++;
 else
 bflg++;
 break;
 case 'f':
 ifile = optarg;
 break;
 case 'o':
 ofile = optarg;
 break;
 case '?':
 errflg++;
 } /* case */

 if (errflg)
 {
 fprintf(stderr, "usage:...");
 exit(2);
 }
 } /* while */
 if (aflg) printf ("-a flag seen\n");
 if (bflg) printf ("-b flag seen\n");

 for (; optind < argc; optind++)
 {
 if (access(argv[optind], R_OK))
 {
 .
 .
 .
 }
 } /* for */
 } /* main */

 Related Information
 The getopt command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
getopt

¦ Copyright IBM Corp. 1985, 1991
1.2.106 - 2

 1.2.107 getpagesize

 Purpose
 Gets system page size.

 Syntax

 int getpagesize ()

 Description
 The getpagesize system call returns the number of bytes in a page. Page
 granularity is the granularity of many of the memory management calls.

 The page size is a system page size and may not be the same as the
 underlying hardware page size.

 Related Information
 In this book: "brk, sbrk" in topic 1.2.21 and "getrlimit, setrlimit,
 vlimit" in topic 1.2.115.

AIX Operating System Technical Reference
getpagesize

¦ Copyright IBM Corp. 1985, 1991
1.2.107 - 1

 1.2.108 getpass

 Purpose
 Reads a password.

 Library
 Standard C Library (libc.a)

 Syntax

 char *getpass (prompt)
 char *prompt;

 Description
 The getpass subroutine writes the prompt string to standard error output,
 disables echoing, and reads up to a new-line character or EOF from the
 file /dev/tty.

 It returns a pointer to a null-terminated string of no more than eight
 characters. This return value points to data that is overwritten by
 successive calls. If the /dev/tty file cannot be opened, a NULL pointer
 is returned.

 An interrupt terminates input and sends an interrupt signal to the calling
 program before returning.

 File
 /dev/tty

 Error Conditions
 The getpass subroutine fails if one or more of the following are true:

 EINTR The getpass subroutine was interrupted by a signal.

 ENXIO The process does not have a controlling terminal.

 Related Information
 In this book: "crypt, encrypt, setkey" in topic 1.2.52.

AIX Operating System Technical Reference
getpass

¦ Copyright IBM Corp. 1985, 1991
1.2.108 - 1

 1.2.109 getpeername

 Purpose
 Gets the name of the connected peer.

 Syntax

 int getpeername (s, name, namelen)
 int s;
 struct sockaddr *name;
 int *namelen;

 Description

 The getpeername system call returns the name of the peer, or connected
 socket, that is connected to the socket specified by the s parameter. You
 should initialize the namelen to indicate the amount of space pointed to
 by name. On return, it contains the actual size of the name returned (in
 bytes).

 Return Value

 Upon successful completion, a value of 0 is returned. If the getpeername
 system call fails, a value of -1 is returned, and errno is set to indicate
 the error.

 Error Conditions
 The system call fails if one or more of the following are true:

 EBADF The s parameter is not valid.

 ENOTSOCK The s parameter refers to a file, not a socket.

 ENOTCONN The socket is not connected.

 ENOBUFS Insufficient resources were available in the system to complete
 the call.

 EFAULT The addr parameter is not in a writable part of the user address
 space.

 Related Information
 In this book: "bind" in topic 1.2.20, "getsockname" in topic 1.2.120, and
 "socket" in topic 1.2.275.

AIX Operating System Technical Reference
getpeername

¦ Copyright IBM Corp. 1985, 1991
1.2.109 - 1

 1.2.110 getpid, getpgrp, getppid

 Purpose
 Gets the process, process group, and parent process IDs.

 Syntax

 pid_t getpid ()

 pid_t getpgrp ()

 pid_t getppid ()

 Description
 The getpid system call returns the process ID of the calling process.

 The getpgrp system call returns the process group ID of the calling
 process.

 The getppid system call returns the process ID of the calling process's
 parent process.

 If a parent process terminates without waiting for all of its child
 processes to terminate, the remaining child processes become "orphans" and
 the parent process ID of each remaining child process is set to -1.
 However, in this case, the getppid system call returns 1 to allow for
 POSIX conformance.

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, " fork, vfork" in topic 1.2.83, "setpgid, setpgrp, setsid"
 in topic 1.2.252, and "sigaction, sigvec, signal" in topic 1.2.263.

AIX Operating System Technical Reference
getpid, getpgrp, getppid

¦ Copyright IBM Corp. 1985, 1991
1.2.110 - 1

 1.2.111 getpriority, setpriority, nice

 Purpose
 Gets or sets program scheduling priority.

 Library
 Standard C Library (libc.a)
 BSD Compatibility Library (libbsd.a)

 Syntax

 #include <sys/resource.h>

 prio= getpriority(which, whoint nice(incr)
 int prio, which, who; int incr;
 setpriority(which, who, prio)
 int which, who, prio;

 Description
 The scheduling priority of the process, process group, or user, as
 indicated by which and who is obtained with the getpriority system call
 and set with the setpriority system call. The which argument is one of
 PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted relative to
 which (a process identifier for PRIO_PROCESS, a process group identifier
 for PRO_PGRP, and a user ID for PRIO_USER). A 0 value for who denotes the
 current process, process group, or user. The prio value is in the range 0
 to 39. The default priority is 20; lower priorities cause more favorable
 scheduling.

 A process's priority value is also referred to as its nice value.

 The getpriority system call returns the highest priority (lowest numerical
 value) enjoyed by any of the specified processes. The setpriority system
 call sets the priorities of all of the specified processes to the
 specified value. Only the superuser may lower priorities.

 The nice system call adds the value of the incr parameter to the current
 process's priority value. If incr causes the priority value to fall
 outside the range 0 to 39, nice sets the priority value to the
 corresponding limit.

 Return Value
 Upon successful completion, getpriority and nice return a priority value,
 and setpriority returns 0. Otherwise, -1 is returned and errno is set to
 indicate the error.

 Error Conditions
 The getpriority, setpriority and nice system calls fail if one or more of
 the following are true:

 ESRCH No process was located using the which and who values specified.

 EINVAL which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

 EPERM The calling process does not have an effective user ID of the
 superuser.

 EPERM The incr parameter is negative or greater than 40, and the

AIX Operating System Technical Reference
getpriority, setpriority, nice

¦ Copyright IBM Corp. 1985, 1991
1.2.111 - 1

 effective user ID of the calling process is not a superuser.

 EACCES A non-superuser attempted to lower a process priority.

 Subtopics
 1.2.111.1 Compatibility Note

AIX Operating System Technical Reference
getpriority, setpriority, nice

¦ Copyright IBM Corp. 1985, 1991
1.2.111 - 2

 1.2.111.1 Compatibility Note
 The routines getpriority, setpriority, and nice are also provided as
 compatibility routines in libbsd.a. The libbsd.a version of these
 routines differ from the libc.a version only in that they use priority
 values in the range of -20 to 20, instead of 0 to 39.

 Note also that certain AIX commands with 4.3BSD origins (csh, renice, and
 the 4.3BSD mode of ps) display and expect priority values in the BSD
 range, while others (nice and the System V UNIX mode of ps) use priority
 values in the range of 0 to 39.

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71 and " fork, vfork" in topic 1.2.83.

 The nice command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
Compatibility Note

¦ Copyright IBM Corp. 1985, 1991
1.2.111.1 - 1

 1.2.112 getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent

 Purpose
 Gets protocol entry.

 Library
 Internet Library (libc.a)

 Syntax
 #include <netdb.h>

 struct protoent *getprotoentvoid setprotoent (stayopen)
 int stayopen;
 struct protoent *getprotobyname (name)
 char *name; void endprotoent ()
 struct protoent *getprotobynumber (proto)
 int proto;

 Description
 The getprotoent, getprotobyname, and getprotobynumber subroutines each
 return a pointer to an object. This object is a protoent structure, which
 contains the field of a line in the /etc/protocols file (the network
 protocol data base). The protoent structure is defined in the netdb.h
 header file, and it contains the following members:

 char *p_name; /* official name of protocol */
 char **p_aliases; /* alias list */
 long p_proto; /* protocol number */

 The members of the structure are defined below:

 p_name Official name of the protocol.

 p_aliases An array, terminated by a 0, of alternate names for the
 protocol.

 p_proto The protocol number.

 The getprotoent subroutine reads the next line of the file. If the file
 is not open, getprotoent opens it.

 The setprotoent subroutine opens and rewinds the file. If the stayopen
 parameter is 0, the protocol data base is closed after each call to
 getprotobyname or getprotobynumber. Otherwise, the file is not closed
 after each call.

 The endprotoent subroutine closes the file.

 The getprotobyname and getprotobynumber subroutines search the file
 sequentially from its beginning until finding a matching protocol name or
 protocol number, or until encountering the end of the file.

 Return Value

 A pointer to a protoent structure is returned on success.

 Note: The return value points to static data that is overwritten by
 subsequent calls.

AIX Operating System Technical Reference
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent

¦ Copyright IBM Corp. 1985, 1991
1.2.112 - 1

 A NULL pointer (0) is returned if an error occurs or the end of the file
 is reached.

 File

 /etc/protocols Protocol name data base.

 Related Information

 The discussion of /etc/protocols in AIX TCP/IP User's Guide.

AIX Operating System Technical Reference
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent

¦ Copyright IBM Corp. 1985, 1991
1.2.112 - 2

 1.2.113 getpw

 Purpose
 Gets a password file entry, given the user ID.

 Library
 Standard C Library (libc.a)

 Syntax

 int getpw (uid, buf)
 int uid;
 char *buf;

 Description
 The getpw subroutine is included only for compatibility with prior systems
 and should not be used unless your program is going to be used with a
 prior system. See "getpwent, getpwuid, getpwnam, setpwent, endpwent" in
 topic 1.2.114 and "putpwent" in topic 1.2.215 for the correct subroutines
 to use.

 The getpw searches the password file for a user ID number that matches the
 uid parameter. When a match is found, getpw copies the line of the
 password file in which the match was found into an array pointed to by the
 buf parameter. The subroutine then returns a value of 0. If a match
 cannot be found, the subroutine returns a nonzero value.

 File
 /etc/passwd

 Related Information
 In this book: "passwd" in topic 2.3.44.

AIX Operating System Technical Reference
getpw

¦ Copyright IBM Corp. 1985, 1991
1.2.113 - 1

 1.2.114 getpwent, getpwuid, getpwnam, setpwent, endpwent

 Purpose
 Gets a password file entry.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <pwd.h>

 struct passwd *getpwent () void setpwent ()

 struct passwd *getpwuid (uidvoid endpwent ()
 int uid;

 struct passwd *getpwnam (name)
 char *name;

 Description
 The getpwent, getpwuid, and getpwnam subroutines return a pointer to a
 structure containing the broken-out fields of a line in the /etc/passwd
 file. The passwd structure is defined in the pwd.h header file, and it
 contains the following members:

 char *pw_name;
 char *pw_passwd;
 uid_t pw_uid;
 gid_t pw_gid;
 char *pw_age;
 int pw_quota;
 char *pw_comment;
 char *pw_etc;
 char *pw_dir;
 char *pw_shell;

 The fields have meanings described in "passwd" in topic 2.3.44.

 The getpwent subroutine, when first called, returns a pointer to the first
 passwd structure in the file. On the next call, it returns a pointer to
 the next passwd structure in the file. Successive calls can be used to
 search the entire file.

 The getpwuid subroutine searches from the beginning of the file until it
 finds a numerical user ID matching the uid parameter. The subroutine then
 returns a pointer to the structure in which it was found.

 The getpwnam subroutine searches from the beginning of the file until it
 finds a login name matching the name parameter. The search is made using
 flattened names; the characters of the name searched for are the ASCII
 equivalent character (see "Introduction to International Character
 Support" in Managing the AIX Operating System.) The subroutine then
 returns a pointer to the structure in which it was found.

 If an end-of-file condition or an error is encountered on reading, these
 functions return a NULL pointer.

AIX Operating System Technical Reference
getpwent, getpwuid, getpwnam, setpwent, endpwent

¦ Copyright IBM Corp. 1985, 1991
1.2.114 - 1

 The setpwent subroutine rewinds the password file to allow repeated
 searches.

 The endpwent subroutine closes the group file when processing is complete.

 Warning: All information is contained in a static area, so it must be
 copied if it is to be saved.

 File

 /etc/passwd

 Error Conditions
 The getpwuid and getpwnam subroutines fail if one or more of the following
 are true:

 EIO An I/O error has occurred.

 EINTR A signal was caught during the function.

 EMFILE Too many file descriptors are currently open for the process.

 ENFILE The system file table is full.

 Related Information
 In this book: "getgrent, getgrgid, getgrnam, setgrent, endgrent" in
 topic 1.2.96, "getlogin" in topic 1.2.103, and "putpwent" in
 topic 1.2.215.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

AIX Operating System Technical Reference
getpwent, getpwuid, getpwnam, setpwent, endpwent

¦ Copyright IBM Corp. 1985, 1991
1.2.114 - 2

 1.2.115 getrlimit, setrlimit, vlimit

 Purpose
 Controls maximum system resource consumption.

 Syntax

 #include <sys/time.h>
 #include <sys/resource.h>

 getrlimit (resource, rlp) setrlimit (resource, rlp)
 int resource; int resource;
 struct rlimit *rlp; struct rlimit *rlp;

 Description
 Limits on the consumption of system resources by the current process and
 each process it creates may be obtained with the getrlimit call and set
 with the setrlimit call.

 The resource parameter is one of the following:

 RLIMIT_CPU The maximum amount of CPU time (in seconds) to be used by
 each process.

 RLIMIT_FSIZE The largest size, in bytes, of any single file that may be
 created.

 RLIMIT_DATA The maximum size, in bytes, of the data segment for a
 process; this defines how far a program may extend its break
 with the sbrk system call.

 RLIMIT_STACK The maximum size, in bytes, of the stack segment for a
 process; this defines how far a program's stack segment may
 be extended. Stack extension is performed automatically by
 the system.

 RLIMIT_CORE The largest size, in bytes, of a core file that may be
 created.

 RLIMIT_RSS The maximum size, in bytes, to which a process's resident set
 size may grow. This imposes a limit on the amount of
 physical memory to be given to a process; if memory is tight,
 the system will prefer to take memory from processes that are
 exceeding their declared resident set size.

 A resource limit is specified as a soft limit and a hard limit. When a
 soft limit is exceeded, a process may receive a signal (for example, if
 the CPU time is exceeded), but it will be allowed to continue execution
 until it reaches the hard limit (or modifies its resource limit). The
 rlimit structure is used to specify the hard and soft limits on a
 resource.

 struct rlimit {
 long rlim_cur; /*current(soft)limit*/
 long rlim_max; /*hard limit*/
 };

 Only the superuser may raise the maximum limits. Other users may only
 alter rlim_cur within the range from 0 to rlim_max or (irreversibly) lower

AIX Operating System Technical Reference
getrlimit, setrlimit, vlimit

¦ Copyright IBM Corp. 1985, 1991
1.2.115 - 1

 rlim_max.

 An infinite value for a limit is defined as RLIM_INFINITY (0x7fffffff).

 Because this information is stored in the per-process information, this
 system call must be executed directly by the shell if it is to affect all
 future processes created by the shell; limit is thus a built-in command to
 csh.

 The system refuses to extend the data or stack space when the limits would
 be exceeded in the normal way; a break call fails if the data space limit
 is reached. When the stack limit is reached, the process receives a
 segmentation fault (SIGSEGV). If this signal is not caught by a handler
 using the signal stack, this signal will kill the process.

 When the soft CPU time limit is exceeded, a signal SIGXCPU is sent to the
 offending process.

 Compatibility Note

 To maintain upward compatibility with older BSD programs, the vlimit
 interface is also supported. It is used by compiling with the Berkeley
 Compatibility Library (libbsd.a). Its syntax is as follows:

 #include <sys/vlimit.h>

 vlimit (resource, value)
 int resource, value;

 The flags for the resource parameter are defined in sys/vlimit.h, and are
 mapped to corresponding flags for setrlimit. The value parameter is an
 integer which is used as a hard limit parameter to setrlimit.

 Return Value
 A return value of 0 indicates that the call succeeded, changing or
 returning the resource limit. A return value of -1 indicates that an
 error occurred, and an error code is stored in the global location errno.

 Error Conditions
 The possible errors are:

 EFAULT The address specified for rlp is invalid.

 EPERM The limit specified to setrlimit would have raised the maximum
 limit value, and the caller is not the superuser.

 Related Information
 In this book: "setquota" in topic 1.2.253, "sigaction, sigvec, signal" in
 topic 1.2.263, and "sigstack" in topic 1.2.268.

 The csh command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
getrlimit, setrlimit, vlimit

¦ Copyright IBM Corp. 1985, 1991
1.2.115 - 2

 1.2.116 getrusage, vtimes

 Purpose
 Gets information about resource utilization.

 Syntax

 #include <sys/time.h>
 #include <sys/resource.h>

 #define 0U/*calling process*/
 #de-1ne /*terminatedRchild process*/

 getrusage (who,rusage)
 int who;
 struct rusage *rusage;

 Description
 The getrusage system call returns information describing the resources
 utilized by the current process, or all its waited-for terminated child
 processes. The who parameter is one of RUSAGE_SELF or RUSAGE_CHILDREN.
 The buffer to which rusage points will be filled in with the following
 structure:

 struct rusage {
 struct timeval ru_utime; /*user time used*/
 struct timeval ru_stime; /*system time used*/
 long ru_maxrss;
 long ru_ixrss; /*integral shared text memory size*/
 long ru_idrss; /*integral unshared data size*/
 long ru_isrss; /*integral unshared stack size*/
 long ru_minflt; /*page reclaims*/
 long ru_majflt; /*page faults*/
 long ru_nswap; /*swaps*/
 long ru_inblock; /*block input operations*/
 long ru_oublock; /*block output operations*/
 long ru_msgsnd; /*messages sent*/
 long ru_msgrcv; /*messages received*/
 long ru_nsignals; /*signals received*/
 long ru_nvcsw; /*voluntary context switches*/
 long ru_nivcsw; /*involuntary context switches*/
 };

 The fields are interpreted as follows:

 ru_utime The total amount of time spent executing in user mode.

 ru_stime The total amount of time spent in the system executing on behalf
 of the process(es).

 ru_maxrss The maximum resident set size utilized (in kilobytes).

 ru_ixrss An integral value indicating the amount of memory used by the
 text segment that was also shared among other processes. This
 value is expressed in units of kilobytes * seconds-of-execution
 and is calculated by summing the number of shared memory pages in
 use each time the internal system clock ticks and then averaging
 over one second intervals.

 ru_idrss An integral value of the amount of unshared memory residing in

AIX Operating System Technical Reference
getrusage, vtimes

¦ Copyright IBM Corp. 1985, 1991
1.2.116 - 1

 the data segment of a process (expressed in units of kilobytes *
 seconds-of-execution).

 ru_isrss An integral value of the amount of unshared memory residing in
 the stack segment of a process (expressed in units of kilobytes *
 seconds-of-execution).

 ru_minflt The number of page faults serviced without any I/O activity;
 here I/O activity is avoided by reclaiming a page frame from the
 list of pages awaiting reallocation.

 ru_majflt The number of page faults serviced that required I/O activity.

 ru_nswap The number of times a process was swapped out of main memory.

 ru_inblock The number of times the file system had to perform input.

 ru_oublock The number of times the file system had to perform output.

 ru_msgsnd The number of IPC messages sent.

 ru_msgrcv The number of IPC messages received.

 ru_nsignals The number of signals delivered.

 ru_nvcsw The number of times a context switch resulted due to a process
 voluntarily giving up the processor before its time slice was
 completed (usually to await availability of a resource).

 ru_nivcsw The number of times a context switch resulted due to a higher
 priority process becoming runnable or because the current process
 exceeded its time slice.

 Note: The numbers ru_inblock and ru_oublock account only for real I/O;
 data supplied by the caching mechanism is charged only to the first
 process to read or write the data.

 Compatibility Note

 To provide compatibility with older programs, the interface to the BSD
 vtimes function is supported. It is used by compiling with the Berkeley
 Compatibility Library (libbsd.a). Its syntax is as follows:

 #include <sys/vtimes.h>

 vtimes (par_vm, ch_vm)
 struct vtimes * par_vm, *ch_vm;

 The vtimes subroutine returns accounting information for the current
 process and for the terminated child processes of the current process.
 Either par_vm or ch_vm or both may be 0, in which case only the
 information for the pointers which are nonzero is returned.

 After the call, each buffer contains information as defined by the
 contents of the include file sys/vtimes.h.

 Error Conditions
 The possible errors for getrusage are:

 EINVAL The who parameter is not a valid value.

AIX Operating System Technical Reference
getrusage, vtimes

¦ Copyright IBM Corp. 1985, 1991
1.2.116 - 2

 EFAULT The address specified by the rusage parameter is not in a valid
 part of the process address space.

 Related Information
 In this book: "gettimeofday, settimeofday, ftime" in topic 1.2.123 and
 "wait, waitpid" in topic 1.2.325.

AIX Operating System Technical Reference
getrusage, vtimes

¦ Copyright IBM Corp. 1985, 1991
1.2.116 - 3

 1.2.117 gets, fgets, getws, fgetws

 Purpose
 Reads characters or wide characters from a stream.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <stdio.h>

 char *gets (s) char *fgets (s, n, stream)
 char *s; char *s;
 int n;
 wchar_t *getws (s) FILE *stream;
 wchar_t *s;

 wchar_t *fgetws (s, n, stream)
 wchar_t *s;
 int n;
 FILE *stream;

 Description
 The gets subroutine reads characters from the standard input stream,
 stdin, into the array pointed to by the s parameter. Data is read until a
 new-line character is read or an end-of-file condition is encountered. If
 reading is stopped due to a new-line character, the new-line character is
 discarded and the string is terminated with a null character.

 The fgets subroutine reads characters from the data pointed to by the
 stream parameter into the array pointed to by the s parameter. Data is
 read until n - 1 characters have been read, until a new-line character is
 read and transferred to s, or until an end-of-file condition is
 encountered. The string is then terminated with a null character.

 The getws subroutine reads wide characters from the input stream pointed
 to by stdin into the array pointed to by s until end-of-file is
 encountered or a new-line character is read. Any new-line character is
 discarded, and a NULL character is written immediately after the last
 character read into the array.

 The fgetws subroutine reads wide characters (at most one less than the
 number of the characters specified by n) from the stream pointed to by
 stream into the array pointed to by s. No additional characters are read
 after a new-line character (which is retained) or after end-of-file. A
 NULL character is written immediately after the last character read into
 the array.

 Return Value
 If end-of-file is encountered and no characters have been read, no
 characters are transferred to s and a NULL pointer is returned. If a read
 error occurs, a NULL pointer is returned. Otherwise, s is returned.

 Error Conditions
 The gets and fgets subroutines fail if one or more of the following are
 true:

AIX Operating System Technical Reference
gets, fgets, getws, fgetws

¦ Copyright IBM Corp. 1985, 1991
1.2.117 - 1

 EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying
 stream and the process would be delayed in the fgetc operation.

 EBADF The file descriptor underlying stream is not a valid file
 descriptor open for reading.

 EINTR The read operation was terminated due to the receipt of a signal
 and no data was transferred.

 EIO The process is a member of a background process attempting to
 read from its controlling terminal, the process is either
 ignoring or blocking the SIGTTIN signal or the process group is
 orphaned.

 ENOMEM Insufficient storage space is available.

 ENXIO A request was made of a non-existent device, or the request was
 outside the capabilities of the device.

 Related Information
 In this book: "feof, ferror, clearerr, fileno" in topic 1.2.79, "fopen,
 freopen, fdopen" in topic 1.2.82, "fread, fwrite" in topic 1.2.84, "getc,
 fgetc, getchar, getw, getwc, fgetwc, getwchar" in topic 1.2.91, "puts,
 fputs, putws, fputws" in topic 1.2.216, "scanf, fscanf, sscanf, NLscanf,
 NLfscanf, NLsscanf, wsscanf" in topic 1.2.241, and " stdio" in
 topic 1.2.283.

AIX Operating System Technical Reference
gets, fgets, getws, fgetws

¦ Copyright IBM Corp. 1985, 1991
1.2.117 - 2

 1.2.118 getservent, getservbyname, getservbyport, setservent, endservent

 Purpose
 Gets service entry.

 Library
 Internet Library (libc.a)

 Syntax
 #include <netdb.h>

 struct servent *getservent () void setservent (stayopen)
 int stayopen;
 struct servent *getservbyname (name, proto)
 char *name, *proto; void endservent ()
 struct servent *getservbyport (port, proto)
 int port;
 char *proto;

 Description
 The getservent, getservbyname, and getservbyport subroutines each return a
 pointer to an object. This object is a servent structure, which contains
 the field of a line in the /etc/services file (the network services data
 base). The servent structure is defined in the netdb.h header file, and
 it contains the following members:

 char *s_name; /* official name of service */
 char **s_aliases; /* alias list */
 long s_port; /* port where service resides */
 char *s_proto; /* protocol to use */

 The members of the structure are defined below:

 s_name Official name of the service.

 s_aliases An array, terminated by a 0, of alternate names for the service.

 s_port The port number at which the service resides. Port numbers are
 returned in network byte order.

 s_proto The name of the protocol to use when contacting the service.

 The getservent subroutine reads the next line of the file. If the file is
 not open, getservent opens it.

 The setservent subroutine opens and rewinds the file. If the stayopen
 parameter is 0, the service data base is closed after each call to
 getservbyname or getservbyport. Otherwise, the file is not closed after
 each call.

 The endservent subroutine closes the file.

 The getservbyname and getservbyport subroutines search the file
 sequentially from its beginning until finding a matching protocol name or
 port number, or until encountering the end of the file. When a protocol
 name is also supplied, searches also match the protocol.

 Return Value

AIX Operating System Technical Reference
getservent, getservbyname, getservbyport, setservent, endservent

¦ Copyright IBM Corp. 1985, 1991
1.2.118 - 1

 A pointer to a servent structure is returned on success.

 Note: The return value points to static data that is overwritten by
 subsequent calls.

 A NULL pointer (0) is returned if an error occurs or the end of the file
 is reached.

 File

 /etc/services Service name data base.

 Related Information
 In this book: "getprotoent, getprotobynumber, getprotobyname,
 setprotoent, endprotoent" in topic 1.2.112.

 The discussion of /etc/services in AIX TCP/IP User's Guide.

AIX Operating System Technical Reference
getservent, getservbyname, getservbyport, setservent, endservent

¦ Copyright IBM Corp. 1985, 1991
1.2.118 - 2

 1.2.119 getsites

 Purpose
 Determines sites which are in the current TCF cluster.

 Syntax

 #include <sys/types.h>

 int getsites (sitep, maxsites)
 sitestat_t *sitep;
 int maxsites;

 Description
 The getsites system call returns information about which AIX/370 and AIX
 PS/2 sites are in the current TCF cluster. These sites are also referred
 to collectively as the current network partition. The sitep argument is a
 pointer to a buffer of length maxsites*sizeof (sitestat_t), with each
 element representing a site (that is, sitep[i] is the status information
 for site i). Site i is in the current TCF cluster if (sitep[i] & GS_UP) !=
 0. If maxsites is not large enough to return all of the site information,
 -1 is returned. Otherwise, the return value is the maximum site number
 plus one. A good value to be passed as the maxsites argument is the
 constant MAXSITE which is defined in the file <sys/param.h>.

 Return Value
 Upon successful completion of getsites, the maximum site number plus one
 is returned. Otherwise, -1 is returned and errno is set to indicate the
 error.

 Error Conditions
 The getsites system call fails if any of the following are true:

 EINVAL maxsites is zero or negative.

 EFAULT sitep does not point to a writable region inside the user's
 address space.

 EFAULT maxsites is not big enough to return all the site information.

 Related Information
 In this book: "netctrl" in topic 1.2.185, and "site" in topic 1.2.272.

 The clusterstart and clusterstop commands in the AIX Operating System
 Command Reference.

AIX Operating System Technical Reference
getsites

¦ Copyright IBM Corp. 1985, 1991
1.2.119 - 1

 1.2.120 getsockname

 Purpose
 Gets the socket name.

 Library
 Internet Library (libc.a)

 Syntax

 #include <sys/types.h>
 #include <sys/socket.h>

 int getsockname (s, name, namelen)
 int s;
 struct sockaddr *name;
 int *namelen;

 Description

 The getsockname system call stores the current name for the socket
 specified by the s parameter in the structure pointed to by the name
 parameter. Initialize the value pointed to by the namelen parameter to
 indicate the amount of space pointed to by name. On return, the namelen
 parameter points to the actual size (in bytes) of the name returned (in
 bytes).

 Return Value

 Upon successful completion, a value of 0 is returned. If the getsockname
 system call fails, a value of -1 is returned, and errno is set to indicate
 the error.

 Error Conditions
 The system call fails if one or more of the following are true:

 EBADF The s parameter is not valid.

 ENOTSOCK The s parameter refers to a file, not a socket.

 ENOBUFS Insufficient resources were available in the system to complete
 the call.

 EFAULT The addr parameter is not in a writable part of the user address
 space.

 Related Information
 In this book: "bind" in topic 1.2.20 and "socket" in topic 1.2.275.

AIX Operating System Technical Reference
getsockname

¦ Copyright IBM Corp. 1985, 1991
1.2.120 - 1

 1.2.121 getsockopt, setsockopt

 Purpose
 Gets and sets options on sockets.

 Library
 Internet Library (libc.a)

 Syntax

 #include <sys/types.h>
 #include <sys/socket.h>

 int getsockopt (s, level, optname, optval, optlen)
 int s, level, optname;
 char *optval;
 int *optlen;

 int setsockopt (s, level, optname, optval, optlen)
 int s, level, optname;
 char *optval;
 int optlen;

 Description

 The getsockopt and setsockopt system calls manipulate options associated
 with a socket. Options may exist at multiple protocol levels; they are
 always present at the uppermost socket level.

 When manipulating socket options, you must specify the level at which the
 option resides and the name of the option. To manipulate options at the
 socket level, specify level as SOL_SOCKET. To manipulate options at any
 other level, supply the appropriate protocol number for the protocol
 controlling the option. For example, to indicate that an option will be
 interpreted by the TCP protocol, set level to the protocol number of TCP.
 For more information, see "getprotoent" on page 1.2.112.

 Use the parameters optval and optlen to access option values for
 setsockopt. For getsockopt, these parameters identify a buffer in which
 the value for the requested option or options are returned. For
 getsockopt, the optlen parameter initially contains the size of the buffer
 pointed to by the optval parameter. On return, the optlen parameter is
 modified to indicate the actual size of the value returned. If no option
 value is supplied or returned, the optval parameter can be 0.

 Most socket-level options take an int parameter for optval. For
 setsockopt, the parameter should be nonzero to enable a boolean option, or
 0 if the option is to be disabled. SO_LINGER uses a struct linger
 parameter, defined in sys/socket.h, which specifies the desired state of
 the option and the linger interval.

 The optname parameter and any specified options are passed uninterpreted
 to the appropriate protocol module for interpretation. The sys/socket.h
 header file contains definitions for socket level options. These options
 are:

 SO_DEBUG Turns on recording of debugging information.
 SO_REUSEADDR Allows local address reuse.
 SO_KEEPALIVE Keeps connections active.
 SO_DONTROUTE Does not apply routing on outgoing messages.

AIX Operating System Technical Reference
getsockopt, setsockopt

¦ Copyright IBM Corp. 1985, 1991
1.2.121 - 1

 SO_LINGER Lingers on a close system call if data is present.
 SO_OOBINLINE Leaves received out-of-band data (data marked urgent) in
 line.
 SO_SNDBUF Sends buffer size.
 SO_RCVBUF Receives buffer size.
 SO_ERROR Gets error status.
 SO_TYPE Gets socket type.
 SO_BROADCAST Request permission to transmit broadcast messages.

 SO_DEBUG enables debugging in the underlying protocol modules.
 SO_REUSEADDR indicates that the rules used in validating addresses
 supplied by a bind system call should allow reuse of local addresses.
 SO_KEEPALIVE enables the periodic transmission of messages on a connected
 socket. If the connected socket fails to respond to these messages, the
 connection is broken and processes using that socket are notified with a
 SIGPIPE signal. SO_DONTROUTE indicates that outgoing messages should
 bypass the standard routing facilities and are directed to the appropriate
 network interface according to the network portion of the destination
 address. SO_LINGER controls the action taken when unsent messages are
 queued on a socket and a close system call is performed. If SO_LINGER is
 set, the system blocks the process during the close system call until it
 can transmit the data or until the time expires. Specify the amount of
 time for the linger interval by using the setsockopt system call when
 requesting SO_LINGER. If SO_LINGER is not specified and a close system
 call is issued, the system handles the call in a way that allows the
 process to continue as quickly as possible.

 The option SO_BROADCAST requests permission to send broadcast datagrams on
 the socket. With protocols that support out-of-band data, the
 SO_OOBINLINE option requests that out-of-band data be placed in the normal
 data input queue as received; it will then be accessible with recv or read
 system calls without the MSG_OOB flag. SO_SNDBUF and SO_RCVBUF are
 options to adjust the normal buffer sizes allocated for output and input
 buffers, respectively. The buffer size may be increased for high-volume
 connections, or may be decreased to limit the possible backlog of incoming
 data. The system places an absolute limit on these values. Finally,
 SO_TYPE and SO_ERROR are options used only with setsockopt. SO_TYPE
 returns the type of the socket, such as SOCK_STREAM; it is useful for
 servers that inherit sockets on startup. SO_ERROR returns any pending
 error on the socket and clears the error status. It may be used to check
 for asynchronous errors on connected datagram sockets or for other
 asynchronous errors.

 Options at other protocol levels vary in format and name.

 Return Value

 Upon successful completion, a value of 0 is returned. If the getsockopt
 or setsockopt system call fails, a value of -1 is returned, and errno is
 set to indicate the error.

 Error Conditions
 The system calls fail if one or more of the following are true:

 EBADF The s parameter is not valid.

 ENOTSOCK The s parameter refers to a file, not a socket.

 ENOPROTOOPT The option is unknown.

AIX Operating System Technical Reference
getsockopt, setsockopt

¦ Copyright IBM Corp. 1985, 1991
1.2.121 - 2

 EFAULT The optval parameter is not in a writable part of the user
 address space.

 Related Information
 In this book: "getprotoent, getprotobynumber, getprotobyname,
 setprotoent, endprotoent" in topic 1.2.112, and "socket" in topic 1.2.275.

AIX Operating System Technical Reference
getsockopt, setsockopt

¦ Copyright IBM Corp. 1985, 1991
1.2.121 - 3

 1.2.122 getspath, setspath

 Purpose
 Manages the site path list.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sys/types.h>

 getspath(site_path, length)
 sitepath_t *site_path;
 int length;

 setspath(site_path, length)
 sitepath_t *site_path;
 int length;

 Description
 The site path is used when resolving file names which refer to hidden
 directories. It is also used to select execution sites in the exec, rexec,
 run, and migrate system calls.

 The site path consists of an array of site path elements. These elements
 may be of three possible types:

 NULLSITE Refers to the local site or to that site's machine type or a
 compatible type.

 site_number
 The number of a specific cluster site. This type of element
 refers to the specified site or to that site's machine type or a
 compatible type.

 (cpu_type|SPATH_CPU)
 A machine type number that is specified in the file <a.out.h>.
 It refers to the specified machine type or to an arbitrarily
 selected site of that CPU type.

 NULLSITE and SPATH_CPU are constants defined in the file <sys/types.h>.
 Known cpu_type numbers include:

 hidden
 code common directory compatible
 name component type
 CPU_386 iAPX 80386 i386 none
 CPU_S370 System/370 i370 none
 CPU_XA370 XA/370 xa370 i370

 When selecting a component of a hidden directory (see "chhidden" in
 topic 1.2.42), each element of the site path is tried in turn. If a file
 is found in the hidden directory with the name of the machine type or the
 name of a compatible type referred to by the site path element, that file
 is used. A compatible type is chosen only if the exact type is not found.

 The site path is also used to choose a site for execution in the case of
 an exec system call or in the case of a migrate, rexec, or run system call
 which is passed a site_number argument of 0. In these cases, the site is

AIX Operating System Technical Reference
getspath, setspath

¦ Copyright IBM Corp. 1985, 1991
1.2.122 - 1

 chosen as follows. First, the system determines the machine type on which
 the new process file (for exec, rexec, or run) or the current process (for
 migrate) must run. Then, the site path is searched until an element is
 found which corresponds to that machine type. If the element is NULLSITE,
 the process runs locally. If the element is a site number, the process
 executes on that site. If the element has the SPATH_CPU bit turned on,
 the process runs on a randomly chosen site of the specified type (except
 that the local site is chosen if it is the right machine type).

 In a setspath call, the site_path argument points to an array of length
 elements of type sitepath_t. In a getspath call, the site_path argument
 points to an array of sitepath_t elements into which the system will
 return at most length values.

 Return Value
 Upon successful completion, setspath returns a value of 0 to the calling
 process and getspath returns the length of the site_path array to the
 calling process. Otherwise, a value of -1 is returned and errno is set to
 indicate the error.

 Error Conditions
 These calls fail if any of the following are true:

 EINVAL length is greater than the maximum site path length allowed by
 the system (setspath only).

 EINVAL length is less than the length of the current process's site
 path (getspath only).

 EFAULT site_path points to an invalid address.

 EBADST The site path specified by site_path contains an invalid site or
 cpu_type number (setspath only).

 Related Information
 In this book: "chhidden" in topic 1.2.42, "exec: execl, execv, execle,
 execve, execlp, execvp" in topic 1.2.71, "migrate" in topic 1.2.167, "
 rexec: rexecl, rexecv, rexecle, rexecve, rexeclp, rexecvp" in
 topic 1.2.236, and " run: runl, runv, runle, runve, runlp, runvp" in
 topic 1.2.239.

AIX Operating System Technical Reference
getspath, setspath

¦ Copyright IBM Corp. 1985, 1991
1.2.122 - 2

 1.2.123 gettimeofday, settimeofday, ftime

 Purpose
 Obtains current time.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sys/time.h>

 int gettimeofday (tp, tzp)
 struct timeval *tp;
 struct timezone *tzp;

 int settimeofday (tp, tzp)
 struct timeval *tp;
 struct timezone *tzp;

 int ftime (tp)
 struct timeb *tp;

 Description
 The gettimeofday system call gets the current Greenwich time and the
 current time zone. The settimeofday system call sets the time and the
 time zone. The time is expressed in seconds from 00:00:00 GMT January 1,
 1970. If tzp equals 0, the time zone is neither returned nor set.

 The tp parameter points to a timeval structure, defined in the file
 sys/time.h. This structure contains the following members:

 long tv_sec; /* Seconds since Jan. 1, 1970 */
 long tv_usec; /* Microseconds to add to seconds */

 The tzp parameter points to a timezone structure, defined in the
 sys/time.h file. This structure contains the following members:

 int tz_minuteswest; /* Time west of Greenwich in minutes */
 int tz_dsttime; /* Type of DST correction to apply */

 The timezone structure indicates the local time zone (measured in minutes
 of time westward from Greenwich), and a flag that, if nonzero, indicates
 that daylight saving time applies locally during the appropriate part of
 the year.

 The tp parameter returns a pointer to a structure which contains the time
 since the epoch in seconds, up to 1000 milliseconds of more precise
 interval, the local time zone (measured in minutes westward from
 Greenwich), and a flag that, if nonzero, indicates that Daylight Saving
 time applies locally during the appropriate part of the year.

 Only the superuser may set the time of day or time zone.

 Compatibility Note

 The ftime subroutine is included for compatibility with older BSD
 programs. Its function has been made obsolete by gettimeofday. It is
 used by compiling with Berkeley Compatibility Library (libbsd.a).

AIX Operating System Technical Reference
gettimeofday, settimeofday, ftime

¦ Copyright IBM Corp. 1985, 1991
1.2.123 - 1

 Return Value
 If the call succeeds, a value of 0 is returned. If an error occurs, a
 value of -1 is returned, and an error code is placed in the global
 variable errno.

 Error Conditions
 The subroutines fail if one or more of the following are true:

 EFAULT The tz or tzp parameter is not in a writable part of the user
 address space.

 EPERM A user other than the superuser attempted to set the time.

 Related Information
 In this book: "ctime, localtime, gmtime, asctime, tzset" in topic 1.2.54
 and "time" in topic 1.2.303.

 The date command in AIX Operating System Commands Reference.

 The discussion of timed in AIX TCP/IP User's Guide.

AIX Operating System Technical Reference
gettimeofday, settimeofday, ftime

¦ Copyright IBM Corp. 1985, 1991
1.2.123 - 2

 1.2.124 getuid, geteuid, getgid, getegid

 Purpose
 Gets the real user, effective user, real group, and effective group IDs.

 Library
 Standard C Library (libc.a)

 Syntax

 uid_t getuid () uid_t getgid ()

 uid_t geteuid () uid_t getegid ()

 Description
 The getuid system call returns the real user ID of the calling process.

 The geteuid system call returns the effective user ID of the calling
 process.

 The getgid system call returns the real group ID of the calling process.

 The getegid system call returns the effective group ID of the calling
 process.

 Related Information
 In this book: "setuid, setgid" in topic 1.2.255.

AIX Operating System Technical Reference
getuid, geteuid, getgid, getegid

¦ Copyright IBM Corp. 1985, 1991
1.2.124 - 1

 1.2.125 getuinfo

 Purpose
 Finds the value associated with a user information name.

 Library
 Standard C Library (libc.a)

 Syntax

 char *getuinfo (name)
 char *name;

 Description
 The getuinfo subroutine searches a user information buffer for a string of
 the form name=value and returns a pointer to the value substring if name
 is found. NULL is returned if name is not found.

 The user information buffer searched is pointed to by the global variable:

 extern char *INuibp;

 This variable is initialized to NULL.

 If the variable INuibp is NULL when the getuinfo subroutine is called, the
 usrinfo system call is executed to read user information from the kernel
 into a local buffer. The address of the buffer is then put into the
 external variable INuibp. The usrinfo system call is automatically called
 the first time the getuinfo subroutine is called if the INuibp variable
 has not been set.

 Related Information
 In this book: "usrinfo" in topic 1.2.319.

AIX Operating System Technical Reference
getuinfo

¦ Copyright IBM Corp. 1985, 1991
1.2.125 - 1

 1.2.126 getut: getutent, getutid, getutline, pututline, setutent, endutent, utmpname

 Purpose
 Accesses utmp file entries.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <utmp.h>

 struct utmp *getutent () void pututline (utmp)
 struct utmp *utmp;
 struct utmp *getutid (id)
 struct utmp *id; void setutent ()

 struct utmp *getutline (linevoid endutent ()
 struct utmp *line;
 void utmpname (file)
 char *file;

 Description
 The getutent, getutid, and getutline subroutines each return a pointer to
 a structure of the following type:

 #define ut_name ut_user

 struct utmp
 {
 char ut_user[8]; /* User login name */
 char ut_id[6]; /* id from /etc/inittab */
 char ut_line[12]; /* device name (console, ttyx) */
 pid_t ut_pid; /* process id */
 short ut_type; /* type of entry */
 struct exit_status
 {
 short e_termination; /* Process termination status */
 short e_exit; /* Process exit status */
 }
 ut_exit; /* The exit status of a process */
 /* marked as DEAD_PROCESS. */
 time_t ut_time; /* time entry was made */
 char ut_host[16]; /* host name if remote login */
 long ut_lsite; /* reserved */
 char ut_datarep[4]; /* reserved */
 };

 The getutent subroutine reads the next entry from a utmp-like file. If
 the file is not already open, this subroutine opens it. If the end of the
 file is reached, getutent fails.

 If you specify type RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME in the id
 parameter, the getutid subroutine searches forward from the current point
 in the utmp file until an entry with a ut_type matching id->ut_type is
 found.

 If you specify one of the types INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS

AIX Operating System Technical Reference
getut: getutent, getutid, getutline, pututline, setutent, endutent, utmpname

¦ Copyright IBM Corp. 1985, 1991
1.2.126 - 1

 or DEAD_PROCESS in the id parameter, then the getutid subroutine returns a
 pointer to the first entry whose type is one of these four and whose ut_id
 field matches id->ut_id. If the end of the file is reached without a
 match, the getutid subroutine fails.

 The getutline subroutine searches forward from the current point in the
 utmp file until it finds an entry of the type LOGIN_PROCESS or
 USER_PROCESS that also has a ut_line string matching the line->ut_line
 parameter string. If the end the of file is reached without a match, the
 getutline subroutine fails.

 The pututline subroutine writes the supplied utmp structure into the utmp
 file. If you have not searched for the proper place in the file using one
 of the getut routines, then the pututline subroutine calls getutid to
 search forward for the proper place. It is expected that normally the
 user of pututline searched for the proper entry using one of the getut
 subroutines. If so, pututline does not search. If the pututline
 subroutine does not find a matching slot for the entry, it adds a new
 entry to the end of the file.

 The setutent subroutine resets the input stream to the beginning of the
 file. You should do this before each search for a new entry if you want
 to examine the entire file.

 The endutent subroutine closes the currently open file.

 The utmpname subroutine changes the name of the file to be examined from
 /etc/utmp to any other file. The name specified is usually /usr/adm/wtmp.
 If the specified file does not exist, no indication is given. You are not
 aware of this fact until your first attempt to reference the file. The
 utmpname subroutine does not open the file. It closes the old file, if it
 is currently open, and saves the new file name.

 The most current entry is saved in a static structure. If you desire to
 make multiple accesses, you must copy or use the structure between each
 access. The getutid and getutline subroutines examine the static
 structure first. If the contents of the static structure match what they
 are searching for, they do not read the utmp file. Therefore, you must
 fill the static structure with zeros after each use if you want to use
 these subroutines to search for multiple occurrences.

 If pututline finds that it isn't already at the correct place in the file,
 then the implicit read it performs does not overwrite the contents of the
 static structure returned by the getutent, getuid, or getutline routine.
 This allows you to get an entry with one of these subroutines, modify the
 structure, and pass the pointer back to pututline for writing.

 These subroutines use buffered standard I/O for input, but pututline uses
 an unbuffered nonstandard write to avoid race conditions between processes
 trying to modify the utmp and wtmp files.

 Return Value
 These subroutines fail and return a NULL pointer if a read or write fails
 due to end-of-file or a permission conflict.

 Files

 /etc/utmp
 /usr/adm/wtmp

AIX Operating System Technical Reference
getut: getutent, getutid, getutline, pututline, setutent, endutent, utmpname

¦ Copyright IBM Corp. 1985, 1991
1.2.126 - 2

 Related Information
 In this book: "ttyslot" in topic 1.2.312 and "utmp, wtmp, .ilog" in
 topic 2.3.60.

AIX Operating System Technical Reference
getut: getutent, getutid, getutline, pututline, setutent, endutent, utmpname

¦ Copyright IBM Corp. 1985, 1991
1.2.126 - 3

 1.2.127 getwd

 Purpose
 Gets current directory path name.

 Library
 Standard C Library (libc.a)

 Syntax

 char *getwd (pathname)
 char *pathname;

 Description
 The getwd subroutine determines the absolute path name of the current
 directory, then copies that path name into the area pointed to by the
 pathname parameter.

 The maximum path name length, in characters, is set by the MAXPATHLEN
 define directive in the file /usr/include/sys/param.h.

 Return Value
 If the call to getwd is successful, a pointer to the absolute path name of
 the current directory is returned. If an error occurs, getwd returns the
 value 0 and places a message in pathname.

 Related Information
 In this book: "getcwd" in topic 1.2.92.

AIX Operating System Technical Reference
getwd

¦ Copyright IBM Corp. 1985, 1991
1.2.127 - 1

 1.2.128 getxperm, setxperm

 Purpose
 Manages user's execution permission site mask.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sys/types.h>

 int getxperm(sitep,maxsites)
 sitexperm_t *sitep;
 int maxsites;

 int setxperm(sitep,maxsites)
 sitexperm_t *sitep;
 int maxsites;

 #define GS_NOPERMISSION 0
 #define GS_PERMISSION 1

 Description
 The getxperm system call retrieves the user site permission mask of the
 current process. The user site permission mask is the list of sites for
 which the user has execution/migration permission. The information is
 returned in the sitep buffer which is assumed to be of length maxsites.
 If the sitep buffer is of insufficient length to return all the site
 information, then an error occurs and -1 is returned. Successful
 completion is indicated by a return value equivalent to the maximum site
 number plus one.

 The setxperm system call sets the user site permission mask of the current
 process. The arguments for setxperm are interpreted similarly to those
 for getxperm. Any sites not represented by sitep and maxsites remain
 unaltered. A successful call returns 0. A return value of -1 indicates
 an error. Only the superuser may issue setxperm.

 The site permission mask indicates where the current process may move or
 create new processes. Permission is granted for those sites which are set
 to GS_PERMISSION. The site permission mask is inherited by the child
 processes when the process creates them.

 Return Value
 Upon successful completion of setxperm, a value of 0 is returned to the
 calling process. Upon successful completion of getxperm, a value
 equivalent to the maximum site number plus one is returned. Otherwise, a
 value of -1 is returned and errno is set to indicate the error.

 Error Conditions
 The getxperm and setxperm system calls fail if any of the following are
 true:

 EINVAL maxsites is less than one or greater than 255 in a setxperm
 call. maxsites is less than 1 or less than the currently
 configured number of sites on the network or greater than 255 in
 a getxperm system call.

 EFAULT sitep does not point to a valid area inside the user's address

AIX Operating System Technical Reference
getxperm, setxperm

¦ Copyright IBM Corp. 1985, 1991
1.2.128 - 1

 space.

 EFAULT The sitep buffer is of insufficient length to return all the
 site information in a getxperm call.

 EPERM setxperm was called from a process whose effective user ID was
 not superuser.

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, " fork, vfork" in topic 1.2.83, "migrate" in topic 1.2.167,
 " rexec: rexecl, rexecv, rexecle, rexecve, rexeclp, rexecvp" in
 topic 1.2.236, "rfork" in topic 1.2.237, and " run: runl, runv, runle,
 runve, runlp, runvp" in topic 1.2.239.

AIX Operating System Technical Reference
getxperm, setxperm

¦ Copyright IBM Corp. 1985, 1991
1.2.128 - 2

 1.2.129 getxvers, setxvers

 Purpose
 Manages the execution version string for hidden directories.

 Library
 Standard C Library (libc.a)

 Syntax

 getxvers (xvers, length)
 char *xvers;
 int length;

 setxvers (xvers)
 char *xvers;

 Description
 The getxvers and setxvers system calls get and set the process's xvers
 string.

 The xvers string is used to modify the hidden directory search path (see
 "getspath, setspath" in topic 1.2.122). It is a null-terminated string.

 When searching to choose a component of a hidden directory, each element
 of the site path is used in turn. For each element of the site path, the
 system first searches for the xvers string, concatenated with the machine
 type name, then for just the machine type name.

 To undo the xvers string, set it to a zero length string.

 Return Value
 These calls will fail if any of the following are true:

 EINVAL The current process's xvers string (including the null
 character) is longer than the length characters (getxvers only).

 EINVAL The string pointed to by xvers is longer than the system-imposed
 limit (setxvers only).

 EFAULT xvers points to an invalid address.

 Error Conditions
 Upon successful completion, these calls will return a value of 0 to the
 calling process. Otherwise, a value of -1 is returned and errno is set to
 indicate the error.

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, "getspath, setspath" in topic 1.2.122, and "open, openx,
 creat" in topic 1.2.199.

 The csh and sh commands in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
getxvers, setxvers

¦ Copyright IBM Corp. 1985, 1991
1.2.129 - 1

 1.2.130 hsearch, hcreate, hdestroy

 Purpose
 Manages hash tables.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <search.h>

 ENTRY *hsearch (item, actionint hcreate (nel)
 ENTRY item; unsigned int nel;
 ACTION action;
 void hdestroy ()

 Description
 The hsearch subroutine is a hash table search routine. It returns a
 pointer into a hash table that indicates the location of a given entry.
 The item parameter is a structure of the type ENTRY as defined in the
 search.h header file. It contains two pointers:

 item.key Points to the comparison key.
 item.data Points to any other data be associated with that key.

 Pointers to types other than char should be cast to pointer-to-character.
 The action parameter is a value of the ACTION enumeration type that
 indicates what is to be done with an entry if it cannot be found in the
 table:

 ENTER Enters the item into the table at the appropriate point. If the
 table is full, a NULL pointer is returned.

 FIND Does not enter the item into the table, but returns a NULL
 pointer if the item cannot be found.

 The hsearch subroutine uses open addressing with a multiplicative hash
 function.

 The hcreate subroutine allocates sufficient space for the table. You must
 call hcreate before calling hsearch. The nel parameter is an estimate of
 the maximum number of entries that the table contains. Under some
 circumstances, hcreate may actually make the table larger than specified.
 Upon successful completion, hcreate returns 1. hcreate returns 0 if it
 cannot allocate sufficient space for the table.

 The hdestroy subroutine deletes the hash table. This allows you to start
 a new hash table since only one table can be active at a time.

 Related Information
 In this book: "bsearch" in topic 1.2.23, "lsearch, lfind" in
 topic 1.2.160, "string" in topic 1.2.288, and "tsearch, tdelete, twalk" in
 topic 1.2.309.

AIX Operating System Technical Reference
hsearch, hcreate, hdestroy

¦ Copyright IBM Corp. 1985, 1991
1.2.130 - 1

 1.2.131 htonl, htons, ntohl, ntohs

 Purpose
 Converts values between host and Internet network byte order.

 Library
 Internet Library (libc.a)

 Syntax

 #include <sys/types.h>
 #include <netinet/in.h>

 unsigned long htonl (hostlonunsigned long ntohl (netlong)
 unsigned long hostlong; unsigned long netlong;

 unsigned short htons (hostshunsigned short ntohs (netshort)
 unsigned short hostshort; unsigned short netshort;

 Description
 These subroutines convert 16- and 32-bit quantities between network byte
 order and host byte order. On machines already in network byte order
 (such as the IBM System/370) these routines are defined as null macros in
 the include file netinet/in.h.

 These subroutines are often used in conjunction with Internet addresses
 and ports as returned by the gethostent and getservent subroutines.

 Related Information
 In this book: "gethostbyaddr, gethostbyname, sethostent, endhostent" in
 topic 1.2.98 and "getservent, getservbyname, getservbyport, setservent,
 endservent" in topic 1.2.118.

AIX Operating System Technical Reference
htonl, htons, ntohl, ntohs

¦ Copyright IBM Corp. 1985, 1991
1.2.131 - 1

 1.2.132 hypot, cabs

 Purpose
 Computes the euclidean distance function and complex absolute value.

 Library
 Math Library (libm.a)

 Syntax

 #include <math.h>

 double hypot (x, y)
 double x, y;

 double cabs (z)
 struct {double x,y} z

 Description
 The hypot and cabs subroutines take precautions against overflows while
 computing the value of:

 If the correct value does overflow, then hypot returns HUGE and sets errno
 to ERANGE.

 You can change the error-handling procedures by supplying a matherr
 subroutine. See "matherr" in topic 1.2.163 for more information.

 Error Conditions
 The hypot subroutine may fail if one or more of the following are true:

 EDOM The value of x or y is NaN.

 ERANGE The value to be returned would have caused overflow.

 Related Information
 In this book: "cbrt, exp, expm1, log, log10, log1p, pow, sqrt" in
 topic 1.2.28.

AIX Operating System Technical Reference
hypot, cabs

¦ Copyright IBM Corp. 1985, 1991
1.2.132 - 1

 1.2.133 index, rindex

 Purpose
 Locates a character in a string.

 Library
 Standard C Library (libc.a)

 Syntax

 char *index (string, charactchar *rindex (string, character)
 char *string, character; char *string, character;

 Description
 The index subroutine returns a pointer to the first occurrence of
 character in string, while the rindex subroutine returns a pointer to the
 last occurrence of character in string. Both subroutines return a value
 of 0 if the character does not occur in the string.

 These functions operate on null-terminated strings.

 Because the BSD4.3 subroutines index and rindex have been implemented here
 as calls to the System V strchr and strrchr subroutines, be prepared for
 potential unexpected results if you are porting code using the index and
 rindex subroutines described here. See "string" in topic 1.2.288 for more
 information on the strchr and strrchr subroutines which can be used to
 perform the same operations.

 Note also that the index subroutine described here is different from that
 available with Programmer's Workbench Library (libPW.a). If you link from
 libPW.a, you cannot use the index subroutine; you must use the strchr
 subroutine instead.

 Related Information
 In this book: "string" in topic 1.2.288.

AIX Operating System Technical Reference
index, rindex

¦ Copyright IBM Corp. 1985, 1991
1.2.133 - 1

 1.2.134 inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof

 Purpose
 Manipulation subroutines for Internet addresses.

 Library
 Internet Library (libc.a)

 Syntax

 #include <netinet/in.h>
 #include <sys/socket.h>
 #include <arpa/inet.h>

 unsigned long inet_addr (cp)struct in_addr inet_makeaddr (net, lna)
 char *cp; unsigned long net, lna;

 unsigned long inet_network (unsigned long inet_lnaof (in)
 char *cp; struct in_addr in;

 char *inet_ntoa (in) unsigned long inet_netof (in)
 struct in_addr in; struct in_addr in;

 Description
 The inet_addr subroutine interprets a character string as a full Internet
 address in dot (.) notation and returns a number suitable for use as an
 Internet address. The inet_network subroutine interprets a character
 string as the network portion of an Internet address in dot notation, and
 returns the network number.

 The inet_ntoa subroutine takes an Internet address and returns an ASCII
 string representing the address in dot notation. The in parameter
 contains the Internet address to be converted to ASCII.

 The inet_makeaddr takes an Internet network number and a local network
 address and constructs an Internet address from it. The net parameter
 contains an Internet network number, while the lna parameter contains a
 local network address.

 The inet_netof and inet_lnaof subroutines break apart Internet addresses,
 returning the network number and local network address part. The in
 parameter represents the Internet address to separate.

 All Internet addresses are returned in network byte order. All network
 numbers and local addresses are returned as unsigned integer values in
 host order.
 The values specified using the dot notation take one of the following
 forms:

 a.b.c.d
 a.b.c
 a.b
 a

 The inet_addr subroutine interprets input strings in the following way.

 When four parts are specified, each is interpreted as a byte of data and
 assigned to the four bytes of an Internet address.

AIX Operating System Technical Reference
inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof

¦ Copyright IBM Corp. 1985, 1991
1.2.134 - 1

 When a three-part address is specified, the last part is interpreted as a
 16-bit quantity and placed in the right two bytes of the Internet address.
 This makes the three-part address format convenient for specifying Class B
 network addresses as B0.B1.HOST, where 128 <= B0 <= 191, 0 <= B1 <= 255,
 and 0 <= HOST <= 65535.

 When a two-part address is supplied, the last part is interpreted as a
 24-bit quantity and placed in the right three bytes of the Internet
 address. This makes the two-part address format convenient for specifying
 Class A network addresses as A0.HOST, where 0 <= A0 <= 127, and 0 <= HOST
 <= 16777215.

 The interpretation of a one-part address is undefined; such addresses
 should not be passed to inet_addr.

 The inet_network subroutine interprets input strings in the following way.

 When a one part address is specified it is interpreted as a Class A
 address. When a two-part part address is specified it is interpreted as a
 Class B address. When a three-part part address is specified it is
 interpreted as a Class C address.

 The interpretation of a four-part address is undefined; such addresses
 should not be passed to inet_network. To obtain the network number from a
 full Internet address, use the subroutine inet_netof in conjuction with
 inet_addr; for example, net = inet_netof(inet_addr(cp)).

 All numbers supplied for each part of a dot notation may be decimal,
 octal, or hexadecimal, as specified in C language. A leading 0x or 0X
 implies hexadecimal, a leading 0 implies octal, and anything else is
 interpreted as decimal.

 Return Value
 The inet_addr and inet_network subroutines return numbers suitable for use
 as Internet addresses and Internet network numbers, respectively, on
 success.

 If the inet_addr or inet_network subroutine fails, a value of (unsigned
 long) -1 is returned. To test for failure it is necessary to cast -1 to
 an unsigned long when comparing with the return value. Note that for
 inet_addr the value returned for addresses "255.255.255.255" and
 "255.255.255.254" is indistinguishable from (unsigned long) -1 on two's
 complement and one's complement machines respectively.

 Related Information
 In this book: "gethostbyaddr, gethostbyname, sethostent, endhostent" in
 topic 1.2.98, and "getnetent, getnetbyaddr, getnetbyname, setnetent,
 endnetent" in topic 1.2.105.

 The discussion of /etc/hosts and /etc/networks in AIX TCP/IP User's Guide.

AIX Operating System Technical Reference
inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof

¦ Copyright IBM Corp. 1985, 1991
1.2.134 - 2

 1.2.135 initgroups

 Purpose
 Initializes group access list.

 Library
 Standard C Library (libc.a)

 Syntax

 int initgroups (user, basegid)
 char *user;
 int basegid;

 Description
 The initgroups subroutine reads the /etc/group file and constructs the
 group access list for the user whose name is specified by the user
 parameter. The basegid parameter is usually the group number from the
 /etc/passwd file and it is automatically included in the group list.

 Warning: The initgroups subroutine uses the getgrent subroutine family.
 If the program that invokes initgroups uses any of these subroutines, then
 calling initgroups overwrites the static group structure.

 Return Value
 Upon successful completion, the initgroups subroutine returns a value of
 0. If the effective user ID of the calling process is not superuser, then
 initgroups returns a value of 1.

 File

 /etc/group

 Related Information
 In this book: "getgrent, getgrgid, getgrnam, setgrent, endgrent" in
 topic 1.2.96, "getgroups" in topic 1.2.97, and "setgroups" in
 topic 1.2.249.

 The adduser command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
initgroups

¦ Copyright IBM Corp. 1985, 1991
1.2.135 - 1

 1.2.136 insque, remque

 Purpose
 Inserts or removes an element in a queue.

 Library
 Standard C Library (libc.a)

 Syntax

 struct qelem {
 struct qelem *q_forw;
 struct qelem *q_back;
 char q_data [];
 };

 int insque (elem, pred)
 struct qelem *elem, *pred;

 int remque (elem)
 struct qelem *elem;

 Description
 The insque and remque subroutines manipulate queues built from doubly
 linked lists. Each element in the queue must be in the form of a qelem
 structure. The q_forw and q_back elements of that structure must point to
 the elements in the queue immediately before and after the element to be
 inserted or deleted.

 The insque subroutine inserts the element pointed to by the elem parameter
 into a queue immediately after the element pointed to by the pred
 parameter.

 The remque subroutine removes the element defined by the elem parameter
 from a queue.

AIX Operating System Technical Reference
insque, remque

¦ Copyright IBM Corp. 1985, 1991
1.2.136 - 1

 1.2.137 ioctlx, ioctl, gtty, stty

 Purpose
 Controls input/output devices.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sys/ioctl.h>
 #include <sys/devinfo.h>
 #include <sgtty.h>

 int ioctlx (fildes, op, arg,inttgtty (fildes, argp)
 int fildes, op; int fildes
 char *arg; struct sgttyb *argp;
 int ext;
 int stty (fildes, argp)
 int ioctl (fildes, op, arg) int fildes
 int fildes, op; struct sgttyb *argp;
 char *arg;

 Description
 The ioctlx and ioctl system calls perform a variety of control operations
 on the block or character special file (device) specified by the fildes
 parameter. The op parameter specifies the operation, and the use of the
 arg parameter depends on the particular operation performed. The ext
 parameter provides additional device-specific information. The ioctlx and
 ioctl operations that are valid for each type of device are explained in
 Chapter 5, "Special Files." For more information on the ioctl and ioctlx
 operations for 4.3BSD functions, see "BSD4.3 library" in topic 1.2.22.

 The following two standard calls, however, apply to any open file:

 ioctl(fildes, FIOCLEX, 0)
 ioctl(fildes, FIONCLEX, 0)

 The first of these calls causes the file to be closed automatically during
 a successful exec, rexec, or run system call; the second causes the file
 to remain open across these calls (see "exec: execl, execv, execle,
 execve, execlp, execvp" in topic 1.2.71 and "fcntl.h" in topic 2.4.8).

 Two operations are valid for all types of devices that support ioctl and
 ioctlx system calls. These two operations are:

 IOCTYPE Returns the device type associated with fildes, left shifted 8
 bits. The device types are defined in the sys/devinfo.h
 header file, which is discussed in "devinfo" in topic 2.3.15.

 IOCINFO Stores device information for the file specified by fildes
 into the buffer pointed to by the arg parameter. See
 "devinfo" in topic 2.3.15 for the format of the device
 information structure.

 Some devices support additional requests. See the discussion of
 individual devices in Chapter 5, "Special Files" for details about
 device-dependent ioctl calls.

AIX Operating System Technical Reference
ioctlx, ioctl, gtty, stty

¦ Copyright IBM Corp. 1985, 1991
1.2.137 - 1

 Subtopics
 1.2.137.1 Compatibility Interface

AIX Operating System Technical Reference
ioctlx, ioctl, gtty, stty

¦ Copyright IBM Corp. 1985, 1991
1.2.137 - 2

 1.2.137.1 Compatibility Interface

 ioctl (fildes, cmd, arg)

 is equivalent to:

 octlx (fildes, cmd, arg, 0)

 The functions gtty and stty are equivalent to

 ioctl(fildes, TIOCGETP, argp)
 and
 ioctl(fildes, TIOCSETP, argp)

 respectively (see "termio" in topic 2.5.28).

 Return Value
 If the ioctlx, ioctl, gtty, or stty call fails, a value of -1 is returned
 and errno is set to indicate the error.

 Error Conditions
 The ioctlx, ioctl, gtty, or stty calls fail if one or more of the
 following are true:

 EBADF fildes is not a valid open file descriptor.

 ENOTTY fildes is not associated with a character special file.

 ENODEV The device associated with fildes does not support the ioctlx
 system call.

 EFAULT The arg parameter points to a location outside of the process's
 allocated address space.

 EINVAL op or arg is not valid.

 EINTR A signal was caught during the ioctlx system call.

 If the Transparent Computing Facility is installed on your system, ioctlx
 can also fail if one or more of the following are true:

 ESITEDN1 The device is on a site which is not currently on the network.

 ESITEDN2 The operation was terminated because a site failed.

 Related Information
 In this book: "getsockopt, setsockopt" in topic 1.2.121, "devinfo" in
 topic 2.3.15, and Chapter 5, "Special Files."

 The stty command in AIX Operating System Commands Reference.

 The discussion of termio in AIX Programming Tools and Interfaces.

AIX Operating System Technical Reference
Compatibility Interface

¦ Copyright IBM Corp. 1985, 1991
1.2.137.1 - 1

 1.2.138 kill, kill3, killpg

 Purpose
 Sends a signal to a process or to a group of processes.

 Library
 Standard C Library (libc.a)

 Syntax

 int kill (pid, sig)
 pid_t pid;
 int sig;

 int kill3 (pid, sig, arg)
 pid_t pid;
 int sig, arg;

 Description
 The kill system call sends the signal specified by the sig parameter to
 the process or group of processes specified by the pid parameter. (For
 information on valid signals, see "sigaction, sigvec, signal" in
 topic 1.2.263.) If the sig parameter is 0 (the null signal), error
 checking is performed but no signal is sent. This can be used to check
 the validity of pid.

 To send a signal to another process, at least one of the following must be
 true:

 � Either the real or the effective user ID of the sending proces
 matches the real user ID or the saved set-user-ID of the receiving
 process.
 � The effective user ID of the sending process is superuser

 Note: An exception to the above is the signal SIGCONT, which also may be
 sent to any process which is a descendant of the sending process.
 This allows a command interpreter such as csh to restart processes
 stopped by a stop signal sent from the keyboard, when those
 processes may have different real and effective user IDs.

 The processes that have the process IDs 0 and 1 are special processes and
 are sometimes referred to here as proc0 and proc1, respectively.

 If the pid parameter is greater than 0, the signal specified by the sig
 parameter is sent to the process whose process ID is equal to the value of
 the pid parameter.

 If the pid parameter is equal to 0, the signal specified by the sig
 parameter is sent to all of the processes, excluding proc0 and proc1,
 whose process group ID is equal to the process group ID of the sender.

 If the pid parameter is equal to -1, the signal specified by the sig
 parameter is sent to all of the processes, excluding system processes.

 If the pid parameter is negative but not -1, the signal specified by the
 sig parameter is sent to all of the processes whose process group ID is
 equal to the absolute value of the pid parameter.

 If the Transparent Computing Facility is installed, kill3 may be used to
 send additional information with a signal. Currently, kill3 is only

AIX Operating System Technical Reference
kill, kill3, killpg

¦ Copyright IBM Corp. 1985, 1991
1.2.138 - 1

 viable with SIGMIGRATE, in which case the arg parameter is the number of
 the site to which the processes receiving the signal will migrate. The
 user signal-catching routines do not receive the third argument of a kill3
 for signals other than SIGMIGRATE. If arg is 0, the processes will
 migrate to the sender's site. Note that SIGMIGRATE is only a request to
 migrate. If the receiving process is ignoring or catching SIGMIGRATE, or
 if the migration fails, the kill call succeeds but the signal does not
 cause the process to move. The receiving process also may not migrate
 immediately if it is stopped or if it is waiting for a file lock. In any
 case, the kill call usually returns before any migration has completed.
 The actual site on which a process is executing may be determined by using
 the site system call.

 Compatibility Interfaces

 The following additional interface is provided in Berkeley Compatibility
 Library (libbsd.a):

 killpg (pgrp, sig)
 int pgrp;
 int sig;

 is equivalent to:

 if (pgrp < 0)
 {
 errno = ESRCH;
 return (-1);
 }
 return (kill (-pgrp, sig));

 Return Value
 Upon successful completion, kill returns a value of 0. If kill fails, a
 value of -1 is returned and errno is set to indicate the error.

 Error Conditions
 The kill system call fails and no signal is sent if one or more of the
 following are true:

 EINVAL sig is not a valid signal number.

 EINVAL sig is SIGKILL and pid is 1 (proc1).

 ESRCH No process can be found corresponding to that specified by pid.

 EPERM The user ID of the sending process is not superuser, and the real
 or effective user ID does not match the real or saved set-user-ID
 of the receiving process.

 If the Transparent Computing Facility is installed on your system, kill3
 can also fail if the following is true:

 EPERM The user ID of the sending process is not superuser, sig is
 SIGMIGRATE, and the sending process does not have permission to
 execute on the specified site (see "getxperm, setxperm" in
 topic 1.2.128).

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, "getpid, getpgrp, getppid" in topic 1.2.110, "getxperm,

AIX Operating System Technical Reference
kill, kill3, killpg

¦ Copyright IBM Corp. 1985, 1991
1.2.138 - 2

 setxperm" in topic 1.2.128, "migrate" in topic 1.2.167, "setpgid, setpgrp,
 setsid" in topic 1.2.252, and "sigaction, sigvec, signal" in
 topic 1.2.263.

 The csh, kill, and sh commands in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
kill, kill3, killpg

¦ Copyright IBM Corp. 1985, 1991
1.2.138 - 3

 1.2.139 l3tol, ltol3

 Purpose
 Converts between 3-byte integers and long integers.

 Library
 Standard C Library (libc.a)

 Syntax

 void l3tol (lp, cp, n) void ltol3 (cp, lp, n)
 long *lp; char *cp;
 char *cp; long *lp;
 int n; int n;

 Description
 The l3tol subroutine converts a list of n 3-byte integers packed into a
 character string pointed to by the cp parameter into a list of long
 integers pointed to by the lp parameter.

 The ltol3 subroutine performs the reverse conversion, from long integers
 (lp) to 3-byte integers (cp).

 Note: These routines, which in the past were useful for file system
 maintenance, are no longer needed as the AIX PS/2 and AIX/370 file
 systems use 4-byte block numbers.

 Warning: The numerical values of the long integers are machine-dependent
 because of possible differences in byte ordering.

 Related Information
 In this book: "fs" in topic 2.3.20.

AIX Operating System Technical Reference
l3tol, ltol3

¦ Copyright IBM Corp. 1985, 1991
1.2.139 - 1

 1.2.140 labs

 Purpose
 Returns the absolute value of long integers.

 Library
 Standard C Library (libc.a)

 Syntax

 long labs (n);
 long n;

 Description
 The labs function produces the absolute value of its long integer argument
 n. There is no error-return value. The result is undefined when the
 argument is the least of the negative long integers (for example,
 -2147483648 on OS/2), whose absolute value cannot be represented as a long
 integer. The value of the minimum allowable integer is stored in LONG_MIN
 in the limits.h include file.

 Example
 This example computes y as the absolute value of the long integer -41567.

 #include <stdlib.h>

 long x, y;

 x = -41567L;
 y = labs (x); /* y = 41567L */

AIX Operating System Technical Reference
labs

¦ Copyright IBM Corp. 1985, 1991
1.2.140 - 1

 1.2.141 ldahread

 Purpose
 Reads the archive header of a member of an archive file.

 Library
 Object File Access Routine Library (libld.a)

 Syntax

 #include <stdio.h>
 #include <ar.h>
 #include <filehdr.h>
 #include <ldfcn.h>

 int ldahread (ldptr, arhead)
 LDFILE *ldptr;
 ARCHDR *arhead;

 Description
 If TYPE(ldptr) is the archive file magic number, ldahread reads the
 archive header of the common object file currently associated with ldptr
 into the area of memory beginning at arhead.

 The ldahread subroutine returns SUCCESS or FAILURE. The ldahread
 subroutine fails if TYPE(ldptr) does not represent an archive file, or if
 it cannot read the archive header.

 Related Information
 In this book: "ldclose, ldaclose" in topic 1.2.142, "ldopen, ldaopen" in
 topic 1.2.149, "ldfcn" in topic 1.2.143, and "ar" in topic 2.3.4.

AIX Operating System Technical Reference
ldahread

¦ Copyright IBM Corp. 1985, 1991
1.2.141 - 1

 1.2.142 ldclose, ldaclose

 Purpose
 Closes a common object file.

 Library
 Object File Access Routine Library (libld.a)

 Syntax

 #include <stdio.h>
 #include <filehdr.h>
 #include <ldfcn.h>
 #include <ar.h>

 int ldclose (ldptr)
 LDFILE *ldptr;

 int ldaclose (ldptr)
 LDFILE *ldptr;

 Description
 The ldopen and ldclose subroutines are designed to provide uniform access
 to both simple object files and object files that are members of archive
 files. Thus, an archive of common object files can be processed as if it
 were a series of simple common object files.

 If TYPE(ldptr) does not represent an archive file, ldclose closes the file
 and frees the memory allocated to the LDFILE structure associated with
 ldptr. If TYPE(ldptr) is the magic number of an archive file, and if
 there are any more files in the archive, ldclose reinitializes
 OFFSET(ldptr) to the file address of the next archive member and returns
 FAILURE. The LDFILE structure is prepared for a subsequent ldopen. In
 all other cases, ldclose returns SUCCESS.

 The ldaclose subroutine closes the file and frees the memory allocated to
 the LDFILE structure associated with ldptr regardless of the value of
 TYPE(ldptr). The function is often used in conjunction with ldaopen.

 If ldaclose cannot find the LDFILE structure associated with ldptr, then
 it returns FAILURE. In all other cases, ldaclose returns SUCCESS.

 Related Information
 In this book: "ldfcn" in topic 1.2.143 and "ldopen, ldaopen" in
 topic 1.2.149.

AIX Operating System Technical Reference
ldclose, ldaclose

¦ Copyright IBM Corp. 1985, 1991
1.2.142 - 1

 1.2.143 ldfcn

 Purpose
 Common object file access routines.

 Library
 Object File Access Routine Library (libld.a)

 Syntax

 #include <stdio.h>
 #include <filehdr.h>
 #include <ldfcn.h>

 Description
 The common object file access routines are a collection of functions for
 reading common object files and archives containing common object files.
 Although the calling program must know the detailed structure of the parts
 of the object file that it processes, the routines effectively insulate
 the calling program from knowledge of the overall structure of the object
 file.

 The interface between the calling program and the object file access
 routines is based on the defined type LDFILE, which is defined as struct
 ldfile and declared in the header file ldfcn.h. The primary purpose of
 this structure is to provide uniform access to both simple object files
 that are members of an archive file.

 The function ldopen allocates and initializes the LDFILE structure and
 returns a pointer to the structure to the calling program. The fields of
 the LDFILE structure may be accessed individually through macros defined
 in ldfcn.h and contain the following information:

 LDFILE *ldptr;

 TYPE(ldptr) The file magic number used to distinguish between archive
 members and simple object files.

 IOPTR(ldptr) The file pointer returned by fopen and used by the standard
 input/output functions.

 OFFSET(ldptr) The file address of the beginning of the object file; the
 offset is nonzero if the object file is a member of an
 archive file.

 HEADER(ldptr) The file header structure of the object file.

 The object file access functions themselves may be divided into four
 categories:

 � Functions that open or close an object file

 ldopen and ldaopen
 open a common object file
 ldclose and ldaclose
 close a common object file

 � Functions that read header or symbol table information

AIX Operating System Technical Reference
ldfcn

¦ Copyright IBM Corp. 1985, 1991
1.2.143 - 1

 ldahread
 reads the archive header of a member of an archive file
 ldfhread
 reads the file header of a common object file
 ldshread and ldnshread
 read a section header of a common object file
 ldtbread
 reads a symbol table entry of a common object file
 ldgetname
 retrieves a symbol name from a symbol table entry or
 from the string table

 � Functions that position an object file at the start of the section
 relocation, or line number information for a particular section of a
 common object file:

 ldohseek
 seeks to the optional file header of a common object file
 ldsseek and ldnsseek
 seek to a section of a common object file
 ldrseek and ldnrseek
 seek to the relocation information for a section of a
 common object file
 ldlseek and ldnlseek
 seek to the line number information for a section of a
 common object file
 ldtbseek
 seek to the symbol table of a common object file

 � The function ldtbindex, which returns the index of a particular common
 object file symbol table entry.

 All the functions except ldopen, ldgetname, ldaopen, and ldtbindex return
 either SUCCESS or FAILURE, constants which are defined in ldfcn.h. The
 ldopen and ldaopen functions both return pointers to an LDFILE structure.

 Additional access to an object file is provided through a set of macros
 defined in ldfcn.h. These macros parallel the standard input/output file
 reading and manipulating functions, translating a reference of the LDFILE
 structure into a reference to its file descriptor field.

 The following macros are provided:

 GETC(ldptr)

 FGETC(ldptr)

 GETW(ldptr)

 UNGETC(c,ldptr)

 FGETS(s,n,ldptr)

 FREAD((char *) ptr, sizeof (*ptr), nitems,ldptr)

 FSEEK(ldptr, offset, ptrname)

 FWRITE((char *) ptr, sizeof (*ptr), nitems,ldptr)

 FTELL(ldptr)

AIX Operating System Technical Reference
ldfcn

¦ Copyright IBM Corp. 1985, 1991
1.2.143 - 2

 REWIND(ldptr)

 FEOF(ldptr)

 FERROR(ldptr)

 FILENO(ldptr)

 SETBUF(ldptr, buf)

 STROFFSET(ldptr)

 The STROFFSET macro calculates the address of the string table in a
 COFF-format object file.

 Warning: The macro FSEEK, defined in the header file ldfcn.h, translates
 into a call to the standard input/output function fseek. FSEEK should not
 be used to seek from the end of an archive file since the end of an
 archive file may not be the same as the end of one of its object file
 members.

 Related Information
 In this book: "fseek, rewind, ftell" in topic 1.2.86, "ldahread" in
 topic 1.2.141, "ldclose, ldaclose" in topic 1.2.142, "ldfhread" in
 topic 1.2.144, "ldgetname" in topic 1.2.145, "ldlread, ldlinit, ldlitem"
 in topic 1.2.146, "ldlseek, ldnlseek" in topic 1.2.147, "ldohseek" in
 topic 1.2.148, "ldopen, ldaopen" in topic 1.2.149, "ldrseek, ldnrseek" in
 topic 1.2.150, "ldshread, ldnshread" in topic 1.2.151, "ldtbindex" in
 topic 1.2.153, "ldtbread" in topic 1.2.154, and "ldtbseek" in
 topic 1.2.155.

AIX Operating System Technical Reference
ldfcn

¦ Copyright IBM Corp. 1985, 1991
1.2.143 - 3

 1.2.144 ldfhread

 Purpose
 Reads the file header of a common object file.

 Library
 Object File Access Routine Library (libld.a)

 Syntax

 #include <stdio.h>
 #include <filehdr.h>
 #include <ldfcn.h>

 int ldfhread (ldptr, filehead)
 LDFILE *ldptr;
 FILHDR *filehead;

 Description
 The ldfhread subroutine reads the file header of the common object file
 currently associated with ldptr into the area of memory beginning at
 filehead.

 The ldfhread subroutine returns SUCCESS or FAILURE. The ldfhread
 subroutine fails if it cannot read the file header.

 In most cases, the use of ldfhread can be avoided by using the macro
 HEADER(ldptr) defined in ldfcn.h (see "ldfcn" in topic 1.2.143). The
 information in any field, fieldname, of the file header may be accessed
 using HEADER(ldptr).fieldname.

 Related Information
 In this book: "ldclose, ldaclose" in topic 1.2.142, "ldfcn" in
 topic 1.2.143, and "ldopen, ldaopen" in topic 1.2.149.

AIX Operating System Technical Reference
ldfhread

¦ Copyright IBM Corp. 1985, 1991
1.2.144 - 1

 1.2.145 ldgetname

 Purpose
 Retrieves the symbol name for a common object file symbol table entry.

 Library
 Object File Access Routine Library (libld.a)

 Syntax

 #include <stdio.h>
 #include <filehdr.h>
 #include <syms.h>
 #include <ldfcn.h>

 char *ldgetname (ldptr, symbol)
 LDFILE *ldptr;
 SYMENT *symbol;

 Description
 The ldgetname subroutine returns a pointer to the name associated with
 symbol as a string. The string is contained in a static buffer local to
 ldgetname that is overwritten by each call to ldgetname, and therefore,
 must be copied by the caller if the name is to be saved.

 The common object file format handles arbitrary length symbol names with
 the addition of a string table. The ldgetname subroutine returns the
 symbol name associated with a symbol table entry for either a
 pre-COFF-format object file or a COFF-format object file. Thus, ldgetname
 can be used to retrieve names from object files without any backward
 compatibility problems. The ldgetname subroutine returns NULL (which is
 defined in the file stdio.h) for a COFF-format object file, if the name
 cannot be retrieved. This situation can occur:

 � If the string table cannot be foun

 � If not enough memory can be allocated for the string tabl

 � If the string table appears not to be a string table (for example i
 an auxiliary entry is handed to ldgetname that looks like a reference
 to a name in a non-existent string table)

 � If the name's offset into the string table is past the end of th
 string table.

 Typically, ldgetname is called immediately after a successful call to
 ldtbread to retrieve the name associated with the symbol table entry
 filled by ldtbread.

 Related Information
 In this book: "ldclose, ldaclose" in topic 1.2.142, "ldfcn" in
 topic 1.2.143, "ldopen, ldaopen" in topic 1.2.149, "ldtbread" in
 topic 1.2.154, and "ldtbseek" in topic 1.2.155.

AIX Operating System Technical Reference
ldgetname

¦ Copyright IBM Corp. 1985, 1991
1.2.145 - 1

 1.2.146 ldlread, ldlinit, ldlitem

 Purpose
 Manipulates line number entries of a common object file function.

 Library
 Object File Access Routine Library (libld.a)

 Syntax

 #include <stdio.h>
 #include <filehdr.h>
 #include <linenum.h>
 #include <ldfcn.h>
 #include <scnhdr.h>
 #include <syms.h>

 int ldlread (ldptr, fcnindx, linenum, linent)
 LDFILE *ldptr;
 long fcnindx;
 unsigned short linenum;
 LINENO *linent;

 int ldlinit (ldptr, fcnindx)
 LDFILE *ldptr;
 long fcnindx;

 int ldlitem (ldptr, linenum, linent)
 LDFILE *ldptr;
 unsigned short linenum;
 LINENO *linent;

 Description
 The ldlread subroutine searches the line number entries of the common
 object file currently associated with ldptr. This subroutine begins its
 search with the line number entry for the beginning of a function and
 confines its search to the line numbers associated with a single function.
 The function is identified by fcnindx, the index of its entry in the
 object file symbol table. The ldlread subroutine reads the entry with the
 smallest line number equal to or greater than linenum into the memory
 beginning at linent.

 The ldlinit and ldlitem subroutines together perform exactly the same
 function as ldlread. After an initial call to ldlread or ldlinit, ldlitem
 may be used to retrieve a series of line number entries associated with a
 single function. The ldlinit subroutine simply locates the line number
 entries for the function identified by fcnindx. The ldlitem subroutine
 finds and reads the entry with the smallest line number equal to or
 greater than linenum into the memory beginning at linent.

 The ldlread, ldlinit, and ldlitem subroutines each return either SUCCESS
 or FAILURE. The ldlread subroutine fails if there are no line number
 entries in the object file, if fcnindx does not index a function entry in
 the symbol table, or if it finds no line number equal to or greater than
 linenum. The ldlinit subroutine fails if there are no line number entries
 in the object file or if fcnindx does not index a function entry in the
 symbol table. The ldlitem subroutine fails if it finds no line number
 equal to or greater than linenum.

 Related Information

AIX Operating System Technical Reference
ldlread, ldlinit, ldlitem

¦ Copyright IBM Corp. 1985, 1991
1.2.146 - 1

 In this book: "ldclose, ldaclose" in topic 1.2.142, "ldfcn" in
 topic 1.2.143, "ldopen, ldaopen" in topic 1.2.149, and "ldtbindex" in
 topic 1.2.153.

AIX Operating System Technical Reference
ldlread, ldlinit, ldlitem

¦ Copyright IBM Corp. 1985, 1991
1.2.146 - 2

 1.2.147 ldlseek, ldnlseek

 Purpose
 Seeks to line number entries of a section of a common object file.

 Library
 Object File Access Routine Library (libld.a)

 Syntax

 #include <stdio.h>
 #include <filehdr.h>
 #include <ldfcn.h>
 #include <scnhdr.h>

 int ldlseek (ldptr, sectindx)
 LDFILE *ldptr;
 unsigned short sectindx;

 int ldnlseek (ldptr, sectname)
 LDFILE *ldptr;
 char *sectname;

 Description
 The ldlseek subroutine seeks to the line number entries of the section
 specified by sectindx of the common object file currently associated with
 ldptr.

 The ldnlseek subroutine seeks to the line number entries of the section
 specified by sectname.

 The ldlseek and ldnlseek subroutines return SUCCESS or FAILURE. The
 ldlseek routine fails if sectindx is greater than the number of sections
 in the object file. The ldnlseek routine fails if there is no section
 name corresponding with *sectname. Either function fails if the specified
 section has no line number entries or if it cannot seek to the specified
 line number entries.

 Note that the first section has an index of 1.

 Related Information
 In this book: "ldclose, ldaclose" in topic 1.2.142, "ldfcn" in
 topic 1.2.143, "ldopen, ldaopen" in topic 1.2.149, and "ldshread,
 ldnshread" in topic 1.2.151.

AIX Operating System Technical Reference
ldlseek, ldnlseek

¦ Copyright IBM Corp. 1985, 1991
1.2.147 - 1

 1.2.148 ldohseek

 Purpose
 Seeks to the optional file header of a common object file.

 Library
 Object File Access Routine Library (libld.a)

 Syntax

 #include <stdio.h>
 #include <filehdr.h>
 #include <ldfcn.h>

 int ldohseek (ldptr)
 LDFILE *ldptr;

 Description
 The ldohseek subroutine seeks to the optional file header of the common
 object file currently associated with ldptr.

 The ldohseek subroutine returns SUCCESS or FAILURE. The ldohseek routine
 fails if the object file has no optional header or if it cannot seek to
 the optional header.

 Related Information
 In this book: "ldclose, ldaclose" in topic 1.2.142, "ldfcn" in
 topic 1.2.143, "ldopen, ldaopen" in topic 1.2.149, and "ldfhread" in
 topic 1.2.144.

AIX Operating System Technical Reference
ldohseek

¦ Copyright IBM Corp. 1985, 1991
1.2.148 - 1

 1.2.149 ldopen, ldaopen

 Purpose
 Opens a common object file for reading.

 Library
 Object File Access Routine Library (libld.a)

 Syntax

 #include <stdio.h>
 #include <filehdr.h>
 #include <ldfcn.h>
 #include <ar.h>

 LDFILE *ldopen (filename, ldptr)
 char *filename;
 LDFILE *ldptr;

 LDFILE *ldaopen (filename, oldptr)
 char *filename;
 LDFILE *oldptr;

 Description
 The ldopen and ldclose subroutines are designed to provide uniform access
 to both simple object files and object files that are members of archive
 files. Thus, an archive of common object files can be processed as if it
 were a series of simple common object files.

 If ldptr has the value NULL, ldopen opens filename, allocates and
 initializes the LDFILE structure, and returns a pointer to the structure
 to the calling program.

 If ldptr is valid and if TYPE(ldptr) is the archive magic number, ldopen
 reinitializes the LDFILE structure for the next archive member of
 filename.

 The ldopen and ldclose subroutines are designed to work in concert. The
 ldclose subroutine returns FAILURE only when TYPE(ldptr) is the archive
 magic number and there is another file in the archive to be processed.
 Only then should ldopen be called with the current value of ldptr. In all
 other cases, in particular whenever a new filename is opened, ldopen
 should be called with a NULL ldptr argument.

 The following example illustrates the use of the ldopen and ldclose
 subroutines:

 /* for each filename to be processed */

 ldptr = NULL;
 do
 {
 if ((ldptr = ldopen(filename, ldptr)) != NULL)
 {
 /* check magic number */
 /* process the file */
 }
 } while (ldclose(ldptr) == FAILURE);

 If the value of oldptr is not NULL, ldaopen opens filename again, and

AIX Operating System Technical Reference
ldopen, ldaopen

¦ Copyright IBM Corp. 1985, 1991
1.2.149 - 1

 allocates and initializes a new LDFILE structure, copying the TYPE,
 OFFSET, and HEADER fields from oldptr. The ldaopen subroutine returns a
 pointer to the new LDFILE structure. This new pointer is independent of
 the old pointer, oldptr. The two pointers may be used concurrently to
 read separate parts of the object file. For example, one pointer may be
 used to step sequentially through the relocation information, while the
 other is used to read indexed symbol table entries.

 Both ldopen and ldaopen open filename for reading. Both functions return
 NULL if filename cannot be opened, or if memory for the LDFILE structure
 cannot be allocated. A successful open does not insure that the given
 file is a common object file or an archived object file.

 Related Information
 In this book: "fopen, freopen, fdopen" in topic 1.2.82, "ldclose,
 ldaclose" in topic 1.2.142, and "ldfcn" in topic 1.2.143.

AIX Operating System Technical Reference
ldopen, ldaopen

¦ Copyright IBM Corp. 1985, 1991
1.2.149 - 2

 1.2.150 ldrseek, ldnrseek

 Purpose
 Seeks to relocation entries of a section of a common object file.

 Library
 Object File Access Routine Library (libld.a)

 Syntax

 #include <stdio.h>
 #include <filehdr.h>
 #include <ldfcn.h>
 #include <scnhdr.h>

 int ldrseek (ldptr, sectindx)
 LDFILE *ldptr;
 unsigned short sectindx;

 int ldnrseek (ldptr, sectname)
 LDFILE *ldptr;
 char *sectname;

 Description
 The ldrseek subroutine seeks to the relocation entries of the section
 specified by sectindx of the common object file currently associated with
 ldptr. Note that the first section has an index of 1. The ldnrseek
 subroutine seeks to the relocation entries of the section specified by
 sectname.

 The ldrseek and ldnrseek subroutines return SUCCESS or FAILURE. The
 ldrseek subroutine fails if sectindx is greater than the number of
 sections in the object file. The ldnrseek subroutine fails if there is no
 section name corresponding with *sectname. Either function fails if the
 specified section has no relocation entries or if it cannot seek to the
 specified relocation entries.

 Related Information
 In this book: "ldclose, ldaclose" in topic 1.2.142, "ldfcn" in
 topic 1.2.143, "ldopen, ldaopen" in topic 1.2.149, and "ldshread,
 ldnshread" in topic 1.2.151.

AIX Operating System Technical Reference
ldrseek, ldnrseek

¦ Copyright IBM Corp. 1985, 1991
1.2.150 - 1

 1.2.151 ldshread, ldnshread

 Purpose
 Reads an indexed or named section header of a common object file.

 Library
 Object File Access Routine Library (libld.a)

 Syntax

 #include <stdio.h>
 #include <filehdr.h>
 #include <scnhdr.h>
 #include <ldfcn.h>

 int ldshread (ldptr, sectindx, secthead)
 LDFILE *ldptr;
 unsigned short sectindx;
 SCNHDR *secthead;

 int ldnshread (ldptr, sectname, secthead)
 LDFILE *ldptr;
 char *sectname;
 SCNHDR *secthead;

 Description
 The ldshread subroutine reads the section header specified by sectindx of
 the common object file currently associated with ldptr into the area of
 memory beginning at secthead. Note that the first section has an index of
 1. The ldnshread subroutine reads the section header specified by
 sectname into the area of memory beginning at secthead.

 The ldshread and ldnshread subroutines return SUCCESS or FAILURE. The
 ldshread subroutine fails if sectindx is greater than the number of
 sections in the object file. The ldnshread subroutine fails if there is
 no section name corresponding with sectname. Either function fails if it
 cannot read the specified section header.

 Related Information
 In this book: "ldclose, ldaclose" in topic 1.2.142, "ldfcn" in
 topic 1.2.143, and "ldopen, ldaopen" in topic 1.2.149.

AIX Operating System Technical Reference
ldshread, ldnshread

¦ Copyright IBM Corp. 1985, 1991
1.2.151 - 1

 1.2.152 ldsseek, ldnsseek

 Purpose
 Seeks to an indexed or named section of a common object file.

 Library
 Object File Access Routine Library (libld.a)

 Syntax

 #include <stdio.h>
 #include <filehdr.h>
 #include <ldfcn.h>
 #include <scnhdr.h>

 int ldsseek (ldptr, sectindx)
 LDFILE *ldptr;
 unsigned short sectindx;

 int ldnsseek (ldptr, sectname)
 LDFILE *ldptr;
 char *sectname;

 Description
 The ldsseek subroutine seeks to the section specified by sectindx of the
 common object file currently associated with ldptr. Note that the first
 section has an index of 1. The ldnsseek subroutine seeks to the section
 specified by sectname.

 The ldsseek and ldnsseek subroutines return SUCCESS or FAILURE. The
 ldsseek subroutine fails if sectindx is greater than the number of
 sections in the object file. The ldnsseek subroutine fails if there is no
 section name corresponding with *sectname. Either function fails if there
 is no section data for the specified section or if it cannot seek to the
 specified section.

 Related Information
 In this book: "ldclose, ldaclose" in topic 1.2.142, "ldfcn" in
 topic 1.2.143, "ldopen, ldaopen" in topic 1.2.149, and "ldshread,
 ldnshread" in topic 1.2.151.

AIX Operating System Technical Reference
ldsseek, ldnsseek

¦ Copyright IBM Corp. 1985, 1991
1.2.152 - 1

 1.2.153 ldtbindex

 Purpose
 Computes the index of a symbol table entry of a common object file.

 Library
 Object File Access Routine Library (libld.a)

 Syntax

 #include <stdio.h>
 #include <filehdr.h>
 #include <syms.h>
 #include <ldfcn.h>

 long ldtbindex (ldptr)
 LDFILE *ldptr;

 Description
 The ldtbindex subroutine returns the (long) index of the symbol table
 entry at the current position of the common object file associated with
 ldptr. Note that the first symbol in the symbol table has an index of 0.

 The index returned by ldtbindex may be used in subsequent calls to the
 ldtbread subroutine. However, since ldtbindex returns the index of the
 symbol table entry that begins at the current position of the object file,
 if ldtbindex is called immediately after a particular symbol table entry
 has been read, it returns the index of the next entry.

 The ldtbindex subroutine fails if there are no symbols in the object file,
 or if the object file is not positioned at the beginning of a symbol table
 entry.

 Related Information
 In this book: "ldclose, ldaclose" in topic 1.2.142, "ldfcn" in
 topic 1.2.143, "ldopen, ldaopen" in topic 1.2.149, "ldtbread" in
 topic 1.2.154, and "ldtbseek" in topic 1.2.155.

AIX Operating System Technical Reference
ldtbindex

¦ Copyright IBM Corp. 1985, 1991
1.2.153 - 1

 1.2.154 ldtbread

 Purpose
 Reads an indexed symbol table entry of a common object file.

 Library
 Object File Access Routine Library (libld.a)

 Syntax

 #include <stdio.h>
 #include <filehdr.h>
 #include <syms.h>
 #include <ldfcn.h>

 int ldtbread (ldptr, symindex, symbol)
 LDFILE *ldptr;
 long symindex;
 SYMENT *symbol;

 Description
 The ldtbread subroutine reads the symbol table entry specified by symindex
 of the common object file currently associated with ldptr into the area of
 memory beginning at symbol. Note that the first symbol in the symbol
 table has an index of 0.

 The ldtbread subroutine returns SUCCESS or FAILURE. The ldtbread
 subroutine fails if symindex is greater than or equal to the number of
 symbols in the object file, or if it cannot read the specified symbol
 table entry.

 Related Information
 In this book: "ldclose, ldaclose" in topic 1.2.142, "ldfcn" in
 topic 1.2.143, "ldgetname" in topic 1.2.145, "ldopen, ldaopen" in
 topic 1.2.149, and "ldtbseek" in topic 1.2.155.

AIX Operating System Technical Reference
ldtbread

¦ Copyright IBM Corp. 1985, 1991
1.2.154 - 1

 1.2.155 ldtbseek

 Purpose
 Seeks to the symbol table of a common object file.

 Library
 Object File Access Routine Library (libld.a)

 Syntax

 #include <stdio.h>
 #include <filehdr.h>
 #include <ldfcn.h>

 int ldtbseek (ldptr)
 LDFILE *ldptr;

 Description
 The ldtbseek subroutine seeks to the symbol table of the common object
 file currently associated with ldptr.

 The ldtbseek subroutine returns SUCCESS or FAILURE. The ldtbseek
 subroutine fails if the symbol table has been stripped from the object
 file, or if it cannot seek to the symbol table.

 Related Information
 In this book: "ldclose, ldaclose" in topic 1.2.142, "ldfcn" in
 topic 1.2.143, "ldopen, ldaopen" in topic 1.2.149, and "ldtbread" in
 topic 1.2.154.

AIX Operating System Technical Reference
ldtbseek

¦ Copyright IBM Corp. 1985, 1991
1.2.155 - 1

 1.2.156 link

 Purpose
 Creates an additional directory entry for an existing file.

 Library
 Standard C Library (libc.a)

 Syntax

 int link (path1, path2)
 char *path1, *path2;

 Description
 The link system call creates an additional link (directory entry) for an
 existing file. The path1 parameter points to the path name of an existing
 file and provides the inumber to be used. The path2 parameter points to
 the path name for the new directory entry to be created.

 If the path1 parameter is a symbolic link, it is followed and the link is
 made to the file pointed at by the symbolic link. The path2 parameter may
 not name an existing symbolic link.

 The path2 parameter cannot name a hidden directory; new links can only be
 explicitly named hidden directory components. If the path2 parameter is
 an explicitly named hidden directory component, the path1 parameter cannot
 name a hidden directory. If the path1 parameter references a hidden
 directory, the current xvers string and the current site path are used to
 determine the file, if any, to which the link is made.

 Return Value
 Upon successful completion, link returns a value of 0. If link fails, a
 value of -1 is returned and errno is set to indicate the error.

 Error Conditions
 The link system call fails if one or more of the following are true:

 ENOTDIR A component of either path prefix is not a directory.

 ENOENT A component of either path prefix does not exist.

 EACCES A component of either path prefix denies search permission.

 ENOENT The file named by the path1 parameter does not exist.

 EEXIST The link named by the path2 parameter already exists.

 EPERM The file named by the path1 parameter is a directory and the
 effective user ID is not superuser.

 EXDEV The link named by the path2 parameter and the file named by the
 path1 parameter are on different file systems.

 ENOENT The path2 parameter points to a null path name.

 EACCES The requested link requires writing in a directory with a mode
 that denies write permission.

 EROFS The requested link requires writing in a directory on a
 read-only file system.

AIX Operating System Technical Reference
link

¦ Copyright IBM Corp. 1985, 1991
1.2.156 - 1

 EFAULT The path1 or path2 parameter points to a location outside of the
 process's allocated address space.

 EDQUOT The directory in which the entry for the new link is being
 placed cannot be extended because the user's quota of disk
 blocks on the file system containing the directory has been
 exhausted.

 EMLINK The file already has the maximum number of links.

 ESTALE The process's root or current directory is located in an NFS
 virtual file system that has been unmounted.

 ENAMETOOLONG
 A component of the path1 or path2 parameter exceeded NAME_MAX
 characters or the entire path parameter exceeded PATH_MAX
 characters.

 EACCES The path1 parameter names a directory and path2 names a
 component of a hidden directory.

 ENOENT A hidden directory was named by the path1 parameter, but no
 component inside it matched the process's current site path
 list.

 ENOENT A symbolic link was named by the path1 parameter or the path
 prefix of the path2 parameter, but the file to which it refers
 does not exist.

 ELOOP A loop of symbolic links was detected.

 ENOSPC The file system is out of inodes.

 ENFILE The system inode table is full.

 If the Transparent Computing Facility is installed on your system, link
 can also fail if one or more of the following are true:

 ESITEDN1 path1 or path2 cannot be accessed because a site went down.

 ESITEDN2 The operation was terminated because a site failed.

 ENOSTORE A component of path1 or path2 is replicated but not stored on
 any site which is currently up.

 EROFS Write access is requested for a directory on a replicated file
 system in which the primary copy is unavailable.

 EINTR A signal was caught during the link system call.

 Related Information
 In this book: "unlink, rmslink, remove" in topic 1.2.318.

 The link command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
link

¦ Copyright IBM Corp. 1985, 1991
1.2.156 - 2

 1.2.157 listen

 Purpose
 Listens for connections on a socket.

 Library
 Internet Library (libc.a)

 Syntax

 int listen (s, backlog)
 int s, backlog;

 Description
 To accept connections, create a socket with socket, specify a backlog for
 incoming connections with listen, and accept the connections with accept.
 The listen system call applies only to sockets of type SOCK_STREAM.

 The backlog parameter defines the maximum length for the queue of pending
 connections. The maximum value of the backlog parameter is 5. If a
 connection request arrives with the queue full, the client may receive an
 error with an indication of ECONNREFUSED, or, if the underlying protocol
 supports retransmission, the request may be ignored so that retries may
 succeed.

 Return Value

 Upon successful completion, a value of 0 is returned. If the listen
 system call fails, a value of -1 is returned, and errno is set to indicate
 the error.

 Error Conditions
 The system call fails if one or more of the following are true:

 EBADF The s parameter is not valid.

 ENOTSOCK The s parameter refers to a file, not a socket.

 EOPNOTSUPP The referenced socket is not of type that supports listen.

 EINVAL The referenced socket refers to a NULL inode.

 Related Information
 In this book: "accept" in topic 1.2.9, "connect" in topic 1.2.49, and
 "socket" in topic 1.2.275.

AIX Operating System Technical Reference
listen

¦ Copyright IBM Corp. 1985, 1991
1.2.157 - 1

 1.2.158 localeconv

 Purpose
 Sets components of an object type struct lconv with appropriate formatting
 values.

 Syntax

 #include <locale.h>

 struct lconv *localeconv (int category, const char *locale);

 Description

 The localeconv subroutine sets the components of an object type struct
 lconv with values appropriate for the formatting of numeric quantities
 (monetary and otherwise) according to rules of the current locale.

 The members of the structure with the type char * are pointers to strings,
 any of which (except decimal_point) can point to "", to indicate that the
 value is not available in the current locale or is of zero length. The
 members with type char are non-negative numbers, any of which can be
 CHAR_MAX, to indicate that the value is not available in current locale.
 The members include the following:

 +--+
 ¦ Variable ¦ Description ¦
 +-----------------------+--¦
 ¦ decimal_point ¦ The decimal-point character used to format ¦
 ¦ ¦ non-monetary quantities. ¦
 +-----------------------+--¦
 ¦ thousands_sep ¦ The character used to separate groups of ¦
 ¦ ¦ digits before the decimal-point character in ¦
 ¦ ¦ formatted non-monetary quantities. ¦
 +-----------------------+--¦
 ¦ grouping ¦ A string whose elements indicate the size of ¦
 ¦ ¦ each group of digits in formatted non-monetary ¦
 ¦ ¦ quantities. ¦
 +-----------------------+--¦
 ¦ int_curr_symbol ¦ The international currency symbol applicable ¦
 ¦ ¦ to the current locale. The first three ¦
 ¦ ¦ characters contain the alphabetic ¦
 ¦ ¦ international currency symbol in accordance ¦
 ¦ ¦ with those specified in the ISO 4217 Codes for ¦
 ¦ ¦ the Representation of Currency and Funds. The ¦
 ¦ ¦ fourth character (immediately preceding the ¦
 ¦ ¦ NULL character) is the character used to ¦
 ¦ ¦ separate the international currency symbol ¦
 ¦ ¦ from the monetary quantity. ¦
 +-----------------------+--¦
 ¦ currency_symbol ¦ The locale currency applicable to the current ¦
 ¦ ¦ locale. ¦
 +-----------------------+--¦
 ¦ mon_decimal_point ¦ The decimal-point used to format monetary ¦
 ¦ ¦ quantities. ¦
 +-----------------------+--¦
 ¦ mon_thousands_sep ¦ The separator for groups of digits before the ¦
 ¦ ¦ decimal-point in formatted monetary ¦
 ¦ ¦ quantities. ¦

AIX Operating System Technical Reference
localeconv

¦ Copyright IBM Corp. 1985, 1991
1.2.158 - 1

 +-----------------------+--¦
 ¦ mon_grouping ¦ A string whose elements indicate the size of ¦
 ¦ ¦ each group of digits in formatted monetary ¦
 ¦ ¦ quantities. ¦
 +-----------------------+--¦
 ¦ positive_sign ¦ The strings used to indicate a ¦
 ¦ ¦ non-negative-valued formatted monetary ¦
 ¦ ¦ quantity. ¦
 +-----------------------+--¦
 ¦ negative_sign ¦ The strings used to indicate a negative-valued ¦
 ¦ ¦ formatted monetary quantity. ¦
 +-----------------------+--¦
 ¦ int_frac_digits ¦ The number of fractional digits (those after ¦
 ¦ ¦ the decimal-point) to be displayed in an ¦
 ¦ ¦ internationally formatted monetary quantity. ¦
 +-----------------------+--¦
 ¦ frac_digits ¦ The number of fractional digits (those after ¦
 ¦ ¦ the decimal-point) to be displayed in a ¦
 ¦ ¦ formatted monetary quantity. ¦
 +-----------------------+--¦
 ¦ p_cs_precedes ¦ Set to 1 or 0 if the currency_symbol ¦
 ¦ ¦ respectively precedes or succeeds the value ¦
 ¦ ¦ for a non-negative formatted monetary ¦
 ¦ ¦ quantity. ¦
 +-----------------------+--¦
 ¦ p_sep_by_space ¦ Set to 1 or 0 if the currency_symbol is or is ¦
 ¦ ¦ not separated by a space from the value for a ¦
 ¦ ¦ non-negative formatted monetary quantity. ¦
 +-----------------------+--¦
 ¦ n_cs_precedes ¦ Set to 1 or 0 if the currency_symbol ¦
 ¦ ¦ respectively precedes or succeeds the value ¦
 ¦ ¦ for a negative formatted monetary quantity. ¦
 +-----------------------+--¦
 ¦ n_sep_by_space ¦ Set to 1 or 0 if the currency_symbol is or is ¦
 ¦ ¦ not separated by a space from the value for a ¦
 ¦ ¦ negative formatted monetary quantity. ¦
 +-----------------------+--¦
 ¦ p_sign_posn ¦ Set to a value indicating the positioning of ¦
 ¦ ¦ the positive_sign for a non-negative formatted ¦
 ¦ ¦ monetary. ¦
 +-----------------------+--¦
 ¦ n_sign_posn ¦ Set to a value indicating the positioning of ¦
 ¦ ¦ the negative_sign for a negative formatted ¦
 ¦ ¦ monetary quantity. ¦
 +--+

 +--+
 ¦ The elements of grouping and mon_grouping are interpreted according to ¦
 ¦ the following ¦
 +--¦
 ¦ Value ¦ Description ¦
 +-----------+--¦
 ¦ CHAR_MAX ¦ No further grouping is to be performed. ¦
 +-----------+--¦
 ¦ 0 ¦ The previous element is to be repeatedly used for the ¦
 ¦ ¦ remainder of digits. ¦
 +-----------+--¦
 ¦ other ¦ The integer value is the number of digits that comprise ¦
 ¦ ¦ the current group. The next element is examined to ¦

AIX Operating System Technical Reference
localeconv

¦ Copyright IBM Corp. 1985, 1991
1.2.158 - 2

 ¦ ¦ determine the size of the next group of digits before the ¦
 ¦ ¦ current group. ¦
 +--+

 +--+
 ¦ The value of p_sign_posn and n_sign_posn ¦
 ¦ is interpreted according to the following. ¦
 +--¦
 ¦ Valu¦ Description ¦
 +-----+--------------------------------------¦
 ¦ 0 ¦ Parentheses surround the quantity ¦
 ¦ ¦ and currency_symbol. ¦
 +-----+--------------------------------------¦
 ¦ 1 ¦ The sign string precedes the ¦
 ¦ ¦ quantity and currency_symbol. ¦
 +-----+--------------------------------------¦
 ¦ 2 ¦ The sign string succeeds the ¦
 ¦ ¦ quantity and currency_symbol. ¦
 +-----+--------------------------------------¦
 ¦ 3 ¦ The sign strings immediately ¦
 ¦ ¦ precedes the currency_symbol. ¦
 +-----+--------------------------------------¦
 ¦ 4 ¦ The sign strings immediately ¦
 ¦ ¦ succeeds the currency_symbol. ¦
 +--+

 The implementation behaves as if no library functions call the localeconv
 function.

 Examples

 The following table illustrates the rules which may be used by four
 countries to format monetary quantities.

 +---+
 ¦ Examples of monetary representations ¦
 +---¦
 ¦ ¦ ¦ ¦ International¦
 ¦ Country ¦ Positive ¦ Negative ¦ Format ¦
 ¦ ¦ Format ¦ Format ¦ ¦
 +----------+------------+------------+--------------¦
 ¦ Italy ¦ L.1.234 ¦ -L.1.234 ¦ ITL.1.234 ¦
 +----------+------------+------------+--------------¦
 ¦ Netherlan¦sF 1.234,56 ¦ F ¦ NLG 1.234,56 ¦
 ¦ ¦ ¦ -1.234,56 ¦ ¦
 +----------+------------+------------+--------------¦
 ¦ Norway ¦ Kr1.234,56 ¦ kr11.234,56¦ NOK 1.234,56 ¦
 +----------+------------+------------+--------------¦
 ¦ Switzerla¦dSFrs.1,234.¦6SFrs.1,234.¦6CHF 1,234.56 ¦
 +---+

 +--+
 ¦ For these four countries, the respective values ¦
 ¦ for the monetary members of the structure ¦
 ¦ returned by localeconv are ¦
 +--¦
 ¦ ¦ Country ¦

AIX Operating System Technical Reference
localeconv

¦ Copyright IBM Corp. 1985, 1991
1.2.158 - 3

 +--------------+-----------------------------------¦
 ¦ Variable ¦ Italy ¦ Netherla¦dNorway¦ Switzerl¦nd
 +--------------+-------+---------+-------+---------¦
 ¦ int_curr_symb¦l"ITL."¦ "NLG" ¦ "NOK" ¦ "CHF" ¦
 +--------------+-------+---------+-------+---------¦
 ¦ currency_symb¦l"L." ¦ "F" ¦ "kr" ¦ "SFrs." ¦
 +--------------+-------+---------+-------+---------¦
 ¦ mon_decimal_p¦i"" ¦ "," ¦ "," ¦ "." ¦
 +--------------+-------+---------+-------+---------¦
 ¦ mon_thousands¦s"." ¦ "." ¦ "." ¦ "," ¦
 +--------------+-------+---------+-------+---------¦
 ¦ mon_grouping ¦ "3" ¦ "3" ¦ "3" ¦ "3" ¦
 +--------------+-------+---------+-------+---------¦
 ¦ positive_sign¦ "" ¦ "" ¦ "" ¦ "" ¦
 +--------------+-------+---------+-------+---------¦
 ¦ negative_sign¦ "-" ¦ "-" ¦ "-" ¦ "C" ¦
 +--------------+-------+---------+-------+---------¦
 ¦ int_frac_digi¦s0 ¦ 2 ¦ 2 ¦ 2 ¦
 +--------------+-------+---------+-------+---------¦
 ¦ frac_digits ¦ 0 ¦ 2 ¦ 2 ¦ 2 ¦
 +--------------+-------+---------+-------+---------¦
 ¦ p_cs_precedes¦ 1 ¦ 1 ¦ 1 ¦ 1 ¦
 +--------------+-------+---------+-------+---------¦
 ¦ p_sep_by_spac¦ 0 ¦ 1 ¦ 0 ¦ 0 ¦
 +--------------+-------+---------+-------+---------¦
 ¦ n_cs_precedes¦ 1 ¦ 1 ¦ 1 ¦ 1 ¦
 +--------------+-------+---------+-------+---------¦
 ¦ n_sep_by_spac¦ 0 ¦ 1 ¦ 0 ¦ 0 ¦
 +--------------+-------+---------+-------+---------¦
 ¦ p_sign_posn ¦ 1 ¦ 1 ¦ 1 ¦ 1 ¦
 +--------------+-------+---------+-------+---------¦
 ¦ n_sign_posn ¦ 1 ¦ 4 ¦ 2 ¦ 2 ¦
 +--+

 Return Value

 The localeconv subroutine returns a pointer to the filled-in object. The
 structure pointed to by the return value will not be modified by the
 program, but may be overwritten by a subsequent call to the localeconv
 subroutine. In addition, calls to the setlocale subroutine with
 categories LC_ALL, LC_MONETARY, or LC_NUMERIC may overwrite the contents
 of the structure.

AIX Operating System Technical Reference
localeconv

¦ Copyright IBM Corp. 1985, 1991
1.2.158 - 4

 1.2.159 logname

 Purpose
 Returns the login name of the user.

 Library
 Programmers Workbench Library (libPW.a)

 Syntax

 char *logname ()

 Description
 The logname subroutine returns a pointer to the null-terminated login
 name. The logname subroutine extracts the LOGNAME variable from the
 user's environment.

 Note: The return value points to static data whose content is overwritten
 by each call. This method of determining a login name is subject
 to forgery. For better methods, see "cuserid" in topic 1.2.57,
 "getlogin" in topic 1.2.103, and "getpwent, getpwuid, getpwnam,
 setpwent, endpwent" in topic 1.2.114.

 File
 /etc/profile

 Related Information
 In this book: "profile" in topic 2.3.48 and "environment" in topic 2.4.6.

 The env and login commands in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
logname

¦ Copyright IBM Corp. 1985, 1991
1.2.159 - 1

 1.2.160 lsearch, lfind

 Purpose
 Performs a linear search and update.

 Library
 Standard C Library (libc.a)

 Syntax

 char *lsearch (key, base, nelp, size, compar)
 char *key
 char *base
 unsigned int *nelp;
 size_t size;
 int (*compar) ();

 char *lfind (key, base, nelp, size, compar)
 char *key
 char *base
 unsigned int *nelp;
 size_t size;
 int (*compar) ();

 Description
 The lsearch subroutine performs a linear search generalized from Donald E.
 Knuth's The Art of Computer Programming, Volume 3, 6.1, Algorithm S. (*)
 It returns a pointer into a table indicating where a datum can be found.
 If the datum does not occur, it is added at the end of the table.

 The key parameter points to the datum to be sought in the table. The base
 parameter points to the first element in the table. The nelp parameter
 points to an integer containing the current number of elements in the
 table. This integer is incremented if the datum is added to the table.
 The compar parameter is the name of the comparison function that you must
 supply (strcmp, for example). It is called with two parameters that point
 to the elements being compared. The compar function must return a value
 of 0 if the elements are equal and nonzero if they are not equal.

 The lfind subroutine is identical to lsearch, except that if the datum is
 not found, then it is not added to the table. Instead, a NULL pointer is
 returned in this case.

 The pointers to the key and the element at the base of the table should be
 of type pointer-to-element and cast to type pointer-to-character.
 Although it is declared as type pointer-to-character, the value returned
 should be cast into type pointer-to-element.

 The comparison function need not compare every byte; therefore, the
 elements can contain arbitrary data in addition to the values being
 compared.

 Warning: Undefined results can occur if there is not enough room in the
 table for lsearch to add a new item.

 Example
 The following code fragment reads up to TABSIZE strings, each of which is
 up to ELSIZE bytes long, and stores them into a table, eliminating
 duplicates.

AIX Operating System Technical Reference
lsearch, lfind

¦ Copyright IBM Corp. 1985, 1991
1.2.160 - 1

 #include <stdio.h>

 #define TABSIZE 50
 #define ELSIZE 120

 char *lsearch();
 int strcmp();
 char line[ELSIZE], tab[TABSIZE][ELSIZE];
 unsigned nel = 0;
 ...
 while (fgets(line, ELSIZE, stdin) != NULL && nel < TABSIZE)
 {
 (void) lsearch(line, (char *)tab, &nel, ELSIZE, strcmp);
 }
 ...

 Related Information
 In this book: "bsearch" in topic 1.2.23, "hsearch, hcreate, hdestroy" in
 topic 1.2.130, and "tsearch, tdelete, twalk" in topic 1.2.309.

 (*) Reading, Massachusetts: Addison-Wesley, 1981.

AIX Operating System Technical Reference
lsearch, lfind

¦ Copyright IBM Corp. 1985, 1991
1.2.160 - 2

 1.2.161 lseek

 Purpose
 Moves read/write file pointer.

 Syntax

 #include <sys/types.h>
 #include <unistd.h>

 off_t lseek (fildes, offset, whence)
 int fildes;
 off_t offset;
 int whence;

 Description
 The lseek system call sets the file pointer for the file specified by the
 fildes parameter.

 The fildes parameter is a file descriptor obtained from a creat, open,
 dup, or fcntl system call.

 The lseek system call sets the file pointer associated with the fildes
 stream according to the value of the whence parameter, as follows:

 SEEK_SET Sets the file pointer to the value of the offset parameter.

 SEEK_CUR Sets the file pointer to its current location plus the value of
 the offset parameter.

 SEEK_END Sets the file pointer to the size of the file plus the value of
 the offset parameter.

 Return Value
 Upon successful completion, the resulting pointer location as measured in
 bytes from the beginning of the file is returned. A negative value may be
 returned if the offset parameter was negative; errno is not set. If lseek
 fails, a value of -1 is returned and errno is set to indicate the error.

 Error Conditions
 The lseek system call fails and the file pointer remains unchanged if one
 or more of the following are true:

 EBADF fildes is not an open file descriptor.

 ESPIPE fildes is associated with a pipe (FIFO) or a multiplexed special
 file.

 EINVAL whence is not SEEK_SET, SEEK_CUR, or SEEK_END.

 If the Transparent Computing Facility is installed on your system, lseek
 can also fail if one or more of the following are true:

 ESITEDN1 The file identified by fildes cannot be accessed because a site
 went down.

 ESITEDN2 The operation was terminated because a site failed.

 Related Information

AIX Operating System Technical Reference
lseek

¦ Copyright IBM Corp. 1985, 1991
1.2.161 - 1

 In this book: "dup" in topic 1.2.64, "fcntl, flock, lockf" in
 topic 1.2.78, "fseek, rewind, ftell" in topic 1.2.86, and "open, openx,
 creat" in topic 1.2.199.

AIX Operating System Technical Reference
lseek

¦ Copyright IBM Corp. 1985, 1991
1.2.161 - 2

 1.2.162 malloc, free, realloc, calloc, valloc, alloca, mallopt, mallinfo

 Purpose
 Provides a means to allocate memory.

 Default malloc subroutines

 Library
 Standard C Library (libc.a)

 Syntax

 #include <stdlib.h> void *realloc (ptr, size)
 #include <sys/types.h> void *ptr;
 size_t size;
 void *malloc (size)
 size_t size; void *calloc (nelem, elsize)
 size_t nelem, elsize;
 void free (ptr)
 void *ptr;

 Alternate malloc subroutines

 Library
 Malloc Library (libmalloc.a)

 Syntax

 #include <malloc.h> char *calloc (nelem, elsize)
 unsigned nelem, elsize;
 char *malloc (size)
 unsigned size; int mallopt (cmd, value)
 int cmd, value;
 void free (ptr)
 struct mallinfo mallinfo ();
 char *ptr

 char *realloc (ptr, size)
 char *ptr;
 unsigned size;

 Description

 The malloc and free subroutines provide a simple general purpose memory
 allocation package.

 Two different malloc suites are provided. The default malloc suite
 includes malloc, free, realloc, calloc, valloc, and alloca. The alternate
 malloc suite includes malloc, free, realoc, calloc, mallopt, and mallinfo.
 To use the alternate malloc, add -1malloc when running cc or ld. Except
 where noted, the four subroutines shared by both suites (malloc, free,
 realloc, and calloc) behave the same.

 The default malloc allocates memory in a block which is a power of two.
 The default malloc is faster than the alternate malloc because the
 allocated memory is page aligned. However, it is more wasteful of memory
 than the alternate malloc.

 The alternate malloc adds only a small header to each piece allocated, so
 it doesn't use as much memory as the default malloc. The memory allocated

AIX Operating System Technical Reference
malloc, free, realloc, calloc, valloc, alloca, mallopt, mallinfo

¦ Copyright IBM Corp. 1985, 1991
1.2.162 - 1

 by the alternate malloc is not page aligned, so the malloc runs slower
 because of the increased paging.

 If your program needs to use as much of the available memory as possible,
 you should consider using the alternate malloc suite, or use the sbrk
 system call directly. (Note that the alternate malloc doesn't
 automatically allocate as much of the available memory as possible.) This
 is especially relevant for AIX/370 programs compiled in S/370 (non-XA)
 mode. These processes have a smaller virtual address space than XA-mode
 processes or AIX PS/2 processes.

 The malloc subroutine returns a pointer to a block of at least size bytes.
 The block is aligned so that it can be used for any type of data.
 Undefined results occur if the space assigned by malloc is overrun.

 The malloc subroutine searches memory for the first contiguous area of
 free space of at least size bytes. The search is performed in a circular
 pattern from the last block of memory allocated or freed. During the
 search, malloc joins adjacent free blocks of memory. If a large enough
 contiguous area of free space is not found, then malloc issues an sbrk
 system call to get more memory from the system.

 The free subroutine frees the block memory pointed to by the ptr parameter
 for further allocation. The block pointed to by the ptr parameter must
 have been previously allocated by the malloc subroutine. The default free
 subroutine does not change the contents of this block of memory, but the
 alternate free subroutine does, unless you use the M_KEEP directive of
 mallopt. Undefined results occur if the ptr parameter is not a valid
 pointer.

 The realloc subroutine changes the size of the block of memory pointed to
 by the ptr parameter to the number of bytes specified by the size
 parameter, and then it returns a pointer to the block. The contents of
 the block remain unchanged up to the lesser of the old and new sizes. If
 a large enough block of memory is not available, then realloc calls the
 malloc subroutine to enlarge the memory area, and then moves the data to
 the new space.

 The calloc subroutine allocates space for an array with the number of
 elements specified by the nelem parameter. Each element is of the size
 specified by the elsize parameter. The space is initialized to 0's.

 Each of the allocation subroutines returns a pointer to space suitably
 aligned for storage of any type of object. Cast the pointer to the type
 pointer-to-element before using it.

 mallopt (part of the alternate malloc suite) provides for control over the
 allocation algorithm. The available values for cmd are:

 M_MXFAST Set maxfast to value. The algorithm allocates all blocks
 below the size of maxfast in large groups and then doles
 them out very quickly. The default value for maxfast is 24.

 M_NLBLKS Set numlblks to value. The "large groups" mentioned in the
 previous item each contain numlblks blocks. numlblks must
 be greater than 0. The default value for numlblks is 100.

 M_GRAIN Set grain to value. The sizes of all blocks smaller than
 maxfast are considered to be rounded up to the nearest
 multiple of grain. grain must be greater than 0. The

AIX Operating System Technical Reference
malloc, free, realloc, calloc, valloc, alloca, mallopt, mallinfo

¦ Copyright IBM Corp. 1985, 1991
1.2.162 - 2

 default values of grain is the smallest number of bytes
 which will allow alignment of any data type. Value will be
 rounded up to a multiple of the default when grain is set.

 M_KEEP Preserve data in a freed block until the next malloc,
 realloc, or calloc. This option is provided only for
 compatibility with the default version of malloc and is not
 recommended.

 These values are defined in the <malloc.h> header file.

 mallopt may be called repeatedly, but may not be called after the first
 small block is allocated. If mallopt is called after any allocation or if
 cmd or value are invalid, non-zero is returned. Otherwise, it returns
 zero.

 mallinfo (part of the alternate malloc suite) provides instrumentation
 describing space usage. It returns the structure:

 struct mallinfo {
 int arena; /* total space in arena */
 int ordblks; /* number of ordinary blocks */
 int smblks; /* number of small blocks */
 int hblkhd; /* space in holding block headers */
 int hblks; /* number of holding blocks */
 int usmblks; /* space in small blocks in use */
 int fsmblks; /* space in free small blocks */
 int uordblks; /* space in ordinary blocks in use */
 int fordblks; /* space in free ordinary blocks */
 int keepcost; /* space penalty if keep option is used */
 }

 This structure is defined in the <malloc.h> header file.

 The malloc, realloc, and calloc subroutines return a NULL pointer if there
 is no available memory or if the memory arena has been corrupted by
 storing outside the bounds of a block. When this happens, the block
 pointed to by the ptr parameter could be destroyed.

 Error Conditions
 The malloc, realloc, and calloc subroutines will fail if the following is
 true:

 ENOMEM Insufficient memory is available.

 Compatibility Note

 The valloc subroutine, found in many BSD systems, is supported as a
 compatibility interface. It is used by compiling the Berkeley
 Compatibility Library (libbsd.a). The function of valloc is superceeded
 by malloc, which automatically page aligns large (greater than or equal to
 1 page) requests. Its syntax is as follows:

 char *valloc (size)
 unsigned int size;

 The alloca subroutine is included also for compatibility with older BSD
 programs and is used by compiling with the Berkeley Compatibility Library
 (libbsd.a). This subroutine allocates size bytes of space in the stack
 frame of the caller. This temporary space is automatically freed on

AIX Operating System Technical Reference
malloc, free, realloc, calloc, valloc, alloca, mallopt, mallinfo

¦ Copyright IBM Corp. 1985, 1991
1.2.162 - 3

 return. Its syntax is as follows:

 include <alloca.h>

 char *alloca (size)
 int size;

AIX Operating System Technical Reference
malloc, free, realloc, calloc, valloc, alloca, mallopt, mallinfo

¦ Copyright IBM Corp. 1985, 1991
1.2.162 - 4

 1.2.163 matherr

 Purpose
 Performs an action when a math subroutine encounters an error.

 Library
 Math Library (libm.a)

 Syntax

 #include <math.h>

 int matherr (excp)
 struct exception *excp;

 Description
 If matherr error handling is in effect, then the math library subroutines
 call matherr when an error is detected. See "cbrt, exp, expm1, log,
 log10, log1p, pow, sqrt" in topic 1.2.28 and "sin, cos, tan, asin, acos,
 atan, atan2" in topic 1.2.270 about alternative error handling available
 for these subroutines.

 You can override the default error-handling actions by supplying a
 subroutine of your own in place of the matherr subroutine supplied in the
 math library. To do this, include in your program a subroutine named
 matherr that takes one parameter: a pointer to an exception structure.
 The exception structure is defined in the math.h header file and it
 contains the following members:

 int type;
 char *name;
 double arg1, arg2, retval;

 The structure member named type describes the type of error that occurred.
 Its value is one of the following constants:

 DOMAIN Domain error
 SING Singularity
 OVERFLOW Overflow
 UNDERFLOW Underflow
 TLOSS Total loss of significance
 PLOSS Partial loss of significance

 The name member points to a string containing the name of the subroutine
 that encountered the error. The members arg1 and arg2 contain the
 parameters that were passed to the subroutine. The retval member is the
 value that the math subroutine returns.
 All of the math subroutines that call matherr do so in ways similar to
 this:

 /*
 ** Set up the exception structure
 */
 exc.type = DOMAIN; /* Type of error */
 exc.name = "pow"; /* Name of subroutine */
 exc.arg1 = x; /* Arguments to pow(x,y) */
 exc.arg2 = y;

 if (matherr(&exc) == 0)

AIX Operating System Technical Reference
matherr

¦ Copyright IBM Corp. 1985, 1991
1.2.163 - 1

 {
 /*
 ** matherr returned 0, so perform the
 ** default error-handling procedures
 */
 fprintf(stderr, "pow: DOMAIN error\n");
 exc.retval = 0;
 errno = EDOM;
 }

 return (exc.retval);

 Studying this sample shows that the return value from the matherr
 subroutine controls whether or not the math subroutine performs its
 default error-handling procedures. If matherr returns 0, then the default
 procedures are performed. Note in particular that if you want to specify
 the value to be returned by the math subroutine, then your matherr
 subroutine must set excp->retval and return a nonzero value.

 If you do not supply your own matherr subroutine, then the matherr
 subroutine supplied in the math library is linked into your program. This
 subroutine does nothing except return the value 0. Because it returns 0,
 the calling math subroutine then performs its default error-handling
 procedures. The default procedures are mentioned in the discussion of
 each math subroutine.

 The math library subroutines atan, ceil, erf, erfc, fabs, floor, fmod, and
 tanh do not generate any of the error types listed on page 1.2.163 and
 therefore do not call matherr.
 The following table shows the default error-handling procedures for the
 remaining math library subroutines:

 +--+
 ¦ Figure 2-1. Default Error-Handling Procedures ¦
 +--¦
 ¦ ¦ DOMAIN ¦ SING ¦ OVERFLOW ¦ UNDERFLOW ¦ TLOSS ¦ PLOSS ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ acos ¦ M,0,D(1)¦ -- ¦ -- ¦ -- ¦ -- ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ acosh ¦ M,H,D(10¦ -- ¦ -- ¦ -- ¦ -- ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ asin ¦ M,0,D(1)¦ -- ¦ -- ¦ -- ¦ -- ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ asinh ¦ -- ¦ -- ¦ -- ¦ -- ¦ -- ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ atan2 ¦ M,0,D(2)¦ -- ¦ -- ¦ -- ¦ -- ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ atanh ¦ M,H,D(11¦ -- ¦ -- ¦ -- ¦ -- ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ cabs ¦ -- ¦ -- ¦ -- ¦ -- ¦ -- ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ cbrt ¦ -- ¦ -- ¦ -- ¦ -- ¦ -- ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ cos ¦ -- ¦ -- ¦ -- ¦ -- ¦ M,0,R ¦ *,R ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ cosh ¦ -- ¦ -- ¦ H,R ¦ -- ¦ -- ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ exp ¦ -- ¦ -- ¦ H,R ¦ 0,R ¦ -- ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ expml ¦ -- ¦ -- ¦ H,R ¦ 0,R ¦ -- ¦ -- ¦

AIX Operating System Technical Reference
matherr

¦ Copyright IBM Corp. 1985, 1991
1.2.163 - 2

 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ gamma ¦ -- ¦ M,H,D(3)¦ H,R ¦ -- ¦ -- ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ hypot ¦ -- ¦ -- ¦ H,R ¦ -- ¦ -- ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ j0 ¦ -- ¦ -- ¦ -- ¦ 0,R ¦ M,0,R ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ j1 ¦ -- ¦ -- ¦ -- ¦ 0,R ¦ M,0,R ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ jn ¦ -- ¦ -- ¦ -- ¦ 0,R ¦ -- ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ lgamma¦ M,H,D(3)¦ -- ¦ M,H,R ¦ M,H,R ¦ -- ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ log ¦ M,-H,D(4¦ M,-H,R(5¦ -- ¦ -- ¦ -- ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ log10 ¦ M,-H,D(4¦ M,-H,R(5¦ -- ¦ -- ¦ -- ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ loglp ¦ M,±H,D(1¦)-- ¦ -- ¦ -- ¦ -- ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ pow ¦ M,0,D(6)¦ -- ¦ ±H,R ¦ 0,R ¦ -- ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ sin ¦ -- ¦ -- ¦ -- ¦ -- ¦ M,0,R ¦ *,R ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ sinh ¦ -- ¦ -- ¦ ±H,R ¦ -- ¦ -- ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ sqrt ¦ M,0,D(7)¦ -- ¦ -- ¦ -- ¦ -- ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ tan ¦ -- ¦ -- ¦ ±H,R ¦ -- ¦ M,0,R ¦ *,R ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ y0 ¦ M,-H,D(8¦ -- ¦ -H,R(9) ¦ 0,R ¦ M,0,R ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ y1 ¦ M,-H,D(8¦ -- ¦ -- ¦ 0,R ¦ M,0,R ¦ -- ¦
 +-------+---------+---------+----------+-----------+---------+-----------¦
 ¦ yn ¦ M,-H,D(8¦ -- ¦ -H,R(9) ¦ 0,R ¦ -- ¦ -- ¦
 +--+

 The following abbreviations are used in the table:

 * As much as possible of the value is returned.
 0 0 is returned.
 H HUGE is returned.
 -H -HUGE is returned.
 ±H HUGE or -HUGE is returned.
 M A message is written to stdout.
 D errno is set to EDOM.
 R errno is set to ERANGE.

 Notes:

 (1) Caused by passing acos or asin a value larger than 1.0.

 (2) Caused by trying to calculate atan2(0, 0).

 (3) Caused by passing gamma or lgamma a nonpositive integer.

 (4) Caused by passing log or log10 a negative value.

 (5) Caused by trying to calculate log(0) or log10(0).

 (6) Caused by trying to raise a negative number to a noninteger power or 0

AIX Operating System Technical Reference
matherr

¦ Copyright IBM Corp. 1985, 1991
1.2.163 - 3

 to a nonpositive power.

 (7) Caused by passing sqrt a negative value.

 (8) Caused by passing y0, y1, or yn a nonpositive value.

 (9) Caused by passing y0 a very small positive value.

 (10) Caused by passing acosh a value smaller than 1.0.

 (11) Caused by passing atanh a value whose absolute value is greater than
 or equal to 1.0.

 (12) Caused by passing loglp a value which is less than or equal to -1.0.

 Examples
 The following subroutine suggests the kinds of actions that a
 user-supplied matherr subroutine might perform. It is not the matherr
 subroutine that is provided in the math library. The supplied matherr
 subroutine merely returns 0.

 int matherr(x)
 register struct exception *x;
 {
 switch (x->type)
 {
 case DOMAIN:
 case SING:
 /* Display message and abort */
 fprintf(stderr, "domain error in %s\n", x->name);
 abort();

 case OVERFLOW:
 if (strcmp("exp", x->name) == 0)
 {
 /* If exp, display message & return the argument */
 fprintf(stderr, "exp of %f\n", x->arg1);
 x->retval = x->arg1;
 }
 else
 if (strcmp("sinh", x->name) == 0)
 {
 /* If sinh, set errno, return 0 */
 errno = ERANGE;
 x->retval = 0;
 }
 else
 /* Otherwise, return HUGE */
 x->retval = HUGE;
 break;

 case UNDERFLOW:
 return (0); /* Perform the default procedures */

 case TLOSS:
 case PLOSS:
 /* Display message and return 0 */
 fprintf(stderr, "loss of significance in %s\n",
 x->name);

AIX Operating System Technical Reference
matherr

¦ Copyright IBM Corp. 1985, 1991
1.2.163 - 4

 x->retval = 0;
 break;
 } /* switch */

 return (1); /* Do NOT perform the default procedures */
 } /* matherr */

 Related Information
 In this book: "math.h" in topic 2.4.13.

AIX Operating System Technical Reference
matherr

¦ Copyright IBM Corp. 1985, 1991
1.2.163 - 5

 1.2.164 mbstring

 Purpose
 Performs operations on strings.

 Syntax

 #include <string.h>
 #include <mbcs.h>

 char *mbscat (s1, s2) char *mbspbrk (s1, s2)
 char *s1, s2; const char *s1, *s2;

 char *mbscpy (s1, s2) size_t mbsspn (s1, s2)
 char *s1, s2; const char *s1, *s2;

 size_t mbslen (s) size_t mbscspn (s1, s2)
 char *s; const char *s1, *s2;

 char *mbsncat (s1, s2, ncharchar *mbstok (s1, s2)
 char *s1, *s2; char *s1;
 size_t nchar; const char *s2;

 char *mbsncpy (s1, s2, ncharint mbscmp (s1, s2)
 char *s1, *s2; char *s1, *s2;
 size_t nchar;
 int mbsncmp (s1, s2, nchar)
 char *mbschr (s, c) char *s1, s2;
 char *s; size_t nchar;
 mbchar_t c;
 char *mbsadvance (sn)
 char *mbsrchr (s, c) size_t n;
 const char *s;
 mbchar_t c;

 char *mbsinvalid (s)
 const char *s;

 #include <stdlib.h>

 int mblen (s, n)
 const char *s;
 size_t n;

 #include <stdlib.h>

 int mbdwidth (mbs)
 char *mbs;

 Description
 The mbsncat subroutines appends nchar multibyte characters of one string
 s2 to another string, s1. This subroutine does not guarantee that the s1
 buffer will not overflow.

 Similarly, the mbsncpy subroutine copies nchar multibyte characters.

 The mbschr subroutine returns a pointer to the first occurrence of the

AIX Operating System Technical Reference
mbstring

¦ Copyright IBM Corp. 1985, 1991
1.2.164 - 1

 multibyte character c in the string s. A NULL pointer is returned if c
 does not occur in the string.

 The mbsrchr subroutine returns a pointer to the last occurrence of the
 multibyte character specified by c in the string s. A NULL pointer is
 returned if c does not occur in the string, or if c is an invalid
 character or NULL. A NULL is also returned if s is an invalid character.

 The mbspbrk subroutine returns a pointer to the first occurrence in the
 string pointed to by the s1 parameter of any character from the string
 pointed to by the s2 parameter. A NULL pointer is returned is returned if
 no multibyte character matches.

 The mbslen subroutine returns the number of multibyte characters in the
 string pointed to by s.

 The mbsspn subroutine returns the length in bytes of the initial segment
 of the string pointed to by the s1 parameter, consisting entirely of
 characters from the string pointed to by the s2 parameter.

 The mbscspn subroutine returns the length in bytes of the initial segment
 of the string pointed to by the s1 parameter, consisting entirely of
 characters NOT from the string pointed to by the s2 parameter.

 The mbstok subroutine returns a pointer to an occurrence of a text token
 in the string pointed to by the s1 parameter. The s2 parameter specifies
 a set of token delimiters. At the found character in s1, a null character
 is replaced and a pointer to the first character of the text token is
 returned.

 The mbscmp subroutine compares multibyte characters in one string s1 and
 the another string s2. The comparison is based on the binary ordering of
 the characters. Therefore, all two-byte characters are greater than
 one-byte chars, independent of the current locale. The return value is
 zero, greater than zero or less than zero.

 The mbsncmp subroutine is the same as the mbscmp subroutine except that
 the comparison is done on nchar characters.

 If s does not point to a NULL character, the mblen subroutine returns the
 number of bytes in the first multibyte character pointed to by s.

 If s points to a NULL character, or to the number of bytes in a valid
 multibyte character (consisting of the next n or fewer bytes), mblen
 returns the value ZERO; if s points to an invalid multibyte character
 (consisting of greater than n bytes), mblen returns the value -1.

 The return value of mblen is never greater than n or the value of
 MB_CUR_MAX, which is a code-set specific constant that represents the
 maximum number of bytes per character.

 If mbs is not a NULL pointer, the mbdwidth subroutine determines the
 display width of the multibyte character pointed to by mbs. If mbs points
 to an invalid multibyte character (that is, a character whose value is
 greater than the value of MB_CUR_MAX), mbdwidth returns a value of -1;
 otherwise, it returns the display width of the first character. The file
 code used to define the multibyte character is specified by the LC_CTYPE
 or the LC_ALL category of the locale.

 The mbsinvalid subroutine returns a pointer to the byte following the last

AIX Operating System Technical Reference
mbstring

¦ Copyright IBM Corp. 1985, 1991
1.2.164 - 2

 valid multibyte character (as specified by LC_CTYPE or LC_ALL) in the
 string pointed to by s. If all the characters in the string pointed to by
 s are valid multibyte characters, mbsinvalid returns a NULL pointer.

 If s is not a NULL pointer, the mbsadvance subroutine returns a pointer to
 the next multibyte character (as specified by LC_CTYPE or LC_ALL) in the
 string pointed to by s, after skipping the character at the beginning of
 the string.

 Related Information
 In this book: "wcstring" in topic 1.2.327, "NLstring" in topic 1.2.193,
 "NCstring" in topic 1.2.184, "string" in topic 1.2.288, "stdlib.h" in
 topic 2.4.24, "limits.h" in topic 2.4.11, "setlocale" in topic 1.2.251,
 "string.h" in topic 2.4.25, and "mbcs.h" in topic 2.4.14.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
mbstring

¦ Copyright IBM Corp. 1985, 1991
1.2.164 - 3

 1.2.165 mbtowc, mbstowcs, mbstomb

 Purpose
 Converts multibyte characters and multibyte character strings into wide
 characters and wide character strings.

 Syntax

 #include <string.h>
 #inclued <mbcs.h>

 int mbtowc (pwc, s, n)
 wchar_t *pwc
 char *s;
 size_t n;

 size_t mbstowcs (wcs, s, n)
 wchar_t *wcs;
 char *s;
 size_t n;

 int mbstomb (mbch, mbs, n)
 mbchar_t *mbch;
 char *mbs;
 size_t n;

 Description
 The mbtowc subroutine converts a multibyte character to a wide character,
 returns the number of bytes of the multibyte character and stores the
 result in s. If pwc is a NULL pointer, the number of bytes needed to
 convert s to a wide character is returned.

 The mbstowcs subroutine converts the string of multibyte characters s to a
 wide character string and stores the result in wcs. No more than n wide
 characters are placed in the wcs string.

 The mbstomb subroutine converts the first multibyte character in the
 string mbs to a character of a type mbchar_t and places it in mbch without
 changing its value. No more than n bytes can be placed in the mbchar_t
 character. The file code used to define the multibyte character is
 specified by the LC_CTYPE or the LC_ALL category of the locale.

 Return Value
 The mbtowc subroutine returns:

 m where m is the number of bytes converted.

 -1 if s does not contain a valid multibyte character.

 0 if s is a NULL pointer.

 The mbstwcs subroutine returns:

 m where m is the number of wide characters converted.

 -1 if s does not contain a valid multibyte character.

 0 if s is a NULL pointer.

 The mbstomb subroutine returns:

AIX Operating System Technical Reference
mbtowc, mbstowcs, mbstomb

¦ Copyright IBM Corp. 1985, 1991
1.2.165 - 1

 m where m is the number of bytes in the multibyte character.

 -1 if mbch or mbs is a NULL pointer, or if the first multibyte character
 in mbs exceeds n.

 Related Information
 In this book: "wctomb, wcstombs" in topic 1.2.328 and "setlocale" in
 topic 1.2.251.

 The mbcsgen command in AIX Operating System Commands Reference.

 AIX Guide to MultiByte Character Set (MBCS) Support.

AIX Operating System Technical Reference
mbtowc, mbstowcs, mbstomb

¦ Copyright IBM Corp. 1985, 1991
1.2.165 - 2

 1.2.166 memory: memccpy, memchr, memcmp, memcpy, memset, bcopy

 Purpose
 Performs memory operations.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <string.h>
 #include <memory.h>

 char *memccpy (target, sourcchar,*memcpy (target, source, n)
 char *target, *source; char *target, *source;
 int c; size_t n;
 size_t n;
 char *memset (s, c, n)
 char *memchr (s, c, n) char *s;
 char *s; int c;
 int c; size_t n;
 size_t n;
 void bcopy (source, target, n)
 int memcmp (target, source, char *source, *target;
 void *target, *source; int n;
 size_t n;

 Description
 The memory subroutines operate on memory areas. A memory area is an array
 of characters bounded by a count, and not terminated by a null character.
 The memory subroutines do not check for the overflow of any receiving
 memory area. All of the memory subroutines are declared in the memory.h
 header file.

 The memccpy subroutine copies characters from memory area source into
 memory area target. The memccpy subroutine stops after the first
 character c is copied, or after n characters have been copied, whichever
 comes first. memccpy returns a pointer to the character after c is copied
 into target, or a NULL pointer if c is not found in the first n characters
 of source.

 The memchr subroutine returns a pointer to the first occurrence of
 character c in the first n characters of memory area s, or a NULL pointer
 if c does not occur.

 The memcmp subroutine lexicographically compares the first n characters in
 memory area target to the first n characters in memory area source.
 memcmp uses native character comparison, which may be signed on some
 machines. The memcmp subroutine returns the following values:

 Less than 0 If target is less than source
 Equal to 0 If target is equal to source
 Greater than 0 If target is greater than source.

 The memcpy subroutine copies n characters from memory area source to area
 target and returns target. This routine does not correctly handle
 overlapped copies.

AIX Operating System Technical Reference
memory: memccpy, memchr, memcmp, memcpy, memset, bcopy

¦ Copyright IBM Corp. 1985, 1991
1.2.166 - 1

 The memset subroutine sets the first n characters in memory area s to the
 value of character c and returns s.

 Like the memcpy subroutine, the bcopy subroutine copies n characters from
 memory area source to area target. However, bcopy handles overlaps. The
 order of the parameters is reversed for bcopy, with source being specified
 first. This subroutine has no return values.

 Warning: Character movement is performed differently in different
 implementations of these subroutines; therefore, overlapping moves may
 yield unexpected results.

 Related Information
 In this book: "string" in topic 1.2.288 and "swab" in topic 1.2.292.

AIX Operating System Technical Reference
memory: memccpy, memchr, memcmp, memcpy, memset, bcopy

¦ Copyright IBM Corp. 1985, 1991
1.2.166 - 2

 1.2.167 migrate

 Purpose
 Moves a process to another cluster site.

 Syntax

 #include <sys/types.h>

 int migrate(site_number)
 siteno_t site_number;

 Description
 The migrate system call moves the calling process to a specified site. If
 site_number is 0, the site is chosen using the process's site path (see
 "getspath, setspath" in topic 1.2.122).

 If the chosen site is not the process's current site, an accounting record
 is written indicating the process's utilization of the old site.

 The new process (on the new site) is an exact copy of the calling process
 (on the old site). If the new site is the same as the old site, the call
 succeeds but does nothing. If the new site is not the old site, the new
 process inherits the following attributes from the calling process:

 � Environmen

 � Open file

 � Close-on-exec flag (see "exec: execl, execv, execle, execve, execlp,
 execvp" in topic 1.2.71)

 � Signal handling settings (that is, SIG_DFL, SIG_IGN, and function
 address)

 � Signal mechanism new/old status (see "sigaction, sigvec, signal" in
 topic 1.2.263)

 � Set-user-ID and set-group-ID mode bits (see "setxuid" in
 topic 1.2.256)

 � Profiling on/off statu

 � Nice value (see "getpriority, setpriority, nice" in topic 1.2.111)

 � Process I

 � Parent process I

 � Process group I

 � Session I

 � TTY group ID (see "exit, _exit" in topic 1.2.73 and "sigaction,
 sigvec, signal" in topic 1.2.263)

 � Time left until an alarm clock signal (see "alarm" in topic 1.2.14)

 � Current working director

AIX Operating System Technical Reference
migrate

¦ Copyright IBM Corp. 1985, 1991
1.2.167 - 1

 � Root director

 � <LOCAL> alias path name (see "getlocal, setlocal" in topic 1.2.102)

 � File mode creation mask (see "umask" in topic 1.2.314)

 � File locks (see "fcntl, flock, lockf" in topic 1.2.78)

 � System resource limits (see "ulimit" in topic 1.2.313) and "getrlimit,
 setrlimit, vlimit" in topic 1.2.115)

 � Site path (see "getspath, setspath" in topic 1.2.122)

 � Execution site permissions (see "getxperm, setxperm" in
 topic 1.2.128).

 If the new site is not the same as the old site, the new process will
 differ from the calling process in that the new processes cutime, cstime,
 utime, and stime, are modified as follows:

 cutime += utime;

 cstime += stime;

 utime = 0;

 stime = 0;

 Return Value
 Upon successful completion, a value of 0 is returned to the calling
 process. Otherwise, a value of -1 is returned, the process continues on
 its old site, and errno is set to indicate the error.

 Error Conditions
 The migrate system call will fail if:

 EAGAIN The effective user ID is not superuser, and the system-imposed
 limit on the total number of processes under execution by a
 single user on the new site would be exceeded.

 EBADST site_number is out of range or the destination site is not the
 same CPU type as the current site.

 ESITEDN1 Operation failed because a required site is unavailable.

 EPERM Execute permission is not granted for site_number (when not
 equal to 0) or for any of the sites chosen by the site path
 (when site_number is 0).

 ETABLE On either the new site or the old site, the system's PID-site
 table, which is used to keep track of remote processes and
 process groups, is full.

 ENLDEV The process may not execute on the designated site because one
 of its open file descriptors is for a local-only object such as
 a socket or a non-tty character special file. The process may
 not execute to another site if any TCP/IP sockets are open. See
 "TCP/IP Communication" in topic 1.2.2.8.

 ELOCALONLY

AIX Operating System Technical Reference
migrate

¦ Copyright IBM Corp. 1985, 1991
1.2.167 - 2

 The process may not migrate because it has made use of shared
 memory, semaphores, message operations (see "Semaphores, Message
 Queues, and Shared Memory Segments" in topic 1.2.2.10), too many
 child processes, or it is a DOS process (see DOS Merge User's
 and Administrator's Guide).

 ENOSTORE The current load module cannot be located from site site number
 because it has been deleted or superceded by a new version.

 Restrictions

 Note: Processes may not execute to another site if:

 1. They have too many (85 or more) child processes.
 2. They have a file open which is marked as being in error (for
 instance, the storage site is not on the cluster network)
 3. They have made use of shared memory, semaphores, or messages
 operations (see "Semaphores, Message Queues, and Shared Memory
 Segments" in topic 1.2.2.10)
 4. There are any TCP/IP sockets open (see "TCP/IP Communication"
 in topic 1.2.2.8).
 5. They have a character device open (other than a terminal or a
 null device)
 6. They have an open descriptor for a file that has been unlinked.

 Related Information

 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, " fork, vfork" in topic 1.2.83, "getspath, setspath" in
 topic 1.2.122, "getxperm, setxperm" in topic 1.2.128, " rexec: rexecl,
 rexecv, rexecle, rexecve, rexeclp, rexecvp" in topic 1.2.236, "rfork" in
 topic 1.2.237, and " run: runl, runv, runle, runve, runlp, runvp" in
 topic 1.2.239.

AIX Operating System Technical Reference
migrate

¦ Copyright IBM Corp. 1985, 1991
1.2.167 - 3

 1.2.168 mkdir

 Purpose
 Creates a directory.

 Syntax

 int mkdir (path, mode)
 char *path;
 int mode;

 Description
 The mkdir system call creates a new directory. The path parameter names
 the new directory.

 To execute the mkdir system call, a process must have search permission to
 get to the parent directory of path and write permission in the parent
 directory.

 The new directory has:

 � The owner ID set to the process's effective user ID

 � The group ID set to

 - The group ID of its parent directory, if the parent directory has
 the set-file-group-ID attribute; otherwise,

 - The process effective group ID

 � Permission and attribute bits set according to the value of the mode
 parameter, with the following modifications:

 - All bits set in the process file mode creation mask are cleared.
 (For information about the file mode creation mask, see "umask" in
 topic 1.2.314).

 - The set-file-group-ID and sticky attributes are inherited from the
 parent directory.

 Return Value
 Upon successful completion, the mkdir system call returns a value of 0.
 If the mkdir system call fails, a value of -1 is returned, and errno is
 set to indicate the error.

 Error Conditions
 The mkdir system call fails and the directory is not created if one or
 more of the following are true:

 ENOTDIR A component of the path is not a directory.

 ENOENT A component of the path does not exist.

 EACCES Creating the requested directory requires writing in a directory
 with a mode that denies write permission.

 EACCES Search permission is denied for a component of the path.

 EROFS The named file resides on a read-only file system.

AIX Operating System Technical Reference
mkdir

¦ Copyright IBM Corp. 1985, 1991
1.2.168 - 1

 EEXIST The named file already exists.

 EFAULT The path parameter points outside of the process's allocated
 address space.

 EIO An I/O error occurred while writing to the file system.

 ESTALE The process's root or current directory is located in a virtual
 file system that has been unmounted.

 ENAMETOOLONG
 A component of the path parameter exceeded NAME_MAX characters
 or the entire path parameter exceeded PATH_MAX characters.

 EACCES The path parameter explicitly named a hidden directory
 component.

 ENOENT A symbolic link was named, but the file to which it refers does
 not exist.

 ELOOP A loop of symbolic links was detected.

 ENOSPC The file system is out of inodes, or there is not enough space
 to increase the parent directory size.

 EDQUOT The directory in which the entry for the new link is being
 placed cannot be extended because the user's quota of disk
 blocks or inodes on the file system containing the directory has
 been exhausted.

 If the Transparent Computing Facility is installed on your system, mkdir
 can also fail if one or more of the following are true:

 ESITEDN1 path cannot be accessed because a site went down.

 ESITEDN2 The operation was terminated because a site failed.

 ENOSTORE path is a name relative to the working directory, but no site
 which stores this directory is currently up.

 ENOSTORE A component of path is replicated but is not stored on any site
 which is currently up.

 EROFS Write access is requested for a file on a replicated file system
 in which the primary copy is unavailable.

 EINTR A signal was caught during the system call.

 Related Information
 In this book: "chmod, fchmod" in topic 1.2.44, "mknod, mknodx, mkfifo" in
 topic 1.2.169, "rename" in topic 1.2.233, "rmdir" in topic 1.2.238, and
 "umask" in topic 1.2.314.

AIX Operating System Technical Reference
mkdir

¦ Copyright IBM Corp. 1985, 1991
1.2.168 - 2

 1.2.169 mknod, mknodx, mkfifo

 Purpose
 Creates a directory, a special file, a FIFO special file, or an ordinary
 file.

 Syntax

 #include <sys/stat.h>

 int mknod (path, mode, dev)
 char *path;
 int mode;
 dev_t dev;

 int mknodx(path, mode, site, dev)
 char *path;
 int mode;
 siteno_t site;
 dev_t dev;

 Description
 The mknod system call creates a new regular file, special file, FIFO
 special file, or directory. The path parameter names the new file.

 Also see "mkdir" in topic 1.2.168 for additional information on creating a
 directory.

 The mode parameter specifies the mode of the file, which defines the file
 type and access permissions.

 The dev parameter is configuration dependent and is used only if the mode
 parameter specifies a block or character special file. dev is the ID of
 the device, and it corresponds to the st_rdev member of the structure
 returned by the stat system call. See "statx, fstatx, stat, fstat,
 fullstat, ffullstat, lstat" in topic 1.2.282 and "stat.h" in topic 2.4.22
 for more information about the device ID.

 The mode parameter is constructed logically ORing the values specified in
 "chmod, fchmod" in topic 1.2.44 with one the following values, which
 define the file type:

 S_IFDIR Directory
 S_IFCHR Character special file
 S_IFMPX Multiplexed character special file
 S_IFBLK Block special file
 S_IFREG Regular data file
 S_IFIFO FIFO special file.

 The file types S_HIDDEN, S_SOCKET, and S_LINK cannot be created using
 mknod or mknodx. Use chhidden to create S_HIDDEN, bind to create
 S_SOCKET, and symlink to create S_LINK.

 A complete list of the possible mode values and other useful macros
 appears in "stat.h" in topic 2.4.22.

 The new file has:

 � the owner ID set to the process effective user ID

AIX Operating System Technical Reference
mknod, mknodx, mkfifo

¦ Copyright IBM Corp. 1985, 1991
1.2.169 - 1

 � the group ID set to

 - the group ID of its parent directory, if the parent directory has
 the set-file-group-ID attribute; otherwise,

 - the process effective group ID.

 � permission and attribute bits set according to the value of the mode
 parameter, modified as follows:

 - All bits set in the process file mode creation mask are cleared.
 (For information about the file mode creation mask, see "umask" in
 topic 1.2.314.)

 - If the new file is a directory, its set-file-group-ID and sticky
 attributes are inherited from the parent directory.

 If the type of the new file is S_IFMPX (multiplexed character special
 file), then when the file is used, additional path name components can
 appear after the path name as if it were a directory. The additional part
 of the path name is available to the file's device driver for
 interpretation. This provides a multiplexed interface to the device
 driver. The hft device driver uses this feature. (See "hft" in
 topic 2.5.11 for details about this device driver.)

 Upon successful completion, the mknod system call causes the st_ctime and
 st_mtime fields of the directory in which the new regular file, special
 file, FIFO special file, or directory was created to be updated to the
 current time. Upon successful completion, the mknod system call causes
 the st_atime, st_ctime, and st_mtime fields of the new regular file,
 special file, FIFO special file, or directory to be set to the current
 time. See "stat.h" in topic 2.4.22 for information on the st_atime,
 st_ctime, and st_mtime fields.

 The mknod system call can be invoked only by the superuser for file types
 other than FIFO special file.

 If the Transparent Computing Facility is installed, the mknodx system call
 may be used to create character or block special files for devices on any
 site in the cluster. The site parameter specifies the site which has the
 physical device. A site parameter value of 0 indicates a generic device
 special file; this always refers to a device on the site from which it is
 accessed, rather than a specific device on a specific site. Calling the
 mknod system call is equivalent to calling the mknodx system call with the
 site parameter as the local site number. Therefore, device special files
 created within a TCF cluster using mknod refer to devices on the local
 node, not devices on the node where the file resides. The site parameter
 is ignored if creating other types of files.

 Subtopics
 1.2.169.1 Compatibility Interfaces

AIX Operating System Technical Reference
mknod, mknodx, mkfifo

¦ Copyright IBM Corp. 1985, 1991
1.2.169 - 2

 1.2.169.1 Compatibility Interfaces

 The following interface is provided to allow for POSIX (draft 13, section
 5.4.2) conformity.

 #include <sys/types.h>
 #include <sys/stat.h>

 int mkfifo (path, mode)
 char *path;
 mode_t mode;

 mkfifo (path, mode)
 is equivalent to
 mknod (path, (mode & 0777) | S_IFIFO, 0)

 Return Value
 Upon successful completion, a value of 0 is returned. If the mknod system
 call fails, a value of -1 is returned and errno is set to indicate the
 error.

 Error Conditions
 The mknod system call fails and the new file is not created if one or more
 of the following are true:

 EPERM The process's effective user ID is not superuser and the
 filetype is not S_IFIFO.

 ENOTDIR A component of the path prefix is not a directory.

 ENOENT A component of the path prefix does not exist or the path
 parameter points to an empty string.

 EROFS The directory in which the file is to be created is located on a
 read-only file system.

 EEXIST The named file exists.

 EFAULT The path parameter points to a location outside of the process's
 allocated address space.

 ESTALE The process's root or current directory is located in an NFS
 virtual file system that has been unmounted.

 ENAMETOOLONG
 A component of the path parameter exceeded NAME_MAX characters
 or the entire path parameter exceeded PATH_MAX characters.

 EACCES The mode parameter specified a directory and the path parameter
 explicitly named a hidden directory component.

 EACCES Search permission is denied for a component of the path.

 EACCES The directory in which the file is to be created does not permit
 writing.

 ENOENT A symbolic link was named, but the file to which it refers does
 not exist.

 ELOOP A loop of symbolic links was detected.

AIX Operating System Technical Reference
Compatibility Interfaces

¦ Copyright IBM Corp. 1985, 1991
1.2.169.1 - 1

 ENOSPC The file system is out of inodes or the directory in which the
 regular file, special file, FIFO special file, or directory was
 to have been created does not have room for the new entry and
 cannot be extended.

 EDQUOT The directory in which the entry for the new link is being
 placed cannot be extended because the user's quota of disk
 blocks on the file system containing the directory has been
 exhausted.

 If the Transparent Computing Facility is installed on your system, mknod
 can also fail if one or more of the following are true:

 ESITEDN1 path cannot be accessed because a site went down.

 ESITEDN2 The operation was terminated because a site failed.

 ENOSTORE path is a name relative to the working directory, but no site
 which stores this directory is currently up.

 ENOSTORE A component of path is replicated but not stored on any site
 which is currently up.

 EROFS Write access is requested for a file on a replicated file system
 in which the primary copy is unavailable.

 EPERM A site value out of the range 0 through 31 was specified with a
 block or character special mode value (mknodx only).

 EINTR A signal was caught during the system call.

 Related Information
 In this book: "bind" in topic 1.2.20, "chhidden" in topic 1.2.42, "chmod,
 fchmod" in topic 1.2.44, "exec: execl, execv, execle, execve, execlp,
 execvp" in topic 1.2.71, "mkdir" in topic 1.2.168, "umask" in
 topic 1.2.314, "symlink" in topic 1.2.294, "fs" in topic 2.3.20, and
 "stat.h" in topic 2.4.22.

 The chmod, mkdir, and mknod commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
Compatibility Interfaces

¦ Copyright IBM Corp. 1985, 1991
1.2.169.1 - 2

 1.2.170 mktemp

 Purpose
 Constructs a unique file name.

 Library
 Standard C Library (libc.a)

 Syntax

 char *mktemp (template)
 char *template;

 Description
 The mktemp subroutine replaces the contents of the string pointed to by
 the template parameter with a unique file name.

 The string in the template parameter must be a file name with six trailing
 Xs. The mktemp subroutine replaces the Xs with a character sequence such
 that the string pointed to by template is a filename which does not name
 an existing file.

 Upon successful completion, the mktemp subroutine returns the address of
 the string pointed to by the template parameter.

 If mktemp is unable to construct a unique file name from the template,
 then the first character of the template string is replaced with a null
 character, and a NULL pointer is returned.

 Related Information
 In this book: "getpid, getpgrp, getppid" in topic 1.2.110, "tmpfile" in
 topic 1.2.305, and "tmpnam, tempnam" in topic 1.2.306.

AIX Operating System Technical Reference
mktemp

¦ Copyright IBM Corp. 1985, 1991
1.2.170 - 1

 1.2.171 monitor, monstartup, moncontrol

 Purpose
 Starts and stops execution profiling.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <mon.h>

 void monitor (lowpc, highpc, shortbuff, bufsize, nfunc)
 -- or --
 void monitor (lowpc, highpc, profbuff, -1, nfunc)

 Note: The lowpc value for the second definition must be nonzero.

 int (*lowpc) (), (*highpc) ();
 short *shortbuff;
 struct prof *profbuff;
 int bufsize, nfunc;

 int monstartup (lowpc, highpc)
 int (*lowpc) (), (*highpc) ();
 void moncontrol (mode)
 int mode;

 Description
 The monitor subroutine records a histogram of periodically sampled values
 of the program counter and counts the number of times certain subroutines
 are called. The monitor subroutine is an interface to the profil system
 call.

 Executable programs created with cc -p automatically include calls to the
 monitor subroutine. You do not need to call the monitor subroutine unless
 you want fine control over profiling.

 If the bufsize parameter has any value other than -1, then the parameters
 to monitor are interpreted as shown in the first syntax definition. The
 lowpc parameter specifies the lowest address to be sampled, and the
 highest address to be sampled is the address just below highpc. The lowpc
 parameter cannot be 0 when using the monitor subroutine to begin
 profiling. If monitor is called with a lowpc value of 0, then monitoring
 is stopped and the results are written to a file named mon.out.

 The shortbuff parameter points to a user-supplied array of short integers.
 The number of shorts in shortbuff is specified by the bufsize parameter.

 The nfunc parameter specifies the maximum number of subroutines whose
 calls are to be counted. Only calls to functions compiled with the -p
 flag of the cc command are recorded.

 For the results to be significant, especially for programs with small,
 heavily-used subroutines, specify a buffer that is no more than a few
 times smaller than the range of locations sampled.

 If bufsize has the value -1, then the parameters to monitor are
 interpreted as shown in the second syntax definition. In this case, the

AIX Operating System Technical Reference
monitor, monstartup, moncontrol

¦ Copyright IBM Corp. 1985, 1991
1.2.171 - 1

 arguments lowpc and highpc are ignored, nfunc retains the same meaning as
 described above, and profbuff points to an array of prof structures. The
 prof structure is defined in the mon.h header file, and it contains the
 following members:

 daddr_t p_low;
 daddr_t p_high;
 short_t *p_buff;
 int_t p_bufsize;
 int_t p_scale;

 The monitor subroutine ignores the value given in p_scale and computes a
 value for it. The p_high members in successive structures must be in
 ascending sequence. The array of structures is terminated with a
 structure containing a p_high member set to 0.

 Use the prof command to examine the results after executing your program.

 The monstartup subroutine is a high level interface to profil. The lowpc
 and highpc parameters specify the address range that is to be sampled; the
 lowest address sampled is that of lowpc and the highest is just below
 highpc. The monstartup subroutine allocates space using sbrk and passes
 it to monitor to record a histogram of periodically sampled values of the
 program counter, and of counts of calls to certain functions, in the
 buffer. Only calls of functions compiled with the profiling option -p of
 cc are recorded.

 To profile the entire program, it is sufficient to use the following:

 extern etext();
 ...
 monstartup((int)2, etext);

 The etext parameter points to just above all the program text.

 To stop execution monitoring and write the results on the file mon.out,
 use the following:

 monitor(0);

 Then use prof to examine the results.

 The moncontrol subroutine is used to selectively control profiling within
 a program. This works with either prof or gprof profiling. When the
 program starts, profiling begins. This allows the cost of a particular
 operation to be measured. Note that an output file is produced upon
 program exit, regardless of the state of moncontrol.

 Examples

 1. To profile the entire AIX PS/2 program:

 extern etext;
 ...
 monitor ((int (*)()) 0x00400000, etext, buf, bufsize, nfunc);

 The identifier etext is the address immediately following the program
 text. (See "end, etext, edata" in topic 1.2.68 for more information
 about etext.)

AIX Operating System Technical Reference
monitor, monstartup, moncontrol

¦ Copyright IBM Corp. 1985, 1991
1.2.171 - 2

 2. To profile the entire AIX System/370 program:

 extern etext;
 ...
 monitor ((int (*)()) 0x00010000, etext, buf, bufsize, nfunc);

 The identifier etext is the address immediately following the program
 text. (See "end, etext, edata" in topic 1.2.68 for more information
 about etext.)

 3. To profile an entire AIX PS/2 program that includes a shared library:

 extern etext;
 struct prof buf[3];
 ...

 buf[0].p_low = 0x00400000 /* program text */
 buf[0].p_high = etext

 buf[1].p_low = 0xD0000000 /* shared library text */
 buf[1].p_high = 0xD0030D40

 buf[2].p_low = 0 /* end of array */
 buf[2].p_high = 0

 monitor((int (*)())0, (int (*)())0, buf, -1, nfunc);

 The addresses shown for the shared library text may differ from the
 ones appropriate for a program you write.

 4. To stop execution monitoring and write the results to the file
 mon.out:

 monitor ((int (*)()) 0, (int (*)())0, (short *)0, 0, 0);

 File
 mon.out

 Related Information
 In this book: "end, etext, edata" in topic 1.2.68 and "profil" in
 topic 1.2.210.

 The cc and prof commands in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
monitor, monstartup, moncontrol

¦ Copyright IBM Corp. 1985, 1991
1.2.171 - 3

 1.2.172 mount

 Purpose
 Mounts a file system.

 Syntax

 #include <sys/vmount.h>

 int mount (dev, dir, mflag)
 char *dev, *dir;
 int mflag;

 Description
 The mount system call mounts a file system contained on the block device
 (also called a special file) identified by the dev parameter. The file
 system is mounted on the directory identified by the dir parameter. The
 mount system call can be used only by the superuser.

 The dev parameter and the dir parameter are pointers to path names.

 The mflag parameter defines various characteristics of the object to be
 mounted. A possible value is:

 MNT_READONLY Indicates that the object to be mounted is read-only, and
 write access is not allowed. If this value is not
 specified, writing is permitted according to individual
 file accessibility.

 After the file system is mounted, references to the path name specified by
 the dir parameter refer to the root directory on the mounted file system.

 If the Transparent Computing Facility is installed, separate copies of a
 replicated file system must be mounted on the same directory and with the
 same value of mflag. If the primary copy of the file system is not
 mounted, the file system is treated as read-only.

 Return Value
 Upon successful completion a value of 0 is returned. If the mount system
 call fails, a value of -1 is returned and errno is set to indicate the
 error.

 Error Conditions
 The mount system call fails if one or more of the following are true:

 EPERM The effective user ID of the calling process is not superuser.

 ENOENT dev or dir does not exist.

 ENOTBLK dev is not a block device.

 ENXIO The device or driver for dev is not currently configured.

 ENOTDIR A component of a path prefix is not a directory.

 ENOTDIR dir is not a directory.

 EFAULT The dev or dir parameter points to a location outside of the
 process's allocated address space.

AIX Operating System Technical Reference
mount

¦ Copyright IBM Corp. 1985, 1991
1.2.172 - 1

 EBUSY dir is currently busy. For example, a file system may be
 mounted onto it.

 EBUSY The device associated with dev is currently mounted.

 EBUSY The file system number corresponding to dev is in use by another
 mounted device.

 EINVAL The data on dev is not recognizable as a file system. This
 usually means that it does not contain a properly formatted
 super block.

 ENAMETOOLONG
 A component of the path parameter exceeded NAME_MAX characters
 or the entire path parameter exceeded PATH_MAX characters.

 ENOENT A symbolic link was named, but the file to which it refers does
 not exist.

 ELOOP A loop of symbolic links was detected.

 EACCES Search permission is denied for a component of dev or dir.

 EIO An I/O error occurred in performing the mount.

 If the Transparent Computing Facility is installed on your system, mount
 can also fail if one or more of the following are true:

 ENOSTORE dev or dir is a name relative to the working directory, but no
 site which stores this directory is currently up.

 ENOSTORE A component of dir is replicated but not stored on any site
 which is currently up.

 EROFS An attempt was made to mount a copy of a replicated file system
 with an mflag value which differed from that of the other
 currently mounted copies.

 ENLDEV dev is a remote device.

 EXGFS An attempt was made to mount a file system whose file system
 number was already in use in an inconsistent way. The problem
 is that neither copy was replicated, the type of replication was
 not the same for both file systems, or they were not mounted at
 the same mount point.

 EPBUSY An attempt was made to mount a copy of a replicated file system
 which had a pack number that was already mounted.

 Related Information
 In this book: "umount, fumount" in topic 1.2.315 and "fs" in
 topic 2.3.20.

 The mount and umount commands in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
mount

¦ Copyright IBM Corp. 1985, 1991
1.2.172 - 2

 1.2.173 msgctl

 Purpose
 Provides message control operations.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/msg.h>

 int msgctl (msqid, cmd, buf)
 int msqid, cmd;
 struct msqid.ds *buf;

 Description
 The msgctl system call provides a variety of message control operations as
 specified by cmd parameter. The buf parameter points to a structure of
 type msqid.ds. The msqid.ds structure is defined in the sys/msg.h header
 file, and it contains the following members:

 struct ipc_perm msg_perm; /* Operation permission structure */
 struct msg *msg_first; /* Ptr to first message on the queue */
 struct msg *msg_last; /* Ptr to last message on the queue */
 ushort msg_cbytes; /* Current number of bytes on the queue */
 ushort msg_qnum; /* Number of messages on the queue */
 ushort msg_qbytes; /* Maximum number of bytes on the queue */
 pid_t msg_lspid; /* ID of last process to call msgsnd */
 pid_t msg_lrpid; /* ID of last process to call msgrcv */
 time_t msg_stime; /* Time of last msgsnd call */
 time_t msg_rtime; /* Time of last msgrcv call */
 time_t msg_ctime; /* Time of the last change to this */
 /* structure with a msgctl call */

 The following cmds are available:

 IPC_STAT Stores the current value of the members of the data structure
 associated with the msqid parameter into the msqid.ds structure
 pointed to by the buf parameter. The current process must have
 read permission in order to perform this operation.

 IPC_SET Sets the value of the following members of the data structure
 associated with the msqid parameter to the corresponding values
 found in the structure pointed to by the buf parameter:

 msg_perm.uid
 msg_perm.gid
 msg_perm.mode /* Only the low-order nine bits */
 msg_qbytes

 The current process must have an effective user ID equal to
 either that of superuser or to the value of msg_perm.uid in the
 data structure associated with msqid in order to perform this
 operation. To raise the value of msg_qbytes, the effective user
 ID of the current process must be superuser.

 IPC_RMID Removes the message queue identifier specified by the msqid

AIX Operating System Technical Reference
msgctl

¦ Copyright IBM Corp. 1985, 1991
1.2.173 - 1

 parameter from the system and destroys the message queue and
 data structure associated with it. The current process must
 have an effective user ID equal to either that of superuser or
 to the value of msg_perm.uid in the data structure associated
 with msqid in order to perform this operation.

 Warning: If the Transparent Computing Facility is installed, a message
 queue exists only on the cluster site on which the queue was created.
 Consequently, processes that use message queues cannot be migrated to
 other sites.

 Return Value
 Upon successful completion, a value of 0 is returned. If the msgctl
 system call fails, a value of -1 is returned and errno is set to indicate
 the error.

 Error Conditions
 The msgctl system call fails if one or more of the following are true:

 EINVAL msqid is not a valid message queue identifier.

 EINVAL cmd is not a valid command.

 EACCES cmd is equal to IPC_STAT and read permission is denied to the
 calling process.

 EPERM cmd is equal to IPC_RMID, IPC_SET, or IPC_RMID2 and the effective
 user ID of the calling process is not equal to that of superuser,
 nor is it equal to the value of msg_perm.uid in the data structure
 associated with msqid.

 EPERM cmd is equal to IPC_SET, an attempt is being made to increase to
 the value of msg_qbytes, and the effective user ID of the calling
 process is not equal to that of superuser.

 EFAULT The buf parameter points to a location outside of the process's
 allocated address space.

 Related Information
 In this book: "msgget" in topic 1.2.174, "msgrcv" in topic 1.2.178,
 "msgsnd" in topic 1.2.180, and "msgxrcv" in topic 1.2.181.

AIX Operating System Technical Reference
msgctl

¦ Copyright IBM Corp. 1985, 1991
1.2.173 - 2

 1.2.174 msgget

 Purpose
 Gets a message queue identifier.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sys/stat.h>
 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/msg.h>

 int msgget (key, msgflg)
 key_t key;
 int msgflg;

 Description
 The msgget system call returns the message queue identifier associated
 with the specified key. The key parameter is either the value IPC_PRIVATE
 or an IPC key constructed by the ftok subroutine (or by a similar
 algorithm). See " stdipc: ftok" in topic 1.2.284 for details about this
 subroutine.

 The msgflg parameter is constructed by logically ORing one or more of the
 following values:

 IPC_CREAT Creates the data structure if it does not already exist.
 IPC_EXCL Causes the msgget system call to fail if IPC_CREAT is also set
 and the data structure already exists.
 S_IRUSR Permits the process that owns the data structure to read it.
 S_IWUSR Permits the process that owns the data structure to modify it.
 S_IRGRP Permits the group associated with the data structure to read
 it.
 S_IWGRP Permits the group associated with the data structure to modify
 it.
 S_IROTH Permits others to read the data structure.
 S_IWOTH Permits others to modify the data structure.

 The values that begin with S_I- are defined in the sys/stat.h header file
 and are a subset of the access permissions that apply to files.

 A message queue identifier and associated message queue and data structure
 are created for the value of the key parameter if one of the following are
 true:

 � key is equal to IPC_PRIVATE.

 � key does not already have a message queue identifier associated with
 it, and IPC_CREAT is set.

 Upon creation, the data structure associated with the new message queue
 identifier is initialized as follows:

 � msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid are set
 equal to the effective user ID and effective group ID, respectively,
 of the calling process.

AIX Operating System Technical Reference
msgget

¦ Copyright IBM Corp. 1985, 1991
1.2.174 - 1

 � The low-order nine bits of msg_perm.mode are set equal to the
 low-order nine bits of the msgflg parameter.

 � msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set equal
 to 0.

 � msg_ctime is set equal to the current time.

 � msg_qbytes is set equal to the system limit.

 Warning: If the Transparent Computing Facility is installed, a message
 queue exists only on the cluster site on which the queue was created.
 There is no provision for accessing a message queue on a remote cluster
 site. Consequently, processes that use message queues cannot be migrated
 to other sites.

 Return Value
 Upon successful completion, a message queue identifier is returned. If
 the msgget system call fails, a value of -1 is returned and errno is set
 to indicate the error.

 Error Conditions
 The msgget system call fails if one or more of the following are true:

 EACCES A message queue identifier exists for the key parameter but
 operation permission as specified by the low-order nine bits of
 the msgflg parameter would not be granted.

 ENOENT A message queue identifier does not exist for the key parameter
 and IPC_CREAT is not set.

 ENOSPC A message queue identifier is to be created but the system
 imposed limit on the maximum number of allowed message queue
 identifiers system wide would be exceeded.

 EEXIST A message queue identifier exists for key, and both IPC_CREAT
 and IPC_EXCL are set.

 Related Information
 In this book: "msgctl" in topic 1.2.173, "msgrcv" in topic 1.2.178,
 "msgsnd" in topic 1.2.180, "msgxrcv" in topic 1.2.181, and " stdipc: ftok"
 in topic 1.2.284.

AIX Operating System Technical Reference
msgget

¦ Copyright IBM Corp. 1985, 1991
1.2.174 - 2

 1.2.175 msghelp

 Purpose
 Issues help text.

 Library
 Run-time Services Library (librts.a)

 Syntax

 #include <msg00.h>

 int msghelp (flags, compid, index [, fildes])
 unsigned int flags;
 char *compid;
 int index, fildes;

 Description
 The msghelp subroutine retrieves a predefined help description from a
 message/insert/help file and then constructs and outputs the help text.

 The flags parameter allows default help attributes to be overridden. All
 flag bits for attributes you do not want to override must be off. If no
 attributes are overridden, the help is written to stderr. Attribute
 override flag bits that can be set are:

 MSGFLFIL Writes the help text to the file specified by the fildes
 parameter. If this flag is not set, then the help text is
 written to stderr.

 There is no specific flag bit defined for suppressing output of the help
 ID. If you want to suppress the help ID, do not specify the displayed
 component ID and displayed help ID fields of the help description in the
 message/insert/help file. If the help ID is suppressed, then the help
 text is aligned fildes parameter causes the help text to be aligned at the
 left margin instead of to the right of the help ID. This allows a full
 79-character width, but does not provide component and help IDs for
 referencing an explanation of the help in a reference manual.

 The compid parameter points to a six-character string that identifies the
 message/insert/help file where the help control information resides. The
 compid parameter is either:

 xxxccc For a component file, where, by convention:

 xxx Identifies the software provider or product. IBM reserves
 the use of the identifiers COM, com, SYc, syc, IBc, and
 ibc, where c is any alphanumeric character.
 ccc Identifies the particular software component.

 common For the common message/insert/help file.

 The index parameter is an index into the file specified by the compid
 parameter. The index parameter is an integer value from 1 to 999 and
 identifies which help description in the file is to be used.

 The fildes parameter is an integer file descriptor number indicating the
 opened file to which the help is to be sent. The fildes parameter is used
 only if the MSGFLFIL flag is on.

AIX Operating System Technical Reference
msghelp

¦ Copyright IBM Corp. 1985, 1991
1.2.175 - 1

 Return Value
 Upon successful completion, a value of 0 is returned. If the msghelp
 subroutine fails, then it returns one of the following negative values.

 The following values are defined in the msg04.h header file, which is
 included by the msg00.h header file:

 MSG_CPID The compid parameter is not six characters long. The request
 is ignored.

 MSG_INDX The index parameter is not in the range of 1 to 999. The
 request is ignored.

 MSG_TABP The MSGFLTAB flag is on. Since helps cannot reside in a
 message/insert table, this is not a valid flag for the msghelp
 subroutine. The request is ignored.

 MSG_ALLO The necessary Message Services work area cannot be allocated.
 The request is ignored.

 MSG_SREG A segment register is not available for mapping a
 message/insert/help file. The request is ignored.

 MSG_COMP The message/insert/help file specified by the compid parameter
 cannot be found. Message Services error message 090-002 is
 output instead.

 MSG_INVL The file specified by the compid parameter is not a valid
 message/insert/help file. Message Services error message
 090-002 is output instead.

 MSG_MTCH The file specified by the compid parameter does not contain
 descriptions for the specified component. The first six
 characters of the component file name must be identical to the
 six-character component ID that was specified in the file to
 the puttext command when the component file was built.
 Message Services error message 090-002 is output instead.

 MSG_NONE The correct component files are found, but none contain the
 message description specified by the index parameter. Message
 Services error message 090-002 is output instead.

 MSG_REFN The requested help description is found but the description
 references another help description (in the same file) as the
 source of the text. The referenced help description does not
 exist. Message Services error message 090-002 is output
 instead.

 Note: Certain errors involve the failure of AIX system calls. In these
 cases, the msghelp subroutine negates the error code that the
 system call stored in errno and returns this value.

 One of the following values is returned when an attempt to open a
 message/insert/help file fails:

 -EACCES Search permission is denied for a directory in the path prefix
 of the message/insert/help file.

 -ENOTDIR A component of the path name of the message/insert/help file

AIX Operating System Technical Reference
msghelp

¦ Copyright IBM Corp. 1985, 1991
1.2.175 - 2

 is not a directory.

 -EMFILE Too many files are open for the process.

 One of the following values is returned when an attempt to write to the
 file specified by the fildes parameter fails:

 -EBADF The fildes parameter does not specify a valid file descriptor
 that is open for writing.

 -EFBIG The file specified by the fildes parameter exceeds the maximum
 file size or file size limit for the process.

 Related Information
 In this book: "msgimed" in topic 1.2.176, "msgqued" in topic 1.2.177,
 "msgrtrv" in topic 1.2.179, and "message" in topic 2.3.33.

AIX Operating System Technical Reference
msghelp

¦ Copyright IBM Corp. 1985, 1991
1.2.175 - 3

 1.2.176 msgimed

 Purpose
 Issues an immediate message.

 Library
 Run-time Services Library (librts.a)

 Syntax

 #include <msg00.h>

 int msgimed (flags, compid, index [, sevcode [, errcode [, fildes]]])
 unsigned int flags;
 char *compid;
 int index, sevcode, fildes;
 long errcode;

 Description
 The msgimed subroutine retrieves a predefined message description from a
 message/insert table or a message/insert/help file and then constructs the
 message text and outputs it.

 The flags parameter allows default message attributes to be overridden.
 All flag bits for attributes you do not want to override must be off. If
 no attributes are overridden, a message consisting of a message ID (if
 defined) and message text is written to stderr. Attribute override flag
 bits that can be set are:

 MSGFLTAB Indicates that the compid parameter is a pointer to a
 message/insert table instead of a pointer to a six-character
 component ID identifying a message/insert/help file.

 MSGFLTIM Includes with the message the time the message was issued.
 The time is given in 24-hour format. This flag should always
 be set if the error is logged.

 MSGFLSEV Includes a severity code with the message. The severity code
 value is specified by the sevcode parameter.

 MSGFLERR Includes an error code with the message. The value of the
 error code is specified by the errcode parameter.

 MSGFLFIL Writes the message to the file specified by the fildes
 parameter. If this flag is not set, then the message is
 written to stderr.

 There is no specific flag bit defined for suppressing output of the
 message ID. If you want to suppress the message ID, do not specify the
 displayed component ID and the displayed message ID fields of the message
 description in the message/insert table or the message/insert/help file.
 Suppression of the message ID for a message output to stderr or to the
 output specified by the fildes parameter causes the message to be aligned
 at the left margin instead of to the right of the message ID. This allows
 a full 79-character width, but does not provide component and message IDs
 for referencing an explanation of the message in a reference manual.

 The compid parameter is either a pointer to a message/insert table or
 identifies the message/insert/help file. If the MSGFLTAB flag is set,
 then the compid parameter is a pointer to a message/insert table where the

AIX Operating System Technical Reference
msgimed

¦ Copyright IBM Corp. 1985, 1991
1.2.176 - 1

 message description resides. If the MSGFLTAB flag is not set, then the
 compid parameter identifies the message/insert/help file where the message
 description resides. In this case, the compid parameter is either:

 xxxccc For a component file, where, by convention:

 xxx Identifies the software provider or product. IBM reserves
 the use of the identifiers COM, com, SYc, syc, IBc, and
 ibc, where c is any alphanumeric character.
 ccc Identifies the particular software component.

 common For the common message/insert/help file.

 The index parameter is an index into the message/insert table or the
 message/insert/help file specified by the compid parameter. The index
 parameter is an integer value from 1 to 999 and identifies which message
 description is to be used.

 The sevcode parameter specifies an integer severity code that is output
 with the message if the msgflerr flag is set. The following severity
 codes have been defined:

 MSGSVSYT System termination
 MSGSVAPT Application termination
 MSGSVOPR Operator-recoverable error
 MSGSVAPR Application-recoverable error.

 If the MSGFLSEV flag is not set, and if the errcode or fildes parameters
 are specified, then a dummy sevcode parameter must be used as a place
 holder.

 The errcode parameter is a long integer value that represents an error
 code with six decimal digits. The error code is output with the message
 only if the MSGFLERR flag is set. The two high-order decimal digits
 contain the origin code; the four low-order digits contain an
 application-defined error return code. The origin code is one of the
 following values:

 MSGORIND Indeterminate origin.
 MSGORVDD Reserved.
 MSGORVCK Reserved.
 MSGORVSV Reserved.
 MSGORUDD Detected in AIX device driver.
 MSGORUKN Detected in AIX kernel.
 MSGORSHL Detected in shell command.
 MSGORRTS Detected in run-time service or daemon.
 MSGORAPP Detected in application above the application program
 interface.

 If the MSGFLERR flag is not set, and if the fildes parameter is specified,
 then a dummy errcode parameter must be used as a place holder.

 The fildes parameter is a file descriptor indicating the opened file to
 which the message is to be sent. The fildes parameter is used only if the
 msgflfil flag is set.

 Return Value
 Upon successful completion, a value of 0 is returned. If the msgimed
 subroutine fails, then it returns one of the following negative values.

AIX Operating System Technical Reference
msgimed

¦ Copyright IBM Corp. 1985, 1991
1.2.176 - 2

 The following values are defined in the msg04.h header file, which is
 included by the msg00.h header file.

 MSG_CPID The compid parameter is not six characters long. The request
 is ignored.

 MSG_INDX The index parameter is not in the range of 1 to 999. The
 request is ignored.

 MSG_ALLO The necessary Message Services work area cannot be allocated.
 The request is ignored.

 MSG_SREG A segment register is not available for mapping a
 message/insert/help file. The request is ignored.

 MSG_BADP The message/insert table pointer provided does not point to a
 message/insert table. The request is ignored.

 MSG_TABI The message/insert table that is provided does not contain the
 requested message. The request is ignored.

 MSG_COMP The message/insert/help file specified by the compid parameter
 cannot be found. Message Services error message 090-001 is
 output instead.

 MSG_INVL The file specified by the compid parameter is not a valid
 message/insert/help file. Message Services error message
 090-001 is output instead.

 MSG_MTCH The file specified by the compid parameter does not contain
 descriptions for the specified component. The first six
 characters of the component file name must be identical to the
 six-character component ID that is specified in the file to
 the puttext command when the component file was built.
 Message Services error message 090-001 is output instead.

 MSG_NONE The correct component files are found, but none contain the
 message description specified by the index parameter. Message
 Services error message 090-001 is output instead.

 MSG_REFN The requested message description is found but the description
 references another message description (in the same file) as
 the source of the text. The referenced message description
 does not exist. Message Services error message 090-001 is
 output instead.

 Note: Certain errors involve the failure of AIX system calls. In these
 cases, the msghelp subroutine negates the error code that the
 system call stored in errno and returns this value.

 One of the following values is returned when an attempt to open a
 message/insert/help file fails:

 -EACCES Search permission is denied for a directory in the path
 prefix. The request is ignored.

 -ENOTDIR A component of the path prefix is not a directory. The
 request is ignored.

AIX Operating System Technical Reference
msgimed

¦ Copyright IBM Corp. 1985, 1991
1.2.176 - 3

 -EMFILE Too many files are open for the process. The request is
 ignored.

 One of the following values is returned when an attempt to write to the
 file specified by the fildes parameter fails:

 -EBADF Not a valid file descriptor open for writing.

 -EFBIG The file exceeds the process's file size limit or the maximum
 file size.

 Related Information
 In this book: "msghelp" in topic 1.2.175, "msgqued" in topic 1.2.177,
 "msgrtrv" in topic 1.2.179, and "message" in topic 2.3.33.

AIX Operating System Technical Reference
msgimed

¦ Copyright IBM Corp. 1985, 1991
1.2.176 - 4

 1.2.177 msgqued

 Purpose
 Issues a queued message.

 Library
 Run-time Services Library (librts.a)

 Syntax

 #include <msg00.h>

 int msgqued (flags, compid, index [, sevcode [, errcode]])
 unsigned int flags;
 char *compid;
 int index, sevcode;
 long errcode;

 Description
 The msgqued subroutine retrieves a predefined message description from a
 message/insert table or a message/insert/help file and then constructs the
 message text and writes it to the queued message file, /qmsg.

 The queued message file is installed with the AIX Operating System. After
 installation, you can change the default size of the queued message file
 (six 2048-byte blocks) by using an editor to modify the four-digit value
 between the first two asterisks (*) in the first line of the file. This
 four-digit value is in units of 2048-byte blocks.

 After /qmsg reaches the size specified in the first line, each new message
 added to the queue overlays the oldest message in the file. The message
 queue is maintained across IPLs.

 Queued messages are directed to the console operator and are generally
 system type messages.

 The flags parameter allows default message attributes to be overridden.
 All flag bits for attributes you do not want to override must not be set.
 If no attributes are overridden, then the message consists of the message
 ID (if defined), the message text, and the date and time the message was
 issued. Attribute override flag bits that can be set are:

 MSGFLTAB Indicates that the compid parameter is a pointer to a
 message/insert table instead of a pointer to a six-character
 component ID identifying a message/insert/help file.

 MSGFLSEV Includes a severity code with the message. The severity code
 value is specified by the sevcode parameter.

 MSGFLERR Includes an error code with the message. The error code value
 must be specified by the errcode parameter.

 The compid parameter is either a pointer to a message/insert table or
 identifies the message/insert/help file. If the MSGFLTAB flag is set,
 then the compid parameter points to a message/insert table where the
 message description resides. If the MSGFLTAB flag is not set, the compid
 parameter identifies the message/insert/help file where the message
 description resides.

 The index parameter is an index into the message/insert table or

AIX Operating System Technical Reference
msgqued

¦ Copyright IBM Corp. 1985, 1991
1.2.177 - 1

 message/insert/help file specified by the compid parameter. The index
 parameter is an integer value from 1 to 999 and identifies which message
 description in the file is to be used.

 The sevcode parameter specifies an integer severity code that is written
 with the message if the MSGFLERR flag is set. The following severity
 codes have been defined:

 MSGSVSYT System termination
 MSGSVAPT Application termination
 MSGSVOPR Operator-recoverable error
 MSGSVAPR Application-recoverable error.

 If the msgflsev flag is not set, and if the errcode parameter is
 specified, then a dummy sevcode parameter must be used as a place holder.

 The errcode parameter is a long integer value that represents an error
 code with six decimal digits. The error code is output with the message
 only if the MSGFLERR flag is set. The two high-order decimal digits
 contain the origin code; the four low-order digits contain an
 application-defined error return code. The possible values for the origin
 code are listed in the description. The origin code is one of the
 following values:

 MSGORIND Indeterminate origin.
 MSGORVDD Reserved.
 MSGORVCK Reserved.
 MSGORVSV Reserved.
 MSGORUDD Detected in AIX device driver.
 MSGORUKN Detected in AIX kernel.
 MSGORSHL Detected in shell command.
 MSGORRTS Detected in run-time service or daemon.
 MSGORAPP Detected in application above the application program
 interface.

 Return Value
 Upon successful completion, a value of 0 is returned. If the msgqued
 subroutine fails, then it returns one of the following negative values.

 The following values are defined in the msg04.h header file, which is
 included by the msg00.h header file:

 MSG_CPID The compid parameter is not six characters long. The msgqued
 request is ignored.

 MSG_INDX The index parameter is not in the range of 1 to 999. The
 msgqued request is ignored.

 MSG_ALLO The necessary Message Services work area cannot be allocated.
 The msgqued request is ignored.

 MSG_SREG A segment register is not available for mapping a
 message/insert/help file. The msgqued request is ignored.

 MSG_BADP The message/insert table pointer provided does not point to a
 message/insert table. The msgqued request is ignored.

 MSG_TABI The message/insert table that is provided does not contain the
 requested message. The msgqued request is ignored.

AIX Operating System Technical Reference
msgqued

¦ Copyright IBM Corp. 1985, 1991
1.2.177 - 2

 MSG_COMP The message/insert/help file specified by the compid parameter
 cannot be found. Message Services error message 090-001 is
 output instead.

 MSG_INVL The file specified by the compid parameter is not a valid
 message/insert/help file. Message Services error message
 090-001 is output instead.

 MSG_MTCH The file specified by the compid parameter does not contain
 descriptions for the specified component. The first six
 characters of the component file name must be identical to the
 six-character component ID that is specified in the file to
 the puttext command when the component file was built.
 Message Services error message 090-001 is output instead.

 MSG_NONE The correct component files are found, but none contain the
 message description specified by the index parameter. Message
 Services error message 090-001 is output instead.

 MSG_REFN The requested message description is found but the description
 references another message description (in the same file) as
 the source of the text. The referenced message description
 does not exist. Message Services error message 090-001 is
 output instead.

 MSG_EXEC The fork or exec system call failed while attempting to run
 the program that updates the queued message file. The msgqued
 request is ignored. The failure of exec is not detected if
 the calling process catches the SIGCLD signal. See
 "sigaction, sigvec, signal" in topic 1.2.263 about catching
 signals and the special handling of SIGCLD.

 MSG_QMSG The queued message file, /qmsg, cannot be opened, or its
 format is not valid. The msgqued request is ignored. This
 condition is not detected if the calling process catches the
 SIGCLD signal. See "sigaction, sigvec, signal" in
 topic 1.2.263 about catching signals and the special handling
 of SIGCLD.

 Note: Certain errors involve the failure of AIX system calls. In these
 cases, the msghelp subroutine negates the error code that the
 system call stored in errno and returns this value.

 One of the following values is returned when an attempt to open a
 message/insert/help file fails:

 -EACCES Search permission is denied for a directory in the path prefix
 of the message/insert/help file.

 -ENOTDIR A component of the path name of the message/insert/help file
 is not a directory.

 -EMFILE Too many files are open for the process.

 File

 /qmsg

 Related Information
 In this book: "msghelp" in topic 1.2.175, "msgimed" in topic 1.2.176,

AIX Operating System Technical Reference
msgqued

¦ Copyright IBM Corp. 1985, 1991
1.2.177 - 3

 "msgrtrv" in topic 1.2.179, and "message" in topic 2.3.33.

AIX Operating System Technical Reference
msgqued

¦ Copyright IBM Corp. 1985, 1991
1.2.177 - 4

 1.2.178 msgrcv

 Purpose
 Reads a message from a queue.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/msg.h>

 int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
 int msqid;
 struct msgbuf *msgp;
 int msgsz;
 long msgtyp;
 int msgflg;

 Description
 The msgrcv system call reads a message from the queue specified by the
 msqid parameter and stores it into the structure pointed to by the msgp
 parameter. The current process must have read permission in order to
 perform this operation. The msgbuf structure is defined in the sys/msg.h
 header file, and it contains the following members:

 long mtype; /* Message type */
 char mtext[1]; /* Beginning of message text */

 The mtype field contains the type of the received message as specified by
 the sending process. mtext is the text of the message.

 The msgsz parameter specifies the size of mtext in bytes. The received
 message is truncated to the size specified by the msgsz parameter if it is
 longer than the size specified by the msgsz parameter and if MSG_NOERROR
 is set in msgflg. The truncated part of the message is lost and no
 indication of the truncation is given to the calling process. If the
 message is longer than msgsz bytes and MSG_NOERROR is not set, then the
 msgrcv system call fails and sets errno to E2BIG.

 The msgtyp parameter specifies the type of message requested as follows:

 � If the msgtyp parameter is equal to 0, the first message on the queue
 is received.

 � If the msgtyp parameter is greater than 0, the first message of the
 type specified by the msgtyp parameter is received.

 � If the msgtyp parameter is less than 0, the first message of the
 lowest type that is less than or equal to the absolute value of the
 msgtyp parameter is received.

 The msgflg parameter is either 0, or is constructed by logically ORing one
 or more of the following values:

 MSG_NOERROR Truncates the message if it is longer than msgsz bytes.

AIX Operating System Technical Reference
msgrcv

¦ Copyright IBM Corp. 1985, 1991
1.2.178 - 1

 IPC_NOWAIT Specifies the action to take if a message of the desired type
 is not on the queue:

 � If IPC_NOWAIT is set, then the calling process returns a
 value of -1 and sets errno to ENOMSG.

 � If IPC_NOWAIT is not set, then the calling process
 suspends execution until one of the following occurs:

 - A message of the desired type is placed on the queue.

 - The message queue identifier specified by the msqid
 parameter is removed from the system. When this
 occurs, errno is set to EIDRM, and a value of -1 is
 returned.

 - The calling process receives a signal that is to be
 caught. In this case, a message is not received and
 the calling process resumes in the manner described
 in "sigaction, sigvec, signal" in topic 1.2.263.

 Warning: If the Transparent Computing Facility is installed, a message
 queue exists only on the cluster site on which the queue was created.
 There is no provision for accessing a message queue on a remote cluster
 site. Consequently, processes that use message queues cannot be migrated
 to other sites.

 Return Value
 Upon successful completion, msgrcv returns a value equal to the number of
 bytes actually stored into mtext and the following actions are taken with
 respect to the data structure associated with the msqid parameter:

 � msg_qnum is decremented by 1.
 � msg_lrpid is set equal to the process ID of the calling process.
 � msg_rtime is set equal to the current time.

 If the msgrcv system call fails, a value of -1 is returned and errno is
 set to indicate the error.

 Error Conditions
 The msgrcv system call fails if one or more of the following are true:

 EINVAL msqid is not a valid message queue identifier.

 EACCES Operation permission is denied to the calling process.

 EINVAL msgsz is less than 0.

 E2BIG mtext is greater than msgsz and MSG_NOERROR is not set.

 ENOMSG The queue does not contain a message of the desired type and
 IPC_NOWAIT is set.

 EFAULT The msgp parameter points to a location outside of the process's
 allocated address space.

 EINTR msgrcv received a signal.

 EIDRM The message queue identifier specified by msqid has been removed
 from the system.

AIX Operating System Technical Reference
msgrcv

¦ Copyright IBM Corp. 1985, 1991
1.2.178 - 2

 Related Information
 In this book: "msgctl" in topic 1.2.173, "msgget" in topic 1.2.174,
 "msgsnd" in topic 1.2.180, "msgxrcv" in topic 1.2.181, and "sigaction,
 sigvec, signal" in topic 1.2.263.

AIX Operating System Technical Reference
msgrcv

¦ Copyright IBM Corp. 1985, 1991
1.2.178 - 3

 1.2.179 msgrtrv

 Purpose
 Retrieves a message, insert, or help text.

 Library
 Run-time Services Library (librts.a)

 Syntax

 #include <msg00.h>

 int msgrtrv (flags, compid, index, buf, nbytes)
 unsigned int flags, nbyte;
 char *compid, *buf;
 int index;

 Description
 The msgrtrv subroutine retrieves a predefined message, insert, or help
 description from a message/insert/help file or a resident message/insert
 table, and then constructs the message, insert, or help text as specified
 and returns the text.

 The flags parameter allows default attributes to be overridden. All flag
 bits for attributes you do not want to override must not be set. If no
 attributes are overridden, insert text is retrieved from a file.
 Attribute override flag bits that can be set are:

 MSGFLTAB Indicates that the compid parameter is a pointer to a
 message/insert table instead of a pointer to a six-character
 component ID identifying a message/insert/help file. The
 MSGFLTAB flag should not be set if the MSGFLHLP flag is set
 because helps reside only in a message/insert/help file, not
 in a message/insert table.

 MSGFLMSG Retrieves message text instead of insert text.

 MSGFLHLP Retrieves help text instead of insert text.

 The compid parameter is either a pointer to a message/insert table or
 identifies the message/insert/help file. If the MSGFLTAB flag is set,
 then the compid parameter points to a message/insert table where the
 message or insert description resides. If the MSGFLTAB flag is not set,
 then the compid parameter identifies the message/insert/help file where
 the message, insert, or help description resides. In this case, the
 compid parameter is either:

 xxxccc For a component file, where, by convention:

 xxx Identifies the software provider or product. IBM reserves
 the use of the identifiers COM, com, SYc, syc, IBc, and
 ibc, where c is any alphanumeric character.
 ccc Identifies the particular software component.

 common For the common message/insert/help file.

 The index parameter is an index into the message/insert table or
 message/insert/help file specified by the compid parameter. The index
 parameter is an integer value from 1 to 999 and identifies which message,
 insert, or help description in the file or table is to be used.

AIX Operating System Technical Reference
msgrtrv

¦ Copyright IBM Corp. 1985, 1991
1.2.179 - 1

 The buf parameter must be either a pointer to a buffer or a pointer to a
 structure, depending on the value of the nbyte parameter.

 � If the nbyte parameter is greater than 0, then buf parameter points to
 a buffer where the message, insert, or help text is to be stored.

 � If the nbyte parameter is equal to 0, then the buf parameter points to
 a msg__rtrv structure provided by the requesting program. The
 msg__rtrv is defined as a typedef in the msg05.h header file.

 The nbyte parameter is either the size of the buffer pointed to by the buf
 parameter, or 0. The buffer size should include space for a terminating
 null character. If the nbyte parameter is 0, a buffer is allocated by the
 msgrtrv subroutine. The buffer pointer (msgbufp in the msg05.h header
 file) returned by the msgrtrv subroutine should always be inspected by
 the requesting program after the returned text has been processed. If the
 inspection finds other than a NULL buffer pointer, the buffer should be
 freed. This should be done regardless of the value of the return code.

 Return Value
 Upon successful completion, a positive value is returned. If the msgrtrv
 subroutine fails, it returns a negative value that indicates the reason
 why the text could not be retrieved.

 The value returned upon successful completion is the actual length of the
 constructed text, not including the terminating null character. The
 following should be noted concerning the length:

 � If the nbyte parameter was 0 and help text with a title was retrieved,
 the length returned is the sum of the title length and the text
 length, including the null terminators after the title and the text.

 � If the nbyte parameter was not 0, and the retrieved text is longer
 than the buffer provided (minus 1 character for the null terminator),
 the excess text is truncated. The length of the truncated text is
 included in the length returned. If the return code value is greater
 than the length specified by the nbyte parameter minus 1, the
 following considerations should be noted:

 - The length of the text returned in the buffer is the length
 specified by the nbyte parameter minus one instead of the return
 code value.

 - The requesting program knows that the retrieved text had to be
 truncated in order to fit into the buffer provided.

 If the msghelp subroutine fails, then it returns one of the following
 negative values.

 The following values are defined in the msg04.h header file, which is
 included by the msg00.h header file:

 MSG_CPID The compid parameter is not six characters long. The request
 is ignored.

 MSG_INDX The index parameter is not in the range of 1 to 999. The
 request is ignored.

 MSG_TABP Both the msgfltab and msgflhlp flags are on. Since helps

AIX Operating System Technical Reference
msgrtrv

¦ Copyright IBM Corp. 1985, 1991
1.2.179 - 2

 cannot reside in a message/insert table, this is not a valid
 combination of flag bits. The request is ignored.

 MSG_ALLO The necessary Message Services work area cannot be allocated.
 The request is ignored.

 MSG_SREG A segment register is not available for mapping a
 message/insert/help file. The request is ignored.

 MSG_BADP The message/insert table pointer provided does not point to a
 message/insert table. The request is ignored.

 MSG_TABI The message/insert table that is provided does not contain the
 requested message or insert. The request is ignored.

 MSG_COMP The message/insert/help file specified by the compid parameter
 cannot be found. If a message was specified, then Message
 Services error message 090-001 is output instead. If an
 insert was specified, then the request is ignored. If help
 text was specified, then Message Services error message
 090-002 is output instead.

 MSG_INVL The file specified by the compid parameter is not a valid
 message/insert/help file. If a message was specified, then
 Message Services error message 090-001 is output instead. If
 an insert was specified, then the request is ignored. If help
 text was specified, then Message Services error message
 090-002 is output instead.

 MSG_MTCH The file specified by the compid parameter does not contain
 descriptions for the specified component. The first six
 characters of the component file name must be identical to the
 six-character component ID that was specified in the file to
 the puttext command when the component file was built. If a
 message was specified, then Message Services error message
 090-001 is output instead. If an insert was specified, then
 the request is ignored. If help text was specified, then
 Message Services error message 090-002 is output instead.

 MSG_NONE The correct component files are found, but none contain the
 message, insert, or help description specified by the index
 parameter. If a message was specified, then Message Services
 error message 090-001 is output instead. If an insert was
 specified, then the request is ignored. If help text was
 specified, then Message Services error message 090-002 is
 output instead.

 MSG_REFN The requested message, insert, or help description is found
 but the description references another message, insert, or
 help description (in the same file) as the source of the text.
 The referenced message, insert, or help description does not
 exist. If a message was specified, then Message Services
 error message 090-001 is output instead. If an insert was
 specified, the request is ignored. If help text was
 specified, then Message Services error message 090-002 is
 output instead.

 Note: Certain errors involve the failure of AIX system calls. In these
 cases, the msghelp subroutine negates the error code that the
 system call stored in errno and returns this value.

AIX Operating System Technical Reference
msgrtrv

¦ Copyright IBM Corp. 1985, 1991
1.2.179 - 3

 One of the following values is returned when an attempt to open a
 message/insert/help file fails:

 -EACCES Search permission is denied for a directory in the path prefix
 of the message/insert/help file.

 -ENOTDIR A component of the path name of the message/insert/help file
 is not a directory.

 -EMFILE Too many files are open for the process.

 Related Information
 In this book: "msghelp" in topic 1.2.175, "msgimed" in topic 1.2.176,
 "msgqued" in topic 1.2.177, and "message" in topic 2.3.33.

AIX Operating System Technical Reference
msgrtrv

¦ Copyright IBM Corp. 1985, 1991
1.2.179 - 4

 1.2.180 msgsnd

 Purpose
 Sends a message.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/msg.h>

 int msgsnd (msqid, msgp, msgsz, msgflg)
 int msqid;
 struct msgbuf *msgp;
 int msgsz, msgflg;

 Description
 The msgsnd system call sends a message to the queue specified by the msqid
 parameter. The current process must have write permission in order to
 perform this operation. The msgp parameter points to a msgbuf structure
 containing the message. The msgbuf structure is defined in the sys/msg.h
 header file, and it contains the following members:

 long mtype; /* Message type */
 char mtext[1]; /* Beginning of message text */

 The mtype parameter is a positive integer that is used by the receiving
 process for message selection. The mtext parameter is any text of the
 length in bytes specified by the msgsz parameter. The msgsz parameter can
 range from 0 to a system-imposed maximum.

 The msgflg parameter specifies the action to be taken if the message
 cannot be sent for one of the following reasons:

 � The number of bytes already on the queue is equal to msg_qbytes.

 � The total number of messages on all queues system-wide is equal to
 system-imposed limit.

 These actions are as follows:

 � If msgflg is set to IPC_NOWAIT, then the message is not sent, and
 msgsnd returns a value of -1 and sets errno to EAGAIN.

 � If msgflg is 0, then the calling process suspends execution until one
 of the following occurs:

 - The condition responsible for the suspension no longer exists, in
 which case the message is sent.

 - msqid is removed from the system. (For information on how to
 remove msqid, see "msgctl" in topic 1.2.173.) When this occurs,
 errno is set equal to EIDRM, and a value of -1 is returned.

 - The calling process receives a signal that is to be caught. In
 this case the message is not sent and the calling process resumes

AIX Operating System Technical Reference
msgsnd

¦ Copyright IBM Corp. 1985, 1991
1.2.180 - 1

 execution in the manner prescribed in "sigaction, sigvec, signal"
 in topic 1.2.263.

 Warning: If the Transparent Computing Facility is installed, a message
 queue exists only on the cluster site on which the queue was created.
 There is no provision for accessing a message queue on a remote cluster
 site. Consequently, processes that use message queues cannot be migrated
 to other sites.

 Return Value
 Upon successful completion, a value of 0 is returned and the following
 actions are taken with respect to the data structure associated with the
 msqid parameter:

 � msg_qnum is incremented by 1.
 � msg_lspid is set equal to the process ID of the calling process.
 � msg_stime is set equal to the current time.

 If the msgsnd system call fails, a value of -1 is returned and errno is
 set to indicate the error.

 Error Conditions
 The msgsnd system call fails and no message is sent if one or more of the
 following are true:

 EINVAL The msqid parameter is not a valid message queue identifier.

 EACCES Operation permission is denied to the calling process.

 EINVAL mtype is less than 1.

 EAGAIN The message cannot be sent for one of the reasons stated
 previously, and msgflg is set to IPC_NOWAIT.

 EINVAL The msgsz parameter is less than 0 or greater than the
 system-imposed limit.

 EFAULT The msgp parameter points to a location outside of the process's
 allocated address space.

 EINTR msgsnd received a signal.

 EIDRM The message queue identifier specified by msqid has been removed
 from the system.

 Related Information
 In this book: "msgctl" in topic 1.2.173, "msgget" in topic 1.2.174,
 "msgrcv" in topic 1.2.178, "msgxrcv" in topic 1.2.181, and "sigaction,
 sigvec, signal" in topic 1.2.263.

AIX Operating System Technical Reference
msgsnd

¦ Copyright IBM Corp. 1985, 1991
1.2.180 - 2

 1.2.181 msgxrcv

 Purpose
 Receives an extended message.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/msg.h>

 int msgxrcv (msqid, msgp, msgsz, msgtyp, msgflg)
 int msqid;
 struct msgxbuf *msgp;
 int msgsz, msgflg;
 long msgtyp;

 Description
 The msgxrcv system call reads a message from the queue specified by the
 msqid parameter and stores it into the extended message receive buffer
 pointed to by the msgp parameter. The current process must have read
 permission in order to perform this operation. The msgxbuf structure is
 defined in the sys/msg.h header file, and it contains the following
 members:

 time_t mtime; /* Time and date message was sent */
 suid_t muid; /* Sender's effective user ID */
 suid_t mgid; /* Sender's effective group ID */
 unsigned long mnid; /* Sender's node ID */
 pid_t mpid; /* Sender's process ID */
 long mtype; /* Message type */
 char mtext[1]; /* Beginning of message text */

 The msgsz parameter specifies the size of mtext in bytes. The receive
 message is truncated to the size specified by the msgsz parameter if it is
 larger than the msgsz parameter and MSG_NOERROR is true. The truncated
 part of the message is lost and no indication of the truncation is given
 to the calling process.

 The msgsz parameter specifies the size of mtext in bytes. The received
 message is truncated to the size specified by the msgsz parameter if it is
 larger than the size specified by the msgsz parameter and if MSG_NOERROR
 is set in msgflg. The truncated part of the message is lost and no
 indication of the truncation is given to the calling process. If the
 message is longer than msgsz bytes and MSG_NOERROR is not set, then the
 msgrcv system call fails and sets errno to E2BIG.

 The msgtyp parameter specifies the type of message requested as follows:

 � If the msgtyp parameter is equal to 0, the first message on the queue
 is received.

 � If the msgtyp parameter is greater than 0, the first message of the
 type specified by the msgtyp parameter is received.

 � If the msgtyp parameter is less than 0, the first message of the
 lowest type that is less than or equal to the absolute value of the

AIX Operating System Technical Reference
msgxrcv

¦ Copyright IBM Corp. 1985, 1991
1.2.181 - 1

 msgtyp parameter is received.

 The msgflg parameter is either 0, or is constructed by logically ORing one
 or more of the following values:

 MSG_NOERROR Truncates the message if it is longer than msgsz bytes.

 IPC_NOWAIT Specifies the action to take if a message of the desired
 type is not on the queue:

 � If IPC_NOWAIT is set, then the calling process returns
 a value of -1 and sets errno to ENOMSG.

 � If IPC_NOWAIT is not set, then the calling process
 suspends execution until one of the following occurs:

 - A message of the desired type is placed on the
 queue.

 - The message queue identifier specified by the
 msqid parameter is removed from the system. When
 this occurs, errno is set to EIDRM, and a value of
 -1 is returned.

 - The calling process receives a signal that is to
 be caught. In this case, a message is not
 received and the calling process resumes in the
 manner prescribed in "sigaction, sigvec, signal"
 in topic 1.2.263.

 Warning: If the Transparent Computing Facility is installed, a message
 queue exists only on the cluster site on which the queue was created.
 There is no provision for accessing a message queue on a remote cluster
 site. Consequently, processes that use message queues cannot be migrated
 to other sites.

 Return Value
 Upon successful completion, msgxrcv returns a value equal to the number of
 bytes actually stored into mtext, and the following actions are taken with
 respect to the data structure associated with the msqid parameter:

 � msg_qnum is decremented by 1.
 � msg_lrpid is set equal to the process ID of the calling process.
 � msg_rtime is set equal to the current time.

 If the msgxrcv system call fails, a value of -1 is returned and errno is
 set to indicate the error.

 Error Conditions
 The msgxrcv system call fails if one or more of the following are true:

 EINVAL msqid is not a valid message queue identifier.

 EACCES Operation permission is denied to the calling process.

 EINVAL msgsz is less than 0.

 E2BIG mtext is greater than msgsz and MSG_NOERROR is not set.

 ENOMSG The queue does not contain a message of the desired type and

AIX Operating System Technical Reference
msgxrcv

¦ Copyright IBM Corp. 1985, 1991
1.2.181 - 2

 IPC_NOWAIT is set.

 EFAULT The msgp parameter points to a location outside of the process's
 allocated address space.

 EINTR msgxrcv received a signal.

 EIDRM The message queue identifier specified by msqid is removed from
 the system.

 Related Information
 In this book: "msgctl" in topic 1.2.173, "msgget" in topic 1.2.174, and
 "msgrcv" in topic 1.2.178.

AIX Operating System Technical Reference
msgxrcv

¦ Copyright IBM Corp. 1985, 1991
1.2.181 - 3

 1.2.182 NCcollate, NCcoluniq, NCeqvmap, _NCxcol, _NLxcol

 Purpose
 Collates characters for international character support.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <NLchar.h>

 int NCcollate (xc) int NCcoluniq (xc)
 NLchar xc; NLchar xc;

 int _NCxcol (index, src, xstint NCeqvmap (ucval)
 int index; int ucval;
 NLchar **src, **xstr;

 int _NLxcol (index, src, xstr)
 int index;
 unsigned char **src;
 NLchar **xstr;

 Description

 Note: In the multibyte environment, the collation routines listed above
 are provided for backward compatibility. They are front-ends to
 the wc_collate, wc_coluniq, wc_eqvmap, _wcxcol, and _mbxcol
 routines. Avoid using them if you wish to write portable programs.

 The xc value is that of an extended character (NLchar).

 AIX supports a user-configurable collating order per process, using the
 table file indicated by the LANG or LC_COLLATE environment variable.
 Collating values increment from 0. The NCcollate macro, called with an
 NLchar, returns the collating value. NCcollate returns a negative value
 if extended collation applies to the NLchar. If extended collation
 applies, either the NLchar is translated to a different character or
 string of characters before collation (1-to-n collation), or the NLchar is
 to collate as a unit with one or more following NLchars (n-to-1
 collation). For example, the NLchar for the code point representing "ö"
 might translate to the string "oe" before (1-to-n) collation or two code
 points representing "Pi" might translate to a unit "&pi." before (n-to-1)
 collation.

 When NCcollate determines that extended collation is required, _NCxcol or
 _NLxcol should be called.

 The _NCxcol subroutine performs extended collation on the following:

 index The negative value returned from NCcollate that indicates that
 extended collation is needed.

 src A pointer to a string of NLchar type, starting with the NLchar
 following the one that was passed to the NCcollate subroutine.

 xstr A pointer to a replacement text string.

AIX Operating System Technical Reference
NCcollate, NCcoluniq, NCeqvmap, _NCxcol, _NLxcol

¦ Copyright IBM Corp. 1985, 1991
1.2.182 - 1

 � For 1-to-n collation, _NCxcol writes the address to xstr of a
 replacement string that is interpolated into the collating
 operation ahead of the remaining text of src.

 � For n-to-1 collation, a NULL value is written into the
 pointer.

 _NCxcol returns -1 if 1-to-n collation is required (xstr is not NULL). If
 n-to-1 collation is required, _NCxcol returns the collating value of the
 extended collation.

 The NCcoluniq macro disables extended collation, simply assigning each
 NLchar a unique value and treating it as a unit. NCcoluniq returns its
 unique collating value, a nonnegative integer that does not receive a
 special interpretation. A context in which NCcoluniq might be used is
 within character ranges in regular expressions.

 The NCeqvmap macro is a predicate that returns a nonzero value if the
 corresponding NLchar begins an equivalence class, a set of NLchars that
 can be treated as identical in some collating contexts. For example, if
 any character of an equivalence class is used as the beginning or ending
 point of a character range, all of the characters in that class are
 included in the range.

 Related Information

 The ctab command in AIX Operating System Commands Reference.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

 AIX Guide to Multibyte Character Set (MBCS) Support.

 In this book: "wc_collate, wc_coluniq, wc_eqvmap, _wcxcol, _mbxcol,
 _wcxcolu, _mbxcolu" in topic 1.2.329.

AIX Operating System Technical Reference
NCcollate, NCcoluniq, NCeqvmap, _NCxcol, _NLxcol

¦ Copyright IBM Corp. 1985, 1991
1.2.182 - 2

 1.2.183 NCctype

 Purpose
 Classify characters for international character support environments.

 Syntax

 #include <NLctype.h>

 int NCisNLchar (x) int NCisalnum (x)
 int x; int x;

 int NCisalpha (x) int NCisspace (x)
 int x; int x;

 int NCisupper (x) int NCispunct (x)
 int x; int x;

 int NCislower (x) int NCisprint (x)
 int x; int x;

 int NCisdigit (x) int NCisgraph (x)
 int x; int x;

 int NCisxdigit (x) int NCiscntrl (x)
 int x; int x;
 int NCisshift (x)
 int x;

 Description

 Note: In the multibyte environment, the NCctype routines are provided for
 backward compatibility. All the NCctype routines listed above are
 only front-ends to the ctype routines (see "ctype" in
 topic 1.2.55). Avoid using them if you wish to write portable
 programs. Note that NCisshift always returns 0.

 Character classification is user-configurable per process, through the
 table file indicated by the environment variable LANG or LC_COLLATE.

 These macros classify character-coded integer values using information
 specified by the current LANG or LC_COLLATE file configuration. The
 parameter x is tested as an NLchar (an extended character); each macro is
 a predicate form returning 0 for false, and a nonzero value for true. The
 value of x is in the domain of any legal NLchar in a value range from 0 to
 NLCHARMAX-1 inclusive, or a special value of -1. If the value of x is not
 in the domain of the macro, the result is undefined.

 The NCisNLchar macro is defined on all valid integer values, whereas the
 other macros are defined only where NCisNLchar is true, and on the special
 value of -1 (EOF). See " stdio" in topic 1.2.283.

 When a nonzero value is returned for x:

 NCisNLchar x is a valid NLchar with a value between 0 and NLCHARMAX-1,
 inclusive.

 NCisalpha x is an alphabetical character.

AIX Operating System Technical Reference
NCctype

¦ Copyright IBM Corp. 1985, 1991
1.2.183 - 1

 NCisupper x is an uppercase alphabetical character.

 NCislower x is a lowercase letter.

 NCisdigit x is a decimal digit (0-9).

 NCisxdigit x is a hexadecimal digit (0-9, A-F (or a-f)).

 NCisalnum x is an alphanumeric character or digit.

 NCisspace x is a space, tab, carriage return, new-line, vertical tab, or
 form-feed character.

 NCispunct x is a punctuation character (neither a control character nor
 an alphanumeric character).

 NCisprint x is a printing character (including the space character).

 NCisgraph x is a printing character, excluding the space character.

 NCiscntrl x is an ASCII delete character (0177) or an ordinary ASCII
 control character other than the four single-shift characters.

 NCisshift x is one of the four single-shift characters that is used as
 the first byte of an extended character.

 Related Information
 In this book: "conv" in topic 1.2.50, "ctype" in topic 1.2.55, "getc,
 fgetc, getchar, getw, getwc, fgetwc, getwchar" in topic 1.2.91, "NLchar"
 in topic 1.2.188, " stdio" in topic 1.2.283, and "environment" in
 topic 2.4.6.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
NCctype

¦ Copyright IBM Corp. 1985, 1991
1.2.183 - 2

 1.2.184 NCstring

 Purpose
 Performs operations on strings.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <string.h>

 NLchar *NCstrcat (xs1, xs2) NLchar *NCstrchr (xs, x)
 NLchar *xs1, *xs2; NLchar *xs, x;

 NLchar *NCstrncat (xs1, xs2,NLchar *NCstrrchr (xs, x)
 NLchar *xs1, *xs2; NLchar *xs, x;
 int n;
 NLchar *NCstrpbrk (xs1, s2)
 int NCstrcmp (xs1, xs2) NLchar *xs1;
 NLchar *xs1, *xs2; char *s2;

 int NCstrncmp (xs1, xs2, n) int NCstrspn (xs1, s2)
 NLchar *xs1, *xs2; NLchar *xs1;
 int n; unsigned char *s2;

 NLchar *NCstrcpy (xs1, xs2) int NCstrcspn (xs1, s2)
 NLchar *xs1, *xs2; NLchar *xs1;
 unsigned char *s2;
 NLchar *NCstrncpy (xs1, xs2, n)
 NLchar *xs1, *xs2; NLchar *NCstrtok (xs1, s2)
 int n; NLchar *xs1;
 unsigned char *s2;
 int NCstrlen (xs)
 NLchar *xs;

 Description

 Note: In the multibyte environment, the NCstring routines are provided
 for backward compatibility. These routines are only front-ends to
 the wcstring routines (see "wcstring" in topic 1.2.327). Avoid
 using them if you wish to write portable programs.

 The NCstring subroutines copy, compare, and append strings in memory, and
 determine such things as location, size, and existence of strings in
 memory. For these subroutines, a string is an array of NLchars,
 terminated by a null character. The NCstring subroutines parallel the
 string subroutines (see "string" in topic 1.2.288), but operate on strings
 of type NLchar rather than on type char, except as specifically noted
 below.

 These subroutines require their parameters (except the s2 parameter) to be
 explicitly converted to type NLchar, so they should be used on input that
 is to be scanned many times for each time it is converted. Where this
 performance concern does not apply, the NLstring subroutines are easier to
 use (see "NLstring" in topic 1.2.193).

 The s2 parameter is a string of type char containing code point

AIX Operating System Technical Reference
NCstring

¦ Copyright IBM Corp. 1985, 1991
1.2.184 - 1

 representations of ASCII characters or extended characters for
 international character support. This supports the use of a double-quoted
 string for this parameter in calling programs.

 The parameters xs1, xs2 and s point to strings of type NLchar (arrays of
 NLchars terminated by a null character). The s2 parameter points to
 strings of type char.

 The subroutines NCstrcat, NCstrncat, NCstrcpy, and NCstrncpy all alter
 xs1. They do not check for overflow of the array pointed to by xs1. All
 string movement is performed character by character and starts at the
 left. Overlapping moves toward the left work as expected, but overlapping
 moves to the right may give unexpected results. All of these subroutines
 are declared in the string.h header file.

 The NCstrcat subroutine appends a copy of the string pointed to by the xs2
 parameter to the end of the string pointed to by the xs1 parameter. The
 NCstrcat subroutine returns a pointer to the null-terminated result.

 The NCstrncat subroutine copies at most n NLchars of xs2 to the end of the
 string pointed to by the xs1 parameter. Copying stops before n NLchars if
 a null character is encountered in the xs2 string. The NCstrncat
 subroutine returns a pointer to the null-terminated result.

 The NCstrcmp subroutine lexicographically compares the string pointed to
 by the xs1 parameter to the string pointed to by the xs2 parameter. The
 NCstrcmp subroutine returns a value that is:

 Less than 0 If xs1 is less than xs2
 Equal to 0 If xs1 is equal to xs2
 Greater than 0 If xs1 is greater than xs2.

 The NCstrncmp subroutine makes the same comparison as NCstrcmp, but it
 compares at most n pairs of NLchars. Both NCstrcmp and NCstrncmp use the
 environment variable LANG or LC_COLLATE to determine the collating
 sequence for performing comparisons. (See "NCcollate, NCcoluniq,
 NCeqvmap, _NCxcol, _NLxcol" in topic 1.2.182 for information on collation
 for international character support.) Unless a true collating
 relationship is to be tested for, strcmp and strncmp can instead be used
 for equality comparisons. (See "string" in topic 1.2.288) The bytes will
 match regardless of the NLchars in the string.

 The NCstrcpy subroutine copies the string pointed to by the xs2 parameter
 to the character array pointed to by the xs1 parameter. Copying stops
 when the null character is copied. The NCstrcpy subroutine returns the
 value of the xs1 parameter.

 The NCstrncpy subroutine copies n NLchars from the string pointed to by
 the xs2 parameter to the character array pointed to by the xs1 parameter.
 If xs2 is less than n NLchars long, then NCstrncpy pads xs1 with trailing
 null characters to fill n NLchars. If xs2 is n or more NLchars long, then
 only the first n NLchars are copied; the result is not terminated with a
 null character. The NCstrncpy subroutine returns the value of the xs1
 parameter.

 The NCstrlen subroutine returns the number of NLchars in the string
 pointed to by the s parameter, not including the terminating null
 character.

 The NCstrchr subroutine returns a pointer to the first occurrence of the

AIX Operating System Technical Reference
NCstring

¦ Copyright IBM Corp. 1985, 1991
1.2.184 - 2

 NLchar specified by the x parameter in the string pointed to by the s
 parameter. A NULL pointer is returned if the NLchar does not occur in the
 string. The null character that terminates a string is considered to be
 part of the string.

 The NCstrrchr subroutine returns a pointer to the last occurrence of the
 character specified by the x parameter in the string pointed to by the s
 parameter. A NULL pointer is returned if the NLchar does not occur in the
 string. The null character that terminates a string is considered to be
 part of the string.

 The NCstrpbrk subroutine returns a pointer to the first occurrence in the
 string pointed to by the xs1 parameter of any code point from the string
 pointed to by the s2 parameter. A NULL pointer is returned if no
 character matches.

 The NCstrspn subroutine returns the length of the initial segment of the
 string pointed to by the xs1 parameter that consists entirely of code
 points from the string pointed to by the s2 parameter.

 The NCstrcspn subroutine returns the length of the initial segment of the
 string pointed to by the xs1 parameter that consists entirely of code
 points not from the string pointed to by the s2 parameter.

 The NCstrtok subroutine returns a pointer to an occurrence of a text token
 in the string pointed to by the xs1 parameter. The s2 parameter specifies
 a set of code points as token delimiters. If the s1 parameter is anything
 other than NULL, then the NCstrtok subroutine reads the string pointed to
 by the xs1 parameter until it finds one of the delimiter code points
 specified by the s2 parameter. It then stores a null character into the
 string, replacing the delimiter code point, and returns a pointer to the
 first NLchar of the text token. The NCstrtok subroutine keeps track of
 its position in the string so that subsequent calls with a NULL xs1
 parameter step through the string. The delimiters specified by the s2
 parameter can be changed for subsequent calls to NCstrtok. When no tokens
 remain in the string pointed to by the xs1 parameter, the NCstrtok
 subroutine returns a NULL pointer.

 Related Information
 In this book: "NCcollate, NCcoluniq, NCeqvmap, _NCxcol, _NLxcol" in
 topic 1.2.182, "NLchar" in topic 1.2.188, "NLstring" in topic 1.2.193,
 "NLstrtime" in topic 1.2.194, "string" in topic 1.2.288, and "wcstring" in
 topic 1.2.327.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
NCstring

¦ Copyright IBM Corp. 1985, 1991
1.2.184 - 3

 1.2.185 netctrl

 Purpose
 Allows system administrator to exercise control over TCF networking.

 Syntax

 #include <sys/netctrl.h>

 int netctrl(option, param)
 int option;
 caddr_t param;

 Description
 The netctrl system call provides the superuser with a method for
 controlling the behavior of the TCF network (that is, cluster
 communication). The option parameter may be ORed with SET_OPT to cause
 the value(s) to be set or reset as appropriate in addition to returning
 the old value(s). The various structures to which param may refer are
 defined in <sys/netctrl.h>. The following options are available:

 NET_FLOW Controls TCF cluster communication (network traffic) and/or
 returns current state. param is the address of an integer whose
 value is NET_START, NETJOIN, or NET_STOP.

 NET_START starts a cluster communication, allowing it to
 join a cluster with other TCF sites.

 NET_JOIN is used after cluster communication is enabled to
 actively look for other cluster sites and hence
 join a cluster. NET_JOIN is usually used
 immediately after NET_START.

 NET_STOP stops cluster communication.

 Note: On AIX/370, in addition to enabling cluster
 communication, NET_START enables communication using a
 telecommunications adapter (TCA) for use by AIX Access.
 NET_STOP, however, does not disable TCA traffic.

 NET_STATS Get current TCF network statistics gathered since last network
 startup. This information is returned into a net_stats
 structure as pointed to by param. If SET_OPT is set, then the
 statistics are reset within the kernel.

 For the following options, if more sites exist than are implied by the
 number of entries specified by the param argument, the values for those
 sites are simply not returned or modified.

 SITE_STATS
 Get current statistics on TCF sites. This information is
 returned into a site_stats structure as pointed to by param. If
 SET_OPT is set, then the statistics are reset within the kernel.

 MSG_STATS Get current statistics on message traffic on a per site basis.
 This information is returned into a msg_stats structure as
 pointed to by param. If SET_OPT is set, then the statistics are
 reset within the kernel.

 SITE_PARMS

AIX Operating System Technical Reference
netctrl

¦ Copyright IBM Corp. 1985, 1991
1.2.185 - 1

 Get or set current site parameters as determined by the
 site_parms structure which is pointed to by param. Values for
 the site_parms structure may have the following values:

 sp_route Reserved for future implementation.

 sp_timeout Must be greater than or equal to 2.

 sp_block_size
 Must be a power of 2 greater than or equal to 512
 and less than or equal to 16384.

 sp_retries Must be greater than 0.

 sp_window Must be greater than 0.

 sp_s_window Must be greater than or equal to 1.

 sp_checksum If 1, checksumming is done. If 0, no checksumming
 is done.

 NET_TOPWAIT
 Wait for change in TCF cluster topology. The param parameter is
 a pointer to a character whose value is one of the topology
 change status values defined in <sys/topchg.h<:

 TP_PARTITION
 TP_CLEANUP
 TP_MERGE
 TP_NEWTOP
 TP_RECOVERY
 TP_CANCEL
 TP_WAIT
 TP_STABLE

 Usually, the first time NET_WAIT is used, the value TP_STABLE is
 passed.

 The netctrl system call will wait until the current topology
 change status is different from the provided value; at which
 point the system call will return, replacing the character
 pointed at by param with the then current topology status.
 Because there may be multiple changes in the topology status
 before this process gets a chance to run--it is possible that
 the returned topology change status actually equals the value
 passed in.

 Return Value
 Upon successful completion, a value of 0 is returned to the calling
 process. Otherwise, a value of -1 is returned and errno is set to
 indicate the error.

 Error Conditions
 The netctrl system call fails if any of the following is true:

 EPERM The SET_OPT bit was on and the user was not the superuser.

 EINVAL Option is not an one of the choices described above.

 EINVAL One or more of the parameters specified in the site_parms

AIX Operating System Technical Reference
netctrl

¦ Copyright IBM Corp. 1985, 1991
1.2.185 - 2

 structure are outside of the acceptable ranges.

 EFAULT param pointed to an area which was unwritable.

 EBUSY NET_JOIN was specified while already in the process of joining a
 cluster.

 EINVAL TCF is not enabled on your system (AIX PS/2 only).

 Related Information
 In this book: "getsites" in topic 1.2.119.

 The clusterstart, clusterstop, and netparams commands in AIX Operating
 System Commands Reference.

AIX Operating System Technical Reference
netctrl

¦ Copyright IBM Corp. 1985, 1991
1.2.185 - 3

 1.2.186 NLcatgets

 Purpose
 Access a message catalog the first time after NLcatopen opens the catalog.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <nl_types.h>

 char *NLcatgets (catd, set_num, msg_num, s)
 nl_catd catd;
 int set_num, msg_num;
 char *s;

 Description
 If NLcatopen is used to prepare a message catalog for access, then
 NLcatgets must be used to access the message catalog the first time. A
 successful call to NLcatopen returns catd. The set and message to
 retrieve from the catalog is specified by set_num and msg_num. The
 pointer to a default string to return if the call fails is s.

 Return Value
 Upon successful completion, NLcatgets returns a pointer to the message
 string from the message catalog. The data held at this location is
 overwritten on the next call to NLcatgets, so it is up to the user program
 to copy the data and save it before the next call to NLcatgets. NLcatgets
 returns a pointer to the default string s upon failure.

AIX Operating System Technical Reference
NLcatgets

¦ Copyright IBM Corp. 1985, 1991
1.2.186 - 1

 1.2.187 NLcatopen

 Purpose
 Deferred open of a message catalog.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <nl_types.h>

 nl_catd NLcatopen (filename)
 char *filename;

 Description
 The NLcatopen subroutine provides a mechanism that prepares a message
 catalog to be accessed without the overhead of opening the catalog until
 the first call to NLcatgets, when the catalog is actually accessed.

 If NLcatgets is not used after a call to NLcatopen, undefined results
 occur since no information regarding the message catalog has been
 prepared.

 There is no NLcatclose routine to close a catalog that has been opened by
 NLcatopen. Use catclose to close a catalog that is opened by NLcatopen
 and accessed by NLcatgets.

 Return Value
 A catalog descriptor is returned upon successful completion. Otherwise,
 (nl_catd)-1 will be returned to indicate any failure. The same rules hold
 true when opening the catalog specified by filename as with the catopen
 routine.

AIX Operating System Technical Reference
NLcatopen

¦ Copyright IBM Corp. 1985, 1991
1.2.187 - 1

 1.2.188 NLchar

 Purpose
 Handles data type NLchar.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <NLchar.h>

 typedef unsigned short NLchaint NCencode (x, c)
 NLchar *x;
 int NCdecode (c, x) unsigned char *c;
 unsigned char *c;
 NLchar *x; int NCencstr (x, c, len)
 NLchar *x;
 int NCdecstr (c, x, len) unsigned char *c;
 unsigned char *c; int len;
 NLchar *x;
 int len; int NCenc (x, c)
 NLchar *x;
 int NCdec (c, x) char *c;
 char *c;
 NLchar *x; int NLisNLcp (c)
 char *c;
 int NCdechr (c)
 char *c; int NLchrlen (c)
 char *c;
 int NCchrlen (nlchr)
 NLchar nlchr;

 Description

 Note: In the multibyte environment, these routines which handle the data
 type NLchar are provided for backward compatibility. They are only
 front-ends to the wcstring and mbstring routines (see "wcstring" in
 topic 1.2.327 and "mbstring" in topic 1.2.164). Avoid using them
 if you wish to write portable programs. There is no wcstring
 equivalent for NCchrlen, and there is no mbstring equivalent for
 NLisNLcp.

 Characters for international character support can be either one or two
 bytes in length, while all ASCII characters are one byte long. The NLchar
 data type represents both ASCII and extended characters as single units of
 storage. The NLchar subroutines and macros listed here convert between
 character types char and NLchar and provide information about a given
 character of either type.

 The NCdecode subroutine converts a character starting at c into an NLchar
 at x, and returns the number of bytes read from c. The NCencode
 subroutine makes the inverse translation from type NLchar to type char and
 returns the number of bytes written to c.

 The NCdecstr subroutine converts a string of characters from type char to
 type NLchar, and the NCencstr does the reverse translation. Both
 subroutines require the address of the source and destination strings and

AIX Operating System Technical Reference
NLchar

¦ Copyright IBM Corp. 1985, 1991
1.2.188 - 1

 the total number of elements available for the destination string. The
 destination string terminates with a zero (0) element, which is included
 in the string length. The destination length should include space for the
 terminator. If insufficient space is left for the destination string, a
 portion of it is not converted and the destination string is not
 terminated with a 0 byte. The subroutines return the length of the string
 in elements, including the terminating 0.

 The NCdec and NCenc macros are equivalent to NCdecode and NCencode
 respectively. You can use them to avoid the overhead of function calls in
 situations where the parameters have no side effects.

 The NCdechr macro is like NCdecode except that NCdechr simply returns the
 value of NLchar rather than writing the NLchar into memory.

 The NLisNLcp, NCchrlen, and NLchrlen macros return information about a
 given character. NLisNLcp returns a 0 if the character at c is not an
 extended character, but returns the length of the character if it is an
 extended character. NCchrlen returns the length in bytes that an NLchar
 would have if it were converted into an extended or an ASCII character by
 NCencode. NLchrlen returns the length in bytes of the extended or ASCII
 character starting at c.

 Related Information
 In this book: "conv" in topic 1.2.50, "ctype" in topic 1.2.55, "NCctype"
 in topic 1.2.183, "wcstring" in topic 1.2.327, and "mbstring" in
 topic 1.2.164.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

 The axeb, ebxa, and genxlt commands in AIX Operating System Commands.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
NLchar

¦ Copyright IBM Corp. 1985, 1991
1.2.188 - 2

 1.2.189 NLescstr, NLunescstr, NLflatstr

 Purpose
 Translates strings of characters.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <NLctype.h>

 int NLescstr (src, dest, dleint NLunescstr (src, dest, dlen)
 unsigned char *src, *dest; unsigned char *src, *dest;
 int dlen; int dlen;
 int NLflatstr (src, dest, dlen)
 unsigned char *src, *dest;
 int dlen

 Description

 Note: In the multibyte environment, these routines are provided for
 backward compatibility and they support only code page pc850.

 These subroutines use the subroutines described under "conv" in
 topic 1.2.50 to convert an entire string of type char, perhaps containing
 extended characters, into a string of pure ASCII bytes. Each of these
 subroutines require three parameters: the src address of the source
 string, the dest address of the destination string, and the dlen value,
 giving the total number of bytes available in the destination string.
 Each writes a result string terminated by a null character and returns its
 length in bytes. The dlen value should include space for the null
 character. If dest is too short to contain the entire output string, not
 all of src is translated.

 The NLescstr uses the NCesc subroutine to translate each ASCII or extended
 character in src to pure ASCII. Each extended character encountered is
 translated to a printable ASCII escape sequence that uniquely identifies
 the extended character. See "display symbols" in topic 2.4.4 for a list
 of these escape sequences.

 The NLunescstr subroutine performs the inverse translation using the
 NCunesc subroutine to translate each ASCII byte of src into dest, and
 translate each ASCII escape sequence back into the extended character it
 represents.

 The NLflatstr subroutine uses the NCflatchr subroutine to translate each
 character, ASCII or extended, in src to a single ASCII byte in dest. The
 dest string may have fewer bytes than the src string, but the number of
 logical characters, or the display length, is the same. See "NLstring" in
 topic 1.2.193.

 Related Information
 In this book: "ctype" in topic 1.2.55, "getc, fgetc, getchar, getw,
 getwc, fgetwc, getwchar" in topic 1.2.91, "NCctype" in topic 1.2.183,
 "NCstring" in topic 1.2.184, "NLchar" in topic 1.2.188, "NLstring" in
 topic 1.2.193, and "display symbols" in topic 2.4.4.

AIX Operating System Technical Reference
NLescstr, NLunescstr, NLflatstr

¦ Copyright IBM Corp. 1985, 1991
1.2.189 - 1

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
NLescstr, NLunescstr, NLflatstr

¦ Copyright IBM Corp. 1985, 1991
1.2.189 - 2

 1.2.190 NLgetctab

 Purpose
 Finds and maps character collating and classification tables to code
 points.

 Library
 Standard C Library (libc.a)

 Syntax

 void NLgetctab (ctfile)
 char *ctfile;

 Description
 In the multibyte environment, the NLgetctab subroutine is a front-end to
 setlocale. If the variable NLCTAB is not defined and the parameter passed
 to it is a NULL pointer, then NLgetctab sets the locale to the default C
 locale; otherwise, NLgetctab passes the parameter to setlocale and behaves
 as if setlocale (LC_ALL, ctfile) were executed (see "setlocale" in
 topic 1.2.251).

 Return Value
 When NLgetctab succeeds, 0 is returned, otherwise -1 is returned.

 Related Information
 In this book: "NCcollate, NCcoluniq, NCeqvmap, _NCxcol, _NLxcol" in
 topic 1.2.182, "environment" in topic 2.4.6, and "setlocale" in
 topic 1.2.251.

 The ctab command in AIX Operating System Commands Reference.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
NLgetctab

¦ Copyright IBM Corp. 1985, 1991
1.2.190 - 1

 1.2.191 NLgetfile

 Purpose
 Gets parameter file for international character support.

 Library
 Standard C Library (libc.a)

 Syntax

 int NLgetfile (filename)
 char *filename;

 Description
 In the multibyte environment, the NLgetfile subroutine is a front-end to
 setlocale. If the variable NLFILE is not defined and the parameter is
 passed to it as a NULL pointer, NLgetfile sets the locale to the default C
 locale; otherwise, NLgetfile passes the parameter to setlocale and behaves
 as if setlocale (LC_ALL, filename) were called (see "setlocale" in
 topic 1.2.251).

 Return Value
 When NLgetfile succeeds, 0 is returned.

 When NLgetfile does not succeed, -1 is returned.

 Related Information
 In this book: "getenv, NLgetenv" in topic 1.2.94, "NLgetctab" in
 topic 1.2.190, "setlocale" in topic 1.2.251, and "environment" in
 topic 2.4.6.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
NLgetfile

¦ Copyright IBM Corp. 1985, 1991
1.2.191 - 1

 1.2.192 nlist

 Purpose
 Gets entries from a name list.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <nlist.h>

 int nlist (filename, nl)
 char *filename;
 struct nlist *nl;

 Description
 The nlist subroutine allows a program to examines the name list in the
 executable file named by the filename parameter. It selectively extracts
 a list of values and places them in the array of nlist structures pointed
 to by the nl parameter.

 The name list specified by the nl parameter consists of an array of
 structures containing names of variables, types, and values. The list is
 terminated with an element that has a null string in the name structure
 member. Each variable name is looked up in the name list of the file. If
 the name is found, the type and value of the name are inserted in the next
 two fields. The type field is set to 0 unless the file was compiled with
 the -g option. If the name is not found, both the type and value entries
 are set to 0.

 All entries are set to 0 if the specified file cannot be read or if it
 does not contain a valid name list.

 You can use the nlist subroutine to examine the system name list kept in
 the /unix file. By examining this list, you can ensure that your programs
 obtain current system addresses.

 The nlist.h header file is automatically included by a.out.h for
 compatibility. However, do not include a.out.h if you only need the
 information necessary to use the nlist subroutine. If you do include
 a.out.h, follow the #include statement with the line:

 #undef n_name

 Return Value
 Upon successful completion, a value of 0 is returned. If the nlist
 subroutine fails, a value of -1 is returned.

 Related Information
 In this book: "a.out" in topic 2.3.2.

 The cc command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
nlist

¦ Copyright IBM Corp. 1985, 1991
1.2.192 - 1

 1.2.193 NLstring

 Purpose
 Performs operations on strings containing code points.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <string.h>

 unsigned char *NLstrcat (s1,int)NLstrdlen (s)
 unsigned char *s1, *s2; unsigned char *s;

 unsigned char *NLstrncat (s1unsigned char *NLstrchr (s, x)
 unsigned char *s1, *s2; unsigned char *s
 int n; NLchar x;

 int NLstrcmp (s1, s2) unsigned char *NLstrrchr (s, x)
 char *s1, *s2; unsigned char *s
 NLchar x;
 int NLstrncmp (s1, s2, n)
 char *s1, *s2; unsigned char *NLstrpbrk (s1, s2)
 int n; unsigned char *s1, *s2;

 char *NLstrcpy (s1, s2) int NLstrspn (s1, s2)
 char *s1, *s2; unsigned char *s1, *s2;

 unsigned char *NLstrncpy (s1int2NLstrcspn (s1, s2)
 unsigned char *s1, *s2; unsigned char *s1,
 int n; char *s2;

 int NLstrlen (s) char *NLstrtok (s1, s2)
 unsigned char *s; unsigned char *s1, *s2;

 Description

 Note: In the multibyte environment, the NLstring routines listed above
 are provided for backward compatibility. These routines are only
 front-ends to the mbstring routines, (see "mbstring" in
 topic 1.2.164) and should be avoided if you need to write portable
 programs.

 The NLstring subroutines copy, compare, and append strings in memory, and
 determine such things as location, size, and existence of strings in
 memory. A string is an array of code points terminated by a NULL
 character. The NLstring subroutines parallel the string subroutines (see
 "string" in topic 1.2.288), and NLstrcat, NLstrncat, NLstrcpy, NLstrncpy,
 and NLstrlen are identical in function to their string counterparts.

 The subroutines NLstrcat, NLstrncat, NLstrcpy, and NLstrncpy all alter s1.
 They do not check for overflow of the array pointed to by s1. All string
 movement is performed character by character and starts at the left.
 Overlapping moves toward the left work as expected, but overlapping moves
 to the right may give unexpected results. All of these subroutines are
 declared in the string.h header file.

AIX Operating System Technical Reference
NLstring

¦ Copyright IBM Corp. 1985, 1991
1.2.193 - 1

 The NLstrcat subroutine appends a copy of the string pointed to by the s2
 parameter to the end of the string pointed to by the s1 parameter. The
 NLstrcat subroutine returns a pointer to the NULL-terminated result.

 The NLstrncat subroutine performs the same function as the NLstrcat
 subroutine, but the number of bytes appended to the end of the string
 pointed to by the s1 parameter is limited to n; this may represent fewer
 than n code points. The NLstrncat subroutine returns a pointer to the
 NULL-terminated result.

 The NLstrcmp subroutine lexicographically compares the string pointed to
 by the s1 parameter to the string pointed to by the s2 parameter. The
 NLstrcmp subroutine returns a value that is:

 Less than 0 If s1 is less than s2
 Equal to 0 If s1 is equal to s2
 Greater than 0 If s1 is greater than s2.

 The NLstrncmp subroutine makes the same comparison as NLstrcmp, but it
 compares at most n bytes. Characters that have 2-byte representations can
 cause NLstrncmp to return 0 for unequal strings. If n divides a 2-byte
 character, then the last byte comparison is skipped. If the only
 difference in the two strings is in that last byte, an incorrect true is
 returned.

 Both the NLstrcmp and NLstrncmp subroutines use the environment variable
 NLCTAB to determine the collating sequence for performing comparisons.
 (See "NCcollate, NCcoluniq, NCeqvmap, _NCxcol, _NLxcol" in topic 1.2.182
 for information on collation for international character support.) Unless
 a true collating relationship is to be tested for, strcmp and strncmp can
 instead be used for equality comparisons (see "string" in topic 1.2.288).
 The bytes will match regardless of code point representations.

 The NLstrcpy subroutine copies the string pointed to by the s2 parameter
 to the character array pointed to by the s1 parameter. There must be
 enough room in the array pointed to by the s1 parameter for the string
 pointed to by the s2 parameter, including the trailing NULL character.
 The NLstrcpy subroutine returns the value of the s1 parameter.

 The NLstrncpy subroutine copies the string pointed to by the s2 parameter
 to the character array pointed to by the s1 parameter, copying at most n
 bytes. If s2 is shorter than n, a NULL character is added to s1. If the
 length in bytes of s2 is greater than n, the result is not
 NULL-terminated. If byte n is the first byte of an extended code then byte
 n is not copied; s1 is n-1 in length. The NLstrncpy subroutine returns
 the value of the s1 parameter.

 The NLstrlen subroutine returns the number of bytes in the string pointed
 to by the s parameter, not including the terminating NULL character.

 The NLstrdlen subroutine returns the number of code points in the string
 pointed to by s, not including the terminating NULL character.

 The NLstrchr subroutine returns a pointer to the first occurrence of the
 code point corresponding to the NLchar specified by the x parameter in the
 string pointed to by the s parameter. A NULL pointer is returned if the
 code point does not occur in the string. The NULL character that
 terminates a string is considered to be part of the string.

 The NLstrrchr subroutine returns a pointer to the last occurrence of the

AIX Operating System Technical Reference
NLstring

¦ Copyright IBM Corp. 1985, 1991
1.2.193 - 2

 code point corresponding to the NLchar specified by the x parameter in the
 string pointed to by the s parameter. A NULL pointer is returned if the
 code point does not occur in the string. The NULL character that
 terminates a string is considered to be part of the string.

 The NLstrpbrk subroutine returns a pointer to the first occurrence in the
 string pointed to by the s1 parameter of any code point from the string
 pointed to by the s2 parameter. A NULL pointer is returned if no
 character matches.

 The NLstrspn subroutine returns the length of the initial segment of the
 string pointed to by the s1 parameter that consists entirely of code
 points from the string pointed to by the s2 parameter.

 The NLstrcspn subroutine returns the length of the initial segment of the
 string pointed to by the s1 parameter that consists entirely of code
 points not from the string pointed to by the s2 parameter.

 The NLstrtok subroutine returns a pointer to an occurrence of text tokens
 in the string pointed to by the s1 parameter. The s2 parameter specifies
 a set of code points as token delimiters. If the s1 parameter is anything
 other than NULL, then the NLstrtok subroutine reads the string pointed to
 by the s1 parameter until it finds one of the delimiter code points
 specified by the s2 parameter. It then stores a NULL character into the
 string, replacing the delimiter code point, and returns a pointer to the
 first code point of the text token. The NLstrtok subroutine keeps track
 of its position in the string so that subsequent calls with a NULL s1
 parameter step through the string. The delimiters specified by the s2
 parameter can be changed for subsequent calls to NLstrtok. When no tokens
 remain in the string pointed to by the s1 parameter, the NLstrtok
 subroutine returns a NULL pointer.

 Related Information
 In this book: "NCcollate, NCcoluniq, NCeqvmap, _NCxcol, _NLxcol" in
 topic 1.2.182, "NCstring" in topic 1.2.184, "NLchar" in topic 1.2.188,
 "mbstring" in topic 1.2.164, and "string" in topic 1.2.288.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
NLstring

¦ Copyright IBM Corp. 1985, 1991
1.2.193 - 3

 1.2.194 NLstrtime

 Purpose
 Formats time and date.

 Library
 Standard C Library (libc.a)

 Syntax

 char *NLstrtime (str, len, format, tmdate)
 char *str, *format;
 int len;
 struct tm *tmdate;

 Description
 The NLstrtime subroutine converts the internal time and date specification
 tmdate that is generated by the localtime or gmtime clock structures of
 ctime (see "ctime, localtime, gmtime, asctime, tzset" in topic 1.2.54)
 into a character string under the direction of format. The resulting
 string is similar to the result of printf format, and is placed in the
 memory location addressed by str. It has a maximum length of len and
 terminates with a NULL.

 Many conversion specifications are the same as those used by the date
 command. The interpretation of some conversion specifications is affected
 by the values of environment variables for international character support
 (see "environment" in topic 2.4.6).

 The format parameter is a character string containing two types of
 objects: plain characters that are simply placed in the output string, and
 conversion specifications that convert information from tmdate into
 readable form in the output string. Each conversion specification is a
 sequence of this form:

 %[[-]width][.precision]type

 � A % (percent sign) introduces a conversion specification.

 � An optional decimal digit string specifies a minimum field width. A
 converted value that has fewer characters than the field width is
 padded with spaces to the right. If the decimal digit string is
 preceded by a minus sign, padding with spaces occurs to the left of
 the converted value.

 If no width is given, for numeric fields the appropriate default width
 is used with the field padded on the left with zeros as required. For
 strings, the output field is made exactly wide enough to contain the
 string.

 � An optional precision value gives the maximum number of characters to
 be printed for the conversion specification. The precision value is a
 decimal digit string preceded by a period. If the value to be output
 is longer than the precision, it is truncated on the right.

 � The type of conversion is specified by one or two conversion
 characters. The characters and their meanings are:

 m The month of the year is output as a number between 01 and 12.

AIX Operating System Technical Reference
NLstrtime

¦ Copyright IBM Corp. 1985, 1991
1.2.194 - 1

 h The short month is output as a string established by the
 corresponding entry in the current environment file or the C
 locale, if applicable (see "setlocale" in topic 1.2.251).

 lh The long month is output as a string established by corresponding
 entry in the current environment file or the C locale if
 applicable (see "setlocale" in topic 1.2.251.

 d The day of the month is output as a number between 01 and 31.

 j The Julian day of the year is output as a number between 001 and
 366.

 w The day of the week is output as a number between 0 and 6.

 a The short day of the week is output as a string according to the
 corresponding entry in the current environment file or the C
 locale, if applicable (see "setlocale" in topic 1.2.251).

 la The long day of the week is output according to the corresponding
 entry in the current environment file or the C locale, if
 applicable (see "setlocale" in topic 1.2.251).

 y The year is output as a number between 00 and 99.

 Y The year is output as a number between 0000 and 9999.

 D The date is output in the format specified by the corresponding
 entry in the current environment file or the C locale, if
 applicable (see "setlocale" in topic 1.2.251).

 lD The long date is output in the format specified by the
 corresponding entry in the current environment file or the C
 locale, if applicable (see "setlocale" in topic 1.2.251).

 sD The short date is output in the format specified by the
 corresponding entry in the current environment file or the C
 locale, if applicable (see "setlocale" in topic 1.2.251).

 H The hour of the day is output as a number between 00 and 23.

 sH The hour of the day is output as a number between 01 and 12.

 M The minute is output as a number between 00 and 59.

 S The second is output as a number between 00 and 59.

 p The AM or PM indicator is output as a string specified by
 corresponding entry in the current environment file or the C
 locale, if applicable (see "setlocale" in topic 1.2.251).

 z The (standard or daylight-saving) time zone name is output as a
 string from the corresponding entry in the current environment
 file or the C locale, if applicable (see "setlocale" in
 topic 1.2.251).

 r The time is output in the format specified by the corresponding
 entry in the current environment file or the C locale, if
 applicable (see "setlocale" in topic 1.2.251).

AIX Operating System Technical Reference
NLstrtime

¦ Copyright IBM Corp. 1985, 1991
1.2.194 - 2

 T The time is output in the format specified by the corresponding
 entry in the current environment file or the C locale, if
 applicable (see "setlocale" in topic 1.2.251).

 sT The time is output in the format specified by the corresponding
 entry in the current environment file or the C locale, if
 applicable (see "setlocale" in topic 1.2.251).

 n Only a new-line character is output.

 t Only a tab character is output.

 x Nothing is output; this conversion specification is used only as a
 delimiter.

 % The % (percent) character is output.

 Related Information
 In this book: "NLtmtime" in topic 1.2.195, "printf, fprintf, sprintf,
 NLprintf, NLfprintf, NLsprintf, wsprintf" in topic 1.2.208, "setlocale" in
 topic 1.2.251, and "environment" in topic 2.4.6.

 The date command in AIX Operating System Commands Reference.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
NLstrtime

¦ Copyright IBM Corp. 1985, 1991
1.2.194 - 3

 1.2.195 NLtmtime

 Purpose
 Sets a time structure from string data.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <time.h>

 int NLtmtime (str, format, ptm)
 unsigned char *str, *format;
 struct tm *ptm;

 Description
 The NLtmtime subroutine sets the fields in the ptm time structure with
 information in a str text string that is parsed according to the format
 string. For each field descriptor in the format string, data is read from
 the str string and placed into appropriate fields of the ptm structure.
 The format string is described by these rules:

 � Each field descriptor begins with a % (percent sign).
 � A mnemonic string of 1 or 2 characters follows the % sign and
 indicates the type of field or fields being read.
 � A blank character (tab, space, or new-line character) anywhere in th
 format string causes all blank characters at the corresponding
 location in the str string to be skipped.
 � Any character in the format string that appears outside of a field
 descriptor, other than the blank character, must be matched exactly by
 the same character in the str string. If a mismatch occurs, NLtmtime
 stops processing and any information following the mismatch is
 ignored. The characters and their meanings are:

 m The month of the year is input as a number between 01 and 12.

 h The short month is input as a string established by the
 corresponding entry in the current environment file or the C
 locale, if applicable (see "setlocale" in topic 1.2.251).

 lh The long month is input as a string established by the
 corresponding entry in the current environment file or the C
 locale, if applicable (see "setlocale" in topic 1.2.251).

 d The day of the month is input as a number between 01 and 31.

 j The Julian day of the year is input as a number between 001 and
 366.

 w The day of the week is input as a number between 0 and 6.

 a The short day of the week is input as a string according to the
 corresponding entry in the current environment file or the C
 locale, if applicable (see "setlocale" in topic 1.2.251).

 la The long day of the week is input according to the corresponding
 entry in the current environment file or the C locale, if
 applicable (see "setlocale" in topic 1.2.251).

AIX Operating System Technical Reference
NLtmtime

¦ Copyright IBM Corp. 1985, 1991
1.2.195 - 1

 y The year is input as a number between 00 and 99.

 Y The year is input as a number between 0000 and 9999.

 D The date is input in the format specified by the corresponding
 entry in the current environment file or the C locale, if
 applicable (see "setlocale" in topic 1.2.251).

 lD The long date is input in the format specified by the
 corresponding entry in the current environment file or the C
 locale, if applicable (see "setlocale" in topic 1.2.251).

 sD The short date is input in the format specified by the
 corresponding entry in the current environment file or the C
 locale, if applicable (see "setlocale" in topic 1.2.251).

 H The hour of the day is input as a number between 00 and 23.

 sH The hour of the day is input as a number between 01 and 12.

 M The minute is input as a number between 00 and 59.

 S The second is input as a number between 00 and 59.

 p The AM or PM indicator is input as a string specified by
 corresponding entry in the current environment file or the C
 locale, if applicable (see "setlocale" in topic 1.2.251).

 z The (standard or daylight-saving) time zone name is input as a
 string from the corresponding entry in the current environment
 file or the C locale, if applicable (see "setlocale" in
 topic 1.2.251).

 r The time is input in the format specified by the corresponding
 entry in the current environment file or the C locale, if
 applicable (see "setlocale" in topic 1.2.251).

 T The time is input in the format specified by the corresponding
 entry in the current environment file or the C locale, if
 applicable (see "setlocale" in topic 1.2.251).

 sT The time is input in the format specified by the corresponding
 entry in the current environment file or the C locale, if
 applicable (see "setlocale" in topic 1.2.251).

 The field descriptors are the same as those used by NLstrtime except for
 those that do not specify information.

 Related Information
 In this book: "ctime, localtime, gmtime, asctime, tzset" in topic 1.2.54,
 "NLstrtime" in topic 1.2.194, "scanf, fscanf, sscanf, NLscanf, NLfscanf,
 NLsscanf, wsscanf" in topic 1.2.241, "setlocale" in topic 1.2.251, and
 "environment" in topic 2.4.6.

 The date command in AIX Operating System Commands Reference.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

AIX Operating System Technical Reference
NLtmtime

¦ Copyright IBM Corp. 1985, 1991
1.2.195 - 2

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
NLtmtime

¦ Copyright IBM Corp. 1985, 1991
1.2.195 - 3

 1.2.196 NLxin

 Purpose
 Performs EBCDIC-to-ASCII translation.

 Library
 Standard C Library (libc.a)

 Syntax

 int
 NLxin (s1, s2, n)
 char *s1, *s2;
 int n;

 Description

 The NLxin routine performs EBCDIC-to-ASCII translation based on the
 translation table named by the environment variable NLIN. If NLIN is not
 defined or is invalid, NLxin uses the default universal EBCDIC-to-ASCII
 translation table.

 s1 is a pointer to an output buffer used to store the translated ASCII
 data.

 s2 is a pointer to the null-terminated EBCDIC character data to be
 translated.

 n is the count of the number of bytes available in s1.

 NLxin uses the value of the environment variable NLIN as a path name to
 the EBCDIC-to-ASCII translation table. (The inspection of the environment
 variable NLIN is performed only at the first invocation of NLxin within a
 process. Subsequent invocations of NLxin from the same process will use
 the translation table obtained at the first invocation.)

 The byte values from the array s2 are used to index into the translation
 table to obtain the ASCII byte that is placed into the character array
 pointed to by s1. The translation proceeds on a byte-by-byte basis until
 a null-byte is encountered in the array pointed to by s2, or n bytes have
 been placed in the array pointed to by s1.

 Return Value
 NLxin returns the number of bytes placed in s1.

 Related Information
 The axeb, ebxa, and genxlt commands in AIX Operating System Commands
 Reference.

 The discussion on environment variables in AIX Operating System
 Programming Tools and Interfaces.

AIX Operating System Technical Reference
NLxin

¦ Copyright IBM Corp. 1985, 1991
1.2.196 - 1

 1.2.197 NLxout

 Purpose
 Performs ASCII-to-EBCDIC translation.

 Library
 Standard C Library (libc.a)

 Syntax

 int
 NLxout (s1, s2, n)
 char *s1, *s2;
 int n;

 Description

 The NLxout routine performs ASCII-to-EBCDIC translation based on the
 translation table named by the environment variable NLOUT. If NLOUT is
 not defined or is invalid, NLxout uses the default universal
 ASCII-to-EBCDIC translation table.

 s1 is a pointer to an output buffer used to store the translated EBCDIC
 data.

 s2 is a pointer to the null-terminated ASCII character data to be
 translated.

 n is the count of the number of bytes available in s1.

 NLxout uses the value of the environment variable NLOUT as a path name to
 the ASCII-to-EBCDIC translation table. (The inspection of the environment
 variable NLOUT is performed only at the first invocation of NLxout within
 a process. Subsequent invocations of NLxout from the same process will
 use the translation table obtained at the first invocation.)

 The byte values from the array s2 are used to index into the translation
 table to obtain the EBCDIC byte that is placed into the character array
 pointed to by s1. The translation proceeds on a byte-by-byte basis until
 a null-byte is encountered in the array pointed to by s2, or n bytes have
 been placed in the array pointed to by s1.

 Return Value
 NLxout returns the number of bytes placed in s1.

 Related Information
 The axeb, ebxa, and genxlt commands in AIX Operating System Commands
 Reference.

 The discussion on environment variables in AIX Operating System
 Programming Tools and Interfaces.

AIX Operating System Technical Reference
NLxout

¦ Copyright IBM Corp. 1985, 1991
1.2.197 - 1

 1.2.198 nl_langinfo

 Purpose
 Returns a pointer to a string containing language information.

 Syntax

 #include <langinfo.h>
 #include <locale.h>
 #include <stdio.h>

 char *nl_langinfo (var_id)
 int var_id;

 Description

 The nl_langinfo subroutine returns a pointer to a string containing
 information about the particular language or cultural area defined in the
 program's locale. The manifest constant names and values of items are
 defined in langinfo.h.

 The following items of cultural data are defined in this locale:

 +--+
 ¦ Item ¦ Category ¦ Setting ¦
 +----------+--------------+----------------------¦
 ¦ D_T_FMT ¦ LC_TIME ¦ "%a%b%d%H:%M:%S%Y" ¦
 +----------+--------------+----------------------¦
 ¦ D_FMT ¦ LC_TIME ¦ "%m/%d/%y" ¦
 +----------+--------------+----------------------¦
 ¦ T_FMT ¦ LC_TIME ¦ "%H:%M:%S" ¦
 +----------+--------------+----------------------¦
 ¦ AM_STR ¦ LC_TIME ¦ "AM" ¦
 +----------+--------------+----------------------¦
 ¦ PM_STR ¦ LC_TIME ¦ "PM" ¦
 +----------+--------------+----------------------¦
 ¦ DAY_1 ¦ LC_TIME ¦ "Sunday" ¦
 +----------+--------------+----------------------¦
 ¦ DAY_2 ¦ LC_TIME ¦ "Monday" ¦
 +----------+--------------+----------------------¦
 ¦ DAY_3 ¦ LC_TIME ¦ "Tuesday" ¦
 +----------+--------------+----------------------¦
 ¦ DAY_4 ¦ LC_TIME ¦ "Wednesday" ¦
 +----------+--------------+----------------------¦
 ¦ DAY_5 ¦ LC_TIME ¦ "Thursday" ¦
 +----------+--------------+----------------------¦
 ¦ DAY_6 ¦ LC_TIME ¦ "Friday" ¦
 +----------+--------------+----------------------¦
 ¦ DAY_7 ¦ LC_TIME ¦ "Saturday" ¦
 +----------+--------------+----------------------¦
 ¦ ABDAY_1 ¦ LC_TIME ¦ "Sun" ¦
 +----------+--------------+----------------------¦
 ¦ ABDAY_2 ¦ LC_TIME ¦ "Mon" ¦
 +----------+--------------+----------------------¦
 ¦ ABDAY_3 ¦ LC_TIME ¦ "Tue" ¦
 +----------+--------------+----------------------¦
 ¦ ABDAY_4 ¦ LC_TIME ¦ "Wed" ¦
 +----------+--------------+----------------------¦
 ¦ ABDAY_5 ¦ LC_TIME ¦ "Thu" ¦
 +----------+--------------+----------------------¦

AIX Operating System Technical Reference
nl_langinfo

¦ Copyright IBM Corp. 1985, 1991
1.2.198 - 1

 ¦ ABDAY_6 ¦ LC_TIME ¦ "Fri" ¦
 +----------+--------------+----------------------¦
 ¦ ABDAY_7 ¦ LC_TIME ¦ "Sat" ¦
 +----------+--------------+----------------------¦
 ¦ MON_1 ¦ LC_TIME ¦ "January" ¦
 +----------+--------------+----------------------¦
 ¦ MON_2 ¦ LC_TIME ¦ "February" ¦
 +----------+--------------+----------------------¦
 ¦ MON_3 ¦ LC_TIME ¦ "March" ¦
 +----------+--------------+----------------------¦
 ¦ MON_4 ¦ LC_TIME ¦ "April" ¦
 +----------+--------------+----------------------¦
 ¦ MON_5 ¦ LC_TIME ¦ "May" ¦
 +----------+--------------+----------------------¦
 ¦ MON_6 ¦ LC_TIME ¦ "June" ¦
 +----------+--------------+----------------------¦
 ¦ MON_7 ¦ LC_TIME ¦ "July" ¦
 +----------+--------------+----------------------¦
 ¦ MON_8 ¦ LC_TIME ¦ "August" ¦
 +----------+--------------+----------------------¦
 ¦ MON_9 ¦ LC_TIME ¦ "September" ¦
 +----------+--------------+----------------------¦
 ¦ MON_10 ¦ LC_TIME ¦ "October" ¦
 +----------+--------------+----------------------¦
 ¦ MON_11 ¦ LC_TIME ¦ "November" ¦
 +----------+--------------+----------------------¦
 ¦ MON_12 ¦ LC_TIME ¦ "December" ¦
 +----------+--------------+----------------------¦
 ¦ ABMON_1 ¦ LC_TIME ¦ "Jan" ¦
 +----------+--------------+----------------------¦
 ¦ ABMON_2 ¦ LC_TIME ¦ "Feb" ¦
 +----------+--------------+----------------------¦
 ¦ ABMON_3 ¦ LC_TIME ¦ "Mar" ¦
 +----------+--------------+----------------------¦
 ¦ ABMON_4 ¦ LC_TIME ¦ "Apr" ¦
 +----------+--------------+----------------------¦
 ¦ ABMON_5 ¦ LC_TIME ¦ "May" ¦
 +----------+--------------+----------------------¦
 ¦ ABMON_6 ¦ LC_TIME ¦ "Jun" ¦
 +----------+--------------+----------------------¦
 ¦ ABMON_7 ¦ LC_TIME ¦ "Jul" ¦
 +----------+--------------+----------------------¦
 ¦ ABMON_8 ¦ LC_TIME ¦ "Aug" ¦
 +----------+--------------+----------------------¦
 ¦ ABMON_9 ¦ LC_TIME ¦ "Sep" ¦
 +----------+--------------+----------------------¦
 ¦ ABMON_10 ¦ LC_TIME ¦ "Oct" ¦
 +----------+--------------+----------------------¦
 ¦ ABMON_11 ¦ LC_TIME ¦ "Nov" ¦
 +----------+--------------+----------------------¦
 ¦ ABMON_12 ¦ LC_TIME ¦ "Dec" ¦
 +----------+--------------+----------------------¦
 ¦ RADIXCHAR¦ LC_NUMERIC ¦ "." ¦
 +----------+--------------+----------------------¦
 ¦ THOUSEP ¦ LC_NUMERIC ¦ "" ¦
 +----------+--------------+----------------------¦
 ¦ YESSTR ¦ LC_ALL ¦ "yes" ¦
 +----------+--------------+----------------------¦
 ¦ NOSTR ¦ LC_ALL ¦ "no" ¦
 +----------+--------------+----------------------¦

AIX Operating System Technical Reference
nl_langinfo

¦ Copyright IBM Corp. 1985, 1991
1.2.198 - 2

 ¦ CRNCYSTR ¦ LC_MONETARY ¦ "" ¦
 +--+

 Return Value
 If the setlocale subroutine has not initialized the program's locale, the
 nl_langinfo subroutine returns a pointer to the corresponding string in
 the C locale. In all locales, the nl_langinfo subroutine returns a
 pointer to an empty string if an item contains an invalid setting.

 Related Information
 In this book: "setlocale" in topic 1.2.251, "langinfo.h" in topic 2.4.10,
 and "nl_types.h" in topic 2.4.19.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
nl_langinfo

¦ Copyright IBM Corp. 1985, 1991
1.2.198 - 3

 1.2.199 open, openx, creat

 Purpose
 Opens a file for reading or writing.

 Syntax

 #include <fcntl.h>

 int open (path, oflag, mode)int creat (path, mode)
 char *path; char *path;
 int oflag, mode; int mode;
 int openx (path, oflag, mode, ext)
 char *path;
 int oflag, mode, ext;

 Description
 The open and openx system calls open a file descriptor for the file named
 by the path parameter.

 The file status flags are set according to the value of the oflag
 parameter. The oflag parameter values are constructed by logically ORing
 flags from the following list:

 Note: Do not use O_RDONLY, O_WRONLY, or O_RDWR together.

 O_RDONLY Open for reading only.

 O_WRONLY Open for writing only.

 O_RDWR Open for reading and writing.

 O_DEFERC Open with defer commit update semantics. This is used with
 other modes indicating the file is open for modification.
 With this mode, changes to the file are not made permanent
 until either an fcommit, fsync, close, or exit are done (or
 the program aborts). Changes made since the last commit can
 be undone using fabort. These semantics may not apply if
 the file is open for modification multiple times and all
 opens are not with the O_DEFERC flag set. See also "fsync,
 fcommit" in topic 1.2.87, "fabort" in topic 1.2.75, and
 "close, closex" in topic 1.2.48.

 O_NDELAY Open with no delay. This flag may affect subsequent reads
 and writes.

 When a FIFO is opened with O_RDONLY or O_WRONLY set, the
 following facts apply:

 � If O_NDELAY is set, an open for reading-only returns
 without delay. An open for writing-only returns an
 error if no process currently has the file open for
 reading.

 � If O_NDELAY is clear, an open for reading-only blocks
 until a process opens the file for writing. An open for
 writing-only blocks until a process opens the file for
 reading.

AIX Operating System Technical Reference
open, openx, creat

¦ Copyright IBM Corp. 1985, 1991
1.2.199 - 1

 When opening a file associated with a communication line:

 � If O_NDELAY is set, the open returns without waiting for
 carrier.

 � If O_NDELAY is clear, the open blocks until carrier is
 present.

 When opening a regular file that supports enforced record
 locks:

 � If O_NDELAY is set, then reads and writes to portions of
 the file that are locked by other processes return an
 error.

 � If O_NDELAY is clear, then reads and writes to portions
 of the file that are locked by other processes blocks
 until the locks are released.

 O_NONBLOCK Open with no delay. This flag is identical in function to
 O_NDELAY when opening a file. However, subsequent reads and
 writes return different values based on whether the file is
 opened with O_NDELAY or O_NONBLOCK. See "read, readv,
 readx" in topic 1.2.224 and "write, writex" in
 topic 1.2.330.

 O_APPEND If set, the file pointer is set to the end of the file prior
 to each write.

 O_CREAT If the file exists, this flag has no effect. If the file
 does not exist, the file is created. The file's owner ID is
 set to the process's effective user ID. If the S_ISGID mode
 bit is set in the parent directory, the file's group ID is
 set to the group ID of the parent directory. Otherwise, the
 file's group ID is set to the process's effective group ID.
 The low-order 12 bits of the file mode are set to the value
 of the mode parameter modified as follows:

 � All bits set in the process's file mode creation mask
 are cleared. (For information about the creation mask,
 see "umask" in topic 1.2.314.)

 � The S_ISVTX bit of the mode, which saves the text image
 after execution, is cleared.

 For information about file modes and a list of the mode
 values, see "chmod, fchmod" in topic 1.2.44 and "stat.h" in
 topic 2.4.22.

 O_TRUNC If the file exists, then its length is truncated to 0, and
 the mode and owner are unchanged. This requires write
 permission on the file. If the file has any outstanding
 record locks, then open fails and the file remains
 unchanged. The S_ISGID and S_ISUID mode bits are cleared.

 O_EXCL If O_EXCL and O_CREAT are set, open fails if the file
 exists.

AIX Operating System Technical Reference
open, openx, creat

¦ Copyright IBM Corp. 1985, 1991
1.2.199 - 2

 O_SYNC Open with immediate commit update semantics. This is used
 with other modes indicating the file is open for
 modification. With this mode, changes to the file are
 guaranteed to be made permanent (with an implicit fsync)
 before the write system call to be considered atomic,
 performing both write and commit functions before returning.
 This flag is only effective with regular and block special
 files.

 O_REPLSYNC Open with immediate replicated commit update semantics.
 This is only meaningful when used with the O_SYNC flag and
 if you have the TCF (Transparent Computing Facility)
 installed. In the case where a file is replicated on more
 than one site, this flag guarantees that the modified file
 will be sorted on at least two file systems before the write
 system call completes. These two file systems necessarily
 will be the primary and either a backbone or secondary
 sites.

 This flag will be ignored when either the O_SYNC bit is not
 set, the file is not replicated, or no backbone site is
 available in the cluster to replicate the file. When
 writing data to this file with the write system call, errors
 reported through the return code reflect only the success or
 failure of the primary copy of the file.

 Propagation errors which include not having a backbone site
 for the file in the current cluster or having a backbone
 file system run out of free space are noted in the system
 log (see syslog in the AIX Operating Systems Commands
 Reference). Thus, no change in write return status is
 noted; the system log must be queried to ascertain possible
 errors. Finally, this flag is only effective with regular
 files.

 The file pointer used to mark the current position within the file is set
 to the beginning of the file. The mode parameter is used only if open or
 openx creates the file named path (as requested by O_CREAT, described
 above). The ext parameter provides communication with character device
 drivers that require additional information or provide additional status.
 Each driver interprets the ext in a device-dependent way, either as a
 value or as a pointer to a communication area. Drivers must apply
 reasonable defaults when the ext parameter is 0.

 The new file descriptor is set to remain open across exec system calls
 (see "fcntl, flock, lockf" in topic 1.2.78).

 No process can have more than 200 file descriptors open simultaneously.

 If the named file is a hidden directory, (see "chhidden" in topic 1.2.42)
 open or openx selects one of the existing components inside the hidden
 directory according to the process's xvers string (see "getxvers,
 setxvers" in topic 1.2.129) and site path list (see "getspath, setspath"
 in topic 1.2.122). A component within the hidden directory is created by
 open only if O_CREAT (see "Hidden Directories" in topic 1.1.5.1.5) is
 specified and the component is named explicitly, using the @ syntax.

 If the Transparent Computing Facility is installed, the following
 information applies to replicated files and special files.

AIX Operating System Technical Reference
open, openx, creat

¦ Copyright IBM Corp. 1985, 1991
1.2.199 - 3

 When creating a file in a replicated file system, or opening an existing
 file in that file system with O_WRONLY or O_RDWR, the primary copy is used
 as the storage site; the site which provides the data for reading and
 writing. This is because the primary copy of the file system is the only
 one on which change can be made. The other copies of the file system are
 brought up-to-date when changes to the file are committed. While a file
 is open for O_WRONLY or W_RDWR, all read and writes on the file by any
 process will be using the same copy of the file.

 When all processes which have a replicated file open have it open for
 O_RDONLY, the system may provide data to each process from any up-to-date
 copy of the file, (that is, several different copies/sites can provide
 data when only read access is being used by all processes using the files)
 often a non-primary copy stored on the site where the process is running.
 If this storage site goes down, files open with O_RDONLY will continue to
 read uninterrupted if another storage site for the file can be found.

 If the named file is in a replicated file system, the site that stores the
 primary copy of the file system must be up. If the file does not
 previously exist, upon creation it is replicated on only the primary and
 backbone copies of the file system. Once created, the chfstore system
 call can be used to increase the number of sites on which the file is
 stored.

 TTY devices and block devices can be opened from any site within the TCF
 cluster. To be able to open a remote TTY device, that device must already
 be held open by at least one process in the cluster; that is, the first
 open of a TTY device must be local. The site to which the physical device
 is attached is identified by the device site specified in mknod or mknodx
 when the device special file was created.

 Character devices other than TTY devices and null can only be opened at
 the site which has the device.

 Note that the following two system calls are equivalent:

 creat (path, mode)

 open (path, O_WRONLY | O_CREAT | O_TRUNC, mode)

 Upon successful completion, the file descriptor, a nonnegative integer, is
 returned. If open fails, a value of -1 is returned, and errno is set to
 indicate the error.

 Error Conditions
 The open system call fails, and the named file is not opened if one or
 more of the following are true:

 ENOTDIR A component of the path prefix is not a directory.

 ENOENT O_CREAT is not set and the named file does not exist.

 EACCES A component of the path prefix denies search permission.

 EACCES The type of access specified by the oflag parameter is denied
 for the named file.

 EISDIR The named file is a directory and the oflag parameter is write
 or read/write.

AIX Operating System Technical Reference
open, openx, creat

¦ Copyright IBM Corp. 1985, 1991
1.2.199 - 4

 EROFS The named file resides on a read-only file system and the oflag
 parameter is write or read/write.

 EMFILE Two hundred (200) file descriptors are currently open.

 ENXIO The named file is a character special or block special file, and
 the device associated with this special file does not exist.

 ENXIO The named file is a multiplexed special file and either the
 channel number is outside of the valid range, or no more
 channels are available.

 ETXTBSY The file is a pure procedure (shared text) file that is being
 executed and the oflag parameter is write or read/write.

 EFAULT The path parameter points to a location outside of the process's
 allocated address space.

 EEXIST O_CREAT and O_EXCL are set, and the named file exists.

 ENXIO O_NDELAY is set, the named file is a FIFO, O_WRONLY is set, and
 no process has the file open for reading.

 EAGAIN O_TRUNC is set, and the named file contains a record lock owned
 by another process. See "fcntl, flock, lockf" in topic 1.2.78
 for information about record locks.

 EINTR A signal was caught during the open system call.

 ENFILE The system file table or inode table is full.

 ENOSPC The directory that would contain the new file cannot be
 extended.

 ESTALE The process's root or current directory is located in a virtual
 file system that has been unmounted.

 ENAMETOOLONG
 A component of the path parameter exceeded NAME_MAX characters
 or the entire path parameter exceeded PATH_MAX characters.

 EIO An I/O error occurred during the operation.

 ENOENT O_CREAT is set but a directory in the path prefix does not
 exist.

 A hidden directory was named, but no component inside it matched
 the process's current site path list.

 ENOENT A symbolic link was named, but the file to which it refers does
 not exist.

 ELOOP A loop of symbolic links was detected.

 ENOSPC The file system is out of inodes.

 EDQUOT The directory in which the entry for the new link is being
 placed cannot be extended because the user's quota of disk
 blocks or inodes on the file system containing the directory has
 been exhausted.

AIX Operating System Technical Reference
open, openx, creat

¦ Copyright IBM Corp. 1985, 1991
1.2.199 - 5

 EINVAL An invalid combination of open modes (O_RDONLY, O_WRONLY and
 O_RDWR) is specified, or the named file is a FIFO and O_RDWR is
 set.

 ELOCK A named pipe already open for read is opened again for read, or
 already open for write and is opened again for write.

 EOPNOTSUPP
 A socket was named, and opens on sockets are not permitted.

 If the Transparent Computing Facility is installed on your system, open
 can also fail if one or more of the following are true:

 ESITEDN1 path cannot be accessed because a site went down.

 ESITEDN2 The operation was terminated because a site failed.

 ENOSTORE path is a name relative to the working directory, but no site
 which stores this directory is currently up.

 ENOSTORE A component of path is replicated but not stored on any site
 which is currently up.

 EROFS Write access is requested for a file on a replicated file system
 in which the primary copy is unavailable.

 ENLDEV The named file is a non-tty character special file which
 corresponds to a device physically attached to another site in
 the cluster.

 EINTR A signal was caught during the system call.

 Related Information
 In this book: "chmod, fchmod" in topic 1.2.44, "close, closex" in
 topic 1.2.48, "dup" in topic 1.2.64, "fabort" in topic 1.2.75, "fcntl,
 flock, lockf" in topic 1.2.78, "fsync, fcommit" in topic 1.2.87, "lseek"
 in topic 1.2.161, "mknod, mknodx, mkfifo" in topic 1.2.169, "open, openx,
 creat," "read, readv, readx" in topic 1.2.224, "umask" in topic 1.2.314,
 "write, writex" in topic 1.2.330, and "stat.h" in topic 2.4.22.

AIX Operating System Technical Reference
open, openx, creat

¦ Copyright IBM Corp. 1985, 1991
1.2.199 - 6

 1.2.200 pad: sflip, sflipa, lflip, lflipa, get_howflip, PAD, PADOPEN, PADCLOSE

 Purpose
 Facilitate the exchange of binary data between processes in a
 heterogeneous network.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sys/types.h>
 #include <sys/param.h>

 short sflip(s, howflip);
 short s;
 int howflip;

 void sflipa(as, howflip, numshort);
 short as[];
 int howflip;
 int numshort;

 long lflip(l, howflip);
 long l;
 int howflip;

 void lflipa(al, howflip, numlong);
 long al[]
 int howflip;
 int numlong;

 int get_howflip(CPU_code);
 short CPU_code;

 (The following padding routines are macros, NOT functions.)

 PAD(decl, uname)

 PADOPEN(stag)
 PADCLOSE(stag, sname, uname)

 Description
 These macros and procedures facilitate the exchange of binary data between
 processes in a heterogeneous network. They provide a framework which
 application programs may use to allow non-ASCII data written by one
 process to be read by another process, even if the two processes are not
 executing on the same type of machine.

 The need for this mechanism is several-fold. First, different C compilers
 may have different alignment constraints for fields within a structure.
 For instance, a C compiler for one CPU type may require that 32-bit fields
 begin on a 32-bit boundary, while a C compiler for another type of CPU
 might allow a 32-bit field to begin on an 8-bit boundary. Such a
 difference could lead to different structure sizes and field offsets for
 the same structure definition. Programs can avoid these differences by
 defining the format of their data structures more explicitly. One way is
 to define their structures using the padding macros defined below. These
 macros will add padding characters between fields where necessary so that

AIX Operating System Technical Reference
pad: sflip, sflipa, lflip, lflipa, get_howflip, PAD, PADOPEN, PADCLOSE

¦ Copyright IBM Corp. 1985, 1991
1.2.200 - 1

 the alignment constraint of all C compilers is satisfied.

 Second, different types of CPUs may have different byte orderings. That
 is, the order in which 8-bit bytes are layed out inside 16- and 32-bit
 words varies according to each machine's architecture. Processes which
 read binary data may use the byte flipping routines declared above to
 reorder the bytes in 16- and 32-bit values to agree with the byte ordering
 of its own CPU.

 Third, in addition to the unpadded structures described above, certain
 data types may refer to different size objects when the same definitions
 are compiled for different machines. This list includes 'int's', pointer
 types and procedures. Therefore, a structure that includes any of these
 data types is not portable and should not be used when writing data which
 is to be read by a process on a different type of CPU.

 Finally, floating point values do not have the same representation on all
 types of CPUs. While it may be possible to write routines to convert
 between these different formats, no such library routines are provided at
 this time.

 Subtopics
 1.2.200.1 PADDING MACROS
 1.2.200.2 BYTE FLIPPING ROUTINES

AIX Operating System Technical Reference
pad: sflip, sflipa, lflip, lflipa, get_howflip, PAD, PADOPEN, PADCLOSE

¦ Copyright IBM Corp. 1985, 1991
1.2.200 - 2

 1.2.200.1 PADDING MACROS
 The following padding macros should be used inside all structure
 definitions which define the format of non-character data written by one
 process which is to be read by another process. If all of data being
 written is character data (including 8-bit numeric data), no padding is
 necessary. If some of the data is 16-bit or 32-bit data, all 8-bit and
 16-bit data should be padded, and it is recommended that 32-bit data also
 be padded.

 There are two ways to pad fields within a structure. The first uses the
 PADOPEN and PADCLOSE macros to surround a collection of like-size fields
 (each 8, 16, or 32 bits). The second uses the PAD macro to pad a single
 field.

 The PADOPEN/PADCLOSE method has the advantage of providing a name for the
 collection of like size fields (for use by the byte flipping routines)
 and, therefore, it is easy to add a new field at a later time without
 modification of those byte flipping routines.

 The PAD macro has the advantage that the size of an object may easily be
 changed (from 8 bits to 16 bits, for example) since there is no
 requirement that like size fields appear together.

 For example, if you wanted to write the following structure:

 struct abc {
 long along;
 long blong;
 short ashort;
 short bshort[5];
 short cshort;
 char achar;
 char bchar[6];
 };

 You could instead use the PADOPEN/PADCLOSE macros as follows to generate
 an equivalent structure with the same field names. Note that the PADOPEN
 and PADCLOSE are not followed by semicolons. Also, NUM_LABC, NUM_SABC and
 NUM_CABC compute the number of long, shorts and chars, respectively.
 These values will be used by the flipping routines.

 struct abc {
 PADOPEN(Labc)
 long _along;
 long _blong;
 PADCLOSE(Labc, L1abc, L2abc)
 #define along L2abc.L1abc._along
 #define blong L2abc.L1abc._blong
 #define NUM_LABC (sizeof (struct Labc) / sizeof (long))

 PADOPEN(Sabc)
 short _ashort;
 short _bshort[5];
 short _cshort;
 PADCLOSE(Sabc, S1abc, S2abc)
 #define ashort S2abc.S1abc._ashort
 #define bshort S2abc.S1abc._bshort
 #define cshort S2abc.S1abc._cshort
 #define NUM_SABC (sizeof (struct Sabc) / sizeof (short))

AIX Operating System Technical Reference
PADDING MACROS

¦ Copyright IBM Corp. 1985, 1991
1.2.200.1 - 1

 PADOPEN(Cabc)
 char _achar;
 char _bchar[6];
 PADCLOSE(Cabc, C1abc, C2abc)
 #define achar C2abc.C1abc._achar
 #define bchar C2abc.C1abc._bchar
 #define NUM_CABC (sizeof (struct Cabc) / sizeof (char))
 };

 Alternatively, if you had a simpler structure where each field was no
 bigger than 32 bits:

 struct xyz {
 short ashort;
 char achar;
 long along;
 };

 You could use the PAD macro and instead write the following. Again, note
 that the PAD macro is not followed by a semicolon.

 struct xyz {
 PAD(short _ashort, xyz1)
 PAD(char _achar, xyz2)
 PAD(long _along, xyz3)
 };
 #define ashort xyz1._ashort
 #define achar xyz2._achar
 #define along xyz3._along

 Below are the actual declarations for the padding arrays.

 #define ALIGN_SZ (sizeof(align_t))
 #define ALIGN_ROUND (ALIGN_SZ - 1)

 /* PADOPEN -- begin a padded range of structure fields using tag
 * 'stag'. */

 #define PADOPEN(stag) \\
 union { struct stag {

 /* PADCLOSE -- end a padded range of structure fields.
 * 'stag' should be the same tag used in the preceding PADOPEN.
 * 'sname' and 'uname' should be unique names.
 */

 #define PADCLOSE(stag, sname, uname) \\
 } sname; \\
 PADARRAY((struct stag), PADNAME) } uname;

 /* PADARRAY -- generate an array declaration of a size such that
 * the union of 'padobj' and this array will meet the heterogeneous
 * structure size criterion.
 */

AIX Operating System Technical Reference
PADDING MACROS

¦ Copyright IBM Corp. 1985, 1991
1.2.200.1 - 2

 #define PADARRAY(padobj, arrayname) \\
 align_t arrayname[(sizeof padobj + ALIGN_ROUND) / ALIGN_SZ];

 /* PAD -- Surround declaration 'decl' with a union that also includes
 * an align_t for padding.
 */

 #define PAD(decl, uname) \\
 union { decl; align_t PADNAME; } uname;

AIX Operating System Technical Reference
PADDING MACROS

¦ Copyright IBM Corp. 1985, 1991
1.2.200.1 - 3

 1.2.200.2 BYTE FLIPPING ROUTINES
 The byte flipping routines should be used by a process that is reading
 binary data, if that binary data may have been written by a process
 running on a different type of CPU.

 Character data (including 8-bit numeric data) need not be byte flipped.
 Only 16-bit (short) and 32-bit (long) values need to be flipped to convert
 from the byte ordering of the writing site to the byte ordering of the
 reading site.

 There are four flipping routines provided:

 lflip Flips a long value, returning the result after flipping its
 argument.

 sflip Flips a short value, returning the result after flipping its
 argument.

 lflipa Flips in place an array of longs (or a structure, all of whose
 elements are longs).

 sflipa Flips in place an array of shorts (or a structure, all of whose
 elements are shorts).

 Each of these flipping routines takes a parameter howflip which indicates
 how the bytes are to be reordered. This value may be obtained from the
 routine get_howflip, to which the reading process must provide the CPU
 type code of the site from which the data was written.

 Note: It is assumed in the following that the reader is able to determine
 the CPU type code for the CPU from which the data was written.
 This information is needed so that the flipping routines know the
 byte ordering of the writing site, and therefore how the bytes must
 be reordered to conform to the byte ordering of the local site.
 Possible ways that the CPU type code may be determined include:

 � Explicitly recording this in the text of the application
 program.

 � Deriving it from a site number or site name using one of the
 routines described in sf. The site number or site name might,
 in turn, be determined from the path name used to open the file
 or from the site on which the file is stored.

 Using the same examples as above, consider a process reading files
 whose formats are described by the structures abc and xyz. The
 structure abc was declared using the PADOPEN and PADCLOSE macros,
 while the structure xyz was declared using the PAD macro. The
 reading process could look like this:

 struct abc abcbuf;
 struct xyz xyzbuf;

 read(fildes1, &abcbuf, sizeof abcbuf);
 flipabc(&abcbuf);

 read(fildes2, &xyzbuf, sizeof xyzbuf);
 flipxyz(&xyzbuf);

AIX Operating System Technical Reference
BYTE FLIPPING ROUTINES

¦ Copyright IBM Corp. 1985, 1991
1.2.200.2 - 1

 Where the byte flipping routines flipabc and flipxyz might then be
 defined:

 flipabc(buf, writer)
 struct abc *buf;
 siteno_t writer;
 {
 short xcode = sfnum(writer)->sf_xcode;
 int howflip = get_howflip(xcode);

 lflipa((long *) &(buf->L2abc), howflip, NUM_LABC);
 sflipa((short *) &(buf->S2abc), howflip, NUM_SABC);
 }

 flipxyz(buf)
 struct xyz *buf;
 short xcode;
 {
 int howflip = get_howflip(xcode);

 buf->ashort = sflip(buf->ashort, howflip);
 buf->along = lflip(buf->along, howflip);
 }

 Related Information
 In this book: "getut: getutent, getutid, getutline, pututline, setutent,
 endutent, utmpname" in topic 1.2.126.

AIX Operating System Technical Reference
BYTE FLIPPING ROUTINES

¦ Copyright IBM Corp. 1985, 1991
1.2.200.2 - 2

 1.2.201 pathconf, fpathconf

 Purpose
 Retrieves file implementation characteristics.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <unistd.h>

 long pathconf (path, name) long fpathconf (fildes, name)
 char *path; int fildes;
 int name; int name;

 Description
 The pathconf system call allows an application to determine the
 characteristics of operations supported by the file system underlying the
 file named by path. Read, write, or execute permission of the named file
 is not required, but all directories in the path leading to the file must
 be searchable.

 The fpathconf system call allows an application to retrieve the same
 information for an open file. In this case, fildes is a file descriptor
 returned by a successful openx, fcntl, or pipe system call.

 The name parameter specifies the configuration attribute to be queried.
 If this attribute is not applicable to the file specified by path or
 fildes, pathconf returns an error. Symbolic values for the name parameter
 are defined in unistd.h:

 Attribute Meaning

 _PC_LINK_MAX The maximum number of links to the file; this is usually
 either 1 or 65,535.

 _PC_MAX_CANON The maximum number of bytes in a canonical input line.
 This is applicable only to terminal devices.

 _PC_MAX_INPUT The number of types allowed in an input queue. This is
 applicable only to terminal devices.

 _PC_NAME_MAX Maximum number of bytes in a file name (not including a
 terminating NULL); this may be as small as 14, but is
 never larger than 255. This is applicable only to a
 directory file.

 _PC_PATH_MAX Maximum number of bytes in a path name (not including a
 terminating NULL); this is never larger than 65,535.

 _PC_PIPE_BUF Maximum number of bytes guaranteed to be written
 atomically. This is applicable only to a FIFO.

 _PC_CHOWN_RESTRICTED
 Returns 1 indicating that the chown function is
 restricted to use by the superuser.

 _PC_NO_TRUNC Returns 1 if supplying a component name longer than

AIX Operating System Technical Reference
pathconf, fpathconf

¦ Copyright IBM Corp. 1985, 1991
1.2.201 - 1

 allowed by _PC_PATH_MAX causes an error. Returns 0 if
 long component names are truncated. This is applicable
 only to a directory file.

 _PC_VDISABLE This is always 0; no disabling character is defined.
 This is applicable only to a terminal device.

 Return Value
 If the pathconf or fpathconf system call is successful, the specified
 parameter is returned. If the pathconf or fpathconf system call fails, a
 value of -1 is returned and errno is set to indicate the error. If the
 value corresponding to name has no limit for the path or file descriptor,
 the pathconf and fpathconf system calls return -1 without changing errno.

 Error Conditions
 The pathconf system call fails if one or more of the following are true.
 (These errors are applicable only to the pathconf system call and any
 service which requires path name resolution.)

 ENOTDIR A component of the path prefix is not a directory.

 ENOENT A component of the path prefix does not exist, or the process
 has the disallow truncation attribute.

 EACCES Search permission is denied on a component of the path prefix.

 ENOENT The path name is null.

 ESTALE The process's root or current directory is located in an NFS
 virtual file system that has been unmounted.

 EFAULT The path parameter points to a location outside of the
 process's allocated address space.

 ELOOP Too many symbolic links were encountered in translating the
 path name.

 ENAMETOOLONG
 A component of a path name exceeded 255 characters, or an
 entire path name exceeded 1023 characters.

 EIO An I/O error occurred during the operation.

 EINTR A signal was caught during the system call.

 The fpathconf system call fails if the following is true:

 EBADF The fildes parameter does not refer to an open file.

 The pathconf and the fpathconf system calls fail if the following is true:

 EINVAL The name parameter specifies an unknown or inapplicable
 characteristic.

 Related Information
 In this book: "sysconf" in topic 1.2.296.

AIX Operating System Technical Reference
pathconf, fpathconf

¦ Copyright IBM Corp. 1985, 1991
1.2.201 - 2

 1.2.202 pause

 Purpose
 Suspends a process until a signal is received.

 Syntax

 int pause ()

 Description
 The pause system call suspends the calling process until it receives a
 signal. The signal must not be one that is ignored by the calling
 process. pause does not affect the action taken upon the receipt of a
 signal.

 If the signal received causes the calling process to terminate, then the
 pause system call does not return.

 If the signal is caught by the calling process and control is returned
 from the signal-catching function, then the calling process resumes
 execution from the point of suspension; the pause system call returns a
 value of -1 and sets errno to EINTR. (For information about
 signal-catching functions, see "sigaction, sigvec, signal" in
 topic 1.2.263.)

 Related Information
 In this book: "alarm" in topic 1.2.14, "kill, kill3, killpg" in
 topic 1.2.138, "sigaction, sigvec, signal" in topic 1.2.263, and "wait,
 waitpid" in topic 1.2.325.

AIX Operating System Technical Reference
pause

¦ Copyright IBM Corp. 1985, 1991
1.2.202 - 1

 1.2.203 perror

 Purpose
 Writes a message explaining a system call error.

 Library
 Standard C Library (libc.a)

 Syntax

 void perror (s) extern int errno;
 char *s; extern char *sys_errlist [];
 extern int sys_nerr;

 Description
 The perror subroutine writes a message on the standard error output that
 describes the last error encountered by a system call or library
 subroutine. The error message includes the parameter string s followed by
 a : (colon), a blank, the message, and a new-line character. To be of the
 most use, the parameter string s should include the name of the program
 that caused the error. The error number is taken from the external
 variable errno, which is set when an error occurs, but is not cleared when
 a successful call is made. See Appendix A, "Error Codes" in topic A.0 for
 a discussion of errno values and their meanings.

 To simplify various message formats, the array of message strings
 sys_errlist is provided. Use errno as an index into this table to get the
 message string without the new-line character. The largest message number
 provided in the table is sys_nerr. Be sure to check sys_nerr because new
 error codes may be added to the system before they are added to the table.

 Related Information
 In this book: "printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf,
 wsprintf" in topic 1.2.208.

AIX Operating System Technical Reference
perror

¦ Copyright IBM Corp. 1985, 1991
1.2.203 - 1

 1.2.204 pipe

 Purpose
 Creates an interprocess channel.

 Syntax

 int pipe (fildes)
 int fildes[2];

 Description
 The pipe system call creates an interprocess channel called a pipe and
 returns two file descriptors, fildes[0] and fildes[1]. The fildes[0] file
 descriptor is opened for reading and fildes[1] is opened for writing.

 A read on file descriptor fildes [0] accesses the data written to
 fildes[1] on a first-in, first-out basis.

 When writing, at least 40,960 bytes of data are buffered by the pipe
 before the writing process is blocked.

 Warning: The actions of the pipe system call are undefined if the fildes
 parameter points to a location outside of the process's allocated address
 space.

 A pipe can be inherited through the fork, rfork and run system calls and
 held open as a process moves to a different site using the rexec or
 migrate system calls. Through combinations of these operations, it is
 possible to set up one or more processes reading data from the read end of
 the pipe, and one or more processes writing data to the write end of a
 pipe. These processes may be on one site, on different sites but of the
 same CPU type, or on sites with differing CPU types. If the reader and
 writer are on different sites, slightly better performance results if the
 pipe call is issued at the site of the writer. In any case, correct
 operation should be independent of the relationships between the sites of
 the reader, writer, and issuance of the pipe system call.

 Return Value
 Upon successful completion, a value of 0 is returned. If pipe fails, a
 value of -1 is returned and errno is set to indicate the error.

 Error Conditions
 The pipe system call fails if one or more the following are true:

 EFAULT The fildes parameter points to a location outside of the
 process's allocated address space.

 EMFILE 199 or more file descriptors are already open.

 ENFILE The system file table or inode table is full.

 ENOSPC There is no space to create a new pipe in the pipe file system
 (there are no more inodes available).

 Related Information
 In this book: "read, readv, readx" in topic 1.2.224, "select" in
 topic 1.2.242, and "write, writex" in topic 1.2.330.

 The sh command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
pipe

¦ Copyright IBM Corp. 1985, 1991
1.2.204 - 1

 1.2.205 plock

 Purpose
 Locks the process, text, or data in memory.

 Syntax

 #include <sys/lock.h>

 int plock (op)
 int op;

 Description
 The plock system call allows the calling process to lock or unlock its
 text segment (text lock), its data segment (data lock), or both its text
 and data segments (process lock) into memory. Locked segments are pinned
 in memory and are immune to all routine paging. The effective user ID of
 the calling process must be superuser to use this call.

 The op parameter specifies one of the following operations:

 PROCLOCK Locks text and data segments into memory (process lock).
 TXTLOCK Locks text segment into memory (text lock).
 DATLOCK Locks data segment into memory (data lock).
 UNLOCK Removes locks.

 Return Value
 Upon successful completion, a value of 0 is returned to the calling
 process. If plock fails, a value of -1 is returned and errno is set to
 indicate the error.

 Error Conditions
 The plock system call fails if one or more of the following are true:

 EPERM The effective user ID of the calling process is not superuser.

 EINVAL The op parameter has a value other than PROCLOCK, TXTLOCK,
 DATLOCK, or UNLOCK.

 EINVAL op is equal to PROCLOCK and a process lock, a text lock, or a data
 lock already exists on the calling process.

 EINVAL op is equal to TXTLOCK and a text lock, or a process lock already
 exists on the calling process.

 EINVAL op is equal to DATLOCK and a data lock, or a process lock already
 exists on the calling process.

 EINVAL op is equal to UNLOCK and no type of lock exists on the calling
 process.

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, "exit, _exit" in topic 1.2.73, and " fork, vfork" in
 topic 1.2.83.

AIX Operating System Technical Reference
plock

¦ Copyright IBM Corp. 1985, 1991
1.2.205 - 1

 1.2.206 plot

 Purpose
 Performs graphic output.

 Library
 Graphics Libraries (libplot.a, libprint.a, lib300.a, and others)

 Syntax

 void openpl () void move (x, y)
 int x, y;
 void erase ()
 void cont (x, y)
 void label (s) int x, y;
 char *s;
 void point (x, y)
 void line (x1, y1, x2, y2) int x, y;
 int x1, y1, x2, y2;
 void linemod (s)
 void circle (x, y, r) char *s;
 int x, y, r;
 void space (x0, y0, x1, y1)
 void arc (x, y, x0, y0, x1, int x0, y0, x1, y1;
 int x, y, x0, y0, x1, y1;
 void closepl ()

 Description
 The plot subroutine family generates graphic output in a relatively
 device-independent manner. The space subroutine must be used before any
 of these functions to declare the amount of space necessary. The openpl
 subroutine must be used before any of the others to open the device for
 writing. The closepl subroutine flushes the output.

 The circle subroutine draws a circle of radius r with center at the point
 (x, y). The arc subroutine draws an arc of a circle with center at the
 point (x, y) between the points (x0, y0) and (x1, y1). String parameters
 to the label and linemod subroutines are terminated by null characters and
 must not contain new-line characters. See "plot" in topic 2.3.45 for a
 description of the effect of the remaining functions.

 These routines appear in several separate libraries. The routines in the
 libplot.a library generate device-independent output. The tplot command
 interprets this output for a specific device.

 The other versions of these routines each generate output for a specific
 device. You should normally redirect the output of libprint.a to the
 printer. You can save the output of libprint.a in a regular file and
 print it later. See the tplot command in AIX Operating System Commands
 Reference for a description of how to do this.

 On an IBM Graphics Printer, the horizontal distance between points is not
 the same as the vertical distance between points. This means that arcs
 and circles are drawn as ellipses. Similarly, drawing a square (with four
 calls to the line subroutine) produces a rectangle. To adjust for this,
 call the space subroutine with appropriate scaling factors.

 Files

 /usr/lib/libplot.a For tplot filters

AIX Operating System Technical Reference
plot

¦ Copyright IBM Corp. 1985, 1991
1.2.206 - 1

 /usr/lib/libprint.a For an IBM PC Graphics Printer
 /usr/lib/lib300.a For DASI 300
 /usr/lib/lib300s.a For DASI 300s
 /usr/lib/lib450.a For DASI 450
 /usr/lib/lib4014.a For Tektronix 4014
 /usr/lib/librt0.a For a vt100 terminal.
 /usr/lib/libdumb.a For a generic printer.

 Related Information
 In this book: "plot" in topic 2.3.45.

 The graph and tplot commands in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
plot

¦ Copyright IBM Corp. 1985, 1991
1.2.206 - 2

 1.2.207 popen, pclose, rpopen

 Purpose
 Initiates a pipe to or from a process.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <stdio.h> #include <stdio.h>
 #include sys </types.h>

 FILE *popen (command, type) FILE *rpopen (command, type, site)
 char *command, *type; char *command, *type;
 siteno_t site;
 int pclose (stream)
 FILE *stream;

 Description
 The popen subroutine creates a pipe between the calling program and a
 shell command to be executed.

 The command parameter points to a null-terminated string containing a
 shell command line. The type parameter pointers to a null-terminated
 string containing an I/O mode, either r for reading or w for writing.

 The popen subroutine returns a pointer to a FILE structure for the stream.
 If the type parameter is r, you can read from the standard output of the
 command by reading from the file stream. If the type parameter is w, you
 can write to the standard input of the command by writing to the file
 stream.

 If the Transparent Computing Facility is installed, the rpopen subroutine
 is available. The rpopen subroutine is similar to popen, but takes an
 additional parameter to specify the cluster site on which to run the shell
 command. If site is 0, the current site is used (which is identical to
 popen).

 Use the pclose subroutine to close any stream you have opened with the
 popen or rpopen subroutine. The pclose subroutine waits for the
 associated process to terminate and then returns the exit status of the
 command.

 Because open files are shared, a type r command can be used as an input
 filter and a type w as an output filter.

 Warning: If the original processes and the process started with popen
 concurrently read or write a common file, neither should use buffered I/O.
 If they do, the results are unpredictable.

 Some problems with an output filter can be prevented by taking care to
 flush the buffer with the fflush subroutine (see "fclose, fflush" in
 topic 1.2.77).

 The popen and rpopen subroutines return a NULL pointer if files or
 processes cannot be created, or if the shell cannot be accessed.

AIX Operating System Technical Reference
popen, pclose, rpopen

¦ Copyright IBM Corp. 1985, 1991
1.2.207 - 1

 The pclose subroutine returns -1 if stream is not associated with a popen
 command.

 Error Conditions
 The pclose subroutine fails if the following is true:

 ECHILD The status of the child process could not be obtained.

 Related Information
 In this book: "fclose, fflush" in topic 1.2.77, "fopen, freopen, fdopen"
 in topic 1.2.82, "pipe" in topic 1.2.204, " stdio" in topic 1.2.283,
 "system" in topic 1.2.298, and "wait, waitpid" in topic 1.2.325.

AIX Operating System Technical Reference
popen, pclose, rpopen

¦ Copyright IBM Corp. 1985, 1991
1.2.207 - 2

 1.2.208 printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf, wsprintf

 Purpose
 Prints formatted output.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <stdio.h>

 int printf (fmt [, val, ...int NLprintf (fmt [, val, ...])
 char *fmt; char *fmt;

 int fprintf (stream, fmt [, int,NLfprintf (stream, fmt [, val, ...
 FILE *stream; FILE *stream;
 char *fmt; char *fmt;

 int sprintf (s, fmt [, val, int NLsprintf (s, fmt [, val, ...]
 char *s, *fmt; char *s, *fmt;
 int wsprintf (scs, fmt [,val,...])
 wchar_t *wcs;
 char *fmt;

 Description
 The printf subroutine converts, formats, and writes its val parameters,
 under control of the fmt parameter, to the standard output stream stdout.

 The fprintf subroutine converts, formats, and writes its val parameters,
 under control of the fmt parameter, to the output stream specified by its
 stream parameter.

 The sprintf subroutine converts, formats, and stores its val parameters,
 under control of the fmt parameter, into consecutive bytes starting at the
 address specified by the s parameter. The sprintf subroutine places a
 '\0' (null character) at the end. It is your responsibility to ensure
 that enough storage space is available to contain the formatted string.

 The wsprintf subroutine is equivalent to sprintf except that the argument
 wcs specifies an array of wide characters into which the generated output
 is written. A NULL wide character is appended at the end of the array,
 but it is not counted as part of the returned sum. If copying takes place
 between objects that overlap, the behavior is undefined.

 The NLprintf, NLfprintf, and NLsprintf subroutines are provided for
 backward compatibility and behave exactly like the printf, fprintf, and
 sprintf subroutines respectively.

 The fmt parameter is a character string that contains two types of
 objects:

 � Plain characters, which are copied to the output stream

 � Conversion specifications, each of which causes zero or more items t
 be fetched from the val parameter list.

 If there are not enough items for the fmt in the val parameter list, then

AIX Operating System Technical Reference
printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf, wsprintf

¦ Copyright IBM Corp. 1985, 1991
1.2.208 - 1

 the results are unpredictable. If more vals remain after the entire fmt
 has been processed, they are ignored.

 Conversions can be applied to the nth argument in the argument list,
 rather than to the next unused argument. In this case, the conversion
 character % is replaced by the sequence %digit$, where digit is a decimal
 integer n in the range of [1, {NL_ARGMAX}], giving the position of the
 argument in the argument list. With this feature, format strings can be
 defined to assure that arguments are selected in an order appropriate for
 the specified language.

 Each conversion specification in the fmt parameter has the following
 syntax:

 � A % (percent) sign or the character sequence %digit$, which introduces
 the conversion specification.

 � Zero or more options, which modify the meaning of the conversion
 specification. The option characters and their meanings are:

 - The result of the conversion is left-justified within the
 field.

 + The result of a signed conversion always begins with a sign (+
 or -).

 blank If the first character of a signed conversion is not a sign, a
 blank is prefixed to the result. If both the blank and +
 options appear, then the blank option is ignored.

 # This option specifies that the value is to be converted to an
 alternate form. For c, d, s, and u conversions, the option has
 no effect. For o conversion, it increases the precision to
 force the first digit of the result to be a 0. For x and X
 conversions, a nonzero result has 0x or 0X prefixed to it. For
 e, E, f, g, and G conversions, the result always contains a
 decimal point, even if no digits follow the decimal point. For
 g and G conversions, trailing zeros are not removed from the
 result.

 B This option affects conversions using the s or S conversion
 characters of the NLprintf, NLfprintf, and NLsprintf
 subroutines only. The B flag specifies that field width and
 precision are given in bytes rather than in code points.

 N This option affects the s and S conversion characters of the
 NLprintf, NLfprintf, and NLsprintf subroutines only. The N
 flag specifies that each international character support code
 point in the converted string converts into a printable ASCII
 escape sequence that uniquely identifies the code point.

 � An optional decimal digit string that specifies the minimum field
 width. If the converted value has fewer characters than the field
 width, the field is padded on the left to the length specified by the
 field width. If the left-adjustment option is specified, the field is
 padded on the right. For the NLprintf, NLfprintf, and NLsprintf
 subroutines, field width is measured in code points rather than bytes,
 unless the B flag is specified.

 � An optional precision. The precision is a . (period) followed by a

AIX Operating System Technical Reference
printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf, wsprintf

¦ Copyright IBM Corp. 1985, 1991
1.2.208 - 2

 decimal digit string. If no precision is given, it is treated as 0.
 The precision specifies:

 - The minimum number of digits to appear for the d, i, u, o, x, or X
 conversions
 - The number of digits to appear after the decimal point for the e
 and f conversions
 - The maximum number of significant digits for the g conversion
 - The maximum number of characters to be printed from a string in
 the s conversion.

 � An optional l (the letter "ell") specifying that a following d, i, u,
 o, x, or X conversion character applies to a long integer val. With
 printf, an optional L specifying that a following d, i, u, o, x, or X
 conversion character applies to a long double val.

 � A character that indicates the type of conversion to be applied

 % Performs no conversion. Prints a %.

 Note: If the character after the % or %digit$ sequence is not a
 valid conversion character, the results of the conversion
 are undefined.

 d, i Accepts an integer val and converts it to signed decimal
 notation. The precision specifies the minimum number of digits
 to appear. If the value being converted can be represented in
 fewer digits, it is expanded with leading zeros. The default
 precision is 1. The result of converting a 0 value with a
 precision of 0 is a null string. Specifying a field width with
 a zero as a leading character causes the field width value to be
 padded with leading zeros.

 Note: i applies to printf only.

 u Accepts an integer value and converts it to unsigned decimal
 notation. The precision specifies the minimum number of digits
 to appear. If the value being converted can be represented in
 fewer digits, it is expanded with leading zeros. The default
 precision is 1. The result of converting a 0 value with a
 precision of 0 is a null string. Specifying a field width with
 a zero as a leading character causes the field width value to be
 padded with leading zeros.

 o Accepts an integer val and converts it to octal notation. The
 precision specifies the minimum number of digits to appear. If
 the value being converted can be represented in fewer digits, it
 is expanded with leading zeros. The default precision is 1.
 The result of converting a 0 value with a precision of 0 is a
 null string. Specifying a field width with a zero as a leading
 character causes the field width value to be padded with leading
 zeros.

 An octal value for field width is not implied.

 x, X Accepts an integer val and converts it to hexadecimal notation.
 The letters abcdef are used for the x conversion and the letters
 ABCDEF are used for the X conversion. The precision specifies
 the minimum number of digits to appear. If the value being
 converted can be represented in fewer digits, it is expanded

AIX Operating System Technical Reference
printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf, wsprintf

¦ Copyright IBM Corp. 1985, 1991
1.2.208 - 3

 with leading zeros. The default precision is 1. The result of
 converting a 0 value with a precision of 0 is a null string.
 Specifying a field width with a zero as a leading character
 causes the field width value to be padded with leading zeros.

 f Accepts a float or double val and converts it to decimal
 notation in the format [-]ddd.ddd. The number of digits after
 the decimal point is equal to the precision specification. If
 no precision is specified, then six digits are output. If the
 precision is 0, then no decimal point appears.

 e, E Accepts a float or double val and converts it to the exponential
 form [-]d.ddde±dd. There is one digit before the decimal point
 and the number of digits after the decimal point is equal to the
 precision specification. If no precision is specified, then six
 digits are output. If the precision is 0, then no decimal point
 appears. The E conversion character produces a number with E
 instead of e before the exponent. The exponent always contains
 at least two digits.

 g, G Accepts a float or double val and converts it in the style of
 the e, E or f conversion characters, with the precision
 specifying the number of significant digits. Trailing zeros are
 removed from the result. A decimal point appears only if it is
 followed by a digit. The style used depends on the value
 converted. Style e (E, if G is the flag used) results only if
 the exponent resulting from the conversion is less than -4, or
 if it is greater than or equal to the precision.

 c Accepts and prints the character val.

 C Prints one NLchar. Applies to NLprintf only.

 s Accepts a val is as a string (character pointer) and characters
 from the string are printed until a '\0' (null character) is
 encountered or the number of characters indicated by the
 precision is reached. If no precision is specified, all
 characters up to the first null character are printed. If the
 string pointer val has a value of 0 or NULL, the results are
 undefined.

 S The corresponding NLprintf, NLfprintf, or NLsprintf val is taken
 to be a pointer to a string of the type NLchar. Characters from
 the string are printed until a \0 (null) character is
 encountered or the number of characters indicated by precision
 is reached. If no precision is specified, all characters up to
 the first null character are printed. If the string pointer val
 has a value of 0 or NULL, the results are undefined.

 n Accepts a pointer to an integer. The number of characters
 successfully written so far to the stream or buffer is stored in
 the integer whose address is given as the argument. Applies to
 printf only.

 p Accepts an integer val and converts it to hexidecimal notation.
 The precision specifies the minimum number of digits to appear.
 If the value being converted can be represented in fewer digits,
 it is expanded with leading zeros. The default precision is 1.
 The result of converting a 0 value with a precision of 0 is a
 null string. Specifying a field width with a zero as a leading

AIX Operating System Technical Reference
printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf, wsprintf

¦ Copyright IBM Corp. 1985, 1991
1.2.208 - 4

 character causes the field with value to be padded with zeros.
 This type of conversion applies to NLprintf only.

 %wc The wchar_t type argument is converted to an array of characters
 and the resulting multibyte characters are written. If the
 resulting multibyte characters contain fewer bytes than the
 specified field width, the field is padded with blank
 characters. Precision is ignored, even if specified. This
 conversion is the same as that performed by the wctomb
 subroutine.

 %ws The argument is a pointer to a wchar_t type array. Wide
 characters from the array are converted to multibyte characters
 and the resulting multibyte characters are written up to (but no
 including) a terminating NULL wide character. If both the
 precision and the # are specified, the number of wide characters
 written cannot exceed the number of bytes specified by the
 precision; if only precision is specified, the number of
 characters written is equal to the precision number. If the
 precision is not specified or it is greater than the size of the
 array, the array contains a NULL character. If the resulting
 multibyte characters have fewer bytes than the specified field
 width, the field will be padded with blanks. This conversion is
 the same as that performed by the wcstombs subroutine.

 A field width or precision may be indicated by an * (asterisk) instead of
 a digit string. In this case, an integer val parameter supplies the field
 width or precision. The val parameter that is converted for output is not
 fetched until the conversion letter is reached, so the parameters
 specifying field width or precision must appear before the value (if any)
 to be converted.

 If the result of a conversion is wider than the field width, then the
 field is expanded to contain the converted result. No truncation occurs.
 However, a small precision may cause truncation on the right.

 The e, E, f and g formats represent the special floating-point values as
 follows:

 Quiet NaN +QNaN or -QNaN
 Signalling NaN +SNaN or -SNaN
 ±&infinity. +INF or -INF
 ±0 +0 or -0

 The representation of the plus sign depends on whether the + or blank
 formatting option is specified.

 Return Value
 Upon successful completion, each of these subroutines except wsprintf
 returns the number of display characters in the output string rather than
 the number of bytes in the string. (The NLprintf, NLfprintf and NLsprintf
 subroutines use strings that may contain 2-byte NLchars.) The value
 returned by sprintf and NLsprintf does not include the final '\0'
 character. If an output error occurs, a negative value is returned.

 The wsprintf subroutine returns the number of wide characters written into
 the array, not counting the terminating NULL wide character.

 Example

AIX Operating System Technical Reference
printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf, wsprintf

¦ Copyright IBM Corp. 1985, 1991
1.2.208 - 5

 To print the language-dependent date and time format, the following
 statement could be used:

 printf (format, weekday, month, day, hour, min);

 For American usage, format could be a pointer to the string:

 %1$s, %2$s %3$d, %4$d:%5$.2d\n

 producing the message:

 Sunday, July 3, 10:02

 whereas for German usage, format could be a pointer to the string:

 %1Ss, %3$d. %2$s, %4$d:%5$.2d\n

 producing the message:

 Sonntag, 3. Juli, 10:02

 Related Information
 In this book: "conv" in topic 1.2.50, "vprintf, vfprintf, vsprintf,
 NLvprintf, NLvfprintf, NLvsprintf" in topic 1.2.324, "limits.h" in
 topic 2.4.11, "ecvt, fcvt, gcvt" in topic 1.2.67, "putc, putchar, fputc,
 putw, putwc, putwchar, fputwc" in topic 1.2.213, "scanf, fscanf, sscanf,
 NLscanf, NLfscanf, NLsscanf, wsscanf" in topic 1.2.241, and " stdio" in
 topic 1.2.283.

 Examples of using printf in AIX C Language Guide and AIX C Language
 Reference.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf, wsprintf

¦ Copyright IBM Corp. 1985, 1991
1.2.208 - 6

 1.2.209 probe

 Purpose
 Validates the status of a TCF cluster site.

 Syntax

 #include <sys/types.h>

 int probe(sitenum)
 siteno_t sitenum;

 Description
 The probe system call tells the system to check a site to determine its
 status. To do this, the system sends an are you there message to the
 site. If the site does not respond, system status information is updated
 to indicate that the site is no longer in the TCF cluster. If the site
 responds, but was previously thought to be down, the distributed topology
 change algorithm is run to bring the site into the TCF cluster.

 sitenum is the number of the site being probed.

 Return Value
 Upon successful completion, a value of 0 is returned to the calling
 process. Otherwise, a value of -1 is returned and errno is set to
 indicate the error.

 Error Conditions
 The probe system call fails if one of the following is true:

 EBADST sitenum is an invalid site number.

 ESITEDN1 The requested site is down.

 Related Information

 In this book: "getsites" in topic 1.2.119.

AIX Operating System Technical Reference
probe

¦ Copyright IBM Corp. 1985, 1991
1.2.209 - 1

 1.2.210 profil

 Purpose
 Starts and stops execution profiling.

 Syntax

 #include <mon.h>
 #include <sys/param.h>

 void profil (shortbuff, bufsiz, offset, scale)
 -- or --
 void profil (profbuff, -1, 0, 0)

 short *shortbuff;
 struct prof *profbuff;
 unsigned int bufsiz, offset, scale;

 Description
 The profil system call arranges to record a histogram of periodically
 sampled values of the calling process's program counter.

 If the bufsiz parameter has any value but -1, then the parameters to
 profil are interpreted as shown in the first syntax definition. The
 shortbuff parameter points to an area of memory, and its length (in bytes)
 is given by the bufsiz parameter.

 After this call, the user's program counter (pc) is examined CLK_TCK times
 a second. CLK_TCK is a macro defined in <time.h>. The value of the
 offset parameter is subtracted from the pc, and the result is multiplied
 by the value of the scale parameter. If the resulting number is less than
 bufsiz ÷ sizeof(short), then the corresponding short inside shortbuff is
 incremented.

 The least significant 16 bits of the scale parameter are interpreted as an
 unsigned, fixed-point fraction with a binary point at the left. The most
 significant 16 bits of scale are ignored. For example:

 Octal Hex Meaning

 0177777 0xFFFF Maps approximately each pair of bytes in the
 instruction space to a unique short in shortbuff.
 077777 0x7FFF Maps approximately every four bytes to a short in
 shortbuff.
 01 0x0001 Maps all instructions to the first short in
 shortbuff, producing a noninterrupting core clock.
 0 0x0000 Turns profiling off.

 Mapping each byte of the instruction space to an individual short in
 shortbuff is not possible.

 If the second parameter (bufsize) has the value -1, then the parameters to
 profil are interpreted as shown in the second syntax definition. In this
 case, the offset and scale parameters are ignored, and profbuff points to
 an array of prof structures. The prof structure is defined in the mon.h
 header file, and it contains the following members:

 daddr_t p_low;
 daddr_t p_high;
 unsigned short *p_buff;

AIX Operating System Technical Reference
profil

¦ Copyright IBM Corp. 1985, 1991
1.2.210 - 1

 int p_bufsize;
 int p_scale;

 If the p_scale member has the value -1, then a value for it is computed
 based on p_low, p_high, and p_bufsize; otherwise p_scale is interpreted
 like the scale argument in the first synopsis. The p_high members in
 successive structures must be in ascending sequence. The array of
 structures is terminated with a structure containing a p_high member set
 to 0.

 Profiling is turned off:

 � If the value of the scale parameter is 0.
 � When an exec system call is executed
 � If updating the buffer pointed to by the shortbuff or profbuff
 parameter would cause a memory fault.

 Profiling is rendered ineffective by giving a value of 0 for the bufsiz
 parameter.

 Profiling remains on in both the child process and the parent process
 after a fork system call.

 Note: The profiling rate is machine dependent. A program should use the
 defined constant IHZ instead of assuming a specific value.

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, " fork, vfork" in topic 1.2.83, and "monitor, monstartup,
 moncontrol" in topic 1.2.171.

 The cc and prof commands in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
profil

¦ Copyright IBM Corp. 1985, 1991
1.2.210 - 2

 1.2.211 programmers workbench library

 Purpose
 Provides subroutines for compatibility with existing programs.

 Library
 Programmers Workbench Library (libPW.a)

 Description
 The libpw subroutines are provided only for compatibility with existing
 programs. Their use in new programs is not recommended.

 any (c, s)
 Determines whether the string s contains the character c.

 anystr (s1, s2)
 Determines the offset in string s1 of the first character that
 also occurs in string s2.

 balbrk (s, open, close, end)
 Determines the offset in string s of the first character in the
 string end that occurs outside of a balanced string as defined
 by open and close.

 cat (dest, source1,..., 0)
 Concatenates the source strings and copy them to dest.

 clean_up ()
 Defaults the cleanup routine.

 curdir (s)
 Puts the full path name of the current directory in the string
 s.

 dname (p)
 Determines which directory contains the file p.

 fatal (msg)
 General purpose error handler.

 fdfopen (fd, mode)
 Same as the stdio fdopen subroutine.

 giveup (dump)
 Forces a core dump.

 imatch (pref, s)
 Determines if the string pref is an initial substring of the
 string s.

 index (s1, s2)
 Determines the offset of the first occurrence in string s1 of
 string s2.

 lockit (lockfile, count, pid)
 Creates a lock file.

 move (s1, s2, n)
 Copies the first n characters of string s1 to string s2.

AIX Operating System Technical Reference
programmers workbench library

¦ Copyright IBM Corp. 1985, 1991
1.2.211 - 1

 patoi (s)
 Converts string s to int.

 patol (s)
 Converts string s to long.

 rename (oldname, newname)
 Renames the file oldname to newname.

 Note: The rename subroutine is no longer part of the
 Programmers Workbench Library (libPW.a) because AIX
 provides a rename system call (see "rename" in
 topic 1.2.233) that performs the same function.

 repeat (dest, s, n)
 Sets dest to the string s repeated n times.

 repl (s, old, new)
 Replaces each occurrence of the character old in string s with
 the character new.

 satoi (s, ip)
 Converts string s to int and save it in *ip.

 setsig ()
 Causes signals to be caught by setsig1.

 setsig1 (sig)
 General purpose signal handling routine.

 sname (s)
 Gets a pointer to the simple name of full path name s.

 strend (s)
 Finds the end of the string s.

 substr (s, dest, origin, len)
 Places a substring of string s in dest using the offset origin
 and the length len.

 trnslat (s, old, new, dest)
 Copies string s into dest and replace any character in old with
 the corresponding characters in new.

 unlockit (lockfile, pid)
 Deletes the lock file.

 userdir (uid)
 Gets the user's login directory.

 userexit (code)
 Defaults user exit routine.

 username (uid)
 Gets the user's login name.

 verify (s1, s2)
 Determines the offset in string s1 of the first character that
 is not also in string s2.

AIX Operating System Technical Reference
programmers workbench library

¦ Copyright IBM Corp. 1985, 1991
1.2.211 - 2

 xalloc (asize)
 Allocates memory.

 xcreat (name, mode)
 Creates a file.

 xfree (aptr)
 Frees memory.

 xfreeall ()
 Frees all memory.

 xlink (f1, f2)
 Links files.

 xmsg (file, func)
 Calls the routine fatal with an appropriate error message.

 xopen (name, mode)
 Opens a file.

 xpipe (t)
 Creates a pipe.

 xunlink (f)
 Removes a directory entry.

 xwrite (fd, buffer, n)
 Writes n bytes to the file associated with fd from buffer.

 zero (p, n)
 Zeros n bytes starting at address p.

 zeropad (s)
 Replaces the initial blanks with the character '0' in string s.

 In addition, NLS equivalents exist for the following routines:

 NCany NCmove NCtrnslat
 NCanystr NCpatoi NCverify
 NCbalbrk NCrepeat NCzero
 NCcat NCrepl NCzeropad
 NCimatch NCsatoi
 NCindex NCstrend
 NCsubstr

 These routines perform identical functions as the non-NLS routines except
 that they deal with NLchars rather than ordinary chars.

 Related Information
 In this book: "logname" in topic 1.2.159, "NLchar" in topic 1.2.188, and
 "regcmp, regex" in topic 1.2.228.

AIX Operating System Technical Reference
programmers workbench library

¦ Copyright IBM Corp. 1985, 1991
1.2.211 - 3

 1.2.212 ptrace

 Purpose
 Traces the execution of another process.

 Syntax

 #include <sys/ptrace.h>

 int ptrace (request, pid, addr, data, buff)
 int request;
 pid_t pid;
 int *addr, data;
 char *buff;

 Description
 The ptrace system call allows one process to control the execution of
 another process. ptrace is primarily used by utility programs to
 implement breakpoint debugging. ptrace does not support multiprocessor
 debugging. The dbx command described in AIX Operating System Commands
 Reference is one such debugging utility.

 The traced process behaves normally until it encounters a signal, at which
 time it enters a stopped state and its debugging process is notified with
 the wait system call. When the traced process is in the stopped state,
 its debugging process can examine and modify its memory image using the
 ptrace system call. Also, the debugging process can cause the traced
 process to either terminate or continue, with the possibility of ignoring
 the signal that caused it to stop.

 If the Transparent Computing Facility is installed, the traced process
 must be a process executing on the local site. This process is also
 forbidden to migrate to another site.

 The request parameter determines the action to be taken by the ptrace
 system call and is one of the following:

 PT_TRACE_ME(0)
 This request must be issued by a child process that is to be traced
 by its parent. This request sets the child process's trace flag that
 causes the child to be left in a stopped state upon receipt of a
 signal, rather than the state specified by the func parameter of the
 signal system call. The pid, addr, and data parameters are ignored,
 and a return value is not defined for this request. Do not issue
 this request if the parent does not expect to trace the child.

 Note: The remainder of the requests can only be used by the debugging
 process. For each request, the pid parameter is the process ID of
 the process to be traced. The traced process must be in a stopped
 state before these requests are made.

 PT_READ_I(1), PT_READ_D(2)
 These requests return the int value in the traced process's address
 space at the location pointed to by the addr parameter. PT_READ_I
 specifies the text area while PT_READ_D specifies the data area. The
 data parameter is ignored. These requests fail if the value of the
 addr parameter is not in the address space of the traced process, in
 which case a value of -1 is returned, and the debugging process's
 errno is set to EIO.

AIX Operating System Technical Reference
ptrace

¦ Copyright IBM Corp. 1985, 1991
1.2.212 - 1

 PT_READ_U(3)
 This request returns the int value from the traced process's user
 area of the system's address space that is located at the offset
 given by the addr parameter. (For information about the user area,
 see the sys/user.h header file.) The value of the addr parameter
 must be in the range 0 to ctob(USIZE), and it is rounded down to the
 next int (word) boundary. (ctob and USIZE are defined by including
 the sys/param.h header file.) The data parameter is ignored. This
 request fails if the addr parameter is outside the user area, in
 which case a value of -1 is returned to the debugging process, whose
 errno is then set to EIO.

 PT_WRITE_I(4), PT_WRITE_D(5)
 These requests write the value of the data parameter into the address
 space of the traced process at the int location pointed to by the
 addr parameter. Request PT_WRITE_I writes into the text area and
 request PT_WRITE_D writes into the data area. Upon successful
 completion, the value written into the address space of the traced
 process is returned to the debugging process. These requests fail if
 the addr parameter points to a location in a pure procedure space
 (read-only) and a copy cannot be made. They also fail if the value
 of addr is out of range. Upon failure, a value of -1 is returned to
 the debugging process, and the debugging process's errno is set to
 EIO.

 PT_WRITE_U(6)
 This request writes the value of the data parameter into the child
 process's user area of the system's address space at the int location
 specified by the addr parameter. The value of the addr parameter is
 rounded down to the next int (word) boundary. The following values
 for addr are defined in the sys/ptrace.h header file, and they
 identify the only entries that can be modified.

 PT_CONTINUE(7)
 This request causes the traced process to resume execution. If the
 data parameter is 0, all pending signals, including the one that
 caused the traced process to stop, are canceled before the traced
 process resumes execution. If the data parameter is a valid signal
 number, the traced process resumes execution as if it had received
 that signal. Any other pending signals are canceled. If the addr
 parameter is equal to 1 for this request, then execution continues
 from where it left off. Otherwise, execution continues from the
 address specified in addr. Upon successful completion, the value of
 the data parameter is returned to the debugging process. This
 request fails if the data parameter is not 0 or a valid signal
 number, in which case a value of -1 is returned to the debugging
 process and the debugging process's errno is set to EIO.

 PT_KILL(8)
 This request causes the traced process to terminate the same way it
 would if it had received the SIGKILL signal.

 PT_STEP(9)
 This request puts the traced process into trace mode and then
 executes the same steps as listed for request PT_CONTINUE. Trace
 mode causes the traced process to stop upon completion of one machine
 instruction, which allows single stepping of the traced process. The
 signal number from the stop is SIGTRAP.

AIX Operating System Technical Reference
ptrace

¦ Copyright IBM Corp. 1985, 1991
1.2.212 - 2

 PT_READ_GPR(11)
 This request returns the contents of one of the general purpose
 registers of the traced process. The addr parameter specifies which
 of the registers is to be returned. The data and buff parameters are
 ignored. The registers are specified using the macro PT_REG. The
 argument to PT_REG is the symbolic name found in <sys/ptrace.h>. The
 request fails if the addr parameter does not specify a legitimate
 register. In this case, ptrace returns the value -1 and sets the
 debugging process's errno to EIO.

 PT_READ_FPR(12)
 This request stores the value of a floating-point register into the
 location pointed to by the addr parameter. The data parameter
 specifies which floating-point register, and its value should be the
 offset into the trace process's saved floating point state. The
 format of this structure is struct fp87save, found in <sys/ptrace.h>.
 Floating point registers are ten bytes long.

 PT_WRITE_GPR(14)
 This request stores the value of the data parameter in one of the
 traced process's general purpose registers. The addr parameter
 specifies the register to be modified. The buff parameter is
 ignored. Upon successful completion, the value of data is returned
 to the debugging process. The registers are specified in the same
 manner as used for PT_READ_GPR. This request fails if the addr
 parameter does not specify a legitimate register. In this case,
 ptrace returns the value -1 and sets the debugging process's errno to
 EIO.

 PT_WRITE_FPR(15)
 This request sets the floating-point register specified by the data
 parameter to the value pointed to by the addr parameter. The data
 parameter is specified in the same manner as with PT_READ_FPR.
 Floating point registers are ten bytes long.

 PT_READ_BLOCK(17)
 This request reads a block of data from the traced process's address
 space. The addr parameter points to the block of data in the traced
 process's address space and the data parameter gives its length in
 bytes. The value of the data parameter must not be greater than
 1024. The buff parameter points to the location in the debugging
 process's address space into which the data is to be copied. Upon
 successful completion, ptrace returns the value of the data
 parameter. If an error occurs, ptrace returns -1 and sets the
 debugging process's errno to indicate the error.

 This request fails when one or more of the following are true:

 EINVAL The data parameter is less than 1 or greater than 1024.

 EIO The addr parameter is not a valid pointer into the traced
 process's address space.

 EFAULT The buff parameter does not point to a writable location in
 the debugging process's address space.

 PT_WRITE_BLOCK(19)
 This request writes a block of data into the traced process's address
 space. The addr parameter points to the location in the traced
 process's address space to be written into. The data parameter gives

AIX Operating System Technical Reference
ptrace

¦ Copyright IBM Corp. 1985, 1991
1.2.212 - 3

 the length of the block in bytes, and it must not be greater than
 1024. The buff parameter points to the data in the debugging
 process's address space to be copied. Upon successful completion,
 the value of data is returned to the debugging process. If an error
 occurs, ptrace returns -1 and sets the debugging process's errno to
 indicate the error. This request fails when one or more of the
 following are true:

 EINVAL The data parameter is less than 1 or greater than 1024.

 EIO The addr parameter is not a valid pointer into the traced
 process's address space.

 EFAULT The buff parameter does not point to a readable location in
 the debugging process's address space.

 If the process has never accessed the vector hardware, a read will return
 a buffer with all locations filled with zeros. The following describes in
 detail the function of each of the 11 requests that have been added.
 Specific values for the macros described can be found in Appendix A,
 ptrace.h.

 PT_READ_VSEG_SIZ
 Read the vector segment size (20)

 This request returns the vector section size; Pid specifies the
 specific processes that the action should be performed on. The addr,
 data and buff parameters are ignored. If the cpu has no vector
 facility, then the request returns the value -1 and the debugging
 process's errno will be set to EINVAL. If there are no errors, a
 zero will be returned.

 PT_READ_VSR
 Read the vector status register (21)

 This request reads the value of the vector status register and stores
 it into the location pointed to by the addr parameter. The vector
 status register is 8 bytes long. Pid specifies the specific process
 that the action should be performed on. The data and buff parameters
 are ignored.

 If an error occurs, ptrace returns -1 and sets the debugging
 process's errno to indicate the error. The request fails when one of
 the following are true:

 ENODEV The cpu has no vector facility.

 EFAULT A detectable memory access error has occurred during
 operation.

 If there are no errors, a zero will be returned.

 PT_WRITE_VSR
 Write to the vector status register (22)

 This request stores the value pointed to by the addr parameter into
 the vector status register. The vector status register is 8 bytes
 long. Pid specifies the specific process that the action should be
 performed on. The data and buff parameters are ignored.

AIX Operating System Technical Reference
ptrace

¦ Copyright IBM Corp. 1985, 1991
1.2.212 - 4

 If an error occurs, ptrace returns -1 and sets the debugging
 process's errno to indicate the error. The request fails when one of
 the following are true:

 EACCES An attempt was made to alter bits 0-15 or bits 56-63 of
 the status register, which are protected.

 ENXIO The values given for the vector count and/or the vector
 interruption index are greater than the section size.

 PT_READ_VMR
 Read the vector mask register (23)

 This request reads the vector mask register and stores its value into
 the location pointed to by the addr parameter. The vector mask
 register is vector segment size number of bits long. Pid specifies
 the specific process that the action should be performed on. The
 data and buff parameters are ignored.

 PT_WRITE_VMR
 Write to the vector mask register (24)

 This request stores the value pointed to by the addr parameter into
 the vector mask register. The vector mask register is vector segment
 size number of bits long. Pid specifies the specific process that
 the action should be performed on. The data and buff parameters are
 ignored.

 PT_READ_VACR
 Read the vector activity register (25)

 This request reads the vector activity register and stores its value
 into the location pointed to by the addr parameter. The vector
 activity register is 8 bytes long. Pid specifies the specific
 process that the action should be performed on. The data and buff
 parameters are ignored.

 PT_WRITE_VACR
 Write the vector activity register (26)

 This request stores the value pointed to by the addr parameter into
 the vector activity register. The vector activity register is 8
 bytes long. Pid specifies the specific process that the action
 should be performed on. The data and buff parameters are ignored.

 EACCES An attempt was made to alter bits 0-8 of the vector
 activity register, which are protected.

 PT_READ_VFR
 Read a 32-bit vector register (27)

 This request reads the values of the 32-bit vector register specified
 by the addr parameter and stores its values into the location
 specified by the buff parameter. The length of the data is equal to
 4 times the vector segment size in bytes. Register numbers are
 specified in the header file ptrace.h. Either an odd or an even
 number can be specified in this request. Pid specifies the specific
 process that the action should be performed on. The data parameter
 is ignored.

AIX Operating System Technical Reference
ptrace

¦ Copyright IBM Corp. 1985, 1991
1.2.212 - 5

 If an error occurs, ptrace returns -1 and sets the debugging
 process's errno to indicate the error. The request fails when one of
 the following are true:

 ENODEV The cpu has no vector facility

 ENXIO The register number is out of the range of numbers
 PT_R_V0 to PT_R_V15.

 EFAULT A detectable memory access error has occurred during
 operation, (e.g, the memory area pointed to by the buff
 parameter is less than 4 times the vector segment size in
 bytes, and the copy of the vector would write outside of
 user space.

 If there are no errors, a zero will be returned.

 PT_WRITE_VFR
 Write into the 32-bit vector register (28)

 This request stores the values pointed to by the buff parameter into
 the 32-bit vector register specified by the addr parameter. The
 length of the data is equal to 4 times the vector segment size in
 bytes. Register numbers are specified in the header file ptrace.h.
 Either an odd or an even number can be specified in this request.
 Pid specifies the specific process that the action should be
 performed on. The data parameter is ignored.

 PT_READ_VFR
 Read the double (64-bit) vector register (29)

 This request reads the even-odd pair of vector registers specified by
 the addr parameter and stores its values into the location specified
 by the buff parameter. The length of the data is equal to 8 times
 the vector segment size in bytes. Register numbers are specified in
 the header file ptrace.h. Only an even number can be specified for
 the vector register's pair in the request. Pid specifies the
 specific process that the action should be performed on. The data
 parameter is ignored.

 If an error occurs, ptrace returns -1 and sets the debugging
 process's errno to indicate the error. The request fails when one of
 the following are true.

 ENODEV The cpu has no vector facility.

 ENXIO The register number is out of the range of even numbers
 PT_R_V0 to PT_R_V14.

 EFAULT A detectable memory access error has occurred during
 operation, (e.g, the memory area pointed to by the buff
 parameter is less than 8 times the vector segment size in
 bytes, and the copy of the vector would write outside of
 user space.

 If there are no errors, a zero will be returned.

 PT_WRITE_VDR
 Write into the double (64-bit) vector register (30)

AIX Operating System Technical Reference
ptrace

¦ Copyright IBM Corp. 1985, 1991
1.2.212 - 6

 This request stores the values pointed to by the buff parameter into
 the even-odd pair of registers specified by the addr parameter. The
 length of the data is equal 8 times the vector segment size in bytes.
 Register numbers are specified in the header file ptrace.h. Only an
 even number can be specified for the vector register's pair in this
 request. Pid specifies the specific process that the action should
 be performed on. The data parameter is ignored.

 OTHER ERRORS
 In general, the ptrace system call will fail if one or more of the
 following are true:

 EIO The request parameter is not one of the values listed.

 ESRCH The pid parameter identifies a child process that does not
 exist or has not executed a ptrace system call with request
 0.

 As a security measure, the ptrace system call inhibits the set-user-ID
 facility on subsequent exec system calls.

 If a traced process initiates an exec system call, it stops before
 executing the first instruction of the new image and shows the signal
 SIGTRAP.

 Error Conditions
 In general, the ptrace system call fails if one or more of the following
 are true:

 EIO The request parameter is not one of the values listed.

 ESRCH The pid parameter identifies a child process that does not exist
 on the local system or that has not executed a ptrace system call
 with request 0.

 EAGAIN The traced process was not in a stopped state before a request is
 made.

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, "sigaction, sigvec, signal" in topic 1.2.263, and "wait,
 waitpid" in topic 1.2.325.

 The dbx command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
ptrace

¦ Copyright IBM Corp. 1985, 1991
1.2.212 - 7

 1.2.213 putc, putchar, fputc, putw, putwc, putwchar, fputwc

 Purpose
 Writes a character or a word to a stream.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <stdio.h>

 int putc(c, stream) int fputc(c, stream)
 char c; char c;
 FILE *stream; FILE *stream;

 int putchar(c) int putw(w, stream)
 char c; int w;
 FILE *stream;
 wchar_t putwc (c, stream)
 wchar_t c; wchar_t fputwc (c, stream)
 FILE *stream; wchar_t c;
 FILE *stream;
 wchar_t putwchar (c)
 wchar_t c;

 Description
 The putc macro writes the character c to the output specified by the
 stream parameter. The character is written at the position at which the
 file pointer is currently pointing, if defined.

 The putchar macro is the same as the putc macro except that putchar writes
 to the standard output.

 The fputc subroutine works the same as putc, but fputc is a true
 subroutine rather than a macro. It runs more slowly than putc, but takes
 less space per invocation.

 Because putc is implemented as a macro, it treats incorrectly a stream
 parameter with side effects, such as putc(c, *f++). For such cases, use
 fputc instead. Also, use fputc whenever you need to pass a pointer to
 this subroutine as a parameter to another subroutine.

 The putw subroutine writes the word (int) specified by the w parameter to
 the output specified by the stream parameter. The word is written at the
 position at which the file pointer, if defined, is pointing. The size of
 a word is the size of an integer and varies from machine to machine. The
 putw subroutine does not assume or cause special alignment of the data in
 the file.

 Because of possible differences in word length and byte ordering, files
 written using the putw subroutine are machine-dependent, and may not be
 readable using the getw subroutine on a different processor.

 With the exception of stderr, output streams are, by default, buffered if
 they refer to files, or line-buffered if they refer to terminals. The
 standard error output stream, stderr, is unbuffered by default, but using
 the freopen subroutine causes it to become buffered or line-buffered. Use

AIX Operating System Technical Reference
putc, putchar, fputc, putw, putwc, putwchar, fputwc

¦ Copyright IBM Corp. 1985, 1991
1.2.213 - 1

 the setbuf subroutine to change the stream's buffering strategy.

 When an output stream is unbuffered, information is queued for writing on
 the destination file or terminal as soon as it is written. When an output
 stream is buffered, many characters are saved and written as a block.
 When an output stream is line-buffered, each line of output is queued for
 writing on the destination terminal as soon as the line is completed (that
 is, as soon as a new-line character is written or terminal input is
 requested).

 The putwchar subroutine returns the character written. If a write error
 occurs, the error indicator for the stream is set and putwchar returns
 WEOF.

 The fputwc subroutine writes the character specified by c to the output
 stream pointed to by stream, as a multibyte character at the position
 indicated by the associated file position indicator for the stream (if
 defined), and it advances the indicator appropriately. If the file cannot
 support positioning requests, or if the stream was opened with append
 mode, the character is appended to the output stream.

 Return Value
 Upon successful completion, each of these functions (with the exception of
 putw) returns the value it has written. putw returns ferror (stream). If
 these functions fail, they return the constant EOF. They fail if the
 stream is not open for writing, or if the output file size cannot be
 increased. Because EOF is a valid integer, you should use the ferror
 subroutine to detect putw errors.

 The putwc subroutine returns the argument path to it. If a write error
 occurs, the error indicator for the stream is set and putwc returns WEOF.

 The putwchar subroutine is equivalent to putwc with the second argument
 stdout.

 The fputwc subroutine returns the wide character written. If a write
 error occurs, the error indicator for the stream is set and fputwc returns
 WEOF.

 Error Conditions
 The putc, putchar, fputc, and putw subroutines fail if one or more of the
 following are true:

 EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying
 stream and the process is delayed in the write operation.

 EBADF The file descriptor underlying stream is not a valid file
 descriptor open for writing.

 Note: If a wide character routine fails and errno is not set,
 this indicates that the translation from wide code to
 file code has failed.

 EFBIG An attempt was made to write to a file that exceeds the
 process's file size limit or the maximum file size.

 EINTR The write operation was terminated due to the receipt of a
 signal, and either no data was transferred or the implementation
 does not report partial transfers for this file.

AIX Operating System Technical Reference
putc, putchar, fputc, putw, putwc, putwchar, fputwc

¦ Copyright IBM Corp. 1985, 1991
1.2.213 - 2

 EIO The implementation supports job control, the process is a member
 of a background process group attempting to write to its
 controlling terminal, TOSTOP is set, the process is neither
 ignoring nor blocking SIGTTOU and the process group of the
 process is orphaned. This error may also be returned under
 implementation-defined conditions.

 ENOSPC There was no free space remaining on the device containing the
 file.

 ENXIO A request was made of a non-existent device, or the request was
 outside the capabilities of the device.

 Related Information
 In this book: "fclose, fflush" in topic 1.2.77, "feof, ferror, clearerr,
 fileno" in topic 1.2.79, "fopen, freopen, fdopen" in topic 1.2.82, "fread,
 fwrite" in topic 1.2.84, "getc, fgetc, getchar, getw, getwc, fgetwc,
 getwchar" in topic 1.2.91, "printf, fprintf, sprintf, NLprintf, NLfprintf,
 NLsprintf, wsprintf" in topic 1.2.208, "puts, fputs, putws, fputws" in
 topic 1.2.216, "setbuf, setvbuf" in topic 1.2.247, and " stdio" in
 topic 1.2.283.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
putc, putchar, fputc, putw, putwc, putwchar, fputwc

¦ Copyright IBM Corp. 1985, 1991
1.2.213 - 3

 1.2.214 putenv

 Purpose
 Sets an environment variable.

 Library
 Standard C Library (libc.a)

 Syntax

 int putenv (str)
 char *str;

 Description
 The putenv subroutine sets the value of an environment variable by
 altering an existing variable or by creating a new one. The str parameter
 points to a string of the form name=value, where name is the environment
 variable and value is the new value for it.

 The memory space pointed to by the str parameter becomes part of the
 environment, so that altering the string effectively changes part of the
 environment. The space is no longer used after the value of the
 environment variable is changed by calling putenv again.

 Warning: Unpredictable results can occur if a subroutine passes putenv a
 pointer to an automatic variable and then returns while the variable is
 still part of the environment.

 Note: The putenv subroutine manipulates the environment pointed to by the
 environ external variable, and it can be used in conjunction with
 getenv. However, envp, the third parameter to main, is not
 changed. See "exec: execl, execv, execle, execve, execlp, execvp"
 in topic 1.2.71 for more information about environ and envp.

 The putenv subroutine uses malloc to enlarge the environment.

 After putenv is called, environment variables are not necessarily in
 alphabetical order.

 Return Value
 Upon successful completion, a value of 0 is returned. If malloc is unable
 to obtain sufficient space to expand the environment, then putenv returns
 a value of -1.

 Error Conditions
 The putenv subroutine fails if the following is true:

 ENOMEM Insufficient memory was available.

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, "getenv, NLgetenv" in topic 1.2.94, "malloc, free, realloc,
 calloc, valloc, alloca, mallopt, mallinfo" in topic 1.2.162, and
 "environment" in topic 2.4.6.

AIX Operating System Technical Reference
putenv

¦ Copyright IBM Corp. 1985, 1991
1.2.214 - 1

 1.2.215 putpwent

 Purpose
 Writes a password file entry.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <pwd.h>

 int putpwent (p, f)
 struct passwd *p;
 FILE *f;

 Description
 The putpwent subroutine writes a line on the stream specified by the f
 parameter. The stream that is written on matches the format of
 /etc/passwd.

 The p parameter is a pointer to a passwd structure created by the
 getpwent, getpwuid, or getpwnam subroutines.

 Return Value
 Upon successful completion, putpwent returns a value of 0. If putpwent
 fails, a nonzero value is returned.

 Related Information
 In this book: "getpwent, getpwuid, getpwnam, setpwent, endpwent" in
 topic 1.2.114 and "passwd" in topic 2.3.44.

AIX Operating System Technical Reference
putpwent

¦ Copyright IBM Corp. 1985, 1991
1.2.215 - 1

 1.2.216 puts, fputs, putws, fputws

 Purpose
 Writes a string to a stream.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <stdio.h>

 int puts (s) int fputs (s, stream)
 char *s; char *s;
 *stream;
 int putws (s)
 const wchar_t *s;

 int fputws (s, stream);

 const wchar_t *s;
 FILE *stream;

 Description
 The puts subroutine writes the NULL-terminated string pointed to by the s
 parameter, followed by a new-line character, to the standard output
 stream, stdout.

 The fputs subroutine writes the NULL-terminated string pointed to by the s
 parameter to the output stream specified by the stream parameter. The
 fputs subroutine does not append a new-line character.

 Neither subroutine writes the terminating NULL character.

 The putws subroutine writes the character string pointed to by s to the
 stream pointed to by stdout as a multibyte character string and appends a
 new-line character to the output. The terminating NULL character is not
 written.

 The fputws subroutine writes the string pointed to by s to the stream
 pointed to by stream as a multibyte character string. The terminating NULL
 character is not written.

 Return Value
 Upon successful completion, the puts and fputs subroutines return the
 number of characters written. Both subroutines return EOF on an error.
 This happens if the routines try to write on a file that has not been
 opened for writing.

 The putws and fputws subroutines return -1 if a write error occurs;
 otherwise, they return a non-negative value.

 Error Conditions
 The puts and fputs subroutines fail if one or more of the following
 conditions are true:

 EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying
 stream and the process is delayed in the write operation.

AIX Operating System Technical Reference
puts, fputs, putws, fputws

¦ Copyright IBM Corp. 1985, 1991
1.2.216 - 1

 EBADF The file descriptor underlying stream is not a valid file
 descriptor open for writing.

 Note: If a wide character routine fails and errno is not set,
 this indicates that the translation from wide code to
 file code has failed.

 EFBIG An attempt was made to write to a file that exceeds the
 process's file size limit or the maximum file size.

 EINTR The write operation was terminated due to the receipt of a
 signal, and either no data was transferred or the implementation
 does not report partial transfers for this file.

 EIO The implementation supports job control, the process is a member
 of a background process group attempting to write to its
 controlling terminal, TOSTOP is set, the process is neither
 ignoring nor blocking SIGTTOU and the process group of the
 process is orphaned. This error may also be returned under
 implementation-defined conditions.

 ENOSPC There was no free space remaining on the device containing the
 file.

 ENXIO A request was made of a non-existent device, or the request was
 outside the capabilities of the device.

 EPIPE An attempt is made to write to a pipe or FIFO that is not open
 for reading by any process. A SIGPIPE signal is also sent to
 the process.

 ENOMEM Insufficient storage space is available.

 Related Information
 In this book: "feof, ferror, clearerr, fileno" in topic 1.2.79, "fopen,
 freopen, fdopen" in topic 1.2.82, "fread, fwrite" in topic 1.2.84, "gets,
 fgets, getws, fgetws" in topic 1.2.117, "printf, fprintf, sprintf,
 NLprintf, NLfprintf, NLsprintf, wsprintf" in topic 1.2.208, "putc,
 putchar, fputc, putw, putwc, putwchar, fputwc" in topic 1.2.213, and "
 stdio" in topic 1.2.283.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
puts, fputs, putws, fputws

¦ Copyright IBM Corp. 1985, 1991
1.2.216 - 2

 1.2.217 qsort

 Purpose
 Sorts a table of data in place.

 Library
 Standard C Library (libc.a)

 Syntax

 void qsort (base, nel, size, compar)
 void * base;
 size_t nel, size;
 int (*compar) (void *, void *);

 Description
 The qsort subroutine sorts a table of data in place. It uses the
 "quicker-sort" algorithm.

 The base parameter points to the element at the base of the table. The
 nel parameter is the number of elements in the table. The compar
 parameter is the name of the comparison function. (See "alphasort" in
 topic 1.2.15 for one such comparison function.)

 The comparison function must compare its parameters and return a value as
 follows:

 � If the first parameter is less than the second parameter, compar must
 return a value less than 0.
 � If the first parameter is equal to the second parameter, compar must
 return 0.
 � If the first parameter is greater than the second parameter, compar
 must return a value greater than 0.

 The comparison function need not compare every byte, so arbitrary data can
 be contained in the elements in addition to the values being compared.

 Note: The order in the output of two items that compare equal is
 unpredictable.

 The pointer to the base of the table should be of type pointer-to-element,
 and cast to type pointer-to-character.

 Related Information
 In this book: "alphasort" in topic 1.2.15, "bsearch" in topic 1.2.23,
 "lsearch, lfind" in topic 1.2.160, and "string" in topic 1.2.288.

 The sort command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
qsort

¦ Copyright IBM Corp. 1985, 1991
1.2.217 - 1

 1.2.218 quota

 Purpose
 Manipulate disk quotas.

 Syntax

 #include <sys/quota.h>

 int quota (cmd, uid, arg, addr)
 int cmd, uid, arg;
 char *addr;

 Description
 The quota system call manipulates disk quotas for file systems that have
 had quotas enabled with setquota. The cmd parameter indicates a command
 to be applied to the user ID, specified by the uid parameter. The arg
 parameter is a command-specific argument, and the addr parameter specifies
 the address of an optional, command-specific, data structure that is
 copied in or out of the system. interpretation of the arg and address
 parameters is given with each command as follows:

 Q_SETDLIM Set disk quota limits and current usage for the user specified
 by the uid parameter. The arg parameter specifies a major/minor
 device indicating a particular file system. The addr parameter
 is a pointer to a struct dqblk, as defined in sys/quota.h.

 Only superusers may set quota limits.

 Q_GETDLIM Get disk quota limits and current usage. Parameters are the
 same as for Q_SETDLIM.

 This command is unprivileged.

 Q_SETDUSE Set disk usage limits for a user. Parameters are the same as
 for QSETDLIM, except that addr points to a struct dqusage
 structure.

 Only superusers may set usage limits.

 Q_SYNC Update the on-disk copy of quota usages. The arg indicates the
 major/minor device number of the file system to be updated. If
 the arg parameter is specified as NODEV, all file systems that
 have disk quotas will be updated. The uid and addr parameters
 are ignored.

 This command is unprivileged.

 Q_SETUID Change the calling process's quota limits to those of the user
 with ID uid. The arg and addr parameters are ignored.

 Only superusers may set the quota user ID.

 Q_SETWARN Alter the disk usage warning limits for the user with ID uid.
 The arg parameter specifies the major/minor device number of a
 particular file system to which this command is to be applied.
 The addr parameter is a pointer to a struct dqwarn structure.

 Only superusers may set the usage warning limits.

AIX Operating System Technical Reference
quota

¦ Copyright IBM Corp. 1985, 1991
1.2.218 - 1

 Q_DOWARN Warn the user specified by the uid parameter about excessive
 disk usage. This call causes the system to check its current
 disk usage information and print a message on the terminal of
 the user, if the user is over quota. If the user is under
 quota, his warning count is reset to MAX*WARN (defined in
 sys/quota.h). If the arg parameter specifies NODEV, all file
 systems that have disk quotas will be checked. Otherwise, arg
 specifies a specific file system's major/minor device number.

 Only superusers may send warnings.

 Return Value
 A 0 return value indicates that the call succeeded. A return value of -1
 indicates that an error occurred, and an error code is stored in the
 global variable errno.

 Error Conditions
 If quota system call fails if one or more of the following are true:

 EINVAL The system is not configured to support quota option.

 EINVAL The cmd parameter is invalid.

 ESRCH No disk quota is found for the user ID uid.

 EPERM The cmd parameter requires privilege, and the calling process's
 effective user ID does not have superuser privileges.

 ENODEV The arg parameter indicates an invalid or unmounted file system.

 EFAULT The addr parameter points to a location outside of the process's
 allocated address space.

 EUSERS The quota table is full.

 Related Information
 In this book: "getrlimit, setrlimit, vlimit" in topic 1.2.115,
 "getrusage, vtimes" in topic 1.2.116, "setquota" in topic 1.2.253, and
 "ulimit" in topic 1.2.313.

 The discussion of quotacheck and quotaon in AIX Operating Systems Commands
 Reference.

AIX Operating System Technical Reference
quota

¦ Copyright IBM Corp. 1985, 1991
1.2.218 - 2

 1.2.219 raccept

 Purpose
 Accepts a replicated file system recovery queue entry.

 Syntax

 #include <sys/types.h>
 #include <sys/recovery.h>

 int raccept(rcmdp)
 struct rcmd *rcmdp;

 Description
 The raccept system call returns the first recovery entry from the kernel
 queue to the location pointed to by the rcmdp pointer. If the queue is
 empty, the requesting process sleeps until the queue is not empty. It is
 only intended for use by the replicated file system recovery master
 process, which waits for a request, then forks the appropriate recovery
 software. Other use may disrupt its operation.

 The raccept system call can only be used by the superuser.

 Error Conditions
 The following error codes are returned if raccept fails and -1 is
 returned:

 EPERM The effective user ID of the calling process is not superuser.

 EFAULT rcmdp is not contained in the allocated address space.

 EINTR A signal was caught while the process was waiting for a request.

 Related Information
 In this book: "chlwm" in topic 1.2.43 and "spropin" in topic 1.2.279.

 The primrec and recmstr commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
raccept

¦ Copyright IBM Corp. 1985, 1991
1.2.219 - 1

 1.2.220 raise

 Purpose
 Sends a signal to a running program.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <signal.h>

 int raise (sig);
 int sig;

 Description
 The raise function sends the signal sig to a running program. Upon
 completion, the return value is 0 if successful and nonzero if
 unsuccessful.

 Example
 The following example requests termination by raising condition SIGTERM.

 #include <signal.h>

 main ()
 {

 raise (SIGTERM); /* Request termination */
 }

AIX Operating System Technical Reference
raise

¦ Copyright IBM Corp. 1985, 1991
1.2.220 - 1

 1.2.221 rand, srand

 Purpose
 Generates pseudo-random numbers.

 Library
 Standard C Library (libc.a)
 Berkeley Compatibility Library (libbsd.a)

 Syntax

 int rand () void srand (seed);
 unsigned int seed;

 Description
 The rand subroutine generates random numbers using a multiplicative
 congruential algorithm. The random-number generator has a period of
 2(32), and it returns successive pseudo-random numbers in the range from 0
 to 2(15) - 1.

 The srand subroutine resets the random-number generator to a random
 starting point. The generator is initially seeded with a value of 1.

 Note: The rand subroutine is a very simple random-number generator. Its
 spectral properties, the mathematical measurement of how "random"
 the number sequence is, are somewhat weak. See "drand48" in
 topic 1.2.63 or "random, srandom, initstate, setstate" in
 topic 1.2.222 for a more elaborate random-number generator that has
 better spectral properties.

 Compatibility Note

 The 4.3BSD version of rand returns a number in the range 0 to 2(31)-1,
 rather than 0 to 2(15)-1, and can be used by compiling with the Berkeley
 Compatibility Library (libbsd.a). There are better random number
 generators, as noted above, however rand and srand are the interfaces
 defined for the ANSI C Library. The following functions define the
 semantics of rand and srand, and are included here to facilitate porting
 applications from different implementations:

 static unsigned int next = 1;

 int rand ()
 {
 next = next * 1103515245 + 12345;
 return ((next/65536) % 32768);
 }

 void srand (seed)
 int seed;
 {
 next = seed;
 }

AIX Operating System Technical Reference
rand, srand

¦ Copyright IBM Corp. 1985, 1991
1.2.221 - 1

 1.2.222 random, srandom, initstate, setstate

 Purpose
 Generates pseudo-random numbers and changes number generators.

 Library
 Standard C Library (libc.a)

 Syntax

 long random () char *initstate (seed, state, bytes)
 unsigned int seed;
 srandom (seed); char *state;
 int seed; int bytes;
 char *setstate (state)
 char *state;

 Description
 The random subroutine generates random numbers using a nonlinear additive
 feedback random-number generator. This generator uses a default table
 size of 31 long integers to return successive pseudo-random numbers in the
 range from 0 to 2(31)-1. The period of this random-number generator is
 very large, approximately 16¦ (2(31)-1).

 The srandom subroutine resets the random-number generator to a random
 starting point when used after the setstate subroutine. Like the rand
 subroutine, the random generator is initially seeded with a value of 1.

 The srandom subroutine, unlike the srand subroutine, does not return the
 old seed because the amount of state information used is more than a
 single word. Two other subroutines, initstate and setstate, handle
 restarting and changing random-number generators.

 The initstate subroutine allows a state array, passed in by the state
 parameter, to be initialized for future use. The size of the state array
 (in bytes) is contained in the bytes parameter, which is used by the
 initstate subroutine to decide how complex the random-number generator
 should be. When more bytes of state information are used, the numbers are
 more random. Values for the amount of state information are: 8, 32, 64,
 128, and 256 bytes. Amounts less than 8 bytes generate an error, while
 other amounts are rounded down to the nearest known value. The seed
 parameter specifies a starting point for the random-number sequence and
 provides for restarting at the same point. The initstate subroutine
 returns a pointer to the previous state information array.

 Once a state has been initialized, the setstate subroutine allows rapid
 switching between states. The array defined by state parameter is used
 for further random-number generation until the initstate subroutine is
 called or the setstate subroutine is called again. The setstate
 subroutine returns a pointer to the previous state array.

 After initialization, a state array can be restarted at a different point
 in one of two ways:

 � The initstate subroutine can be used, with the desired seed, state
 array, and size of the array, or

 � The setstate subroutine, with the desired state, can be used, followed
 by the srandom subroutine with the desired seed. The advantage of
 using both of these subroutines is that the size of the state array

AIX Operating System Technical Reference
random, srandom, initstate, setstate

¦ Copyright IBM Corp. 1985, 1991
1.2.222 - 1

 does not have to be saved once it is initialized.

 With a full 256 bytes of state information, the period of the
 random-number generator is greater than 2(69), which should be
 sufficient for most purposes.

 Error Conditions
 If the initstate subroutine is called with less than 8 bytes of state
 information, or if the setstate subroutine detects that the state
 information has been damaged, error messages are sent to the standard
 output.

 Related Information
 In this book: "drand48" in topic 1.2.63 and "rand, srand" in
 topic 1.2.221.

AIX Operating System Technical Reference
random, srandom, initstate, setstate

¦ Copyright IBM Corp. 1985, 1991
1.2.222 - 2

 1.2.223 rcmd, rresvport, ruserok

 Purpose
 Allows execution of commands on a remote host that is running the rshd.

 Library
 Internet Library (libc.a)

 Syntax

 int rcmd (host, port, locuser, remuser, command, errfd)
 char **host;
 unsigned short port;
 char *locuser, *remuser, *command;
 int *errfd;

 int rresvport (port)
 int *port;

 int ruserok (host, superuser, remuser, locuser)
 char *host;
 int superuser;
 char *remuser, *locuser;

 Description

 The rcmd subroutine is used to execute a command on a remote machine. The
 rresvport subroutine is used to obtain a socket with a privileged address
 bound to the socket. A privileged Internet port is one that falls in the
 range 0 to 1023. The ruserok subroutine is used by servers to
 authenticate clients requesting services with the rcmd subroutine.

 The rcmd and rresvport subroutines can only be used by processes with an
 effective user ID of superuser. An authentication scheme based on remote
 port numbers is used to verify permissions.

 The rcmd subroutine uses the gethostbyname subroutine to find the host
 specified by host. The host parameter is updated to point to the standard
 name of the host found by gethostbyname. If the host does not exist, the
 rcmd subroutine fails and returns -1.

 The port parameter specifies the well-known DARPA Internet port to use for
 the connection, which is part of the services data base. (See the
 description of the /etc/services file in AIX TCP/IP User's Guide for more
 information.)

 The locuser and remuser parameters point to user names that are valid at
 the local and remote host, respectively. Any valid user name can be
 given.

 The command parameter points to the name of the command to be executed at
 the remote host.

 If the connection succeeds, a socket in the Internet domain of type
 SOCK_STREAM is returned to the calling process and given to the remote
 command as standard input and standard output.

 If errfd is not 0, an auxiliary channel to a control process is set up,
 and the errfd parameter points to the file descriptor for the channel.
 The control process provides diagnostic output from the remote command on

AIX Operating System Technical Reference
rcmd, rresvport, ruserok

¦ Copyright IBM Corp. 1985, 1991
1.2.223 - 1

 this channel and also accepts bytes as signal numbers to be forwarded to
 the process group of the command.

 If errfd is NULL, then the standard error of the remote command is the
 same as standard output, and no provision is made for sending arbitrary
 signals to the remote process. In this case, however, it may be possible
 to send out-of-band data to the remote command.

 The host parameter of the ruserok subroutine contains the name of a remote
 host. The ruserok subroutine checks for this host in the /etc/host.equiv
 file. Then, if necessary, this subroutine checks a file in the user's
 home directory at the server called .rhosts for a host and remote user ID.

 The superuser parameter indicates whether the effective user ID of the
 calling process is that of the superuser. A value of 0 indicates the
 caller is not superuser. A value of 1 indicates that this process has
 local superuser privileges, and the checking of the /etc/host.equiv file
 is not performed.

 The remuser and locuser parameters point to user names that are valid at
 the local and remote host, respectively. Any valid user name can be
 given.

 If the local domain (obtained with the gethostname subroutine) is the same
 as the remote domain, only the host name (without the domain parts) must
 be specified.

 Return Value
 The rcmd subroutine returns a valid socket descriptor on success. If the
 effective user ID of the calling process is not superuser, rcmd returns a
 value of -1.

 The rresvport subroutine returns a valid, bound socket descriptor on
 success. If the rresvport subroutine fails, a value of -1 is returned and
 errno is set to indicate the error.

 The ruserok subroutine returns a value of 0 if the host name is found in
 the /etc/hosts.equiv file, or if the host and remuser IDs are found in the
 .rhosts file. If the host is not found, ruserok returns a value of -1.

 Error Conditions
 The rresvport subroutine fails if one or more of the following are true:

 EAGAIN All network ports are in use.

 EAFNOSUPPORT The addresses in the specified address family cannot be
 used with this socket.

 EMFILE Two hundred (200) file descriptors are currently open.

 ENFILE The system file table is full.

 ENOBUFS Insufficient buffers were available in the system to
 complete the call.

 Related Information
 In this book: "gethostname, sethostname" in topic 1.2.100 and "rexec" in
 topic 1.2.235.

 The discussions of /etc/services, rlogind, and rshd in AIX TCP/IP User's

AIX Operating System Technical Reference
rcmd, rresvport, ruserok

¦ Copyright IBM Corp. 1985, 1991
1.2.223 - 2

 Guide.

AIX Operating System Technical Reference
rcmd, rresvport, ruserok

¦ Copyright IBM Corp. 1985, 1991
1.2.223 - 3

 1.2.224 read, readv, readx

 Purpose
 Reads from a file or socket.

 Syntax

 #include <sys/uio.h>

 int read (d, buf, nbyte) int readx (d, buf, nbyte, ext)
 int d; int d, ext;
 char *buf; char *buf;
 unsigned int nbyte; unsigned int nbyte;
 int readv (d, iov, iovcnt)
 int d;
 struct iovec *iov;
 unsigned int iovcnt;

 Description
 The read system call reads a set number of bytes into a buffer. The read
 system call reads the number of bytes set by the nbyte parameter from the
 object associated with the d parameter and places those bytes into the
 buffer pointed to by the buf parameter.

 The readv system call obtains data from the object associated with the d
 parameter and reads this data into the buffers specified by the array of
 iovec structures pointed to by the iov parameter.

 The d parameter is a file descriptor obtained from a creat, open, dup,
 fcntl, or pipe system call, or a socket descriptor from a socket or
 socketpair system call.

 The iovec structure is defined in the sys/uio.h header file, and it
 contains the following members:

 caddr_t iov_base;
 int iov_len;

 Each iovec entry specifies the base address and length of an area in
 memory where data should be placed. The readv system call completely
 fills out an area before moving to the next.

 On devices capable of seeking, the read starts at a position in the file
 given by the file pointer associated with the d parameter. Upon return
 from the read system call, the file pointer is incremented by the number
 of bytes actually read.

 Devices that are incapable of seeking always read from the current
 position. The value of a file pointer associated with such a file is
 undefined.

 When attempting to read from an empty pipe (or FIFO):

 � Unless O_NDELAY or O_NONBLOCK is set, the read blocks until data is
 written to the file or the file is no longer open for writing.

 � If O_NDELAY is set, the read returns 0.

AIX Operating System Technical Reference
read, readv, readx

¦ Copyright IBM Corp. 1985, 1991
1.2.224 - 1

 � If O_NONBLOCK is set, the read returns -1 and errno is set to EAGAIN.

 When attempting to read a socket and no data is ready to be read:

 � Unless O_NDELAY or O_NONBLOCK is set, the read blocks until data
 becomes available.

 � If O_NDELAY is set, the read returns 0.

 � If O_NONBLOCK is set, the read returns -1 and errno is set to EAGAIN.

 When attempting to read a file associated with a terminal that has no data
 currently available:

 � Unless O_NDELAY or O_NONBLOCK is set, the read blocks until data
 becomes available.

 � If O_NDELAY is set, the read returns 0.

 � If O_NONBLOCK is set, the read returns -1 and errno is set to EAGAIN.

 When attempting to read a regular file that supports enforcement mode
 record locks, and all or part of the region to be read is currently locked
 by another process:

 � If O_NDELAY or O_NONBLOCK is set, then the read returns -1 and sets
 errno to EAGAIN.

 � If O_NDELAY and O_NONBLOCK are clear, then the read blocks the calling
 process until the lock is released.

 For more information about record locks, see "fcntl, flock, lockf" in
 topic 1.2.78.

 The readx system call performs the same function as read, except that it
 provides communication with character device drivers that require more
 information or return more status than read can handle.

 For files, sockets, or special files with drivers that do not handle
 extended operations, the readx system call does exactly what the read
 system call does, and the ext parameter is ignored.

 Each driver interprets the ext parameter in a device-dependent way, either
 as a value or as a pointer to a communication area. The nonextended read
 system call is equivalent to the extended readx system call with an ext
 parameter value of 0. Drivers must apply reasonable defaults when the ext
 parameter value is 0.

 For directories, the ext parameter determines the format in which
 directory entries should be returned:

 If the value of ext is 0 (implied by the read system call), the format
 in which directory entries are returned depends on the value of the
 real directory read flag (see "ulimit" in topic 1.2.313).

 � If the calling process does not have the real directory read flag
 set, the buffer specified by the buf parameter is filled with an
 array of directory entries truncated to fit the format of the
 direct structure (see "dir" in topic 2.3.16). This provides

AIX Operating System Technical Reference
read, readv, readx

¦ Copyright IBM Corp. 1985, 1991
1.2.224 - 2

 compatibility with programs written for UNIX System V.

 � If the calling process has the real directory read flag set, the
 buffer specified by the buf parameter is filled with an image of
 the underlying implementation of the directory.

 If the value of ext is 1, the buffer specified by the buf parameter is
 filled with consecutive directory entries in the format of a dirent
 structure (see "dir" in topic 2.3.16). This is used by the readdir
 library routine.

 Other values of the ext parameter are reserved.

 Note: On directories, the read, readv, and readx system calls start at
 the position specified by the file pointer associated with the d
 parameter. The value of this file pointer must either be 0 or a
 value which the file pointer had immediately after a previous call
 to read or readx on this directory. Upon return from the read or
 readx system call, the file pointer is incremented by a number
 which may not correspond to the number of bytes copied into the
 buffer.

 Return Value
 Upon successful completion for a file object, the read, readv, and readx
 system calls return the number of bytes actually read and placed in the
 buffer; this number may be less than the value of the nbyte parameter if
 the file is associated with a communication line, or if the number of
 bytes left in the file is less than the value of the nbyte parameter. A
 value of 0 is returned when an end-of-file has been reached. (For
 information about communication files, see "ioctlx, ioctl, gtty, stty" in
 topic 1.2.137 and "termio" in topic 2.5.28.)

 For a socket object, the read system call returns the number of bytes
 actually read and placed into the buffer.

 If the read, readv, or readx system call fails, a value of -1 is returned,
 and errno is set to indicate the error.

 Error Conditions
 The read, readv, and readx system calls fail if one or more of the
 following are true:

 EBADF d is not a valid file descriptor open for reading or a valid
 socket descriptor.

 EAGAIN An enforcement mode record lock is outstanding in the portion of
 the file that is to be read.

 EFAULT buf points to a location outside of the process's allocated
 address space.

 EDEADLK A deadlock would occur if the calling process were to sleep
 until the region to be read was unlocked.

 EINTR A signal was caught during the read or readv system call.

 EINVAL The value of iovcnt was not between 1 and 16, inclusive.

 EINVAL One of the iov_len values in the iov array was negative.

AIX Operating System Technical Reference
read, readv, readx

¦ Copyright IBM Corp. 1985, 1991
1.2.224 - 3

 EINVAL The sum of the iov_len values in the iov array overflowed a
 32-bit integer.

 EFAULT Part of the iov parameter points to a location outside of the
 process's allocated address space.

 EAGAIN The object is marked for non-blocking I/O (O_NONBLOCK), and no
 data was ready to be read.

 EINVAL An nbyte value of less than 0 is specified.

 ENODEV The file specified is an invalid device for reading.

 EIO A physical I/O error occurred.

 EIO The process is in a background process group, attempting to read
 from its controlling terminal and either the process is ignoring
 or blocking the SIGTTIN signal or the process group of the
 calling process is orphaned.

 If the Transparent Computing Facility is installed on your system, read or
 readx can also fail if one or more of the following are true:

 ESITEDN1 The file cannot be read because a site went down and either no
 other copy of the file is available or the file is or was open
 for writing.

 ESITEDN2 The operation was terminated because a site failed.

 ENFILE The system inode table on another cluster site is out of space.

 Related Information
 In this book: "dup" in topic 1.2.64, "dup2" in topic 1.2.65, "fcntl,
 flock, lockf" in topic 1.2.78, "ioctlx, ioctl, gtty, stty" in
 topic 1.2.137, "open, openx, creat" in topic 1.2.199, "pipe" in
 topic 1.2.204, "select" in topic 1.2.242, "socket" in topic 1.2.275,
 "socketpair" in topic 1.2.276, "fcntl.h" in topic 2.4.8, and "termio" in
 topic 2.5.28.

AIX Operating System Technical Reference
read, readv, readx

¦ Copyright IBM Corp. 1985, 1991
1.2.224 - 4

 1.2.225 readlink

 Purpose
 Reads the value of a symbolic link.

 Syntax

 int readlink(path, buf, bufsiz)
 char *path, *buf;
 int bufsiz;

 Description
 The readlink system call places the first bufsiz characters of the
 contents of the symbolic link path into the user's buffer buf. Unless the
 link fills the buffer, it will be null-terminated.

 Return Value
 Upon successful completion, the count of characters place in the buffer,
 not including the terminating NULL, is returned to the calling process.
 Otherwise, a value of -1 is returned, and errno is set to indicate the
 error.

 Error Conditions
 The readlink system fails if one or more of the following are true:

 EACCES path is not a symbolic link.

 EFAULT buf points to an invalid address space.

 EACCES A component of the path prefix denies search permission.

 EIO A physical I/O error occurred.

 ENOTDIR A component of the path prefix is not a directory.

 ENOENT The named file does not exist.

 ENOENT A null path name was provided.

 ENOENT A hidden directory was named, but no component inside it matched
 the process's current site path list.

 ENOENT A symbolic link was named, in the path prefix, but the file to
 which it refers does not exist.

 EINVAL The file named by a path is not a symbolic link.

 EFAULT path points outside the process's allocated address space.

 ELOOP A loop of symbolic links was detected. Since readlink does not
 follow symbolic links in the last component of the path, this
 error cannot occur on the last component.

 ENFILE The system inode table is full.

 ENAMETOOLONG
 A component of a path name exceeded 255 characters, or an entire
 path name exceeded 1023 characters.

 If the Transparent Computing Facility is installed on your system,

AIX Operating System Technical Reference
readlink

¦ Copyright IBM Corp. 1985, 1991
1.2.225 - 1

 readlink can also fail if one or more of the following are true:

 ESITEDN1 path cannot be accessed because a site went down.

 ESITEDN2 The operation was terminated because a site failed.

 ENOSTORE path is a name relative to the working directory, but no site
 which stores this directory is currently up.

 ENOSTORE A component of path is replicated but not stored on any site
 which is currently up.

 EINTR A signal was caught during the system call.

 Related Information
 In this book: "stat.h" in topic 2.4.22 and "symlink" in topic 1.2.294.

AIX Operating System Technical Reference
readlink

¦ Copyright IBM Corp. 1985, 1991
1.2.225 - 2

 1.2.226 reboot

 Purpose
 Reinitializes or halts system operation.

 Syntax

 #include <sys/reboot.h>

 reboot(howto, dev)
 int howto;
 char *dev;

 Description
 The reboot system call requests that the system be reinitialized
 (rebooted) or terminated (halted).

 The value of howto is interpreted as flag bits. The following flags are
 supported by AIX. Caller must have superuser privileges. If the reboot
 call fails, it returns to caller; otherwise, the call does not return.

 RB_NOSYNC prevents the normal write of buffered data to file systems. If
 RB_NOSYNC is not on, all buffered file writes are completed and all file
 systems are unmounted and marked as clean. Cleanly unmounted file systems
 are not normally checked during system initialization.

 RB_HALT causes the system to be halted instead of rebooted. If RB_HALT is
 specified, the AIX system is terminated and not restarted. If RB_HALT is
 omitted, the AIX system is terminated and immediately reinitialized.

 The dev parameter is currently ignored.

 Error Conditions

 EPERM The calling process does not have INSTALL_SYS system privilege.

 Related Information
 The reboot command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
reboot

¦ Copyright IBM Corp. 1985, 1991
1.2.226 - 1

 1.2.227 recv, recvfrom, recvmsg

 Purpose
 Receives a message from a socket.

 Syntax

 #include <sys/types.h>
 #include <sys/socket.h>

 int recv (s, buf, len, flagsint recvfrom (s, buf, len, flags, from, fromlen)
 int s; int s;
 char *buf; char *buf;
 int len, flags; int len, flags;
 struct sockaddr *from;
 int recvmsg (s, msg, flags) int *fromlen;
 int s;
 struct msghdr msg [];
 int flags;

 Description

 The recv system call is normally used only on a connected socket (see
 "connect" in topic 1.2.49), but recvfrom and recvmsg can be used to
 receive data on a socket whether it is connected or not.

 If the value of from is anything other than 0, the source address of the
 message is filled in. The fromlen parameter is initialized to the size of
 the buffer associated with the from parameter. On return, it is modified
 to indicate the actual size of the address stored there. These system
 calls return the length of the message. If a message is too long to fit
 in the supplied buffer, excess bytes may be discarded depending on the
 type of socket the message is received from. For more information, see
 "socket" in topic 1.2.275.

 If no messages are available at the socket, the receive system calls wait
 for a message to arrive, unless the socket is nonblocking. A socket
 marked nonblocking with the O_NONBLOCK flag or the FIONBIO ioctl returns a
 value of -1 and sets errno to EAGAIN in the situation where it would
 otherwise have blocked. A socket marked with the O_NDELAY flag returns
 ZERO in the situation where it would otherwise have blocked.

 Use the select system call to determine when more data arrives. For more
 information, see "select" in topic 1.2.242.

 The flags argument to a receive call is formed by logically ORing one or
 more of the values shown in the following list:

 MSG_PEEK Peeks at incoming message.

 MSG_OOB Processes out-of-band data. This flag can only be used for
 stream sockets in the INET domain. It is not supported in the
 UNIX domain and does not work for datagrams. In addition,
 only one byte of out-of-band data can be processed at a time.

 The recvmsg system call uses a msghdr structure to minimize the number of
 directly supplied parameters. The msghdr structure is defined in the
 sys/socket.h header file, and it contains the following members:

AIX Operating System Technical Reference
recv, recvfrom, recvmsg

¦ Copyright IBM Corp. 1985, 1991
1.2.227 - 1

 caddr_t msg_name; /* optional address */
 int msg_namelen; /* size of address */
 struct iovec *msg_iov; /* scatter/gather array */
 int msg_iovlen; /* # of elements in msg_iov */
 caddr_t msg_accrights; /* access rights are currently */
 /* limited to file descriptors, */
 /* which each occupy the size */
 /* of an int */
 int msg_accrightslen; /* length of access rights */

 In the above structure, the fields are defined as follows:

 msg_name Defines the destination address if the socket is unconnected.
 If no names are needed, you can use a NULL pointer for
 msg_name.

 msg_namelen Specifies the size of msg_name.

 msg_iov Describes the scatter gather locations.

 msg_iovlen Specifies the number of elements in the msg_iov array.

 msg_accrights Defines the access rights sent with the message.

 msg_accrightslen Specifies the length of the access rights.

 Return Value
 Upon successful completion, the length of the message in bytes is
 returned. If the recv, recvfrom, or recvmsg system call fails, a value of
 -1 is returned, and errno is set to indicate the error. A socket marked
 with the O_NDELAY flag returns ZERO in the situation where it would
 otherwise have blocked.

 Error Conditions
 The system call fails if one or more of the following are true:

 EBADF The s parameter is not valid.

 ENOTSOCK The s parameter refers to a file, not a socket.

 EAGAIN The socket is marked nonblocking with the O_NONBLOCK flag or the
 FIONBIO ioctl in the situation where it would otherwise have
 blocked.

 EINTR The receive was interrupted by delivery of a signal before any
 data was available for the receive.

 EFAULT The data was specified to be received into a nonwritable part of
 the user address space.

 EINVAL The msg_iovlen field of the msghdr structure passed into a
 recvmsg call was negative.

 Related Information
 In this book: "send, sendto, sendmsg" in topic 1.2.246 and "socket" in
 topic 1.2.275.

AIX Operating System Technical Reference
recv, recvfrom, recvmsg

¦ Copyright IBM Corp. 1985, 1991
1.2.227 - 2

 1.2.228 regcmp, regex

 Purpose
 Compiles and matches regular-expression patterns.

 Library
 Programmers Workbench Library (libPW.a)

 Syntax

 char *regcmp (str [, str,...charc*regex (pat, subject [, ret,...])
 char *str, *str,...; char *pat, *subject, *ret,...;
 extern char *__loc1;

 Description
 The regcmp subroutine compiles a regular expression (or pattern) and
 returns a pointer to the compiled form. The str parameters specify the
 pattern to be compiled. If more than one str parameter is given, then
 regcmp treats them as if they were concatenated together. It returns a
 NULL pointer if it encounters an incorrect parameter.

 You can use the regcmp command to compile regular expressions into your C
 program, frequently eliminating the need to call the regcmp subroutine at
 run time.

 The regex subroutine compares a compiled pattern to the subject string.
 Additional parameters are used to receive values. Upon successful
 completion, the regex subroutine returns a pointer to the next unmatched
 character. If the regex subroutine fails, a NULL pointer is returned. A
 global character pointer, __loc1, points to where the match began.

 The regcmp and regex subroutines are borrowed from the ed command;
 however, the syntax and semantics have been changed slightly. You can use
 the following symbols with the regcmp and regex subroutines:

 [] * . ^
 These symbols have the same meaning as they do in the ed command.

 - For regex, the minus within brackets means "through" according to the
 current collating sequence. For example, depending on the default
 collating sequence, [a-z] can be equivalent to [abcd...xyz] or
 [aBbCc...xYyZz]. You can use the - by itself if the - is the last or
 first character. For example, the character class expression []-]
 matches the] (right bracket) and - (minus) characters.

 $ Matches the end of the string. Use \n to match a new-line character.

 + A regular expression followed by + means one or more times. For
 example, [0-9]+ is equivalent to [0-9][0-9]*.

 {m} {m,} {m,u}
 Integer values enclosed in { } indicate the number of times to apply
 the preceding regular expression. m is the minimum number and u is the
 maximum number. u must be less than 256. If you specify only m, it
 indicates the exact number of times to apply the regular expression.
 {m,} is equivalent to {m,&infinity.} and matches m or more occurrences
 of the expression. The plus + (plus) and * (asterisk) operations are
 equivalent to {1,} and {0,}, respectively.

 (...)$n

AIX Operating System Technical Reference
regcmp, regex

¦ Copyright IBM Corp. 1985, 1991
1.2.228 - 1

 This stores the value matched by the enclosed regular expression in the
 (n+1) (th) ret parameter. Ten enclosed regular expressions are
 allowed. regex makes the assignments unconditionally.

 (...)
 Parentheses group subexpressions. An operator, such as *, +, or { }
 works on a single character or on a regular expression enclosed in
 parenthesis. For example, (a*(cb+)*)$0.

 All of the above defined symbols are special. You must precede them with
 a \ (backslash) if you want to match the special symbol itself. For
 example, \$ matches a dollar sign.

 The following special symbols are defined for internationalized regular
 expressions. Each is valid only within a range expression, (that is,
 between brackets).

 [:alnum:]
 Matches any alphanumeric, as defined by the NLctype.h macro iswalnum.

 [:alpha:]
 Matches any alpha, like iswalpha.

 [:digit:]
 Matches any digit, like iswdigit.

 [:lower:]
 Matches any lower, like iswlower.

 [:print:]
 Matches any printable, like iswprint.

 [:punct:]
 Matches any punctuation, like iswpunct.

 [:space:]
 Matches any white space, like iswspace.

 [:upper:]
 Matches any upper case letter, like iswupper.

 [:xdigit:]
 Matches any hex digit, like iswxdigit.

 [=X=]
 matches any character in the same equivalence class as X, as defined
 by wceqvmap.

 [.XY.]
 Matches the multiple character collating sequence XY as a single
 character (as defined by _wcxcol. For example, some Latin languages
 collate the sequence ch as a single character which falls between the
 letters c and d. The regular expression [c[.ch.]d]amp would match
 the words camp, champ, and damp.

 The ctype sequences, such as [:alpha:], cannot be used as end points of a
 range.

 Note: regcmp uses the malloc subroutine to make the space for the vector.
 Always free the vectors that are not required. If you do not free

AIX Operating System Technical Reference
regcmp, regex

¦ Copyright IBM Corp. 1985, 1991
1.2.228 - 2

 the unrequired vectors, you may run out of memory if regcmp is
 called repeatedly. Use the following as a replacement for malloc
 to reuse the same vector, thus saving time and space:

 /* ...Your Program... */

 malloc(n)
 int n;
 {
 static int rebuf[256];

 return ((n <= sizeof(rebuf)) ? rebuf : NULL);
 }

 Examples

 1. To perform a simple match:

 char *cursor, *newcursor, *ptr;
 ...
 newcursor = regex((ptr = regcmp("^\n", 0)), cursor);
 free(ptr);

 This matches a leading new-line character in the subject string
 pointed to by cursor.

 2. To extract a substring that matches a pattern:

 char ret0[9];
 char *newcursor, *name;
 ...
 name = regcmp("([A-Za-z][A-Za-z0-9]{0,7})$0", 0);
 newcursor = regex(name, "123Testing321", ret0);

 This matches the eight-character identifier Testing3 and returns the
 address of the character after the last matched character (which is
 stored in newcursor). The string Testing3 is copied into the
 character array ret0.

 Related Information
 In this book: "malloc, free, realloc, calloc, valloc, alloca, mallopt,
 mallinfo" in topic 1.2.162, "NCcollate, NCcoluniq, NCeqvmap, _NCxcol,
 _NLxcol" in topic 1.2.182, "wc_collate, wc_coluniq, wc_eqvmap, _wcxcol,
 _mbxcol, _wcxcolu, _mbxcolu" in topic 1.2.329, "setlocale" in
 topic 1.2.251, and "regexp: compile, step, advance" in topic 1.2.230.

 The ed and regcmp commands in AIX Operating System Commands Reference.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
regcmp, regex

¦ Copyright IBM Corp. 1985, 1991
1.2.228 - 3

 1.2.229 regex: re_comp, re_exec

 Purpose
 Handles regular expressions.

 Library
 Berkeley Compatibility Library (libbsd.a)

 Syntax

 char *re_comp (s)
 char *s;

 int *re_exec (s)
 char *s;

 Description
 The re_comp subroutine complies a string into an internal form suitable
 for pattern matching. The re_exec subroutine checks the argument string
 against the last string passed to re_comp.

 The re_comp subroutine returns 0 if the string s was compiled
 successfully; otherwise a string containing an error message is returned.
 If re_comp is passed to 0 or a null string, it returns without changing
 the currently compiled regular expression.

 The re_exec subroutine returns 1 if the string s matches the last compiled
 regular expression, 0 if the string s failed to match the last compiled
 regular expression, and -1 if the compiled regular expression was invalid
 (indicating an internal error).

 The strings passed to both re_comp and re_exec may have trailing or
 embedded newline characters; they are terminated by nulls. The regular
 expressions recognized are described in the manual entry for the ed
 command, given the above difference.

 Return Value
 If an error occurs, re_exec returns a -1, while re_comp returns one of the
 following strings:

 No previous regular expression.
 Regular expression too long.
 Unmatched \(.
 Missing]
 Too many \(\) pairs.
 Unmatched \).

 Related Information
 In this book: "NCcollate, NCcoluniq, NCeqvmap, _NCxcol, _NLxcol" in
 topic 1.2.182, "regcmp, regex" in topic 1.2.228, and "regexp: compile,
 step, advance" in topic 1.2.230.

 The ed, grep, and sed commands in AIX Operating System Commands Reference.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

AIX Operating System Technical Reference
regex: re_comp, re_exec

¦ Copyright IBM Corp. 1985, 1991
1.2.229 - 1

 1.2.230 regexp: compile, step, advance

 Purpose
 Compiles and matches regular-expression patterns.

 Library
 None

 Syntax

 #define INIT declarations
 #define GETC() getc_code
 #define PEEKC() peekc_code
 #define UNGETC(c) ungetc_code
 #define RETURN(pointer) return_code
 #define ERROR(val) error_code

 #include <regexp.h>

 char *compile (instring, ep,intdstep (p1,)p2)
 char *instring, *ep, *endbufchar *string, *expbuf;
 int seof;
 int advance (lp, ep)
 char *string, *expbuf;

 Description
 The regexp.h header file defines several general purpose subroutines that
 perform regular-expression pattern matching. Programs that perform
 regular-expression pattern matching such as ed, sed, grep, bs, and expr
 use this source file. In this way, only this file needs to be changed in
 order to maintain regular expression compatibility between programs.

 The NLregexp.h functions compile, step and advance operate on file code
 strings. The following macros must be defined by the programmer prior to
 including NLregexp.h.

 INIT
 This macro is used for dependent declarations and initializations. It
 is placed right after the declaration and opening { (left brace) of the
 compile subroutine. The definition of INIT must end with a ;
 (semicolon). INIT is frequently used to set a register variable to
 point the beginning of the regular expression so that this register
 variable can be used in the declarations for GETC, PEEKC, and UNGETC.
 Otherwise, you can use INIT to declare external variables that GETC,
 PEEKC, and UNGETC need.

 #define INIT register char *sp = instring; \
 int sp_len; \
 mbchar_t sp_peekc;

 GETC()
 This macro returns the value of the next character (as an mbchar_t) in
 the regular expression pattern. Successive calls to the GETC macro
 should return successive characters of the pattern.

 # define GETC() (PEEK(),sp+=sp_len,sp_peekc)

AIX Operating System Technical Reference
regexp: compile, step, advance

¦ Copyright IBM Corp. 1985, 1991
1.2.230 - 1

 PEEKC()
 This macro returns the next character (as an mbchar_t) in the regular
 expression. Successive calls to the PEEKC macro should return the same
 character, which should also be the next character returned by the GETC
 macro. The special value ERR should be returned if there is an error
 in the character.

 #define PEEKC() ((-1==(sp_len=mbstomb (&sp_peekc,sp,MB_LEN_MAX))) \
 ? sp_peekc=ERR\
 : sp_peekc)

 UNGETC(c)
 This macro causes the parameter c to be returned by the next call to
 the GETC and PEEKC macros. No more than one character of pushback is
 ever needed and this character is guaranteed to be that last character
 read by the GETC macro. The return value of the UNGETC macro is always
 ignored.

 #define UNGETC (c) (sp-=sp_len)

 RETURN(pointer)
 This macro is used on normal exit of the compile subroutine. The
 pointer parameter points to the first character immediately following
 the compiled regular expression. This is useful to programs that have
 memory allocation to manage.

 #define RETURN(p) return

 ERROR(val)
 This macro is used on abnormal exit from the compile subroutine. It
 should never contain a return statement. The val parameter is an error
 number. The error values and their meanings are:

 #define ERROR(c) regerr (c)

 Error
 Name Value Meaning

 BIG_RANGE 11 Range endpoint too large.

 BAD_NUM 16 Bad number.

 BAD_BACK 25 "\" digit out of range.

 BAD_DELIM 36 Illegal or missing delimiter.

 NO_SAVED 41 No remembered search string.

 BAD_LEFTP 42 "\(\)" imbalance.

 BAD_RIGHTP 43 Too many "\(".

 EX_COMMA 44 More than two numbers given in \{ \}.

 NO_CLOSE 45 "}" expected after "\".

 MAX_MIN 46 First number exceeds second in \{ \}.

 BAD_BRAK 49 "[]" imbalance.

AIX Operating System Technical Reference
regexp: compile, step, advance

¦ Copyright IBM Corp. 1985, 1991
1.2.230 - 2

 TOO_BIG 50 Regular expression overflow.

 STACK_EMPTY 51 Backtrack stack empty.

 STACK_FULL 52 Backtrack stack full.

 BAD_CHAR 60 Strange multibyte character.

 The compile subroutine compiles the regular expression for later use. The
 instring parameter is never used explicitly by the compile subroutine, but
 you can use it in your macros. For instance, you may want to pass the
 string containing the pattern as the instring parameter to compile and use
 the INIT macro to set a pointer to the beginning of this string. (The
 following example uses this technique.) If your macros do not use
 instring, then call compile with a value of ((char *) 0) for this
 parameter.

 The expbuf parameter points to a character array where the compiled
 regular expression is to be placed. The endbuf parameter points to the
 location that immediately follows the character array where the compiled
 regular expression is to be placed. If the compiled expression cannot fit
 in (endbuf-expbuf) bytes, the call ERROR(50) is made.

 The eof parameter is the character that marks the end of the regular
 expression. For example, in ed this character is usually '/' (slash).

 The regexp.h header file defines other subroutines that perform actual
 regular-expression pattern matching. One of these is the step subroutine.

 The string parameter of step is a pointer to a null-terminated string of
 characters to be checked for a match.

 The expbuf parameter points to the compiled regular expression, which was
 obtained by a call to the compile subroutine.

 The step subroutine returns the value 1 if the given string matches the
 pattern, and 0 if it does not match. If it matches, then step also sets
 two global character pointers: loc1, which points to the first character
 that matches the pattern, and loc2, which points to the character
 immediately following the last character that matches the pattern. Thus,
 if the regular expression matches the entire string, then loc1 points to
 the first character of string and loc2 points to the null character at the
 end of string.

 The step subroutine uses the global variable circf, which is set by
 compile if the regular expression begins with a ^ (circumflex). If this
 variable is set, then step only tries to match the regular expression to
 the beginning of the string. If you compile more than one regular
 expression before executing the first one, then save the value of circf
 for each compiled expression and set circf to that saved value before each
 call to step.

 The step subroutine calls a subroutine named advance with the same
 parameters that it was passed. The step function increments through the
 string parameter and calls advance until advance returns a 1, indicating a
 match, or until the end of string is reached. To constrain string to the
 beginning of the string in all cases, call the advance subroutine directly
 instead of calling step.

AIX Operating System Technical Reference
regexp: compile, step, advance

¦ Copyright IBM Corp. 1985, 1991
1.2.230 - 3

 When advance encounters an * (asterisk) or a \{ \} sequence in the regular
 expression, it advances its pointer to the string to be matched as far as
 possible and recursively calls itself trying to match the rest of the
 string to the rest of the regular expression. As long as there is no
 match, advance backs up along the string until it finds a match or reaches
 the point in the string that initially matched the * or \{ \}. It is
 sometimes desirable to stop this backing-up before the initial point in
 the string is reached. If the global character pointer locs is equal to
 the point in the string sometime during the backing up process, advance
 breaks out of the loop that backs up and returns 0. This is used by ed
 and sed for global substitutions on the whole line so that expressions
 like s/y*//g do not loop forever.

 Example
 The following is an example of the regular expression macros and calls
 from the grep command.

 #define INIT register char *sp=instring;
 #define GETC() (*sp++)
 #define PEEKC() (*sp)
 #define UNGETC(c) (--sp)
 #define RETURN(c) return;
 #define ERROR(c) regerr()

 #include <regexp.h>
 ...
 compile (patstr, expbuf, &expbuf[ESIZE], '\0');
 ...
 if (step (linebuf, expbuf))
 succeed ();
 ...

 Related Information
 In this book: "NCcollate, NCcoluniq, NCeqvmap, _NCxcol, _NLxcol" in
 topic 1.2.182 and "regcmp, regex" in topic 1.2.228.

 The ed, grep, and sed commands in AIX Operating System Commands Reference.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
regexp: compile, step, advance

¦ Copyright IBM Corp. 1985, 1991
1.2.230 - 4

 1.2.231 Remote Procedure Call (RPC)

 Purpose
 Allows machines to make procedure calls to other network machines.

 Library
 Standard C Library (libc.a)

 Description
 Remote Procedure Call (RPC) is a remote procedure call specification that
 provides a procedure-oriented interface to remote services. RPC is used
 in networks to provide programs that enable communication between
 machines. For example, a network file service can be composed of programs
 that deal with high-level applications such as file access control and
 programs that deal with low-level applications such as read or write. The
 programs are accessible through a machine designated as a network server.
 A client of the network file service can call the procedures associated
 with the programs on behalf of a user logged in to the client machine.

 A client is a computer or process that accesses the services or resources
 of another process or computer on the network. A server is a computer
 that provides services and resources, as well as implements network
 services. Each network service is a collection of remote programs. A
 remote program implements remote procedures. The procedures, along with
 their parameters and results, are documented in the specific program's
 protocol specification. A server can support more than one version of a
 remote program in order to be compatible with changing protocols.

 In RPC, each server supplies a program that is a set of procedures. The
 combination of a host address, a program number, and a procedure number
 specifies one remote service procedure.

 The RPC Communication Paradigm: Programs that communicate over a network
 need a paradigm for communication. The RPC paradigm is based on the
 remote procedure call model, which is similar to the local procedure call
 model. A local procedure call involves the caller placing arguments to a
 procedure in a defined location, such as a result register, and
 transferring control to the procedure. The caller eventually gains back
 control and extracts the results of the procedure from the defined
 location before continuing execution.

 A remote procedure call is similar, except that one thread of control
 winds through two processes: a caller process and a server process. That
 is, the caller process sends a call message to the server process and
 waits for (or blocks) a reply message. The call message contains
 information that includes the parameters of the procedure. The reply
 message contains information that includes the results of the procedure.
 When the caller receives the reply message, it extracts the results of the
 procedure and resumes execution.

 On the server side, a process is dormant awaiting the arrival of a call
 message. When one arrives, the server process extracts the procedure's
 parameters, computes the results, sends a reply message, and waits for the
 next call message.

 Only one of the two processes is active at any given time. That is, the
 RPC protocol does not explicitly support multithreading of caller or
 server processes.

 External Data Representation (XDR): RPC uses External Data Representation

AIX Operating System Technical Reference
Remote Procedure Call (RPC)

¦ Copyright IBM Corp. 1985, 1991
1.2.231 - 1

 (XDR) to establish uniform representations for data types in order to
 transfer the call message data between machines without regard to their
 manufacturers, operating systems, or architectures. For basic data types
 such as integers and strings, XDR provides primitives that serialize, or
 translate, information from the local host's representation to XDR's
 representation, and deserialize, or translate, from the XDR representation
 to the local host's representation. XDR also uses constructor primitives
 that allow the use of the basic data types to create more complex data
 types, such as arrays and discriminated unions.

 RPC input and output data structures are described using XDR's data
 description language, which resembles the C programming language. Many of
 the constructs are identical to those in the C language. XDR additionally
 uses a construct called a discriminated union. The discriminated union is
 a union data structure which holds various objects with one of the objects
 identified directly by a discriminant, or arm, that is the first item to
 be serialized or deserialized.

 The syntax for XDR routines that are called directly by RPC routines are
 included in "RPC Subroutines" in topic 1.2.231.2.5. For more detailed
 information about XDR and the other XDR routines, see "XDR (External Data
 Representation)" in topic 1.2.332.

 Data Transports and Semantics: RPC deals with the specification and
 interpretation of messages, not with the method used to pass messages from
 one process to the other. It does not depend on services provided by
 specific transport protocols. Although specific semantics, or meanings,
 are not attached to remote procedures or their execution, certain
 semantics can be inferred from the protocol of the underlying data
 transport that is used.

 For example, passing RPC messages with the UDP/IP data transport is
 unreliable. If the caller retransmits RPC call messages after short
 timeouts, the only thing it can infer from no reply message is that the
 remote procedure was executed zero or more times (and from a reply
 message, one or more times). In contrast, passing RPC messages with
 TCP/IP is reliable. No reply message means the remote procedure was
 executed one time at most, and a reply message means that the remote
 procedure was executed exactly once.

 Binding and Rendezvous Independence: RPC does not bind a client to a
 service as part of its protocol. This required function is left up to a
 higher level software. However, the network software can use RPC to
 accomplish the tasks involved with binding clients to services.

 Message Authentication: The RPC protocol provides the fields required for
 a client to identify itself to a service and for a service to identify
 itself to the client. The contents of RPC authentication parameters for
 these fields are determined by the type, sometimes called flavor, of the
 authentication used by the server and the client. A server can support
 multiple types of authentication at one time.

 You can build additional security and access controls on top of the
 message authentication.

 Subtopics
 1.2.231.1 The RPC Protocol
 1.2.231.2 The RPC Message Protocol

AIX Operating System Technical Reference
Remote Procedure Call (RPC)

¦ Copyright IBM Corp. 1985, 1991
1.2.231 - 2

 1.2.231.1 The RPC Protocol

 RPC is primarily a tool for calling remote procedures. By providing a
 unique specification for calling the remote procedures, RPC can match a
 reply message to each request (or call) message.

 Each RPC call message contains the following unsigned fields to uniquely
 identify the procedure to be called:

 � Remote program numbe
 � Remote program version numbe
 � Remote procedure number

 Assigning Program Numbers to Protocols: Program numbers are assigned in
 groups of 0x20000000 (536870912) as shown in Figure 2-2:

 +--+
 ¦ Figure 2-2. How to Assign Program Numbers ¦
 +--¦
 ¦ Program Number ¦ How Assigned ¦ Use ¦
 +----------------------+----------------+--------------------------------¦
 ¦ 0 - 1fffffff ¦ Defined by ¦ System authority (the product ¦
 ¦ ¦ system ¦ licensor) administers this ¦
 ¦ ¦ authority ¦ first group of numbers. This ¦
 ¦ ¦ ¦ group should be identical for ¦
 ¦ ¦ ¦ all system customers. ¦
 +----------------------+----------------+--------------------------------¦
 ¦ 20000000 - 3fffffff ¦ Defined by ¦ Use this group for ¦
 ¦ ¦ user ¦ applications you develop and ¦
 ¦ ¦ ¦ for debugging new programs. ¦
 +----------------------+----------------+--------------------------------¦
 ¦ 40000000 - 5fffffff ¦ Transient ¦ Use the third group for ¦
 ¦ ¦ ¦ applications that generate ¦
 ¦ ¦ ¦ program numbers dynamically. ¦
 +--+

 Assigning Version Numbers to Programs: As programs evolve into more
 stable and mature protocols, version numbers are assigned. The first
 implementation of a remote program is usually designated as version number
 1 (or a similar form).

 The version number identifies which version of the protocol the caller is
 using. Version numbers make it possible to use old and new protocols
 through the same server.

 Assigning Procedure Numbers to Programs: The procedure numbers are
 documented in each program's protocol specification. For example, a file
 service protocol's specification can list the read procedure as procedure
 number 5 and write as procedure number 12.

AIX Operating System Technical Reference
The RPC Protocol

¦ Copyright IBM Corp. 1985, 1991
1.2.231.1 - 1

 1.2.231.2 The RPC Message Protocol

 The RPC message protocol consists of two distinct forms: the call message
 and the reply message. A client makes a remote procedure call to a
 network server and receives a reply containing the results of the
 procedure's execution. RPC message protocols are defined in the XDR data
 description language.

 Call and reply messages have the following values:

 enum msg_type {
 CALL = 0,
 REPLY = 1
 };

 Subtopics
 1.2.231.2.1 Message Protocol Structure
 1.2.231.2.2 Record Marking in the Messages
 1.2.231.2.3 Authentication
 1.2.231.2.4 The Portmap Program
 1.2.231.2.5 RPC Subroutines

AIX Operating System Technical Reference
The RPC Message Protocol

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2 - 1

 1.2.231.2.1 Message Protocol Structure

 The initial message structure appears as follows:

 struct rpc_msg {
 unsigned xid;
 union switch (enum msg_type) {
 CALL: struct call_body;
 REPLY; struct reply_body;
 };
 };

 Both the RPC call and reply messages start with an xid, the transaction
 identifier, followed the two-armed discriminated union enum msg_type. The
 reply messages' xids are matched to the xids of the call messages. It is
 important to note that the xids are used only by the clients when matching
 reply messages to call messages.

 The initial structure is followed by the body of the message. The body of
 a call message has a single form. The body of a reply message takes one
 of two forms depending on whether a call is accepted or rejected by the
 server.

 Call Messages: The body of an RPC call message is structured as follows:

 struct call_body {
 unsigned rpcvers;
 unsigned prog;
 unsigned vers;
 unsigned proc;
 struct opaque_auth cred;
 struct opaque_auth verf;
 #1 parameter
 #2 parameter...
 };

 The structure is explained in the following:

 rpcvers RPC protocol specification version number.

 prog Number that identifies a remote program. This is an assigned
 number represented in a protocol that identifies the program
 needed to call a remote procedure. Program numbers are
 administered by a central authority and are documented in the
 program's protocol specification.

 vers Number that identifies the remote program's version. As a remote
 program's protocols are implemented, they evolve and change.
 Version numbers are assigned to identify different stages of a
 protocol's evolution. Servers can service requests for different
 versions of the same protocol simultaneously.

 proc Number of the procedure associated with the remote program being
 called. These numbers are documented in the specific program's
 protocol specification. For example, a protocol's specification
 can list the read procedure as procedure number 5 or write as
 procedure number 12.

 cred Credentials authentication parameter that identifies the caller

AIX Operating System Technical Reference
Message Protocol Structure

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.1 - 1

 as having permission to call the remote program. It is passed as
 an opaque data structure, which means the data is not interpreted
 as it is passed from the client to the server.

 verf Verifier authentication parameter that identifies the caller to
 the server. It is passed as an opaque data structure which means
 the data is not interpreted as it is passed from the client to
 the server.

 Note: Procedure specific parameters appear at the end of the call body.

 Reply Messages: RPC reply messages take one of two forms to show that the
 call message was accepted by a network server or that it was rejected by
 the server. The discriminant enum reply_stat acts as a switch to the
 rejected or accepted reply message form.

 enum reply_stat {
 MSG_ACCEPTED = 0,
 MSG_DENIED = 1
 };

 A reply to an RPC request accepted by the network server takes the
 following form:

 struct accepted_reply {
 struct opaque_auth verf;
 union switch (enum accept_stat) {
 SUCCESS: struct {
 return values
 };
 PROG_MISMATCH: struct {
 unsigned low;
 unsigned high;
 };
 default: struct {
 };
 };
 };

 The structures in the accepted reply are specified by the following:

 opaque_auth verf;
 Authentication verifier generated by the server to identify itself to
 the caller.

 enum accept_stat
 A discriminant that acts as a switch to one of the following
 structures:

 SUCCESS
 Defines the results or return values of the procedure.

 PROG_MISMATCH
 Specifies the lowest and highest version numbers of the remote
 program that are supported by the server.

 default
 Lists errors that occur even though the request was accepted.

AIX Operating System Technical Reference
Message Protocol Structure

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.1 - 2

 The default structure can take any of the following values:

 PROG_UNAVAIL
 The remote server has not exported the program.

 PROG_MISMATCH
 The remote server cannot support the client's version
 number.

 PROC_UNAVAIL
 The program cannot support the requested procedure.

 GARBAGE_ARGS
 The procedure cannot decode the parameters specified in the
 call.

 A reply to an RPC request that is rejected by the server takes the
 following form:

 struct rejected_reply {
 union switch (enum reject_stat) {
 RPC_MISMATCH: struct {
 unsigned low;
 unsigned high;
 };
 AUTH_ERROR: enum auth_stat;
 };
 };

 The discriminant, enum reject_stat, acts as a switch to one of the
 following:

 RPC_MISMATCH
 The server is not running a compatible version of the RPC protocol.
 The server returns the lowest and highest version numbers available.

 AUTH_ERROR
 The server refuses to authenticate the caller and returns a failure
 status with the value enum auth_stat. The enum auth_stat status
 returned is one of the following:

 AUTH_BADCRED
 The caller had bad credentials.

 AUTH_REJECTEDCRED
 The client must begin a new session.

 AUTH_BADVERF
 The clients verifier was bad.

 AUTH_REJECTEDVERF
 The verifier expired or replayed.

 AUTH_TOOWEAK
 The authentication credentials were rejected for security
 reasons.

AIX Operating System Technical Reference
Message Protocol Structure

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.1 - 3

 Multiple Reply Messages: A client can broadcast its message across the
 network and wait for many replies by using broadcast RPC with the UDP/IP
 transport. Servers that support broadcast protocols only respond when the
 request is successfully processed. Otherwise they are silent.

 No Reply Message Needed: In cases where the client does not need a reply,
 RPC can batch, or send, a large sequence of call messages to a server
 using the TCP/IP transport. The batch sequence is terminated by another
 RPC that is called to clear the pipeline.

AIX Operating System Technical Reference
Message Protocol Structure

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.1 - 4

 1.2.231.2.2 Record Marking in the Messages

 When RPC messages are passed using the TCP/IP byte stream protocol for
 data transport, it is important to identify the end of one message and the
 start of the next one by record marking (rm).

 A record is composed of one or more record fragments. A record fragment
 is a 4-byte header. The header is followed by 0 to 2(32)-1 bytes of
 fragment data. The bytes encode an unsigned binary number, similar to XDR
 integers. The order of bytes is from highest to lowest. This binary
 number encodes a Boolean and an unsigned binary value of 31 bits.

 The Boolean value is the highest-order bit of the header. If the Boolean
 value is value is 1, the fragment is the last fragment of the record. The
 unsigned binary value is the length in bytes of the fragment's data.

AIX Operating System Technical Reference
Record Marking in the Messages

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.2 - 1

 1.2.231.2.3 Authentication

 RPC provides the opaque_auth structure for the verifier parameter so that
 a client can identify itself to the server receiving the call message, and
 for the server to identify itself to the client in the response message.

 In addition, RPC provides the auth_unix structure for the credentials
 parameter so that client access permission to the remote program can be
 checked by the server. These RPC authentication parameters are opaque
 data type structures. That is, they pass through the messages without
 being interpreted. See the "Opaque Data" in topic 1.2.332.1.1 for more
 detailed information about this data type.

 If neither the caller or the server require permission checking, AUTH_NULL
 can be used for the RPC message credentials and verifier parameters.
 These routines are discussed in alphabetical order in "RPC Subroutines" in
 topic 1.2.231.2.5.

 AIX handles the structure of the credentials parameter in a shorthand
 form. The caller of a remote procedure can use this shorthand
 representation by using AUTH_UNIX as the value of the credentials
 parameter. The bytes of the credentials string encode the following XDR
 structure:

 struct auth_unix {
 unsigned stamp;
 string machinename<255>;
 unsigned uid;
 unsigned gid;
 unsigned gids<10>;
 };

 The parameters in the structure are defined as follows:

 stamp Arbitrary ID generated by the caller's machine.

 machinename<255> Name of the caller's machine. The name must not exceed
 255 bytes in length.

 uid Caller's effective user ID.

 gid Caller's effective group ID.

 gids<10> Counted array of groups which contain the caller as a
 member. A maximum of 10 groups is allowed.

 The value of the response verifier's discriminant in the reply message
 (oa_flavor in the opaque_auth structure) from the server is either
 AUTH_NULL or AUTH_SHORT. If the value is AUTH_SHORT, the bytes of the
 verf string encode an auth_opaque structure. The auth_opaque structure
 can then be passed to the server in place of the original AUTH_UNIX
 credentials. The server keeps a cache that maps the auth_opque structures
 to the credentials of the caller. The caller requires less network
 bandwidth and server CPU time when the shorthand credentials are used.

 Note: The server can eliminate, or flush, the shorthand auth_opaque
 structures at any time. If this happens, an RPC message's
 rejection is listed as an authentication error. The original

AIX Operating System Technical Reference
Authentication

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.3 - 1

 AUTH_UNIX must be used to generate the shorthand version again.

AIX Operating System Technical Reference
Authentication

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.3 - 2

 1.2.231.2.4 The Portmap Program

 RPC uses a portmap daemon, also known as the portmapper, to map the RPC
 program version numbers to UDP/IP or TCP/IP port numbers. This maximizes
 the efficiency of remote program bindings since the range of reserved port
 numbers is small compared to the number of remote programs possible. The
 portmap daemon runs on a reserved port, answering client queries regarding
 the location of the port numbers of the remote programs.

AIX Operating System Technical Reference
The Portmap Program

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.4 - 1

 1.2.231.2.5 RPC Subroutines

 The RPC subroutines are listed alphabetically in this section. Each
 subroutine is introduced by its syntax and followed by a brief discussion
 of its purpose, parameters, and return value.

 A Note about the Parameters: RPC uses the following common parameters to
 identify the remote procedure called in each routine:

 prognum Number of the remote program. Program numbers are administered
 by a central authority.

 versnum Version number of the remote program. As remote program's
 protocols are implemented, they evolve and change. Version
 numbers are assigned to identify different stages of the
 protocols evolution. Servers can service requests for different
 versions of the same protocol simultaneously.

 procnum Procedure numbers that identify the procedure to be called.
 These numbers are documented in the specific program's protocol
 specification. For example, a protocol's specification can list
 the read procedure as procedure number 5 or write as procedure
 number 12.

 Note: The structure of these parameters is discussed in "Call Messages"
 in topic 1.2.231.2.1.

 Other parameters specific to the routines are identified in the discussion
 of each routine.

 void
 auth_destroy (auth)
 AUTH *auth;

 The auth_destroy macro destroys the authentication information
 structure pointed to by the auth parameter. Destroying the
 structure deallocates private data structures associated with it.
 The use of auth is undefined after calling this macro.

 AUTH *
 authnone_create ()

 The authnone_create subroutine creates and returns an RPC
 authentication handle that passes no usable authentication with each
 remote procedure call.

 AUTH *
 authunix_create (host, uid, gid, len, aup_gids)
 char *host;
 int uid, gid, len;
 int *aup_gids;

AIX Operating System Technical Reference
RPC Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.5 - 1

 The authunix_create subroutine creates and returns an RPC
 authentication handle with AIX permissions.

 The host parameter points to the name of the machine on which the
 permissions were created. The uid parameter specifies the user's
 user ID.

 The gid parameter specifies the current group ID of the user, while
 the aup_gids parameter points to the counted array of groups to
 which the user belongs. The length of the groups array is specified
 by the len parameter.

 AUTH *
 void authunix_create_default ()

 The authunix_create_default subroutine calls the authunix_create
 subroutine to create and return the default AIX authentication
 handle.

 callrpc (host, prognum, versnum, procnum, inproc, in, outproc, out)
 char *host;
 u_long prognum, versnum, procnum;
 xdrproc_t inproc;
 char *in;
 xdrproc_t outproc;
 char *out;

 The callrpc subroutine calls a remote procedure associated with the
 prognum, versnum, and procnum parameters on the machine pointed to
 by the host parameter.

 The inproc parameter specifies the procedure that encodes the
 procedure's parameters. The in parameter points to the address of
 the procedure's arguments.

 The outproc parameter specifies the procedure that decodes the
 procedure's results. The out parameter points to the address where
 results are placed.

 Upon successful completion, this routine returns the value 0.
 Otherwise, a nonzero value of the type enum clnt_stat is returned.

 Note: Calling remote procedures with this routine uses UDP/IP as a
 transport. If the server is a TCP/IP supported server only,
 you cannot get a connection. See the clnttcp_create
 subroutine to open TCP/IP sockets.

 enum clnt_stat
 clnt_broadcast (prognum, versnum, procnum, inproc, in, outproc, out, eachresult)
 u_long prognum, versnum, procnum;
 xdrproc_t inproc;
 char *in;

AIX Operating System Technical Reference
RPC Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.5 - 2

 xdrproc_t outproc;
 char *out;
 resultproc_t eachresult;

 The clnt_broadcast subroutine broadcasts a remote procedure call to
 all locally connected networks.

 The remote procedure is identified by the prognum, versnum, and
 procnum parameters on the machine identified by the parameter host.

 The inproc parameter specifies the procedure that encodes the
 procedure's parameters. The in parameter points to the address of
 the procedure's arguments.

 The outproc parameter specifies the procedure that decodes the
 procedure's results. The out parameter points to the address where
 results are placed.

 When a client broadcasts a remote procedure call over the network, a
 number of server processes respond. Each time it receives a
 response, this routine calls the eachresult routine to point to the
 function that is called. The eachresult routine takes the following
 form:

 eachresult (out, addr)
 char *out;
 struct sockaddr_in *addr;

 The out parameter points to the address where the procedure's
 results are decoded and placed. The addr parameter points to the
 address of the machine that sent the results.

 If eachresult returns 0, the clnt_broadcast subroutine waits for
 more replies. Otherwise, it returns with the appropriate results.

 enum clnt_stat
 clnt_call (clnt, procnum; inproc, in, outproc, out, tout)
 CLIENT *clnt;
 long procnum;
 xdrproc_t inproc;
 char *in;
 xdrproc_t outproc;
 char *out;
 struct timeval tout;

 The clnt_call macro calls the remote procedure associated with a
 client handle pointed to by the clnt parameter. The clnt parameter
 is the result of an RPC client creation routine, such as
 clntudp_create, which opens a UDP/IP socket.

 The procnum parameter identifies the remote procedure on the host
 machine associated with the client handle.

 The inproc parameter specifies the procedure that encodes the
 procedure's parameters. The in parameter points to the address of
 the procedure's arguments.

AIX Operating System Technical Reference
RPC Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.5 - 3

 The outproc parameter specifies the procedure that decodes the
 procedure's results. The out parameter points to the address where
 results are placed. The tout parameter sets the time allowed for
 results to come back.

 clnt_destroy (clnt)
 CLIENT *clnt;

 The clnt_destroy macro destroys the client's RPC handle. The clnt
 parameter is the result of an RPC client creation routine, such as
 clntudp_create which opens a UDP/IP socket. Destroying the client's
 RPC handle deallocates private data structures, including the clnt
 structure itself. The use of clnt is undefined after calling the
 clnt_destroy macro.

 The user must close the sockets associated with the clnt structure.

 clnt_freeres (clnt, outproc, out)
 CLIENT *clnt;
 xdrpoc_t outproc;
 char *out;

 The clnt_freeres macro frees data that was allocated by the RPC/XDR
 system when it decoded the results of an RPC call.

 The clnt parameter points to the structure of the client handle.
 The outproc parameter specifies the XDR routine that describes the
 results in simple decoding primitives. The out parameter points to
 the address where the results are placed.

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

 void
 clnt_geterr (clnt, errp)
 CLIENT *clnt;
 struct rpc_err *errp;

 The clnt_geterr macro copies error information from a client handle
 to an error structure.

 The clnt parameter points to the client handle. The errp parameter
 points to the address of the error structure.

 void
 clnt_pcreateerror (s)
 char *s;

AIX Operating System Technical Reference
RPC Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.5 - 4

 The clnt_pcreateerror subroutine writes a message to standard error
 indicating why a client RPC handle could not be created. The s
 parameter points to a character string that represents the error
 text.

 This subroutine is used after a clntraw_create, clnttcp_create, or
 clntudp_create call.

 void
 clnt_perrno (stat)
 enum clnt_stat stat;

 The clnt_perrno subroutine writes a message to standard error
 corresponding to the condition specified by the stat parameter.

 This subroutine is used after a callrpc subroutine.

 clnt_perror (clnt, s)
 CLIENT *clnt;
 char *s;

 The clnt_perror subroutine writes a message to standard error
 indicating why a remote procedure call failed.

 The clnt parameter is the client handle used to make the call. The
 s parameter points to a character string that represents the error
 text.

 This routine is used after a clnt_call subroutine.

 CLIENT *
 clntraw_create (prognum, versnum)
 u_long prognum, versnum;

 The clntraw_create subroutine creates a toy RPC client for
 simulation of the remote program specified by the prognum and
 versnum parameters. The client uses a buffer located within the
 address space of the process as the transport to pass messages to
 the service. If the corresponding RPC server lives in the same
 address space, simulation of RPC and acquisition of RPC overheads,
 such as round-trip times, are done without kernel interference.
 (See the svcraw_create subroutine.)

 On successful completion, this subroutine returns a pointer to a
 valid RPC client. If this subroutine fails, it returns the value
 NULL.

 CLIENT *

AIX Operating System Technical Reference
RPC Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.5 - 5

 clnttcp_create (addr, prognum, versnum, sockp, sendsz, recvsz)
 struct sockaddr_in *addr;
 u_long prognum, versnum;
 int *sockp;
 u_int sendsz, recvsz;

 The clnttcp_create subroutine creates an RPC client for a remote
 program identified by the prognum and versnum parameters. The
 client uses TCP/IP as the transport to pass messages to the service.

 The addr parameter points to the Internet address of the remote
 program. If port number for this Internet address (addr->sin_port)
 is 0, then addr is set to the actual port that the remote program is
 listening on. The client making the remote procedure call consults
 the remote portmap daemon for this information.

 The sockp parameter is a pointer to a socket. If sockp is
 RPC_ANYSOCK, the clnttcp_create subroutine opens a new socket and
 sets the sockp pointer to it.

 Since TCP/IP remote procedure calls use buffered I/O, users can set
 the size of the send and receive buffers with the sendsz and recvsz
 parameters. If the size of either buffer is set as 0, the
 subroutine picks suitable default values.

 Upon successful completion, this routine returns a valid TCP/IP
 client. If it fails, it returns the value NULL.

 CLIENT *
 clntudp_create (addr, prognum, versnum, wait, sockp)
 struct sockaddr_in *addr;
 u_long prognum, versnum;
 struct timeval wait;
 int *sockp;

 The clntudp_create subroutine creates an RPC client for a remote
 program identified by the prognum and versnum parameters. The
 client uses UDP/IP as the transport to pass messages to the service.

 The addr parameter points to the Internet address of the remote
 program. If port number for this Interenet Address (addr->sin_port)
 is 0, then addr is set to the actual port that the remote program is
 listening on. The clntudp_create subroutine consults the remote
 portmap daemon for this information.

 The sockp parameter is a pointer to a socket. If sockp is
 RPC_ANYSOCK, the clntudp_create subroutine opens a new socket and
 sets the sockp pointer to it.

 The wait parameter sets the amount of time that the UDP/IP transport
 waits until a response is received before it resends the remote
 procedure call or the remote procedure call times out. The total
 time for the call to time out is set by the clnt_call subroutine.

 Note: RPC messages transported by UDP/IP can hold up to 8K bytes of
 encoded data. Use this transport for procedures that take

AIX Operating System Technical Reference
RPC Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.5 - 6

 arguments or return results of less than 8K bytes.

 void
 get_myaddress (addr)
 struct sockaddr_in *addr;

 The get_myaddress subroutine gets the machine's IP address without
 consulting the library routines that access the /etc/hosts file.

 The addr parameter points to an address where the machine's IP
 address is placed. The port number is set to htons(PMAPPORT).

 struct pmaplist *
 pmap_getmaps (addr)
 struct sockaddr_in *addr;

 The pmap_getmaps subroutine acts as the user interface to the
 portmap daemon to return a list of the current RPC program-to-port
 mappings on the host located at the IP address pointed to by the
 addr parameter.

 This routine can return the value NULL.

 Note: The command rpcinfo -p uses this routine. See AIX Operating
 System Commands Reference for more information about this
 command.

 u_short
 pmap_getport (addr, prognum, versnum, protocol)
 struct sockaddr_in *addr;
 u_long prognum, versnum, protocol;

 The pmap_getport subroutine acts as the user interface to the
 portmap daemon to return the port number on which a service waits.

 The addr parameter points to the IP address of the host where the
 remote program that supports the waiting service resides. The
 prognum and versnum parameters identify the remote program that
 supports the waiting service. The protocol parameter specifies the
 transport protocol that the service recognizes.

 If the routine returns a value of 0, the mapping does not exist or
 the RPC system did not contact the remote portmap daemon. If the
 remote portmap daemon was not contacted, the rpc_createerr global
 variable contains the RPC status.

 enum clnt_stat
 pmap_rmtcall (addr, prognum, vernsum, procnum, inproc, in,

AIX Operating System Technical Reference
RPC Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.5 - 7

 outproc, out, tout, portp)
 struct sockaddr_in *addr;
 u_long prognum, versnum, procnum;
 xdrproc_t inproc;
 char *in;
 xdrproc_t outproc;
 char *out;
 struct timeval tout;
 u_long *portp;

 The pmap_rmtcall subroutine instructs the portmap daemon on the host
 at the IP address pointed to by the addr parameter to make a remote
 procedure call on behalf of the caller to a procedure on that host.
 The portp parameter is modified to the program's port number if the
 procedure succeeds.

 The prognum, versnum, and procnum parameters identify the program
 associated with the remote procedure.

 The inproc parameter specifies the XDR routine that encodes the
 remote procedure's parameters. The in parameter points to the
 address of the procedure's arguments.

 The outproc parameter specifies the XDR routine that decodes the
 remote procedure's results. The tout parameter sets the time the
 routine waits for the results to return before resending the call.

 Notes:

 1. Use this procedure for a ping command only. See Interface
 Program for use with TCP/IP for information on ping.

 2. Also see the clnt_broadcast subroutine in this book.

 pmap_set (prognum, versnum, protocol, port)
 u_long prognum, versnum, protocol;
 u_short port;

 The pmap_set subroutine acts as a user interface to the portmap
 daemon to map a remote procedure to a port on the machine's portmap
 daemon. The port on the machine's portmap daemon is specified by
 the port parameter.

 The prognum, versnum, and protocol parameters identify the remote
 procedure call. The values for the protocol parameter can be
 IPPROTO_UDP or IPPROTO_TCP.

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

 Note: The pmap_set subroutine is called by the svc_register.

 pmap_unset (prognum, versnum)
 u_long prognum, versnum;

AIX Operating System Technical Reference
RPC Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.5 - 8

 The pmap_unset subroutine destroys mappings between the remote
 procedure call and the ports on the machine's portmap daemon. The
 prognum and versnum parameters identify the remote procedure call.

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

 registerrpc (prognum, versnum, procnum, procname, inproc, outproc)
 u_long prognum versnum, procnum;
 char * (*procname) ();
 xdrproc_t inproc, outproc;

 The registerrpc subroutine registers a procedure identified by the
 procname parameter with the RPC service package.

 If a request arrives that matches the values of the prognum,
 versnum, and procnum parameters, procname is called with a pointer
 to its parameters, and returns a pointer to its static results.

 The inproc parameter specifies the XDR routine that decodes the
 procedure's parameters. The outproc parameter specifies the XDR
 routine that encodes the procedure's results.

 Upon successful completion, this routine returns the value 0.
 Otherwise, it returns the value of -1.

 Note: Remote procedures registered in this form are accessed using
 the UDP/IP transport protocol only. See the svcudp_create
 subroutine for restrictions.

 struct rpc_createerr rpc_createerr;

 The rpc_createerr global variable is set by any RPC client creation
 routine that does not succeed. Use the clnt_pcreateerror subroutine
 to write to standard output the reason why the client was not
 created.

 svc_destroy (xprt)
 SVCXPRT *xprt;

 The svc_destroy macro destroys the RPC service transport handle
 pointed to by the xprt parameter. Destroying the handle involves
 deallocating the private data structures, including xprt itself.
 Use of xprt is undefined after calling this routine.

 int svc_fds;

 The svc_fds global variable reflects the RPC service's file

AIX Operating System Technical Reference
RPC Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.5 - 9

 descriptor bit mask. This variable is used to manually run
 asynchronous processing in a program instead of calling the svc_run
 procedure that sets the asynchronous processing automatically.

 This is a read-only variable, but its value can change as a result
 of the svc_getargs or a creation routine. Do not pass the address
 of this variable to the select system call.

 svc_freeargs (xprt, inproc, in)
 SVCXPRT *xprt;
 xdrproc_t inproc;
 char *in;

 The svc_freeargs macro frees data allocated by the RPC/XDR system
 when it decoded the arguments to a service procedure using the
 svc_getargs routine. The xprt parameter points to the RPC service
 transport handle.

 The inproc parameter specifies the XDR routine that decodes the
 arguments. The in parameter points to the address where the
 procedure's arguments are placed.

 If this routine successfully frees the results, it returns the value
 TRUE. Otherwise, it returns the value FALSE.

 svc_getargs (xprt, inproc, in)
 SVCXPRT *xprt;
 xdrproc_t inproc;
 char *in;

 The svc_getargs macro decodes the arguments of an RPC request
 associated with the RPC service transport pointed to by the xprt
 parameter.

 The inproc parameter specifies the XDR routine that decodes the
 arguments. The in parameter points to the address where the
 arguments are placed.

 If this routine successfully frees the results, it returns the value
 TRUE. Otherwise, it returns the value FALSE.

 struct sockaddr_in
 svc_getcaller (xprt)
 SVCXPRT *xprt;

 The svc_getcaller subroutine gets the network address of the caller
 of a procedure associated with the RPC service transport handle that
 is pointed to by the xprt parameter.

AIX Operating System Technical Reference
RPC Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.5 - 10

 svc_getreq (rdfds)
 int rdfds;

 The svc_getreq subroutine is called when the select system call has
 determined an RPC request to service the RPC sockets associated with
 the value of the rdfds parameter. The rdfds parameter is the
 read-file descriptor bit mask.

 The svc_getreq subroutine returns when all associated sockets with
 the value rdfds have been serviced.

 Note: This routine is used to manually set asynchronous event
 processing in a program instead of calling the svc_run to
 automatically set it.

 svc_register (xprt, prognum, versnum, dispatch, protocol)
 SVCXPRT *xprt;
 u_long prognum, versnum;
 void (*dispatch) ();
 u_long protocol;

 The svc_register subroutine maps a remote procedure with a service
 dispatch procedure pointed to by the dispatch parameter.

 The xprt parameter points to an RPC service transport handle.

 The prognum and versnum parameters identify the remote program
 associated with the remote procedure.

 The protocol parameter specifies the data transport used by the
 service. If protocol is 0, the service is not registered with the
 portmap daemon. If protocol is not 0 (or is IPPROTO_UDP or
 IPPROTO_TCP), the remote procedure triple [prognum, versnum, and
 protocol] is mapped to the xprt->xp_port port.

 The dispatch procedure takes the following form:

 dispatch (request, xprt)
 struct svc_req *request;
 SVCXPRT *xprt;

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

 svc_run ()

 The svc_run subroutine waits for RPC service requests to arrive.
 When a request arrives, svc_run calls the appropriate service
 procedure using the svc_getreq subroutine. This procedure is
 usually waiting for a select system call to return.

 The svc_run subroutine never returns.

AIX Operating System Technical Reference
RPC Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.5 - 11

 svc_sendreply (xprt, outproc, out)
 SVCXPRT *xprt;
 xdrproc_t outproc;
 char *out;

 The svc_sendreply subroutine sends back the results of a remote
 procedure call. This routine is called by an RPC service's dispatch
 routine.

 The xprt parameter points to the RPC service transport handle of the
 caller. The outproc parameter specifies the XDR routine that
 encodes the results. The out parameter points to the address where
 results are placed.

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

 void
 svc_unregister (prognum, versnum)
 u_long prognum, versnum;

 The svc_unregister subroutine removes mappings between procedures
 and objects. It removes the mapping of the service procedure
 identified by the prognum and versnum parameters to dispatch
 routines. It also removes the mapping of the service procedure
 identified by the prognum and versnum parameters to a port number.

 void
 svcerr_auth (xprt, why)
 SVCXPRT *xprt;
 enum auth_stat why;

 The svcerr_auth subroutine is called by a service dispatch routine
 that refuses to perform a remote procedure call because of an
 authentication error.

 The xprt parameter points to the RPC service transport handle. The
 why parameter specifies the authentication error.

 void
 svcerr_decode (xprt)
 SVCXPRT *xprt;

 The svcerr_decode subroutine is called by a service dispatch routine
 that cannot decode its parameters. The xprt parameter points to the
 RPC service transport handle.

 Note: See the svc_getargs subroutine.

AIX Operating System Technical Reference
RPC Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.5 - 12

 void
 svcerr_noproc (xprt)
 SVCXPRT *xprt;

 The svcerr_noproc subroutine is called by a service dispatch routine
 that does not implement the procedure number the caller requested.
 The xprt parameter points to the RPC service transport handle.

 void
 svcerr_noprog (xprt)
 SVCXPRT *xprt;

 The svcerr_noprog subroutine is called when the requested program is
 not registered with the RPC package. The xprt parameter points to
 the RPC service transport handle.

 Note: Service implementors do not usually need this routine.

 void
 svcerr_progvers (xprt)
 SVCXPRT *xprt;

 The svcerr_progvers subroutine is called when the requested version
 of a program is not registered with the RPC package. The xprt
 parameter points to the RPC service transport handle.

 Note: Service implementors do not usually need this routine.

 void
 svcerr_systemerr (xprt)
 SVCXPRT *xprt;

 The svcerr_systemerr subroutine is called by a service dispatch
 routine when it detects a system error not covered by a protocol.
 For example, a service calls this routine if it can no longer
 allocate storage. The xprt parameter points to the RPC service
 transport handle.

 void
 svcerr_weakauth (xprt)
 SVCXPRT *xprt;

 The svcerr_weakauth subroutine is called by a service dispatch
 routine that cannot make the remote procedure call because the

AIX Operating System Technical Reference
RPC Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.5 - 13

 supplied authentication parameters were insufficient. It is called
 even if the given parameters are correct. The xprt parameter points
 to the RPC service transport handle.

 The svcerr_weakauth subroutine calls the svc_auth routine using the
 correct RPC service transport handle (xprt) and as the
 authentication error the argument AUTH_TOOWEAK.

 SVCXPRT *
 svcraw_create ()

 The svcraw_create subroutine creates a toy RPC service transport.
 The service transport is located within the address space of the
 process. If the corresponding RPC server resides in the same
 address space, simulation of RPC and acquisition of RPC overheads,
 such as round-trip times, are done without kernel interference.
 (See the clntraw_create routine on page 1.2.231.2.5.)

 Upon successful completion, this routine returns a pointer to a
 valid RPC client. Otherwise, it returns the value NULL.

 SVCXPRT *
 svctcp_create (sock, sendsz, recvsz)
 int sock;
 u_int sendsz, rcvcsz;

 The svctcp_create subroutine creates a RPC service transport based
 on TCP/IP and returns a pointer to it.

 The sock parameter specifies the socket associated with the
 transport. If the sock parameter is RPC_ANYSOCK, the routine
 creates a new socket. The transport's socket number is set to
 xprt->xp_sock. If the socket is not bound to a local TCP/IP port,
 this routine binds it to an arbitrary port. Its port number is set
 to xprt->xp_port.

 Since TCP/IP remote procedure calls use buffered I/O, users can set
 the size of the send and receive buffers with the sendsz and recvsz
 parameters. If the size of either buffer is set to 0, the routine
 picks suitable default values.

 On successful completion, this routine returns a valid RPC service
 transport. If it fails, it returns the value NULL.

 SVCXPRT *
 svcudp_create (sock)
 int sock;

 The svcudp_create subroutine creates an RPC service transport based
 on a UDP/IP and returns a pointer to it.

AIX Operating System Technical Reference
RPC Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.5 - 14

 The sock parameter specifies the socket associated with the
 transport. If the sock parameter is RPC_ANYSOCK, the routine
 creates a new socket. The transport's socket number is set to
 xprt->xp_sock. If the socket is not bound to a local UDP/IP port,
 this routine binds it to an arbitrary port. Its port number is set
 to xprt->xp_port.

 On successful completion, this routine returns a valid RPC service
 transport. If it fails, it returns the value NULL.

 Note: Use this transport for procedures that take up to 8K bytes of
 encoded arguments or results only.

 xdr_accepted_reply (xdrs, ar)
 XDR *xdrs;
 struct accepted_reply *ar;

 The xdr_accepted_reply routine describes RPC messages externally.
 Use this routine to generate message replies similar to RPC's
 message replies without using the RPC program.

 The xdrs parameter points to the XDR stream handle. The ar
 parameter points to the address of the structure that contains the
 reply.

 xdr_authunix_parms (xdrs, app)
 XDR *xdrs;
 struct authunix_parms *app;

 The xdr_accepted_reply routine describes credentials externally.
 Use this routine to generate credentials without using the RPC
 authentication program.

 The xdrs parameter points to the XDR stream handle. The app
 parameter points to the structure that contains the authentication
 credentials.

 void
 xdr_callhdr (xdrs, chdr)
 XDR *xdrs;
 struct rpc_msg *chdr;

 The xdr_callhdr routine describes RPC call headers externally. Use
 this routine to generate call headers that are similar to RPC's call
 headers without using the RPC program.

 The xdrs parameter points to the XDR stream handle. The chdr
 parameter points to the structure that contains the header for the
 call message.

AIX Operating System Technical Reference
RPC Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.5 - 15

 xdr_callmsg (xdrs, cmsg)
 XDR *xdrs;
 struct rpc_msg *cmsg;

 The xdr_callmsg routine describes RPC messages externally. Use this
 routine to generate messages that are similar to RPC's messages
 without using the RPC program.

 The xdrs parameter points to the XDR stream handle. The cmsg
 parameter points to the structure that contains the text of the call
 message.

 xdr_opaque_auth (xdrs, ap)
 XDR *xdrs;
 struct opaque_auth *ap;

 The xdr_opaque_auth routine describes RPC messages externally. Use
 this routine to generate opaque message data without using the RPC
 program.

 The xdrs parameter points to the XDR stream handle. The ap
 parameter points to the structure that contains the message text.

 xdr_pmap (xdrs, regs)
 XDR *xdrs;
 struct pmap *regs;

 The xdr_pmap routine describes parameters for portmap procedures
 externally. Use this routine to generate portmap parameters without
 using the portmap interface.

 The xdrs parameter points to the XDR stream handle. The regs
 parameter points to the buffer, or register, where the portmap
 daemon stores the information.

 xdr_pmaplist (xdrs, rp)
 XDR *xdrs;
 struct pmaplist **rp;

 The xdr_pmaplist routine describes a list of port mappings
 externally. Use this routine to generate the port mappings to RPC
 ports without using the portmap interface.

 The xdrs parameter points to the XDR stream handle. The rp
 parameter is a pointer to the structure that contains the portmap
 listings.

 xdr_rejected_reply (xdrs, rr)
 XDR *xdrs;

AIX Operating System Technical Reference
RPC Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.5 - 16

 struct rejected_reply *rr;

 The xdr_rejected_reply routine describes RPC message rejection
 replies externally. Use this routine to generate rejection replies
 similar to RPC's rejection without using the RPC program.

 The xdrs parameter points to the XDR stream handle. The rr
 parameter points to the structure that contains the rejected reply.

 xdr_replymsg (xdrs, rmsg)
 XDR *xdrs;
 struct rpc_msg *rmsg;

 The xdr_replymsg routine describes RPC message replies externally.
 Use this routine to generate message replies similar to RPC's
 replies without using the RPC program.

 The xdrs parameter points to the XDR stream handle. The rmsg
 parameter points to the structure containing the parameters of the
 reply message.

 xprt_register (xprt)
 SVCXPRT *xprt;

 The xprt_register routine registers an RPC service transport handle
 with the RPC program after the transport has been created. The xprt
 parameter points to the newly created RPC service transport handle.
 This routine modifies the svc_fds global variable.

 Note: Service implementors do not usually need this routine.

 void
 xprt_unregister (xprt)
 SVCXPRT *xprt;

 The xprt_unregister routine removes an RPC service transport handle
 from the RPC service program before the transport handle can be
 destroyed. The xprt parameter points to the RPC service transport
 handle to be destroyed. This routine modifies the svc_fds global
 variable.

 Note: Service implementors do not usually need this routine.

 Related Information

 In this book: "Remote Procedure Call Service Routines" in topic 1.2.232
 and "XDR (External Data Representation)" in topic 1.2.332.

 The Network File System section in Managing the AIX Operating System.

AIX Operating System Technical Reference
RPC Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.231.2.5 - 17

 1.2.232 Remote Procedure Call Service Routines

 Purpose
 Supports RPC commands and utilities.

 Library
 Standard C Library (libc.a)

 Syntax
 #include <rpcsvc/*.h>

 Description
 The Remote Procedure Call Service Routines are used by the Remote
 Procedure Call (RPC) commands and utilities that are installed with the
 Network File System (NFS). NFS allows users to share files located on
 other network machines by using the RPC interface to handle the remote
 communications.

 The following Remote Procedure Call Service Routines are available to
 programmers as library routines:

 getrpcport Gets RPC port numbers.

 havedisk Determines if remote machine has a disk.

 rnusers Returns number of users on remote machine.

 rstat Gets performance data from remote kernel.

 rusers Returns information about users on remote machine.

 rwall Writes to specified remote machines.

 The following Remote Procedure Call Service Routines are not available to
 programmers as library routines but can be invoked by their RPC program
 numbers:

 ether Monitors network traffic.

 rex Executes remote programs.

 spray Scatters data packets in order to check the network.

 Note: The Remote Procedure Call Service Routines can be invoked through
 their RPC program numbers by the callrpc system call. For
 information on the callrpc system call, see "Remote Procedure Call
 (RPC)" in topic 1.2.231.

 Subtopics
 1.2.232.1 Remote Procedure Call Service Routines Available as Library Routines

AIX Operating System Technical Reference
Remote Procedure Call Service Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.232 - 1

 1.2.232.1 Remote Procedure Call Service Routines Available as Library Routines

 The Remote Procedure Call Service Routines that can be used as library
 routines are listed in this section.

 int getrpcport (host, prognum, versnum, protocol)
 char *host;
 int prognum, versnum, protocol;

 The getrpcport routine contacts the portmap and returns a port
 number for an RPC program running on the machine pointed to by the
 host parameter.

 The prognum and versnum parameters identify the program and version
 numbers of the program. The protocol parameter identifies the data
 transport protocol the program is using (UDP/IP or TCP/IP).

 Upon successful completion, this routine returns a valid port
 number. If the routine can not contact the portmap to get the port
 number or if the program number is not registered, it returns the
 value 0. If the program number is registered but not with the
 version specified, it still returns a valid port number.

 havedisk (host)
 char *host;

 The havedisk routine checks to see if the remote computer pointed to
 by the host parameter has a disk. It returns the value 1 if host
 has a disk, and the value 0 if host does not have a disk. The value
 -1 returns if the call fails.

 #include <rpcsvc/rusers.h>

 rnusers (host)
 char *host

 The rnusers routine returns the number of users logged in to the
 remote machine pointed to by the host parameter. This routine
 returns a value -1 if it cannot determine the number.

 #include <rpcsvc/rusers.h>

 rusers (host, up)
 char *host;
 struct utmpidlearr *up;

 The rusers routine returns status information about users logged in
 to the remote machine pointed to by the host parameter. It returns
 the information to the utmpidlearr structure pointed to by the up
 parameter. The up parameter should be initialized to 0 before
 rusers is called. Upon successful completion, the routine returns
 the value 0.

 #include <rpc/rpc.h>
 #include <rpcsvc/rstat.h>

 rstat (host, statp)
 char *host;
 struct statstime *statp;

AIX Operating System Technical Reference
Remote Procedure Call Service Routines Available as Library Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.232.1 - 1

 The rstat routine returns performance statistics about users logged
 in to a remote machine pointed to by the host parameter. The
 information is returned to the statstime structure pointed to by the
 statp pointer. Upon successful completion, rstat returns the value
 0.

 #include <rpcsvc/rwall.h>

 rwall (host, msg);
 char *host;
 char *msg;

 The rwall routine sends the msg parameter to all users logged in to
 the remote machine pointed to by the host parameter. The msg
 parameter points to the text of the message to be printed. Upon
 successfully writing the message to all users, the rwall routine
 returns the value 0.

 Related Information

 In this book: "Remote Procedure Call (RPC)" in topic 1.2.231.

AIX Operating System Technical Reference
Remote Procedure Call Service Routines Available as Library Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.232.1 - 2

 1.2.233 rename

 Purpose
 Renames a directory or a file within a file system.

 Syntax

 int rename (frompath, topath)
 char *frompath, *topath;

 Description
 The rename system call renames a directory or a file within a file system.
 The frompath and topath parameters must both be either files or
 directories.

 For rename to execute successfully, the calling process must have write
 permission to the parent directories of both frompath and topath, if it
 already exists.

 If topath exists, and the parent directory of topath has the sticky
 attribute bit set, the calling process must have an effective user ID
 equal to:

 � the owner ID of topath, or to

 � the owner ID of the parent directory of topath.

 The file or directory named by frompath cannot contain the file or
 directory named by topath. If topath is an existing file or empty
 directory, it is replaced by frompath. If topath is a nonempty directory,
 rename exits with an error.

 If the file named by frompath is a symbolic link, the symbolic link is
 renamed. If the file named by topath is an existing symbolic link, the
 symbolic link is destroyed.

 Return Value
 Upon successful completion, the rename system call returns a value of 0.
 If the rename system call fails, a value of -1 is returned, and errno is
 set to indicate the error.

 Error Conditions
 The rename system call fails and the file or directory name remains
 unchanged if one or more of the following are true:

 ENOTDIR A component of either path prefix is not a directory or frompath
 names a directory and topath names a nondirectory.

 EISDIR The topath parameter names a directory and the frompath
 parameter names a nondirectory.

 ENAMETOOLONG
 A component of either the frompath parameter or the topath
 parameter exceeded NAME_MAX characters or the entire parameter
 exceeded PATH_MAX characters.

 ENOENT A component of either path does not exist or the file named by
 frompath does not exist.

 EACCES Creating the requested link or removing the old link requires

AIX Operating System Technical Reference
rename

¦ Copyright IBM Corp. 1985, 1991
1.2.233 - 1

 writing in a directory with a mode that denies write permission.

 EACCES Search permission is denied on a component of either frompath or
 topath.

 EPERM The file named by the topath parameter is in a directory with
 the sticky attribute bit set, and the effective user ID of the
 calling process is not equal to the owner of the file or of the
 parent directory.

 EXDEV The link named by topath and the file named by frompath are on
 different file systems.

 EROFS The named file resides on a read-only file system.

 EFAULT Either frompath or topath points outside of the process's
 allocated address space.

 EBUSY The frompath or topath directory is currently in use by the
 system or by another process.

 EINVAL The frompath or the topath is either the current directory or
 the parent of the current directory.

 EINVAL frompath is an ancestor directory of topath.

 EEXIST The topath parameter is an existing nonempty directory.

 EINTR A signal was caught during the system call.

 ESTALE The process's root or current directory is located in an NFS
 virtual file system that has been unmounted.

 EDQUOT The directory in which the entry for the new link is being
 placed cannot be extended because the user's quota of disk
 blocks on the file system containing the directory has been
 exhausted.

 Related Information
 In this book: "chmod, fchmod" in topic 1.2.44 and "mkdir" in
 topic 1.2.168.

 The chmod, mkdir, and mknod, and mvdir commands in AIX Operating System
 Commands Reference.

AIX Operating System Technical Reference
rename

¦ Copyright IBM Corp. 1985, 1991
1.2.233 - 2

 1.2.234 resolver: res_mkquery, res_send, res_init, dn_comp, dn_expand, getshort, getlong, putshort, putlong

 Purpose
 Makes, sends, and interprets name server information.

 Library
 Internet Library (libc.a)

 Syntax

 #include <sys/types.h>
 #include <netinet/in.h>
 #include <arpa/nameser.h>
 #include <resolv.h>

 res_query (name, class, type, answer, anslen)
 char *name;
 int class, type;
 u_char *answer;
 int anslen;

 res_search (name, class, type, answer, anslen)
 char *name;
 int class, type;
 u_char *answer;
 int anslen;

 res_querydomain (name, domain, class, type, answer, anslen)
 char *name; *domain;
 int class, type;
 u_char *answer;
 int anslen;

 int res_mkquery(op, dname, class, type, data, datalen, resource buf, buflen)
 int op;
 char *dname;
 int class, type;
 char *data;
 int datalen;
 struct rrec *resource;
 char *buf;
 int buflen;

 int res_send (msgp, msglen, answer, anslen)
 char *msgp;
 int msglen;
 char *answer;
 int anslen;

 res_init()
 int dn_comp(exp_dn, comp_dn, length, dnptrs, lastdnptr)
 char *exp_dn, *comp_dn;
 int length;
 char **dnptrs, **lastdnptr;

 int dn_expand(msgp, eomorig, comp_dn, exp_dn, length)
 char *msgp, *eomorig
 char *comp_dn, *exp_dn;
 int length;

AIX Operating System Technical Reference
resolver: res_mkquery, res_send, res_init, dn_comp, dn_expand, getshort, getlong, putshort, putlong

¦ Copyright IBM Corp. 1985, 1991
1.2.234 - 1

 dn_expand (msg, eomorig, comp_dn, exp_dn, length)
 u_char *msg, *eomorig *comp_dn, *exp_dn;
 int length;

 dn_find (exp_dn, msg, dnptrs, lastdnptr)
 char *exp_dn, *msg;
 char **dnptrs **lastdnptr;

 unsigned short getshort (msgp)
 char *msgp;

 unsigned long getlong (msgp)
 char *msgp;

 putshort (short, msgp)
 unsigned short short;
 char *msgp;

 putlong (long, msgp)
 unsigned long long;
 char *msgp;

 Description
 The res_query, res_mkquery, res_search, res_send, res_init,
 res_querydomain, dn_comp, dn_expand, getshort, getlong, putshort, and
 putlong subroutines are used to make, send, and interpret packets for name
 servers in the Internet domain. Together these subroutines form the
 resolver, a set of functions that resolves domain names.

 Global information that is used by these resolver subroutines is kept in
 the _res structure. This structure is defined in the resolv.h header
 file, and it contains the following members:

 int retrans;
 int retry;
 long options;
 int nscount;
 struct sockaddr_in nsaddr_list[MAXNS];
 ushort id;
 char defdname[MAXDNAME]
 #define nsaddr nsaddr_list[0]

 The options field of the _res structure is constructed by logically ORing
 the following values:

 RES_INIT Indicates whether the initial name server and default
 domain name have been initialized (that is, whether
 res_init has been called).

 RES_DEBUG Prints debugging messages.

 RES_USEVC Uses TCP instead of UDP connections for queries.

 RES_STAYOPEN Used with RES_USEVC to keep the TCP connection open between
 queries. While UDP is the mode normally used, TCP mode and
 this option are useful for programs that regularly do many
 queries.

 RES_RECURSE Sets the recursion desired bit in queries. This is the

AIX Operating System Technical Reference
resolver: res_mkquery, res_send, res_init, dn_comp, dn_expand, getshort, getlong, putshort, putlong

¦ Copyright IBM Corp. 1985, 1991
1.2.234 - 2

 default. (res_send does not do iterative queries and
 expects the name server to handle recursion.)

 RES_DEFNAMES Appends the default domain name to single label queries.
 This is the default.

 The res_mkquery subroutine makes a standard query message and places it in
 the location pointed to by the buf parameter, which has a length that is
 specified by the buflen parameter. The op parameter is usually QUERY but
 can be set to any of the query types defined in the arpa/nameser.h header
 file, as listed below:

 QUERY Standard query

 IQUERY Inverse query

 CQUERYM Completion query (multiple)

 CQUERYU Completion query (unique)

 The dname parameter points to the name of the domain. If the value
 pointed to by dname is a single label and the RES_DEFNAMES bit is set, as
 it is by default, dname is appended with the current domain name. The
 current domain name is defined by the name server in use or in the
 /etc/resolv.conf file.

 The class parameter has one of the following values:

 C_IN Specifies the ARPA Internet

 C_CHAOS Specifies the chaos network at MIT

 The type parameter has a value taken from the following list:

 T_A Host address

 T_NS Authoritative server

 T_MD Mail destination

 T_MF Mail forwarder

 T_CNAME Cannonical name

 T_SOA Start of authority zone

 T_MB Mailbox domain name

 T_MG Mail group member

 T_MR Mail rename name

 T_NULL NULL resource record

 T_WKS Well-known service

 T_PTR Domain name pointer

 T_HINFO Host information

AIX Operating System Technical Reference
resolver: res_mkquery, res_send, res_init, dn_comp, dn_expand, getshort, getlong, putshort, putlong

¦ Copyright IBM Corp. 1985, 1991
1.2.234 - 3

 T_MINFO Mailbox information

 T_MX Mail routing information

 T_UINFO User (finger) information

 T_UID User ID

 T_GID Group ID

 The data parameter is a pointer to the data to be sent to the name server
 as a search key, and the datalen parameter defines the size of that data.

 The resource parameter is a pointer to resource records.

 The res_query subroutine formulates a normal query, sends, and awaits
 answer. The returned answer is placed in the supplied buffer answer. It
 performs a preliminary check of answer and if no error is indicated and
 the answer count is nonzero, res_query returns the size of the response on
 success only; on error, it returns a value of -1. The error number is
 left in h_errno. The caller must parse answer and determine whether it
 answers the question.

 The res_search subroutine formulates a normal query, sends, and retrieves
 the answer in the supplied buffer. res_search returns the size of the
 response on success and a value of -1 on error. If enabled, res_search
 implements search rules until answer or unrecoverable failure is detected.
 The error number is left in h_errno. This subroutine is only useful for
 queries in the same name hierarchy as the local host.

 The res_querydomain subroutine performs a call on res_query on the
 concatenation of name and domain, removing a trailing dot from name if the
 domain is NULL.

 The res_send subroutine sends a query to name servers, calling the
 res_init subroutine if RES_INIT is not set. This subroutine sends the
 query to the local name server and handles timeouts and retries.

 The res_init subroutine reads the /etc/resolv.conf file for the default
 domain name and Internet address of the initial hosts running the name
 server. If this line does not exist, the res_init subroutine tries the
 host from which it was called.

 The dn_comp subroutine compresses the domain name pointed to by the exp_dn
 parameter and stores it in the area pointed to by the comp_dn parameter.
 The length parameter is the size of the array pointed to by the comp_dn
 parameter. The dnptrs parameter is a list of pointers to previously
 compressed names in the current message. The first pointer points to the
 beginning of the message and the list ends with NULL. The lastdnptr
 parameter is a pointer to the end of the array pointed to by the dnptrs
 parameter.

 A side effect of this subroutine is to update the list of pointers for
 labels that the dn_comp subroutine inserts into the message as the name is
 compressed. No names are compressed if the value of dnptrs is NULL. If
 the lastdnptr parameter is NULL, the list of pointers is not updated.

 The dn_expand subroutine expands the compressed domain name pointed to by
 the comp_dn parameter to a full domain name, converting the expanded names
 to uppercase. The msgp parameter is a pointer to the beginning of the

AIX Operating System Technical Reference
resolver: res_mkquery, res_send, res_init, dn_comp, dn_expand, getshort, getlong, putshort, putlong

¦ Copyright IBM Corp. 1985, 1991
1.2.234 - 4

 message. The exp_dn parameter is a pointer to a buffer, of the size
 specified by the length parameter, that holds the result. The emorig
 parameter points to the end of the original message, which contains the
 compressed domain name.

 The dn_skipname subroutine skips over a compressed domain name.

 The dn_find subroutine searches for an expanded domain name from a list of
 previously compressed names and returns the offset from msg, if found.

 The getshort and getlong subroutines get quantities from the byte stream
 or arbitrary byte boundaries. The putshort and putlong subroutines put
 quantities into the byte stream or arbitrary byte boundaries. The msgp
 parameter for all of these subroutines represents a pointer into the byte
 stream.

 Return Value
 The res_mkquery subroutine returns the size of the query on success. A
 value of -1 is returned if the subroutine fails because the query is
 larger than the value of the buflen parameter. The res_send subroutine
 returns the length of the message if it succeeds and a value of -1 if it
 fails. The dn_comp subroutine returns the size of the compressed domain
 name if it succeeds. A value of -1 is returned if the subroutine fails.
 The dn_expand subroutine returns the size of the expanded domain name on
 success. A value of -1 is returned if dn_expand fails. The getshort and
 getlong subroutines return a short and a long value, respectively.

 File

 /etc/resolv.conf Contains name server and domain name information.

 Related Information
 See "resolver" in AIX TCP/IP User's Guide, Chapter 2.

AIX Operating System Technical Reference
resolver: res_mkquery, res_send, res_init, dn_comp, dn_expand, getshort, getlong, putshort, putlong

¦ Copyright IBM Corp. 1985, 1991
1.2.234 - 5

 1.2.235 rexec

 Purpose
 Allows command execution on a remote Internet host.

 Library
 Internet Library (libc.a)

 Syntax

 int rexec (host, port, user, passwd, command, errfdp)

 char **host;
 int port;
 char *user, *passwd, *command;
 int *errfdp

 Description

 The rexec subroutine allows the calling process to execute commands on a
 remote host which usually is outside your TCF cluster.

 The rexec subroutine uses the gethostbyname subroutine to find the host
 specified by host. *host is updated to point to the standard name of the
 host found by gethostbyname. If the host does not exist, the rexec
 subroutine fails and returns -1.

 The port parameter specifies the well-known DARPA Internet port to use for
 the connection. A pointer to the structure that contains the necessary
 port can be obtained by issuing the following call:

 getservbyname("exec", "tcp")

 The protocol for the connection is described in detail in the discussion
 of rexecd in AIX TCP/IP User's Guide.

 The user and passwd parameters point to a user ID and password valid at
 the host. If these parameters are not supplied, the rexec subroutine
 takes the following actions until finding a user ID and password to send
 to the remote host:

 1. Searches the current environment for the user ID and password on the
 remote host.

 2. Searches the user's home directory for a file called .netrc that
 contains a user ID and password.

 3. Prompts the user for a user ID and password.

 The command parameter points to the name of the command to be executed at
 the remote host.

 If the connection succeeds, a socket in the Internet domain of type
 SOCK_STREAM is returned to the calling process and is given to the remote
 command as standard input and standard output.

 If errfdp is not 0, an auxiliary channel to a control process is set up,
 and a descriptor for it is placed in *errfdp. The control process
 provides diagnostic output from the remote command on this channel and
 also accepts bytes as signal numbers to be forwarded to the process group

AIX Operating System Technical Reference
rexec

¦ Copyright IBM Corp. 1985, 1991
1.2.235 - 1

 of the command. This diagnostic information does not include remote
 authorization failure, since this connection is set up after authorization
 has been verified.

 If errfdp is 0, then the standard error of the remote command is the same
 as standard output, and no provision is made for sending arbitrary signals
 to the remote process. In this case, however, it may be possible to send
 out-of-band data to the remote command.

 Return Value
 The rexec subroutine fails and a value of -1 is returned if the specified
 host name does not exist.

 Related Information
 In this book: "rcmd, rresvport, ruserok" in topic 1.2.223.

 The discussion of rexecd and /etc/hosts in AIX TCP/IP User's Guide.

AIX Operating System Technical Reference
rexec

¦ Copyright IBM Corp. 1985, 1991
1.2.235 - 2

 1.2.236 rexec: rexecl, rexecv, rexecle, rexecve, rexeclp, rexecvp

 Purpose
 Executes a file on a given site.

 Syntax

 #include <sys/types.h>

 rexecl(path, arg0, arg1, ..., argn, (char *)0, site_number)
 char *path, *arg0, *arg1, ..., *argn;
 siteno_t site_number;

 rexecv(path, argv, site_number)
 char *path, *argv[];
 siteno_t site_number;

 rexecle(path, arg0, arg1, ..., argn, (char *)0, envp, site_number)
 char *path, *arg0, *arg1, ..., *argn, *envp[];
 siteno_t site_number;

 rexecve(path, argv, envp, site_number)
 char *path, *argv[], *envp[];
 siteno_t site_number;

 rexeclp(file, arg0, arg1, ..., argn, (char *)0, site_number)
 char *file, *arg0, *arg1, ..., *argn;
 siteno_t site_number;

 rexecvp(file, argv, site_number)
 char *file, *argv[];
 siteno_t site_number;

 Description
 The rexec family of system calls is only available with the Transparent
 Computing Facility. The rexec family of system calls is just like the
 exec family, except that it allows a site to be specified on which the new
 process file will execute. If site_number is 0, rexec is exactly the same
 as exec.

 The new process executes on the site specified by site_number. If
 site_number is 0, the site is determined by the machine type on which the
 new process file must run and by the site path (see "getspath, setspath"
 in topic 1.2.122).

 If the name of the new process file refers to a hidden directory and
 site_number is nonzero, rexec selects the new process file by using a site
 path which consists only of the machine type corresponding to site_number.
 The new process's site path is not affected.

 See "exec: execl, execv, execle, execve, execlp, execvp" in topic 1.2.71
 for details concerning the arguments to the various forms of rexec which
 are analogous to those of exec.

 Note: The rexec family of system calls may not execute a new program at
 another site if the calling process has too many (85 or more) child
 processes. A process may not use the rexec family of system calls
 to execute a new program at another site if the process has a file
 open which is marked as being in error (for instance, the storage

AIX Operating System Technical Reference
rexec: rexecl, rexecv, rexecle, rexecve, rexeclp, rexecvp

¦ Copyright IBM Corp. 1985, 1991
1.2.236 - 1

 site is not on the network) or if the process has a character
 device open (other than a terminal or the null device).

 The rexec family of system calls may not execute a new program at
 another site if the calling process has made use of shared memory.

 Return Value
 If rexec returns to the calling process, an error has occurred; the return
 value is -1 and errno is set to indicate the error.

 Error Conditions
 The rexec system call fails for any of the reasons listed for exec plus:

 EBADST site_number is out of range.

 Files

 /bin/sh Invoked if the shell program is found by rexeclp or rexecvp.

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, " fork, vfork" in topic 1.2.83, "getspath, setspath" in
 topic 1.2.122, "getxperm, setxperm" in topic 1.2.128, "migrate" in
 topic 1.2.167, "rfork" in topic 1.2.237, " run: runl, runv, runle, runve,
 runlp, runvp" in topic 1.2.239, "a.out" in topic 2.3.2, and "environment"
 in topic 2.4.6.

AIX Operating System Technical Reference
rexec: rexecl, rexecv, rexecle, rexecve, rexeclp, rexecvp

¦ Copyright IBM Corp. 1985, 1991
1.2.236 - 2

 1.2.237 rfork

 Purpose
 Creates a new process on another site.

 Syntax

 #include <sys/types.h>

 pid_t rfork (site_number)
 siteno_t site_number;

 Description
 The rfork system call is only available with the Transparent Computing
 Facility. The rfork system call is comparable to the fork system call,
 except that it allows a site to be specified on which the child process is
 created. If site_number is 0, the child is created locally.

 The rfork system call causes the creation of a new process. The new
 process (child process) is an exact copy of the calling process (parent
 process). This means the child process inherits the following attributes
 from the parent process:

 � Environmen

 � Close-on-exec flag (see "exec: execl, execv, execle, execve, execlp,
 execvp" in topic 1.2.71)

 � Signal handling settings (that is, SIG_DFL, SIG_IGN, function address)

 � Signal mechanism new/old status (see "sigaction, sigvec, signal" in
 topic 1.2.263)

 � Set-user-ID and set-group-ID mode bits (see "setxuid" in
 topic 1.2.256)

 � Profiling on/off statu

 � Nice value (see "getpriority, setpriority, nice" in topic 1.2.111)

 � All attached shared memory segments (see "Semaphores, Message Queues,
 and Shared Memory Segments" in topic 1.2.2.10)

 Note: If there are any shared memory segments, rfork fails unless the
 child process's site is the same as the parent's site.

 � Process group I

 � Session I

 � TTY group ID (see "exit, _exit" in topic 1.2.73 and "sigaction,
 sigvec, signal" in topic 1.2.263)

 � Current working director

 � Root director

 � <LOCAL> alias path name (see "getlocal, setlocal" in topic 1.2.102)

 � File mode creation mask (see "umask" in topic 1.2.314)

AIX Operating System Technical Reference
rfork

¦ Copyright IBM Corp. 1985, 1991
1.2.237 - 1

 � System resource limits (se "getrlimit, setrlimit, vlimit" in
 topic 1.2.115 and "ulimit" in topic 1.2.313)

 � Site path (see "getspath, setspath" in topic 1.2.122)

 � Execution site permissions (see "getxperm, setxperm" in
 topic 1.2.128).

 The child process differs from the parent process in the following ways:

 � The child process has a unique process ID

 � The child process has a different parent process ID (that is, th
 process ID of the parent process).

 � The child process has its own copy of the parent's file descriptors
 Each of the child process's file descriptors shares a common file
 pointer with the corresponding file descriptor of the parent.

 � The trace flag is cleared (see "ptrace" in topic 1.2.212).

 � All semadj values are cleared (see "semop" in topic 1.2.245).

 � Process locks, text locks, data locks, and file locks are no
 inherited by the child process (see "plock" in topic 1.2.205 and
 "fcntl, flock, lockf" in topic 1.2.78).

 � The child process's utime, stime, cutime, and cstime are set to 0.

 � The time left until an alarm clock signal is reset to 0

 Note: Processes may not fork to another site if the destination site has
 a different cpu type or if they have too many (85 or more) child
 processes. Processes may not use the rfork system call to create a
 new process on another site if they have made use of shared memory,
 semaphores, or message operations (see "Semaphores, Message Queues,
 and Shared Memory Segments" in topic 1.2.2.10). Processes may not
 use the rfork system call to create a new process on another site
 if they have a file open which is marked as being in error (for
 example, if the storage site is not on the network) or if they have
 a character device open (other than a terminal or the null device).

 Return Value
 Upon successful completion, rfork returns a value of 0 to the child
 process and returns the process ID of the child process to the parent
 process. Otherwise, a value of -1 is returned to the parent process, no
 child process is created, and errno is set to indicate the error.

 Error Conditions
 The rfork system call fails and no child processes are created if one or
 more of the following are true:

 EAGAIN The user is the superuser, and the system-imposed limit on the
 total number of processes under execution on the remote site
 would be exceeded.

 EAGAIN The user is the not superuser, and the system-imposed limit on
 the total number of processes under execution by a single user
 on the remote site would be exceeded.

AIX Operating System Technical Reference
rfork

¦ Copyright IBM Corp. 1985, 1991
1.2.237 - 2

 EBADST site_number is out of range or the destination site is not the
 same CPU type as the current site.

 EPERM Execute permission is not granted for site_number.

 ESITEDN1 The operation failed because a required site is unavailable.

 ESITEDN2 The operation was terminated because a site failed.

 ENOMEM There is not enough space left for this process on the new site.

 ETABLE On either the parent's site, the system's PID-site table, which
 is used to keep track of remote processes and process groups, is
 full.

 ELOCALONLY
 The process may not remote fork because it is using semaphores,
 message queues, and shared memory (see "Semaphores, Message
 Queues, and Shared Memory Segments" in topic 1.2.2.10) or it has
 too many child processes.

 ENLDEV The process may not execute on the designated site because one
 of its open file descriptors is for a local-only object such as
 a socket or a non-tty character special file.

 ENOSTORE The current load module cannot be located from site sitenumber
 because it has been deleted or superceded by a new version.

 Related Information
 In this book: "semop" in topic 1.2.245, "exec: execl, execv, execle,
 execve, execlp, execvp" in topic 1.2.71, " fork, vfork" in topic 1.2.83,
 "getlocal, setlocal" in topic 1.2.102, "getpriority, setpriority, nice" in
 topic 1.2.111, "getrlimit, setrlimit, vlimit" in topic 1.2.115, "getspath,
 setspath" in topic 1.2.122, "getxperm, setxperm" in topic 1.2.128,
 "migrate" in topic 1.2.167, "plock" in topic 1.2.205, "ptrace" in
 topic 1.2.212, " rexec: rexecl, rexecv, rexecle, rexecve, rexeclp,
 rexecvp" in topic 1.2.236, " run: runl, runv, runle, runve, runlp, runvp"
 in topic 1.2.239, "Semaphores, Message Queues, and Shared Memory Segments"
 in topic 1.2.2.10, "sigaction, sigvec, signal" in topic 1.2.263, "times"
 in topic 1.2.304, "ulimit" in topic 1.2.313, "umask" in topic 1.2.314,
 "wait, waitpid" in topic 1.2.325, and "wait3" in topic 1.2.326.

AIX Operating System Technical Reference
rfork

¦ Copyright IBM Corp. 1985, 1991
1.2.237 - 3

 1.2.238 rmdir

 Purpose
 Removes a directory file.

 Syntax

 rmdir (path)
 char *path;

 Description
 The rmdir system call removes the directory specified by the path
 parameter. The directory you specify must be empty and you must have
 write access to it.

 If the parent directory of path has the sticky attribute bit set, the
 calling process must have an effective user ID equal to:

 � the owner ID of path, or to

 � the owner ID of the parent directory of path.

 Return Value
 Upon successful completion, the rmdir system call returns a value of 0.
 If the rmdir system call fails, a value of -1 is returned, and errno is
 set to indicate the error. It is an error to apply rmdir to a symbolic
 link.

 Error Conditions
 The rmdir system call fails and the directory is not deleted if one or
 more of the following are true:

 EBUSY The directory is in use as either the mount point for a file
 system or the current directory of the process that issued the
 rmdir.

 EEXIST The directory is not empty.

 ENOTDIR A component of the path is not a directory.

 ENOENT The named file does not exist.

 EACCES A component of the path denies search permission or write
 permission is denied on the directory containing the link to be
 removed.

 EROFS The named file resides on a read-only file system.

 EFAULT path points outside of the process's allocated address space.

 ESTALE The process's root or current directory is located in an NFS
 virtual file system that has been unmounted.

 ENAMETOOLONG
 A component of the path parameter exceeded NAME_MAX characters
 or the entire path parameter exceeded PATH_MAX characters.

 EISDIR A hidden directory was named, components within hidden
 directories must be explicitly named.

AIX Operating System Technical Reference
rmdir

¦ Copyright IBM Corp. 1985, 1991
1.2.238 - 1

 ENOENT A symbolic link was named in the path prefix, but the file to
 which it refers does not exist.

 ELOOP A loop of symbolic links was detected.

 ENFILE The system inode table is full.

 EPERM The file named by the path parameter is in a directory with the
 sticky attribute bit set, and the effective user ID of the
 calling process is not equal to the owner of the file or of the
 parent directory.

 If the Transparent Computing Facility is installed on your system, rmdir
 can also fail if one or more of the following are true:

 ELOOP An rmdir was attempted on a symbolic link in a system-type
 replicated file system.

 ESITEDN1 path cannot be accessed because a site went down.

 ESITEDN2 The operation was terminated because a site failed.

 ENOSTORE path is a name relative to the working directory, but no site
 which stores this directory is currently up.

 ENOSTORE A component of path is replicated but not stored on any site
 which is currently up.

 EROFS Write access is requested for a file on a replicated file system
 in which the primary copy is unavailable.

 EINTR A signal was caught during the system call.

 Related Information
 In this book: "chmod, fchmod" in topic 1.2.44, "mkdir" in topic 1.2.168,
 "mknod, mknodx, mkfifo" in topic 1.2.169, "rename" in topic 1.2.233, and
 "umask" in topic 1.2.314.

AIX Operating System Technical Reference
rmdir

¦ Copyright IBM Corp. 1985, 1991
1.2.238 - 2

 1.2.239 run: runl, runv, runle, runve, runlp, runvp

 Purpose
 Runs a file.

 Syntax

 #include <sys/types.h>

 pid_t runl(path, arg0, arg1, ..., argn, (char *)0, site_number, fdmapsize, fdmap)
 char *path, *arg0, *arg1, ..., *argn, *fdmap;
 siteno_t site_number;
 int fdmapsize;

 pid_t runv(path, argv, site_number, fdmapsize, fdmap)
 char *path, *argv[], *fdmap;
 siteno_t site_number;
 int fdmapsize;

 pid_t runle(path, arg0, arg1, ..., argn, (char *)0, envp, site_number, fdmapsize, fdmap)
 char *path, *arg0, *arg1, ..., *argn, *envp[], *fdmap;
 siteno_t site_number;
 int fdmapsize;

 pid_t runve(path, argv, envp, site_number, fdmapsize, fdmap)
 char *path, *argv[], *envp[], *fdmap;
 siteno_t site_number;
 int fdmapsize;

 pid_t runlp(file, arg0, arg1, ..., argn, (char *)0, site_number, fdmapsize, fdmap)
 char *file, *arg0, *arg1, ..., *argn, *fdmap;
 siteno_t site_number;
 int fdmapsize;

 pid_t runvp(file, argv, site_number, fdmapsize, fdmap)
 char *file, *argv[], *fdmap;
 siteno_t site_number;
 int fdmapsize;

 Description
 The run family of system calls is only available with the Transparent
 Computing Facility. These calls in all their forms create a new process,
 overlay it with the named file and transfer to the entry point for that
 file in the new core image. They are essentially combinations of the fork
 and exec system calls; however, much of the internal overhead of fork is
 avoided, providing a more efficient implementation. Also, they verify
 that the exec system call is going to succeed before the fork system call
 is attempted.

 The new process is created on the site specified by site_number. If
 site_number is 0, the site is chosen using the process's site path (see
 "getspath, setspath" in topic 1.2.122).

 If fdmap is nonzero, it specifies from where each of the child process's
 file descriptors will be copied. The value stored at fdmap[i] specifies
 which of the parent's file descriptors (if any) will become the child
 process's i-th descriptor. The child process's i-th descriptor are be
 closed if any of the following are true:

AIX Operating System Technical Reference
run: runl, runv, runle, runve, runlp, runvp

¦ Copyright IBM Corp. 1985, 1991
1.2.239 - 1

 � fdmap[i] is not a valid file descriptor number (-1 is used by
 convention to get a closed descriptor in the child process).

 � fdmap[i] is not an open file descriptor in the parent.

 � fdmap[i] is equal to i, and the close-on-exec flag is set in the
 parent for this file descriptor.

 Under no circumstances are the parent's files be affected by this mapping.
 If fdmap is 0, the child process's files are be copied from the parent's
 as in a fork call.

 The argument fdmapsize specifies the number of files descriptors contained
 in the fdmap. All file descriptors greater than or equal to fdmapsize are
 copied from the parent process as is done in a fork call.

 See "exec: execl, execv, execle, execve, execlp, execvp" in topic 1.2.71
 for details concerning the arguments to the various forms of run which are
 analogous to those of exec.

 Note: Processes may not run on another site if the parent process has too
 many (85 or more) child processes. Processes may not run on
 another site if the parent process has a file open which is marked
 as being in error (for example, if the storage site is not on the
 network) or if it has a character device open (other than a
 terminal or the null device).

 Return Value
 Upon successful completion, the run family returns the process ID of the
 child process to the parent process. It does not return in the child
 process; the child begins execution of the new file. If an error occurs,
 a value of (PID_t) -1 is returned to the parent process, no child process
 is created (except, possibly, in the case of ESITEDN2), and errno is set
 to indicate the error.

 Error Conditions
 The run system calls may fail for any of the reasons listed for the fork
 and rexecvp system calls plus:

 EFAULT fdmap points to an illegal address.

 EINTR A signal was caught during the system call.

 File

 /bin/sh Invoked if a shell program is found by runlp or runvp.

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, " fork, vfork" in topic 1.2.83, "getspath, setspath" in
 topic 1.2.122, "getxperm, setxperm" in topic 1.2.128, "migrate" in
 topic 1.2.167, " rexec: rexecl, rexecv, rexecle, rexecve, rexeclp,
 rexecvp" in topic 1.2.236, "rfork" in topic 1.2.237, "a.out" in
 topic 2.3.2, and "environment" in topic 2.4.6.

AIX Operating System Technical Reference
run: runl, runv, runle, runve, runlp, runvp

¦ Copyright IBM Corp. 1985, 1991
1.2.239 - 2

 1.2.240 scandir

 Purpose
 Scans a directory.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sys/types.h>
 #include <dirent.h>

 int scandir (dirname, namelist, select, compar)
 char *dirname;
 struct dirent * (*namelist []);
 int (*select) ();
 int (*compar) ();

 Description
 The scandir subroutine reads the directory pointed to by dirname, then
 uses the malloc subroutine to create an array of pointers to directory
 entries. The scandir subroutine returns the number of entries in the
 array and, through the namelist parameter, a pointer to the array.

 The select parameter points to a user-supplied subroutine that is called
 by scandir to select which entries to include in the array. The selection
 routine is passed a pointer to a directory entry and should return a
 nonzero value for a directory entry that is included in the array. If
 select is NULL, all directory entries are included.

 The compar parameter also points to a user-supplied subroutine. This
 routine is passed to qsort to sort the completed array. If compar is
 NULL, the array is not sorted. The alphasort subroutine provides
 comparison functions for sorting alphabetically and can be specified by
 the compar parameter. (See "alphasort" in topic 1.2.15.)

 The memory allocated to the array can be deallocated by freeing each
 pointer in the array and the array itself, with the free subroutine. (For
 more information on free, see "malloc, free, realloc, calloc, valloc,
 alloca, mallopt, mallinfo" in topic 1.2.162.)

 Return Value
 The scandir subroutine returns the value -1 if the directory cannot be
 opened for reading, or if the malloc subroutine cannot allocate enough
 memory to hold all the data structures. If successful, the scandir
 subroutine returns the number of entries found.

 Related Information
 In this book: "alphasort" in topic 1.2.15, "directory: opendir, readdir,
 telldir, seekdir, rewinddir, closedir" in topic 1.2.60, "malloc, free,
 realloc, calloc, valloc, alloca, mallopt, mallinfo" in topic 1.2.162,
 "qsort" in topic 1.2.217, and "dir" in topic 2.3.16.

AIX Operating System Technical Reference
scandir

¦ Copyright IBM Corp. 1985, 1991
1.2.240 - 1

 1.2.241 scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf, wsscanf

 Purpose
 Converts formatted input.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <stdio.h>

 int scanf (fmt [, ptr, ...]int NLscanf (fmt [, ptr, ...])
 char *fmt; char *fmt;

 int fscanf (stream, fmt [, pint NLfscanf (stream, fmt [, ptr, ...
 FILE *stream; FILE *stream;
 char *fmt; char *fmt;

 int sscanf (s, fmt [, ptr, .int]NLsscanf (s, fmt [, ptr, ...]
 char *s, *fmt; char *s, *fmt;
 int wsscanf (wcs, fmt [, ptr, ...])
 wchar_t *wcs;
 char *fmt;

 Description
 The scanf, fscanf, and sscanf subroutines read character data, interpret
 it according to a format, and store the converted results into specified
 memory locations. The NLscanf, NLfscanf, and NLsscanf subroutines
 parallel their corresponding functions, providing conversion types to
 handle NLchars as well as chars. The wsscanf subroutine is equivalent to
 sscanf, except that the argument wcs specifies a wide character string
 from which the input is obtained, rather than a string. Reaching the end
 of the wide character string is equivalent to reaching the end of string
 for sscanf. If copying takes place between objects that overlap, the
 behavior is undefined. These subroutines read their input from the
 following sources:

 scanf, NLscanf Reads from standard input (stdin).
 fscanf, NLfscanf Reads from stream.
 sscanf, NLsscanf Reads from the character string s.
 wsscanf Reads from the wide character string s.

 The fmt parameter contains conversion specifications used to interpret the
 input. The ptr parameters specify where to store the interpreted data.

 The fmt parameter can contain the following:

 � White space characters (blanks, tabs, new-lines, or form-feeds) which
 except in two cases described following, reads the input up to the
 next nonwhite space character. Unless there is a match in the control
 string, trailing white space (including a new-line character) is not
 read.

 � Any character except % (percent), which must match the next one or
 more characters of the input stream.

 � A conversion specification that directs the conversion of the nex

AIX Operating System Technical Reference
scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf, wsscanf

¦ Copyright IBM Corp. 1985, 1991
1.2.241 - 1

 input field. It consists of the following:

 - The character % (percent)
 - An optional assignment suppression character, * (asterisk)
 - An optional numeric maximum field width
 - An optional character that sets the size of the receiving variable
 as for some flags, as follows:
 l Signed long integer rather than an int when preceding the d,
 u, o or x conversion codes. A double rather than a float,
 when preceding the e, f or g conversion codes.
 h Signed short integer (half int) rather than an int when
 preceding the d, u, o or x conversion codes.
 - A conversion code.

 Each conversion specification in the fmt parameter has a % (percent sign)
 or the character sequence %digit$, which introduces the conversion
 specification.

 Conversions can be applied to the nth argument in the argument list,
 rather than to the next unused argument. In this case, the conversion
 character % is replaced by the sequence %digit$, where digit is a decimal
 integer n in the range of [1, {NL_ARGMAX}], giving the position of the
 argument inthe argument list. With this feature, format strings can be
 defined to assure that arguments are selected in an order appropriate for
 the specified language.

 %[*][width][size]convcode

 The results from the conversion are placed in *ptr unless you specify
 assignment suppression with *. Assignment suppression provides a way to
 describe an input field that is to be skipped. The input field is a
 string of nonwhite-space characters. It extends to the next inappropriate
 character or until the field width, if specified, is exhausted.

 The conversion code indicates how to interpret the input field. The
 corresponding ptr must usually be of a restricted type. You should not
 specify ptr for a suppressed field. You can use the following conversion
 codes:

 % Accepts a single % input at this point; no assignment is done.

 d Accepts a decimal integer; ptr should be an integer pointer.

 u Accepts an unsigned decimal integer; ptr should be an unsigned
 integer pointer.

 o Accepts an octal integer; ptr should be an integer pointer.

 x Accepts a hexadecimal integer; ptr should be an integer
 pointer.

 e, f, g Accepts a floating-point number. The next field is converted
 accordingly and stored through the corresponding parameter,
 which should be a pointer to a float. The input format for
 floating-point numbers is a string of digits, with some
 optional characteristics:

 � It can be a signed value.
 � It can be an exponential value, containing a decimal point
 followed by an exponent field, which consists of an E or an

AIX Operating System Technical Reference
scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf, wsscanf

¦ Copyright IBM Corp. 1985, 1991
1.2.241 - 2

 e followed by an (optionally signed) integer.
 � It can be one of the special values INF, QNaN, or SNaN,
 which is translated into the ANSI/IEEE value for infinity,
 quiet NaN, or signalling NaN, respectively.

 s Accepts a string of chars. The ptr parameter should be a
 character pointer that points to an array of characters large
 enough to accept the string and ending with '\0'. The '\0' is
 added automatically. The input field ends with a white space
 character. A string of chars is output.

 S (Used by the NLscanf, NLfscanf, and NLsscanf subroutines only.)
 Accepts an NLchar string. The ptr parameter should point to an
 array of characters large enough to accept the string and end
 with '\0'. The '\0' is added automatically. The input field
 ends with a white space character. A string of NLchars is
 output.

 N (Used by the NLscanf, NLfscanf, and NLsscanf subroutines only.)
 Accepts an ASCII string, possibly containing extended character
 information in the form of escape sequences used by the
 NLescstr and NLunescstr subroutines. (See "display symbols" in
 topic 2.4.4 for a list of these escape sequences.) The output
 is in the form of NLchars.

 c A character is expected. The ptr parameter should be a
 character pointer. The normal skip over white space is
 suppressed. Use %1s to read the next nonwhite-space character.
 If a field width is given, ptr should refer to a character
 array; the indicated number of characters is read.

 wc Matches a sequence of multibyte characters of the number
 specified by the field width (1 if no field width is present in
 the directive). The corresponding argument is a pointer to the
 initial wide character of an array large enough to accept the
 sequence resulting from the conversion. This conversion is the
 same as that performed by the mbstowcs routine.

 ws Matches a sequence of non-white space multibyte characters.
 The corresponding argument is a pointer to the initial wide
 character of an array large enough to accept the sequence
 resulting from the conversion and a terminating NULL wide
 character, which is added automatically. This conversion is
 the same as that performed by the mbstowcs subroutine.

 [scanset] Accepts as input the characters included in the scanset. The
 scanset explicitly defines the characters that are accepted in
 the string data as those enclosed within square brackets. The
 normal skip over leading white space is suppressed. A scanset
 in the form of [^scanset] is an exclusive scanset: the ^
 (circumflex) serves as a complement operator and the following
 characters in the scanset are not accepted as input.
 Conventions used in the construction of the scanset follow:

 � You can represent a range of characters by the construct
 first-last. Thus you can express [0123456789] as [0-9].
 The first parameter must be lexically less than or equal to
 last, or else the - (dash) stands for itself. The - also
 stands for itself whenever it is the first or the last
 character in the scanset.

AIX Operating System Technical Reference
scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf, wsscanf

¦ Copyright IBM Corp. 1985, 1991
1.2.241 - 3

 � The range of characters, which is locale dependent, is
 determined by the current locale's collation table.

 � You can include the] (right bracket), as an element of the
 scanset, if it is the first character of the scanset. In
 this case it is not interpreted as the bracket that closes
 the scanset. If the scanset is an exclusive scanset, the]
 is preceded by the ^ (circumflex) to make the] an element
 of the scanset. The corresponding ptr must point to a
 character array large enough to hold the data field and
 that ends with '\0'. The '\0' is added automatically.

 A scanf or NLscanf conversion ends at the end-of-file, the end of the
 control string, or when an input character conflicts with the control
 string. If it ends with an input character conflict, the character that
 conflicts is not read from the input stream.

 Note: Unless there is a match in the control string, trailing blanks
 (including a new-line character) are not read.

 The success of literal matches and suppressed assignments is not directly
 determinable.

 Return Value

 The scanf and NLscanf subroutines return the number of successfully
 matched and assigned input items. This number can be 0 if there was an
 early conflict between an input character and the control string. If the
 input ends before the first conflict or conversion, only EOF is returned.

 The wsscanf subroutine returns the value of the macro EOF if an input
 failure occurs before any conversion. Otherwise, wsscanf returns the
 number of input items assigned, which can be fewer than provided for, or
 even zero in the event of an early matching failure.

 Examples

 1. To read several values and assign them to variables:

 int i;
 float x;
 char name[50];

 scanf ("%d%f%s", &i, &x, name);

 with the input line:

 25 54.32E-1 thompson

 This assigns to i the value 25, to x the value 5.432, and to name the
 value thompson\0.

 2. To perform simple pattern-matching while scanning the input:

 int i;
 float x;
 char name[50];

 scanf ("%2d%f%*d %[0-9]", &i, &x, name);

AIX Operating System Technical Reference
scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf, wsscanf

¦ Copyright IBM Corp. 1985, 1991
1.2.241 - 4

 with the input:

 56789 0123 56a72

 This assigns 56 to i, 789.0 to x, skips 0123, and places the string
 56\0 in name. The next call to getchar returns a. (See "getc, fgetc,
 getchar, getw, getwc, fgetwc, getwchar" in topic 1.2.91.)

 Related Information
 In this book: "getc, fgetc, getchar, getw, getwc, fgetwc, getwchar" in
 topic 1.2.91, "printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf,
 wsprintf" in topic 1.2.208, " stdio" in topic 1.2.283, "strtod, atof" in
 topic 1.2.290, "strtol, atol, atoi" in topic 1.2.291, "limits.h" in
 topic 2.4.11, and "display symbols" in topic 2.4.4.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf, wsscanf

¦ Copyright IBM Corp. 1985, 1991
1.2.241 - 5

 1.2.242 select

 Purpose
 Checks the I/O status of multiple file descriptors and message queues.

 Syntax

 #include <sys/select.h>
 #include <sys/types.h>
 #include <sys/time.h>

 int select (nfdsmsgs, readlist, writelist, exceptlist, timeout)
 int nfdsmsgs;
 struct sellist *readlist, *writelist, *exceptlist;
 struct timeval *timeout;

 int select (nfds, readfds, writefds, exceptfds, timeout)
 int nfds;
 fd_set *readfds, *writefds, *exceptfds;
 struct timeval *timeout;

 Description

 The select system call checks the specified file descriptors and message
 queues to see if they are ready for reading (receiving) or writing
 (sending), or if they have an exceptional condition pending. There are
 two user interfaces to select. The first one is actually a superset of
 the second, although that is not obvious from the syntax. The second
 interface is provided to achieve source code compatibility with software
 from 4.3BSD systems.

 Note: The select system call applies only to character devices, pipes,
 and message queues. Not all character device drivers support it.

 See the descriptions of individual character devices in Chapter 5,
 "Special Files" for information about whether and how specific
 device drivers support select.

 The nfdsmsgs parameter specifies the number of file descriptors and the
 number of message queues to check. The low-order 16 bits give the length
 of a bit mask that specifies which file descriptors to check; the
 high-order 16 bits give the size of an array that contains message queue
 identifiers. If either half of the nfdsmsgs parameter is equal to 0, it
 is assumed the corresponding bit mask or array not present.

 The readlist, writelist, and exceptlist parameters specify what to check
 for reading, writing, and exceptions, respectively. Together, they
 specify the selection criteria. Each of these parameters points to a
 sellist structure, which can specify both file descriptors and message
 queues. Your program must define the sellist structure in the following
 form:

 struct sellist
 {
 int fdsmask[f]; /* file descriptor bit mask */
 int msgids[m]; /* message queue identifiers */
 };

 The fdsmask array is treated as a bit string in which each bit corresponds
 to a file descriptor. File descriptor n is represented by the bit

AIX Operating System Technical Reference
select

¦ Copyright IBM Corp. 1985, 1991
1.2.242 - 1

 (1 << n) in the array element fdsmask[n / BITS(int)]. (The BITS macro is
 defined in the values.h header file.) Each bit that is set to 1 indicates
 that the status of the corresponding file descriptor is to be checked.
 Note that the low-order 16 bits of the nfdsmsgs parameter specify the
 number of bits (not elements) in the fdsmask array that make up the file
 descriptor mask. If only part of the last int is included in the mask,
 then the appropriate number of low-order bits are used, and the remaining
 high-order bits are ignored. If you set the low-order 16 bits of the
 nfdsmsgs parameter to 0, then you must not define a fdsmask array in the
 sellist structure.

 Each int of the msgids array specifies a message queue identifier whose
 status is to be checked. Elements with a value of -1 are ignored. The
 high-order 16 bits of the nfdsmsgs parameter specify the number of
 elements in the msgids array. If you set the high-order 16 bits of the
 nfdsmsgs parameter to 0, then you must not define a msgids array in the
 sellist structure.

 If the timeout parameter is not a NULL pointer, then it points to a
 structure that specifies the maximum length of time to wait for at least
 one of the selection criteria to be met. The timeval structure is defined
 in the sys/select.h header file, and it contains the following members:

 long tv_sec; Seconds
 long tv_usec; Microseconds

 The number of microseconds specified in timeout.tv_usec, a value from 0 to
 999999, is rounded to the nearest second by the AIX Operating System.

 If the timeout parameter is a NULL pointer, then the select system call
 waits indefinitely, until at least one of the selection criteria is met.
 If the timeout parameter points to a timeval structure that contains
 zeros, then the file and message queue status is polled, and the select
 system call returns immediately.

 Note: The arrays specified by readlist, writelist, and exceptlist are the
 same size because each of these parameters points to the same
 sellist structure type. However, you need not specify the same
 number of file descriptors or message queues in each. Set the file
 descriptor bits that are not of interest to 0, and set the extra
 elements of the msgids array to -1.

 You can use the SELLIST macro defined in the sys/select.h header file to
 define the sellist structure. The format of this macro is:

 SELLIST(f, m) declarator...;

 where f specifies the size of the fdsmask array, m specifies the size of
 the msgids array, and each declarator is the name of a variable to be
 declared as having this structure type.

 For example, suppose you want to test file descriptors 1, 2, and 35 in
 addition to five message queues. On the PS/2, which has 32-bit integers,
 this requires two ints for the bit mask. Five ints are required to
 specify the message queue identifiers. The structures can be defined like
 this:

 SELLIST(2, 5) rd, wr, ex;

AIX Operating System Technical Reference
select

¦ Copyright IBM Corp. 1985, 1991
1.2.242 - 2

 This macro expands to:

 struct
 {
 int fdsmask[2];
 int msgids[5];
 } rd, wr, ex;

 Note that the SELLIST macro does not define the structure with a tag (that
 is, as struct sellist).

 The SELLIST macro cannot be used if you specify either half of the
 nfdsmsgs parameter as 0, indicating that one of the arrays is not present.
 Trying to use SELLIST(0,5), for example, results in a compiler error
 caused by defining an array with a dimension of 0. In this case, you must
 define the structure yourself, including only the desired array.

 The arguments to the second interface are for file descriptors only. nfds
 is the number of file descriptors represented in the file descriptor
 masks. The readfds, writefds, and exceptfds arguments are pointers to
 masks indicating the file descriptor sets. The timeout parameter has the
 function described above.

 The descriptor sets are stored as bit fields in arrays of ints. The
 following macros are provided for manipulating such descriptor sets:

 FD_ZERO(&fdset) Initializes a descriptor set fdset to the null set.

 FD_SET(fd, &fdset) Includes a particular descriptor fd in fdset.

 FD_CLR(fd, &fdset) Removes fd from fdset.

 FD_ISSET(fd, &fdset) Is nonzero if fd is a member of fdset, 0 otherwise.

 The behavior of these macros is undefined if a descriptor value is less
 than 0 or greater than or equal to FD_SETSIZE, which is normally at least
 equal to the maximum number of descriptors supported by the system.

 Return Value

 Upon successful completion, the select system call returns a value that
 indicates the total number of file descriptors and message queues that
 satisfy the selection criteria. The fdsmask or fdset bit masks are
 modified so that bits set to 1 indicate file descriptors that meet the
 criteria. The msgids arrays are altered so that message queue identifiers
 that do not meet the criteria are replaced with a value of -1.

 The return value through the first interface is similar to the nfdsmsgs
 parameter in that the low-order 16 bits give the number of file
 descriptors, and the high-order 16 bits give the number of message queue
 identifiers. These values indicate the sum total that meet each of the
 read, write and exception criteria. Therefore, the same file descriptor
 or message queue may be counted up to three times. The return value
 through the second interface is the sum total that meets each of the read,
 write, and exception criteria.

 You can use the NFDS and NMSGS macros to separate out these two values
 from the return value. If rc contains the value returned from the select
 system call, then NFDS(rc) is the number of files selected, and NMSGS(rc)
 is the number of message queues selected.

AIX Operating System Technical Reference
select

¦ Copyright IBM Corp. 1985, 1991
1.2.242 - 3

 If the select system call fails, it returns a value of -1 and sets errno
 to indicate the error. In this case, the contents of the structures
 pointed to by the readlist, writelist, and exceptlist parameters are
 unpredictable. If the time limit specified by the timeout parameter
 expires, select returns a value of 0.

 Error Conditions

 The select system call fails if one or more of the following is true:

 EBADF An invalid file descriptor or message queue identifier is
 specified.

 EINTR A signal was encountered before any of the selected events
 occurred, or before the time limit expired.

 EFAULT The readlist, writelist, exceptlist, or timeout parameter points
 to a location outside of the process's allocated address space.

 EINVAL One of the parameters contains an invalid value.

 EFAULT The readfds, writefds, exceptfds, or timeout parameter points to
 a location outside of the process's allocated address space.

 Related Information
 In this book: "close, closex" in topic 1.2.48, "fcntl, flock, lockf" in
 topic 1.2.78, "ioctlx, ioctl, gtty, stty" in topic 1.2.137, "msgctl" in
 topic 1.2.173, "msgget" in topic 1.2.174, "msgrcv" in topic 1.2.178,
 "msgsnd" in topic 1.2.180, "msgxrcv" in topic 1.2.181, "open, openx,
 creat" in topic 1.2.199, "read, readv, readx" in topic 1.2.224, "write,
 writex" in topic 1.2.330, "values.h" in topic 2.4.28, and Chapter 5,
 "Special Files."

AIX Operating System Technical Reference
select

¦ Copyright IBM Corp. 1985, 1991
1.2.242 - 4

 1.2.243 semctl

 Purpose
 Controls semaphore operations.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/sem.h>

 int semctl (semid, semnum, cmd, val)
 -- or --
 int semctl (semid, semnum, cmd, buf)
 -- or --
 int semctl (semid, semnum, cmd, array)

 int semid;
 unsigned int semnum;
 int cmd;
 int val;
 struct semid_ds *buf;
 unsigned short array [];

 Description
 The semctl system call performs a variety of semaphore control operations
 as specified by the cmd parameter. The data type of the last parameter
 depends on the value of the cmd parameter. It is referred to as val, buf,
 or array to indicate one of the definitions given in the preceding Syntax
 section.

 The first seven cmds get and set the values of a sem structure, which is
 defined in the sys/sem.h header file and contains the following members:

 ushort semval; /* Operation permission structure */
 pid_t sempid; /* ID of last process that did a semop */
 ushort semncnt; /* No. of processes awaiting semval > cval */
 ushort semzcnt; /* No. of processes awaiting semval = 0 */

 The following cmds are executed with respect to the semaphore specified by
 the semid and semnum parameters.

 GETVAL Returns the value of semval, if the current process has read
 permission.

 SETVAL Sets the value of semval to the value specified by val, if the
 current process has write permission. When this cmd is
 successfully executed, the semadj value corresponding to the
 specified semaphore is cleared in all processes.

 GETPID Returns the value of sempid, if the current process has read
 permission.

 GETNCNT Returns the value of semncnt, if the current process has read
 permission.

 GETZCNT Returns the value of semzcnt, if the current process has read

AIX Operating System Technical Reference
semctl

¦ Copyright IBM Corp. 1985, 1991
1.2.243 - 1

 permission.

 The following cmds return and set every semval in the set of semaphores.

 GETALL Stores semvals into the array pointed to by array, if the
 current process has read permission.

 SETALL Sets semvals according to the array pointed to by array, if
 the current process has write permission. When this cmd is
 successfully executed, the semadj value corresponding to each
 specified semaphore is cleared in all processes.

 The following cmds are also available:

 IPC_STAT Stores the current value of each member of the data structure
 associated with the semid parameter into the structure pointed
 to by buf, if the current process has read permission. This
 structure is defined in sys/sem.h and contains the following
 members:

 struct ipc_perm sem_perm; /* Operation permission structure */
 struct sem *sem_base; /* Pointer to first semaphore in set */
 ushort sem_nsems; /* Number of semaphores in the set */
 time_t sem_otime; /* Time of last semop call */
 time_t sem_ctime; /* Time of the last change to this */
 /* structure with a semctl call */

 IPC_SET Sets the value of the following members of the data structure
 associated with the semid parameter to the corresponding value
 found in the structure pointed to by buf:

 sem_perm.uid
 sem_perm.gid
 sem_perm.mode /* Only the low-order nine bits */

 This cmd can only be executed by a process that has an
 effective user ID equal to either that of superuser or to the
 value of sem_perm.uid in the data structure associated with
 the semid parameter.

 IPC_RMID Removes the semaphore identifier specified by the semid
 parameter from the system and destroys the set of semaphores
 and data structures associated with it. This cmd can only be
 executed by a process that has an effective user ID equal to
 either that of superuser or to the value of sem_perm.uid in
 the data structure associated with the semid parameter.

 Note: In a Transparent Computing Facility cluster, semaphores are not
 maintained across the cluster. This means that a process cannot
 communicate via semaphores to processes on another cluster site and
 the process itself cannot migrate.

 Return Value
 Upon successful completion, the value returned depends on the cmd
 parameter as follows:

 cmd Return Value
 GETVAL Returns the value of semval.

AIX Operating System Technical Reference
semctl

¦ Copyright IBM Corp. 1985, 1991
1.2.243 - 2

 GETPID Returns the value of sempid.
 GETNCNT Returns the value of semncnt.
 GETZCNT Returns the value of semzcnt.
 All others Return a value of 0.

 If semctl fails, a value of -1 is returned, and errno is set to indicate
 the error.

 Error Conditions
 The semctl system call fails if one or more of the following are true:

 EINVAL The semid parameter is not a valid semaphore identifier.

 EINVAL The semnum parameter is less than 0 or greater than sem_nsems.

 EINVAL The cmd parameter is not a valid command.

 EACCES Operation permission is denied to the calling process.

 ERANGE The cmd parameter is SETVAL or SETALL and the value to which
 semval is to be set is greater than the system-imposed maximum.

 EPERM The cmd parameter is equal to IPC_RMID or IPC_SET and the
 effective user ID of the calling process is not equal either to
 that of superuser or to the value of sem_perm.uid in the data
 structure associated with the semid parameter.

 EFAULT The buf or array parameter points to a location outside of the
 process's allocated address space.

 Related Information
 In this book: "semget" in topic 1.2.244 and "semop" in topic 1.2.245.

AIX Operating System Technical Reference
semctl

¦ Copyright IBM Corp. 1985, 1991
1.2.243 - 3

 1.2.244 semget

 Purpose
 Gets a set of semaphores.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sys/stat.h>
 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/sem.h>

 int semget (key, nsems, semflg)
 key_t key;
 int nsems, semflg;

 Description
 The semget system call returns the semaphore identifier associated with
 the specified key. The key parameter is either the value IPC_PRIVATE or
 an IPC key constructed by the ftok subroutine (or by a similar algorithm).
 See " stdipc: ftok" in topic 1.2.284 for details about this subroutine.
 The nsems parameter specifies the number of semaphores in the set.

 The semflg parameter is constructed by logically ORing one or more of the
 following values:

 IPC_CREAT Creates the data structure if it does not already exist.
 IPC_EXCL Causes the semget system call to fail if IPC_CREAT is also
 set and the data structure already exists.
 S_IRUSR Permits the process that owns the data structure to read it.
 S_IWUSR Permits the process that owns the data structure to modify
 it.
 S_IRGRP Permits the group associated with the data structure to read
 it.
 S_IWGRP Permits the group associated with the data structure to
 modify it.
 S_IROTH Permits others to read the data structure.
 S_IWOTH Permits others to modify the data structure.

 The values that begin with S_I- are defined in the sys/stat.h header file
 and are a subset of the access permissions that apply to files.

 The semget system call creates a data structure for the semaphore ID and
 an array containing nsems semaphores if one of the following is true:

 � The key parameter is equal to IPC_PRIVATE.

 � The key parameter does not already have a semaphore identifier
 associated with it, and IPC_CREAT is set.

 Upon creation, the data structure associated with the new semaphore
 identifier is initialized as follows:

 � sem_perm.cuid and sem_perm.uid are set equal to the effective user ID
 of the calling process.

AIX Operating System Technical Reference
semget

¦ Copyright IBM Corp. 1985, 1991
1.2.244 - 1

 � sem_perm.cgid and sem_perm.gid are set equal to the effective group ID
 of the calling process.

 � The low-order nine bits of sem_perm.mode are set equal to the
 low-order nine bits of the semflg parameter.

 � sem_nsems is set equal to the value of the nsems parameter.

 � sem_otime is set equal to 0 and sem_ctime is set equal to the current
 time.

 If the key parameter is not IPC_PRIVATE, IPC_EXCL is not set, and a
 semaphore identifier already exists for the specified key, then the value
 of the nsems parameter specifies the number of semaphores that the current
 process needs. If the nsems parameter is 0, then any number of semaphores
 is acceptable. If the nsems parameter is not 0, then the semget system
 call fails if the set contains fewer than nsems semaphores.

 Note: In a Transparent Computing Facility cluster, semaphores are not
 maintained across the cluster. This means that a process cannot
 communicate via semaphores to processes on another cluster site and
 the process itself cannot migrate.

 Return Value
 Upon successful completion, a semaphore identifier is returned. If semget
 fails, a value of -1 is returned and errno is set to indicate the error.

 Error Conditions
 The semget system call fails if one or more of the following are true:

 EINVAL The nsems parameter is less than 0, equal to 0, or greater than
 the system-imposed limit.

 EACCES A semaphore identifier exists for the key parameter but operation
 permission, as specified by the low-order nine bits of the semflg
 parameter, is not granted.

 EINVAL A semaphore identifier exists for the key parameter, but the
 number of semaphores in the set associated with it is less than
 the value of the nsems parameter and the nsems parameter is not
 equal to 0.

 ENOENT A semaphore identifier does not exist for the key parameter and
 IPC_CREAT is not set.

 ENOSPC A semaphore identifier is to be created, but doing so would exceed
 the maximum number of identifiers allowed system wide.

 EEXIST A semaphore identifier exists for the key parameter, and both
 IPC_CREAT and IPC_EXCL are set.

 EAGAIN Cannot allocate space for a semaphore data structure.

 Related Information
 In this book: "semctl" in topic 1.2.243, "semop" in topic 1.2.245, and "
 stdipc: ftok" in topic 1.2.284.

AIX Operating System Technical Reference
semget

¦ Copyright IBM Corp. 1985, 1991
1.2.244 - 2

 1.2.245 semop

 Purpose
 Performs semaphore operations.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/sem.h>

 int semop (semid, sops, nsops)
 int semid;
 struct sembuf sops [];
 unsigned int nsops;

 Description
 The semop system call performs operations on the set of semaphores
 associated with the semaphore identifier specified by the semid parameter.
 The sops parameter points to an array of structures, each of which
 specifies a semaphore operation. The nsops parameter is the number of
 such structures in the array. The sembuf structure is defined in the
 sys/sem.h header file, and it contains the following members:

 ushort sem_num; /* Semaphore number */
 short sem_op; /* Semaphore operation */
 short sem_flg; /* Operation flags */

 Each semaphore operation specified by a sem_op is performed on the
 corresponding semaphore specified by semid and sem_num. The sem_flg for
 each operation is either 0 or constructed by logically ORing one or more
 of the following values:

 SEM_UNDO Specifies whether to modify semadj values.

 SEM_ORDER Specifies whether to perform the operations atomically or
 individually. (This applies only to the sem_flg of the first
 operation specified in the sops array.)

 IPC_NOWAIT Specifies whether to wait or to return immediately when a
 semaphore's semval is not a certain value.

 If SEM_ORDER is not set in sops[0].sem_flg, all of the semaphore
 operations specified in the sops array are performed atomically. This
 means that no semval value for any sem_num that appears in the entire
 array of operations is modified until all the semaphore operations can be
 completed. If the calling process must wait until some semval requirement
 is met, the semop system call does so before performing any of the
 operations. If any semaphore operation would cause an error to occur,
 none of the operations is performed.

 If SEM_ORDER is set in sops[0].sem_flg, the operations are performed
 individually in the order that they appear in the sops array, regardless
 of whether any of the operations require the process to wait. If an
 operation encounters an error condition, the semop system call sets
 SEM_ERR in the sem_flg of the failing operation, sets errno to indicate
 the error, and returns a value of -1. In this case, the operations that

AIX Operating System Technical Reference
semop

¦ Copyright IBM Corp. 1985, 1991
1.2.245 - 1

 precede the failing one in the sops array have been performed, but those
 following it have not.

 The action taken for SEM_UNDO and IPC_NOWAIT is described in the following
 text.

 The sem_op field of the sembuf structure specifies one of the following
 three semaphore operations:

 1. If sem_op is a positive integer and the current process has write
 permission, the value of sem_op is added to semval. If SEM_UNDO is
 set in sem_flg, the value of sem_op is also subtracted from the
 calling process's semadj value for the specified semaphore.

 2. If sem_op is a negative integer and the current process has write
 permission, one of the following occurs:

 � If semval is greater than or equal to the absolute value of
 sem_op, the absolute value of sem_op is subtracted from semval.
 Also, if SEM_UNDO is set in sem_flg, the absolute value of sem_op
 is added to the calling process's semadj value for the specified
 semaphore. The exit system call adds the semadj value to the
 semaphore's semval when the process terminates (see "exit, _exit"
 in topic 1.2.73).

 � If semval is less than the absolute value of sem_op and IPC_NOWAIT
 is set in sem_flg, semop returns a value of -1 and sets errno to
 EAGAIN.

 � If semval is less than the absolute value of sem_op and IPC_NOWAIT
 is not set in sem_flg, semop increments the semncnt associated
 with the specified semaphore and suspends execution of the calling
 process until one of the following occurs:

 - semval becomes greater than or equal to the absolute value of
 sem_op. When this occurs, the value of semncnt associated
 with the specified semaphore is decremented, the absolute
 value of sem_op is subtracted from semval and, if SEM_UNDO is
 set in sem_flg, the absolute value of sem_op is added to the
 calling process's semadj value for the specified semaphore.

 - The semid for which the calling process is awaiting action is
 removed from the system (see "semctl" in topic 1.2.243). When
 this occurs, errno is set equal to EIDRM, and a value of -1 is
 returned.

 - The calling process receives a signal that is to be caught.
 When this occurs, the value of semncnt associated with the
 specified semaphore is decremented, and the calling process
 resumes execution in the manner prescribed in the signal
 system call.

 3. If sem_op is 0 and the current process has read permission, one of the
 following occurs:

 � If semval is 0, semop returns a value of 0.

 � If semval is not equal to 0 and IPC_NOWAIT is set in sem_flg,
 semop returns a value of -1 and sets errno to EAGAIN.

AIX Operating System Technical Reference
semop

¦ Copyright IBM Corp. 1985, 1991
1.2.245 - 2

 � If semval is not equal to 0 and IPC_NOWAIT is not set in sem_flg,
 semop increments the semzcnt associated with the specified
 semaphore and suspends execution of the calling process until one
 of the following occurs:

 - semval becomes 0, at which time the value of semzcnt
 associated with the specified semaphore is decremented.

 - The semid for which the calling process is awaiting action is
 removed from the system. When this occurs, errno is set equal
 to EIDRM, and a value of of -1 is returned.

 - The calling process receives a signal that is to be caught.
 When this occurs, the value of semzcnt associated with the
 specified semaphore is decremented, and the calling process
 resumes execution in the manner prescribed in the signal
 system call.

 Note: In a Transparent Computing Facility cluster, semaphores are not
 maintained across the cluster. This means that a process cannot
 communicate via semaphores to processes on another cluster site and
 the process itself cannot migrate.

 Return Value
 Upon successful completion, the semop system call returns a value of 0.
 Also, the sempid value for each semaphore that is operated upon is set to
 the process ID of the calling process.

 If semop fails, a value of -1 is returned, and errno is set to indicate
 the error. If SEM_ORDER was set in the sem_flg for the first semaphore
 operation in the sops array, SEM_ERR is set in the sem_flg for the failing
 operation.

 Error Conditions
 The semop system call fails if one or more of the following are true for
 any of the semaphore operations specified by the sops parameter. If the
 operations were performed individually, see the preceding discussion of
 SEM_ORDER for more information about error situations.

 EINVAL The semid parameter is not a valid semaphore identifier.

 EFBIG sem_num is less than 0 or it is greater than or equal to the
 number of semaphores in the set associated with the semid
 parameter.

 E2BIG The nsops parameter is greater than the system-imposed maximum.

 EACCES Operation permission is denied to the calling process.

 EAGAIN The operation would result in suspension of the calling process,
 but IPC_NOWAIT is set in sem_flg.

 ENOSPC The limit on the number of individual processes requesting a
 SEM_UNDO would be exceeded.

 EINVAL The number of individual semaphores for which the calling process
 requests a SEM_UNDO would exceed the limit.

 ERANGE An operation would cause a semval to overflow the system-imposed
 limit.

AIX Operating System Technical Reference
semop

¦ Copyright IBM Corp. 1985, 1991
1.2.245 - 3

 EAGAIN Space cannot be allocated for an internal data structure
 (SEM_UNDO).

 EAGAIN Insufficient kernel memory available to allocate the semaphore
 data structures.

 ERANGE An operation would cause a semadj value to overflow the
 system-imposed limit.

 EFAULT The sops parameter points to a location outside of the process's
 allocated address space.

 EINTR The semop system call received a signal.

 EIDRM The semaphore identifier semid has been removed from the system.

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, "exit, _exit" in topic 1.2.73, " fork, vfork" in
 topic 1.2.83, "semctl" in topic 1.2.243, and "semget" in topic 1.2.244.

AIX Operating System Technical Reference
semop

¦ Copyright IBM Corp. 1985, 1991
1.2.245 - 4

 1.2.246 send, sendto, sendmsg

 Purpose
 Sends a message from a socket.

 Syntax

 #include <sys/types.h>
 #include <sys/socket.h>

 int send (s, msg, len, flagsint sendto (s, msg, len, flags, to, tolen)
 int s; int s;
 char *msg; char *msg;
 int len, flags; int len, flags;
 struct sockaddr *to;
 int sendmsg (s, msg, flags) int tolen;
 int s;
 struct msghdr msg [];
 int flags;

 Description

 The send system call sends a message only when the socket is in a
 connected state. The sendto and sendmsg system calls can be used at any
 time.

 Give the address of the target with to, specifying its size with tolen.
 Specify the length of the message with len. Specify the socket ID as
 returned by the socket system call with s. If the message is too long to
 pass through the underlying protocol, the error EMSGSIZE is returned and
 the message is not transmitted.

 No indication of failure to deliver is implied in a send. Return values
 of -1 indicate some locally detected errors.

 If no space for messages is available at the sending socket to hold the
 message to be transmitted, the send system call blocks unless the socket
 is in a nonblocking I/O mode.

 Use the select system call to determine when it is possible to send more
 data.

 The flags argument to send a call is formed by logically ORing one or both
 of the values shown in the following list:

 MSG_OOB Processes out-of-band data on sockets that support this
 notion, for instance, SOCK_STREAM. The underlying
 protocol must also support out-of-band data.

 MSG_DONTROUTE Sends without using routing tables; this is usually used
 only by diagnostic or routing programs.

 For a description of the msghdr structure, see "recv, recvfrom, recvmsg"
 in topic 1.2.227. If the Transparent Computing Facility is installed,
 processes using socket-related system calls are limited to operating on a
 single cluster site.

 Return Value

AIX Operating System Technical Reference
send, sendto, sendmsg

¦ Copyright IBM Corp. 1985, 1991
1.2.246 - 1

 Upon successful completion, the number of characters sent is returned. If
 the send, sendto, or sendmsg system call fails, a value of -1 is returned,
 and errno is set to indicate the error. A socket marked with the O_NDELAY
 flag returns ZERO in the situation where it would otherwise have blocked.

 Error Conditions
 The system call fails if one or more of the following are true:

 EBADF The s parameter is not valid.

 ENOTSOCK The s parameter refers to a file, not a socket.

 EFAULT The addr parameter is not in a readable part of the user address
 space.

 EMSGSIZE The socket requires that the message be sent all at once, and
 the message is too large for that to happen.

 EAGAIN The socket is marked nonblocking with the O_NONBLOCK flag or the
 FIONBIO ioctl in the situation where it would otherwise have
 blocked.

 ENOBUFS The system was unable to allocate an internal buffer. The
 operation may succeed when buffers become available.

 ENOBUFS The output queue for a network interface was full. This
 generally indicates that the interface has stopped sending, but
 may be caused by transient congestion.

 Related Information
 In this book: "recv, recvfrom, recvmsg" in topic 1.2.227 and "socket" in
 topic 1.2.275.

AIX Operating System Technical Reference
send, sendto, sendmsg

¦ Copyright IBM Corp. 1985, 1991
1.2.246 - 2

 1.2.247 setbuf, setvbuf

 Purpose
 Assigns buffering to a stream.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <stdio.h>

 void setbuf (stream, buf)
 FILE *stream;
 char *buf;

 int setvbuf (stream, buf, mode, size)
 FILE *stream;
 char *buf;
 int mode;
 size_t size;

 Description
 The setbuf and setvbuf functions override the default buffering on the
 specified stream. These functions may be used only after the stream
 pointed to by stream has been associated with an open file and before any
 other operation is performed on the stream.

 If setbuf and setvbuf are not called prior to the first time the stream is
 read or written, a buffer will be allocated automatically. For streams
 directed to terminals, this will enable line buffering; except for stderr
 which is unbuffered by default.

 The setbuf subroutine causes the user supplied buffer buf to be used
 instead of the default buffer. This buffer must be of size BUFSIZ
 characters, as defined in <stdio.h>. If the buf parameter is a NULL
 pointer, the stream will be unbuffered.

 For the setvbuf function, mode determines how stream is buffered:

 _IOFBF Causes input/output to be fully buffered.

 _IOLBF Causes input/output to be line buffered. The buffer is flushed
 when a new line is written, the buffer is full, or input is
 requested.

 _IONBF Causes input/output to be completely unbuffered.

 For fully buffered and line buffered streams, a non-null buf parameter may
 be specified. It must point to an array of size characters to be used for
 the buffering; or a null buf parameter may be specified to request that
 setvbuf, allocate its own buffer of size size. A good value for size is
 the constant BUFSIZ defined in <stdio.h>. If input/output is unbuffered,
 the buf and size parameters are ignored.

 Note: A common source of error is allocating buffer space as an automatic
 variable in a code block and then failing to close the stream in
 the same block.

 Error Conditions

AIX Operating System Technical Reference
setbuf, setvbuf

¦ Copyright IBM Corp. 1985, 1991
1.2.247 - 1

 The setvbuf function fails if the following is true:

 EBADF The file descriptor underlying stream is not valid.

 Related Information
 In this book: "fopen, freopen, fdopen" in topic 1.2.82, "getc, fgetc,
 getchar, getw, getwc, fgetwc, getwchar" in topic 1.2.91, "malloc, free,
 realloc, calloc, valloc, alloca, mallopt, mallinfo" in topic 1.2.162,
 "putc, putchar, fputc, putw, putwc, putwchar, fputwc" in topic 1.2.213,
 "setbuffer, setlinebuf" in topic 1.2.248, and " stdio" in topic 1.2.283.

AIX Operating System Technical Reference
setbuf, setvbuf

¦ Copyright IBM Corp. 1985, 1991
1.2.247 - 2

 1.2.248 setbuffer, setlinebuf

 Purpose
 Assigns buffering to a stream.

 Library
 Standard I/O Library (libc.a)

 Syntax

 void setbuffer (stream, buf,voidesetlinebuf (stream)
 FILE *stream; FILE *stream;
 char *buf;
 size_t size;

 Description
 The setbuffer subroutine, an alternate form of the setbuf subroutine
 described on page 1.2.247, is used after stream has been opened, but
 before it is read or written. The character array buf, whose size is
 determined by the size parameter, is used instead of an automatically
 allocated buffer. If the buf parameter is a null character pointer,
 input/output is completely unbuffered.

 The setbuffer subroutine is not needed under normal circumstances since
 the default file I/O buffer size are optimal.

 The setlinebuf subroutine is used to change stdout or stderr from block
 buffered or unbuffered to line buffered. Unlike the setbuf and setbuffer
 subroutines, the setlinebuf subroutine can be used any time the file
 descriptor is active.

 For more information on stream buffering, see "setbuf, setvbuf" in
 topic 1.2.247.

 Related Information
 In this book: "fclose, fflush" in topic 1.2.77, "fopen, freopen, fdopen"
 in topic 1.2.82, "fread, fwrite" in topic 1.2.84, "getc, fgetc, getchar,
 getw, getwc, fgetwc, getwchar" in topic 1.2.91, "malloc, free, realloc,
 calloc, valloc, alloca, mallopt, mallinfo" in topic 1.2.162, "printf,
 fprintf, sprintf, NLprintf, NLfprintf, NLsprintf, wsprintf" in
 topic 1.2.208, "putc, putchar, fputc, putw, putwc, putwchar, fputwc" in
 topic 1.2.213, "puts, fputs, putws, fputws" in topic 1.2.216, and "setbuf,
 setvbuf" in topic 1.2.247.

AIX Operating System Technical Reference
setbuffer, setlinebuf

¦ Copyright IBM Corp. 1985, 1991
1.2.248 - 1

 1.2.249 setgroups

 Purpose
 Sets the group access list.

 Syntax

 #include <grp.h>

 int setgroups (ngroups, gidset);
 int ngroups, *gidset;

 Description
 The setgroups system call sets the group access list of the current user
 process according to the array pointed to by the gidset parameter. The
 ngroups parameter indicates the number of entries in the array and must
 not be more than NGROUPS, as defined in the grp.h header file. Only a
 process with an effective user ID of superuser can set new groups.

 Return Value
 Upon successful completion, a value of 0 is returned. If the setgroups
 system call fails, a value of -1 is returned and errno is set to indicate
 the error.

 Error Conditions
 The setgroups system call fails if one or more of the following is true:

 EPERM The effective user ID of the calling process is not superuser.

 EINVAL The value of the ngroups parameter is greater than NGROUPS.

 EFAULT The gidset parameter points to a location outside of the process's
 allocated address space.

 Related Information
 In this book: "getgroups" in topic 1.2.97 and "initgroups" in
 topic 1.2.135.

AIX Operating System Technical Reference
setgroups

¦ Copyright IBM Corp. 1985, 1991
1.2.249 - 1

 1.2.250 setjmp, longjmp, _setjmp, _longjmp

 Purpose
 Saves and restores the current execution context.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <setjmp.h>

 int setjmp (ctxt) void longjmp (ctxt, val)
 jmp_buf ctxt; jmp_buf ctxt;
 int val;
 int _setjmp (ctxt)
 jmp_buf ctxt;

 void _longjmp (ctxt, val)
 jmp_buf ctxt;
 int val;

 Description
 The setjmp and longjmp subroutines can be useful when handling errors and
 interrupts encountered in low-level subroutines of a program.

 The setjmp subroutine saves the current stack context and signal mask in
 the buffer specified by the ctxt parameter. The setjmp subroutine returns
 a value of 0.

 The longjmp subroutine restores the stack context and signal mask that
 were saved by the setjmp subroutine in the corresponding ctxt buffer.
 After the longjmp subroutine has completed, the program execution
 continues as if the corresponding call to setjmp had just returned the
 value of the val parameter. The subroutine that called setjmp must not
 have returned before the completion of the longjmp subroutine. Setjmp and
 longjmp save and restore the signal mask sigmask, while _setjmp and
 _longjmp manipulate only the stack context.

 The longjmp subroutine cannot return 0 to the previous context. The value
 0 is reserved to indicate the actual return from the setjmp subroutine
 when first called by the program. If the longjmp subroutine is passed a
 val parameter of 0, then execution continues as if the corresponding call
 to the setjmp subroutine had returned a value of 1. All global and static
 data have values as of the time the longjmp subroutine is called.

 Warning: If the longjmp subroutine is called with a ctxt parameter that
 was not previously set by setjmp, or if the subroutine that made the
 corresponding call to setjmp has already returned, then the results of the
 longjmp subroutine are undefined.

 Related Information
 In this book: "sigaction, sigvec, signal" in topic 1.2.263.

AIX Operating System Technical Reference
setjmp, longjmp, _setjmp, _longjmp

¦ Copyright IBM Corp. 1985, 1991
1.2.250 - 1

 1.2.251 setlocale

 Purpose
 Sets program's locale.

 Syntax

 #include <locale.h>

 char *setlocale (int category, const char *locale);

 Description

 The setlocale subroutine selects the appropriate portion of the program's
 locale as specified by the category and locale arguments. The setlocale
 subroutine may be used to change or query the program's entire current
 locale or portions thereof. The value LC_ALL for category names the
 program's entire locale. LC_COLLATE affects the behavior of the strcoll
 and strxfrm subroutines. LC_CTYPE affects the behavior of the character
 handling subroutines and the multibyte functions. LC_MONETARY affects the
 monetary formatting information returned by the localeconv subroutine.
 LC_NUMERIC affects the decimal-point character for the formatted
 input/output subroutines and the string conversion subroutines, as well as
 the non-monetary formatting information returned by the localeconv
 subroutine. LC_TIME affects the behavior of the strftime subroutine.

 A value of C for locale specifies the minimal environment for C
 translation; a value of " " for locale specifies the implementation
 defined native environment. Other implementation defined strings may be
 passed as the second argument to setlocale.

 At program startup, the equivalent of setlocale(LC_ALL,"C"); is executed.

 The implementation will behave as if no library subroutine calls the
 setlocale subroutine.

 Options and Affected Areas

 Subtopics
 1.2.251.1 The category Option
 1.2.251.2 The locale Option

AIX Operating System Technical Reference
setlocale

¦ Copyright IBM Corp. 1985, 1991
1.2.251 - 1

 1.2.251.1 The category Option

 Below is the list of parameters which setlocale understands.

 +---+
 ¦ Category ¦ Action ¦
 +--------------+--¦
 ¦ LC_ALL ¦ All the categories. ¦
 +--------------+--¦
 ¦ LC_COLLATE ¦ Loads in new collation table that ¦
 ¦ ¦ determines the ordering of characters. ¦
 +--------------+--¦
 ¦ LC_CTYPE ¦ Loads in new collation table to be used ¦
 ¦ ¦ for character examination functions. ¦
 +--------------+--¦
 ¦ LC_MONETARY ¦ Update the structure that hold various ¦
 ¦ ¦ monetary standard information, position of ¦
 ¦ ¦ sign and the characters for the monetary ¦
 ¦ ¦ standards. ¦
 +--------------+--¦
 ¦ LC_NUMERIC ¦ The type of decimal point used. ¦
 +--------------+--¦
 ¦ LC_TIME ¦ The format of time and weekday and the ¦
 ¦ ¦ corresponding words for them. ¦
 +--------------+--¦
 ¦ LC_MESSAGE ¦ The language in which system error ¦
 ¦ ¦ messages are to be shown in. ¦
 +---+

 +--+
 ¦ Functions affected as a result of calling setlocale. ¦
 +--¦
 ¦ Category ¦ Functions affected. ¦
 +---------------------+--¦
 ¦ LC_ALL ¦ All functions mentioned below. ¦
 +---------------------+--¦
 ¦ LC_COLLATE ¦ _NCxcol() NCcollate() strxfrm() ¦
 ¦ ¦ _NLxcol() NCcoluniq() wcscmp() ¦
 ¦ ¦ mbscoll() NCcolval() wcsncmp() ¦
 ¦ ¦ mbscmp() NCeqvmap() wcscoll() ¦
 ¦ ¦ mbsncmp() strcoll() ¦
 +---------------------+--¦
 ¦ LC_CTYPE ¦ _tolower() ispunct() iswlower() ¦
 ¦ ¦ _toupper() isshift() iswprint() ¦
 ¦ ¦ isalnum() isspace() iswpunct() ¦
 ¦ ¦ isalpha() isupper() iswspace() ¦
 ¦ ¦ iscntrl() iswalnum() iswupper() ¦
 ¦ ¦ isgraph() iswalpha() iswxdigit() ¦
 ¦ ¦ islower iswcntrl() mblen() ¦
 ¦ ¦ isprint() iswdigit() mbsadvance() ¦
 ¦ ¦ mbschr() iswgraph() mbscat() ¦
 ¦ ¦ mbscmp() NCisgraph() NLstrncat() ¦
 ¦ ¦ mbscpy() NCislower() NLstrncmp() ¦
 ¦ ¦ mbscspn() NCisNLchar() NLstrncpy() ¦
 ¦ ¦ mbsinvalid() NCisprint() NLstrpbrk() ¦
 ¦ ¦ mbslen() NCispunct() NLstrrchr() ¦
 ¦ ¦ mbsncat() NCisshift() NLstrspn() ¦
 ¦ ¦ mbsncmp() NCisspace() NLstrtok() ¦

AIX Operating System Technical Reference
The category Option

¦ Copyright IBM Corp. 1985, 1991
1.2.251.1 - 1

 ¦ ¦ mbsncpy() NCisupper() NCisxdigit() ¦
 ¦ ¦ mbspbrk() NCstrcat() tolower() ¦
 ¦ ¦ mbsrchr() NCstrchr() toupper() ¦
 ¦ ¦ mbsspn() NCstrcpy() towlower() ¦
 ¦ ¦ mbstok() NCstrcspn() towupper() ¦
 ¦ ¦ mbstomb() NCstrlen() wcscat() ¦
 ¦ ¦ mbstowcs() NCstrncat() wcschr() ¦
 ¦ ¦ mbtowc() NCstrncmp() wcscmp() ¦
 ¦ ¦ NCchrlen() NCstrncpy() wcscpy() ¦
 ¦ ¦ NCdec() NCstrpbrk() wcscspn() ¦
 ¦ ¦ NCdechr() NCstrrchr() wcslen() ¦
 ¦ ¦ NCdecode() NCstrspn() wcsncat() ¦
 ¦ ¦ NCdecstr() NCstrtok() wcsncmp() ¦
 ¦ ¦ NCenc() NLchrlen() wcsncpy() ¦
 ¦ ¦ NCencode() NLstrcat() wcspbrk() ¦
 ¦ ¦ NCencstr() NLstrchr() wcsrchr() ¦
 ¦ ¦ NCisalnum() NLstrcpy() wcsspn() ¦
 ¦ ¦ NCisalpha() NLstrcspn() wcstok() ¦
 ¦ ¦ NCiscntrl() NLstrdlen() wctombs() ¦
 ¦ ¦ NCisdigit() NLstrlen() wctomb() ¦
 +---------------------+--¦
 ¦ LC_MONETARY ¦ localeconv. ¦
 +---------------------+--¦
 ¦ LC_NUMERIC ¦ atof, fprintf, localeconv, printf, scanf, sprintf, sscanf. ¦
 +---------------------+--¦
 ¦ LC_TIME ¦ NLstrtime, NLtmtime, strftime. ¦
 +---------------------+--¦
 ¦ LC_MESSAGE ¦ All message accessing routines. ¦
 +--+

 Note: Many of the above function/macros will affect other library
 routines such as regex, but since their dependence is solely
 through the above interface, they will not be mentioned separately.

AIX Operating System Technical Reference
The category Option

¦ Copyright IBM Corp. 1985, 1991
1.2.251.1 - 2

 1.2.251.2 The locale Option

 char *setlocale (int category, char *locale);

 The variable locale consists of two parts. First, the locale which is the
 name of the configuration file and second, the modifier. The modifier is
 separated from the filename, using the @, or "at" sign. The filename,
 which will follow the standards set in the Version 3 document, is
 language_territory.codeset. In reality, this is the name of a
 configuration file that contains keywords corresponding to various
 elements of setlocale. If the filename included in the locale variable
 points to an absolute path, the given absolute path will be read. On the
 other hand, if the filename does not start with a "/", setlocale will look
 in the environment for a variable called MBCS_CFG_DIR. This variable will
 contain the path to directory in which the directory named locale.dir
 resides. setlocale processes the file pointed to by
 $MBCS_CFG_DIR/locale.dir/<filename> and interprets its various options.
 In the event the MBCS_CFG_DIR is not set, the hard-coded default file
 /usr/lib/mbcs.cfg.dir/locale.dir/<filename> is opened for reading.

 The contents of the configuration file is a number of tokens indicating
 the various options of the subroutines affected by the call to setlocale.
 The format is as follows:

 #####
 # Comments et.al.
 #
 MBDATE=MM/DD/YY
 MBSDAY=Sun:Mon:Tue:Wed:Thu:Fri:Sat

 Note: Some fields such as MBSDAY contain an array of values separated by
 a :, or colon; if you need a colon as a literal and not a field
 separator, then it must be escaped using a backslash character.
 Multiple definitions can be made on a line, provided the
 definitions are separated by a semi-colon. There are no spaces
 between the equal equal sign, and the variable name and its value;
 the double quote character, has no special meaning and it will be
 interpreted as a part of the variable name/value. If a token is
 defined and is not legal or does not belong to the current
 category, it is ignored.

 Below is a list of understood tokens, their groups and their subroutines:

 +--+
 ¦ Tokens and their respective Category ¦
 +--¦
 ¦ Name ¦ Category ¦ Functions Effected ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBDATE ¦ LC_TIME ¦ ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBLANG ¦ LC_MESSAGE ¦ NLgetmsg, catopen ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBLDATE ¦ LC_TIME ¦ strftime(%x) ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBLDATIM ¦ LC_TIME ¦ strftime(%c) ¦

AIX Operating System Technical Reference
The locale Option

¦ Copyright IBM Corp. 1985, 1991
1.2.251.2 - 1

 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBLDAY ¦ LC_TIME ¦ strftime(%A) ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBSDAY ¦ LC_TIME ¦ strftime(%a) ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBLMONTH ¦ LC_TIME ¦ strftime(%B) ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBSMONTH ¦ LC_TIME ¦ strftime(%b) ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBTIME ¦ LC_TIME ¦ strftime(%X) ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBAM_STR ¦ LC_TIME ¦ strftime(%p) ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBPM_STR ¦ LC_TIME ¦ strftime(%p) ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBCURSTR ¦ LC_MONETARY ¦ nl_langinfo ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBNUMSEP ¦ LC_NUMERIC ¦ printf, scanf, atof ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBTMISC ¦ LC_TIME ¦ Unix "at" command ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBMONEY ¦ LC_MONETARY ¦ localeconv ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBTSTRS ¦ LC_TIME ¦ ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBNOSTR ¦ LC_MESSAGE ¦ ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBYESSTR ¦ LC_MESSAGE ¦ ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBCOLTAB ¦ LC_COLLATE ¦ See above for a list ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBCTYPE ¦ LC_CTYPE ¦ See above for a list ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 ¦ MBCONV ¦ LC_ALL ¦ All wide char stdio functions ¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 +--------------+----------------+--¦
 +--+

 The modifier can be used to modify the behavior of various subroutines of
 setlocale. For instance, if you wish to use the GR_SW.pc850 (German
 spoken in Switzerland) locale, but you wish to use the am, pm strings
 belonging to the time subroutine with different values than the ones

AIX Operating System Technical Reference
The locale Option

¦ Copyright IBM Corp. 1985, 1991
1.2.251.2 - 2

 defined in the GR_SW.pc850 locale, you may do this as follows:

 setlocale (LC_ALL, "Gr_SW.pc850@MBAM_STR=am;MBPM_STR=pm");

 Note that no space is used before and after the equal signs, the
 semicolons and the '@' modifier when calling setlocale.

 There are two other values recognized for the locale value. If locale is
 a NULL pointer, the user will be given a char pointer containing all the
 information about the current locale for the category inquired. This
 pointer can be used at a later call to setlocale to restore the locale
 that was surveyed last, provided that the contents of memory pointed to by
 the char pointer, which is passed to the user, was saved (the contents of
 the array could change by calling setlocale, before trying to restore the
 locale).

 Example

 old_locale = setlocale (LC_TIME, (char *)NULL);
 setlocale(LC_TIME, "Fr_FR.pc850");
 setlocale(LC_TIME, old_locale);

 The above example will fail. The correct format will look like this:

 old_locale = setlocale(LC_TIME, (char *)NULL);
 cspace = malloc(strlen(old_locale+1));
 strcpy(cspace, old_locale);
 setlocale(LC_TIME, "Fr_FR.pc850");
 setlocale(LC_TIME, cspace);
 free(cspace);

 The other value recognized for setlocale is a pointer to a NULL. This
 means to set the locale to the default locale. This is established by
 examining the environment value for the category at hand; in other words,
 the program will act as if you passed the environment variable for that
 category, as follows:

 setlocale(LC_TIME, ""); /* is equivalent to: */
 setlocale(LC_TIME, getenv("LC_TIME"));

 If one calls setlocale in the form

 setlocale(LC_ALL, "C");

 all the options will be reset to their C locale value. This is the
 default value at start-up. All programs at start-up will act if they
 called setlocale(LC_ALL, "C"); this is achieved by having all the
 structures used by setlocale initialized to the C locale.

 The three tokens MBCONV, MBCTYPE, and MBCOLTAB are different, in the sense
 that they involve loading an external collation or conversion table.
 setlocale has the two hard-coded tables, one for a C locale conversion
 table, and a second for a C locale collation/character type table. There
 are a few advantages in having the two tables hard-coded. First, there
 will be no need for loading the two collation and conversion tables at the
 beginning of the execution. This increases the performance and
 reliability of the system, since a damage to the C locale collation or
 conversion table will break all the executables relying on tables.
 Second, the hard-coded tables will be a part of the text of the
 executables, and in an AIX environment, executables running simultaneously

AIX Operating System Technical Reference
The locale Option

¦ Copyright IBM Corp. 1985, 1991
1.2.251.2 - 3

 share their text.

 The values of MBCONV, MBCTYPE, and MBCOTAB will be understood as filenames
 to be loaded and placed in the appropriate structures, except in the case
 where the value is equal to C; in this case, the assumption will be made
 that the user wants the C locale, and the appropriate table pointers to
 their hard-coded C locale values will be set.

 Return Value

 If a pointer to a string is given for locale and the selection can be
 honored, the setlocale subroutine returns a pointer to the string
 associated with the specified category for the new locale. If the
 selection cannot be honored, the setlocale subroutine returns a null
 pointer and the program's locale is not changed.

 Parameters passed to setlocale update the working environment (this is not
 the same as the environment variables) of that particular process, such as
 its monetary representation, and some of this information is passed to the
 kernel. setlocale is responsible for loading in the conversion table
 using mbgettabl and the collation table.

 Related Information
 In this book: "ctype" in topic 1.2.55, "langinfo.h" in topic 2.4.10,
 "locale.h" in topic 2.4.12, "nl_langinfo" in topic 1.2.198, "string" in
 topic 1.2.288, "strcoll, strncoll, strxfrm, mbscoll, mbsncoll, wcscoll,
 wcsncoll" in topic 1.2.286, "printf, fprintf, sprintf, NLprintf,
 NLfprintf, NLsprintf, wsprintf" in topic 1.2.208, and "scanf, fscanf,
 sscanf, NLscanf, NLfscanf, NLsscanf, wsscanf" in topic 1.2.241.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
The locale Option

¦ Copyright IBM Corp. 1985, 1991
1.2.251.2 - 4

 1.2.252 setpgid, setpgrp, setsid

 Purpose
 Sets the process group or session ID of a process.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sys/types.h>

 int setpgid (pid pgid)
 pid_t pid, pgid;

 int setsid ()

 int setsid ()

 Description
 The setpgid system call is used to either join an existing process group
 or to create a new process group. Upon successful completion, the process
 group ID of the process specified by the pid parameter is set to the pgid
 parameter. If the pid parameter is 0, the process group ID of the calling
 process is set to pgid. If the pgid parameter is 0, the process group ID
 is set equal to the process ID of the process specified by pid. Only
 child processes of the calling process in the same process session are
 valid targets for the setpgid call. For a session leader, the process ID
 value, the process group ID value, and the session ID value of the process
 must always be equal. Therefore, setpgid does not allow the process group
 ID of a session leader to change.

 The setsid system call is used to create a new session. It may not be
 called by a process which is either a session leader or a process group
 leader. The calling process becomes the session leader of this new
 session and upon return has no controlling terminal. The process group ID
 of the calling process is set equal to its process ID. The calling
 process becomes the only process in the new process group and the only
 process in the new session.

 The setpgrp system call is provided for compatibility with UNIX System V
 systems. This system call is equivalent to setsid, creating a new session
 and establishing the calling process as a session leader and process group
 leader.

 Compatibility Note
 For compatibility with 4.3BSD systems, there is a second setpgrp routine
 available in the Berkeley Compatibility Library (libbsd.a):

 int setpgid (pid, pgid)
 pid_t pid, pgid;

 This routine is equivalent to setpgid(), allowing a process to either join
 an existing process group or to create a new process group.

 Return Value
 Upon successful completion, setpgid returns a value of 0 and setsid
 returns the process group ID value of the calling process. Otherwise, -1
 is returned and errno is set to indicate the error.

AIX Operating System Technical Reference
setpgid, setpgrp, setsid

¦ Copyright IBM Corp. 1985, 1991
1.2.252 - 1

 Error Conditions
 The setpgid system call fails if any of the following is true:

 ESRCH The process specified by the pid parameter does not exist.

 EINVAL The value of the pgid argument is less than 0.

 EPERM The process indicated by the pid argument is a session leader.

 The value of the pid argument is valid but matches the process ID
 of a child process of the calling process, and the child process
 is not in the same session as the calling process.

 The value of the pgid argument does not match the process ID of
 the process indicated by the pid argument, and there is no process
 with a process group ID that matches the value of the pgid
 argument in the same session as the calling process.

 ESRCH The value of the pid argument does not match the process ID of the
 calling process or of a child process of the calling process.

 The setsid system call fails if the following is true:

 EPERM The calling process is already a session or process group leader.

 Related Information
 In this book: " fork, vfork" in topic 1.2.83, "getpid, getpgrp, getppid"
 in topic 1.2.110.

AIX Operating System Technical Reference
setpgid, setpgrp, setsid

¦ Copyright IBM Corp. 1985, 1991
1.2.252 - 2

 1.2.253 setquota

 Purpose
 Enables or disables quotas on a file system.

 Syntax

 int setquota (special, file)
 char *special, *file;

 Description
 Disk quotas are enabled or disabled with the setquota system call. The
 special parameter indicates a block special device on which a mounted file
 system exists. If the file parameter is not NULL, it specifies a file in
 that file system from which to take the quotas. If the file parameter is
 NULL, quotas are disabled on that file system. The quota file must exist;
 it is normally created with the quotacheck program. Only the superuser
 may turn quotas on or off.

 Return Value
 A 0 return value indicates that the call succeeded. A return value of -1
 indicates that an error occurred, and an error code is stored in the
 global variable errno.

 Error Conditions
 The possible errors are:

 EINVAL The system is not configured to support the QUOTA option.

 EPERM The command requires privilege, and the calling process's
 effective user ID was not superuser.

 ENODEV The device associated with special does not exist.

 ENOTBLK The device associated with special is not a block device.

 ENXIO The device associated with special does not exist.

 EROFS The file specified by file resides on a read-only file system.

 EACCES The file specified by file resides on a file system different
 from special.

 EACCES The file specified by file is not a plain file.

 EIO An I/O error occurred while accessing the file specified by
 file.

 The following errors are applicable to any system call which requires path
 name resolution:

 ENOTDIR A component of the path prefix is a not a directory.

 ENOENT A component of the path prefix does not exist.

 EACCES Search permission is denied on a component of the path prefix.

 ENOENT The path name is null.

 ENAMETOOLONG

AIX Operating System Technical Reference
setquota

¦ Copyright IBM Corp. 1985, 1991
1.2.253 - 1

 A component of a path name exceeds 255 characters, or an entire
 path name exceeds 1023 characters.

 ESTALE The process's root or current directory is located in an NFS
 virtual file system that has been unmounted.

 EFAULT The special or file parameter points to a location outside of
 the process's allocated address space.

 ELOOP Too many symbolic links were encountered in translating the path
 name.

 EIO An I/O error occurred during the operation.

 If the Transparent Computing Facility is installed on your system,
 setquota can also fail if one or more of the following are true:

 ESITEDN1 Either special or file cannot be accessed because a site went
 down.

 ESITEDN2 The operation was terminated because a site failed.

 ENOSTORE special or file is a name relative to the working directory, but
 no site which stores this directory is currently up.

 ENOSTORE A component of special or file is replicated but is not stored
 on any site which is currently up.

 EROFS file resides on a replicated file system in which the primary
 copy is unavailable.

 ENLDEV special is a non-TTY character special file which corresponds to
 a device physically attached to another site in the cluster.

 EINTR A signal was caught during the system call.

 Related Information

 In this book: "getrlimit, setrlimit, vlimit" in topic 1.2.115,
 "getrusage, vtimes" in topic 1.2.116, "ulimit" in topic 1.2.313, and
 "quota" in topic 1.2.218.

 The description of quotacheck and quotaon in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
setquota

¦ Copyright IBM Corp. 1985, 1991
1.2.253 - 2

 1.2.254 setreuid, setregid

 Purpose
 Sets real and effective user and group IDs.

 Library
 Standard C Library (libc.a)

 Syntax

 int setreuid (ruid, euid)
 int ruid, euid;

 int setregid (rgid, egid)
 int rgid, egid;

 Description
 The setreuid subroutine sets the real and effective user ID of the current
 process according to the parameters ruid and euid. If either of these
 parameters equals -1, the current user ID is used.

 Any process can change the real user ID or the effective user ID to the
 other, but only a process with an effective user ID of superuser can make
 other kinds of changes.

 The setregid subroutine sets the real and effective group ID of the
 current process according to the parameters rgid and egid. If either of
 these parameters equals -1, the current group ID is used.

 Any process can change the real group ID or the effective group ID to the
 other, but only a process with an effective user ID of superuser can make
 other kinds of changes.

 If you need the setruid or seteuid functions, they can be constructed as:

 #define seteuid(id) setreuid(-1, (id))
 #define setruid(id) setreuid((id), -1)

 Return Value
 When the call succeeds, a value of 0 is returned. If the setreuid or
 setregid subroutines fail, a value of -1 is returned and errno is set to
 indicate the error.

 Error Conditions

 EPERM The current process does not have an effective user ID of
 superuser. This process attempted to change other than from the
 effective user (group) ID to the real user (group) ID, or vice
 versa.

 Related Information
 In this book: "getuid, geteuid, getgid, getegid" in topic 1.2.124 and
 "setuid, setgid" in topic 1.2.255.

AIX Operating System Technical Reference
setreuid, setregid

¦ Copyright IBM Corp. 1985, 1991
1.2.254 - 1

 1.2.255 setuid, setgid

 Purpose
 Sets a process's user and group IDs.

 Syntax

 #include <sys/types.h>

 int setuid (uid) int setgid (gid)
 uid_t uid; gid_t gid;

 Description
 The setuid system call sets the real user ID, the effective user ID, and
 the saved-set-user ID of the calling process. If the effective user ID of
 the calling process is superuser, then the real user ID, effective user
 ID, and the saved-set-user ID are set to the value of the uid parameter.
 If the effective user ID of the calling process is not superuser, but the
 real user ID or the saved-set-user ID is equal to the value of the uid
 parameter, then the effective user ID is set to the value of the uid
 parameter.

 The setgid system call sets the real group ID, the effective group ID, and
 the saved-set-group ID of the calling process. If the effective user ID
 of the calling process is superuser, then the real group ID, effective
 group ID, and the saved-set-group ID are set to the value of the gid
 parameter. If the effective user ID of the calling process is not
 superuser, but the real group ID or the saved-set-group ID is equal to the
 value of the gid parameter, then the effective group ID is set to the
 value of the gid parameter.

 Return Value
 Upon successful completion, a value of 0 is returned. If the setuid or
 setgid system call fails, then a value of -1 is returned and errno is set
 to indicate the error.

 Error Conditions
 The setuid and setgid system calls fail if the following is true:

 EPERM The uid (gid) parameter is not equal to the real user (group) ID
 of the process or to the saved-set-user (group) ID as set by the
 exec system call, and the effective user ID is not superuser.

 EINVAL The uid (gid) parameter is not a valid user (group) ID.

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, "getpid, getpgrp, getppid" in topic 1.2.110, "getuid,
 geteuid, getgid, getegid" in topic 1.2.124, " run: runl, runv, runle,
 runve, runlp, runvp" in topic 1.2.239, and "rexec" in topic 1.2.235.

AIX Operating System Technical Reference
setuid, setgid

¦ Copyright IBM Corp. 1985, 1991
1.2.255 - 1

 1.2.256 setxuid

 Purpose
 Uses real user ID or group ID on subsequent invocations of the exec or run
 system calls.

 Syntax

 #include <sys/types.h>

 int setxuid(options)
 int options;

 #define GS_XUID 1
 #define GS_XGID 2

 Description
 The setxuid system call allows a process to restore the real user ID
 and/or real group ID to be used as the effective user ID and/or effective
 group ID, respectively, at the end of a later exec, rexec or run system
 call. setxuid can turn these options on or off. The possible options
 are:

 GS_XUID If this bit is turned on, the effective user ID of invoked
 programs is the current process's real user ID, unless the
 invoked program already has its setuid mode bit set. If this
 bit is turned off, the effective user ID follows normal
 semantics; it is not modified in an invoked program unless the
 program has its setuid mode bit set.

 GS_XGID If this bit is turned on, the effective group ID of invoked
 programs is the current process's real group ID, unless the
 invoked program already has its setgid mode bit set. If this
 bit is turned off, the effective group ID follows normal
 semantics; it is not modified in an invoked program unless the
 program has its setgid mode bit set.

 This system call permits a setuid program to invoke another program with
 its caller's permission while using the setuid program's permission to
 determine execute access. Its use in the invoking process is equivalent
 to using the setuid and/or setgid system call as the first instructions in
 the invoked process unless the invoked program has its setuid and/or
 setgid mode bits set.

 The effect of this operation is carried around with the process until
 reset by another call to setxuid or until a new image has been loaded by a
 successful exec, rexec or run system calls. In particular, this state is
 inherited by all child processes.

 A typical use of setxuid is to limit when or by whom another program can
 be run. In place of a program whose use is to be restricted, a small
 program of the same name can be installed. This program uses setuid or
 setgid for a more privileged user or group. After determining that the
 user should be allowed to run the actual program, it calls setxuid and
 then calls exec to execute the program, which has been installed elsewhere
 with restricted permissions.

 Return Value
 The old value of the options is returned.

AIX Operating System Technical Reference
setxuid

¦ Copyright IBM Corp. 1985, 1991
1.2.256 - 1

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, " rexec: rexecl, rexecv, rexecle, rexecve, rexeclp, rexecvp"
 in topic 1.2.236, " run: runl, runv, runle, runve, runlp, runvp" in
 topic 1.2.239, and "setuid, setgid" in topic 1.2.255.

AIX Operating System Technical Reference
setxuid

¦ Copyright IBM Corp. 1985, 1991
1.2.256 - 2

 1.2.257 sfent, sfnum, sfname, sfctype, sfxcode, setsf, endsf

 Purpose
 Site file entry access routines.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sf.h>
 #include <sys/types.h>

 struct sf *sfent() struct sf *sfxcode(xcode)
 short xcode;
 struct sf *sfnum(sitenum)
 siteno_t sitenum; setsf()

 struct sf *sfname(sitename) endsf()
 char *sitename;
 struct sf *sfctype(cputype)
 char *cputype;

 Description
 These routines are used to access the site file /etc/site. The site file
 is used primarily by the Transparent Computing Facility and contains
 information about each machine in the TCF cluster. If TCF is not
 installed, the site file has one entry for the local machine. This entry
 contains the name of the machine as entered during the installation of the
 AIX Operating System. This name is also returned in nodename by the uname
 system call.

 The sfent, sfnum, sfname, sfctype and sfxcode subroutines return a pointer
 to a structure containing the fields of a line in the /etc/site file. The
 sf structure is defined in the sf.h header file and contains the following
 members:

 short sf_id; /* Site ID */
 char *sf_sname; /* Site name */
 char *sf_local; /* Local file system name */
 char *sf_ctype; /* CPU type name */
 short sf_ccode; /* CPU type code */
 char *sf_cname; /* Full CPU type name */
 char *sf_fname; /* Full site name */
 short sf_speed; /* CPU speed */

 The setsf subroutine opens the site file and keeps it open across the
 other calls. If several entries are to be accessed, setsf should be
 called first. If the site file is already open, setsf rewinds it.

 The sfent subroutine reads the next entry from the site file /etc/site.
 The site file is opened if necessary.

 The sfnum subroutine returns the site information for the machine
 specified by sitenum. If the specified site number is not found, NULL is
 returned. If the site file had to be opened to satisfy this request, it
 is also closed.

AIX Operating System Technical Reference
sfent, sfnum, sfname, sfctype, sfxcode, setsf, endsf

¦ Copyright IBM Corp. 1985, 1991
1.2.257 - 1

 The sfname subroutine returns the site information for the machine
 specified by sitename. If the specified site name is not found, NULL is
 returned. Case is ignored in name comparisons. If the site file had to
 be opened to satisfy this request, it is also closed.

 The sfctype subroutine returns the site information for the next entry
 with a CPU type name that matches the type specified by cputype. NULL is
 returned if a matching entry is not found. The site file is opened if
 necessary.

 The sfxcode subroutine returns the site information for the next entry
 with a CPU type code that matches the type specified by xcode. NULL is
 returned if a matching entry is not found. The site file is opened if
 necessary.

 The endsf subroutine closes the site file.

 Return Value
 All information is returned in a static area, so it must be copied if it
 is to be saved. All routines return NULL upon error.

 File

 /etc/site Site description file

 Related Information
 In this book: "uname, unamex" in topic 1.2.316.

AIX Operating System Technical Reference
sfent, sfnum, sfname, sfctype, sfxcode, setsf, endsf

¦ Copyright IBM Corp. 1985, 1991
1.2.257 - 2

 1.2.258 shmat

 Purpose
 Attaches a shared memory segment to the current process.

 Syntax

 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/shm.h>

 char *shmat (shmid, shmaddr, shmflg)
 int shmid;
 char *shmaddr;
 int shmflg;

 Description
 The shmat system call attaches the shared memory segment associated with
 the shared memory identifier (returned by shmget) specified by the shmid
 parameter to the address space of the calling process.

 The segment is attached at the address specified by the shmaddr parameter
 as follows:

 � If the shmaddr parameter is equal to 0, the segment is attached at the
 first available address as selected by the system.

 � If the shmaddr parameter is not equal to 0, and SHM_RND is set in
 shmflg, the segment is attached at the next lower segment boundary.
 This address given by (shmaddr - (shmaddr module SHMLBA)).

 � If the shmaddr parameter is not equal to 0 and SHM_RND not set in
 shmflg, the segment is attached at the address given by the shmaddr
 parameter. If this address does not point to a segment boundary, then
 the shmat system call returns the value -1 and sets errno to EINVAL.

 The shmflg parameter specifies several options. Its value is either 0, or
 is constructed by logically ORing one or more of the following values:

 SHM_RND Rounds the address given by the shmaddr parameter to the
 next lower segment boundary, if necessary.

 SHM_RDONLY Specifies read-only mode instead of the default read-write
 mode.

 The shared memory segment is attached for reading if SHM_RDONLY is set in
 shmflg and if the current process has read permission. If SHM_RDONLY is
 not set and the current process has both read and write permission, then
 it is attached for reading and writing.

 Note: In a Transparent Computing Facility cluster, shared memory segments
 exist only on the cluster site on which they are created.
 Consequently, processes that use shared memory segments cannot be
 migrated to other sites and processes on different cluster sites
 cannot share memory segments.

 Return Value
 Upon successful completion, the segment start address of the attached
 shared memory segment is returned. If shmat fails, a value of -1 is
 returned and errno is set to indicate the error.

AIX Operating System Technical Reference
shmat

¦ Copyright IBM Corp. 1985, 1991
1.2.258 - 1

 Error Conditions
 The shmat system call fails and the shared memory segment is not attached
 if one or more of the following are true:

 EACCES Operation permission is denied to the calling process.

 ENOMEM The available data space in memory is not large enough to hold
 the shared memory segment.

 EINVAL The shmid parameter is not a valid shared memory identifier.

 EINVAL The shmaddr parameter is not equal to 0, and the value of
 (shmaddr - (shmaddr module SHMLBA)) is an illegal address.

 EINVAL The shmaddr parameter is not equal to 0, SHM_RND is not set in
 shmflg, and the the shmaddr parameter is an illegal address.

 EINVAL The shmaddr parameter is not equal to 0, SHM_RND is not set in
 shmflg, and the the shmaddr parameter does not point to a
 segment boundary.

 EMFILE The number of shared memory segments attached to the calling
 process would exceed the system-imposed limit.

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, "exit, _exit" in topic 1.2.73, " fork, vfork" in
 topic 1.2.83, "shmctl" in topic 1.2.259, "shmdt" in topic 1.2.260, and
 "shmget" in topic 1.2.261.

AIX Operating System Technical Reference
shmat

¦ Copyright IBM Corp. 1985, 1991
1.2.258 - 2

 1.2.259 shmctl

 Purpose
 Controls shared memory operations.

 Syntax

 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/shm.h>

 int shmctl (shmid, cmd, buf)
 int shmid, cmd;
 struct shmid_ds *buf;

 Description
 The shmctl system call performs a variety of shared memory control
 operations as specified by the cmd parameter. The shmid parameter is a
 shared memory identifier returned by the shmget system call. The
 following cmds are available:

 IPC_STAT Places the current value of each member of the data structure
 associated with the shmid parameter into the shmid_ds
 structure pointed to by the buf parameter. The current
 process must have read permission in order to perform this
 operation. The shmid_ds structure is defined in the sys/shm.h
 header file, and it contains the following members:

 struct ipc_perm shm_perm; /* Operation permission structure */
 int shm_segsz; /* Segment size */
 struct vseg *shm_vseg; /* Segment identifier */
 pid_t shm_lpid; /* ID of last process to call shmop */
 pid_t shm_cpid; /* ID of process that created this shmid */
 ushort shm_nattch; /* Current number of processes attached */
 ushort shm_cnattach; /* No. of in-memory processes attached */
 time_t shm_atime; /* Time of last shmat call */
 time_t shm_dtime; /* Time of last shmdt call */
 time_t shm_ctime; /* Time of the last change to this */
 /* structure with a shmctl call */

 IPC_SET Sets the value of the following members of the data structure
 associated with the shmid parameter to the corresponding value
 found in the structure pointed to by the buf parameter:

 shm_perm.uid
 shm_perm.gid
 shm_perm.mode /* Only the low-order nine bits */

 This cmd can only be performed by a process that has an
 effective user ID equal to either that of superuser or to the
 value of shm_perm.uid in the data structure associated with
 the shmid parameter.

 IPC_RMID Removes the shared memory identifier specified by the shmid
 parameter from the system and erases the shared memory segment
 and data structure associated with it. This cmd can only be
 executed by a process that has an effective user ID equal to
 either that of superuser or to the value of shm_perm.uid in
 the data structure associated with the shmid parameter.

AIX Operating System Technical Reference
shmctl

¦ Copyright IBM Corp. 1985, 1991
1.2.259 - 1

 Note: In a Transparent Computing Facility cluster, shared
 memory segments exist only on the cluster site on which
 they are created. Consequently, processes that use
 shared memory segments cannot be migrated to other
 sites and processes on different cluster sites cannot
 share memory segments.

 Return Value
 Upon successful completion, a value of 0 is returned. If shmctl fails, a
 value of -1 is returned and errno is set to indicate the error.

 Error Conditions
 The shmctl system call fails if one or more of the following are true:

 EINVAL The shmid parameter is not a valid shared memory identifier.

 EINVAL The cmd parameter is not a valid command.

 EACCES The cmd parameter is equal to IPC_STAT and read permission is
 denied to the calling process.

 EPERM The cmd parameter is equal to IPC_RMID or IPC_SET, and the
 effective user ID of the calling process is neither equal to the
 superuser ID, nor is it equal to the value of shm_perm.uid in the
 data structure associated with shmid.

 EFAULT The buf parameter points to a location outside of the process's
 allocated address space.

 Related Information
 In this book: "disclaim" in topic 1.2.62, "shmat" in topic 1.2.258,
 "shmdt" in topic 1.2.260, "shmget" in topic 1.2.261, and "master" in
 topic 2.3.32.

AIX Operating System Technical Reference
shmctl

¦ Copyright IBM Corp. 1985, 1991
1.2.259 - 2

 1.2.260 shmdt

 Purpose
 Detaches a shared memory segment.

 Syntax

 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/shm.h>

 int shmdt (shmaddr)
 char *shmaddr;

 Description
 The shmdt system call detaches, from the calling process's data segment,
 the shared memory segment located at the address specified by the shmaddr
 parameter.

 Return Value
 Upon successful completion, a value of 0 is returned. If shmdt fails, a
 value of -1 is returned and errno is set to indicate the error.

 Error Conditions
 The shmdt system call fails and the shared memory segment is not detached
 if the following is true:

 EINVAL The shmaddr parameter is not the data segment start address of a
 shared memory segment.

 ETXTBSY The shmdt system call attempted to detach a segment attached to
 a shared library.

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, "exit, _exit" in topic 1.2.73, " fork, vfork" in
 topic 1.2.83, "shmat" in topic 1.2.258, "shmctl" in topic 1.2.259, and
 "shmget" in topic 1.2.261.

AIX Operating System Technical Reference
shmdt

¦ Copyright IBM Corp. 1985, 1991
1.2.260 - 1

 1.2.261 shmget

 Purpose
 Gets shared memory segment.

 Syntax

 #include <sys/stat.h>
 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/shm.h>

 int shmget (key, size, shmflg)
 key_t key;
 int size, shmflg;

 Description
 The shmget system call returns the shared memory identifier associated
 with the specified key. The key parameter is either the value IPC_PRIVATE
 or an IPC key constructed by the ftok subroutine (or by a similar
 algorithm). See " stdipc: ftok" in topic 1.2.284 for details about this
 subroutine. The size parameter specifies the number of bytes of shared
 memory required.

 The shmflg parameter is constructed by logically ORing one or more of the
 following values:

 IPC_CREAT Creates the data structure if it does not already exist.
 IPC_EXCL Causes the shmget system call to fail if IPC_CREAT is also
 set and the data structure already exists.
 S_IRUSR Permits the process that owns the data structure to read it.
 S_IWUSR Permits the process that owns the data structure to modify
 it.
 S_IRGRP Permits the group associated with the data structure to read
 it.
 S_IWGRP Permits the group associated with the data structure to
 modify it.
 S_IROTH Permits others to read the data structure.
 S_IWOTH Permits others to modify the data structure.

 The values that begin with S_I- are defined in the sys/stat.h header file
 and are a subset of the access permissions that apply to files.

 A shared memory identifier, its associated data structure, and a shared
 memory segment equal in bytes to the value of the size parameter are
 created for the key parameter if one of the following is true:

 � The key parameter is equal to IPC_PRIVATE.

 � The key parameter does not already have a shared memory identifier
 associated with it, and IPC_CREAT is set.

 Upon creation, the data structure associated with the new shared memory
 identifier is initialized as follows:

 � shm_perm.cuid and shm_perm.uid are set equal to the effective user ID
 of the calling process.

 � shm_perm.cgid and shm_perm.gid are set equal to the effective group ID
 of the calling process.

AIX Operating System Technical Reference
shmget

¦ Copyright IBM Corp. 1985, 1991
1.2.261 - 1

 � The low-order nine bits of shm_perm.mode are set equal to the
 low-order nine bits of the shmflg parameter.

 � shm_segsz is set equal to the value of the size parameter.

 � shm_lpid, shm_nattch, shm_atime, and shm_dtime are set equal to 0.

 � shm_ctime is set equal to the current time.

 Note: In a Transparent Computing Facility cluster, shared memory segments
 exist only on the cluster site on which they are created.
 Consequently, processes that use shared memory segments cannot be
 migrated to other sites and processes on different cluster sites
 cannot share memory segments.

 Return Value
 Upon successful completion, a shared memory identifier is returned. If
 shmget fails, a value of -1 is returned and errno is set to indicate the
 error.

 Error Conditions
 The shmget system call fails if one or more of the following are true:

 EINVAL The size parameter is less than the system-imposed minimum or
 greater than the system-imposed maximum.

 EACCES A shared memory identifier exists for the key parameter but
 operation permission as specified by the low-order nine bits of
 the shmflg parameter is not granted.

 EINVAL A shared memory identifier exists for key, but the size of the
 segment associated with it is less than the size parameter and
 the size parameter is not equal to 0.

 ENOENT A shared memory identifier does not exist for the key parameter
 and IPC_CREAT not set.

 ENOSPC A shared memory identifier is to be created but the
 system-imposed limit on the maximum number of allowed shared
 memory identifiers system wide will be exceeded.

 ENOMEM A shared memory identifier and associated shared memory segment
 are to be created but the amount of available physical memory is
 not sufficient to fill the request.

 EEXIST A shared memory identifier exists for the key parameter, and
 both IPC_CREAT and IPC_EXCL are set.

 Related Information
 In this book: "shmat" in topic 1.2.258, "shmctl" in topic 1.2.259,
 "shmdt" in topic 1.2.260, and " stdipc: ftok" in topic 1.2.284.

AIX Operating System Technical Reference
shmget

¦ Copyright IBM Corp. 1985, 1991
1.2.261 - 2

 1.2.262 shutdown

 Purpose
 Shuts down part or all of a full-duplex connection.

 Syntax

 int shutdown (s, how)
 int s, how;

 Description
 The shutdown system call allows you to disable receives, sends, or both on
 the socket specified by the s parameter. The action of the system call is
 determined by the how parameter, according to the following values:

 0 Disallows further receives.

 1 Disallows further sends.

 2 Disallows both further sends and receives.

 Return Value

 Upon successful completion, a value of 0 is returned. If the shutdown
 system call fails, a value of -1 is returned, and errno is set to indicate
 the error.

 Error Conditions
 The system call fails if one or more of the following are true:

 EBADF The s parameter is not valid.

 ENOTSOCK The s parameter refers to a file, not a socket.

 ENOTCONN The socket is not connected.

 EINVAL The how parameter is invalid.

 Related Information
 In this book: "connect" in topic 1.2.49 and "socket" in topic 1.2.275.

AIX Operating System Technical Reference
shutdown

¦ Copyright IBM Corp. 1985, 1991
1.2.262 - 1

 1.2.263 sigaction, sigvec, signal

 Purpose
 Specifies the action to take upon delivery of a signal.

 Syntax

 #include <signal.h>

 int sigaction (sig, act, oact)
 int sig;
 struct sigaction *act, *oact;

 Description
 The sigaction system call allows the calling process to examine and change
 the action to be taken when a specific signal is delivered to the process.

 The sig parameter specifies the signal. If the act parameter is not NULL,
 it points to a sigaction structure that describes the action to be taken
 on receipt of the sig signal. If the oact parameter is not NULL, it
 points to a sigaction structure in which the signal action data in effect
 at the time of the sigaction call is returned. If the act parameter is
 NULL, signal handling is unchanged. Thus, the call can be used to inquire
 about the current handling of a given signal.

 The sigaction structure has the following members:

 void (*sa_handler)();
 sigset_t sa_mask;
 int sa_flags;

 The sa_handler field may have the value SIG_DFL, SIG_IGN, or may be a
 pointer to a function. A value of SIG_DFL requests default action to be
 taken when the signal is delivered. A value of SIG_IGN requests that the
 signal have no effect on the receiving process. A pointer to a function
 requests that the signal be caught (that is, the signal should cause the
 function to be called). These actions are more fully described below.

 The sa_mask field can be used to specify that individual signals, in
 addition to those in the process's signal mask, are blocked from being
 delivered while the signal handler function specified in sa_handler is
 executing. See "sigemptyset, sigfillset, sigaddset, sigdelset,
 sigismember" in topic 1.2.264 for an explanation of the use of the sa_mask
 field. The sa_flags field may have the bits SA_RESTART, SA_ONSTACK,
 SA_OLDSTYLE, or SA_NOCLDSTOP set to specify further control over the
 actions taken upon delivery of a signal.

 If the SA_ONSTACK bit is set, the system runs the signal-catching function
 on the signal stack specified by the sigstack system call. If this bit is
 not set, then the function executes on the stack of the process to which
 the signal is delivered.

 If the SA_OLDSTYLE bit is set, the signal action is set to SIG_DFL (except
 for SIGILL, SIGTRAP, and SIGPWR) prior to calling the signal-catching
 function. This is supported for compatibility with old applications, and
 is not recommended since the same signal could reoccur before the
 signal-catching routine was able to reset the signal action. The default
 action (normally termination) would be taken in that case.

AIX Operating System Technical Reference
sigaction, sigvec, signal

¦ Copyright IBM Corp. 1985, 1991
1.2.263 - 1

 If a signal for which a signal-catching function exists is sent to a
 process while that process is executing certain system calls, the call
 terminates prematurely with a -1 return code and an errno value of EINTR.
 If the SA_RESTART bit is set in the sa_flags field of the handler for the
 signal, the system call does not fail but is restarted automatically. The
 affected system calls are read and write on a slow device (such as a
 terminal but not a regular file) and the wait system call.

 The sig parameter can be any one of the following signal values except
 SIGKILL. Each of the names shown below is defined in the signal.h header
 file with the value of the corresponding signal number.

 +--+
 ¦ SIGHUP ¦ 1 ¦ Hangup ¦
 +------------+------+--¦
 ¦ SIGINT ¦ 2 ¦ Interrupt ¦
 +------------+------+--¦
 ¦ SIGQUIT ¦ 3* ¦ Quit ¦
 +------------+------+--¦
 ¦ SIGILL ¦ 4* ¦ Illegal instruction ¦
 +------------+------+--¦
 ¦ SIGTRAP ¦ 5* ¦ Trace trap ¦
 +------------+------+--¦
 ¦ SIGABRT ¦ 6* ¦ Abort process (see "abort" in topic 1.2.7) ¦
 +------------+------+--¦
 ¦ SIGEMT ¦ 7* ¦ EMT instruction ¦
 +------------+------+--¦
 ¦ SIGFPE ¦ 8* ¦ Floating-point exception ¦
 +------------+------+--¦
 ¦ SIGKILL ¦ 9 ¦ Kill (may not be caught, blocked, or ignored) ¦
 +------------+------+--¦
 ¦ SIGBUS ¦ 10* ¦ Bus error ¦
 +------------+------+--¦
 ¦ SIGSEGV ¦ 11* ¦ Segmentation violation ¦
 +------------+------+--¦
 ¦ SIGSYS ¦ 12* ¦ Bad parameter to system call ¦
 +------------+------+--¦
 ¦ SIGPIPE ¦ 13 ¦ Write on a pipe with no one to read it ¦
 +------------+------+--¦
 ¦ SIGALRM ¦ 14 ¦ Alarm clock ¦
 +------------+------+--¦
 ¦ SIGTERM ¦ 15 ¦ Software termination signal ¦
 +------------+------+--¦
 ¦ SIGURG ¦ 16+ ¦ Urgent condition on I/O channel ¦
 +------------+------+--¦
 ¦ SIGSTOP ¦ 17@ ¦ Stop (may not be caught, blocked, or ignored) ¦
 +------------+------+--¦
 ¦ SIGTSTP ¦ 18@ ¦ Interactive stop signal from TTY ¦
 +------------+------+--¦
 ¦ SIGCONT ¦ 19! ¦ Continue if stopped ¦
 +------------+------+--¦
 ¦ SIGCHLD ¦ 20+ ¦ A child has stopped or exited ¦
 +------------+------+--¦
 ¦ SIGTTIN ¦ 21@ ¦ Read of control TTY attempted from background ¦
 +------------+------+--¦
 ¦ SIGTTOU ¦ 22@ ¦ Write to control TTY attempted from background ¦
 +------------+------+--¦
 ¦ SIGIO ¦ 23+ ¦ Input/Output possible or complete ¦
 +------------+------+--¦
 ¦ SIGXCPU ¦ 24 ¦ CPU time limit exceeded (see setrlimit) ¦

AIX Operating System Technical Reference
sigaction, sigvec, signal

¦ Copyright IBM Corp. 1985, 1991
1.2.263 - 2

 +------------+------+--¦
 ¦ SIGXFSZ ¦ 25 ¦ File size limit exceeded (Not sent by write in ¦
 ¦ ¦ ¦ AIX) ¦
 +------------+------+--¦
 ¦ reserved ¦ 26 ¦ ¦
 +------------+------+--¦
 ¦ SIGMSG ¦ 27# ¦ HFT input data pending ¦
 +------------+------+--¦
 ¦ SIGWINCH ¦ 28+ ¦ Window size change ¦
 +------------+------+--¦
 ¦ SIGPWR ¦ 29+ ¦ Power failure imminent (save your data) ¦
 +------------+------+--¦
 ¦ SIGUSR1 ¦ 30 ¦ User-defined signal 1 ¦
 +------------+------+--¦
 ¦ SIGUSR2 ¦ 31 ¦ User-defined signal 2 ¦
 +------------+------+--¦
 ¦ SIGPROF ¦ 32 ¦ Profiling time alarm (see setitimer, "getitimer, ¦
 ¦ ¦ ¦ setitimer" in topic 1.2.101) ¦
 +------------+------+--¦
 ¦ SIGDANGER ¦ 33%+ ¦ System crash imminent ¦
 +------------+------+--¦
 ¦ SIGVTALRM ¦ 34 ¦ Virtual time alarm (see setitimer, "getitimer, ¦
 ¦ ¦ ¦ setitimer" in topic 1.2.101) ¦
 +------------+------+--¦
 ¦ SIGMIGRATE ¦ 35$ ¦ Migrate the process to another CPU ¦
 +------------+------+--¦
 ¦ SIGPRE ¦ 36* ¦ Programming exception. On the PS/2, this is ¦
 ¦ ¦ ¦ generated by the failure of the test performed by ¦
 ¦ ¦ ¦ the 80386 BOUND instruction. ¦
 +------------+------+--¦
 ¦ reserved ¦ 37-59¦ ¦
 +------------+------+--¦
 ¦ SIGGRANT ¦ 60# ¦ HFT monitor mode granted ¦
 +------------+------+--¦
 ¦ SIGRETRACT ¦ 61# ¦ HFT monitor mode retracted ¦
 +------------+------+--¦
 ¦ SIGSOUND ¦ 62# ¦ HFT sound sequence has completed ¦
 +------------+------+--¦
 ¦ reserved ¦ 63 ¦ ¦
 +--+

 The symbols in the preceding table have the following meaning:

 * Default action includes creating a core dump file.

 @ Default action is to stop the process.

 ! Default action is to restart or continue the process.

 + Default action is to ignore these signals.

 $ Default action is to migrate the process to another CPU.

 % The cause is a shortage of paging space. See the gpgscln and killem
 stanzas in "master" in topic 2.3.32.

 # For more information on the use of these signals, see "hft" in
 topic 2.5.11.

 The three types of actions that can be associated with a signal: SIG_DFL,

AIX Operating System Technical Reference
sigaction, sigvec, signal

¦ Copyright IBM Corp. 1985, 1991
1.2.263 - 3

 SIG_IGN, or a pointer to a function are described as follows:

 SIG_DFL -- Default action: Signal-specific default action

 Except for those signal numbers marked with a +, @, $, or !, the
 default action for a signal is to terminate the receiving process with
 all of the consequences described in the _exit system call. In
 addition, a memory image file will be created in the current directory
 of the receiving process if sig is one for which an asterisk appears
 in the preceding list and the following conditions are met:

 � The effective user ID and the real user ID of the receiving
 process are equal.

 � An ordinary file named core exists in the current directory and is
 writable, or it can be created. If the file must be created, it
 will have the following properties:

 - The access permission code 0666 (0x1B6), modified by the file
 creation mask (see "umask" in topic 1.2.314)

 - A file owner ID that is the same as the effective user ID of
 the receiving process

 - A file group ID that is the same as the effective group ID of
 the receiving process.

 For signal numbers marked with a !, the default action is to restart
 the receiving process if it is stopped, or to continue execution of
 the receiving process.

 For signal numbers marked with a @, the default action is to stop the
 execution of the receiving process temporarily. When a process stops,
 a SIGCHLD signal is sent to its parent process, unless the parent
 process has set the SA_NOCLDSTOP flag. While a process is stopped,
 any additional signals that are sent to the process will not be
 delivered until the process is continued. An exception to this is
 SIGKILL, which always terminates the receiving process. Another
 exception is SIGCONT, which always causes the receiving process to
 restart or continue execution even if blocked or ignored. A process
 whose parent has terminated shall be sent a SIGKILL signal if the
 SIGTSTP, SIGTTIN, or SIGTTOU signals are generated for that process.

 For signal numbers marked with a +, the default action is to ignore
 the signal. In this case, delivery of the signal has no effect on the
 receiving process.

 If a signal action is set to SIG_DFL while the signal is pending, the
 signal remains pending.

 SIG_IGN -- Ignore signal.

 Delivery of the signal will have no effect on the receiving process.
 If a signal action is set to SIG_IGN while the signal is pending, the
 pending signal will be discarded.

 An exception to this is the SIGCHLD signal whose SIG_DFL action is to
 ignore the signal. If SIGCHLD is set to SIG_IGN, it means that the
 process does not want to receive the SIGCHLD signal when one of its
 child processes dies, and does not want to have its wait calls return

AIX Operating System Technical Reference
sigaction, sigvec, signal

¦ Copyright IBM Corp. 1985, 1991
1.2.263 - 4

 because a child process is dead (just when no more child processes
 exist, and on stopped child processes).

 Note: The SIGKILL and SIGSTOP signals cannot be ignored.

 pointer to a function -- Catch signal.

 Upon delivery of the signal, the receiving process is to execute the
 signal-catching function specified by the pointer to function. The
 signal-handler subroutine can be declared as follows:

 handler (sig, code, scp)
 int sig, code;
 struct sigcontext *scp;

 The sig parameter is the signal number. The code parameter gives
 extra information about the cause of certain signals. For SIGFPE,
 code specifies the nature of the floating-point exception. For
 SIGMIGRATE, code is the number of the site to which the process should
 migrate. For other signals, code is always 0. The scp parameter
 points to the sigcontext structure that is later used to restore the
 process's previous execution context. The sigcontext structure is
 defined in signal.h.

 A new signal mask is calculated and installed for the duration of the
 signal-catching function (or until sigprocmask or sigsuspend system
 calls are made). This mask is formed by taking the union of the
 process's signal mask, the mask associated with the action for the
 signal being delivered, and a mask corresponding to the signal being
 delivered. The mask associated with the signal-catching function is
 not allowed to block those signals that cannot be ignored. This is
 enforced by the kernel without causing an error to be indicated. If
 and when the signal-catching function returns, the original signal
 mask is restored (modified by any sigprocmask calls that were made
 since the signal-catching function was called) and the receiving
 process resumes execution at the point it was interrupted.

 The signal-catching function can cause the process to resume in a
 different context by calling the longjmp subroutine. When the longjmp
 subroutine is called, the process's signal mask and signal stack state
 (stack pointer and on-signal-stack state) are restored to those in
 effect at the time the corresponding setjmp call was made.

 Once an action is installed for a specific signal, it remains
 installed until another action is explicitly requested (by another
 call to the sigaction system call), or until one of the exec functions
 is called. An exception to this is when the SA_OLDSTYLE is set in
 which case the action of a caught signal gets set to SIG_DFL, except
 for SIGILL, SIGTRAP, and SIGPWR, prior to calling the signal-catching
 function for that signal.

 If a signal action is set to a pointer to a function while the signal
 is pending, the signal will remain pending.

 When signal-catching functions are invoked asynchronously with process
 execution, the behavior of some of the functions defined by this
 reference is unspecified if they are called from a signal-catching
 function. The following table defines a set of functions that shall
 be reentrant with respect to signals (that is, applications may invoke

AIX Operating System Technical Reference
sigaction, sigvec, signal

¦ Copyright IBM Corp. 1985, 1991
1.2.263 - 5

 them, without restriction, from signal-catching functions): _exit,
 access, alarm, chdir, chmod, chown, close, creat, dup2, dup, exec,
 fcntl, fork, fstat, getegid, geteuid, getgid, getgroups, getpgrp,
 getpid, getppid, getuid, kill, link, lseek, mkdir, mkfifo, open,
 pause, pipe, read, rename, rmdir, setgid, setpgrp, setuid, sigaction,
 sigaddset, sigdelset, sigfillset, sigemptyset, sigismember, signal,
 sigpending, sigprocmask, sigsuspend, sleep, stat, time, times, umask,
 uname, unlink, ustat, utime, wait3, wait, write. No other library
 functions should be called from signal-catching functions, since their
 behavior is undefined.

 Note: The SIGKILL and SIGSTOP signals cannot be caught.

 Compatibility Interfaces

 #include <sys/signal.h>

 int sigvec (sig, invec, outvec)
 int sig;
 struct sigvec *invec, *outvec;

 The sigvec function is the same as a sigaction system call except that the
 sigvec structure is used instead of the sigaction structure. The sigvec
 structure specifies a mask as an int instead of a sigset_t. The mask for
 sigvec is constructed by setting the i-th bit in the mask if signal i is
 to be blocked. Therefore, sigvec only allows signals of value 1-32 to be
 blocked when a signal-handling function is called. The other signals will
 not be blocked by the signal-handler mask.

 Note: The SA_RESTART flag cannot be specified with sigvec. Instead, for
 4.3BSD compatibility, the flag SV_INTERRUPT can be specified.
 SV_INTERRUPT has the opposite effect of SA_RESTART.

 #include <sys/signal.h> or <signal.h>

 void (*signal (sig, action)) ()
 int sig;
 void (*action) ();

 The signal function allows the action associated with a signal. The
 action parameter can have the same values that are described for the
 sa_handler field in the act structure of the sigaction system call.
 However, no signal handler mask or flags can be specified; the signal
 function implicitly sets the signal handler mask to not block the signal
 sig and the flags to be SA_OLDSTYLE. Also, a call to the function signal
 cancels a pending signal sig, except for a pending SIGKILL.

 Upon successful completion of a signal call, the value of the previous
 signal action is returned. If the call fails, a value of SIG_ERR is
 returned and errno is set to indicate the error as in the sigaction call.

 Note that sigvec and signal do not check for valid pointers, and therefore
 will not generate EFAULT.

 Return Value
 Upon successful completion, a value of 0 is returned. If the sigaction
 system call fails, a value of -1 is returned and errno is set to indicate
 the error.

 Error Conditions

AIX Operating System Technical Reference
sigaction, sigvec, signal

¦ Copyright IBM Corp. 1985, 1991
1.2.263 - 6

 The sigaction system call fails and no new signal handler is installed if
 one of the following occurs:

 EFAULT The act or oact parameter points to a location outside of the
 process's allocated address space.

 EINVAL The sig parameter is not a valid signal number.

 EINVAL An attempt was made to ignore or supply a handler for SIGKILL,
 or SIGSTOP.

 Related Information
 In this book: "acct" in topic 1.2.11, "exit, _exit" in topic 1.2.73,
 "kill, kill3, killpg" in topic 1.2.138, "pause" in topic 1.2.202, "ptrace"
 in topic 1.2.212, "setjmp, longjmp, _setjmp, _longjmp" in topic 1.2.250,
 "sigprocmask, sigsetmask, sigblock" in topic 1.2.267, "sigemptyset,
 sigfillset, sigaddset, sigdelset, sigismember" in topic 1.2.264,
 "sigstack" in topic 1.2.268, "sigsuspend, sigpause" in topic 1.2.269,
 "umask" in topic 1.2.314, "wait, waitpid" in topic 1.2.325, and "core" in
 topic 2.3.10.

 The kill command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
sigaction, sigvec, signal

¦ Copyright IBM Corp. 1985, 1991
1.2.263 - 7

 1.2.264 sigemptyset, sigfillset, sigaddset, sigdelset, sigismember

 Purpose
 Creates and manipulates signal masks.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <signal.h>

 int sigemptyset (set) int sigdelset (set, signo)
 sigset_t *set; sigset_t *set;
 int signo;
 int sigfillset (set)
 sigset_t *set; int sigismember (set, signo)
 sigset_t *set;
 int sigaddset (set, signo) int signo;
 sigset_t *set;
 int signo;

 Description
 The sigemptyset, sigfillset, sigaddset, sigdelset and sigismember
 subroutines manipulate signal masks. These functions operate on data
 objects addressable by the application, not on any set of signals known to
 the system, such as the set blocked from delivery to a process or the set
 pending for a process (see "sigaction, sigvec, signal" in topic 1.2.263).

 The sigemptyset function initializes the signal set pointed to by the
 parameter set such that all signals are excluded. The sigfillset function
 initializes the signal set pointed to by the parameter set such that all
 signals are included. A call to either sigemptyset or sigfillset must be
 made a least once for each object of type sigset_t prior to any other use
 of that object. If such an object is not initialized in this way, but is
 nonetheless supplied as an argument to any of sigaddset, sigdelset,
 sigismember, sigaction, sigprocmask, or sigsuspend, the results are
 undefined.

 The sigaddset and sigdelset functions respectively add and delete the
 individual signal specified by the signo parameter from the signal set
 specified by the set parameter. The sigismember function tests whether
 the signo is a member of the signal set pointed to by the set parameter.

 Return Value
 Upon successful completion, the sigismember function returns a value of
 one if the specified signal is a member of the specified set, or the value
 of 0 if not. Upon successful completion, the other functions return a
 value of 0. For all the above functions, if an error is detected, a value
 of -1 is returned and errno is set to indicate the error.

 Error Conditions
 The sigaddset and sigdelset subroutines fail if the following is true:

 EINVAL The value of the signo parameter is not a valid signal number, or
 set is NULL.

 Example

AIX Operating System Technical Reference
sigemptyset, sigfillset, sigaddset, sigdelset, sigismember

¦ Copyright IBM Corp. 1985, 1991
1.2.264 - 1

 To generate and use a signal mask that blocks only SIGINT from delivery:

 #include <signal.h>
 #include <unistd.h>

 int return_value;
 sigset_t newset;
 sigset_t *newset_p;
 ...
 newset_p = &newset;
 sigemptyset(newset_p);
 sigaddset(newset_p, SIGINT);
 return_value = sigprocmask (SIG_SETMASK, newset_p, NULL);

 Related Information
 In this book: "sigprocmask, sigsetmask, sigblock" in topic 1.2.267,
 "sigsuspend, sigpause" in topic 1.2.269, and "sigaction, sigvec, signal"
 in topic 1.2.263.

AIX Operating System Technical Reference
sigemptyset, sigfillset, sigaddset, sigdelset, sigismember

¦ Copyright IBM Corp. 1985, 1991
1.2.264 - 2

 1.2.265 siginterrupt

 Purpose
 Allows signals to interrupt system calls.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sys/signal.h>

 int siginterrupt (sig, flag)
 int sig, flag;

 Description
 The siginterrupt routine is used to change the restart behavior when a
 system call is interrupted by the specified signal. The restart behavior
 is set by the sigaction system call when a signal handler is installed.
 It can also be modified using the sigaction system call. The siginterrupt
 routine is provided only for compatibility with 4.3BSD systems.

 If the flag is 0, then system calls will be restarted if they are
 interrupted by the specified signal and no data has been transferred yet.

 If the flag is 1, then restarting of system calls is disabled. If a
 system call is interrupted by the specified signal and no data has been
 transferred, the system call will return -1 and set errno to EINTR.
 Interrupted system calls that have started transferring data will return
 the amount of data actually transferred.

 Return Value
 Upon successful completion, siginterrupt returns a value of 0. Otherwise,
 -1 is returned and errno is set to indicate the error.

 Error Conditions

 The siginterrupt routine fails if the following is true:

 EINVAL The sig parameter is not a valid signal number.

 Related Information
 In this book: "sigaction, sigvec, signal" in topic 1.2.263, "sigprocmask,
 sigsetmask, sigblock" in topic 1.2.267.

AIX Operating System Technical Reference
siginterrupt

¦ Copyright IBM Corp. 1985, 1991
1.2.265 - 1

 1.2.266 sigpending

 Purpose
 Examines pending signals.

 Syntax

 #include <signal.h>

 int sigpending (set)
 sigset_t *set;

 Description
 The sigpending function will store the set of signals that are blocked
 from delivery and pending for the calling process, in the space pointed to
 by the argument set.

 Return Value
 Upon successful completion the value of 0 is returned. Otherwise, a value
 of -1 is returned and errno is set to indicate the error.

 Error Conditions
 Possible error conditions include:

 EFAULT A set parameter points to a location outside the process's
 allocated address space.

 Related Information
 In this book: "sigprocmask, sigsetmask, sigblock" in topic 1.2.267.

AIX Operating System Technical Reference
sigpending

¦ Copyright IBM Corp. 1985, 1991
1.2.266 - 1

 1.2.267 sigprocmask, sigsetmask, sigblock

 Purpose
 Sets the current signal mask.

 Syntax

 int sigprocmask (how, set, oset)
 int how;
 sigset_t *set, *oset;

 Description
 The sigprocmask system call is used to examine and change the calling
 process's signal mask. If the value of the argument set is not NULL, it
 points to a signal mask to be used to change the current signal mask.

 The how parameter indicates the manner in which the mask is changed. It
 may have one of the following values:

 SIG_BLOCK The resulting mask is the union of the current mask and the
 signal mask pointed to by the set parameter.

 SIG_UNBLOCK The resulting mask is the intersection of the current mask and
 the complement of the signal mask pointed to by the set
 parameter.

 SIG_SETMASK The resulting mask is the signal mask pointed to by the set
 parameter.

 If the oset parameter is not NULL, the signal mask in effect at the time
 of the call is stored in the space pointed to by the oset parameter. If
 the value of the set parameter is NULL, the value of the how parameter is
 not significant and the process's signal mask is unchanged. Thus, the
 call can be used to inquire about currently blocked signals.

 Typically, you would use the sigprocmask(SIG_BLOCK,...) system call to
 block signals during a critical section of code and then use the
 sigprocmask(SIG_SETMASK,...) system call to restore the mask to the
 previous value returned by the sigprocmask(SIG_BLOCK,...) system call.

 If there are any pending unblocked signals after the call to the
 sigprocmask system call, at least one of those signals will be delivered
 before the sigprocmask function returns.

 The sigprocmask system call does not allow the SIGKILL or SIGSTOP signals
 to be blocked. If a program attempts to block one of these signals,
 sigprocmask gives no indication of the error.

 Compatibility Interfaces

 int sigsetmask (sigmask)
 int sigmask;

 The sigsetmask subroutine allows the changing the process's signal mask
 for signal values 1-32. This same function can be accomplished for all
 signal values with the sigprocmask(SIG_SETMASK,...,...) system call. The
 signal of value i will be blocked if the i-th bit of sigmask parameter is
 set.

 Upon successful completion, the sigsetmask subroutine returns the value of

AIX Operating System Technical Reference
sigprocmask, sigsetmask, sigblock

¦ Copyright IBM Corp. 1985, 1991
1.2.267 - 1

 the previous signal mask. If the subroutine fails, a -1 is returned and
 errno is set to indicate the error as in the sigprocmask system call.

 int sigblock (sigmask)
 int sigmask;

 The sigblock subroutine allows signals with values 1-32 to be ORed into
 the current process signal mask. This same function can be accomplished
 for all signal values with the sigprocmask(SIG_BLOCK,...,...) system call.
 In addition to those currently blocked, the signal of value i is blocked
 if the i-th bit of sigmask parameter is set.

 Upon successful completion, the sigblock subroutine returns the value of
 the previous signal mask. If the subroutine fails, a -1 is returned and
 errno is set to indicate the error as in the sigprocmask system call.

 Return Value
 Upon successful completion, a value of 0 is returned. If the sigprocmask
 system call fails, the process's signal mask is unchanged, a value of -1
 is returned, and errno is set to indicate the error.

 Error Conditions
 The sigprocmask system call fails if one of the following is true:

 EINVAL The value of the how parameter is not equal to one of the defined
 values.

 EFAULT The set or oset parameter points to a location outside the
 process's address space.

 Example
 To set the signal mask to block only SIGINT from delivery:

 #include <signal.h>
 #include <unistd.h>

 int return_value;
 sigset_t newset;
 sigset_t *newset_p;
 ...
 newset_p = &newset;
 sigemptyset(newset_p);
 sigaddset(newset_p, SIGINT);
 return_value = sigprocmask (SIG_SETMASK, newset_p, NULL);

 Related Information
 In this book: "kill, kill3, killpg" in topic 1.2.138, "sigaction, sigvec,
 signal" in topic 1.2.263, and "sigsuspend, sigpause" in topic 1.2.269.

AIX Operating System Technical Reference
sigprocmask, sigsetmask, sigblock

¦ Copyright IBM Corp. 1985, 1991
1.2.267 - 2

 1.2.268 sigstack

 Purpose
 Sets and gets signal stack context.

 Syntax

 #include <signal.h>

 int sigstack (instack, outstack)
 struct sigstack *instack, *outstack;

 Description
 The sigstack system call defines an alternate stack on which signals are
 to be processed.

 If the value of the instack parameter is nonzero, it points to a sigstack
 structure, which has the following members:

 char *ss_sp;
 int ss_onstack;

 The value of instack->ss_sp specifies the stack pointer of the new signal
 stack. Since stacks grow from numerically greater addresses to lower
 ones, the stack pointer passed to the sigstack system call should point to
 the numerically high end of the stack area to be used.
 instack->ss_onstack should be set to 1 if the process is currently
 executing on that stack; otherwise, it should be 0.

 If the value of the outstack parameter is nonzero, it points to a sigstack
 structure into which the sigstack system call stores the current signal
 stack state.

 If the value of the instack parameter is NULL, the signal stack state is
 not set. If the value of the outstack parameter is NULL, the previous
 signal stack state is not reported.

 When a signal whose handler is to run on the signal stack occurs, the
 system checks to see if the process is already executing on that stack.
 If so, it continues to do so even after the handler returns. If not, the
 signal handler runs on the signal stack, and the original stack is
 restored when the handler returns.

 Use the sigaction system call to specify whether a given signal's handler
 routine should run on the signal stack.

 Warning: A signal stack does not automatically increase in size as a
 normal stack does. If the stack overflows, unpredictable results may
 occur.

 Return Value
 Upon successful completion, a value of 0 is returned. If the sigstack
 system call fails, a value of -1 is returned and errno is set to indicate
 the error.

 Error Conditions
 The sigstack system call fails and the signal stack context remains
 unchanged if the following is true:

 EFAULT The instack or outstack parameter points to a location outside

AIX Operating System Technical Reference
sigstack

¦ Copyright IBM Corp. 1985, 1991
1.2.268 - 1

 of the process's allocated address space.

 Related Information
 In this book: "setjmp, longjmp, _setjmp, _longjmp" in topic 1.2.250, and
 "sigaction, sigvec, signal" in topic 1.2.263.

AIX Operating System Technical Reference
sigstack

¦ Copyright IBM Corp. 1985, 1991
1.2.268 - 2

 1.2.269 sigsuspend, sigpause

 Purpose
 Atomically changes the set of blocked signals and waits for an interrupt.

 Syntax

 #include <signal.h>

 int sigsuspend (sigmask)
 sigset_t *sigmask;

 Description
 The sigsuspend system call replaces the process's signal mask with the
 signal mask pointed to by the sigmask parameter. It then suspends
 execution of the process until delivery of a signal whose action is either
 to execute a signal-catching function or to terminate the process. The
 sigsuspend system call does not allow the SIGKILL, SIGSTOP, or SIGCONT
 signals to be blocked. If a program attempts to block one of these
 signals, sigsuspend gives no indication of the error.

 If delivery of a signal causes the process to terminate, the sigsuspend
 system call does not return. If delivery of a signal causes a
 signal-catching function to execute, the sigsuspend system call returns
 after the signal-catching function returns, with the signal mask restored
 to the set that existed prior to the sigsuspend call.

 The sigsuspend system call sets the signal mask and waits for an unblocked
 signal as one atomic operation. This means that signals cannot occur
 between the operations of setting the mask and waiting for a signal. If a
 program invokes the sigprocmask(SIG_SETMASK,...) and pause system calls
 separately, a signal that occurs between these system calls might not be
 noticed by pause.

 In normal usage, a signal is blocked by using the
 sigprocmask(SIG_BLOCK,...) system call at the beginning of a critical
 section. The process then determines whether there is work for it to do.
 If there is no work, the process waits for work by calling sigsuspend with
 the mask previously returned by the sigprocmask system call.

 Compatibility Interfaces

 int sigpause (sigmask)
 int sigmask;

 The sigpause function only allows signals with values 1-32 to be masked.
 Signal i is blocked if the i-th bit in the sigmask parameter is a 1.

 Return Value
 If a signal is caught by the calling process and control is returned from
 the signal handler, the calling process resumes execution after the
 sigsuspend system call, which always returns a value of -1 and sets errno
 to EINTR.

 Related Information
 In this book: "pause" in topic 1.2.202, "sigaction, sigvec, signal" in
 topic 1.2.263, and "sigprocmask, sigsetmask, sigblock" in topic 1.2.267.

AIX Operating System Technical Reference
sigsuspend, sigpause

¦ Copyright IBM Corp. 1985, 1991
1.2.269 - 1

 1.2.270 sin, cos, tan, asin, acos, atan, atan2

 Purpose
 Computes trigonometric functions.

 Library
 Math Library (libm.a)

 Syntax

 #include <math.h>

 double sin (x) double asin (x)
 double x; double x;
 double cos (x) double acos (x)
 double x; double x;
 double tan (x) double atan (x)
 double x; double x;
 double atan2 (y, x)
 double x, y;

 Description
 The sin, cos, and tan subroutines return the sine, cosine and tangent,
 respectively, of their parameters, which are in radians.

 The asin subroutine returns the arcsine of x, in the range -&pi./2 to
 &pi./2.

 The acos subroutine returns the arccosine of x, in the range 0 to &pi..

 The atan subroutine returns the arctangent of x, in the range -&pi./2 to
 &pi./2.

 The atan2 subroutine returns the arctangent of y/x, in the range -&pi. to
 &pi., using the signs of both parameters to determine the quadrant of the
 return value.

 Error Conditions

 These subroutines can perform either of the following types of error
 handling. Both types of error handling allows you to define special
 actions to be taken when an error occurs.

 � On the PS/2 only, exception handling is performed by default accordin
 to ANSI/IEEE standard 754 for binary floating-point arithmetic for
 arguments x in the range between -2(63) and 2(63). Otherwise, the
 behavior of these subroutines is undefined.

 If a hardware floating point processor is installed in your system,
 then using this option can provide greater performance in addition to
 IEEE exception handling. This mode instructs the C compiler to
 generate code that avoids the overhead of the math library subroutines
 by generating math coprocessor code in-line.

 � On the AIX/370, matherr error handling is performed by default (see
 matherr handling, as described on page 1.2.163). To activate matherr
 error handling on the PS/2, include the -z option on the cc command
 line when compiling source code. The default error-handling

AIX Operating System Technical Reference
sin, cos, tan, asin, acos, atan, atan2

¦ Copyright IBM Corp. 1985, 1991
1.2.270 - 1

 procedures for these subroutines are as follows:

 sin, cos, tan
 The sin, cos and tan subroutines lose accuracy when passed a large
 value for the x parameter. For sufficiently large parameters,
 these functions return 0 when there would otherwise be a complete
 loss of significance. In this case, a message that indicates a
 TLOSS error is written to standard error. For less extreme values,
 a PLOSS error is generated but no message is written. In both
 cases, errno is set to ERANGE.

 The tan subroutine can return ±HUGE if its parameter is near an odd
 multiple of &pi./2 when the correct value would overflow, and sets
 errno to ERANGE.

 asin, acos
 The asin and acos subroutines return 0 and set errno to EDOM if
 their parameters are larger than 1.0. In addition, an error
 message that indicates a domain error is written to the standard
 error output.

 Related Information
 In this book: "matherr" in topic 1.2.163.

AIX Operating System Technical Reference
sin, cos, tan, asin, acos, atan, atan2

¦ Copyright IBM Corp. 1985, 1991
1.2.270 - 2

 1.2.271 sinh, cosh, tanh

 Purpose
 Computes hyperbolic functions.

 Library
 Math Library (libm.a)

 Syntax

 #include <math.h>

 double sinh (x) double tanh (x)
 double x; double x;
 double cosh (x)
 double x;

 Description
 The sinh subroutine returns the hyperbolic sine of its parameter. The
 cosh subroutine returns the hyperbolic cosine of its parameter. The tanh
 subroutine returns the hyperbolic tangent of its parameter.

 The sinh and the cosh subroutines return HUGE if the correct value
 overflows. errno is also set to ERANGE.

 You can use the matherr subroutine to change these error-handling
 procedures. See "matherr" in topic 1.2.163 for details.

 Error Conditions
 The sinh, cosh, and tanh subroutines fail if the following is true:

 EDOM The value of x is NaN.

 The cosh and sinh subroutines fail if the following is true:

 ERANGE The result would cause overflow.

AIX Operating System Technical Reference
sinh, cosh, tanh

¦ Copyright IBM Corp. 1985, 1991
1.2.271 - 1

 1.2.272 site

 Purpose
 Returns the site number on which the specified process is running.

 Syntax

 #include <sys/types.h>

 siteno_t site(pid)
 pid_t pid;

 Description
 The site system call returns the site number of the specified process. If
 pid is 0, the current process is assumed. If the specified process cannot
 be located, -1 is returned.

 Return Value
 Upon successful completion, a nonnegative value for siteno_t is returned
 indicating the site number. Otherwise, a -1 is returned and errno is set
 to indicate the error.

 Error Conditions
 The site system call fails if the following is true:

 ESRCH The process ID specified is invalid.

 Examples

 #include <sys/types.h>

 /* This program prints the number of the site where it is executed */
 main()
 {
 printf(''mysite is %d\n'', site((pid_t) 0));
 }

 Related Information
 In this book: "sfent, sfnum, sfname, sfctype, sfxcode, setsf, endsf" in
 topic 1.2.257.

AIX Operating System Technical Reference
site

¦ Copyright IBM Corp. 1985, 1991
1.2.272 - 1

 1.2.273 sleep

 Purpose
 Suspends execution of the current process for an interval of time.

 Library
 Standard C Library (libc.a)

 Syntax

 unsigned int sleep (seconds)
 unsigned int seconds;

 Description
 The sleep subroutine causes the current process to suspend execution for
 the number of seconds specified by the seconds parameter. The sleep
 routine sets an alarm and pauses until that alarm or some other signal
 occurs.

 The actual sleep time of the process may be either shorter or longer than
 the requested sleep time. The sleep time may be shorter because:

 � Wakeups occur on the second at fixed one-second intervals according t
 an internal clock.

 � Any caught signal terminates the sleep following execution of tha
 signal's catching routine.

 The sleep time may be longer than the requested sleep time due to the
 scheduling of other activities in the system.

 The value returned by the sleep subroutine is the requested sleep time
 minus the time actually slept.

 The process calling the sleep subroutine may set an alarm prior to calling
 the sleep subroutine.

 If a previous alarm has been set, and the sleep subroutine's sleep time
 exceeds the process's previously set alarm time, the process only sleeps
 until the time specified by the previously set alarm and the calling
 process's alarm catch routine is executed just before the sleep subroutine
 returns.

 If a previous alarm has been set, and the sleep subroutine's sleep time is
 less than the process's previously set alarm time, the current process is
 suspended from execution for the number of seconds specified by the sleep
 subroutine. The previously set alarm is reset to go off at the same time
 it would have without the sleep subroutines intervention.

 Warning: The results are undefined if, while it is sleeping, the calling
 program issues any other alarm or sleep calls. This can happen if a
 signal arrives in the interim and the signal handler calls alarm or sleep.

 Error Conditions
 The sleep subroutine is always successful and no return value is reserved
 to indicate an error.

 Related Information
 In this book: "alarm" in topic 1.2.14, "pause" in topic 1.2.202, and
 "sigaction, sigvec, signal" in topic 1.2.263.

AIX Operating System Technical Reference
sleep

¦ Copyright IBM Corp. 1985, 1991
1.2.273 - 1

 1.2.274 snap

 Purpose
 Provide user access to perform dumps.

 Library
 Standard C Library (libc.a)

 Syntax

 int snap (a_flag)
 int a_flag;

 Description
 The snap system call provides a user system call interface to perform a
 system dump. This is a memory dump on a System/370 only, and may or may
 not be performed at panic time.

 The a_flag parameter specifies whether or not the system should panic when
 the memory dump is taken. If a_flag is non-zero, the system will perform
 a panic and then dump memory. You must be superuser to perform this
 system call.

 Return Value
 If the snap system call is unsuccessful, -1 is returned and errno is set
 to indicate the error.

 Error Conditions
 The snap system call fails if the following is true:

 EPERM Operation not permitted; permission is denied.

AIX Operating System Technical Reference
snap

¦ Copyright IBM Corp. 1985, 1991
1.2.274 - 1

 1.2.275 socket

 Purpose
 Creates an endpoint for communication and returns a descriptor.

 Syntax

 #include <sys/types.h>
 #include <sys/socket.h>

 int socket (domain, type, protocol)
 int domain, type, protocol;

 Description
 The socket system call creates an endpoint for communication and returns a
 socket descriptor.

 The domain parameter specifies a communications domain within which
 communication will take place; this selects the protocol family which
 should be used. The protocol family generally is the same as the address
 format for the addresses supplied in later operations on the socket.
 These formats are defined in the sys/socket.h header file. The formats
 are:

 AF_UNIX AIX path names
 AF_INET ARPA Internet addresses.

 The value of the type parameter specifies the semantics of communication.
 AIX supports these types:

 SOCK_STREAM Provides sequenced, two-way byte streams with a transmission
 mechanism for out-of-band data.
 SOCK_DGRAM Provides datagrams, which are connectionless messages of a
 fixed maximum length (usually small).

 The protocol parameter specifies a particular protocol to be used with the
 socket. In most cases, a single protocol exists to support a particular
 socket type using a given address format. When many protocols exist, you
 must specify a particular protocol. Use the number for the communication
 domain in which the communication takes place.

 The different types of sockets available are used for different purposes.
 SOCK_DGRAM sockets allow sending datagrams to correspondents named in send
 socket calls. Programs can also receive datagrams via sockets by using
 the recv system call.

 SOCK_STREAM sockets are full-duplex byte streams. A stream socket must be
 connected before any data may be sent or received on it. Create a
 connection to another socket with the connect system call. Once
 connected, use the read and write system calls, or the send and recv
 system calls to transfer data. Issue the close system call when a session
 is finished. Use the send and recv system calls for out-of-band data.

 SOCK_STREAM communications protocols are designed to prevent the loss or
 duplication of data. If a piece of data for which the peer protocol has
 buffer space cannot be successfully transmitted within a reasonable period
 of time, the connection is broken. When this occurs, the socket system
 calls indicate an error with a return value of -1 and with ETIMEDOUT as
 the specific code written to the global variable errno. If a process
 sends on a broken stream, a SIGPIPE signal is raised. Processes that

AIX Operating System Technical Reference
socket

¦ Copyright IBM Corp. 1985, 1991
1.2.275 - 1

 cannot handle the signal terminate.

 An fcntl system call can be used to specify a process group to receive a
 SIGURG signal when out-of-band data arrives on a socket. It may also be
 used to enable non-blocking I/O and asynchronous notification of I/O
 events via the SIGIO signal.

 The operation of sockets is controlled by socket level options. The
 getsockopt and setsockopt system calls are used to get and set these
 options, which are defined in the sys/socket.h file. See "getsockopt,
 setsockopt" in topic 1.2.121 for information on how to use these options.

 Return Value
 Upon successful completion, a descriptor referring to the socket is
 returned. If the socket system call fails, a value of -1 is returned, and
 errno is set to indicate the error.

 Error Conditions
 The system call fails if one or more of the following are true:

 EPROTONOSUPPORT
 The protocol type or the specified protocol is not supported
 within this domain.

 EMFILE The per-process descriptor table is full.

 ENOBUFS Insufficient resources were available in the system to complete
 the call.

 ENFILE The system file table is full.

 EACCES Permission to create a socket of the specified type and/or
 protocol is denied.

 Related Information
 In this book: "accept" in topic 1.2.9, "bind" in topic 1.2.20,
 "getsockname" in topic 1.2.120, "getsockopt, setsockopt" in topic 1.2.121,
 "ioctlx, ioctl, gtty, stty" in topic 1.2.137, "listen" in topic 1.2.157,
 "recv, recvfrom, recvmsg" in topic 1.2.227, "select" in topic 1.2.242,
 "send, sendto, sendmsg" in topic 1.2.246, "shutdown" in topic 1.2.262,
 "connect" in topic 1.2.49, and "socketpair" in topic 1.2.276.

AIX Operating System Technical Reference
socket

¦ Copyright IBM Corp. 1985, 1991
1.2.275 - 2

 1.2.276 socketpair

 Purpose
 Creates a pair of connected sockets.

 Syntax

 #include <sys/types.h>
 #include <sys/socket.h>

 socketpair (d, type, protocol, sv)
 int d, type, protocol;
 int sv[2];

 Description
 The socketpair system call creates an unnamed pair of connected sockets in
 the specified domain d, of the specified type, and using the optionally
 specified protocol. The descriptors used in referencing the new sockets
 are returned in sv[0] and sv[1]. The two sockets are identical.

 Return Value
 Upon successful completion, a value of 0 is returned. If the socketpair
 system call fails, a value of -1 is returned, and errno is set to indicate
 the error.

 Error Conditions
 The system call fails if one or more of the following are true:

 EMFILE This process has too many descriptors in use.

 EPROTONOSUPPORT
 The specified protocol or address family cannot be used on
 this system.

 EOPNOSUPPORT The specified protocol does not allow create of socket pairs.

 EFAULT The sv parameter is not in a writable part of the user
 address space.

 Related Information
 In this book: "socket" in topic 1.2.275.

AIX Operating System Technical Reference
socketpair

¦ Copyright IBM Corp. 1985, 1991
1.2.276 - 1

 1.2.277 sockets library

 Purpose
 Provides communications between processes.

 Library
 Internet Library (libc.a)

 Description
 This section contains a list of the socket routines provided by AIX, an
 overview of sockets and how to use them, and a list of related
 publications on networks and communications that you may find useful.

 Subtopics
 1.2.277.1 Socket Routines
 1.2.277.2 Overview of Sockets
 1.2.277.3 Socket Names
 1.2.277.4 Related Network Publications

AIX Operating System Technical Reference
sockets library

¦ Copyright IBM Corp. 1985, 1991
1.2.277 - 1

 1.2.277.1 Socket Routines

 The following table is an list of the socket routines and a brief
 description of each.

 accept Accepts a connection on a socket.

 bind Binds a name to a socket.

 connect Initiates a connection on a socket.

 gethostbyaddr Gets network host address.

 gethostbyname Gets network host name.

 sethostent Opens and rewinds the host entry file.

 endhostent Closes the host entry file.

 gethostid Gets the unique identifier of the current host.

 sethostid Sets the unique identifier of the current host.

 gethostname Gets the name of the current host.

 sethostname Sets the name of the current host.

 getnetent Gets network entry.

 getnetbyaddr Gets network entry by address.

 getnetbyname Gets network entry by name.

 setnetent Opens and rewinds the network entry file.

 endnetent Closes the network entry file.

 getpeername Gets the name of the connected peer.

 getprotoent Gets protocol entry.

 getprotobynumber Gets protocol entry by number.

 getprotobyname Gets protocol entry by name.

 setprotoent Opens and rewinds the protocol entry file.

 endprotoent Closes the protocol entry file.

 getservent Gets service entry.

 getservbyname Gets service entry by name.

 getservbyport Gets service entry by port number.

 setservent Opens and rewinds the service entry file.

 endservent Closes the service entry file.

 getsockname Gets the socket name.

AIX Operating System Technical Reference
Socket Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.277.1 - 1

 getsockopt Gets options on sockets.

 setsockopt Sets options on sockets.

 htonl, htons Converts values between host and Internet network byte
 order.

 ntohl, ntohs Converts values between Internet network and host byte
 order.

 inet_addr Returns a string representing an Internet address.

 inet_network Returns a string representing an Internet network
 number.

 inet_ntoa Converts Internet address into an ASCII string.

 inet_makeaddr Constructs an Internet address from a Internet network
 number and a local network address.

 inet_lnaof Returns the local network address number from an
 Internet address.

 inet_netof Returns the network number from an Internet address.

 listen Listens for connections on a socket.

 rcmd Allows execution of commands on a remote host.

 recv Receives a message from a connected socket only.

 recvfrom Receives a message from a socket.

 recvmsg Receives a message from a socket.

 resolver A set of functions that resolves domain names.
 Contains the following subroutines:

 res_mkquery
 res_send
 res_init
 dn_comp
 dn_expand
 getshort
 putshort
 putlong

 rexec Allows command execution on a remote host.

 rresvport Obtains a socket with a privileged address bound to it.

 ruserok Provides authentication of remote requests.

 send Sends a message from a socket only when socket is in
 connected state.

 sendto Sends a message from a socket.

 sendmsg Sends a message from a socket.

AIX Operating System Technical Reference
Socket Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.277.1 - 2

 shutdown Shuts down part or all of a full-duplex connection.

 socket Creates an endpoint for communications and returns a
 descriptor.

 socketpair Creates a pair of connected sockets.

AIX Operating System Technical Reference
Socket Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.277.1 - 3

 1.2.277.2 Overview of Sockets

 A socket is an object that provides communications between processes.
 Sockets are referenced by file descriptors and have qualities similar to
 those of a character special device. Read, write, and select operations
 can be performed on sockets by using the appropriate system calls.

 A socket is created with the socket system call. (See "socket" in
 topic 1.2.275.) This system call creates a socket of a specified domain,
 type, and protocol. Sockets have different qualities depending on these
 specifications.

 A domain is a name space or an address space. Each domain has different
 rules for valid names and interpretation of names. After a socket is
 created, it can be given a name, according to the rules of the domain in
 which it was created.

 AIX provides support for the following socket domains:

 Local Provides socket communication between processes running on the
 same AIX system when a domain of AF_UNIX is specified. A name
 in this domain is a string of ASCII characters whose maximum
 length is machine dependent.

 Internet Provides socket communication between a local process and a
 process running on a remote host when a domain of AF_INET is
 specified. This domain requires that IBM AIX TCP/IP be
 installed on your system. A name in this domain is a DARPA
 Internet address, made up of a 32-bit IP address and a 16-bit
 port address. (See the discussion of addresses and names in AIX
 TCP/IP User's Guide.)

 In AIX, there are two types of sockets:

 SOCK_DGRAM Provides datagrams, which are connectionless messages of a
 fixed maximum length. This type of socket is generally used
 for short messages, such as a name server or time server,
 since the order and reliability of message delivery is not
 guaranteed.

 In the local domain, SOCK_DGRAM is similar to a message
 queue. In the Internet domain, SOCK_DGRAM is implemented on
 the UDP/IP protocol.

 SOCK_STREAM Provides sequenced, two-way byte streams with a transmission
 mechanism for out-of-band data. The data is transmitted on a
 reliable basis, in order.

 In the local domain, SOCK_STREAM is like a pipe. In the
 Internet domain, SOCK_STREAM is implemented on the TCP/IP
 protocol.

 A protocol is a standard set of rules for transferring data, such as
 UDP/IP and TCP/IP. A protocol is specified only if more than one protocol
 is supported for this particular socket type in this domain. Otherwise,
 this parameter is set to 0.

AIX Operating System Technical Reference
Overview of Sockets

¦ Copyright IBM Corp. 1985, 1991
1.2.277.2 - 1

 1.2.277.3 Socket Names

 A socket name, which is also called a socket address, is specified by the
 sockaddr structure. This structure is defined in the sys/socket.h header
 file, and it contains the following members:

 ushort sa_family; /* Defines socket address family */
 char sa_data[14]; /* Contains up to 14 bytes of direct address */

 The sa_family is the address family or domain, either AF_UNIX for the
 local domain or AF_INET for the Internet domain. The contents of sa_data
 depend on the protocol in use, but generally a socket name consists of a
 machine name part and a port or service name part.

AIX Operating System Technical Reference
Socket Names

¦ Copyright IBM Corp. 1985, 1991
1.2.277.3 - 1

 1.2.277.4 Related Network Publications

 For general information about networking, the following publications are
 recommended. These publications are distributed by the Network
 Information Center on behalf of the Defense Communications Agency and
 Defense Advanced Research Projects Agency (DARPA). The mailing address
 is:

 Network Information Center
 SRI International
 Menlo Park, CA 92025

 � Assigned Numbers, RFC990, J. Reynolds, J. Postel

 � Broadcasting Internet Datagrams, RFC919, J. Mogul

 � Domain Names - Concepts and Facilities, RFC882, P. Mockapetris

 � Domain Names - Implementation and Specification, RFC883, P.
 Mockapetris

 � File Transfer Protocol, RFC959, J. Postel

 � Internet Control Message Protocol, RFC792, J. Postel

 � Internet Name Server Protocol, IEN116, J. Postel

 � Internet Protocol, RFC791, J. Postel

 � Internet Standard Subnetting Procedure, RFC950, J. Mogul

 � Name/Finger, RFC742, K. Harrenstien

 � Official ARPA-Internet Protocols, RFC944, J. Reynolds, J. Postel

 � Simple Mail Transfer Protocol, RFC821, J. Postel

 � Standard for the Format of ARPA Internet Text Messages, RFC822.

 � Telnet Binary Transmission, RFC856, J. Postel, J. Reynolds

 � Telnet Option Specifications, RFC855, J. Postel, J. Reynolds

 � Telnet Protocol Specification, RFC854, J. Postel, J. Reynolds

 � Telnet Terminal Type Option, RFC930, M. Solomon, E. Wimmers

 � The TFTP Protocol, RFC783, K. R. Sollins

 � Time Protocol, RFC868, J. Postel, K. Harrenstien

 � Transmission Control Protocol, RFC793, J. Postel

 � Trivial File Transfer Protocol, RFC783, K. R. Sollins

 � User Datagram Protocol, RFC768, J. Postel

 Related Information
 In this book: "accept" in topic 1.2.9, "bind" in topic 1.2.20, "connect"
 in topic 1.2.49, "gethostbyaddr, gethostbyname, sethostent, endhostent" in

AIX Operating System Technical Reference
Related Network Publications

¦ Copyright IBM Corp. 1985, 1991
1.2.277.4 - 1

 topic 1.2.98, "gethostid, sethostid" in topic 1.2.99, "gethostname,
 sethostname" in topic 1.2.100, "getnetent, getnetbyaddr, getnetbyname,
 setnetent, endnetent" in topic 1.2.105, "getpeername" in topic 1.2.109,
 "getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent"
 in topic 1.2.112, "getservent, getservbyname, getservbyport, setservent,
 endservent" in topic 1.2.118, "getsockname" in topic 1.2.120, "getsockopt,
 setsockopt" in topic 1.2.121, "htonl, htons, ntohl, ntohs" in
 topic 1.2.131, "inet_addr, inet_network, inet_ntoa, inet_makeaddr,
 inet_lnaof, inet_netof" in topic 1.2.134, "listen" in topic 1.2.157,
 "rcmd, rresvport, ruserok" in topic 1.2.223, "recv, recvfrom, recvmsg" in
 topic 1.2.227, "resolver: res_mkquery, res_send, res_init, dn_comp,
 dn_expand, getshort, getlong, putshort, putlong" in topic 1.2.234, "rexec"
 in topic 1.2.235, "send, sendto, sendmsg" in topic 1.2.246, "shutdown" in
 topic 1.2.262, "socket" in topic 1.2.275, and "socketpair" in
 topic 1.2.276.

AIX Operating System Technical Reference
Related Network Publications

¦ Copyright IBM Corp. 1985, 1991
1.2.277.4 - 2

 1.2.278 spools()

 Purpose
 Contains information to enable Transparent Computing Facility for UUCP
 communications facilities.

 Description
 The /usr/adm/uucp/Spools contains one or more lines, each using one of the
 following two formats:

 remote master [local...]
 remote master all

 where the fields have the following meanings:

 remote This is the name given to the remote uucp node.

 master This is the name of the site within the TCF cluster that
 contains the master spool directory for this remote node.

 local... These are optional sites in the cluster which can temporarily
 spool files queued to be delivered to the remote node.

 all Specifies that all cluster sites can temporarily spool files
 queued to be delivered to the remote node.

 Files

 /usr/adm/uucp/Spools
 <LOCAL>/spool/uucp

 Related Information

 The discussion about "Managing BNU" in the Managing the Operating System.

AIX Operating System Technical Reference
spools()

¦ Copyright IBM Corp. 1985, 1991
1.2.278 - 1

 1.2.279 spropin

 Purpose
 Gets a more recent copy of a replicated file on the local file system.

 Syntax

 #include <sys/types.h>

 spropin(gfs, inode_number, site_number)
 gfs_t gfs;
 ino_t inode_number;
 siteno_t site_number;

 Description
 The spropin system call requests that a file's locally stored copy be
 brought up to date with respect to a copy at a remote site. The file is
 identified by its gfs and inode_number and the remote site is site_number.
 This is a call which is used to reconcile TCF replicated file systems. It
 should be used only by the superuser.

 Return Value
 Upon successful completion, a value of 0 is returned. Otherwise, a value
 of -1 is returned and errno is set to indicate the error.

 Error Conditions
 The spropin system call can fail with the following error codes:

 EPERM The user is not superuser.

 EINVAL Either gfs or inode_number has an improper value.

 ENOSTORE Either the gfs is not mounted locally, it is not mounted
 remotely, or it has been corrupted.

 EBADST The site_number is out of range or is the local site.

 ELOCK Propagation is already in progress.

 ENOSPC There is not enough room for the new version to be stored.

 ESITEDN1 Lost contact with the remote site before propagation was
 complete.

 EIO Read error on the remote site or write error on the local site.

 Related Information

 In this book: "chlwm" in topic 1.2.43 and "raccept" in topic 1.2.219.

 The primrec and recmstr commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
spropin

¦ Copyright IBM Corp. 1985, 1991
1.2.279 - 1

 1.2.280 sputl, sgetl

 Purpose
 Accesses long numeric data in a machine-independent fashion.

 Library
 Object File Access Routine Library (libld.a)

 Syntax

 void sputl (value, buffer) long sgetl (buffer)
 long value; char *buffer;
 char *buffer;

 Description

 The sputl subroutine stores the 4 bytes of the value parameter into memory
 starting at the location pointed to by the buffer parameter. The order of
 the bytes is the same across all machines.

 The sgetl subroutine retrieves 4 bytes from memory starting at the
 location pointed to by the buffer parameter. It then returns the bytes as
 a long value with the byte ordering of the host machine.

 Using sputl and sgetl subroutines together provides a machine-independent
 way of storing long numeric data in an ASCII file. For example, the
 numeric data stored in the portable archive file format is accessed with
 the sputl and sgetl subroutines.

 Related Information
 In this book: "frexp, ldexp, modf" in topic 1.2.85 and "ar" in
 topic 2.3.4.

AIX Operating System Technical Reference
sputl, sgetl

¦ Copyright IBM Corp. 1985, 1991
1.2.280 - 1

 1.2.281 ssignal, gsignal

 Purpose
 Implements a software signal facility.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <signal.h>

 void (*ssignal (sig, action)void)gsignal (sig)
 int sig; int sig;
 void (*action) ();

 Description
 The ssignal and gsignal subroutines implement a software facility similar
 to that of the signal and kill system calls. However, there is no
 connection between the two facilities. User programs can use ssignal and
 gsignal to handle exceptional processing within an application. signal
 and related system calls handle system-defined exceptions.

 The software signals available are associated with integers in the range 1
 through 16. Other values are reserved for use by the C library and should
 not be used.

 The ssignal subroutine associates the procedure specified by the action
 parameter with the software signal specified by the sig parameter. The
 gsignal subroutine "raises" the signal sig, causing the procedure
 specified by the action parameter to be taken.

 The action parameter is either a pointer to a user-defined subroutine, or
 one of the constants SIG_DFL (default action) and SIG_IGN (ignore signal).
 The ssignal subroutine returns the procedure that was previously
 established for that signal. If no procedure was established before, or
 if the signal number is illegal, then ssignal returns the value SIG_DFL.

 The gsignal subroutine "raises" the signal specified by the sig parameter
 by doing the following:

 � If the procedure for sig is SIG_DFL, then the gsignal subroutine
 returns a value of 0 and takes no other action.

 � If the procedure for sig is SIG_IGN, then the gsignal subroutine
 returns a value of 1 and takes no other action.

 � If the procedure for sig is a subroutine, then the action value is
 reset to SIG_DFL and the subroutine is called with sig passed as its
 parameter. The gsignal subroutine returns the value that is returned
 by the signal-handling subroutine.

 � If the procedure for sig is an illegal value or if no procedure was
 ever specified for that signal, then gsignal returns a value of 0 and
 takes no other action.

 Related Information
 In this book: "kill, kill3, killpg" in topic 1.2.138 and "sigaction,

AIX Operating System Technical Reference
ssignal, gsignal

¦ Copyright IBM Corp. 1985, 1991
1.2.281 - 1

 sigvec, signal" in topic 1.2.263.

AIX Operating System Technical Reference
ssignal, gsignal

¦ Copyright IBM Corp. 1985, 1991
1.2.281 - 2

 1.2.282 statx, fstatx, stat, fstat, fullstat, ffullstat, lstat

 Purpose
 Provides information about a file.

 Syntax

 #include <stat.h>

 int statx(path, buf, len, cmd)
 char *path;
 struct stat *buf;
 int len;
 int cmd;

 int fstatx(fildes, buf, len, cmd)
 int fildes;
 struct stat *buf;
 int len;
 int cmd;

 Description
 The statx and fstatx system calls obtain information about a file. The
 path parameter to statx is a path name identifying the file. The fildes
 parameter is a file descriptor obtained from a successful open, fcntl,
 pipe, socket or socketpair system call.

 Information is returned in the stat structure pointed to by the buf
 parameter (see "stat.h" in topic 2.4.22). The len parameter indicates the
 amount of information to be returned.

 The cmd parameter determines how to interpret the path name provided;
 specifically, whether to retrieve information about a symbolic link,
 hidden directory or mount point.

 STX_LINK If cmd specifies STX_LINK and path is a path name which refers
 to a symbolic link, statx returns information about the symbolic
 link. Otherwise, statx returns information about the file to
 which the link refers.

 If cmd specifies STX_LINK and path refers to a symbolic link,
 the st_mode and st_type fields of the returned stat structure
 indicates the file is a symbolic link.

 STX_HIDDEN
 If cmd specifies STX_HIDDEN and path is a path name which refers
 to a hidden directory, statx returns information about the
 hidden directory. Otherwise, statx returns information about
 the selected component of the hidden directory.

 If cmd specifies STX_HIDDEN and path refers to a hidden
 directory, the st_mode and st_type fields of the returned stat
 structure indicate this is a hidden directory.

 STX_MOUNT If cmd specifies STX_MOUNT and path names the root of a mounted
 file system, statx returns information about the mounted-over
 directory. Otherwise, statx returns information about the root
 of the mounted file system.

 If cmd specifies STX_MOUNT, the FS_MOUNT bit in the st_flag

AIX Operating System Technical Reference
statx, fstatx, stat, fstat, fullstat, ffullstat, lstat

¦ Copyright IBM Corp. 1985, 1991
1.2.282 - 1

 field of the returned stat structure is set if (and only if)
 this file is mounted over.

 If cmd does not specify STX_MOUNT, the FS_MOUNT bit in the
 st_flag field of the returned stat structure is set if (and only
 if) this file is the root of a file system.

 Subtopics
 1.2.282.1 Compatibility Interfaces

AIX Operating System Technical Reference
statx, fstatx, stat, fstat, fullstat, ffullstat, lstat

¦ Copyright IBM Corp. 1985, 1991
1.2.282 - 2

 1.2.282.1 Compatibility Interfaces

 The following interfaces are provided for compatibility with programs
 written for AIX/RT or other versions of the UNIX operating system.

 stat(path, stbuf)

 is equivalent to:

 statx(path, stbuf, STATSIZE, 0)

 lstat(path, stbuf)

 is equivalent to:

 statx(path, stbuf, STATSIZE, STX_LINK)

 fstat(fd, stbuf)

 is equivalent to:

 fstatx(fd, stbuf, STATSIZE, 0)

 #include <sys/fullstat.h>

 fullstat(path, cmd, buf)

 is equivalent to:

 statx(path, buf, FULLSTATSIZE, cmd)

 #include <sys/fullstat.h>

 ffullstat(fd, cmd, buf)

 is equivalent to:

 fstatx(fd, buf, FULLSTATSIZE, cmd)

 Return Value
 Upon successful completion, both the statx and fstatx system calls return
 a value of 0. If the statx or fstatx system calls fail, a value of -1 is
 returned, and errno is set to indicate the error.

 Error Conditions
 The statx and fstatx system calls fail if one or more of the following are
 true:

 ENOTDIR A component of the path prefix is not a directory.

 ENOENT A component of the path prefix does not exist, or the process
 has the System V lookup attribute and a component is exactly 14
 characters long (see "ulimit" in topic 1.2.313).

 EACCES Search permission is denied on a component of the path prefix.

 ENOENT The path name is null.

 ESTALE The process's root or current directory is located in a virtual
 file system that has been unmounted.

AIX Operating System Technical Reference
Compatibility Interfaces

¦ Copyright IBM Corp. 1985, 1991
1.2.282.1 - 1

 EFAULT The path parameter points to a location outside of the process's
 allocated address space.

 ELOOP A loop of symbolic links was detected.

 ENAMETOOLONG
 A component of the path parameter exceeded NAME_MAX characters
 or the entire path parameter exceeded PATH_MAX characters.

 ENOENT A hidden directory was named, but no component inside it matched
 the process's current site path list.

 ENOENT A symbolic link was named, but the file to which it refers does
 not exist.

 EIO An I/O error occurred during the operation.

 ENOENT The file named by path does not exist.

 EBADF The fildes parameter is not a valid file descriptor.

 If the Transparent Computing Facility is installed on your system, the
 statx and fstatx system calls can also fail if one or more of the
 following are true:

 ESITEDN1 The path cannot be accessed because a site went down.

 ESITEDN2 The operation was terminated because a site failed.

 ENOSTORE The path is a name relative to the working directory, but no
 site which stores this directory is currently up.

 ENOSTORE A component of path is replicated but is not stored on any site
 which is currently up.

 ESITEDN1 The site or sites on which the file is stored are now down or
 the file descriptor is open for writing and the site where the
 file is stored has gone down since the file was opened.

 ENFILE The system inode table on another cluster site is out of space.

 EINTR A signal was caught during the statx system call.

 Related Information
 In this book: "chmod, fchmod" in topic 1.2.44, "chown, fchown" in
 topic 1.2.45, "link" in topic 1.2.156, "mknod, mknodx, mkfifo" in
 topic 1.2.169, "pipe" in topic 1.2.204, "read, readv, readx" in
 topic 1.2.224, "times" in topic 1.2.304, "unlink, rmslink, remove" in
 topic 1.2.318, "ustat" in topic 1.2.320, "utime" in topic 1.2.321, "write,
 writex" in topic 1.2.330, "master" in topic 2.3.32, and "stat.h" in
 topic 2.4.22.

 Also see "The Base AIX File Systems" discussion in Chapter 1 of Managing
 the AIX Operating System.

AIX Operating System Technical Reference
Compatibility Interfaces

¦ Copyright IBM Corp. 1985, 1991
1.2.282.1 - 2

 1.2.283 stdio

 Purpose
 Performs standard buffered input and output operations.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <stdio.h>

 FILE *stdin, *stdout, *stderr;

 Description
 These macros and subroutines provide an efficient user-level I/O buffering
 scheme.

 The in-line macros getc and putc handle characters quickly. The following
 macros and subroutines all use the getc and putc macros:

 +--+
 ¦ ¦ getchar macro ¦ fread subroutine ¦
 ¦ ¦ getwchar macro ¦ fscanf subroutine ¦
 ¦ ¦ putchar macro ¦ fwrite subroutine ¦
 ¦ ¦ putwchar macro ¦ gets subroutine ¦
 ¦ ¦ fgetc subroutine ¦ getw subroutine ¦
 ¦ ¦ fgets subroutine ¦ getwc subroutine ¦
 ¦ ¦ fgetwc subroutine ¦ printf subroutine ¦
 ¦ ¦ fprintf subroutine ¦ puts subroutine ¦
 ¦ ¦ fputc subroutine ¦ putw subroutine ¦
 ¦ ¦ fputwc subroutine ¦ putwc subroutine ¦
 ¦ ¦ fputs subroutine ¦ scanf subroutine ¦
 ¦ ¦ ¦ wsprintf subroutine ¦
 ¦ ¦ ¦ wsscanf subroutine ¦
 +--+

 A file with associated buffering is called a stream and is declared to be
 a pointer to the defined type FILE. The fopen subroutine constructs
 descriptive data for a stream and returns a pointer to designate the
 stream in all further transactions. Normally, there are three open
 streams with constant pointers declared in the stdio.h header file and
 associated with the standard open streams:

 stdin Standard input stream
 stdout Standard output stream
 stderr Standard error output stream.

 The constant NULL (0) designates a special pointer value that does not
 point to any data structure.

 Most integer subroutines that deal with streams return the constant EOF
 (-1) upon end-of-file or an error. See each individual subroutine for
 detailed information about the return value.
 Programs that use this input/output package must include the header file
 of pertinent macro definitions, as follows:

 #include <stdio.h>

AIX Operating System Technical Reference
stdio

¦ Copyright IBM Corp. 1985, 1991
1.2.283 - 1

 The subroutines and constants in the input/output package are declared in
 the header file and do not need any further declaration. The constants
 and the following routines are implemented as macros. Redeclaration of
 these names is not allowed.

 +--+
 ¦ ¦ getc ¦ feof ¦
 ¦ ¦ getchar ¦ ferror ¦
 ¦ ¦ putc ¦ clearerr ¦
 ¦ ¦ putchar ¦ fileno ¦
 +--+

 Warning: Invalid stream pointers usually cause errors, possibly including
 program termination. Individual subroutine descriptions describe the
 possible error conditions.

 Related Information
 In this book: "close, closex" in topic 1.2.48, "ctermid" in topic 1.2.53,
 "cuserid" in topic 1.2.57, "fclose, fflush" in topic 1.2.77, "feof,
 ferror, clearerr, fileno" in topic 1.2.79, "fopen, freopen, fdopen" in
 topic 1.2.82, "fread, fwrite" in topic 1.2.84, "fseek, rewind, ftell" in
 topic 1.2.86, "getc, fgetc, getchar, getw, getwc, fgetwc, getwchar" in
 topic 1.2.91, "gets, fgets, getws, fgetws" in topic 1.2.117, "lseek" in
 topic 1.2.161, "open, openx, creat" in topic 1.2.199, "pipe" in
 topic 1.2.204, " popen, pclose, rpopen" in topic 1.2.207, "printf,
 fprintf, sprintf, NLprintf, NLfprintf, NLsprintf, wsprintf" in
 topic 1.2.208, "putc, putchar, fputc, putw, putwc, putwchar, fputwc" in
 topic 1.2.213, "puts, fputs, putws, fputws" in topic 1.2.216, "read,
 readv, readx" in topic 1.2.224, "scanf, fscanf, sscanf, NLscanf, NLfscanf,
 NLsscanf, wsscanf" in topic 1.2.241, "setbuf, setvbuf" in topic 1.2.247,
 "system" in topic 1.2.298, "tmpfile" in topic 1.2.305, "tmpnam, tempnam"
 in topic 1.2.306, "ungetc, ungetwc" in topic 1.2.317, and "write, writex"
 in topic 1.2.330.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
stdio

¦ Copyright IBM Corp. 1985, 1991
1.2.283 - 2

 1.2.284 stdipc: ftok

 Purpose
 Generates a standard interprocess communication key.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <sys/types.h>
 #include <sys/ipc.h>

 key_t ftok (path, id)
 char *path;
 char id;

 Description
 The ftok subroutine returns a key, based on the path and id parameters, to
 be used to obtain interprocess communication identifiers. The path
 parameter must be the path name of an existing file that is accessible to
 the process. The id parameter must be a character that uniquely
 identifies a project. ftok returns the same key for linked files if
 called with the same id parameter. Different keys are returned for the
 same file if different id parameters are used.

 All interprocess communication facilities require you to supply a key to
 the msgget, semget, and shmget system calls in order to obtain
 interprocess communication identifiers. The ftok subroutine provides one
 method of creating keys, but many others are possible. Another way to do
 this, for example, is to use the project ID as the most significant byte
 of the key, and to use the remaining portion as a sequence number.

 Warning: It is important for each installation to define standards for
 forming keys. If some standard is not adhered to, unrelated processes can
 interfere with each other's operation.

 If the path parameter of the ftok subroutine names a file that has been
 removed while keys still refer it, then the ftok subroutine returns an
 error. If that file is then recreated, the ftok subroutine will probably
 return a different key than the original one.

 Return Value
 Upon successful completion, the ftok subroutine returns a key that can be
 passed to the msgget, semget, or shmget system call. The ftok subroutine
 returns (key_t) -1 if one or more of the following are true:

 � The file named by the path parameter does not exist.
 � The file named by the path parameter is not accessible to the process.
 � The id parameter is 0 ('\0').

 Related Information
 In this book: "msgget" in topic 1.2.174, "semget" in topic 1.2.244, and
 "shmget" in topic 1.2.261.

AIX Operating System Technical Reference
stdipc: ftok

¦ Copyright IBM Corp. 1985, 1991
1.2.284 - 1

 1.2.285 stime

 Purpose
 Sets the time.

 Syntax

 int stime (tp)
 time_t *tp;

 Description
 The stime system call sets the system's time and date. The tp parameter
 points to the time as measured in seconds from 00:00:00 GMT January 1,
 1970.

 Return Value
 Upon successful completion, a value of 0 is returned. If the stime system
 call fails, a value of -1 is returned and errno is set to indicate the
 error.

 Error Conditions
 The stime system call fails if the following is true:

 EFAULT Invalid pointer to tp.

 EPERM The effective user ID of the calling process is not superuser.

 Related Information
 In this book: "time" in topic 1.2.303.

AIX Operating System Technical Reference
stime

¦ Copyright IBM Corp. 1985, 1991
1.2.285 - 1

 1.2.286 strcoll, strncoll, strxfrm, mbscoll, mbsncoll, wcscoll, wcsncoll

 Purpose
 Perform string and array comparisons using collating information.

 Syntax

 #include <string.h>

 int strcoll (s1, s2) int mbsncoll (s1, s2)
 const char *s1, *s2; const char *s1, *s2;

 int strncoll (s1, s2, n) int wcscoll (s1, s2)
 const char *s1, *s2; const wchar_t *s1, *s2;
 size_t n;
 int wcsncoll (s1, s2, n)
 size_t strxfrm (s1, s2, n); const wchar_t *s1, *s2;
 char *s1; size_t n;
 const char *s2;
 size_t n;

 int mbscoll (s1, s2)
 const char *s1, *s2;

 Description
 All of these subroutines except strxfrm perform file code and process code
 string and array comparisons using collating information. The strxfrm
 subroutine transforms strings. The s1 and s2 variables are pointers to
 file code strings.

 The strcoll subroutine compares the string pointed to by s1 to the string
 pointed to by s2, when both are interpreted according to the LC_COLLATE
 category of the current locale.

 The strncoll subroutine compares the string pointed to by s1 to the string
 pointed to by s2 up to n characters, or when a terminating NULL is
 reached, when both strings are interpreted according to the LC_COLLATE
 category of the current locale.

 The strcoll and the strncoll subroutines are identical to the wcscoll and
 the wcsncoll subroutines except that the latter compare process code
 strings instead of file code strings.

 The strxfrm subroutine transforms the string pointed to by s2 and places
 the resulting string into the array pointed to by s1. If the strcmp
 subroutine is called to compare the two transformed strings, strxfrm
 returns a value greater than, equal to or less than zero. This value
 corresponds to the result produced by calling the strcoll subroutine to
 compare the same two original strings. No more than n characters are
 placed into the resulting array pointed to by s1, including the
 terminating NULL character. If n is zero, s1 is permitted to be a NULL
 pointer. If copying takes place between objects that overlap, the
 behavior is undefined.

 The mbscoll subroutine compares the multibyte string pointed to by s1 to
 the multibyte string pointed to by s2, when both are interpreted according
 to the LC_COLLATE category of the current locale.

AIX Operating System Technical Reference
strcoll, strncoll, strxfrm, mbscoll, mbsncoll, wcscoll, wcsncoll

¦ Copyright IBM Corp. 1985, 1991
1.2.286 - 1

 The mbsncoll subroutine compares the multibyte string pointed to by s1 to
 the multibyte string pointed to by s2 up to n characters, or if a
 terminating NULL is reached, when both are interpreted according to the
 LC_COLLATE category of the current locale.

 The mbscoll and mbsncoll subroutines have no shift states. Both input
 strings must begin in the initial shift state.

 The mbscoll and mbsncoll subroutines are identical to the wcscoll and
 wcsncoll subroutines except that the latter compare process code strings
 instead of file code strings.

 The wcscoll subroutine compares the array pointed to by s1 to the array
 pointed to by s2, both interpreted as wide character codes converted from
 multibyte characters and in accordance with the LC_COLLATE category of the
 current locale.

 The wcsncoll subroutine compares the array pointed to by s1 to the array
 pointed to by s2 up to n characters. Both strings are interpreted as wide
 character codes, converted from multibyte characters and in accordance
 with the LC_COLLATE category of the current locale.

 Return Value
 The strcoll, strncoll, mbscoll, and mbsncoll subroutines return an integer
 greater than, equal to, or less than zero depending on whether the string
 pointed to by s1 is greater than, equal to or less than the string pointed
 to by s2 when both are interpreted according to the LC_COLLATE category of
 the current locale.

 The strxfrm subroutine returns the length of the transformed string (not
 including the terminating NULL character). If the value returned is n or
 more, the contents of the array pointed to by s1 are indeterminate.

 The wcscoll and wcsncoll subroutines return an integer greater than, equal
 to, or less than zero depending on whether the array pointed to by s1 is
 greater than, equal to or less than the wide character array pointed to by
 s2, when both are interpreted according to the LC_COLLATE category of the
 current locale.

 Error Conditions
 The strcoll, strncoll, and strxform subroutines will fail if the following
 is true:

 EINVAL The s1 and s2 arguments contain characters outside the domain of
 the collating sequence.

 Related Information
 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
strcoll, strncoll, strxfrm, mbscoll, mbsncoll, wcscoll, wcsncoll

¦ Copyright IBM Corp. 1985, 1991
1.2.286 - 2

 1.2.287 strftime

 Purpose
 Places characters into an array.

 Syntax

 #include <time.h>

 size_t strftime (s, maxsize, format, timeptr)
 char *s;
 size_t maxsize;
 const char *format;
 const struct tm *timeptr;

 Description

 The strftime subroutine places characters into the array pointed to by s
 as controlled by the string pointed to by format. The format will be a
 multibyte character sequence, beginning and ending in its initial shift
 state. The format string consists of zero or more conversion specifiers
 and ordinary multibyte characters. A conversion specifier consists of a
 percent sign (%) followed by a character that determines the behavior of
 the conversion specifier. All ordinary multibyte characters (including
 the terminating NULL character) are copied unchanged into the array.

 If copying takes place between objects that overlap, the behavior is
 undefined. No more than maxsize characters are placed into the array.
 Each conversion specifier is replaced by appropriate characters as
 described by the LC_TIME category of the current locale and by the values
 contained in the structure pointed to by timeptr.

 +--+
 ¦ strftime parameters and their action ¦
 +--¦
 ¦ Flag Action ¦
 +--¦
 ¦ %a ¦ is replaced by the locale's abbreviated ¦
 ¦ ¦ weekday name. ¦
 +-----+--¦
 ¦ %A ¦ is replaced by the locale's full weekday ¦
 ¦ ¦ name. ¦
 +-----+--¦
 ¦ %b ¦ is replaced by the locale's abbreviated ¦
 ¦ ¦ month name. ¦
 +-----+--¦
 ¦ %B ¦ is replaced by the locale's full month ¦
 ¦ ¦ name. ¦
 +-----+--¦
 ¦ %c ¦ is replaced by the locale's appropriate ¦
 ¦ ¦ date and time conversion. ¦
 +-----+--¦
 ¦ %d ¦ is replaced by the day of month as a ¦
 ¦ ¦ decimal number (01-31.) ¦
 +-----+--¦
 ¦ %D ¦ is replaced by the date (%m/%d/%y). ¦
 +-----+--¦
 ¦ %h ¦ is replaced by the locale's abbreviated ¦
 ¦ ¦ month name. ¦

AIX Operating System Technical Reference
strftime

¦ Copyright IBM Corp. 1985, 1991
1.2.287 - 1

 +-----+--¦
 ¦ %H ¦ is replaced by the hour (24-hour clock) as ¦
 ¦ ¦ a decimal number (00-23). ¦
 +-----+--¦
 ¦ %I ¦ is replaced by the hour (12-hour clock) as ¦
 ¦ ¦ a decimal number (01-12). ¦
 +-----+--¦
 ¦ %j ¦ is replaced by the day of the year as a ¦
 ¦ ¦ decimal number (001-366). ¦
 +-----+--¦
 ¦ %m ¦ is replaced by the month as a decimal ¦
 ¦ ¦ number (01-12). ¦
 +-----+--¦
 ¦ %M ¦ is replaced by the minute as a decimal ¦
 ¦ ¦ number (00-59). ¦
 +-----+--¦
 ¦ %n ¦ is replaced by a newline character. ¦
 +-----+--¦
 ¦ %p ¦ is replaced by the locale's equivalent of ¦
 ¦ ¦ the AM/PM designations associated with a ¦
 ¦ ¦ 12-hour clock. ¦
 +-----+--¦
 ¦ %r ¦ is replaced by the time in a.m./p.m. ¦
 ¦ ¦ notation according to British/US ¦
 ¦ ¦ conventions (%I:%M:%S\[AM|PM]). ¦
 +-----+--¦
 ¦ %S ¦ is replaced by the second as a decimal ¦
 ¦ ¦ number (00-61). ¦
 +-----+--¦
 ¦ %t ¦ is replaced by a tab character. ¦
 +-----+--¦
 ¦ %T ¦ is replaced by the time (%H:%M:%S:). ¦
 +-----+--¦
 ¦ %U ¦ is replaced by the week number of the year ¦
 ¦ ¦ (Sunday as the first day of week 1) as a ¦
 ¦ ¦ decimal number (00-53). ¦
 +-----+--¦
 ¦ %w ¦ is replaced by the weekday as decimal ¦
 ¦ ¦ number [0(Sunday)-6] ¦
 +-----+--¦
 ¦ %W ¦ is replaced by the week number of the year ¦
 ¦ ¦ (Monday as the first day of week 1) as a ¦
 ¦ ¦ decimal number (00-53). ¦
 +-----+--¦
 ¦ %x ¦ is replaced by the locale's appropriate ¦
 ¦ ¦ date representation. ¦
 +-----+--¦
 ¦ %X ¦ is replaced by the locale's appropriate ¦
 ¦ ¦ time representation. ¦
 +-----+--¦
 ¦ %y ¦ is replaced by the year without century as ¦
 ¦ ¦ a decimal number (00-99). ¦
 +-----+--¦
 ¦ %Y ¦ is replaced by the year with century as a ¦
 ¦ ¦ decimal number. ¦
 +-----+--¦
 ¦ %z ¦ is replaced by the time zone name or ¦
 ¦ ¦ abbreviation, or by no characters if no ¦
 ¦ ¦ time zone is determinable. ¦
 +-----+--¦

AIX Operating System Technical Reference
strftime

¦ Copyright IBM Corp. 1985, 1991
1.2.287 - 2

 ¦ %% ¦ is replaced by %. ¦
 +--+

 If a conversion specifier is not one of the above, a % is copied.

 +--+
 ¦ strftime parameters and their action. ¦
 +--¦
 ¦ Flag ¦ setlocale token name ¦ C locale default ¦
 +--------------+-----------------------------+---¦
 ¦ %a ¦ MBSDAY ¦ Sun:Mon:Tue:Wed:Thu:Fri:Sat ¦
 +--------------+-----------------------------+---¦
 ¦ %A ¦ MBLDAY ¦ Sunday:Monday:Tuesday:Wednesday:... ¦
 +--------------+-----------------------------+---¦
 ¦ %b ¦ MBSMONTH ¦ Jan:Feb:Mar:Apr:May:Jun:Jul:Aug:... ¦
 +--------------+-----------------------------+---¦
 ¦ %B ¦ MBLMONTH ¦ January:February:March:April:May:June: ¦
 ¦ %c ¦ MBLDATIM ¦ %a %b %d %H:%M:%S %Z %Y ¦
 +--------------+-----------------------------+---¦
 ¦ %p ¦ MBAM_STR ¦ a.m. ¦
 ¦ ¦ MBPM_STR ¦ p.m. ¦
 +--------------+-----------------------------+---¦
 ¦ %x ¦ MBLDATE ¦ %b %d %Y ¦
 +--------------+-----------------------------+---¦
 ¦ %X ¦ MBTIME ¦ %H:%M:%S ¦
 +--+

 Return Value

 If the total number of resulting characters including the terminating NULL
 character is not more than that of maxsize, the strftime function returns
 the number of characters placed into the array pointed to by s, not
 including the terminating null character. Otherwise, zero is returned and
 the contents of the array are indeterminate.

AIX Operating System Technical Reference
strftime

¦ Copyright IBM Corp. 1985, 1991
1.2.287 - 3

 1.2.288 string

 Purpose
 Performs operations on strings.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <string.h>

 char *strcat (s1, s2) size_t strlen (s)
 char *s1, *s2; char *s;

 char *strncat (s1, s2, n) char *strchr (s, c)
 char *s1, *s2; char *s;
 size_t n; int c;

 int strcmp (s1, s2) char *strrchr (s, c)
 char *s1, *s2; char *s;
 int c;
 int strncmp (s1, s2, n)
 char *s1, *s2; char *strpbrk (s1, s2)
 size_t n; char *s1, *s2;

 char *strcpy (s1, s2) size_t strspn (s1, s2)
 char *s1, *s2; char *s1, *s2;

 char *strncpy (s1, s2, n) size_t strcspn (s1, s2)
 char *s1, *s2; char *s1, *s2;
 size_t n;
 char *strtok (s1, s2)
 char *s1, *s2;

 Description

 Note: For subroutines which perform operations on wide and multibyte
 characters, refer to "wcstring" in topic 1.2.327 and "mbstring" in
 topic 1.2.164.

 The string subroutines copy, compare, and append strings in memory, and
 they determine such things as location, size, and existence of strings in
 memory.

 The parameters s1, s2 and s point to strings. A string is an array of
 characters terminated by a NULL character. The subroutines strcat,
 strncat, strcpy, and strncpy all alter s1. They do not check for overflow
 of the array pointed to by s1. All string movement is performed character
 by character and starts at the left. Overlapping moves toward the left
 work as expected, but overlapping moves to the right may give unexpected
 results. All of these subroutines are declared in the string.h header
 file.

 The strcat subroutine adds a copy of the string pointed to by the s2
 parameter to the end of the string pointed to by the s1 parameter. The
 strcat subroutine returns a pointer to the NULL-terminated result.

AIX Operating System Technical Reference
string

¦ Copyright IBM Corp. 1985, 1991
1.2.288 - 1

 The strncat subroutine copies at most n bytes of s2 to the end of the
 string pointed to by the s1 parameter. Copying stops before n bytes if a
 NULL character is encountered in the s2 string. The strncat subroutine
 returns a pointer to the NULL-terminated result.

 The strcmp subroutine lexicographically compares the string pointed to by
 the s1 parameter to the string pointed to by the s2 parameter. The strcmp
 subroutine uses native character comparison, which may be signed or
 unsigned. The strcmp subroutine returns a value that is:

 Less than 0 If s1 is less than s2
 Equal to 0 If s1 is equal to s2
 Greater than 0 If s1 is greater than s2.

 The strncmp subroutine makes the same comparison as strcmp, but it
 compares at most n pairs of characters.

 The strcpy subroutine copies the string pointed to by the s2 parameter to
 the character array pointed to by the s1 parameter. Copying stops when
 the NULL character is copied. The strcpy subroutine returns the value of
 the s1 parameter.

 The strncpy subroutine copies n bytes from the string pointed to by the s2
 parameter to the character array pointed to by the s1 parameter. If s2 is
 less than n characters long, then strncpy pads s1 with trailing NULL
 characters to fill n bytes. If s2 is n or more characters long, then only
 the first n characters are copied and the result is not terminated with a
 NULL character. The strncpy subroutine returns the value of the s1
 parameter.

 The strlen subroutine returns the number of characters in the string
 pointed to by the s parameter, not including the terminating NULL
 character.

 The strchr subroutine returns a pointer to the first occurrence of the
 character specified by the c parameter in the string pointed to by the s
 parameter. A NULL pointer is returned if the character does not occur in
 the string. The NULL character that terminates a string is considered to
 be part of the string.

 The strrchr subroutine returns a pointer to the last occurrence of the
 character specified by the c parameter in the string pointed to by the s
 parameter. A NULL pointer is returned if the character does not occur in
 the string. The NULL character that terminates a string is considered to
 be part of the string.

 The strpbrk subroutine returns a pointer to the first occurrence in the
 string pointed to by the s1 parameter of any character from the string
 pointed to by the s2 parameter. A NULL pointer is returned if no
 character matches.

 The strspn subroutine returns the length of the initial segment of the
 string pointed to by the s1 parameter that consists entirely of characters
 from the string pointed to by the s2 parameter.

 The strcspn subroutine returns the length of the initial segment of the
 string pointed to by the s1 parameter that consists entirely of characters
 not from the string pointed to by the s2 parameter.

 The strtok subroutine returns a pointer to an occurrence of a text token

AIX Operating System Technical Reference
string

¦ Copyright IBM Corp. 1985, 1991
1.2.288 - 2

 in the string pointed to by the s1 parameter. The s2 parameter specifies
 a set of token delimiters. If the s1 parameter is anything other than
 NULL, then the strtok subroutine reads the string pointed to by the s1
 parameter until it finds one of the delimiter characters specified by the
 s2 parameter. It then stores a NULL character into the string, replacing
 the delimiter, and returns a pointer to the first character of the text
 token. The strtok subroutine keeps track of its position in the string so
 that subsequent calls with a NULL s1 parameter step through the string.
 The delimiters specified by the s2 parameter can be changed for subsequent
 calls to strtok. When no tokens remain in the string pointed to by the s1
 parameter, the strtok subroutine returns a NULL pointer.

 Related Information
 In this book: "memory: memccpy, memchr, memcmp, memcpy, memset, bcopy" in
 topic 1.2.166, "NCstring" in topic 1.2.184, "NLstring" in topic 1.2.193,
 "mbstring" in topic 1.2.164, "wcstring" in topic 1.2.327, and "swab" in
 topic 1.2.292.

AIX Operating System Technical Reference
string

¦ Copyright IBM Corp. 1985, 1991
1.2.288 - 3

 1.2.289 strstr

 Purpose
 Locates a substring.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <string.h>

 char *strstr (string1, string2);
 char *string1, *string2;

 Description
 The strstr function returns a pointer to the beginning of the first
 occurrence of string2 in string1. The strstr function does not consider
 the null character (\0) that ends string2 in the matching process.

 If string2 does not appear in string1, strstr returns NULL.

 Example
 The following example locates the string hay in the string "needle in a
 haystack".

 #include <string.h>

 char *string1 = "needle in a haystack";
 char *string2 = "hay";
 char *result;

 result = strstr (string1,string2);
 /* Result = a pointer to "hay" */

AIX Operating System Technical Reference
strstr

¦ Copyright IBM Corp. 1985, 1991
1.2.289 - 1

 1.2.290 strtod, atof

 Purpose
 Converts an ASCII string to a floating-point number.

 Library
 Standard C Library (libc.a)

 Syntax

 double strtod (nptr, ptr) double atof (nptr)
 char *nptr, **ptr; char *nptr;

 Description
 The strtod and atof subroutines convert a character string, pointed to by
 the nptr parameter, to a double-precision floating-point number. The
 first unrecognized character ends the conversion.

 These subroutines recognize a character string when the characters appear
 in the following order:

 1. An optional string of white-space characters
 2. An optional sign
 3. A string of digits optionally containing a decimal point
 4. An optional e or E followed by an optionally signed integer.

 This is represented symbolically as:

 {<sp>} [+|-] {<digit>} [.{digit}] [(e|E) [+|-] {digit}]

 where:

 <sp> = whitespace
 <digit> = 0-9
 [] = 0 or 1
 { } = 0 or more

 If the string begins with an unrecognized character, strtod and atof
 return the value 0.

 If the value of ptr is not (char **) NULL, then a pointer to the character
 that terminated the scan is stored in *ptr. If an integer cannot be
 formed, *ptr is set to nptr, and 0 is returned.

 If the correct return value overflows, strtod and atof return INF on AIX
 PS/2 and 0 on AIX/370. On underflow, strtod and atof return 0.

 The atof (nptr) subroutine call is equivalent to strtod (nptr, (char **)
 NULL).

 The strtod and atof subroutines perform conversions to a floating-point
 number. See "strtol, atol, atoi" in topic 1.2.291 for information on
 conversions to integers.

 Error Conditions
 The strtod subroutine fails if the following is true:

 ERANGE The value to be returned would have caused overflow or
 underflow.

AIX Operating System Technical Reference
strtod, atof

¦ Copyright IBM Corp. 1985, 1991
1.2.290 - 1

 The atof subroutine may fail if the following is true:

 ERANGE The correct value of the result would cause overflow or
 underflow.

 Related Information
 In this book: "scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf,
 wsscanf" in topic 1.2.241 and "strtol, atol, atoi" in topic 1.2.291.

AIX Operating System Technical Reference
strtod, atof

¦ Copyright IBM Corp. 1985, 1991
1.2.290 - 2

 1.2.291 strtol, atol, atoi

 Purpose
 Converts a string to an integer.

 Library
 Standard C Library (libc.a)

 Syntax

 long strtol (str, ptr, base)long atol (str)
 char *str, **ptr; char *str;
 int base;
 int atoi (str)
 char *str;

 Description
 The strtol subroutine returns a long integer whose value is represented by
 the character string str. strtol scans the string up to the first
 character that is inconsistent with the base. Leading whitespace
 characters are ignored.

 Warning: Overflow conditions are ignored.

 If the value of ptr is not (char **) NULL, a pointer to the character that
 terminated the scan is stored in *ptr. If an integer cannot be formed,
 *ptr is set to str, and 0 is returned.

 If the base parameter is positive and not greater than 36, it is used as
 the base for conversion. After an optional leading sign, leading zeros
 are ignored. 0x or 0X is ignored if base is 16.

 If the base parameter is 0, the string determines the base. Thus, after
 an optional leading sign, a leading 0 indicates octal conversion, and a
 leading 0x or 0X indicates hexadecimal conversion. The default is to use
 decimal conversion.

 Note: Truncation from long to int can take place upon assignment, or by
 an explicit cast.

 The atol (str) subroutine call is equivalent to strtol (str, (char **)
 NULL, 10).

 The atoi (str) subroutine call is equivalent to (int) strtol (str, (char
 **) NULL, 10).

 The atoi and atol subroutines do not actually call strtol.

 The strtol, atol, and atoi subroutines perform conversions to integers.
 See "strtod, atof" in topic 1.2.290 for information on conversions to
 floating-point numbers.

 Error Conditions
 The strol, atol, and atoi subroutines fail if one of the following is
 true:

 EINVAL The value of base is not supported.

 ERANGE The value to be returned would cause an overflow.

AIX Operating System Technical Reference
strtol, atol, atoi

¦ Copyright IBM Corp. 1985, 1991
1.2.291 - 1

 Related Information
 In this book: "strtod, atof" in topic 1.2.290 and "scanf, fscanf, sscanf,
 NLscanf, NLfscanf, NLsscanf, wsscanf" in topic 1.2.241.

AIX Operating System Technical Reference
strtol, atol, atoi

¦ Copyright IBM Corp. 1985, 1991
1.2.291 - 2

 1.2.292 swab

 Purpose
 Copies bytes.

 Library
 Standard C Library (libc.a)

 Syntax

 void swab (from, to, nbytes)
 short *from, *to;
 int nbytes;

 Description
 The swab subroutine copies nbytes bytes from the location pointed to by
 the from parameter to the array pointed to by the to parameter, exchanging
 adjacent even and odd bytes.

 The nbytes parameter should be even and nonnegative. If the nbytes
 parameter is odd and positive, the swab uses nbytes-1 instead. If the
 nbytes parameter is negative, then swab does nothing.

 Related Information
 In this book: "memory: memccpy, memchr, memcmp, memcpy, memset, bcopy" in
 topic 1.2.166 and "string" in topic 1.2.288.

AIX Operating System Technical Reference
swab

¦ Copyright IBM Corp. 1985, 1991
1.2.292 - 1

 1.2.293 swapctl

 Purpose
 Controls swap devices

 Syntax

 #include <sys/swap.h>

 int swapctl(sc_type, sc_device)
 int sc_type;
 char *sc_device;

 int swapctl(sc_type, sc_nrecs, sc_tab)
 int sc_type, sc_nrecs;
 swpt_t *sc_tab;

 Description
 The first form of swapctl adds a swap device to or deletes a swap device
 from the swapping subsystem. When sc_type is SC_ADD, the device specified
 by sc_device is added to the swapping subsystem and is used along with any
 other swap device that is a part of the swapping subsystem to page or swap
 memory pages to and from memory. When sc_type is SC_DEL, the device
 specified by sc_device is deleted from the swapping subsystem. A device
 that is deleted is not available for swapping.

 The second form of swapctl provides information about swap devices. When
 sc_type is SC_LIST, information about sc_nrecs swap devices is placed in
 memory at the location specified by sc_tab and the number of available
 swap devices is returned. When sc_nrecs is 0, information about the swap
 devices is not placed in memory at the location specified by sc_tab;
 however, the number of available swap devices is returned.

 Note: This system call is for use only by root processes.

 Return Value
 If swapctl fails, the return value is -1 and errno will be set to indicate
 the error.

 Error Conditions
 The swapctl system call fails if one or more of the following are true:

 EFAULT Bad address.

 EINVAL Invalid argument.

 ELOCALONLY Operation restricted to local site.

 ENODEV No such device.

 ENOTBLK Block device required.

 ENXIO No such device address.

 EPERM Operation not permitted.

AIX Operating System Technical Reference
swapctl

¦ Copyright IBM Corp. 1985, 1991
1.2.293 - 1

 1.2.294 symlink

 Purpose
 Creates a symbolic link to a file or directory.

 Library
 Standard C Library (libc.a)

 Syntax

 int symlink (path1, path2)
 char *path1, *path2;

 Description
 The symlink system call creates a symbolic link to a file or directory by
 creating a file that contains the name of the destination file to which it
 is being linked. The symbolic link functions as a pointer to the
 destination file or directory. The path1 parameter specifies the
 destination file. If path1 is not a full path name (does not begin with
 /), it is evaluated in the context of path2, not the current working
 directory (see "chdir" in topic 1.2.40.) No checks are made to determine
 if path1 is a valid path name.

 The path2 parameter specifies the name of the symbolic link. Both path
 names are null-terminated character strings. If Network File System is
 installed on your system, these paths can cross outside your cluster into
 another node. A symbolic link can cross file system boundaries.

 Use the readlink command to read the contents of the symbolic link.

 If the destination file pointed to by the symbolic link is renamed or
 removed, the symbolic link points to a non-existent file. If the symbolic
 link itself is deleted, the destination file is not affected.

 If path1 begins with the path prefix <LOCAL>/, a process's local string
 set by the setlocal call will be substituted for this prefix when this
 symbolic link is later used. This allows a symbolic link to point to
 different files on different machines.

 A symbolic link made in a system-level, replicated file system (refer to
 the description of replicated file systems in Managing the AIX Operating
 System) cannot be removed with a normal unlink call. The rmslink call
 must be used instead.

 Symbolic links cannot be created in hidden directories (see "Hidden
 Directories" in topic 1.1.5.1.5).

 Note: Indiscriminate use of symbolic links can confuse naive programs and
 users. Care should be used to avoid creating symbolic link loops.

 Return Value
 Upon successful completion, 0 is returned. Otherwise, a -1 is returned
 and errno is set to indicate the error.

 Error Conditions
 The symlink system call fails if one or more of the following are true:

 ENOTDIR A component of path2 prefix is not a directory.

 ENOENT A component of path2 does not exist.

AIX Operating System Technical Reference
symlink

¦ Copyright IBM Corp. 1985, 1991
1.2.294 - 1

 EACCES The requested link requires writing in a directory with a mode
 that denies write permission.

 ENOENT A symbolic link was named, but the file to which it refers does
 not exist.

 EEXIST The link named by path2 already exists.

 ENOENT The path2 parameter points to a NULL path name.

 EACCES Search permission is denied on a component of the path prefix of
 path2.

 EROFS The requested link requires writing in a directory on a
 read-only file system.

 EFAULT The path1 or path2 parameter points to a location outside of the
 process's allocated address space.

 ELOOP Too many symbolic links were encountered in translating path2.

 ENFILE The system inode table is out of space.

 ENOSPC The new symbolic link cannot be created because there is no
 space or no inodes left on the file system designated to contain
 the link.

 EACCES An attempt was made to create a symbolic link inside a hidden
 directory.

 EDQUOT The directory in which the entry for the new link is being
 placed cannot be extended, because the user's quota of disk
 blocks on the file system containing the directory has been
 exhausted.

 If the Transparent Computing Facility is installed on your system, symlink
 can also fail if one or more of the following are true:

 ESITEDN1 path2 cannot be accessed because a site went down.

 ESITEDN2 The operation was terminated because a site failed.

 ENOSTORE path is a name relative to the working directory, but no site
 which stores this directory is currently up.

 ENOSTORE A component of path2 is replicated but is not stored on any site
 which is currently up.

 EROFS The requested link requires writing in a replicated file system
 in which the primary copy is unavailable.

 EINTR A signal was caught during the system call.

 If Network File System is installed on your system, symlink can also fail
 if the following is true:

 ESTALE The process's root or current directory is located in an NFS
 virtual file system that has been unmounted.

AIX Operating System Technical Reference
symlink

¦ Copyright IBM Corp. 1985, 1991
1.2.294 - 2

 ETIMEDOUT The connection timed out.

 Related Information
 In this book: "Hidden Directories" in topic 1.1.5.1.5, "chdir" in
 topic 1.2.40, "link" in topic 1.2.156, "readlink" in topic 1.2.225, and
 "unlink, rmslink, remove" in topic 1.2.318.

 The symbolic link section in Using the AIX Operating System.

 The ln command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
symlink

¦ Copyright IBM Corp. 1985, 1991
1.2.294 - 3

 1.2.295 sync

 Purpose
 Updates the super block, inodes, and delayed blocks.

 Syntax

 void sync ()

 Description
 The sync system call causes all information in memory that should be on
 disk to be written out. The writing, although scheduled, is not
 necessarily complete upon return from the sync system call. Types of
 information to be written include modified super blocks, modified inodes,
 and delayed block I/O.

 The sync system call should be used by programs that examine a file
 system, such as the df and fsck commands described in AIX Operating System
 Commands Reference.

 Related Information
 In this book: "fsync, fcommit" in topic 1.2.87.

 The sync command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
sync

¦ Copyright IBM Corp. 1985, 1991
1.2.295 - 1

 1.2.296 sysconf

 Purpose
 Retrieves the value of a system limit or option.

 Syntax

 #include <unistd.h>

 long sysconf(name)
 int name;

 Description
 The sysconf system call allows an application to determine the
 characteristics of the system. This function allows an application
 program to determine at run time the presence of an optional facility or
 the value of one of the system-wide limits.

 The name parameter specifies the configuration attribute to be queried.
 Symbolic values for the name parameter are defined in the file unistd.h.

 Attribute Meaning

 _SC_ARG_MAX Maximum length in bytes of arguments for the exec functions,
 including environment data.

 _SC_CHILD_MAX Maximum number of simultaneous processes on this machine per
 real user ID.

 _SC_CLK_TCK The number of intervals per second, used to express the
 value in type clock_t.

 _SC_NGROUPS_MAX
 Maximum number of simultaneous supplementary group IDs per
 process.

 _SC_OPEN_MAX Maximum number of files that one process can have open at
 any given time.

 _SC_JOB_CONTROL
 Returns the value 0, indicating that the job control
 facilities is provided in this system.

 _SC_SAVED_IDS Returns the value 0, indicating that exec functions save the
 effective user ID and effective group ID when a program
 starts. These saved IDs are then used for permission
 checking when being signalled, and when using the setuid
 system call.

 _SC_VERSION Returns the currently supported version of the POSIX
 standard.

 _SC_TCF Returns the value 0 if the Transparent Computing Facility is
 present in this system.

 _SC_NFS Returns the value 0 if the Network File System is present in
 this system.

 _SC_VECPROC_SIZE
 Returns the section size of the vector processor, if it is

AIX Operating System Technical Reference
sysconf

¦ Copyright IBM Corp. 1985, 1991
1.2.296 - 1

 present in this system. This parameter applies to the
 AIX/370 only.

 Return Value
 If the sysconf system call is successful, the specified parameter is
 returned. If the indicated system parameter is not set or if the
 specified parameter is not limited by the system, the value -1 is returned
 and errno is left unchanged. If the name is an unrecognized value, -1 is
 returned and errno is set to indicate the error.

 Error Conditions
 The sysconf system call fails if the following is true:

 EINVAL The value of the name argument is invalid.

 Related Information
 In this book: "pathconf, fpathconf" in topic 1.2.201.

AIX Operating System Technical Reference
sysconf

¦ Copyright IBM Corp. 1985, 1991
1.2.296 - 2

 1.2.297 syslog, openlog, closelog, setlogmask

 Purpose
 Makes a system log entry.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <syslog.h>

 int syslog (priority, messagint,closelog.(])
 int priority;
 char *message; int setlogmask(maskpri)
 int maskpri;
 int openlog (ident, logopt, facility)
 char *ident;
 int logopt, facility;

 Description
 The syslog subroutine writes messages onto the system log maintained by
 the syslogd daemon. The message string message is similar to the printf
 fmt string, with the difference that %m is replaced by the current error
 message obtained from errno. A trailing new line can be added to the
 message if needed. The val parameters are the same as the val parameters
 of the printf subroutine. Each log message has a time stamp prepended to
 it.

 Messages are read by the syslogd and written to the system console or log
 file, or forwarded to the syslogd on the appropriate host.

 Messages are tagged with codes indicating the type of priority for each.
 A priority is encoded as a facility, which describes the part of the
 system generating the message, and as a level, which indicates the
 severity of the message.

 The facility that generated the message is one of the following:

 LOG_KERN Messages generated by the kernel. These cannot be
 generated by any user processes.

 LOG_USER Messages generated by user processes. This is the default
 facility when none is specified.

 LOG_MAIL The mail system.

 LOG_DAEMON System daemons.

 LOG_AUTH The authorization system: login and su, for example.

 LOG_LPR The line printer spooling system.

 LOG_LOCAL0 Reserved for local use.
 --through--
 LOG_LOCAL7

AIX Operating System Technical Reference
syslog, openlog, closelog, setlogmask

¦ Copyright IBM Corp. 1985, 1991
1.2.297 - 1

 The level of severity is one of the following:

 LOG_EMERG A panic condition reported to all users.

 LOG_ALERT A condition that should be corrected immediately; for
 example, a corrupted database.

 LOG_CRIT Critical conditions; for example, hard device errors.

 LOG_ERR Errors.

 LOG_WARNING Warning messages.

 LOG_NOTICE Not an error condition, but a condition requiring special
 handling.

 LOG_INFO General information messages.

 LOG_DEBUG Messages containing information useful to debug a program.

 If syslog cannot pass the message to syslogd, it writes the message on
 /dev/console, provided the LOG_CONS option is set.

 If special processing is required, the openlog subroutine can be used to
 initialize the log file. The ident parameter contains a string that is
 attached to the beginning of every message. The default ident is syslog.
 The facility parameter encodes a default facility from the previous list
 to be assigned to messages that do not have an explicit facility encoded.

 The logopt parameter is a bit field that indicates logging options. The
 values of logopt include:

 LOG_PID Log the process ID with each message. This option is useful
 for identifying daemons.

 LOG_CONS Send messages to the console if unable to send them to
 syslogd. This option is useful in daemon processes that have
 no controlling terminal.

 LOG_NDELAY Open the connection to syslogd immediately, instead of when
 the first message is logged. This option is useful for
 programs that need to manage the order in which file
 descriptors are allocated.

 LOG_NOWAIT Log messages to the console without waiting for forked child
 processes. Use this option for processes that enable
 notification of child process termination through SIGCHLD;
 otherwise, syslog may block, waiting for a child process
 whose exit status has already been collected.

 The closelog subroutine closes the log file.

 The setlogmask subroutine uses the bit mask in maskpri to set the new log
 priority mask and returns the previous mask. Logging is enabled for the
 levels indicated by the bits in the mask that are set and disabled where
 the bits are not set. The default mask allows all priorities to be
 logged.

 The LOG_MASK and LOG_UPTO macros in the /usr/include/sys/syslog.h file are
 used to create the priority mask. Calls to syslog with a priority mask

AIX Operating System Technical Reference
syslog, openlog, closelog, setlogmask

¦ Copyright IBM Corp. 1985, 1991
1.2.297 - 2

 that does not allow logging of that particular level of message cause the
 subroutine to return without logging the message.

 Examples

 syslog (LOG_ALERT, "who:internal error 23");

 openlog ("ftpd", LOG_PID, LOG_DAEMON);
 setlogmask (LOG_UPTO (LOG_ERR));
 syslog (LOG_INFO, "Connection from host %d", CallingHost);

 syslog (LOG_INFO|LOG_LOCAL2, "foobar error:%m");

 Related Information
 In this book: "printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf,
 wsprintf" in topic 1.2.208.

 The discussion of syslogd in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
syslog, openlog, closelog, setlogmask

¦ Copyright IBM Corp. 1985, 1991
1.2.297 - 3

 1.2.298 system

 Purpose
 Runs a shell command.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <stdio.h>

 int system (string)
 char *string;

 Description
 The system subroutine passes the string parameter to the sh command as
 input. Then sh interprets string as a command and runs it.

 The system subroutine invokes the runl system call to create a child
 process to run /bin/sh, which interprets the shell command contained in
 the string parameter. The current process waits until the shell has
 completed, then returns the exit status of the shell.

 Note: The system subroutine runs only sh shell commands (also called
 Bourne shell commands). The results are unpredictable if the
 string parameter is not a valid sh shell command.

 Return Value
 The system subroutine is implemented using runl and waitpid. If either
 fails, a value of -1 is returned and errno is set to indicate the error.

 File
 /bin/sh

 Error Conditions
 The system subroutine fails if one or more of the following are true:

 EAGAIN The system-imposed limit on the total number of processes under
 execution, system-wide or by a single user ID (CHILD_MAX), would
 be exceeded.

 EINTR The system subroutine was interrupted by a signal.

 ENOMEM Insufficient storage space is available.

 Related Information
 In this book: "exit, _exit" in topic 1.2.73, " run: runl, runv, runle,
 runve, runlp, runvp" in topic 1.2.239, and "wait, waitpid" in
 topic 1.2.325.

 The sh command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
system

¦ Copyright IBM Corp. 1985, 1991
1.2.298 - 1

 1.2.299 tcgetattr, tcsetattr

 Purpose
 Get and set terminal attributes.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <termios.h>

 int tcgetattr(fildes, termios_p)
 int fildes;
 struct termios *termios_p;

 int tcsetattr(fildes, optional_actions, termios_p)
 int fildes, optional_actions;
 struct termios *termios_p;
 int length;

 Description
 The tcgetattr function gets the parameters associated with the object to
 which fildes refers and stores them in the termios structure referenced by
 termios_p. This function is allowed from a background process. However,
 the information may be subsequently changed by a foreground process.

 The tcsetattr function sets the parameters associated with the terminal
 from the termios structure referenced by termios_p as follows:

 � If optional_actions is TCSANOW, the change occurs immediately.

 � If optional_actions is TCSADRAIN the change occurs after all output
 written to fildes has been transmitted. The function should be used
 when changing parameters that affect output.

 � If optional_actions is TCSAFLUSH, the change occurs after all output
 written to the object to which fildes refers has been transmitted, and
 all input that has been received but not read is discarded before the
 change is made.

 The termios structure below specifies the attributes which you can get or
 set with the tcgetattr and tcsetattr system calls. The sets of allowable
 attributes for various flags are defined in the file termios.h (see
 "termio" in topic 2.5.28) or descriptions of these flags.

 struct termios {
 tcflag_t c_iflag; /* terminal input control modes */
 tcflag_t c_oflag; /* terminal output control modes */
 tcflag_t c_cflag; /* hardware control of the terminal */
 tcflag_t c_lflag; /* SYSV local modes */
 tcflag_t c_reserved[4]; /* for future expansion */
 tcflag_t c_bflag; /* 4bsd: newtty line discipline modes */
 struct _Winsize c_winsize; /* window size */
 char c_length; /* vertical screen length */
 char c_pgflag; /* paging and bell-ringing flags */
 char c_line; /* line discipline */
 cc_t c_cc[NCCS]; /* control chars */
 };

AIX Operating System Technical Reference
tcgetattr, tcsetattr

¦ Copyright IBM Corp. 1985, 1991
1.2.299 - 1

 Only the following fields of c_bflag can be set directly:

 LCRTBS 0000001 Backspace on erase rather than echoing erase.

 LPRTERA 0000002 Printing terminal erase mode.

 LTILDE 0000010 Convert ~ to ' on output (for Hazeltine terminals).

 LMDMBUF 0000020 Stop/start output when carrier drops.

 LLITOUT 0000040 Suppress output translations.

 LFLUSHO 0000200 Output is being flushed.

 LETXACK 0001000 Diable style buffer hacking (unimplemented).

 LCRTKIL 0002000 BS-space-BS erase entire line on line kill.

 LCTLECH 0010000 Echo input control characters as ^X, delete as ^?.

 LPENDIN 0020000 Retype pending input at next read or input character.

 An attempt to set the other values of the c_bflag is ignored. Other
 values can be set via their SysV equivalents. The following describes the
 relationships existing between the c_bflag and the rest of the SysV
 termios flags:

 LCRTERA set when ECHOE is set in c_lflag.

 LNOHANG set when CLOCAL is set in c_cflag.

 LNOFLASH set when NOFLASH is set in c_lflag.

 LTOSTOP set when TOSTOP is set in c_lflag.

 LDECCTQ set when IXANY is clear in c_iflag and start char is Ctrl-Q.

 LPASS8 set when CS8 is set in c_cflag and ISTRIP is clear in c_iflag.

 When changing terminal attributes, an application should always do a
 tcgetattr, save the termios structure values returned, and then do a
 tcsetattr, changing only the necessary fields. The application should use
 the values saved from the tcgetattr to reset the terminal state whenever
 it is done with the terminal. This needs to be done because terminal
 attributes apply to the underlying port, not to each individual open
 instance. All processes that use the terminal see the latest attribute
 changes.

 The tcgetattr and tcsetattr system calls are the preferred interfaces to
 the tty structure since they get and set all attributes, whereas the SysV
 and BSD interfaces only get and set a subset of attributes.

 Return Value
 Upon successful completion, a value of 0 is returned. Otherwise, a value
 of -1 is returned and errno is set to indicated the error.

 Error Conditions
 If any of the following conditions occur, the tcgetattr function returns
 -1 and sets errno to the corresponding value:

AIX Operating System Technical Reference
tcgetattr, tcsetattr

¦ Copyright IBM Corp. 1985, 1991
1.2.299 - 2

 EBADF The fildes argument is not a valid file descriptor.

 EINVAL The device does not support the tcgetattr function.

 ENOTTY The file associated with fildes is not a terminal.

 If any of the following conditions occur, the tcsetattr function returns
 -1 and sets errno to the corresponding value:

 EBADF The fildes argument is not a valid file descriptor.

 EINVAL The device does not support the tcsetattr function, the
 optional_actions argument is not a proper value, or an attempt
 was made to change an attribute represented in the termios
 structure to an unsupported value.

 ENOTTY The file associated with fildes is not a terminal.

 Related Information
 In this book: "cfgetospeed, cfsetospeed, cfgetispeed, cfsetispeed" in
 topic 1.2.39, "tcsendbreak, tcdrain, tcflush, tcflow" in topic 1.2.301,
 and "tcgetpgrp, tcsetpgrp" in topic 1.2.300.

AIX Operating System Technical Reference
tcgetattr, tcsetattr

¦ Copyright IBM Corp. 1985, 1991
1.2.299 - 3

 1.2.300 tcgetpgrp, tcsetpgrp

 Purpose
 Get and set foreground process group ID.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <termios.h>

 pid_t tcgetpgrp (fildes)
 int fildes;

 int tcsetpgrp (fildes, pgrp_id)
 int fildes;
 pid_t pgrp_id;

 Description
 The tcgetpgrp function returns the value of the process group ID of the
 foreground process group associated with the terminal. The tcgetpgrp
 function is allowed from a background process. However, the information
 may be subsequently changed by a foreground process.

 The tcsetpgrp function sets the foreground process group ID associated
 with terminal to pgrp_id if the process has a controlling terminal. The
 file associated with fildes must be the controlling terminal of the
 calling process and the controlling terminal must be associated with the
 session of the calling process. The value of pgrp_id must not match a
 process ID or a process group ID of a process in another session.

 Return Value
 Upon successful completion, a value of 0 is returned. Otherwise, a value
 of -1 is returned and errno is set to indicated the error.

 Error Conditions
 If any of the following conditions occur, the function returns -1 and
 sets errno to the corresponding value:

 EBADF The fildes argument is not a valid file descriptor.

 EINVAL The device does not support the function.

 ENOTTY The calling process does not have a controlling terminal or the
 file is not the controlling terminal.

 EPERM The value of pgrp_id matches the process ID or process group ID
 of a process in another session.

 Related Information
 In this book: "cfgetospeed, cfsetospeed, cfgetispeed, cfsetispeed" in
 topic 1.2.39, "tcgetattr, tcsetattr" in topic 1.2.299, and "tcsendbreak,
 tcdrain, tcflush, tcflow" in topic 1.2.301.

AIX Operating System Technical Reference
tcgetpgrp, tcsetpgrp

¦ Copyright IBM Corp. 1985, 1991
1.2.300 - 1

 1.2.301 tcsendbreak, tcdrain, tcflush, tcflow

 Purpose
 Line control functions.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <termios.h>

 int tcsendbreak (fildes, duration)
 int fildes;
 int duration;

 int tcdrain (fildes)
 int fildes;

 int tcflush (fildes, queue_selector)
 int fildes;
 int queue_selector;

 int tcflow (fildes, action)
 int fildes;
 int actions;

 Description
 If the terminal is using asynchronous serial data transmission, the
 tcsendbreak function causes transmission of a continuous stream of
 zero-valued bits for .25 seconds. The duration parameter is ignored.

 The tcdrain function waits until all output written to the object to which
 fildes refers has been transmitted.

 The tcflush function discards data written to the object to which fildes
 refers but not transmitted, or data received but not read, depending on
 the value of queue_selector as follows:

 � If queue_selector is TCIFLUSH, it flushes data received but not read.

 � If queue_selector is TCOFLUSH, it flushed data written but not
 transmitted.

 � If queue_selector is TCIOFLUSH, it flushes both data received but not
 read, and data written but not transmitted.

 The tcflow function suspends transmission or reception of data on the
 object to which fildes refers, depending on the value of action as
 follows:

 � If action is TCOOFF, it suspends output.

 � If action is TCOON, it restarts suspended output.

 � If action is TCIOFF, the system transmits a STOP character, which
 causes the terminal device to stop transmitting data to the system.

 � If action is TCION, it restarts suspended output.

AIX Operating System Technical Reference
tcsendbreak, tcdrain, tcflush, tcflow

¦ Copyright IBM Corp. 1985, 1991
1.2.301 - 1

 Return Value
 Upon successful completion, a value of 0 is returned. Otherwise, a value
 of -1 is returned and errno is set to indicated the error.

 Error Conditions
 If any of the following conditions occur, the tcsendbreak function returns
 -1 and sets errno to the corresponding value:

 EBADF The fildes argument is not a valid descriptor.

 EINVAL The device does not support the tcsendbreak function.

 ENOTTY The file associated with fildes is not a terminal.

 If any of the following conditions occur, the tcdrain function returns -1
 and sets errno to the corresponding value:

 EBADF The fildes argument is not a valid file descriptor.

 EINTR A signal interrupted the tcdrain function.

 EINVAL The device does not support the tcdrain function.

 ENOTTY The file associated with fildes is not a terminal.

 If any of the following conditions occur, the tcflush function returns -1
 and sets errno to the corresponding value:

 EBADF The fildes argument is not a valid file descriptor.

 EINVAL The device does not support the tcflush function, or
 queue_selector argument is not a proper value.

 ENOTTY The file associated with fildes is not a terminal.

 If any of the following conditions occur, the tcflow function returns -1
 and sets errno to the corresponding value:

 EBADF The fildes argument is not a valid file descriptor.

 EINVAL The device does not support the tcflush function, or action
 argument is not a proper value.

 ENOTTY The file associated with fildes is not a terminal.

 Related Information
 In this book: "cfgetospeed, cfsetospeed, cfgetispeed, cfsetispeed" in
 topic 1.2.39, "tcgetattr, tcsetattr" in topic 1.2.299, and "tcgetpgrp,
 tcsetpgrp" in topic 1.2.300.

AIX Operating System Technical Reference
tcsendbreak, tcdrain, tcflush, tcflow

¦ Copyright IBM Corp. 1985, 1991
1.2.301 - 2

 1.2.302 termdef

 Purpose
 Queries terminal characteristics.

 Library
 Standard C Library (libc.a)

 Syntax

 char *termdef (fildes, c)
 int fildes;
 char c;

 Description
 The termdef subroutine returns a pointer to a null-terminated static
 character string that identifies a characteristic of the terminal that is
 open on the file descriptor specified by the fildes parameter. The c
 parameter specifies the characteristic that is to be queried. termdef
 determines this information by performing the following actions:

 1. It queries the terminal device, using the Query HFT Device command,
 which is discussed on page 2.5.11.5.6.

 2. If the query fails, then termdef uses the value of an environment
 variable.

 3. If the environment variable is not set, then termdef returns the
 default value specified in the following table.

 The following list shows the valid request types and the corresponding
 environment variables that are used if the Query HFT Device command fails:

 Environment Default
 c Variable Value Description

 t TERM "ibm5151" The terminal type
 l LINES NULL The number of lines or rows, based on the
 current font
 c COLUMNS NULL The number of character columns, based on
 the current font.

 Note: When fildes identifies an asynchronous terminal, the Query HFT
 Device command always fails and the environment variable is always
 checked. The TERM variable is automatically set each time you log
 in. LINES and COLUMNS need to be set only if:

 � You are using an asynchronous terminal and want to override the
 lines and cols settings in the terminfo data base, or
 � Your asynchronous terminal has an unusual number of lines or
 columns and you are running an application that uses termdef,
 but not terminfo.

 This is true because the terminfo initialization subroutine,
 setupterm, calls termdef to determine the number of lines and
 columns on the display. If termdef cannot supply this information,
 then setupterm uses the values in the terminfo data base.

 Related Information
 "Terminfo Level Subroutines" in topic 1.2.56.2, "terminfo" in

AIX Operating System Technical Reference
termdef

¦ Copyright IBM Corp. 1985, 1991
1.2.302 - 1

 topic 2.3.59, and "Query HFT Device Command" in topic 2.5.11.5.6.

 The display and termdef commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
termdef

¦ Copyright IBM Corp. 1985, 1991
1.2.302 - 2

 1.2.303 time

 Purpose
 Gets the time.

 Syntax

 #include <sys/types.h>
 #include <time.h>

 time_t time ((time_t *) 0) time_t time (tloc)
 time_t *tloc;

 Description
 The time system call returns the current time in seconds since 00:00:00
 GMT, January 1, 1970.

 If the tloc parameter is nonzero, the time is also stored in the location
 to which the tloc parameter points.

 Return Value
 Upon successful completion, the current time is returned. If the time
 system call fails, a -1 is returned and errno is set to indicate the
 error.

 Error Conditions

 EFAULT The tloc parameter points to a location outside of the process's
 allocated address space.

 Related Information
 In this book: "stime" in topic 1.2.285.

AIX Operating System Technical Reference
time

¦ Copyright IBM Corp. 1985, 1991
1.2.303 - 1

 1.2.304 times

 Purpose
 Gets process and child process times.

 Syntax

 #include <sys/types.h>
 #include <sys/times.h>

 time_t times (buffer)
 struct tms *buffer;

 Description
 The times system call fills the structure pointed to by the buffer
 parameter with time-accounting information. All time values reported by
 the times system call are in units of CLK_TCK CLK_TCK is defined in
 <time.h>.

 The tms structure is defined in sys/times.h and it contains the following
 members:

 clock_t tms_utime;
 clock_t tms_stime;
 clock_t tms_cutime;
 clock_t tms_cstime;

 This information comes from the calling process and each of its terminated
 child processes for which it has executed a wait system call.

 tms_utime The CPU time used while executing instructions in the user
 space of the calling process.
 tms_stime The CPU time used by the system on behalf of the calling
 process.
 tms_cutime The sum of the tms_utimes and the tms_cutimes of the child
 processes.
 tms_cstime The sum of the tms_stimes and the tms_cstimes of the child
 processes.

 Note: The system measures time by counting clock interrupts. The
 precision of the values reported by the times system call depends
 on the rate at which the clock interrupts occur.

 If the Transparent Computing Facility is installed, the reported times of
 a process that has been subject to a remote exec or migrate system call
 only reflect the time used since the process began running on the current
 site. The accumulated times from the previous sites are included in the
 accumulated times for child processes.

 Return Value
 Upon successful completion, the times system call returns the elapsed real
 time, in CLK_TCK units, since an arbitrary reference time in the past (for
 example, system start-up time). This reference time does not change from
 one call of times to another. If the times system call fails, a -1 is
 returned and errno is set to indicate the error.

 Error Conditions
 The times system call fails if the following is true:

 EFAULT The buffer parameter points to a location outside of the process's

AIX Operating System Technical Reference
times

¦ Copyright IBM Corp. 1985, 1991
1.2.304 - 1

 allocated address space.

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, " fork, vfork" in topic 1.2.83, "monitor, monstartup,
 moncontrol" in topic 1.2.171, "profil" in topic 1.2.210, "sysconf" in
 topic 1.2.296, "time" in topic 1.2.303, and "wait, waitpid" in
 topic 1.2.325.

 The cc and prof commands in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
times

¦ Copyright IBM Corp. 1985, 1991
1.2.304 - 2

 1.2.305 tmpfile

 Purpose
 Creates a temporary file.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <stdio.h>

 FILE *tmpfile ()

 Description
 The tmpfile subroutine creates a temporary file and returns its FILE
 pointer. The file is opened for update.

 The temporary file is automatically deleted when the process using it
 terminates.

 If the file cannot be opened, tmpfile writes an error message to the
 standard error output and returns a NULL pointer.

 Error Conditions
 The tmpfile subroutine may fail if the following are true:

 EACCES Search permission is denied on a component of the path prefix of
 the file to be created, or write permission is denied for the
 parent directory of the file to be created.

 EINTR A signal was caught during the tmpfile subroutine.

 ENOMEM Insufficient storage space is available.

 ENOTDIR A component of the path prefix of the file to be created is not
 a directory.

 EROFS The file to be created would reside on a read-only file system.

 Related Information
 In this book: "fopen, freopen, fdopen" in topic 1.2.82, "mktemp" in
 topic 1.2.170, "open, openx, creat" in topic 1.2.199, " stdio" in
 topic 1.2.283, "tmpnam, tempnam" in topic 1.2.306, and "unlink, rmslink,
 remove" in topic 1.2.318.

AIX Operating System Technical Reference
tmpfile

¦ Copyright IBM Corp. 1985, 1991
1.2.305 - 1

 1.2.306 tmpnam, tempnam

 Purpose
 Constructs the name for a temporary file.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <stdio.h>

 char *tmpnam (s) char *tempnam (dir, pfx)
 char *s; char *dir, *pfx;

 Description
 The tmpnam and tempnam subroutines generate file names for temporary
 files.

 The tmpnam subroutine generates a file name using the path name defined as
 P_tmpdir in the stdio.h header file. If the s parameter is NULL, the
 tmpnam subroutine places its result into an internal static area and
 returns a pointer to that area. The next call to this subroutine destroys
 the contents of the area.

 If the s parameter is not NULL, it is assumed to be the address of an
 array of at least the number of bytes specified by L_tmpnam. L_tmpnam is
 a constant defined in stdio.h. The tmpnam subroutine places its results
 into that array and returns the value of the s parameter.

 The tempnam subroutine allows you to control the choice of a directory.
 The dir parameter points to the path name of the directory in which the
 file is to be created. If the dir parameter is NULL or points to a string
 which is not a path name for an appropriate directory, the path name
 defined as P_tmpdir in the stdio.h header file is used. If that path name
 is not accessible, /tmp is used. You can bypass the selection of a path
 name by providing an environment variable, TMPDIR, in the user's
 environment. The value of the TMPDIR variable is a path name for the
 desired temporary-file directory. If the TMPDIR variable is used, both
 the dir parameter and L_tmpnam are ignored.

 The pfx parameter of the tempname subroutine allows you to specify an
 initial character sequence with which the file name begins. The pfx
 parameter can be NULL, or it can point to a string of up to five
 characters to be used as the first few characters of the temporary file
 name.

 The tempnam subroutine uses the malloc subroutine to obtain space for the
 constructed file name. The return value is a pointer to this space.
 Therefore, the pointer value returned by tempnam can be used as a
 parameter to the free subroutine.

 If the tempnam subroutine cannot return the expected result for any reason
 (for example, if the malloc subroutine fails, or if an appropriate
 directory cannot be found), then it returns a NULL pointer.

 Warning: The tmpnam and tempnam subroutines generate a different file
 name each time they are called. If they are called more than 4,096 times

AIX Operating System Technical Reference
tmpnam, tempnam

¦ Copyright IBM Corp. 1985, 1991
1.2.306 - 1

 by a single process, they start recycling previously used names.

 File names created using these subroutines reside in a directory intended
 for temporary use, and their names are unique. It is your responsibility
 to use the open and unlink system calls to create the file and remove it
 when no longer needed.

 These subroutines use the process ID of the process that invoked them.
 Therefore, another process cannot create, open, or close files of the same
 name unless it does not use these subroutines and explicitly builds file
 names using the current process ID of the process that created the file.

 Error Conditions
 The tempnam and tmpnam subroutines fail if the following is true:

 ENOMEM Insufficient storage space is available.

 Related Information
 In this book: "fopen, freopen, fdopen" in topic 1.2.82, "malloc, free,
 realloc, calloc, valloc, alloca, mallopt, mallinfo" in topic 1.2.162,
 "mktemp" in topic 1.2.170, "open, openx, creat" in topic 1.2.199,
 "tmpfile" in topic 1.2.305, "unlink, rmslink, remove" in topic 1.2.318,
 and "environment" in topic 2.4.6.

AIX Operating System Technical Reference
tmpnam, tempnam

¦ Copyright IBM Corp. 1985, 1991
1.2.306 - 2

 1.2.307 trace_on

 Purpose
 Checks whether trace channel is enabled.

 Library
 Run-time Services Library (librts.a)

 Syntax

 int trace_on (chanmask)
 unsigned long chanmask;

 Description
 The trace_on subroutine queries the application trace device driver to
 determine whether a given trace channel is enabled. trace_on allows a
 program to avoid the unnecessary overhead of setting up the trace message
 when its trace channel is disabled. trace_on is a C run-time subroutine
 and should be used by application programs, but not by device drivers.

 The chanmask parameter is a mask with the bit corresponding to the channel
 number set. It can be formed by the expression (1 << 31 - channum). User
 programs can use only channel number 31, which means that the value of
 channum must be 1 for user programs.

 Making repeated calls to the trace device driver involves significant
 overhead, so call trace_on only once: either at the start of processing
 or just before the first trace point in the program.

 If the application trace device driver is not already open, trace_on opens
 it.

 Upon successful completion, trace_on returns 1 if the channel is enabled,
 or 0 if the channel is disabled. If the trace_on subroutine fails, a
 message is written to the standard error output, and a value of -1 is
 returned.

 File
 /dev/appltrace

 Related Information
 In this book: "trcunix" in topic 1.2.308, and "trace" in topic 2.5.29.

 The trace command in AIX Operating System Commands Reference.

 The discussion of trace in AIX Programming Tools and Interfaces.

AIX Operating System Technical Reference
trace_on

¦ Copyright IBM Corp. 1985, 1991
1.2.307 - 1

 1.2.308 trcunix

 Purpose
 Records application trace log entries.

 Library
 Run-time Services Library (librts.a)

 Syntax

 int trcunix (buf, cnt)
 char *buf;
 unsigned int cnt;

 Description
 The trcunix subroutine invokes the application trace device driver to
 record a trace log entry. trcunix is a C run-time subroutine. Device
 drivers should use the trsave subroutine to log trace events.

 The buf parameter points to a buffer containing a 2-byte traceid followed
 by up to 20 bytes of user-defined trace data. The high-order 5 bits of
 the traceid specify the channel number, and the low-order 11 bits specify
 the hook ID for the message. User programs may use only channel number
 31. The cnt parameter specifies the number of bytes in the buffer,
 including the traceid.

 If the application trace device driver is not open, then trcunix opens it
 before writing the trace log entry to it.

 Return Value
 Upon successful completion, a value of 0 is returned and a trace log entry
 is written to /dev/appltrace. If the trcunix subroutine fails, an error
 message is written to the standard error output, and a value of -1 is
 returned.

 File
 /dev/appltrace

 Related Information
 In this book: "trace_on" in topic 1.2.307, and "trace" in topic 2.5.29.

 The trace command in AIX Operating System Commands Reference.

 The discussion of trace in AIX Programming Tools and Interfaces.

AIX Operating System Technical Reference
trcunix

¦ Copyright IBM Corp. 1985, 1991
1.2.308 - 1

 1.2.309 tsearch, tdelete, twalk

 Purpose
 Manages binary search trees.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <search.h>

 char *tsearch (key, rootp, compar)
 char *key;
 char **rootp;
 int (*compar) ();

 char *tdelete (key, rootp, compar)
 char *key;
 char **rootp;
 int (*compar) ();

 void twalk (root, action)
 char *root;
 void (*action) ();

 Description
 The tsearch subroutine performs a binary tree search. The algorithm is
 generalized from Donald E. Knuth's The Art of Computer Programming, Volume
 3, 6.2.2, Algorithm T. (*) It returns a pointer into a tree indicating
 where the data specified by the key parameter can be found. If the data
 specified by the key parameter is not found, the data is added to the tree
 in the correct place. If there is not enough space available to create a
 new node, a NULL pointer is returned. The rootp parameter points to a
 variable that points to the root of the tree. If the variable to which
 rootp points is NULL, the variable is set to point to the root of a new
 tree.

 The compar parameter is a pointer to the comparison function, which is
 called with two parameters that point to the elements being compared. The
 comparison function must compare its parameters and return a value as
 follows:

 � If the first parameter is less than the second parameter, compar must
 return a value less than 0.
 � If the first parameter is equal to the second parameter, compar must
 return 0.
 � If the first parameter is greater than the second parameter, compar
 must return a value greater than 0.

 The comparison function need not compare every byte, so arbitrary data can
 be contained in the elements in addition to the values being compared.

 If the rootp parameter is NULL on entry, then a NULL pointer is returned.

 The tdelete subroutine deletes the data specified by the key parameter.
 It is generalized from Knuth (6.2.2) Algorithm D. The rootp and compar
 parameters perform the same function as they do for the tsearch
 subroutine. The variable pointed to by the rootp parameter will be
 changed if the deleted node is the root of the binary tree. The tdelete

AIX Operating System Technical Reference
tsearch, tdelete, twalk

¦ Copyright IBM Corp. 1985, 1991
1.2.309 - 1

 subroutine returns a pointer to the parent node of the deleted node. If
 the data is not found, a NULL pointer is returned. If the rootp parameter
 is NULL on entry, then a NULL pointer is returned.

 The twalk subroutine steps through the binary search tree whose root is
 pointed to by the root parameter. (Any node in a tree can be used as the
 root to step through the tree below that node.) The action parameter is
 the name of a routine to be invoked at each node. The routine specified
 by the action parameter is called with three parameters. The first
 parameter is the address of the node currently being pointed to. The
 second parameter is a value from an enumeration data type

 typedef enum {preorder, postorder, endorder, leaf} VISIT;

 (This data type is defined in the search.h header file). The actual value
 of the second parameter depends on whether this is the first, second, or
 third time that the node has been visited during a depth-first,
 left-to-right traversal of the tree, or whether the node is a leaf. A
 leaf is a node that is not the parent of another node. The third
 parameter is the level of the node in the tree, with the root node being
 level zero.

 The pointers to the key and the root of the tree should be of type
 pointer-to-element and cast to type pointer-to-character. Although
 declared as type pointer-to-character, the value returned should be cast
 into type pointer-to-element. The twalk is a recursive function. A
 significant amount of user stack space must be allocated to use twalk on
 large tree structures.

 Related Information
 In this book: "bsearch" in topic 1.2.23, "hsearch, hcreate, hdestroy" in
 topic 1.2.130, and "lsearch, lfind" in topic 1.2.160.

 (*) Reading, Massachusetts: Addison-Wesley, 1981.

AIX Operating System Technical Reference
tsearch, tdelete, twalk

¦ Copyright IBM Corp. 1985, 1991
1.2.309 - 2

 1.2.310 ttyname, isatty, fullttyname

 Purpose
 Gets the name of a terminal.

 Library
 Standard C Library (libc.a)

 Syntax

 char *ttyname (fildes) char *fullttyname (fildes)
 int fildes; int fildes;
 int isatty (fildes)
 int fildes;

 Description
 The ttyname subroutine gets the name of a terminal. It returns a pointer
 to a string containing the null-terminated path name of the terminal
 device associated with file descriptor specified by the fildes parameter.
 A NULL pointer is returned if the file descriptor does not describe a
 terminal device in directory /dev.

 If the Transparent Computing Facility is installed, the path name returned
 by ttyname includes the name of the <LOCAL> file system of the cluster
 site where the terminal is attached, if that site is not where ttyname is
 executing. For example, if the program calling ttyname is on site prod
 and the terminal is on site manu, the path name returned is
 /manu/dev/tty02. A NULL pointer is returned if the file descriptor does
 not describe a terminal device in the directory <LOCAL>/dev on any active
 cluster site.

 The fullttyname subroutine is like ttyname, but the path name returned
 always includes the name of the <LOCAL> file system of the cluster site
 where the terminal is attached.

 The isatty subroutine determines if the device associated with the file
 descriptor specified by the fildes parameter is a terminal. If the
 specified file descriptor is associated with a terminal, the isatty
 subroutine returns a value of 1. If the file descriptor is not associated
 with a terminal, a value of 0 is returned.

 The return value of ttyname points to static data whose contents are
 overwritten by each call.

 File
 /dev/*

 Error Conditions
 The ttyname and isatty subroutines fail if one or more of the following
 are true:

 EBADF The fildes argument is not a valid file descriptor.

 ENOTTY The fildes argument does not refer to a terminal device.

AIX Operating System Technical Reference
ttyname, isatty, fullttyname

¦ Copyright IBM Corp. 1985, 1991
1.2.310 - 1

 1.2.311 ttysite

 Purpose
 Finds the site of a terminal.

 Library
 Standard C Library (libc.a)

 Syntax

 int ttysite(fildes)
 int fildes;

 Description
 The ttysite subroutine returns the site number of the terminal device
 associated with the file descriptor fildes.

 Related Information
 In this book: "ioctlx, ioctl, gtty, stty" in topic 1.2.137.

AIX Operating System Technical Reference
ttysite

¦ Copyright IBM Corp. 1985, 1991
1.2.311 - 1

 1.2.312 ttyslot

 Purpose
 Finds the slot in the utmp file for the current user.

 Library
 Standard C Library (libc.a)

 Syntax

 int ttyslot ()

 Description
 The ttyslot subroutine returns the index of the current user's entry in
 the /etc/utmp file. The ttyslot subroutine scans the /etc/utmp file for
 the name of the terminal associated with the standard input, the standard
 output, or the error output (0, 1, or 2).

 The ttyslot subroutine returns -1 if an error was encountered while
 searching for the terminal name, or if none of the first three file
 descriptors (0, 1, and 2) is associated with a terminal device.

 Warning: If the Transparent Computing Facility is installed, the process
 calling ttyslot must have its <LOCAL> file system equal to the <LOCAL>
 file system of the cluster site where the terminal associated with
 standard input, standard output or standard error is physically attached.
 Otherwise, incorrect results may be produced.

 Files

 /etc/inittab
 /etc/utmp

 Related Information
 In this book: "getut: getutent, getutid, getutline, pututline, setutent,
 endutent, utmpname" in topic 1.2.126 and " ttyname, isatty, fullttyname"
 in topic 1.2.310.

AIX Operating System Technical Reference
ttyslot

¦ Copyright IBM Corp. 1985, 1991
1.2.312 - 1

 1.2.313 ulimit

 Purpose
 Sets and gets user limits.

 Syntax

 #include <ulimit.h>

 off_t ulimit (cmd, newlimit)
 int cmd;
 off_t newlimit;

 Description
 The ulimit system call controls process limits. The cmd parameter values
 are:

 GET_FSIZE
 Returns the process's file size limit. The limit is in units of
 512-byte blocks and is inherited by child processes. Files of any
 size can be read.

 SET_FSIZE
 Sets the process's file size limit to the value of the newlimit
 parameter. The limit is in units of 512-byte blocks. Any process
 can decrease this limit, but only a process with an effective user
 ID of superuser can increase the limit.

 GET_DATALIM
 Returns the maximum possible break value (see "brk, sbrk" in
 topic 1.2.21).

 SET_DATLIM
 Sets the maximum possible break value (see "brk, sbrk" in
 topic 1.2.21). Returns the new maximum break value, which is
 newlimit rounded up to the nearest page boundary.

 GET_STACKLIM
 Returns the lowest valid stack address. (Note that stacks grow
 from high addresses to low addresses.)

 SET_STACKLIM
 Sets the lowest valid stack address. Returns the new minimum valid
 stack address, which is newlimit rounded down to the nearest page
 boundary.

 GET_REALDIR
 Returns the current value of the real directory read flag. If this
 flag is 0, a read system call (or readx system call with ext of 0)
 against a directory returns fixed-format entries compatible with
 the System V UNIX Operating System. Otherwise, a read system call
 (or readx system call with ext of 0) against a directory returns
 the underlying physical format.

 SET_REALDIR
 Sets the value of the real directory read flag. If the newlimit
 parameter is 0, this flag is cleared; otherwise it is set. The old
 value of the real directory read flag is returned.

 GET_SYSVLOOKUP

AIX Operating System Technical Reference
ulimit

¦ Copyright IBM Corp. 1985, 1991
1.2.313 - 1

 Returns the current value of the System V lookup flag. If this
 flag is nonzero, any pathname parameter containing a component of
 exactly 14 characters, passed to a system call, causes the system
 call to fail with the ENOENT error.

 SET_SYSVLOOKUP
 Sets the new value of the System V lookup flag. If the newlimit
 parameter is 0, this flag is cleared; otherwise it is set. The old
 value of the System V lookup flag is returned.

 Return Value
 Upon successful completion, a nonnegative value is returned. If the
 ulimit system call fails, a value of -1 is returned and errno is set to
 indicate the error.

 Error Conditions
 The ulimit system call fails and the limit remains unchanged if:

 EPERM A process without superuser authority attempts to increase the
 file size limit.

 EINVAL The cmd parameter is a value other than GET_FSIZE, SET_FSIZE,
 GET_DATALIM, SET_DATLIM, GET_STACKLIM, SET_STACKLIM, GET_REALDIR,
 SET_REALDIR, GET_SYSVLOOKUP, or SET_SYSVLOOKUP.

 Example
 To increase the size of the stack segment by 4096 bytes, and set rc to the
 new lowest valid stack address:

 rc = ulimit(SET_STACKLIM, ulimit(GET_STACKLIM, 0) - 4096);

 Related Information
 In this book: "brk, sbrk" in topic 1.2.21, "getrlimit, setrlimit, vlimit"
 in topic 1.2.115, "read, readv, readx" in topic 1.2.224, "write, writex"
 in topic 1.2.330, and "master" in topic 2.3.32.

AIX Operating System Technical Reference
ulimit

¦ Copyright IBM Corp. 1985, 1991
1.2.313 - 2

 1.2.314 umask

 Purpose
 Sets and gets the value of the file creation mask.

 Syntax

 int umask (cmask)
 int cmask;

 Description
 The umask system call sets the process's file mode creation mask to the
 value of the cmask parameter. Only the low-order 9 bits of the cmask
 parameter and the file mode creation mask are used.

 Return Value
 Upon successful completion, the previous value of the file mode creation
 mask is returned.

 Related Information
 In this book: "chmod, fchmod" in topic 1.2.44, "mknod, mknodx, mkfifo" in
 topic 1.2.169, "open, openx, creat" in topic 1.2.199, and "stat.h" in
 topic 2.4.22.

 The sh, csh, and umask commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
umask

¦ Copyright IBM Corp. 1985, 1991
1.2.314 - 1

 1.2.315 umount, fumount

 Purpose
 Unmounts a file system.

 Syntax

 int umount (dev) int fumount (dev)
 char *dev; char *dev;

 Description
 The umount and fumount system calls unmount a previously mounted file
 system contained on the block device (also called a special file)
 identified by the dev parameter. The dev parameter is a pointer to a path
 name.

 The umount system call does not unmount a file system if it contains open
 files. The fumount system call forces the file system to be unmounted
 even if it contains open files. The open files are closed by the system
 before unmounting and the file system is left in a clean state, ready for
 re-mounting. However, a file system is never unmounted if another file
 system is mounted on it.

 If the Transparent Computing Facility is installed and the file system is
 replicated, the local copy may be unmounted if there are other copies of
 the file system still mounted.

 After the file system is unmounted, the directory upon which the file
 system was mounted reverts to its ordinary interpretation as a directory.

 The umount and fumount system calls can be invoked only by a process whose
 effective user ID is superuser.

 Return Value
 Upon successful completion, a value of 0 is returned. If the umount or
 fumount system call fails, a value of -1 is returned and errno is set to
 indicate the error.

 Error Conditions
 The umount or fumount system call fails if one or more of the following
 are true:

 EPERM The process's effective user ID is not superuser.

 ENOENT dev does not exist.

 ENOTBLK dev is not the name of a block special file.

 EINVAL dev is not mounted.

 EINVAL dev is not local.

 EBUSY A file on the device specified by the dev parameter is currently
 in use.

 EFAULT dev points to a location outside of the process's allocated
 address space.

 ENXIO dev is not currently configured.

AIX Operating System Technical Reference
umount, fumount

¦ Copyright IBM Corp. 1985, 1991
1.2.315 - 1

 ENAMETOOLONG
 A component of the dev parameter exceeded NAME_MAX characters or
 the entire dev parameter exceeded PATH_MAX characters.

 ENOENT A symbolic link was named, but the file to which it refers does
 not exist.

 ELOOP A loop of symbolic links was detected.

 If the Transparent Computing Facility is installed on your system, umount
 or fumount can also fail if one or more of the following are true:

 ENOSTORE dev is a name relative to the working directory, but no site
 which stores this directory is currently up.

 ENOSTORE A component of dev is replicated but not stored on any site
 which is currently up.

 EINTR A signal was caught during the system call.

 Related Information
 In this book: "mount" in topic 1.2.172.

 The mount and umount commands in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
umount, fumount

¦ Copyright IBM Corp. 1985, 1991
1.2.315 - 2

 1.2.316 uname, unamex

 Purpose
 Gets the name of the current AIX system.

 Syntax

 #include <sys/utsname.h>

 int uname (name) int unamex (name)
 struct utsname *name; struct xutsname *name;

 Description
 The uname system call stores information identifying the current system in
 the structure pointed to by the name parameter.

 The uname system call uses the utsname structure, which is defined in the
 sys/utsname.h file, and it contains the following members:

 char sysname[_UTSNMLEN];
 char nodename[_UTSNMLEN];
 char release[_UTSNMLEN];
 char version[_UTSNMLEN];
 char machine[_UTSNMLEN];

 The uname system call returns a null-terminated character string naming
 the current system in the character array sysname. The nodename array
 contains the name that the system is known by on a communications network.
 The release and version arrays further identify the system.

 The machine array identifies the CPU hardware being used. This array
 contains a null-terminated string which currently has one of the following
 values:

 ID Description

 i386 PS/2
 B370 System/370
 XA370 System/370 XA

 The unamex system call uses the xutsname structure, which is defined in
 the sys/utsname.h file, and it contains the following members:

 unsigned long nid;
 long reserved[3];

 If the Transparent Computing Facility (TCF) is installed, the xutsname.nid
 field contains the TCF site number of the local machine; otherwise, the
 value of xutsname.nid is unspecified.

 Return Value
 Upon successful completion, a nonnegative value is returned. If the uname
 or unamex system call fails, a value of -1 is returned and errno is set to
 indicate the error.

 Error Conditions
 The uname and unamex system calls fail if:

AIX Operating System Technical Reference
uname, unamex

¦ Copyright IBM Corp. 1985, 1991
1.2.316 - 1

 EFAULT The name parameter points to a location outside of the process's
 allocated address space.

 Related Information
 The uname command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
uname, unamex

¦ Copyright IBM Corp. 1985, 1991
1.2.316 - 2

 1.2.317 ungetc, ungetwc

 Purpose
 Pushes a character or a wide character back into input stream.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <stdio.h>

 int ungetc (c, stream)
 int c;
 FILE *stream;

 wchar_t ungetwc (c, iop)
 wchar_t c;
 FILE *iop;

 Description
 The ungetc subroutine inserts the character specified by the c parameter
 into the buffer associated with the input stream specified by the stream
 parameter. This causes the next call to the getc subroutine to return c.
 ungetc returns c, and leaves the stream file unchanged.

 If the c parameter is EOF, then the ungetc subroutine does not place
 anything in the buffer and a value of -1 is returned.

 You can always push one character back onto a stream, provided that
 something has been read from the stream or setbuf has been called. The
 fseek subroutine erases all memory of inserted characters.

 The ungetwc subroutine pushes the wide character specified by c back onto
 the input stream pointed to by stream. The pushed-back wide characters
 are returned by subsequent reads on that stream in the reverse order of
 their pushing. A successful intervening call (with the stream pointed to
 by stream) to a file positioning subroutine (fseek, fsetopts or rewind)
 discards any pushed-back wide characters for the stream. The external
 storage corresponding to the stream is unchanged.

 One wide character of push-back is guaranteed. If the ungetwc subroutine
 is called too many times on the same stream without an intervening read or
 file positioning operation on that stream, the operation may fail.

 If the value of c equals that of the macro WEOF, the operation fails and
 the input stream is unchanged.

 A successful call to the ungetwc subroutine clears the end-of-file
 indicator for the stream. The value of the file position indicator for the
 stream, after reading or discarding all pushed-back wide characters, is
 the same as it was before the wide characaters were pushed back. For a
 text stream, the value of its file position indicator after a successful
 call to the ungetwc subroutine is unspecified until all pushed-back wide
 characters are read or discarded. For a binary stream, the value of its
 file position indicator is undefined; if the value was zero before a call,
 it is indeterminate after the call.

 Return Value
 The ungetc subroutine returns -1 if it cannot insert the character.

AIX Operating System Technical Reference
ungetc, ungetwc

¦ Copyright IBM Corp. 1985, 1991
1.2.317 - 1

 The ungetwc subroutine returns the wide character pushed back after
 conversion, or WEOF if operation fails.

 Related Information
 In this book: "fseek, rewind, ftell" in topic 1.2.86, "getc, fgetc,
 getchar, getw, getwc, fgetwc, getwchar" in topic 1.2.91, "setbuf, setvbuf"
 in topic 1.2.247, and " stdio" in topic 1.2.283.

AIX Operating System Technical Reference
ungetc, ungetwc

¦ Copyright IBM Corp. 1985, 1991
1.2.317 - 2

 1.2.318 unlink, rmslink, remove

 Purpose
 Removes a directory entry.

 Syntax

 int unlink (path) int remove (path)
 char *path; char *path;
 int rmslink (path)
 char *path;

 Description
 The unlink system call removes the directory entry specified by the path
 parameter. The remove subroutine is identical to unlink. It is provided
 for ANSI-C compatability.

 If the named file is a symbolic link to another file or directory, unlink
 removes the symbolic link, not the file or directory to which it refers.

 When all links to a file are removed and no process has the file open, the
 space occupied by the file is freed and the file ceases to exist. If one
 or more processes have the file open when the last link is removed, the
 removal is postponed until all references to the file are closed.

 If path exists, and the parent directory of path has the sticky attribute
 bit set, the calling process must have an effective user ID equal to:

 � the owner ID of path, or to

 � the owner ID of the parent directory of path.

 If the Transparent Computing Facility is installed, the following is
 applicable.

 The system call unlink fails on symbolic links in system type replicated
 file systems. To remove the links, the rmslink system call must be used.
 This system call functions the same as unlink otherwise.

 When a file which has been replicated is unlinked, the change is reflected
 in all other copies of the file system at the earliest possible moment.
 Copies of the file system which were not mounted when the unlink occurred,
 or mounted on a site not in communication with the primary site for the
 file system, do not see the effect of the unlink until that copy is
 mounted in a cluster that includes a copy of the file system which has
 seen the change.

 Return Value
 Upon successful completion, a value of 0 is returned. If the unlink
 system call fails, a value of -1 is returned and errno is set to indicate
 the error.

 Error Conditions
 The unlink system call fails and the named file is not unlinked if one or
 more of the following are true:

 ENOTDIR A component of the path prefix is not a directory.

 ENOENT The named file does not exist.

AIX Operating System Technical Reference
unlink, rmslink, remove

¦ Copyright IBM Corp. 1985, 1991
1.2.318 - 1

 EACCES Search permission is denied for a component of the path prefix.

 EACCES Write permission is denied on the directory containing the link to
 be removed.

 EPERM The named file is a directory and the effective user ID of the
 process is not superuser.

 EPERM The file named by the path parameter is in a directory with the
 sticky attribute bit set, and the effective user ID of the calling
 process is not equal to the owner of the file or of the parent
 directory.

 EBUSY The entry to be unlinked is the mount point for a mounted file
 system.

 ETXTBSY The entry to be unlinked is the last link to a pure procedure
 (shared text) file that is being executed.

 EROFS The entry to be unlinked is part of a read-only file system.

 EFAULT The path parameter points to a location outside of the process's
 allocated address space.

 ESTALE The process's root or current directory is located in a virtual
 file system that has been unmounted.

 ENAMETOOLONG
 A component of the path parameter exceeded NAME_MAX characters or
 the entire path parameter exceeded PATH_MAX characters.

 EISDIR A hidden directory was named, components within hidden directories
 must be explicitly named.

 ENOENT A symbolic link was named in the path prefix, but the file to
 which it refers does not exist. Since unlink and rmslink do not
 follow symbolic links on the last component of a path, this error
 cannot occur on the last component.

 ELOOP A loop of symbolic links was detected. Since unlink and rmslink
 do not follow symbolic links on the last component of a path, this
 error cannot occur on the last component.

 ENFILE The system inode table is full.

 If the Transparent Computing Facility is installed on your system, unlink
 can also fail if one or more of the following are true:

 ESITEDN1 path cannot be accessed because a site went down.

 ESITEDN2 The operation was terminated because a site failed.

 ENOSTORE path is a name relative to the working directory, but no site
 which stores this directory is currently up.

 ENOSTORE A component of path is replicated but not stored on any site
 which is currently up.

 EROFS The directory entry to be unlinked is part of a replicated file

AIX Operating System Technical Reference
unlink, rmslink, remove

¦ Copyright IBM Corp. 1985, 1991
1.2.318 - 2

 system whose primary copy is currently unavailable.

 EINTR A signal was caught during the system call.

 Related Information
 In this book: "close, closex" in topic 1.2.48, "link" in topic 1.2.156,
 and "open, openx, creat" in topic 1.2.199.

 The rm command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
unlink, rmslink, remove

¦ Copyright IBM Corp. 1985, 1991
1.2.318 - 3

 1.2.319 usrinfo

 Purpose
 Gets and sets user information about the owner of the calling process.

 Syntax

 #include <uinfo.h>

 int usrinfo (cmd, buf, count)
 int cmd;
 char *buf;
 int count;

 Description
 The usrinfo system call gets and sets information about the owner of the
 current process. The information is a sequence of null-terminated
 name=value strings. The last string in the sequence is terminated by two
 successive null characters. A child process inherits the user information
 of its parent.

 The buf parameter is a pointer to a user buffer. This buffer is usually
 UINFOSIZ bytes long.

 The count parameter is the number of bytes of user information to be
 copied from or to the user buffer.

 If the cmd parameter is one of the following constants:

 GETUINFO Copies up to count bytes of user information into the buffer
 pointed to by the buf parameter.

 SETUINFO Sets the user information for the process to the first count
 bytes in the buffer pointed to by the buf parameter. The
 effective user ID of the calling process must be superuser to
 set the user information.

 The user information should at minimum consist of three strings that are
 typically set by the login program. These three strings are:

 NAME=username
 UID=userid
 TTY=ttyname

 If the process has no terminal, ttyname should be null.

 Return Value
 Upon successful completion, a nonnegative integer giving the number of
 bytes transferred is returned. If the usrinfo system call fails, a value
 of -1 is returned and errno is set to indicate the error.

 Error Conditions
 The usrinfo system call fails if one or more of the following are true:

 EPERM The cmd parameter is set to SETUINFO and the effective user ID of
 the process is not superuser.

 EINVAL The cmd parameter is not set to SETUINFO or GETUINFO.

 EINVAL The cmd parameter is set to SETUINFO and the count parameter is

AIX Operating System Technical Reference
usrinfo

¦ Copyright IBM Corp. 1985, 1991
1.2.319 - 1

 larger than UINFOSIZ.

 EFAULT The buf parameter points to a location outside of the process's
 allocated address space.

 Related Information
 In this book: "getuinfo" in topic 1.2.125.

 The login command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
usrinfo

¦ Copyright IBM Corp. 1985, 1991
1.2.319 - 2

 1.2.320 ustat

 Purpose
 Gets file system statistics.

 Syntax

 #include <sys/types.h>
 #include <ustat.h>

 int ustat (dev, buf)
 dev_t dev;
 struct ustat *buf;

 Description
 The ustat system call gets information about the mounted file system
 identified by device number dev. The dev parameter is the ID of the file
 system, and it corresponds to the st_dev member of the structure returned
 by the statx, stat, and fullstat system calls.

 If the Transparent Computing Facility is installed, the following warning
 is applicable.

 Warning: When ustat is used on a replicated file system, the space on the
 local copy is returned, if there is a local copy; otherwise, space
 information from the current synchronization site is returned.

 See "dustat" in topic 1.2.66 for more information on obtaining data for
 replicated file systems. See "statx, fstatx, stat, fstat, fullstat,
 ffullstat, lstat" in topic 1.2.282 for more information about the device
 ID. The information is stored into a structure pointed to by the buf
 parameter.

 The ustat structure pointed to by the buf parameter is defined in the
 ustat.h file, and it contains the following members:

 daddr_t f_tfree; /* Total free blocks */
 /* in units of 512 byte blocks */
 ino_t f_tinode; /* Number of free inodes */
 char f_fname[6]; /* File system name */
 char f_fpack[6]; /* File system pack name */

 Return Value
 Upon successful completion, a value of 0 is returned. If the ustat system
 call fails, a value of -1 is returned and errno is set to indicate the
 error.

 Error Conditions
 The ustat system call fails if one or more of the following are true:

 EINVAL dev is not the device number of a device containing a mounted
 file system.

 EFAULT The buf parameter points to a location outside of the process's
 allocated address space.

 If the Transparent Computing Facility is installed on your system, ustat
 can also fail if one or more of the following are true:

 ESITEDN1 The request cannot be serviced because the site with the file

AIX Operating System Technical Reference
ustat

¦ Copyright IBM Corp. 1985, 1991
1.2.320 - 1

 system is no longer available.

 ESITEDN2 The operation was terminated because a site failed.

 EINTR A signal was caught during the system call.

 Related Information
 In this book: "dustat" in topic 1.2.66, "statx, fstatx, stat, fstat,
 fullstat, ffullstat, lstat" in topic 1.2.282, and "fs" in topic 2.3.20.

AIX Operating System Technical Reference
ustat

¦ Copyright IBM Corp. 1985, 1991
1.2.320 - 2

 1.2.321 utime

 Purpose
 Sets file access and modification times.

 Library
 Berkeley Compatability Library (libbsd.a)

 Syntax

 #include <unistd.h>

 int utime (path, times)
 char *path;
 struct utimbuf *times;

 Description
 The utime system call sets the access and modification times of the file
 pointed to by the path parameter to the value of the times parameter. The
 inode changed time is set to the current time.

 If the times parameter is NULL, the access and modification times of the
 file are set to the current time. If the file is a remote file, the
 current time at the local node-- not the remote node--is used. The
 effective user ID of the process must be the same as the owner of the file
 or must have write permission or superuser authority in order to use the
 utime system call in this manner.

 If the times parameter is not NULL, it is a pointer to a utimbuf structure
 and the access and modification times are set to the values contained in
 the designated structure, regardless of whether or not those times
 correlate with the current time. Only the owner of the file or superuser
 can use the utime system call this way.

 The utimbuf structure pointed to by the times parameter is defined in the
 unistd.h file, and it contains the following members.

 time_t actime; /* Date and time of last access */
 time_t modtime; /* Date and time of last modification */

 The times in this structure are measured in seconds since 00:00:00 GMT,
 January 1, 1970.

 Return Value
 Upon successful completion, a value of 0 is returned. If the utime system
 call fails, a value of -1 is returned and errno is set to indicate the
 error.

 Error Conditions
 The utime system call fails if one or more of the following are true:

 ENOENT The named file does not exist.

 ENOENT A hidden directory was named, but no component inside it matched
 the process's current site path list.

 ENOENT A symbolic link was named, but the file to which it refers does
 not exist.

 ENOTDIR A component of the path prefix is not a directory.

AIX Operating System Technical Reference
utime

¦ Copyright IBM Corp. 1985, 1991
1.2.321 - 1

 EACCES Search permission is denied by a component of the path prefix.

 EPERM The effective user ID is not superuser or the owner of the file
 and the times parameter is not NULL.

 EACCES The effective user ID is not superuser or the owner of the file,
 the times parameter is NULL, and write access is denied.

 EROFS The file system containing the file is mounted read-only.

 EFAULT The times or path parameter points to a location outside of the
 process's allocated address space.

 ESTALE The process's root or current directory is located in an NFS
 virtual file system that has been unmounted.

 ENAMETOOLONG
 A component of the path parameter exceeded NAME_MAX characters or
 the entire path parameter exceeded PATH_MAX characters.

 ELOOP A loop of symbolic links was detected.

 ETXTBSY The times parameter is NULL and the file is a pure procedure
 (shared text) file that is being executed.

 If the Transparent Computing Facility is installed on your system, utime
 can also fail if one or more of the following are true:

 ESITEDN1 path cannot be accessed because a site went down.

 ESITEDN2 The operation was terminated because a site failed.

 ENOSTORE path is a name relative to the working directory, but no site
 which stores this directory is currently up.

 ENOSTORE A component of path is replicated but not stored on any site
 which is currently up.

 EROFS The named file resides on a replicated file system in which the
 primary copy is unavailable.

 EINTR A signal was caught during the system call.

 Related Information
 In this book: "statx, fstatx, stat, fstat, fullstat, ffullstat, lstat" in
 topic 1.2.282.

AIX Operating System Technical Reference
utime

¦ Copyright IBM Corp. 1985, 1991
1.2.321 - 2

 1.2.322 utimes

 Purpose
 Sets file times.

 Library
 Berkeley Compatability Library (libbsd.a)

 Syntax

 #include <sys/time.h>

 int utimes (file, tvp)
 char *file;
 struct timeval tvp[2];

 Description
 The utimes system call sets the accessed and modification times of a file
 to the values specified by the tvp parameter. The inode-changed time of
 the file is set to the current time.

 The calling process must be the owner of the file or have an effective
 user ID of superuser.

 Note: In the AIX Operating System, file times have a resolution of one
 second.

 Return Value
 When the call succeeds, a value of 0 is returned. If utimes fails, a
 value of -1 is returned and errno is set to indicate the error.

 Error Conditions
 The utimes system call fails if one or more of the following is true:

 EACCES Search permission is denied to a component of the path prefix.

 EFAULT The file or tvp parameter points to a location outside of the
 process's allocated address space.

 ENOENT The named file does not exist.

 ENOTDIR A component of the path prefix is not a directory.

 EPERM The calling process is not the owner of the file and does not have
 an effective user ID of superuser.

 EROFS The file system that contains the file is mounted read-only.

 ENAMETOOLONG
 A component of the path parameter exceeded NAME_MAX characters or
 the entire path parameter exceeded PATH_MAX characters.

 ENOENT A hidden directory was named, but no component inside it matched
 the process's current site path list.

 ENOENT A symbolic link was named, but the file to which it refers does
 not exist.

 ELOOP A loop of symbolic links was detected.

AIX Operating System Technical Reference
utimes

¦ Copyright IBM Corp. 1985, 1991
1.2.322 - 1

 ETXTBSY The path parameter is pure procedure (shared text) file that is
 being executed.

 Related Information
 In this book: "statx, fstatx, stat, fstat, fullstat, ffullstat, lstat" in
 topic 1.2.282.

AIX Operating System Technical Reference
utimes

¦ Copyright IBM Corp. 1985, 1991
1.2.322 - 2

 1.2.323 varargs

 Purpose
 Handles a variable-length parameter list.

 Library
 Standard C Library (libc.a)

 Syntax

 #include <varargs.h>

 va_alist type va_arg (argp, type)
 va_list argp;
 va_dcl
 void va_end (argp)
 void va_start (argp) va_list argp;
 va_list argp;

 Description
 This set of macros allows you to write portable subroutines that accept a
 variable number of parameters. Subroutines that have variable-length
 parameter lists (such as printf), but that do not use varargs, are
 inherently nonportable because different systems use different
 parameter-passing conventions.

 va_alist Is used as the parameter list in the function header.

 va_dcl Is the declaration for va_alist. No semicolon should follow
 va_dcl.

 va_list Defines the type of the variable used to traverse the list.

 va_start Initializes argp to point to the beginning of the list.

 argp Is a variable that the varargs macros use to keep track of the
 current location in the parameter list. Do not modify this
 variable.

 va_arg Returns the next parameter in the list pointed to by argp. type
 is the data type that the parameter is expected to be.
 Different types can be mixed, but your subroutine must know what
 type of parameter is expected because it cannot be determined at
 runtime. The printf subroutine solves this problem by using its
 format parameter to determine the parameter types expected.

 va_end Cleans up at the end.

 Your subroutine can traverse, or scan, the parameter list more than once.
 Start each traversal with a call to va_start and end it with var_end.

 Note: The calling routine is responsible for specifying the number of
 parameters because it is not always possible to determine this from
 the stack frame. For example, execl is passed a NULL pointer to
 signal the end of the list. printf determines the number of
 parameters from its format parameter.

 Specifying char, short, or float as the second parameter to va_arg

AIX Operating System Technical Reference
varargs

¦ Copyright IBM Corp. 1985, 1991
1.2.323 - 1

 is not portable because parameters seen by the called subroutine
 are not char, short, or float. The C complier converts char and
 short parameters to int, and it converts float parameters to double
 before passing them to a subroutine.

 Example
 The following code example is a possible alternate implementation of execl
 system call:

 #include <varargs.h>

 #define MAXARGS 100
 /*
 ** execl is called by
 ** execl(file, arg1, arg2,..., (char *) 0);
 */
 execl(va_alist)
 va_dcl
 {
 va_list ap;
 char *file;
 char *args[MAXARGS];
 int argno = 0;

 va_start(ap);
 file = va_arg(ap, char *);
 while ((args[argno++] = va_arg(ap, char *)) != (char *) 0)
 ; /* Empty loop body */
 va_end(ap);
 return (execv(file, args));
 }

 Related Information
 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, "printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf,
 wsprintf" in topic 1.2.208, and "vprintf, vfprintf, vsprintf, NLvprintf,
 NLvfprintf, NLvsprintf" in topic 1.2.324.

AIX Operating System Technical Reference
varargs

¦ Copyright IBM Corp. 1985, 1991
1.2.323 - 2

 1.2.324 vprintf, vfprintf, vsprintf, NLvprintf, NLvfprintf, NLvsprintf

 Purpose
 Formats a varargs parameter list for output.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <stdio.h>
 #include <varargs.h>

 int vprintf (format, argp) int NLvprintf (format, argp)
 char *format; char *format;
 va_list argp; va_list argp;

 int vfprintf (stream, formatintrNLvfprintf (stream, format, argp)
 FILE *stream; FILE *stream;
 char *format; char *format;
 va_list argp; va_list argp;

 int vsprintf (s, format, argNLvsprintf (s, format, argp)
 char *s, *format; char *s, *format;
 va_list argp; va_list argp;

 Description
 The vprintf, vfprintf, and vsprintf subroutines format and write varargs
 parameter lists. They are the same as the printf, fprintf, and sprintf
 subroutines, respectively, except that they are not called with a variable
 number of parameters. Instead, they are called with a parameter list
 pointer as defined by "varargs" in topic 1.2.323.

 The NLvprintf, NLvfprintf, and NLvsprintf subroutines are provided for
 backward compatibility and behave exactly like the vprintf, vfprintf, and
 vsprintf subroutines respectively.

 Example
 The following example demonstrates how the vfprintf subroutine could be
 used to write an error routine.

 #include <stdio.h>
 #include <varargs.h>

 /* error should be called with the syntax: */
 /* error(routine_name, format [, value,...]); */

 /*VARARGS0*/

 void error(va_alist)
 va_dcl
 /*
 ** Note that the function name and format arguments
 ** cannot be separately declared because of the
 ** definition of varargs.
 */
 {
 va_list args;

AIX Operating System Technical Reference
vprintf, vfprintf, vsprintf, NLvprintf, NLvfprintf, NLvsprintf

¦ Copyright IBM Corp. 1985, 1991
1.2.324 - 1

 char *fmt;

 va_start(args);
 /*
 ** Display the name of the function that called error
 */
 (void) fprintf(stderr, "ERROR in %s: ", va_arg(args, char *));
 /*
 ** Display the remainder of the message
 */
 fmt = va_arg(args, char *);
 (void) vfprintf(std err, fmt, args);
 va_end(args);
 (void) abort();
 }

 Error Conditions
 The vprintf subroutine fails if one or more of the following are true:

 EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying
 stream and the process is delayed in the write operation.

 EBADF The file descriptor underlying stream is not a valid file
 descriptor open for writing.

 EFBIG An attempt was made to write to a file that exceeds the
 process's file size limit or the maximum file size.

 EINTR The write operation was terminated due to the receipt of a
 signal, and either no data was transferred or the implementation
 does not report partial transfers for this file.

 EIO The implementation supports job control, the process is a member
 of a background process group attempting to write to its
 controlling terminal, TOSTOP is set, the process is neither
 ignoring nor blocking SIGTTOU and the process group of the
 process is orphaned.

 ENOSPC There was no free space remaining on the device containing the
 file.

 ENXIO A request was made of a non-existent device, or the request was
 outside the capabilities of the device.

 EPIPE An attempt is made to write to a pipe or FIFO that is not open
 for reading by any process. A SIGPIPE signal will also be sent
 to the process.

 ENOMEM Insufficient storage space is available.

 EINVAL There are insufficient arguments.

 Related Information
 In this book: "printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf,
 wsprintf" in topic 1.2.208.

AIX Operating System Technical Reference
vprintf, vfprintf, vsprintf, NLvprintf, NLvfprintf, NLvsprintf

¦ Copyright IBM Corp. 1985, 1991
1.2.324 - 2

 1.2.325 wait, waitpid

 Purpose
 Obtains status information pertaining to a child process.

 Syntax

 #include <sys/types.h>
 #include <sys/wait.h>
 #include <unistd.h>

 pid_t wait(NULL);

 pid_t wait(stat_loc);
 int *stat_loc;

 pid_t waitpid(pid, stat_loc, options);
 pid_t pid;
 int stat_loc;
 int options;

 Description
 The wait and waitpid system calls allow the calling process to obtain
 status information pertaining to one of its child processes. Various
 options permit the waitpid system call to be used to obtain status
 information for child processes that have terminated or stopped. If
 status information is available for more than one child process, the order
 in which this status is reported is not reliable.

 The wait system call suspends execution of the calling process until
 status information for one of its terminated child processes is available,
 or until a signal is delivered (to the calling process) whose action is
 either to execute a signal catching function or to terminate the process.
 If status information is available prior to the call to the wait system
 call, the wait system call immediately returns with status information.
 This is not to say that the wait system call will be executed atomically;
 other processes may execute between the time the call to the wait system
 call is made and the time that the wait system call returns.

 If the waitpid system call is given a pid argument with a value of -1 and
 an options argument with a value of 0, then the waitpid system call
 behaves identically to the wait system call. Otherwise, the behavior of
 the waitpid system call is similar to the behavior of the wait system
 call, but differs as indicated by the values of its pid and options
 arguments.

 The pid argument specifies the set of child processes for which status may
 be reported by the waitpid system call. The waitpid system call does not
 return the status of a child process that is not in the set specified by
 the pid argument.

 A pid argument with a value that is less than -1 specifies the set which
 includes all child processes with a process group ID that is equal to the
 absolute value of the pid argument. A pid argument with a value of -1
 specifies the set which includes all child processes. This is the same
 set that is implicitly specified in a wait system call. A pid argument
 with a value of 0 specifies the set which includes all child processes
 that are in the same process group as the process which called the waitpid
 system call. A pid argument with a value that is greater than 0 specifies
 the set which includes only the child process with a process ID that is

AIX Operating System Technical Reference
wait, waitpid

¦ Copyright IBM Corp. 1985, 1991
1.2.325 - 1

 equal to the value of the pid argument.

 The options argument is constructed from the bitwise inclusive OR of 0 or
 more of the WNOHANG and WUNTRACED flags. These flags are defined in the
 header <sys/wait.h>.

 If the WNOHANG flag is inclusive ORed into the options argument of a
 waitpid system call, the lack of immediately available status information
 (for one of the processes that is in the set specified by pid) will not
 cause the suspension of the execution of the calling process.

 If the WUNTRACED flag is inclusive ORed into the options argument of a
 waitpid system call, the status of any child processes in a set of child
 processes specified by the pid argument (of the same call to the waitpid
 system call) that are stopped, and whose status has not yet been reported
 since they stopped will be included in the set of processes from which one
 member has its status reported to the calling process.

 If the wait or waitpid system call returns to report the status of a child
 process, the call returns the value of the process ID of the child process
 whose status is being reported. In the case in which the wait or waitpid
 system call returns to report the status of a child process, if the value
 of the argument stat_loc is not NULL, wait and waitpid store information
 in *stat_loc (that is, the location pointed to by stat_loc). The wait and
 waitpid calls store a value of 0 at *stat_loc only if the status that the
 wait or waitpid system call reports is from a terminated child process
 that returned a value of 0 from its main or gave a status argument with a
 value of 0 to a call to _exit or exit. Any value that wait or waitpid
 stores in *stat_loc may be interpreted using the macros WIFEXITED,
 WEXITSTATUS, WIFSIGNALED, WTERMSIG, WIFSTOPPED, and WSTOPSIG. These
 macros are defined in <sys/wait.h> and evaluate to values of type int.
 Note that these macros do not accept a constant as an argument.

 The macro WIFEXITED(*stat_loc) evaluates to a nonzero value if status was
 reported for a child process that terminated normally.

 If the macro WIFEXITED(*stat_loc) evaluates to a nonzero value, the macro
 WEXITSTATUS(*stat_loc) evaluates to the value of the low-order 8 bits of
 the status argument that the child process (for which status was reported)
 returned from its main or gave as the status argument of a call to _exit
 or exit.

 The macro WIFSIGNALED(*stat_loc) evaluates to a nonzero value if status
 was reported for a child process that terminated due to the receipt of a
 signal that was not caught.

 If the macro WIFSIGNALED(*stat_loc) evaluates to a nonzero value, the
 macro WTERMSIG(*stat_loc) evaluates to the number of the signal that
 caused the termination of the child process for which status was reported.

 The macro WIFSTOPPED(*stat_loc) evaluates to a nonzero value if status was
 reported for a child process because that child process was stopped.

 If the macro WIFSTOPPED(*stat_loc) evaluates to a nonzero value, then the
 macro WSTOPSIG(*stat_loc) evaluates to the number of the signal that
 caused the child process (for which status was reported) to stop.

 If the information stored in *stat_loc was stored there by a call to the
 waitpid system call that was passed an options argument that had WUNTRACED
 bitwise inclusive ORed into it, exactly one of the macros

AIX Operating System Technical Reference
wait, waitpid

¦ Copyright IBM Corp. 1985, 1991
1.2.325 - 2

 WIFEXITED(*stat_loc), WIFSIGNALED(*stat_loc), and WIFSTOPPED(*stat_loc)
 evaluates to a nonzero value. If the information stored in *stat_loc was
 stored there by a call to the waitpid system call that was passed an
 options argument that did not have WUNTRACED bitwise inclusive ORed into
 it or by a call to the wait system call, exactly one of the macros
 WIFEXITED(*stat_loc) and WIFSIGNALED(*stat_loc) evaluates to a nonzero
 value.

 The following information may also be used to interpret *stat_loc:

 � If the child process stopped in a trace mode, then bits 8-15 (startin
 with the least significant bit) of *stat_loc contain the number of the
 signal that caused the process to stop and the low-order 8 bits are
 set to one of the following:

 - 0177 (0x7F), which indicates the process was stopped while being
 traced. If multi-process debugging mode was not set by the ptrace
 system call, the low-order bits are set to this value. (For more
 information on multi-process debugging, see "ptrace" in
 topic 1.2.212.)

 - 0176 (0x7E), which means the process was stopped after a fork
 system call. Both the traced process and its newly forked child
 process are stopped. This value only occurs when multi-process
 debugging mode is set with the ptrace system call.

 - 0175 (0x7D), which indicates that the process was stopped after an
 exec system call. This value only occurs when multi-process
 debugging mode is set with the ptrace system call.

 � If the child process stopped in a trace mode, then bits 8-15 (startin
 with the least significant bit) of *stat_loc contain the number of the
 signal that caused the process to stop and the low-order 8 bits are
 set equal to 0177.

 � If the child process terminated due to an exit system call, the
 low-order 8 bits of *stat_loc are 0 and the high-order 8 bits contain
 the low-order 8 bits of the parameter that the child passed to exit or
 _exit.

 � If the child process terminated due to a signal, bits 8-15 (startin
 with the least significant bit) of *stat_loc are 0 and the low-order 8
 bits contain the number of the signal that caused the termination. In
 addition, if the low-order seventh bit (bit 0200 or 0x80) is set, then
 a memory image file is produced before wait returns.

 � If the Transparent Computing Facility is installed and the chil
 process was running on a different site, and that site left the
 cluster, a *stat_loc argument looks as though the child terminated due
 to a SIGPWR signal.

 If a parent process terminates without waiting for all of its child
 processes to terminate, the remaining child processes become "orphans" and
 the parent process ID of each of the remaining child processes are set to
 -1. This is done to avoid confusion between processes which are the real
 child processes of the init process and processes which are orphaned; this
 is useful in a Transparent Computing Facility cluster. Note that if an
 orphan calls the getppid system call, the orphan is informed that its
 parent process ID is 1, not -1.

AIX Operating System Technical Reference
wait, waitpid

¦ Copyright IBM Corp. 1985, 1991
1.2.325 - 3

 Note: The effect of the wait system call is modified by the signal action
 of the SIGCHLD signal. See "sigaction, sigvec, signal" in
 topic 1.2.263 for details.

 Warning: The actions of the wait and waitpid system calls are undefined
 if the stat_loc parameter points to a location outside of the process's
 allocated address space.

 Return Value
 If the wait or waitpid system calls return to report the status of a
 suitable child process, these system calls return the value of the process
 ID of the child process for which the status is reported. For the wait
 system call any child process is "suitable". A "suitable" a child process
 for the waitpid system call is a member of the set of child processes that
 is specified by that waitpid system call's pid argument. If the wait or
 waitpid system calls return due to the delivery of a signal to the calling
 process, a value of -1 is returned and errno is set to the value EINTR.
 If a waitpid system call was passed an options argument that had WNOHANG
 inclusive ORed into it, and there is at least one suitable child process
 (of the process which called the waitpid system call), and status is not
 available for any of these suitable child processes, then that waitpid
 system call returns a value of 0. Otherwise, the wait and waitpid system
 calls return a value of -1, and set errno to indicate the error.

 Error Conditions
 If any of the following conditions occur, then the wait system call
 returns without waiting and returns a value of -1 and sets errno to the
 corresponding value.

 ECHILD The calling process has no existing child processes not yet
 waited for.

 EINTR The wait system call was interrupted by a signal. When a call
 to the wait system call indicates this error, the effect of the
 call on *stat_loc is unreliable.

 If any of the following conditions occur, then the waitpid system call
 returns without waiting and returns a value of -1 and sets errno to the
 corresponding value.

 ECHILD The calling process has no suitable child processes (that is,
 child processes that are in the set of child processes that is
 specified by that waitpid system call's pid argument) not yet
 waited for.

 EINTR The waitpid system call was interrupted by a signal. When a
 call to the waitpid system call indicates this error, the effect
 of the call on *stat_loc is not reliable.

 EINVAL The value of the options argument is not valid.

 EFAULT If this error is detected, the stat_loc points to an area
 outside the process's allocated address space.

AIX Operating System Technical Reference
wait, waitpid

¦ Copyright IBM Corp. 1985, 1991
1.2.325 - 4

 1.2.326 wait3

 Purpose
 Waits for a child process to stop or terminate.

 Syntax

 #include <sys/param.h>
 #include <sys/time.h>
 #include <sys/resource.h>
 #include <sys/wait.h>

 pid_t wait3(status, options, rusage)
 union wait *status;
 int options;
 struct rusage *rusage;

 Description
 The status and option words are described by definitions and macros in the
 file <sys/wait.h>; the union and its bitfield definitions and associated
 macros given there provide convenient and mnemonic access to the word of
 status returned by a wait3 call. status->w_status is the same as the
 integer returned in *stat_loc when using the wait call.

 � If WIFSTOPPED(*status) is nonzero, status->w_stopsig is the signal
 which caused the child process to stop.

 � If WIFSIGNALED(*status) is nonzero, status->w_termsig is the signal
 which caused the child process to terminate and status->w_coredump
 indicates whether or not a core dump was made.

 � If WIFEXITED (*status) is nonzero, status->w_retcode is the low order
 8 bits of the argument that the child process passed to exit.

 � Exactly one of WIFSTOPPED, WIFSIGNALED, or WIFEXITED will be nonzero.

 There are two options, which may be combined by ORing them together.

 � The first is WNOHANG, which causes the wait3 to return immediately if
 there are no processes which wish to report status, returning a value
 of 0 in this case as the result of the wait3.

 � The second option is WUNTRACED, which causes wait3 to return
 information about child processes of the current process which are
 stopped (but not traced with ptrace) because they received a SIGTTIN,
 SIGTTOU, SIGTSTP, or SIGSTOP signal. See "sigaction, sigvec, signal"
 in topic 1.2.263 for a description of these signals.

 The rusage parameter may be NULL or else a pointer to an rusage structure,
 into which information describing the resources used by the process whose
 process-ID is returned by wait3 (and all of its child processes for which
 it has collected similar information) is placed. If rusage is NULL, no
 information on resource usage is provided. Currently this information is
 not available for stopped processes.

 If the Transparent Computing Facility is installed, the resource
 information returned describes the resources used on all sites by the
 process whose process-ID is returned by wait3. This may include
 information combined from sites of widely varying machine types. Totaling
 statistics from different sites, such as CPU times, may not be

AIX Operating System Technical Reference
wait3

¦ Copyright IBM Corp. 1985, 1991
1.2.326 - 1

 appropriate.

 If the child process had been running on a cluster site which appears to
 the parent process's site to have gone down, wait3 reports that the child
 process has exited because of the SIGPWR signal. In this case, as with
 stopped processes, the rusage information is not returned.

 Return Value
 If wait3 returns due to a stopped or terminated child process, the
 process-ID of the child process is returned to the calling process. If
 WNOHANG is specified and there are no child processes which are already
 stopped or terminated, a value of 0 is returned. Otherwise, a value of -1
 is returned and errno is set to indicate the error.

 Error Conditions
 The wait3 system call will fail and return immediately if one or more of
 the following are true:

 ECHILD The calling process has no existing unwaited-for child
 processes.

 EFAULT rusage points to an illegal address.

 EINTR The call was interrupted by a signal.

 Related Information
 In this book: "exit, _exit" in topic 1.2.73, " fork, vfork" in
 topic 1.2.83, "sigaction, sigvec, signal" in topic 1.2.263, and "wait,
 waitpid" in topic 1.2.325.

AIX Operating System Technical Reference
wait3

¦ Copyright IBM Corp. 1985, 1991
1.2.326 - 2

 1.2.327 wcstring

 Purpose
 Performs operations on wide character strings.

 Library
 Standard I/O Library (libc.a)

 Syntax

 #include <mbcs.h>

 wchar_t *wcscat (s1, s2) int *wcsncmp (s1, s2, n)
 wchar_t *s1; const wchar_t *s1, *s2;
 const wchar_t *s2; size_t n;

 wchar_t *wcschr (s, c) wchar_t *wcsncpy (s1, s2, n).
 const wchar_t *s; wchar_t *s1;
 wchar_t c; const wchar_t *s2;
 size_t n;
 int wcscmp (s1, s2)
 const wchar_t *s1, *s2; wchar_t *wcspbrk (s1, s2)
 const wchar_t *s1, *s2;
 wchar_t *wcscpy (s1, s2)
 wchar_t *s1; wchar_t *wcsrchr (s, c)
 const wchar_t *s2; const wchar_t *s;
 wchar_t *c;
 size_t wcscspn (s1, s2)
 const wchar_t *s1, *s2; size_t wcsspn (s1, s2)
 const wchar_t *s1, *s2;
 size_t *wcslen (s)
 const wchar_t *s; wchar_t *wcstok (s1, s2)
 wchar_t *s1;
 wchar_t *wcsncat (s1, s2, n)const wchar_t *s2;
 wchar_t (s2)
 const wchar_t *s2; wchar_t *wcswcs (s1, s2)
 size_t n; const wchar_t *s1, *s2;

 Description
 The wcscat subroutine appends a copy of the wide character string pointed
 to by s2 (including the terminating NULL character) to the end of the wide
 character string pointed to by s2. The initial wide character of s2
 overwrites the NULL character at the end of s1. If copying takes place
 between objects that overlap, the behavior is undefined.

 The wcschr subroutine locates the first occurrence of c in the wide
 character string pointed to by s. The terminating NULL character is
 considered to be part of the string.

 The wcscmp subroutine compares the wide character string pointed to by s1
 to the wide character string pointed to by s2. The comparison is based on
 the binary ordering of wide characters. This comparison is independent of
 the current locale.

 The wcscpy subroutine copies the wide characters pointed to by s2
 (including the terminating NULL character) into the wide character array
 pointed to by s1. If copying takes place between objects that overlap,
 the behavior is undefined.

AIX Operating System Technical Reference
wcstring

¦ Copyright IBM Corp. 1985, 1991
1.2.327 - 1

 The wcscspn subroutine computes the length of the maximum initial segment
 of the wide character string pointed to by s1, which consists entirely of
 wide characters not from the string pointed to by s2.

 The wcslen subroutine computes the length of a wide character string
 pointed to by s.

 The wcsncat subroutine appends not more than n wide characters (a NULL
 character and characters that follow it are not appended) from the wide
 character array pointed to by s2 to the end of the wide character string
 pointed to by s1. The initial wide characters of s2 overwrites the NULL
 character at the end of s1. A terminating NULL character is always
 appended to the result. If copying takes place between objects that
 overlap, the behavior is undefined.

 The wcsncmp subroutine compares not more than n wide characters
 (characters that follow a NULL are not compared) from the wide character
 array pointed to by s1 to the wide character array pointed to by s2.

 The wcsncpy subroutine copies not more than n wide characters (characters
 that follow a NULL character are not copied) from the wide character array
 pointed to by s2 into the wide character array pointed to by s1. If
 copying takes place between objects that overlap, the behavior is
 undefined.

 The wcspbrk subroutine locates the first occurrence in the string pointed
 to by s1 of any wide character from the wide character string pointed to
 by s2.

 The wcsrchr subroutine locates the last occurrence of c in the wide
 character string pointed to by s. The terminating NULL character is
 considered to be part of the string.

 The wcsspn subroutine computes the length of the maximum initial segment
 of the wide character string pointed to by s1, which consists entirely of
 wide characters from the wide character string pointed to by s2.

 The wcstok subroutine breaks the wide character string pointed to by s1
 into a sequence of tokens, each of which is delimited by a wide character
 from the wide character string pointed to by s2. The first call in the
 sequence has s1 as its first argument, and is followed by calls with a
 NULL pointer as their first argument. The separator string pointed to by
 s2 may be different from call to call.

 The first call in the sequence searches the string pointed to by s1 for
 the first character that is not contained in the current separator string
 pointed to by s2. If no such character is found, then there are no tokens
 in the string pointed to by s1 and the wcstok subroutine returns a NULL
 pointer. If such a character is found, it is the start of the first
 token.

 The wcstok subroutine then searches from there for a character that is
 contained in the current separator string. If no such character is found,
 the current token extends to the end of the string pointed to by s1, and
 subsequent searches for a token will return a NULL pointer. If such a
 character is found, it is overwritten by a NULL character, which
 terminates the current token. The wcstok subroutine saves a pointer to
 the following character, from which the next search for a token will
 start.

AIX Operating System Technical Reference
wcstring

¦ Copyright IBM Corp. 1985, 1991
1.2.327 - 2

 Each subsequent call, with a NULL pointer as the value of the first
 argument, starts searching from the saved pointer and behaves as described
 above. The saved pointer will not be changed as a side effect of calling
 any other library routine in libc.a.

 The wcswcs subroutine locates the first occurrence in the wide character
 string pointed to by s1 of the sequence of wide characters (excluding the
 terminating NULL character) in the wide character string pointed to by s2.

 Return Value
 The wcscat, wcscpy, wcsncat, and wcsncpy subroutines return the value of
 s1.

 The wcschr subroutine returns a pointer to the located wide character, or
 a NULL pointer if the character does not occur in the string.

 The wcscmp returns an integer greater than, equal to, or less than zero if
 the wide character string pointed to by s1 is greater than, equal to or
 less than the wide character string pointed to by s2.

 The wcscspn and wcsspn subroutines return the length of the segment.

 The wcslen subroutine returns the number of wide characters that precede
 the terminating NULL character.

 The wcsncmp subroutine is similar to wcscmp, except no more than the first
 N wide characters of s1 or s2 are considered in the comparison.

 The wcspbrk subroutine returns a pointer to the first wide character, or a
 NULL pointer if no wide character from the wide character string from s2
 occurs in s1.

 The wcsrchr subroutine returns a pointer to the wide character, or a NULL
 pointer if c does not occur in the wide character string.

 The wcstok subroutine returns a pointer to the first wide character of the
 next token, or a NULL pointer if there is no token.

 The wcswcs subroutine returns a pointer to the located wide character
 string, or a NULL pointer if the string is not found. If s2 points to a
 wide character string with zero length, the subroutine returns s1.

 Related Information
 In this book: "mbstring" in topic 1.2.164, "string" in topic 1.2.288, and
 "NCstring" in topic 1.2.184.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
wcstring

¦ Copyright IBM Corp. 1985, 1991
1.2.327 - 3

 1.2.328 wctomb, wcstombs

 Purpose
 Converts wide characters and wide character strings into multibyte
 characters and multibyte character strings.

 Syntax

 #include <mbcs.h>

 int wctomb (s, wc)
 char *s;
 wchar_t wc;

 size_t wcstombs (s, wcs, nb)
 char *s;
 wchar_t *wcs;
 size_t nb;

 Description
 The wctomb subroutine converts a wide character wc to a multibyte
 character and stores the results in s. This subroutine does not check for
 overflow of the array s and assumes that s contains enough room for the
 string. The string s will be NULL padded.

 The wcstombs subroutine converts a wide character string wcs to a
 multibyte string and stores the results in s. Copying stops if a
 multibyte character exceeds the limit of nb total bytes or if a NULL
 character is stored.

 Return Value
 The wctomb subroutine returns:

 n where n is the number of bytes needed to represent the multibyte
 character.

 -1 if the value of wc does not correspond to a valid multibyte
 character.

 0 if s is a NULL pointer or wc is a NULL character.

 The wcstombs subroutine returns (size_t):

 n where n is the number of bytes converted.

 -1 if a value in wcs does not correspond to a valid multibyte character.

 0 if s is a NULL pointer.

 Related Information
 In this book: "mbtowc, mbstowcs, mbstomb" in topic 1.2.165 and
 "setlocale" in topic 1.2.251.

 The mbcsgen command in AIX Operating System Commands Reference.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
wctomb, wcstombs

¦ Copyright IBM Corp. 1985, 1991
1.2.328 - 1

 1.2.329 wc_collate, wc_coluniq, wc_eqvmap, _wcxcol, _mbxcol, _wcxcolu, _mbxcolu

 Purpose
 Collates characters for international character support.

 Library
 Standard C Library (libc.a)

 Syntax
 #include <NLchar.h>

 long wc_collate (xc) long wc_coluniq (xc)
 wchar_t xc; wchar_t xc;

 int_ wcxcol (index, src, xstlong wc_eqvmap (ucval)
 long index; long ucval;
 wchar_t **src, **xstr;

 int_ mbxcol (index, src, xstr)
 long index
 wchar_t **xstr;

 int_ wcxcolu (index, src, xstr)
 long index;
 wchar_t **src, **xstr;

 int_ mbxcolu (index, src, xstr)
 long index;
 unsigned char **src;
 wchar_t **xstr;

 Description
 AIX supports a user-configurable collating order per process, using the
 environment variables LANG or LC_COLLATE (see "setlocale" in
 topic 1.2.251). Collating values increment from 1. The wc_collate
 subroutine, called with a wide character as its argument, returns the
 collating value. If extended collation applies to the wide character,
 wc_collate returns a negative value and the wide character is either
 translated to a different character or string of characters before
 collation (1-to-n collation), or it collates as a unit with one or more
 characters following a wide character (n-to-1 collation). For example,
 the wide character for the code point representing "o" might translate to
 the string "oe" before (1-to-n) collation, or two code points representing
 "Pi" might translate to a unit "&pi." before (n-to-1) collation.

 When wc_collate determines that extended collation is required, _wcxcol or
 _mbxcol should be called.

 Like wc_collate, wc_coluniq may return a negative value which indicates
 that extended collation is required and that _wcxcolu or _mbxcolu should
 be called.

 The _wcxcol subroutine performs extended collation on the following:

 index The negative value returned from the wide character which
 indicates that extended collation is needed.

 src A pointer to a wide character string, starting with the wide
 character following the one that was passed to the wc_collate

AIX Operating System Technical Reference
wc_collate, wc_coluniq, wc_eqvmap, _wcxcol, _mbxcol, _wcxcolu, _mbxcolu

¦ Copyright IBM Corp. 1985, 1991
1.2.329 - 1

 subroutine.

 xstr A pointer to a replacement text string.

 � For 1-to-n collation, _wcxcol writes the address to xstr of
 a replacement string that is interpolated into the collating
 operation ahead of the remaining text of src.

 � For n-to-1 collation, a NULL value is written into the
 pointer.

 The _wcxcol subroutine returns -1 if 1-to-n collation is required (xstr is
 not NULL). If n-to-1 collation is required, _wcxcol returns the collating
 value of the extended collation.

 The wc_coluniq subroutine disables extended collation by assigning each
 wchar_t a unique value and treating it as a unit. wc_coluniq returns its
 unique collating value, a non-negative integer that does not require
 special interpretation. The wc_coluniq subroutine might be used, for
 example, within character ranges in regular expressions.

 The _wcxcolu subroutine performs extended collation on the following:

 index The negative value returned from wc_coluniq, which indicates
 that extended collation is needed.

 src A pointer to a wide character string, starting with the wide
 character following the one that was passed to the wc_coluniq
 subroutine.

 xstr A pointer to a replacement text string.

 � For 1-to-n collation, _wcxcolu writes the address to xstr of
 a replacement string that is interpolated into the collating
 operation ahead of the remaining text of src.

 � For n-to-1 collation, a NULL value is written to the
 pointer.

 The _wcxcolu subroutine returns -1 if 1-to-n collation is required (xstr
 is not NULL). If n-to-1 collation is required, _wcxcolu returns the
 collating value of the extended collation.

 The wc_eqvmap macro is a predicate that returns a non-zero value if the
 corresponding wide character begins an equivalence class, or a set of wide
 characters that can be treated as identical in some collating contexts.
 For example, if any character of an equivalence class is used as the
 beginning or ending point of a character range, all of the characters in
 that class are included in the range.

 Related Information
 In this book: "NCcollate, NCcoluniq, NCeqvmap, _NCxcol, _NLxcol" in
 topic 1.2.182

AIX Operating System Technical Reference
wc_collate, wc_coluniq, wc_eqvmap, _wcxcol, _mbxcol, _wcxcolu, _mbxcolu

¦ Copyright IBM Corp. 1985, 1991
1.2.329 - 2

 1.2.330 write, writex

 Purpose
 Writes to a file or socket.

 Syntax

 int write (d, buf, nbytes) int writex (d, buf, nbytes, ext)
 int d; int d;
 char *buf; char *buf;
 unsigned int nbytes; unsigned int nbytes;
 int ext;

 Description
 The write system call writes the number of bytes specified by the nbyte
 parameter from the buffer pointed to by the buf parameter to the object
 associated with the d parameter.

 The d parameter is a file descriptor obtained from a creat, open, dup,
 fcntl, or pipe system call, or a socket descriptor from a socket or
 socketpair system call.

 On devices capable of seeking, the actual writing of data proceeds from
 the position in the file indicated by the file pointer. Upon return from
 the write system call, the file pointer increments by the number of bytes
 actually written.

 On devices incapable of seeking, writing always takes place starting at
 the current position. The value of a file pointer associated with such a
 device is undefined.

 When the O_APPEND flag of the file status is set, the file pointer is set
 to the end of the file prior to each write.

 If a file is opened with the O_DEFERC flag, changes made to it with write
 can later be undone with the fabort system call. Changes are not made
 permanent until the file is committed explicitly by calling fsync or
 implicitly some time after calling close or exiting, at which time all
 files are closed. (See "fabort" in topic 1.2.75, "fsync, fcommit" in
 topic 1.2.87, and "close, closex" in topic 1.2.48.)

 If this file is open for writing using more than one file descriptor, an
 fabort operation will undo uncommitted changes made to the file by any of
 these processes. Also, the implicit commit of the changes will not occur
 until all of these file descriptors are closed. If one wants to guarantee
 that the changes are made permanent immediately, the use of fcommit is
 recommended. Also, locking such as that provided by the lockf system call
 is recommended if more than one process will be writing to the same file.

 If the real user is not the superuser, the write system call clears the
 set-group-id and set-user-id bits on a file. This prevents penetration of
 system security by a user who obtains a writable set-user-id file owned by
 the superuser.

 If the write system call requests that more bytes be written than there is
 room for, only as many bytes as there is room for are written and the
 write system call returns an integer equal to the number of bytes written.
 The next attempt to write a nonzero number of bytes will fail (except as
 noted following). The limit reached can be either the ulimit (see
 "ulimit" in topic 1.2.313) or the end of the physical medium. A partial

AIX Operating System Technical Reference
write, writex

¦ Copyright IBM Corp. 1985, 1991
1.2.330 - 1

 write is not permitted for the following:

 � If the file being written is a pipe (or FIFO) and unless O_NDELAY or
 O_NONBLOCK is set in the file flag word, a write to a full pipe (or
 FIFO) blocks until space becomes available.

 � If the file being written is a pipe (or FIFO) and O_NDELAY is set in
 the file flag word, a write to a full pipe (or FIFO) returns a count
 of 0.

 � If the file being written is a pipe (or FIFO) and O_NONBLOCK is set in
 the file flag word, a write to a full pipe (or FIFO) returns -1 and
 errno is set to EAGAIN.

 � An attempt to write data to a pipe when the read end of the pipe ha
 been closed will cause the signal SIGPIPE to be raised. If this
 signal is caught or ignored, the error EPIPE is returned.

 When attempting to write to a socket and the socket is not ready to accept
 data:

 � Unless O_NDELAY or O_NONBLOCK is set, the write blocks until the
 socket is ready to accept data.

 � If O_NDELAY is set, the write returns 0.

 � If O_NONBLOCK is set, the write returns -1 and errno is set to EAGAIN.

 If the file to be written supports enforcement mode record locks and all
 or part of the region to be written is currently locked by another
 process:

 � If O_NDELAY or O_NONBLOCK is set, write returns -1 and sets errno to
 EAGAIN.

 � If O_NDELAY and O_NONBLOCK are not set, the calling process blocks
 until the lock is released.

 For more information about record locks, see "fcntl, flock, lockf" in
 topic 1.2.78 .

 The SIGTTOU signal will be sent to the writer's process group if the
 process:

 � is writing to its controlling termina

 � has the TOSTOP terminal attribute se

 � is not ignoring or blocking SIGTTOU, and

 � is in the foreground process group of the termina

 Otherwise, output to a terminal is permitted, even by processes which are
 not in the foreground process group of the terminal.

 If the Transparent Computing Facility is installed on your system, when
 writing to a file which is stored on a site other than where the process
 is running, it is possible for the out-of-space condition to go unnoticed
 until after the write system call has returned. If this situation arises,
 the ENOSPC error will be reported on subsequent write, fcommit, and fabort

AIX Operating System Technical Reference
write, writex

¦ Copyright IBM Corp. 1985, 1991
1.2.330 - 2

 calls. The system attempts to minimize the likelihood of out-of-space
 problems getting reported in this way by using a less efficient,
 synchronous procedure for writing to a remote file system when that file
 system is low on space. Thus, writing to a remote file system is most
 efficient when the file system is less than 90% full.

 The writex system call performs the same function as write, except that it
 provides communication with character device drivers that require more
 information or return more status than write can handle.

 For files, directories, sockets, or special files with drivers that do not
 handle extended operations, the writex system call does exactly what the
 write system call does, and the ext parameter is ignored.

 Each driver interprets the ext parameter in a device-dependent way, either
 as a value or as a pointer to a communication area. The nonextended write
 system call is equivalent to the extended writex system call with an ext
 parameter value of 0. Drivers must apply reasonable defaults when the ext
 parameter value is 0.

 Return Value
 Upon successful completion, the number of bytes actually written is
 returned. If the write or writex system call fails, a value of -1 is
 returned and errno is set to indicate the error.

 Error Conditions
 The write and writex system calls fail and the file pointer remains
 unchanged if one or more of the following are true:

 EBADF The d parameter is not a valid file descriptor open for writing
 or valid socket descriptor.

 EAGAIN An enforcement mode record lock is outstanding in the portion of
 the file that is to be written.

 EAGAIN The object is a socket or pipe and is marked for non-blocking
 I/O, and the socket or pipe was not ready to accept data.

 EPIPE An attempt is made to write to a pipe that is not open for
 reading by any process or to write to a socket of type
 SOCK_STREAM that is not connected to a peer socket. A SIGPIPE
 signal is also sent to the calling process.

 EFBIG An attempt is made to write a file that exceeds the process's
 file size limit or the maximum file size (see "ulimit" in
 topic 1.2.313).

 EFAULT buf points to a location outside of the process's allocated
 address space.

 EDEADLK A deadlock would occur if the calling process were to sleep
 until the region to be written was unlocked.

 EINTR A signal was caught during the write system call.

 ENOSPC There is no more space left on the device.

 EIO A physical I/O error occurred.

 If the Transparent Computing Facility is installed on your system, write

AIX Operating System Technical Reference
write, writex

¦ Copyright IBM Corp. 1985, 1991
1.2.330 - 3

 or writex can also fail if one or more of the following are true:

 ESITEDN1 The file cannot be written because the file storage site went
 down. If the file is replicated, this indicates the loss of the
 site where the primary copy of the file is stored.

 ESITEDN2 The operation was terminated because a site failed.

 Related Information
 In this book: "dup" in topic 1.2.64, "fcntl, flock, lockf" in
 topic 1.2.78, "lseek" in topic 1.2.161, "open, openx, creat" in
 topic 1.2.199, "pipe" in topic 1.2.204, "ulimit" in topic 1.2.313, and
 "writev" in topic 1.2.331.

AIX Operating System Technical Reference
write, writex

¦ Copyright IBM Corp. 1985, 1991
1.2.330 - 4

 1.2.331 writev

 Purpose
 Writes output gathered from multiple buffers.

 Syntax

 #include <sys/uio.h>

 int writev (d, iov, iovcnt)
 int d;
 struct iovec *iov;
 int iovcnt;

 Description
 The writev system call attempts to write the data in the buffers specified
 by the array of iovec structures, pointed to by the iov parameter, to the
 object associated with the d parameter.

 The d parameter is a file descriptor obtained from a creat, open, dup,
 fcntl, or pipe system call, or a socket descriptor from a socket or
 socketpair system call.

 The iovec structure is defined in the sys/uio.h header file, and it
 contains the following members:

 caddr_t iov_base;
 int iov_len;

 Each iovec entry specifies the base address and length of an area in
 memory from which data should be written. The writev system call always
 writes a complete area before moving to the next.

 On devices capable of seeking, writev starts at a position in the file
 given by the file pointer associated with the d parameter. Upon return
 from the writev system call, the file pointer is incremented by the number
 of bytes actually written.

 Devices that are incapable of seeking always write at the current
 position. The value of a file pointer associated with such a file is
 undefined.

 When the O_APPEND flag of the file status is set, the file pointer is set
 to the end of the file prior to each write.

 If a file is opened with the O_DEFERC flag, changes made to it with writev
 can later be undone with the fabort system call. Changes are not made
 permanent until the file is committed explicitly by calling fsync or
 implicitly some time after calling close or exiting, at which time all
 files are closed. (See "fabort" in topic 1.2.75, "fsync, fcommit" in
 topic 1.2.87, and "close, closex" in topic 1.2.48.)

 If the file is opened with the O_SYNC or O_REPLSYNC flags, changes are
 made permanent and possibly replicated. (See "fcntl, flock, lockf" in
 topic 1.2.78, "open, openx, creat" in topic 1.2.199, and "write, writex"
 in topic 1.2.330.)

 If the writev system call requests that more bytes be written than there
 is room for, only as many bytes as there is room for are written and the
 writev system call returns an integer equal to the number of bytes

AIX Operating System Technical Reference
writev

¦ Copyright IBM Corp. 1985, 1991
1.2.331 - 1

 written. The next attempt to write nonzero number of bytes will fail
 (except as noted following). The limit reached can be either the ulimit
 (see "ulimit" in topic 1.2.313) or the end of the physical medium. A
 partial write is not permitted for the following:

 � If the file being written is a pipe (or FIFO) and unless O_NDELAY or
 O_NONBLOCK is set in the file flag word, then a writev to a full pipe
 (or FIFO) blocks until space becomes available.

 � If the file being written is a pipe (or FIFO) and O_NDELAY is set in
 the file flag word, then a writev to a full pipe (or FIFO) returns a
 count of 0.

 � If the file being written is a pipe (or FIFO) and O_NONBLOCK is set in
 the file flag word, then a writev to a full pipe (or FIFO) returns -1
 and errno is set to EAGAIN.

 When attempting to write to a socket and the socket is not ready to accept
 data:

 � Unless O_NDELAY or O_NONBLOCK is set, the writev blocks until the
 socket is ready to accept data.

 � If O_NDELAY is set, the writev returns 0.

 � If O_NONBLOCK is set, the writev returns -1 and errno is set to
 EAGAIN.

 If the file to be written supports enforcement mode record locks and all
 or part of the region to be written is currently locked by another
 process:

 � If O_NDELAY or O_NONBLOCK is set, then writev returns -1 and sets
 errno to EAGAIN.

 � If O_NDELAY and O_NONBLOCK are not set, then the calling process
 blocks until the lock is released.

 For more information about record locks, see "fcntl, flock, lockf" in
 topic 1.2.78.

 If the Transparent Computing Facility is installed on your system, when
 writing to a file which is stored on a site other than where the process
 is running, it is possible for the out-of-space condition to go unnoticed
 until after the write system call has returned. If this situation arises,
 the ENOSPC error will be reported on subsequent write, fcommit, and fabort
 calls. The system attempts to minimize the likelihood of out-of-space
 problems getting reported in this way by using a less efficient,
 synchronous procedure for writing to a remote file system when that file
 system is low on space. Thus, writing to a remote file system is most
 efficient when the file system is less than 90% full.

 Return Value
 Upon successful completion, writev returns the number of bytes that were
 actually written. Otherwise, the value -1 is returned and errno is set to
 indicate the error.

 Error Conditions
 The writev system call fails when one or more of the following is true:

AIX Operating System Technical Reference
writev

¦ Copyright IBM Corp. 1985, 1991
1.2.331 - 2

 EBADF The d parameter is not a valid file descriptor open for writing
 or a valid socket descriptor.

 EAGAIN An enforcement mode record lock is outstanding in the portion of
 the file that is to be written.

 EAGAIN The object is a socket or pipe and is marked for nonblocking
 I/O, and the socket or pipe was not ready to accept data.

 EPIPE An attempt is made to write to a pipe that is not open for
 reading by any process or to write to a socket of type
 SOCK_STREAM that is not connected to a peer socket. A SIGPIPE
 signal is also sent to the calling process.

 EFBIG An attempt is made to write to a file that exceeds the process's
 file size limit or the maximum file size (see "ulimit" in
 topic 1.2.313).

 EINVAL The value of iovcnt was not between 1 and 16, inclusive.

 EINVAL One of the iov_len values in the iov array was negative.

 EINVAL The sum of the iov_len values in the iov array overflowed a
 32-bit integer.

 EFAULT Part of the iov points to a location outside of the process's
 allocated address space.

 EDEADLK A deadlock would occur if the calling process were to sleep
 until the region to be written was unlocked.

 EINTR A signal was caught during the writev system call.

 ENODEV The file specified is an invalid device for writing.

 EIO A physical I/O error occurred.

 If the Transparent Computing Facility is installed on your system, writev
 can also fail if one or more of the following are true:

 ESITEDN1 The file cannot be written because the file storage site went
 down. If the file is replicated, this indicates the loss of the
 site where the primary copy of the file is stored.

 ESITEDN2 The operation was terminated because a site failed.

 Related Information
 In this book: "fcntl, flock, lockf" in topic 1.2.78, "lseek" in
 topic 1.2.161, "open, openx, creat" in topic 1.2.199, "pipe" in
 topic 1.2.204, "select" in topic 1.2.242, and "write, writex" in
 topic 1.2.330.

AIX Operating System Technical Reference
writev

¦ Copyright IBM Corp. 1985, 1991
1.2.331 - 3

 1.2.332 XDR (External Data Representation)

 Purpose
 Allows programmers to describe basic data types in a uniform
 representation.

 Library
 Internet Library (libc.a)

 Syntax
 #include <rpc/rpc.h>

 Description
 XDR provides programmers with a specification of uniform representations
 for basic data types. XDR does not depend on machine languages, operating
 systems, or architectures; thus, networked computers can share data
 regardless of the machine on which the data is produced or consumed.

 For basic data types such as integers and strings, XDR provides primitives
 that serialize, or translate, information from the local host's
 representation to XDR representation, and deserialize, or translate, from
 the XDR representation to the local host's representation. XDR also uses
 constructor primitives that allow the use of the basic data types to
 create more complex data types, such as arrays and discriminated unions.

 XDR describes input and output data structures in a data description
 language that resembles the C programming language. It is important to
 remember that C language constructs define the code for programs while XDR
 standardizes the representation of data types in the programming code.
 Representing data in standardized formats resolves situations that can
 occur if different byte ordering exists on networked machines and enables
 machines with different structure alignment algorithms to communicate with
 each other.

 The XDR routines are not dependent on direction. That is, the same
 routine is called to serialize and deserialize data. To achieve this
 independence, XDR passes the addresses of the objects instead of passing
 the object itself.

 XDR is based on the assumption that bytes (or 8 bits of data, which are
 also called an octet) can be ported and encoded on media that can preserve
 the meaning of the bytes across the hardware boundaries of data. For
 example, bytes are ported and encoded from low order to high order in
 local area networks.

 XDR does not represent bit fields or bit maps. It represents data in
 blocks of multiples of 4 bytes (32 bits). The bytes are numbered from 0
 (zero) to the value of n-1, where the value (n mod 4) = 0. They are read
 or written to a byte stream in the order that byte m precedes byte m+1.

 Subtopics
 1.2.332.1 XDR Subroutines

AIX Operating System Technical Reference
XDR (External Data Representation)

¦ Copyright IBM Corp. 1985, 1991
1.2.332 - 1

 1.2.332.1 XDR Subroutines
 The XDR subroutines discussed in this section cover the following:

 � Library primitives for basic data types and constructed data types
 Basic data types include the number filters (for integers,
 floating-point and double-precision numbers), enumeration filters, and
 the routine for passing no data. Constructed data types include the
 filters for strings, arrays, unions, pointers, and opaque data.

 � Data stream creation routines that are used to call streams fo
 serializing (and deserializing) data to or from standard I/O file
 streams, TCP/IP connections, AIX files, and memory.

 � Implementation of new XDR streams

 � Passing linked lists using XDR

 Before the XDR routines are discussed in detail, XDR data type
 representations are introduced and defined in the next section to make the
 discussion of the routines easier to understand.

 Subtopics
 1.2.332.1.1 XDR Data Type Representation
 1.2.332.1.2 XDR Library Routines
 1.2.332.1.3 Filter Primitives
 1.2.332.1.4 Non-Filter Primitives
 1.2.332.1.5 XDR Operation Directions
 1.2.332.1.6 Data Stream Access
 1.2.332.1.7 Standard I/O Streams
 1.2.332.1.8 Memory Streams
 1.2.332.1.9 Record Streams
 1.2.332.1.10 Implementation of New XDR Streams
 1.2.332.1.11 Passing Linked Lists Using XDR

AIX Operating System Technical Reference
XDR Subroutines

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1 - 1

 1.2.332.1.1 XDR Data Type Representation

 While many of XDR's data representations are similar to the data types
 used in C language constructs, there are some differences. For that
 reason, the data objects converted to XDR representation are briefly
 described in this section. More detailed information about data types can
 be found in IBM AIX C Language Guide and Reference

 Integers: An XDR integer is a numerical integer value in the range [-
 2,147,483,648 to 2,147,483,647] that occupies 32 bits. An integer is
 represented in two's complement notation. Its most significant byte is 0
 and least significant byte is 3.

 Unsigned Integers: An XDR integer is a numerical integer value that
 encodes a nonnegative integer from the range [0 to 4294967295] that
 occupies 32 bits. It is represented by an unsigned binary number whose
 most significant byte is 0 and least significant byte is 3. The shortened
 form is u_.

 Enumerations: Enumerations have the same representation as integers.
 They are used to describe subsets of integers. Enumerations are defined
 as follows:

 typedef enum { name = value, ... } type-name;

 For example, the colors red, yellow, and blue are described in an
 enumerated type by the following:

 typedef enum { RED = 2, YELLOW = 3, BLUE = 5 } colors;

 Booleans: A Boolean is an enumeration that takes the following form:

 typedef enum { FALSE = 0, TRUE = 1 } boolean;

 Floating-Point Data: An XDR floating point is data that encodes
 normalized single floating-point numbers that conform to IEEE standard and
 occupy 32 bits (4 bytes). A floating-point number is made up of an
 integer with an exponent. The integer can contain a fraction value. Its
 most significant bit is 0 and least significant bit is 31. The
 representation for floating points is the following:

 (-1)(S*)2(E-Bias*)1.F

 The following describes the IEEE coding standard for the fields
 represented in this notation:

 S The sign of the number. The value 0 specifies positive and the
 value 1, negative. The most significant bit is 0.

 E Exponent of the number in base 2. Floats devote 8 bits to this
 field. It is biased by 127. The most significant bit is 1.

 F Fractional part of the number's mantissa in base 2. Floats
 devote 23 bits to this field. The most significant bit is 9.

 Note: Consult the IEEE specification when encoding signed 0, signed
 infinity (overflow), and denormalized numbers (underflow). Under
 IEEE specifications, the value of NaN depends on your operating
 system. NaN represents the phrase not a number. It is not
 recommended for describing data types.

AIX Operating System Technical Reference
XDR Data Type Representation

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.1 - 1

 Double-Precision Data: XDR double-precision data encodes
 double-precision, floating-point numbers that conform to IEEE standard and
 occupy 64 bits (8 bytes). A double-precision point is made up of an
 integer with an exponent. The integer can contain a fractional value.
 The most significant bit is 0 and least significant bit is 63.
 Double-precisions can be represented in this following form:

 (-1)(S*)2(E-Bias*)1.F

 The following describes the IEEE coding standard for the fields
 represented in this notation:

 S The sign of the number. The value 0 specifies positive and the
 value 1, negative. The most significant bit is 0.

 E Exponent of the number in base 2. Doubles devote 11 bits to
 this field. It is biased by 1023. The most significant bit is
 1.

 F Fractional part of the number's mantissa in base 2. Doubles
 devote 52 bits to this field. The most significant bit is 12.

 Note: Consult the IEEE specification when encoding signed zero, signed
 infinity (overflow), and denormalized numbers (underflow). Under
 IEEE specifications, the value of NaN depends on your operating
 system. NaN represents the phrase not a number. It is not
 recommended for describing data types.

 Opaque Data: XDR opaque data is data of a fixed size that is passed to
 another machine without being interpreted. It is encoded in multiples of
 4 bytes and defined by the following:

 typedef opaque type-name[n];
 opaque name[n];

 In the definition, n is the static number of bytes needed to contain the
 opaque data. If n is not a multiple of four, the n bytes are followed by
 the number of bytes needed to make the opaque data object's total byte
 count a multiple of four.

 Counted Byte Strings: XDR-counted byte strings are strings of n bytes
 (numbered 0 through n-1) encoded as an unsigned integer followed by the
 actual bytes of the string. For example, the counted byte string examples
 is encoded as 8examples (8 bytes, and then the actual bytes for the word
 examples).

 If n is not a multiple of four, the n bytes are followed by the number of
 bytes needed to make the opaque data object's total byte count a multiple
 of four.

 The data description of strings follows:

 typedef string type-name<n>;
 typedef string type-name<>;
 string name <n>;
 string name<>;

 The XDR data description language uses < and > (angle brackets) for
 objects with variable lengths, and [and] (square brackets) for objects

AIX Operating System Technical Reference
XDR Data Type Representation

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.1 - 2

 with fixed lengths.

 The constant n specifies the maximum number of bytes a string can contain.
 If n is not specified, XDR assumes the maximum length is 2(32)-1. The
 constant n is listed in a protocol specification. For example, if a
 protocol specifies that a file name can be no longer than 255 bytes, it is
 represented as string filename<255>;.

 Fixed Arrays: XDR fixed arrays are sets of homogenous, or identical,
 elements of fixed sizes. The array's elements are encoded in their
 natural order of 0 to n-1. The data description for fixed-size arrays of
 homogeneous elements is defined as follows:

 typedef elementtype type-name[n];
 elementtype name[n];

 Counted Arrays: XDR-counted arrays are sets of homogenous, or identical,
 elements of varying lengths. The array is encoded starting with the
 element count specified by an unsigned integer (n) followed by each array
 element from 0 through n-1.

 The data description for counted arrays follows:

 typedef elementtype type-name<n>;
 typedef elementtype type-name<>;
 elementtype name<n>;
 elementtype name<>;

 The constant n specifies the maximum number of an element count of an
 array. If n is not specified, XDR assumes the maximum length is 2(32)-1.
 The constant n is listed in a protocol.

 Structures: XDR structures are sets of components put together to create
 a specific data set. They are very similar to the standard C language
 structures.

 A structure's components are encoded in the order of their declaration in
 the structure. The data description for structures follows:

 typedef struct {
 component-type component-name;
 ...
 } type-name;

 Discriminated Unions: An XDR discriminated union is a set of data
 composed of a discriminant and another data type. The discriminant is an
 enumeration. The other data type is selected from a set of prearranged
 types according to the value of the discriminant. The component types are
 called arms of the union. The discriminated union is encoded starting
 with the discriminant followed by the arm.

 The data description for discriminated unions is as follows:

 typedef union switch (discriminant-type) {
 discriminant-value: arm-type;
 ...
 default: default-arm-type;
 } type-name;

 Note: The default arm is optional. If it is not specified, a union

AIX Operating System Technical Reference
XDR Data Type Representation

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.1 - 3

 cannot encode discriminant values that are not specified. Most
 specifications do not use default arms.

AIX Operating System Technical Reference
XDR Data Type Representation

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.1 - 4

 1.2.332.1.2 XDR Library Routines

 XDR routines are organized as a library of primitives that define the data
 types as well as create data streams. In this section, the routines are
 grouped by function. The filter primitives for basic and constructed data
 types appear first, followed by the non-filter primitives for manipulating
 XDR streams.

 When using XDR with RPC (Remote Procedure Call), it is important to note
 that RPC clients do not create data streams themselves. The RPC system
 creates the streams itself. RPC passes the information about the data
 streams as opaque data in the form of handles. This opaque data handle is
 referred to in routines as the xdrs parameter.

 Programmers who use C language programs with XDR routines must include the
 <rpc/xdr.h> file, which contains the necessary XDR interfaces.

 Since XDR allows programmers to read and write C language constructs,
 programmers can also write their own XDR routines to define other data
 types.

 For each data type, there is an XDR routine associated with it. These XDR
 routines take the following form:

 xdr_xxx (xdrs, fp)
 XDR *xdrs;
 xxx *fp;
 {
 }

 The xxx parameter represents a data type. The xdrs parameter is an opaque
 handle that points to an XDR stream. The opaque handle pointer is passed
 to the primitive XDR routines. The fp parameter points to an address of a
 data value that provides data to the stream or receives data from it.

 Unless noted otherwise, XDR routines return the value 1 if they succeed
 and the value 0 if they do not.

AIX Operating System Technical Reference
XDR Library Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.2 - 1

 1.2.332.1.3 Filter Primitives

 Filter primitives define basic and constructed data types. Basic data
 types include numbers, floating points, and generic enumerations.
 Constructed data types include strings, byte arrays, opaque data, pointers
 and unions. Constructed data type primitives require more parameters and
 perform more complicated functions, such as memory management.

 Basic Data Types: The XDR basic data types include number filters,
 floating-point filters, and enumeration filters. Also included with these
 primitives is a routine for use when no data is exchanged.

 Number Filters

 The XDR library provides primitives that translate between types of
 numbers and external representations. The XDR number filters cover the
 signed and unsigned integers as well as the signed and unsigned short and
 long integers. The following list of routines are the XDR library number
 filters.

 xdr_int (xdrs, ip)
 XDR *xdrs;
 int *ip;

 The xdr_int filter primitive translates between C language integers
 and their external representations. The xdrs parameter is an XDR
 stream handle. The ip parameter points to the address of the number
 that provides data to the XDR stream or receives data from it.

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

 xdr_u_int (xdrs, up)
 XDR *xdrs;
 u_int *up;

 The xdr_u_int filter primitive translates between C language
 unsigned integers and their external representations. The xdrs
 parameter is an XDR stream handle. The up parameter points to the
 address of the number that provides data to the XDR stream or
 receives data from it.

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

 xdr_long (xdrs, lip)
 XDR *xdrs;
 long *lip;

 The xdr_long filter primitive translates between C language long
 integers and their external representations. The xdrs parameter is
 an XDR stream handle. The lip parameter points to the address of
 the number that provides data to the XDR stream or receives data
 from it.

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

 xdr_u_long (xdrs, lup)
 XDR *xdrs;

AIX Operating System Technical Reference
Filter Primitives

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.3 - 1

 u_long *lup;

 The xdr_u_long filter primitive translates between C language
 unsigned long integers and their external representations. The xdrs
 parameter is an XDR stream handle. The lup parameter points to the
 address of the number that provides data to the XDR stream or
 receives data from it.

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

 xdr_short (xdrs, sip)
 XDR *xdrs;
 short *sip;

 The xdr_short filter primitive translates between C language short
 integers and their external representations. The xdrs parameter is
 an XDR stream handle. The sip parameter points to the address of
 the number that provides data to the XDR stream or receives data
 from it.

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

 xdr_u_short (xdrs, sup)
 XDR *xdrs;
 u_short *sup;

 The xdr_u_short filter primitive translates between C language
 unsigned short integers and their external representations. The
 xdrs parameter is an XDR stream handle. The sup parameter points to
 the address of the number that provides data to the XDR stream or
 receives data from it.

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

 Floating-Point Filters

 The XDR library provides primitives that translate between floating-point
 data and their external representations. Floating-point data encodes an
 integer with an exponent. Floats and double-precision numbers compose
 floating-point data.

 Note: Numbers are represented as IEEE standard floating points. Routines
 may fail when decoding IEEE representations into machine-specific
 representations or vice-versa.

 xdr_float (xdrs, fp)
 XDR *xdrs;
 float *fp;

 The xdr_float filter translates between C floats (normalized single
 floating-point numbers) and their external representations. The
 xdrs parameter is an XDR stream handle. The fp parameter points to
 the address of the float that provides data to the XDR stream or
 receives data from it.

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

AIX Operating System Technical Reference
Filter Primitives

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.3 - 2

 xdr_double (xdrs, dp)
 XDR *xdrs;
 double *dp;

 The xdr_double filter translates between C double-precision numbers
 and their external representations. The xdrs parameter is an XDR
 stream handle. The dp parameter points to the address of the
 double-precision number that provides data to the XDR stream or
 receives data from it.

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

 Enumeration Filters

 The XDR library provides a primitive for generic enumerations that is
 based on the assumption that a C enumeration value (enum) has the same
 representation. There is a special enumeration in XDR known as Boolean.

 xdr_enum (xdrs, ep)
 XDR *xdrs;
 enum_t *ep;

 The enum filter primitive translates between C language enums, which are
 actually integers, and their external representations. The xdrs parameter
 is an XDR stream handle. The ep parameter points to the address of the
 enumeration data that provides data to the XDR stream or receives data
 from it.

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

 xdr_bool (xdrs, bp)
 XDR *xdrs;
 bool_t *bp;

 The bool filter primitive translates between Booleans and their
 external representations which is either 1 (for TRUE) or 0 (for
 FALSE). The xdrs parameter is an XDR stream handle. The bp
 parameter points to the address of the Boolean data that provides
 data to the XDR stream or receives data from it.

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

 No Data

 From time to time, an XDR routine must be supplied to the RPC system, but
 no data is required or passed. The XDR library provides the following
 primitive for this function:

 xdr_void ()

 The xdr_void primitive has no function parameters, and the routine
 always returns the value 1.

 Constructed Data Type Filters: Constructed data type filters allow
 complex data types to be created from basic data types. They require more
 parameters in order to perform more complicated functions than basic data

AIX Operating System Technical Reference
Filter Primitives

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.3 - 3

 types. The constructed data types can use memory management. Memory is
 allocated when deserializing data with the XDR_DECODE subroutines. Memory
 is deallocated through the XDR_FREE subroutines.

 Strings

 A string is defined as a sequence of bytes terminated by a null byte. The
 null byte does not figure into the length of the string. Externally,
 strings are represented by a sequence of ASCII characters. Internally,
 XDR represents them as pointers to characters. The XDR library includes
 primitives for strings and wrap strings.

 xdr_string (xdrs, sp, maxlength)
 XDR *xdrs;
 char **sp;
 u_int maxlength;

 The xdr_string filter primitive translates between strings and their
 external representation. The xdrs parameter points to the XDR
 stream handle. The sp parameter points to the address of the
 pointer to the string. The maxlength parameter specifies the
 maximum length of the string allowed during encoding or decoding.
 This value is set in a protocol. For example, if a protocol
 specification specifies that a file name cannot be longer than 255
 characters, a string cannot exceed 255 characters.

 The routine returns 0 if the number of characters exceeds maxlength,
 or 1 if it does not.

 When serializing a string, the sp parameter points to a string of a
 certain length. If the string does not exceed maxlength, the bytes
 are serialized.

 When deserializing a string, the length of the incoming string is
 determined. The string must not exceed maxlength. Next, sp is
 dereferenced. If the value of *sp is NULL, a string of the
 appropriate length is allocated and *sp is set to this string. If
 the original value of *sp is not NULL, XDR assumes that a target
 area has been allocated to hold the strings that are no longer than
 specified by maxlength. The string is decoded into the target area,
 and the routine appends a null character to the string.

 In the XDR_FREE subroutine, the string is obtained by dereferencing
 sp. If the value of the string is not NULL, the data allocated to
 the string is freed and the pointer is set to NULL.

 xdr_wrapstring (xdrs, sp)
 XDR *xdrs
 char **sp

 The xdr_wrapstring filter primitive calls the xdr_string routine
 with the maximum length set as the maximum value of an unsigned
 integer. This is a useful routine since it passes only two
 parameters instead of the three required by xdr_string. The xdrs
 parameter points to the XDR stream handle. The sp parameter points
 to the address of the pointer to the string.

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

AIX Operating System Technical Reference
Filter Primitives

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.3 - 4

 Byte Arrays

 The XDR library provides a primitive for byte arrays. Although similar to
 strings, byte arrays differ from strings by having a byte count. That is,
 the length of the array is set by an unsigned integer. They also differ
 since byte arrays are not terminated with a null character. External and
 internal representation of byte arrays are the same.

 xdr_bytes (xdrs, bpp, lp, maxlength)
 XDR *xdrs;
 char **bpp;
 u_int *lp;
 u_int maxlength;

 The xdr_bytes filter primitive translates between counted byte
 strings and their external representation. The xdr_bytes primitive
 handles a subset of generic arrays, in which the size of the element
 is 1, and each element's external description is built-in.

 The xdrs parameter points to the XDR stream handle. The bpp
 parameter points to the address of the pointer to the byte array.
 The lp parameter points to the length of the byte area. When
 serializing, XDR gets the length of the byte area by dereferencing
 lp. When deserializing, *lp is set to the byte length. The
 maxlength parameter specifies the maximum number of bytes allowed
 when XDR encodes or decodes messages.

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

 Arrays

 The XDR library provides a filter primitive for handling arrays of
 arbitrary elements. Arrays of this type are handled in much the same way
 as a byte array, which handles a subset of generic arrays where the size
 of the elements and their external description is predetermined. This
 primitive for generic arrays elements requires an additional parameter to
 define the size of the array and to call an XDR routine to encode or
 decode each element in the array.

 xdr_array (xdrs, arrp, sizep,maxlength, elsize, elproc)
 XDR *xdrs;
 char **arrp;
 u_int *sizep;
 u_int maxlength;
 u_int elsize;
 xdrproc_t elproc;

 The xdr_array filter primitive translates between sets of arbitrary
 elements and their corresponding external representations.

 The xdrs parameter points to the XDR stream handle. The arrp
 parameter points to the address of the pointer to the array. The
 sizep parameter points to the address of the element count of the
 array. The maxlength parameter specifies the maximum number of
 array elements. The elsize parameter specifies the size in bytes of
 each of the array's elements.

 The elproc parameter specifies the name of the XDR routine called to
 serialize, deserialize, or free each element in the array.

AIX Operating System Technical Reference
Filter Primitives

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.3 - 5

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

 Fixed-Length Arrays

 XDR does not provide a primitive for defining a fixed-length array.
 Programmers can set the size of fixed length arrays by including
 conditional statements in the syntax of an xdr_array routine.

 The following examples show how to construct a fixed-length array. First,
 a new data structure is defined, and then an XDR routine that serializes
 (and deserializes) the new structure is coded. The following data
 structure defines a network user as netuser:

 struct netuser {
 char *nu_machinename;
 int nu_uid;
 u_int nu_glen;
 int nu_gids;
 };
 #define NLEN 255
 #define NGRPS 20

 The nu_machinename parameter specifies the network user's computer host
 name, which can be obtained by using the gethostname command. The nu_uid
 parameter specifies the network user's user ID, which can be obtained by
 using the geteuid command. The glen parameter specifies the length of the
 group array while the nu_gids parameter specifies the network user's group
 IDs, which can be obtained by using the getgroups command. NLEN sets the
 local host name length maximum at 255 characters. NGRPS sets the maximum
 number of groups the user can be in at 20 groups.

 The XDR routine generated to serialize and deserialize the netuser
 structure is coded as follows:

 bool_t
 xdr_netuser (xdrs, nup)
 XDR *xdrs;
 struct netuser *nup;
 {
 return (xdr_string(xdrs,& nup-> nu_machinename, NLEN) &&
 xdr_int (xdrs, & nup->nu_uid) &&
 xdr_array (xdrs,& nup->nu_gids,& nup->nu_glen, NGRPS,
 sizeof (int), xdr_int));
 }

 The xdrs parameter identifies an XDR stream handle. The nup parameter
 points to the address of the structure netuser.

 To code a routine to use fixed-size arrays, the preceding example can be
 rewritten as follows:

 #define NLEN 255
 #define NGRPS 20

 struct netuser {
 char *nu_machinename;

AIX Operating System Technical Reference
Filter Primitives

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.3 - 6

 int nu_uid;
 int nu_gids;
 };

 bool_t
 xdr_netuser (xdrs, nup)
 XDR *xdrs;
 struct netuser *nup;
 {
 int i;

 if (!xdr_string(xdrs;& nup-> nu_machinename, NLEN))
 return (FALSE);
 if (!xdr_int (xdrs, & nup->nu_uid))
 return (FALSE);
 for (i = 0; i < NGRPS; i+++) {
 if (!xdr_int (xdrs, & nup->nu_gids [i]))
 return (FALSE);
 }
 return (TRUE);
 }

 This program sets the size of the fixed-array using the parameters as
 specified in the preceding examples.

 Opaque Data

 Opaque data is composed of bytes of a fixed size that are not interpreted
 as they pass through the data streams. Opaque data bytes, such as
 handles, are passed back and forth from the servers to clients without
 being inspected by the client. The client uses the data as it is and then
 returns it to the server. By definition, the actual data contained in the
 opaque object is not portable between computers.

 bool_t
 xdr_opaque (xdrs, p, len)
 XDR *xdrs;
 char *p;
 u_int len;

 The xdr_opaque filter primitive translates between opaque data and
 its external representation. The xdrs parameter points to the XDR
 stream handle. The p parameter points to the address of the opaque
 object while the len parameter specifies the size, in bytes, of the
 object.

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

 Discriminated Unions

 A discriminated union is a C language union, which is an object that holds
 several data types, where one arm of the union is an enumeration value, or
 discriminant, that holds a specific object that is processed over the
 system first. The discriminant is an enumeration value (enum_t).

 xdr_union (xdrs, dscmp, unp, armchoices, defaultarm)
 XDR *xdrs;
 enum_t *dscmp;
 char *unp;

AIX Operating System Technical Reference
Filter Primitives

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.3 - 7

 struct xdr_discrim *armchoices;
 xdrproc_t defaultarm;

 The xdr_union filter primitive translates between discriminated
 unions and their external representations.

 The xdrs parameter points to the XDR stream handle. The dscmp
 parameter points to the address of the union's discriminant. The
 discriminant is an enum_t value. The unp parameter is a character
 pointer to the address of the union. The armchoices parameter
 points to an array of structures that define other data types. The
 defaultarm parameter is a structure provided in case no
 discriminants are found.

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

 Pointers to Structures

 The XDR library provides the primitive for pointers so that structures
 referenced within other structures can be serialized, deserialized, and
 freed without causing problems. The xdr_reference primitive cannot attach
 special meaning to a NULL pointer during serialization. Attempting to
 pass the address of a NULL pointer can cause a memory fault. Programmers
 must be sure to describe data with a two-armed discriminated union. One
 arm is used when the pointer is valid. The other is used when the pointer
 is NULL.

 xdr_reference (xdrs, pp, size, proc)
 XDR *xdrs;
 char **pp;
 u_int size;
 xdrproc_t proc;

 The xdr_reference filter primitive provides chase pointers to
 structures within structures.

 The xdrs parameter points to the XDR stream handle. The pp
 parameter points to the address of the pointer to the structure.
 When decoding data, XDR allocates storage if the pointer is NULL.
 The size parameter specifies the size of the structure pointed to.
 The proc parameter specifies the XDR procedure that describes the
 structure.

 Upon successful completion, this routine returns the value TRUE.
 Otherwise, it returns the value FALSE.

AIX Operating System Technical Reference
Filter Primitives

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.3 - 8

 1.2.332.1.4 Non-Filter Primitives

 The XDR non-filter primitives are used to manipulate XDR streams.

 u_int
 xdr_getpos (xdrs)
 XDR *xdrs;

 The xdr_getpos routine returns an unsigned integer that describes
 the current position in the data stream. The xdrs parameter points
 to the XDR stream handle.

 In some XDR streams, this routine returns the value -1 even if the
 value has no meaning.

 bool_t
 xdr_setpos (xdrs, pos)
 XDR *xdrs;
 u_int pos;

 The xdr_setpos primitive changes the current position in the XDR
 stream. The xdrs parameter points to the XDR stream handle. The
 pos parameter is the new position setting.

 Upon successfully repositioning the stream, the routine returns the
 value 1. In some XDR streams, you cannot set a position. If you
 try to set a position in one of these XDR streams, the routine fails
 and the value 0 is returned. This routine also fails if you request
 a position that is not within the stream's boundaries. (Boundaries
 vary across streams.)

 void
 xdr_destroy (xdrs)
 XDR *xdrs;

 The xdrs_destroy routine destroys the XDR stream pointed to by the
 xdrs parameter, and frees the private data structures allocated to
 the stream. The use of the XDR stream handle is undefined after it
 is destroyed.

AIX Operating System Technical Reference
Non-Filter Primitives

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.4 - 1

 1.2.332.1.5 XDR Operation Directions

 The value represented by xdrs->x_op is either XDR_ENCODE, XDR_DECODE, or
 XDR_FREE. These operation values are handled internally by the XDR
 routines themselves. This means the same XDR routine can be called to
 serialize and deserialize data.

AIX Operating System Technical Reference
XDR Operation Directions

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.5 - 1

 1.2.332.1.6 Data Stream Access

 XDR data streams are obtained by calling creation routines. These
 creation routines take arguments specifically designed to the properties
 of the stream. There are existing XDR data streams for serializing (and
 deserializing) data in standard input/output files, memory, and TCP/IP
 connections and files.

 Note: RPC clients do not need to create XDR streams. The RPC system
 creates them and passes them to the clients.

AIX Operating System Technical Reference
Data Stream Access

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.6 - 1

 1.2.332.1.7 Standard I/O Streams
 XDR data streams serialize and deserialize standard input/output by
 calling the standard input/output creation routine, xdrstdio_create.

 #include <stdio.h>
 #include <rpc/rpc.h>

 void
 xdrstdio_create (xdrs, file, x_op)
 XDR *xdrs;
 FILE *file;
 enum xdr_op x_op;

 The xdrstdio_create routine initializes the XDR data stream pointed
 to by the xdrs parameter. The file parameter points to the standard
 input/output device from which data is written or read.

 The x_op parameter specifies an XDR direction. The possible choices
 are XDR_ENCODE, XDR_DECODE, or XDR_FREE.

AIX Operating System Technical Reference
Standard I/O Streams

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.7 - 1

 1.2.332.1.8 Memory Streams

 XDR data streams serialize and deserialize data from memory by calling the
 XDR memory creation routine, xdrmem_create. In RPC, UDP/IP implementation
 of remote procedure calls use this routine to build complete call and
 reply messages in memory before sending the message to the recipient.

 #include <rpc/rpc.h>

 void
 xdrmem_create (xdrs, addr, len, x_op)
 XDR *xdrs;
 char *addr;
 u_int len;
 enum xdr_op x_op;

 The xdrmem_create routine initializes in local memory the XDR stream
 pointed at by the xdrs parameter. The addr parameter points to the
 memory where the XDR stream's data is written to or read from. The
 len parameter specifies the length of the memory in bytes. The x_op
 parameter specifies the XDR direction. The possible choices are
 XDR_ENCODE, XDR_DECODE, or XDR_FREE.

AIX Operating System Technical Reference
Memory Streams

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.8 - 1

 1.2.332.1.9 Record Streams

 Record streams are XDR streams built on top of record fragments, which are
 built on TCP/IP streams. TCP/IP is a connection protocol for a
 transporting large streams of data at one time, which contrasts with
 transporting a single data packet at a time. The primary use of a record
 stream is to interface remote procedure calls to TCP connections. It can
 also be used to stream data into or out of normal files.

 XDR provides a record creation routine, xdrrec_create, for initializing
 record streams, and three routines for marking, or delimiting, the records
 in the data streams. These routines are discussed in the following:

 #include <rpc/rpc.h>

 void
 xdrrec_create (xdrs, sendsize, recvsize, iohandle readproc, writeproc)
 XDR *xdrs;
 u_int sendsize;
 u_int recvsize;
 caddr_t iohandle;
 int (*readproc) (), (*writeproc) ();

 The xdrrec_create provides an XDR stream that can contain long
 sequences of records, and handle them in both the encoding and
 decoding directions. The record contents contain data in XDR form.

 The xdrs parameter points to the XDR stream handle for the stream
 being called. The sendsize parameter sets the size of the input
 buffer where data is written to. The recvsize parameter sets the
 size of the output buffer where data is read from. If no value is
 specified, the buffers are set to the system defaults.

 The iohandle parameter points to the input/output buffer's handle,
 which is opaque. The readproc parameter points to the routine to
 call when a buffer needs to be filled, and the writeproc parameter
 points to the routine to call when a buffer needs to be flushed.
 These routines are similar to the read and write system calls.

 The readproc and writeproc routines take the following form:

 int
 process (iohandle, buf, nbytes)
 char *iohandle;
 char *buf;
 int nbytes;

 The process parameter identifies which routine (read or write) to
 call. The readproc routine reads the number of bytes set by the
 nbytes parameter and places the bytes into the buffer pointed to by
 the buf parameter. The writeproc writes to the data stream the
 number of bytes specified by the nbytes parameter from the buffer
 specified by the buf parameter.

 boot_t
 xdrrec_endofrecord (xdrs, flushnow)
 XDR *xdrs;
 boot_t flushnow;

 The xdrrec_endofrecord routine causes the current outgoing data to

AIX Operating System Technical Reference
Record Streams

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.9 - 1

 be marked as a record. The xdrs parameter points to the XDR stream
 handle.

 If the flushnow flag is used as a parameter with the value TRUE, the
 stream's writeproc routine is called to write out the completed
 record. Otherwise, writeproc is called when the output buffer is
 full.

 bool_t
 xdrrec_skiprecord (xdrs)
 XDR *xdrs;

 The xdrrec_skiprecord routine causes the position of an input stream
 to move past the current record boundary to the beginning of the
 next record in the stream.

 bool_t
 xdrrec_eof (xdrs)
 XDR *xdrs;

 The xdrrec_eof routine checks the buffer for an input stream. It
 returns the value 1 when there is no more input in the stream's
 buffer. If it returns the value 0, there is more input in the
 stream.

 Note: Do not confuse this to mean that there is no more data in the
 underlying file descriptor.

AIX Operating System Technical Reference
Record Streams

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.9 - 2

 1.2.332.1.10 Implementation of New XDR Streams
 XDR streams can be created and implemented by programmers. Implementors
 must make an XDR structure routine that includes operation routines
 available to clients using a creation routine.

 The abstract data types required for programmers to implement their own
 XDR streams are provided in the following:

 enum xdr_op { XDR_ENCODE=0, XDR_DECODE=1, XDR_FREE=2 };

 typedef struct {
 enum xdr_op x_op;
 struct xdr_ops {
 bool_t (*x_getlong) ();
 boot_t (*x_putlong) ();
 boot_t (*x_getbytes) ();
 boot_t (*x_putbytes) ();
 u_int (*x_getpostn) ();
 boot_t (*x_setpostn) ();
 caddr_t (*x_inline) ();
 VOID (*x_destroy) ();

 } *x_ops;
 caddr_t x_public;
 caddr_t x_private;
 caddr_t x_base;
 int x_handy;
 } XDR;

 The x_op parameter specifies the current operation being performed on the
 stream. This field is important to the XDR primitives but does not affect
 the implementation of the stream because the stream's implementation does
 not depend on the value.

 The following set of parameters are pointers to XDR stream manipulation
 routines:

 x_getlong Gets long integer values from the data stream.

 x_putlong Puts long integer values into the data stream.

 x_getbytes Gets bytes from the data stream.

 x_putbytes Puts bytes into the data stream.

 x_getpostn Returns stream offset.

 x_setpostn Repositions offset.

 x_inline Points to internal data buffer which can be used for any
 purpose.

 x_destroy Frees private data structure.

 Macros for accessing the x_getpostn, x_setposn, and x_destroy routines are
 defined earlier in this XDR section. See "Non-Filter Primitives" in
 topic 1.2.332.1.4.

 The x_inline operation is defined as follows:

AIX Operating System Technical Reference
Implementation of New XDR Streams

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.10 - 1

 long *
 x_inline (xdrs, len)
 XDR *xdrs;
 int len;

 This routine returns a pointer to an internal piece of the buffer of
 a stream, which is pointed to by the xdrs parameter. The len
 parameter specifies the size, in bytes, of the buffer. If the
 routine cannot find a buffer segment of the requested size, it may
 return the value 0. The buffer can be used for any purpose, but the
 buffer is not data-portable.

 The x_getbytes operation gets byte sequences from the underlying XDR
 stream, while the x_putbytes operation puts byte sequences into the
 stream. The routines appear as follows:

 bool_t
 operation (xdrs, buf, bytecount)
 XDR *xdrs;
 char *buf;
 u_int bytecount;

 The xdrs parameter parameter points to the XDR stream handle. The
 buf parameter specifies the buffer and the bytecount specifies the
 size of the byte sequence being put or obtained from the data
 stream.

 The x_getlong operation gets long numbers from the underlying XDR stream,
 while the x_putlong operation puts long numbers into the stream. These
 routines translate the numbers between the machine representation and the
 XDR representation. The routines appear as follows:

 bool_t
 operation (xdrs, lp)
 XDR *xdrs;
 long *lp

 The xdrs parameter points to the XDR stream handle. The lp
 parameter points to the address of the stream receiving and
 acquiring the numbers. Upon successful completion, this routine
 returns the value TRUE. Otherwise, it returns the value FALSE.

 Note: Higher level XDR implementations assume that signed and unsigned
 long integers contain the same number of bits, and that nonnegative
 integers and unsigned integers have the same bit representations.

 The x_public, x_private, x_base and x_handy fields are specific to a
 stream's implementation. The x_public parameter specifies user data that
 is private to the stream's implementation and is not used by the XDR
 primitive that calls it. The x_private parameter is a pointer to the
 implementation data. The x_base parameter contains the position
 information in the data stream that is private to the user implementation.
 The x_handy data can contain extra information as necessary.

AIX Operating System Technical Reference
Implementation of New XDR Streams

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.10 - 2

 1.2.332.1.11 Passing Linked Lists Using XDR
 This section describes how to pass linked lists of arbitrary length using
 XDR. To help illustrate the functions of the XDR routine for encoding,
 decoding, or freeing linked lists, the following example creates a data
 structure and defines its associated XDR routine before creating the
 linked list. In the example, a data structure and its associated XDR
 routines are created to list a person's gross assets and liabilities. The
 data structure and its associated XDR routine can be coded as follows:

 struct gnumbers {
 long g_assets;
 long g_liabilities;
 };

 bool_t
 xdr_gnumbers (xdrs, gp)
 XDR *xdrs;
 struct gnumbers *gp;
 {
 if (xdr_long (xdrs, &(gp->g_assets)))
 return (xdr_long (xdrs, &(gp->g_liabilities)));
 return(FALSE);
 }

 The xdrs parameter points to the XDR data stream handle, and the gp
 parameter points to the address of the structure that provides the data to
 or from the XDR stream.

 To create a linked list of the assets and liabilities structure, the
 following structure could be constructed:

 typedef struct gnode {
 struct gnumbers gn_numbers;
 struct gnnode *nxt;
 };

 typedef struct gnnode *gnumbers_list;

 The head of the linked list defines the data object. The nxt parameter
 specifies whether the object has terminated. If the object continues, the
 nxt parameter points to the address of the structure where the object
 continues. However, when the object is serialized, the link addresses no
 longer contain useful information.

 The XDR data description of this linked list can be described by the
 recursive type declaration of the gnumbers_list as follows:

 struct gnumbers {
 unsigned g_assets;
 unsigned g_liabilities;
 };

 typedef union switch (boolean) {
 case TRUE: struct {
 struct gnumbers current_element;
 gnumbers_list rest_of_list;
 };
 case FALSE: struct ();
 } gnumbers_list:

AIX Operating System Technical Reference
Passing Linked Lists Using XDR

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.11 - 1

 In this description, the Boolean indicates whether data follows it. The
 value of the Boolean is FALSE when no data follows it. The value of the
 Boolean is TRUE, when it is followed by the rest of the object (gnumbers
 structure and gnumbers_list). The data structure has no Boolean
 explicitly declared in it; however the nxt parameter implicitly carries
 the information. Also note that the XDR data description has no pointer
 explicitly declared in it.

 To write a set of XDR routines to serialize or deserialize a linked list
 of entries, you can use the XDR description of the data that has no
 pointer. The set contains the mutually recursive routines
 xdr_gnumbers_list, xdr_wrap_list, and xdr_gnnode, as the illustrated in
 the following:

 bool_t
 xdr_gnnode (xdrs, gp)
 XDR *xdrs;
 struct gnnode *gp;
 {
 return (xdr_gnumbers (xdrs, &(gp->gn_numbers)) &&
 xdr_gnumbers_list (xdrs, &(gp->nxt)));

 }
 bool_t
 xdr_wrap_list (xdrs, glp)
 XDR *xdrs;
 gnumbers_list *glp;
 {
 return (xdr_reference (xdrs, glp,
 sizeof(struct gnnode), xdr_gnnode));
 }

 struct xdr_discrim choices [2] = {
 /*
 * called if another node needs serializing or deserializing
 */
 { TRUE, xdr_wrap_list },
 /*
 * called when no more nodes need serializing or deserializing
 */
 { FALSE, xdr_void }
 }

 bool_t
 xdr_gnumbers_list (xdrs, glp)
 XDR *xdrs;
 gnumbers_list *glp;
 {
 bool_t more_data;

 more_data = (*glp != (gnumbers_list)NULL);
 return (xdr_union (xdrs, &more_data,
 glp, choices, NULL));
 }

 The entry routine xdr_gnumbers_list translates between the Boolean value
 more_data and the list pointer values. When there is no more data, the
 xdr_union routine calls the xdr_void routine which terminates the
 recursion. Otherwise, xdr_union calls xdr_wrap_list to dereference the
 list pointers. The xdr_gnnode routine actually serializes (or

AIX Operating System Technical Reference
Passing Linked Lists Using XDR

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.11 - 2

 deserializes) the data of the linked list's current node. It then
 recursively calls xdr_gnumbers_list to process the remainder of the list.

 These routines function correctly in all three directions (XDR_ENCODE,
 XDR_DECODE, and XDR_FREE) for linked lengths of any lengths (including
 zero). The Boolean more_data is always initialized, but when XDR_DECODE
 is called, more_data is overwritten by an externally generated value. The
 value of the bool_t is lost in the stack, but its value is reflected in
 the pointers to the list.

 Because of the recursion involved with these routines, when you use them
 to serialize or deserialize a list, the stack grows in linear proportion
 to the number of nodes in the list. The routines can become difficult to
 code because of the number of primitives involved. The following routine
 shows how to collapse the recursive routines:

 bool_t
 xdr_gnumbers_list (xdrs, glp)
 XDR *xdrs;
 gnumbers_list *glp;
 {
 bool_t more_data;
 bool_t freeing
 gnumbers_list *next; /*the next value of glp*/

 freeing = (xdrs->x_op ==XDR_FREE);
 while (TRUE) {
 more_data = (*glp != (gnumbers_list)NULL);
 if (!xdr_bool (xdrs, &more_data))
 return (FALSE) ;
 if (!more_data)
 return (TRUE) ; /* we are done */
 if (freeing)
 next = &((*glp)->nxt);
 if (!xdr_reference (xdrs, glp sizeof(struct gnnode),
 xdr_gnumbers))
 return (FALSE);
 glp = (freeing) ? next : &((*glp)->nxt);
 }
 }

 The glp parameter acts as the address of the pointer to the head of the
 remainder of the list to be serializes or deserialized. The glp parameter
 is set to the address of the current node's nxt field at the end of the
 while loop. The discriminated union is implemented inline. The more_data
 variable is used in the same manner as in the preceding routines, and its
 value is recomputed and reserialized (or redeserialized) at each repeat of
 the loop. This example inspects the direction of the operation
 (xdrs->x_op).

 Since *glp is a pointer to a node, the pointer is dereferenced by the
 xdr_reference routine. The sizeof parameter sets the size of a node (data
 values plus the nxt pointer), while xdr_numbers only serializes or
 deserializes the data values.

 Related Information

 In this book: "Remote Procedure Call (RPC)" in topic 1.2.231.

 The chapter on RPC in AIX Operating System Programming Tools and

AIX Operating System Technical Reference
Passing Linked Lists Using XDR

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.11 - 3

 Interfaces.

AIX Operating System Technical Reference
Passing Linked Lists Using XDR

¦ Copyright IBM Corp. 1985, 1991
1.2.332.1.11 - 4

 1.2.333 Network Information Service Client Interface

 Purpose
 Provides system information for networked NIS host machines.

 Library
 Internet Library (libc.a)

 Syntax
 # include <rpcsvc/ypclnt.h>

 Description
 The IBM AIX Network File System NIS client interface is composed of the
 library functions used by the network information service to look up and
 return system information in a network that has the network information
 service installed. The network information service (NIS) is a distributed
 network lookup service that provides system information, such as user
 passwords and host names, to other machines running NIS. Read-only NIS
 data bases can be maintained on multiple nodes in a network of machines.
 Other network machines function as NIS clients by requesting information
 from the NIS data bases. See the section on network information service
 in Managing the AIX Operating System for more detailed information.

 The NIS client interface handles client requests through the Remote
 Procedure Call (RPC) facility. RPC is a paradigm for interprocess
 communication that allows one process to call another process to execute
 functions in a remote environment. The input and output to NIS remote
 procedure calls are described using the External Data Representation (XDR)
 specification for representing basic data types in a uniform format. The
 XDR specification establishes standard representations for data types so
 that they can be transferred among machines without being dependent on
 machine type or architecture. See "Remote Procedure Call (RPC)" in
 topic 1.2.231 for more information on RPC, and "XDR (External Data
 Representation)" in topic 1.2.332 for more information on XDR.

 Subtopics
 1.2.333.1 How NIS Works
 1.2.333.2 NIS Maps
 1.2.333.3 NIS Client Interface Routines

AIX Operating System Technical Reference
Network Information Service Client Interface

¦ Copyright IBM Corp. 1985, 1991
1.2.333 - 1

 1.2.333.1 How NIS Works

 When NIS is configured into a network, the person who manages the system
 selects one server to be the NIS master server for a set of networked
 machines, and builds the master NIS data base on this server. After the
 master NIS data base is built, the NIS lookup service daemon, ypserv, is
 started. The master NIS data base is propagated, or replicated, to a
 number of other servers in the network that are designated as NIS slave
 servers. The ypserv daemons are started on these servers.

 When NIS clients request system information, such as a host name, that
 information may reside on a remote NIS server, which means they are making
 a remote procedure call. The remote procedure call is sent to a ypserv
 daemon on one of the NIS servers. The ypserv daemon looks up the
 information in its local NIS data base and returns it to the client. See
 AIX Operating System Commands Reference and Managing the AIX Operating
 System for more information on the ypserv daemon.

AIX Operating System Technical Reference
How NIS Works

¦ Copyright IBM Corp. 1985, 1991
1.2.333.1 - 1

 1.2.333.2 NIS Maps

 Network system information is stored in NIS maps. Each map contains data
 sets stored as keys and their associated values. The keys identify the
 names of such system information as hosts, passwords, and user IDs. For
 example, the hosts map contains the names and Internet addresses for all
 machines in the network. The host names are the keys and the Internet
 addresses are the values. The NIS lookup service matches the keys in the
 map to the name of the item requested by the client (the input string to
 the item) in order to return the associated value data to the client.

 Each NIS map has a name that programs must use to access the data in the
 map. In addition, programs requesting information must know the format of
 the data in the NIS map. The format of the data in default NIS maps
 matches the format of the ASCII files used as input for the maps.

 NIS maps are grouped by NIS domain. A NIS domain refers collectively to a
 designated group of hosts. Maps are stored in a subdirectory of /etc/yp
 that corresponds to the appropriate domain. For example, the NIS maps for
 hosts in the publications domain are stored in /etc/yp/publications on the
 NIS servers. To find the correct map, the ypserv daemon uses the
 publications domain name when calling map lookup functions.

AIX Operating System Technical Reference
NIS Maps

¦ Copyright IBM Corp. 1985, 1991
1.2.333.2 - 1

 1.2.333.3 NIS Client Interface Routines

 The NIS client interface is composed of the library functions used by the
 ypserv daemon to look up information and to return it to the client. NIS
 uses matching and enumeration routines to get information from its data
 bases and return it to the clients. The system calls and parameters that
 are used for these functions are discussed in the following sections.

 It is important to note that NIS clients must be bound to a NIS server
 that services the appropriate domain in order to use NIS services. When a
 client requests information, the lookup processes call the ypbind daemon
 to bind the client to a NIS server that can service the request. It is
 also possible to directly bind a client with a yp_bind routine. This is
 useful for programs that use backup strategies for instances when NIS is
 not available. For that reason, the yp_bind routine (and the contrasting
 yp_unbind routine) are listed at the end of this section.

 A Note about Parameters: Memory is allocated to the NIS client interface
 routines using the malloc system call and can be freed if the user code
 has no continuing need for it.

 Parameters with the prefix in are input parameters. The values of the
 indomain and inmap parameters cannot be null but must be null-terminated.

 Parameters with the prefix out are output parameters. Output parameters
 of the char ** type are addresses of uninitialized character pointers.
 The outkey and outval parameters cause 2 extra bytes of memory to be
 allocated at the end that contain new-line escape characters or the NULL
 value. The 2 bytes are not reflected in the outkeylen and outvallen
 parameter values.

 String parameters that are accompanied by a count parameter cannot be
 null. They can point to null strings if the count parameter specifies it.
 Counted strings do not have to be null-terminated.

 Enumerating Map Values:

 yp_first (indomain, inmap, outkey, outkeylen, outval, outvallen)
 char *indomain;
 char *inmap;
 char **outkey;
 int *outkeylen;
 char **outval;
 int *outvallen;

 yp_next (indomain, inmap, inkey, inkeylen, outkey, outkeylen,
 outval, outvallen)
 char *indomain;
 char *inmap;
 char *inkey
 int inkeylen
 char **outkey;
 int *outkeylen;
 char **outval;
 int *outvallen;

 The yp_first routine returns the first value from the map it
 associates with the named key.

 The yp_next routine returns each subsequent value it finds in the

AIX Operating System Technical Reference
NIS Client Interface Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.333.3 - 1

 named map until it reaches the end of the list.

 The indomain and inmap parameters point to the names of the domain
 and map used as input to the system call.

 In the yp_first routine the inkey parameter is not needed since the
 value returned is considered the first key.

 The yp_next routine must be preceded by an initial yp_first call.
 Use the outkey value returned from the initial yp_first as the value
 of the inkey parameter for yp_next. The inkey values for subsequent
 calls are retrieved as the nth + second key-value pair. That is,
 each time the routine returns a key-value pair, the outkey value
 returned becomes the value to use as the next inkey parameter.

 The inkeylen parameter is the length, in bytes, of the string inkey.

 The outval parameter is an uninitialized pointer to a buffer where
 the values associated with the key are placed. The outvallen
 parameter is the length, in bytes, of the string pointed to by
 outval.

 The concepts of first and next depend on the structure of the NIS
 map being processed. The routines do not retrieve the information
 in a specific order, such as the lexical order from the original
 data base information files or the numerical sorting order of the
 keys, values, or key-value pairs. They do show every entry in the
 NIS map if the yp_first function is called on a specific map with
 yp_next called repeatedly. The process returns the message
 NISERR_NOMORE to the user to indicate that every entry in the NIS
 map has been seen once. If the same sequence of operations is
 performed on the same map at the same server, the entries are seen
 in the same order.

 Note: If a server operates under a heavy load or fails, the domain
 can become unbound and then bound again while a client is
 running. If it binds itself to a different server, it can
 cause entries to be seen twice or not be seen at all. The
 domain rebinds itself to protect the enumeration process from
 being interrupted before it completes. You can avoid this
 situation by returning all of the keys and values with the
 following yp_all routine.

 yp_all (indomain, inmap, incallback)
 char *indomain;
 char *inmap;
 struct ypall_callback incallback {
 int (* foreach) ();
 char *data;
 };

 foreach (instatus, inkey, inkeylen, inval, invallen, indata)
 int instatus;
 char *inkey;
 int inkeylen;
 char *inval;
 int invalllen;
 char *indata;

AIX Operating System Technical Reference
NIS Client Interface Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.333.3 - 2

 The yp_all routine transfers all of the key-value pairs from the NIS
 server to the client as the entire map. It uses TCP (rather than
 UDP) to transport the data. The entire transaction takes places as
 a single remote procedure call and response function.

 The indomain and inmap parameters point to the names of the domain
 and map used as input to the system call.

 The instatus parameter of the foreach routine holds a return status
 value of the form NIS_TRUE or an error code. The error codes are
 defined in the <rpcsvc/yp_prot.h> header file.

 The inkey parameter points to memory that is private to the yp_all
 function and is overwritten when each new key-value pair arrives.
 The foreach function can use the contents of the memory but does not
 own the memory itself. Key and value objects presented to foreach
 look exactly like they do in the server's map. Objects not
 terminated by NEWLINE or NULL in the server's map are not terminated
 by NEWLINE or NULL in the client's map.

 The indata parameter holds the contents of the incallback->data
 element passed to the yp_all routine. The data element shares state
 information between the foreach function and the mainline code. It
 is an optional parameter because no part of the NIS client package
 inspects its contents.

 Since the foreach function is a Boolean, it returns 0 (zero) to
 indicate that it wants to be called again for additional received
 key-value pairs. It returns a nonzero value to stop the flow of
 key-value pairs. If foreach returns a nonzero value, it is not
 called again, and yp_all returns a value of 0 (zero).

 Working with Domains and Maps:

 yp_get_default_domain (outdomain)
 char **outdomain;

 NIS lookup calls require a map name and a domain name. The client
 processes can get the default domain of the node by calling the
 yp_get_default_domain routine and using the value returned by the
 outdomain parameter as the input domain (indomain) parameter for its
 NIS remote procedure calls.

 yp_master (indomain, inmap, outname)
 char *indomain;
 char *inmap;
 char **outname;

 The yp_master routine returns the machine name of the NIS master
 server for a map.

 The indomain and inmap parameters point to the names of the domain
 and map used as input to the system call. The outname parameter
 points to the character string that identifies the NIS master server
 by name.

 yp_match (indomain, inmap, inkey, inkeylen, outval, outvallen)
 char *indomain;
 char *inmap;
 char *inkey;

AIX Operating System Technical Reference
NIS Client Interface Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.333.3 - 3

 int inkeylen;
 char **outval;
 int *outvallen;

 The yp_match routine searches for the value associated with a key.
 The input character string entered as the key must match a key in
 the NIS map exactly because pattern matching is not available in the
 NIS.

 The indomain, inmap, and inkey parameters point to the names of the
 domain, map, and key used as input to the function. The inkeylen
 parameter is the length, in bytes, of the string inkey.

 The outval parameter is an uninitialized pointer to a buffer where
 the values associated with the key are placed. The outvallen
 parameter is the length, in bytes, of the string pointed to by
 outval.

 yp_order (indomain, inmap, outorder)
 char *indomain;
 char *inmap;
 unsigned long *outorder;

 The yp_order routine returns the order number for a map which
 identifies when the map was built. This is important in determining
 if the local map is the most current version or if the master NIS
 data base has a more current one.

 The indomain and inmap parameters point to the names of the domain
 and map used as input to the system call.

 The outorder parameter points to the order number, which is a
 ten-digit ASCII integer that represents the AIX time, in seconds,
 when the map was built.

 Error Information:

 char *yperr_string (incode)
 int incode;

 The yperr_string routine returns a pointer to an error message
 string. The error message string is null-terminated but contains no
 period or new-line escape characters.

 ypprot_err (incode)
 u_int incode;

 The ypprot_err routine takes a NIS protocol error code as input, and
 returns an error code to be used as input to an yperr_string call.

 Binding and Unbinding NIS Service:

 yp_bind (indomain)
 char *indomain;

 void yp_unbind (indomain)
 char *indomain;

 In order to use the NIS services, the client process must be bound
 to a NIS server that serves the appropriate domain. That is, the

AIX Operating System Technical Reference
NIS Client Interface Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.333.3 - 4

 client must be associated with a specific NIS server that services
 the client's requests for NIS information. The NIS lookup processes
 automatically use the ypbind daemon to bind the client, but yp_bind
 can be used in programs to call the daemon directly for processes
 that use backup strategies when NIS is not available.

 Each NIS binding allocates, or uses up, one client process socket
 descriptor, and each bound domain uses one socket descriptor.
 Multiple requests to the same domain use the same descriptor.

 The yp_unbind routine is available to manage socket descriptors for
 processes that access multiple domains. When yp_unbind is used to
 free a domain, all per-process and per-node resources that were used
 to bind it are also freed.

 Note: If an RPC failure status returns from the use of yp_bind, the
 domain is unbound automatically. When this occurs, the NIS
 client tries to complete the operation if the ypbind daemon
 is running and one of the following is true:

 � The client process cannot bind a server for the proper domain.
 � Remote procedure calls to the server fail.

 The NIS client returns control to the user with either an error or
 success code with results if any of the following occurs:

 � The error is not related to RPC.
 � The ypbind daemon is not running.
 � The ypserv daemon returns an answer.

 Return Value
 Upon successful completion, the NIS client interface routines return the
 value 0. Otherwise, they return a failure code with the prefix NISERR_.

 Error Conditions
 The NIS function calls fail if one or more of the following is true:

 NISERR_BADARGS Arguments to the function are not correct.

 NISERR_RPC Unable to complete remote procedure call because domain
 is not bound.

 NISERR_DOMAIN Cannot bind to NIS server on this domain.

 NISERR_MAP Map is not in server's domain.

 NISERR_KEY Key is not in map.

 NISERR_NISERR Internal NIS server or client error.

 NISERR_RESRC Resource allocation failure.

 NISERR_NOMORE No more records in map data base.

 NISERR_PMAP Cannot communicate with portmap daemon.

 NISERR_NISBIND Cannot communicate with ypbind daemon.

 NISERR_NISSERV Cannot communicate with the ypserv daemon.

AIX Operating System Technical Reference
NIS Client Interface Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.333.3 - 5

 NISERR_NODOM Local NIS domain name not set.

 Files

 /usr/include/rpcsvc/ypclnt.h
 /usr/include/rpcsvc/yp_prot.h

 Related Information
 In this book: "Remote Procedure Call (RPC)" in topic 1.2.231 and "XDR
 (External Data Representation)" in topic 1.2.332.

 The ypbind, ypserv, and administrative commands in AIX Operating System
 Commands Reference.

AIX Operating System Technical Reference
NIS Client Interface Routines

¦ Copyright IBM Corp. 1985, 1991
1.2.333.3 - 6

 2.0 Volume 2. Files and Device Drivers

 Subtopics
 2.3 Chapter 3. File Formats
 2.4 Chapter 4. Miscellaneous Facilities
 2.5 Chapter 5. Special Files
 2.6 Chapter 6. Advanced Display Graphics Support Library

AIX Operating System Technical Reference
Volume 2. Files and Device Drivers

¦ Copyright IBM Corp. 1985, 1991
2.0 - 1

 2.3 Chapter 3. File Formats

 Subtopics
 2.3.1 About This Chapter
 2.3.2 a.out
 2.3.3 acct
 2.3.4 ar
 2.3.5 attributes
 2.3.6 autolog
 2.3.7 backup
 2.3.8 cc.cfg
 2.3.9 connect.con
 2.3.10 core
 2.3.11 cpio
 2.3.12 .cshrc, .login
 2.3.13 ddi
 2.3.14 descriptions
 2.3.15 devinfo
 2.3.16 dir
 2.3.17 errfile
 2.3.18 filesystems
 2.3.19 fonts
 2.3.20 fs
 2.3.21 fsmap
 2.3.22 fspec
 2.3.23 fstore
 2.3.24 gettydefs
 2.3.25 gps
 2.3.26 group
 2.3.27 history
 2.3.28 inittab
 2.3.29 inode
 2.3.30 kaf
 2.3.31 loads
 2.3.32 master
 2.3.33 message
 2.3.34 mh-alias
 2.3.35 mh-format
 2.3.36 mh-mail
 2.3.37 mhook
 2.3.38 mh-profile
 2.3.39 mh-tailor
 2.3.40 mntent, mtab
 2.3.41 netparams
 2.3.42 openfiles
 2.3.43 options
 2.3.44 passwd
 2.3.45 plot
 2.3.46 ports
 2.3.47 predefined
 2.3.48 profile
 2.3.49 qconfig
 2.3.50 rasconf
 2.3.51 RPC
 2.3.52 sccsfile
 2.3.53 sendmail.cf
 2.3.54 site
 2.3.55 sitegroup
 2.3.56 system
 2.3.57 System.Netid

AIX Operating System Technical Reference
Chapter 3. File Formats

¦ Copyright IBM Corp. 1985, 1991
2.3 - 1

 2.3.58 tar
 2.3.59 terminfo
 2.3.60 utmp, wtmp, .ilog

AIX Operating System Technical Reference
Chapter 3. File Formats

¦ Copyright IBM Corp. 1985, 1991
2.3 - 2

 2.3.1 About This Chapter

 This chapter outlines the formats of various files. The C language struct
 declarations for the file formats are given where applicable. These
 structures are usually found in header files located in the /usr/include
 or /usr/include/sys directories, although they can be located in any
 directory in the file system.

 Many of the files described in this chapter contain magic numbers at
 predefined offsets. Magic numbers provide programs with a way to verify
 the format of an input file before attempting to process it. The values
 used for magic numbers are chosen because they are not likely to occur as
 a random pattern in normal input.

AIX Operating System Technical Reference
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
2.3.1 - 1

 2.3.2 a.out

 Purpose
 Provides common assembler and link editor output.

 Synopsis
 #include <a.out.h>

 Description
 The as (assembler), compilers (C, VS Pascal, and VS FORTRAN), and ld (link
 editor) programs produce an output file (the a.out file by default). The
 a.out file is executable if the assembler, compilers, and the link editor
 do not find any unresolved external references or errors in the source
 file.

 This file can consist of the following sections: a file header, an
 auxiliary header, section headers for each of the file's raw data
 sections, the raw data sections, relocation data for each raw data
 section, line number information for each raw data section, a symbol table
 section, and, if long symbols are used, a strings table. A diagram of
 this structure follows.

 Every a.out does not contain all the sections enumerated. In particular,
 the line number, symbol table, and strings table sections are not present
 if the program is linked with the -s flag of the ld command or if they
 were removed by the strip command.

 Comment sections are only present as a result of certain as directives.
 Library sections (.lib) are only found in shared library archive members
 or programs linked with shared libraries. Initialization sections (.init)
 are only found in shared library archive members or programs linked with
 shared libraries that are not yet executable. Finally, there are no
 relocation sections if the file is executable.

 Loading an a.out file into memory for execution causes the creation of
 three logical segments: the text segment, the data segment (initialized
 data followed by data that is not initialized, the latter effectively
 being initialized to all zeros), and a stack.

 The text segment occupies a low memory address in the process image, and
 its size is static. The data segment follows the text segment. The size
 of this segment can be extended using the brk system call. The stack
 segment begins near the highest locations and grows toward the data
 segment as required.

 Subtopics
 2.3.2.1 Common Object File Format
 2.3.2.2 File Header
 2.3.2.3 Auxiliary Header
 2.3.2.4 Section Headers
 2.3.2.5 Relocation Data
 2.3.2.6 Line Number Data
 2.3.2.7 Symbol Table Data
 2.3.2.8 Symbol Value
 2.3.2.9 Storage Classes
 2.3.2.10 Auxiliary Entry Format
 2.3.2.11 Strings Table
 2.3.2.12 Access Routines

AIX Operating System Technical Reference
a.out

¦ Copyright IBM Corp. 1985, 1991
2.3.2 - 1

 2.3.2.1 Common Object File Format

 File Organization:
 INCLUDE FILE
 +--------------------------------------+
 ¦ HEADER DATA ¦
 +--------------------------------------¦
 ¦ File Header ¦ "filehdr.h"
 +--------------------------------------¦
 ¦ Auxiliary Header Information ¦ "aouthdr.h"
 +--------------------------------------¦
 ¦ ".init" section header ¦ "scnhdr.h"
 +--------------------------------------¦
 ¦ ".text" section header ¦ "
 +--------------------------------------¦
 ¦ ".data" section header ¦ "
 +--------------------------------------¦
 ¦ ".bss" section header ¦ "
 +--------------------------------------¦
 ¦ ".comment" section header ¦ "
 +--------------------------------------¦
 ¦ ".debug" section header ¦ "
 +--------------------------------------¦
 ¦ ".lib" section header ¦ "
 +--------------------------------------¦
 ¦ RAW DATA ¦
 +--------------------------------------¦
 ¦ ".init" section data (rounded to 4 ¦
 ¦ bytes) ¦
 +--------------------------------------¦
 ¦ ".text" section data (rounded to 4 ¦
 ¦ bytes) ¦
 +--------------------------------------¦
 ¦ ".data" section data (rounded to 4 ¦
 ¦ bytes) ¦
 +--------------------------------------¦
 ¦ ".comment" section data (rounded to ¦
 ¦ 4 bytes) ¦
 +--------------------------------------¦
 ¦ ".lib" section data (rounded to 4 ¦
 ¦ bytes) ¦
 +--------------------------------------¦
 ¦ RELOCATION DATA ¦
 +--------------------------------------¦
 ¦ ".init" section relocation data ¦ "reloc.h"
 +--------------------------------------¦
 ¦ ".text" section relocation data ¦ "
 +--------------------------------------¦
 ¦ ".data" section relocation data ¦ "
 +--------------------------------------¦
 ¦ LINE NUMBER DATA ¦
 +--------------------------------------¦
 ¦ ".text" section line numbers ¦ "linenum.h"
 +--------------------------------------¦
 ¦ ".data" section line numbers ¦ "
 +--------------------------------------¦
 ¦ SYMBOL TABLE ¦
 +--------------------------------------¦
 ¦ ".init", ".text", ".data" and ".bss" ¦ "syms.h"
 ¦ section symbols ¦ "storclass.h"

AIX Operating System Technical Reference
Common Object File Format

¦ Copyright IBM Corp. 1985, 1991
2.3.2.1 - 1

 +--------------------------------------¦
 ¦ STRINGS TABLE ¦
 +--------------------------------------¦
 ¦ ".init", ".text", ".data" and ".bss" ¦
 ¦ section symbols larger than 8 chars ¦
 +--------------------------------------+

 Object File Components:

 Header Files:

 /usr/include/filehdr.h
 /usr/include/aouthdr.h
 /usr/include/scnhdr.h
 /usr/include/reloc.h
 /usr/include/linenum.h
 /usr/include/syms.h
 /usr/include/storclass.h

 Standard File (includes the header files above):

 /usr/include/a.out.h Object file

AIX Operating System Technical Reference
Common Object File Format

¦ Copyright IBM Corp. 1985, 1991
2.3.2.1 - 2

 2.3.2.2 File Header

 The format of the file header is as follows:

 struct filehdr {
 unsigned short f_magic; /* magic number */
 unsigned short f_nscns; /* number of sections */
 long f_timdat; /* time & date stamp */
 long f_symptr; /* file pointer to symtab */
 long f_nsyms; /* number of symtab entries */
 unsigned short f_opthdr; /* sizeof(optional hdr) */
 unsigned short f_flags; /* flags */
 };

 The fields in the file header are defined as follows:

 f_magic A 2-byte machine type identification number.

 f_nscns The number of sections in this file.

 f_timdat A 4-byte number encoding the time and date that the file was
 created.

 f_symptr A file pointer or offset into the file to the start of the
 symbol table section.

 f_nsyms The number of symbol table entries.

 f_opthdr The size of the auxiliary or optional header. This field is 0
 if there is no header.

 f_flags The bits in the f_flags field are defined as follows:

 F_RELFLG Relocation information stripped from file

 F_EXEC File is executable (that is, no unresolved external
 references)

 F_LNNO Line numbers stripped from file

 F_LSYMS Local symbols stripped from file

 F_MINIMAL This is a minimal object file (*.m) output of
 fextract.

 F_SWABD This file has had its bytes swabbed (in names).

 F_UPDATE This is a fully bound update file output of ogen.

 F_AR16WR This file created on AR16WR machine (for instance,
 Intel 80286)

 F_AR32WR This file created on AR32WR machine (for instance, IBM
 PS/2)

 F_AR32W This file created on AR32W machine (for instance, IBM
 System/370)

 F_PATCH File contains "patch" list in optional header

AIX Operating System Technical Reference
File Header

¦ Copyright IBM Corp. 1985, 1991
2.3.2.2 - 1

 F_NODF (Minimal file only) no decision functions for replaced
 functions.

 The numerical value of the flags is as follows:

 #define F_RELFLG 0000001
 #define F_EXEC 0000002
 #define F_LNNO 0000004
 #define F_LSYMS 0000010
 #define F_MINMAL 0000020
 #define F_UPDATE 0000040
 #define F_SWABD 0000100
 #define F_AR16WR 0000200
 #define F_AR32WR 0000400
 #define F_AR32W 0001000
 #define F_PATCH 0002000
 #define F_NODF 0002000

AIX Operating System Technical Reference
File Header

¦ Copyright IBM Corp. 1985, 1991
2.3.2.2 - 2

 2.3.2.3 Auxiliary Header

 The format of the auxiliary header is as follows:

 typedef struct aouthdr {
 short magic; /* magic number - see /etc/magic */
 short vstamp; /* version stamp */
 long tsize; /* text size in bytes, padded to FW boundary */
 long dsize; /* initialized data " " */
 long bsize; /* uninitialized data " " */
 long entry; /* entry pt. */
 long text_start; /* base of text used for this file */
 long data_start; /* base of data used for this file */
 } AOUTHDR;

 The fields in the auxiliary header are defined as follows:

 magic File type identification number.

 vstamp Number used to identify the file version. The linker fills in
 this field upon request.

 tsize The size of the .text segment, rounded to the nearest 4-byte
 boundary.

 dsize The size of the .data segment, rounded to the next 4-byte
 boundary.

 bsize The size of the .bss segment, rounded to the next 4-byte
 boundary.

 entry The starting address of the program at execution time.

 text_start The base address of the .text segment at execution time

 data_start The base address of the .data segment at execution time

AIX Operating System Technical Reference
Auxiliary Header

¦ Copyright IBM Corp. 1985, 1991
2.3.2.3 - 1

 2.3.2.4 Section Headers

 Each raw data section of the COFF file has a corresponding section header
 with the following format:

 struct scnhdr {
 char s_name[8]; /* section name */
 long s_paddr; /* physical address */
 long s_vaddr; /* virtual address */
 long s_size; /* section size - in bytes */
 long s_scnptr; /* file ptr to raw data for section */
 long s_relptr; /* file ptr to relocation entries */
 long s_lnnoptr; /* file ptr to line numbers entries */
 unsigned short s_nreloc; /* number of relocation entries */
 unsigned short s_nlnno; /* number of line number entries */
 long s_flags; /* flags */
 };

 /*
 * The low two bytes of s_flags is used as a section "type"
 */

 #define STYP_REG 0x00 /* "regular" section: */
 /* allocated, relocated, loaded */
 #define STYP_DSECT 0x01 /* "dummy" section: */
 /* not allocated, relocated,
 not loaded */
 #define STYP_NOLOAD 0x02 /* "noload" section: */
 /* allocated, relocated,
 not loaded */
 #define STYP_GROUP 0x04 /* "grouped" section: */
 /* formed of input sections */
 #define STYP_PAD 0x08 /* "padding" section: */
 /* not allocated, not relocated,
 loaded */
 #define STYP_COPY 0x10 /* "copy" section: */
 /*for decision function used by
 field update;
 /* not allocated, not relocated,
 loaded; reloc & lineno
 entries processed normally */
 #define STYP_TEXT 0x20 /* section contains text only */
 #define STYP_DATA 0x40 /* section contains data only */
 #define STYP_BSS 0x80 /* section contains bss only */
 #define S_NEWFUN 0X100 /* new function in an update file*/
 #define STYP_INFO 0x200 /* comment section : not allocated
 not relocated, not loaded */
 #define STYP_OVER 0x400 /* overlay section : relocated
 not allocated or loaded */
 #define STYP_LIB 0x800 /* for .lib section : same as INFO */

 Note: The physical address of a section is its offset from address zero
 of the address space. It is NOT necessarily the run-time address.

AIX Operating System Technical Reference
Section Headers

¦ Copyright IBM Corp. 1985, 1991
2.3.2.4 - 1

 2.3.2.5 Relocation Data

 A word in the text or data segment of memory contains either an actual
 value or the value of an offset. If a word in the text or data segment
 references an undefined external symbol, its value is an offset from the
 associated external symbol. During processing, the link editor defines
 the external symbol and adds the value of the symbol to the word in the
 file.

 When relocation information is present, each item that can be relocated is
 10 bytes long. The format of the relocation information is as follows:

 struct reloc {
 long r_vaddr; /* (virtual) address of reference */
 long r_symndx; /* index into symbol table */
 unsigned short r_type; /* relocation type */
 };

 The r_vaddr field gives the location of the relocatable reference relative
 to the beginning of the segment in which it is defined.

 The r_symndex field contains an index, counted from zero, of the symbol
 table entry that is referenced.

 The r_type field indicates to the link editor the type of relocation that
 is to be performed on the relocation entry during the linking process.

 The currently defined relocation types are as follows:

 #define R_ABS 0
 #define R_OFF8 07
 #define R_OFF16 010
 #define R_SEG12 011
 #define R_AUX 013
 #define R_DIR16 01
 #define R_REL16 02
 #define R_IND16 03
 #define R_DIR24 04
 #define R_REL24 05
 #define R_OPT16 014
 #define R_IND24 015
 #define R_IND32 016

 #define R_DIR10 025
 #define R_REL10 026
 #define R_REL32 027
 #define R_DIR32 06
 #define R_DIR32S 012

 #define R_RELBYTE 017
 #define R_RELWORD 020
 #define R_RELLONG 021
 #define R_PCRBYTE 022
 #define R_PCRWORD 023
 #define R_PCRLONG 024

AIX Operating System Technical Reference
Relocation Data

¦ Copyright IBM Corp. 1985, 1991
2.3.2.5 - 1

 2.3.2.6 Line Number Data

 When present, there is one line number entry for every "breakpointable"
 source line in a section. Line numbers are grouped on a per function
 basis; the first entry in a function grouping will have l_lnno = 0 and, in
 place of the physical address, there will be the symbol table index of the
 function name.

 The format of a line number entry is as follows:

 struct lineno
 {
 union
 {
 long l_symndx ; /* sym. table index of function name
 if l_lnno == 0 */
 long l_paddr ; /* (physical) address of line number */
 } l_addr ;
 unsigned short l_lnno ; /* line number */
 } ;

 Line number entries are used by a symbolic debugger to debug code at the
 source level.

AIX Operating System Technical Reference
Line Number Data

¦ Copyright IBM Corp. 1985, 1991
2.3.2.6 - 1

 2.3.2.7 Symbol Table Data

 The symbol table consists of the following entries:

 struct syment
 {
 union
 {
 char _n_name[SYMNMLEN]; /* old COFF version */
 struct
 {
 long _n_zeros; /* new == 0 */
 long _n_offset; /* offset into string table */
 } _n_n;
 char *_n_nptr[2]; /* allows for overlaying */
 } _n;
 unsigned long n_value; /* value of symbol */
 short n_scnum; /* section number */
 unsigned short n_type; /* type and derived type */
 char n_sclass; /* storage class */
 char n_numaux; /* number of aux. entries */
 };
 #define SYMNMLEN 8 /* Number of characters in a symbol name */
 #define SYMENT struct syment
 #define SYMESZ 18 /* sizeof(SYMENT) - on disk */
 /* WARNING: size may differ in memory */
 /* because of alignment restrictions */

 #define n_name _n._n_name
 #define n_nptr _n._n_nptr[1]
 #define n_zeros _n._n_n._n_zeros
 #define n_offset _n._n_n._n_offset

 The fields in the symbol table are defined as follows:

 _n_name:
 The symbol name, which consists of a null-terminated ASCII
 string, is contained within the _n_name field,if the length of
 the name is less than equal to SYMNMLEN. Otherwise, the first 4
 bytes of the field are zero and the next 4 bytes contain a file
 pointer into the strings table section, which contains the name.

AIX Operating System Technical Reference
Symbol Table Data

¦ Copyright IBM Corp. 1985, 1991
2.3.2.7 - 1

 2.3.2.8 Symbol Value

 n_value:
 The value assigned to a symbol is dependent upon its storage
 class. (See "Storage Classes" in topic 2.3.2.9.) In the usual
 case of interest, relocatable symbols have a value that is equal
 to the virtual address of the symbol. Of course, when a program
 module is linked with other modules this value changes.

 The full meaning of n_value is summarized in the following
 table:

 Storage Class n_value
 C_AUTO stack offset in bytes
 C_EXT relocatable address
 C_STAT relocatable address
 C_REG register number
 C_LABEL relocatable address
 C_MOS offset in bytes
 C_ARG stack offset in bytes
 C_STRTAG 0
 C_MOU 0
 C_UNTAG 0
 C_TPDEF 0
 C_ENTAG 0
 C_MOE enumeration value
 C_REGPARM register number
 C_FIELD bit displacement
 C_BLOCK relocatable address
 C_FCN relocatable address
 C_EOS size
 C_FILE pointer to next C_FILE
 entry
 C_ALIAS tag index
 C_HIDDEN relocatable address

 Note: The C_FILE entries form a singly linked list in the
 symbol table. For the last entry in the symbol table,
 the value of the symbol is the index of the first global
 symbol.

 n_scnum:
 Relocatable symbols have a section number, n_scnum, of the
 section in which they are defined. Otherwise, section numbers
 have the following meanings:

 #define N_UNDEF 0 /* undefined symbol */
 #define N_ABS -1 /* value of symbol is absolute */
 #define N_DEBUG -2 /* special debugging symbol
 value of symbol is meaningless */
 #define N_TV
 (unsigned short) -3 /* symbol needs transfer vector
 (preload) */
 #define P_TV
 (unsigned short) -4 /* symbol needs
 transfer vector (postload) */

 n_type:
 The n_type field is primarily for use by a symbolic debugger.

AIX Operating System Technical Reference
Symbol Value

¦ Copyright IBM Corp. 1985, 1991
2.3.2.8 - 1

 The fundamental type of a symbol packed into the low 4 bits of
 the n_type field as follows :

 #define T_NULL 0
 #define T_ARG 1 /* function argument
 (only used by compiler) */
 #define T_CHAR 2 /* character */
 #define T_SHORT 3 /* short integer */
 #define T_INT 4 /* integer */
 #define T_LONG 5 /* long integer */
 #define T_FLOAT 6 /* floating point */
 #define T_DOUBLE 7 /* double word */
 #define T_STRUCT 8 /* structure */
 #define T_UNION 9 /* union */
 #define T_ENUM 10 /* enumeration */
 #define T_MOE 11 /* member of enumeration */
 #define T_UCHAR 12 /* unsigned character */
 #define T_USHORT 13 /* unsigned short */
 #define T_UINT 14 /* unsigned integer */
 #define T_ULONG 15 /* unsigned long */

 The high-order bits form the derived type. The derived types
 are defined as follows:

 #define DT_NON 0 /* no derived type */
 #define DT_PTR 1 /* pointer */
 #define DT_FCN 2 /* function */
 #define DT_ARY 3 /* array */

 Type packing constants are defined as follows:

 #define N_BTMASK 017
 #define N_TMASK 060
 #define N_TMASK1 0300
 #define N_TMASK2 0360
 #define N_BTSHFT 4
 #define N_TSHIFT 2

AIX Operating System Technical Reference
Symbol Value

¦ Copyright IBM Corp. 1985, 1991
2.3.2.8 - 2

 2.3.2.9 Storage Classes

 n_sclass:
 The field n_sclass has one of the following values:

 #define C_EFCN -1 /* physical end of function */
 #define C_NULL 0
 #define C_AUTO 1 /* automatic variable */
 #define C_EXT 2 /* external symbol */
 #define C_STAT 3 /* static */
 #define C_REG 4 /* register variable */
 #define C_EXTDEF 5 /* external definition */
 #define C_LABEL 6 /* label */
 #define C_ULABEL 7 /* undefined label */
 #define C_MOS 8 /* member of structure */
 #define C_ARG 9 /* function argument */
 #define C_STRTAG 10 /* structure tag */
 #define C_MOU 11 /* member of union */
 #define C_UNTAG 12 /* union tag */
 #define C_TPDEF 13 /* type definition */
 #define C_USTATIC 14 /* undefined static */
 #define C_ENTAG 15 /* enumeration tag */
 #define C_MOE 16 /* member of enumeration */
 #define C_REGPARM 17 /* register parameter */
 #define C_FIELD 18 /* bit field */
 #define C_WKEXT 20 /* Fortran weak extern */
 #define C_BLOCK 100 /* ".bb" or ".eb" */
 #define C_FCN 101 /* ".bf" or ".ef" */
 #define C_EOS 102 /* end of structure */
 #define C_FILE 103 /* file name */

 #define C_ALIAS 105 /* duplicate tag */
 #define C_HIDDEN 106 /* special storage class for external
 symbols in dmert public libraries */
 #define C_ENDINIT 107 /* special storage class for
 .bei and .fei sdb information
 #define C_LFNE 104 /* dummy for line number entries
 reformatted as symbol table entries */

AIX Operating System Technical Reference
Storage Classes

¦ Copyright IBM Corp. 1985, 1991
2.3.2.9 - 1

 2.3.2.10 Auxiliary Entry Format

 n_numaux:
 The n_numaux field contains the number of auxiliary entries
 associated with this symbol table entry. Currently, a symbol
 table entry can have at most one auxiliary entry.

 The auxiliary entry provides additional information, and has
 this format:

 union auxent
 {
 struct
 {
 long x_tagndx; /* str, union, or enum tag indx */
 union
 {
 struct
 {
 unsigned short x_lnno; /* declaration line number */
 unsigned short x_size; /* str, union, array size */
 } x_lnsz;
 long x_fsize; /* size of function */
 } x_misc;
 union
 {
 struct /* if ISFCN, tag, or .bb */
 {
 long x_lnnoptr; /* ptr to fcn line # */
 long x_endndx; /* entry ndx past block end */
 } x_fcn;
 struct /* if ISARY, up to 4 dimen. */
 {
 unsigned short x_dimen[DIMNUM];
 } x_ary;
 } x_fcnary;
 unsigned short x_tvndx; /* tv index */
 } x_sym;
 struct
 {
 char x_fname[FILNMLEN];
 } x_file;
 struct

 {
 long x_scnlen; /* section length */
 unsigned short x_nreloc; /* number of relocation entries */
 unsigned short x_nlinno; /* number of line numbers */
 } x_scn;

 struct
 {
 long x_tvfill; /* tv fill value */
 unsigned short x_tvlen; /* length of .tv */
 unsigned short x_tvran[2]; /* tv range */
 } x_tv; /* info about .tv section (in auxent of symbol .tv)) */
 };

AIX Operating System Technical Reference
Auxiliary Entry Format

¦ Copyright IBM Corp. 1985, 1991
2.3.2.10 - 1

 #define AUXENT union auxent
 #define AUXESZ 18 /* sizeof(AUXENT) */

 #define FILNMLEN 14 /* Number of characters in a file name */
 #define DIMNUM 4 /* Number of array dimensions in aux entry */

 /* Defines for "special" symbols */

 #define _ETEXT "etext"
 #define _EDATA "edata"
 #define _END "end"

 The information in an auxiliary entry cannot be correctly
 interpreted without the symbol table entry to which it belongs.
 The order of entries within the symbol table is significant.

AIX Operating System Technical Reference
Auxiliary Entry Format

¦ Copyright IBM Corp. 1985, 1991
2.3.2.10 - 2

 2.3.2.11 Strings Table

 The strings table contains the names of symbols that are longer than 8
 characters. If present, the first 4 bytes contain the length, in bytes,
 of the strings table, including the length bytes. Thus, offsets into the
 strings table are greater than or equal to 4. The remainder of the table
 is a sequence of null-terminated ASCII strings. If the n_zeros field in a
 symbol table entry is 0, the n_offset field gives the offset into the
 strings table of the name for the symbol.

AIX Operating System Technical Reference
Strings Table

¦ Copyright IBM Corp. 1985, 1991
2.3.2.11 - 1

 2.3.2.12 Access Routines

 To ease program access to the COFF file sections, you should use the
 access routines in the library libld. Within the library libld, there
 exist routines to open, close, and access sections of a COFF file.

 Related Information
 In Volume 1 of this book see: "ldahread" in topic 1.2.141, "ldclose,
 ldaclose" in topic 1.2.142, "ldfcn" in topic 1.2.143, "ldfhread" in
 topic 1.2.144, "ldgetname" in topic 1.2.145, "ldlread, ldlinit, ldlitem"
 in topic 1.2.146, "ldlseek, ldnlseek" in topic 1.2.147, "ldohseek" in
 topic 1.2.148, "ldopen, ldaopen" in topic 1.2.149, "ldrseek, ldnrseek" in
 topic 1.2.150, "ldshread, ldnshread" in topic 1.2.151, "ldsseek, ldnsseek"
 in topic 1.2.152, "ldtbindex" in topic 1.2.153, "ldtbread" in
 topic 1.2.154, and "ldtbseek" in topic 1.2.155.

 The config program and the as, cc, dump, ld, nm, dbx, size, strip, and
 what commands in the AIX Operating System Commands Reference.

AIX Operating System Technical Reference
Access Routines

¦ Copyright IBM Corp. 1985, 1991
2.3.2.12 - 1

 2.3.3 acct

 Purpose
 Provides the accounting file format for each process.

 Synopsis
 #include <sys/acct.h>

 Description
 The accounting files provide a means to monitor the use of the system.
 These files also serve as a method for billing each process for processor
 usage, materials, and services. The acct system call produces accounting
 files. The <sys/acct.h> file defines the records in these files. The
 content of the records are:

 /* Accounting structures */
 typedef ushort comp_t; /* floating point */
 /* 13-bit fraction, 3-bit exponent */

 struct acct
 {
 char ac_flag; /* Accounting flag */
 char ac_stat; /* Exit status */
 ushort ac_uid; /* Accounting user-ID */
 ushort ac_gid; /* Accounting group-ID */
 dev_t ac_tty; /* control typewriter */
 time_t ac_btime; /* Beginning time */
 comp_t ac_utime; /* accounting user time in clock ticks */
 comp_t ac_stime; /* accounting system time in clock ticks */
 comp_t ac_etime; /* accounting elapsed time in clock ticks */
 comp_t ac_mem; /* memory usage */
 comp_t ac_io; /* chars transferred */
 comp_t ac_rw; /* blocks read or written */
 char ac_comm[8]; /* command name */
 };

 #define AFORK 01 /* has executed fork, but no exec */
 #define ASU 02 /* used superuser authority */
 #define ACCTF 0300 /* record type: 00 = acct */

 The fields are as follows:

 ac_comm This field contains the command name. A child process, created
 by a fork system call, receives this information from the parent
 process. An exec system call resets this field.

 ac_flag This field indicates whether the process used superuser
 authority, or whether it was created using a fork command but
 not yet followed by an exec system call. The fork command turns
 on the AFORK flag in this field and the exec system call turns
 off the AFORK flag.

 ac_mem This field contains memory usage. For each clock tick, the
 system updates this field with the current process size and
 charges usage time to the process. This is computed as
 ((data size) + (text size)) ÷ (number of in-memory processes
 using text)

 The following structure (not part of acct.h) represents the total
 accounting format used by the various accounting commands:

AIX Operating System Technical Reference
acct

¦ Copyright IBM Corp. 1985, 1991
2.3.3 - 1

 /* Float arrays below contain prime time and non-prime time
 components */

 struct tacct {
 uid_t ta_uid; /* user-ID */
 char ta_name[8]; /* login name */
 float ta_cpu[2]; /* cum. CPU time, p/np (mins) */
 float ta_kcore[2]; /* cum. kcore-mins, p/np */
 float ta_io[2]; /* cum. chars xferred (512s) */
 float ta_rw[2]; /* cum. blocks read/written */
 float ta_con[2]; /* cum. connect time, p/np, mins */
 float ta_du; /* cum. disk usage */
 long ta_qsys; /* queuing sys charges (pgs) */
 float ta_fee; /* fee for special services */
 long ta_pc; /* count of processes */
 unsigned short ta_sc; /* count of login sessions */
 unsigned short ta_dc; /* count of disk samples */
 };

 File
 /usr/include/sys/acct.h

 Related Information
 In this book: "acct" in topic 1.2.11 and "utmp, wtmp, .ilog" in
 topic 2.3.60.

 The acctcom command in AIX Operating System Commands Reference.

 The acct, acctcms, acctcon, acctmerg, acctprc, diskusg, and runacct
 procedures in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
acct

¦ Copyright IBM Corp. 1985, 1991
2.3.3 - 2

 2.3.4 ar

 Purpose
 Describes common archive file format.

 Synopsis
 #include <ar.h>

 Description
 The ar (archive) command is used to combine several files into one. The
 ar command creates an ar file. The ld (link editor) searches archive
 files to resolve program linkage.

 Each archive begins with the archive magic string:

 #define ARMAG "!<arch>\n" /* magic string */
 #define SARMAG 8 /* length of magic string */

 Each archive that contains common object files includes an archive symbol
 table. See "a.out" in topic 2.3.2 for the format of an object file. ld
 uses this symbol table to determine the archive members to load during the
 link edit process. The archive symbol table, if it exists, is always the
 first file in the archive. It is never listed, but ar automatically
 creates and updates it.

 The archive file members follow the archive header and symbol table. A
 file member follows each file member header. The format of a file member
 header is:

 #define ARFMAG "\n" /* header trailer string */

 struct ar_hdr { /* file member header */
 char ar_name[16]; /* file member name - terminated by '/'*/
 char ar_date[12]; /* file member date */
 char ar_uid[6]; /* file member user identification */
 char ar_gid[6]; /* file member group identification */
 char ar_mode[8]; /* file member mode */
 char ar_size[10]; /* file member size */
 char ar_fmag[2]; /* ARFMAG - string to end header */
 };

 All information in the file member header is in printable ASCII. The
 numeric information contained in the headers is stored as decimal numbers,
 except ar_mode, which is stored in octal. Thus, if the archive contains
 printable files, you can print the archive.

 The ar_name field is blank-padded and terminated by a / (slash). The
 ar_date field indicates the date the file was last modified prior to
 archive. The ar command allows archives to move from system to system.

 Each archive file member begins on an even-byte boundary. ar inserts null
 bytes for padding and a new-line character between files, if necessary.
 The ar_size field is the size of the file without padding. An archive
 file contains no empty areas.

 If the archive symbol table exists, the first file in the archive has a
 zero-length name, for example, ar_name[0] == '/'. The contents of the
 symbol table are as follows:

 The number of symbols. This is 4 bytes long.

AIX Operating System Technical Reference
ar

¦ Copyright IBM Corp. 1985, 1991
2.3.4 - 1

 The array of offsets into the archive file. The length is determined
 by 4 bytes times the number of symbols.

 The name string table. The size is determined by ar_size minus (4
 bytes times (the number of symbols plus 1)).

 The sgetl and sputl functions manage the number of symbols and the array
 of offsets. The string table contains an equal number of null-terminated
 strings and elements in the offsets array. Each offset from the array
 associates with the corresponding name from the string table, in order.
 The string table names all the defined global symbols found in the object
 files contained in the archive. Each offset locates the archive header
 for the associated symbol.

 Related Information
 In this book: "sputl, sgetl" in topic 1.2.280 and "a.out" in topic 2.3.2.

 The ar, ld, and strip commands in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
ar

¦ Copyright IBM Corp. 1985, 1991
2.3.4 - 2

 2.3.5 attributes

 Purpose
 Describes an attribute file format.

 Description
 ASCII files are used to control some AIX utilities in order to simplify
 installing, customizing, and maintaining the PS/2 and System/370. A text
 editor can be used to examine or change these files. These files share an
 attribute-structured format.

 An attribute-structured file consists of one or more named stanzas,
 separated by blank lines. Each stanza begins with a name followed by a
 colon, and contains assignments to keyword attributes. The values
 assigned can be alphanumeric strings or arbitrary character strings
 enclosed in double quotes. The assignments can associate either a single
 value or a succession of values with each attribute.

 Note: In the multibyte environment, all attribute-structured files
 distributed with your system contain only ASCII characters.
 However, the library routines can handle multibyte characters, and
 provided that all parties who use the stanza values are operating
 in the same locale, multibyte characters can be used in these file
 stanzas.

 The size limits for stanzas are: a maximum of 400 keywords per stanza, a
 maximum of 4K bytes per stanza, and a maximum of 512 bytes per keyword.

 Typically, the stanza name is the name of a device or service. The
 attributes describe the properties or handling of the named device or
 service. The meanings of the stanza names, attribute names, and values
 are specific to an application. Examples of this file type distributed
 with the system are /etc/filesystems, /etc/ports, and /etc/qconfig.

 The stanza name default can be used to specify default values for any
 attributes. These default assignments are implicitly included in every
 stanza that follows. A specified value overrides the default value. A
 new default stanza automatically cancels all previously specified default
 values. The syntax of a file of this type is:

 <file> ::= <stanza>
 ::= <file> <blank line> <stanza>
 <stanza> ::= <name>:
 ::= <name>:<assignments>
 <name> ::= file name or information similar in syntax
 <assignments> ::= <assignment>
 ::= <assignments> <assignment>
 <assignment> ::= <attribute>=<values>
 <attribute> ::= string of alphanumeric characters
 <values> ::= <value>
 ::= <values>,<value>
 <value> ::= string of alphanumeric characters
 ::= "arbitrary characters"

 Lines beginning with an * (asterisk) are considered to be comments and are
 ignored.

 Note: Make sure that the values assigned to attribute keywords do not
 contain blanks unless they are enclosed in double quotes.

AIX Operating System Technical Reference
attributes

¦ Copyright IBM Corp. 1985, 1991
2.3.5 - 1

 Related Information
 In this book: "cc.cfg" in topic 2.3.8, "connect.con" in topic 2.3.9,
 "filesystems" in topic 2.3.18, "master" in topic 2.3.32, "ports" in
 topic 2.3.46, "qconfig" in topic 2.3.49, "rasconf" in topic 2.3.50, and
 "system" in topic 2.3.56.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
attributes

¦ Copyright IBM Corp. 1985, 1991
2.3.5 - 2

 2.3.6 autolog

 Purpose
 Performs the login function automatically.

 Description
 The optional autolog file causes the AIX system to perform a login
 sequence automatically when it contains a valid user name. When power is
 applied to the system and the login port is the console, login searches
 for this file. If this file is found, login creates a session for a
 specific user automatically. The autolog file is an ASCII file containing
 a valid user name. A system administrator can create this file while
 customizing the system. After the file is created, it can be edited with
 any editor. If this file does not exist, login causes the user to log in
 as usual.

 If the Transparent Computing Facility is installed, this file should not
 be made common to all sites in the cluster. The way to accomplish this is
 to make /etc/autolog a symbolic link to <LOCAL>/autolog, and then create
 autolog only on the site or sites where an automatic login should occur.
 Care should be taken to ensure that each autolog file is writable only by
 system administrators.

 File
 /etc/autolog

 Related Information
 The login command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
autolog

¦ Copyright IBM Corp. 1985, 1991
2.3.6 - 1

 2.3.7 backup

 Purpose
 Copies file system onto temporary storage media.

 Synopsis
 #include <backup.h>

 Description
 A backup of the file system provides protection against substantial data
 loss due to accidents or error. The backup command writes file system
 backups and, conversely, the restore command reads file system backups.
 The following text describes the format of a file system backup.

 Subtopics
 2.3.7.1 Header Types
 2.3.7.2 Header Sequence
 2.3.7.3 Header Format
 2.3.7.4 Volume Headers
 2.3.7.5 Index Headers
 2.3.7.6 Bit Maps
 2.3.7.7 Location Headers
 2.3.7.8 File Headers
 2.3.7.9 End of Volume or Backup
 2.3.7.10 Backup History

AIX Operating System Technical Reference
backup

¦ Copyright IBM Corp. 1985, 1991
2.3.7 - 1

 2.3.7.1 Header Types

 The backup contains several different types of header records along with
 the data in each file that is backed up. The types of header records are:

 FS_VOLUME The volume label. This header exists on every volume.

 FS_DFINDEX A version of FS_FINDEX for compatibility with AIX/RT; created
 using the -c flag of the backup command.

 FS_CLRI A bit map of inodes on the file system. A 0 bit indicates the
 inode is not in use. This header exists only on the first
 volume. If the backup is a level-zero backup, this header is
 omitted.

 FS_BITS Another bit map of inodes. A one bit indicates the inode is
 present on this volume or a subsequent volume. This header may
 not appear on all volumes.

 FS_VOLEND Indicates the end of the current volume. This header may not
 appear on all volumes. This header is used to indicate that
 all index entries on this volume are used.

 FS_END Indicates the end of the backup. This header appears on every
 volume.

 FS_DINODE A version of FS_INODE for compatibility with AIX/RT; created
 using the -c flag of the backup command.

 FS_DNAME A version of FS_NAME for compatibility with AIX/RT; created
 using the -c flag of the backup command.

 FS_DS Specifies the node ID of the node being backed up and the full
 path name of the directory that is being backed up. This
 header appears only on the first volume.

 FS_INODE Describes a single inode. This header is followed by data that
 consists of directories then followed by the other files within
 the directories.

 FS_NAME A description of a file that is backed up by name.

 FS_FINDEX An index of files on this volume. Multiple headers of this
 type can appear on a volume if there are too many inodes for
 the initial index. This header is followed by data.

 FS_BIGCLRI Similar to FS_CLRI, except used in cases where the number of
 inodes exceed 65,536.

 FS_BIGBITS Similar to FS_BITS, except used in cases where the number of
 inodes exceed 65,536.

AIX Operating System Technical Reference
Header Types

¦ Copyright IBM Corp. 1985, 1991
2.3.7.1 - 1

 2.3.7.2 Header Sequence

 The header sequence varies depending on whether the files are backed up by
 inode or by name and on the type of backup device used.

 Volume 1 of inode backups to direct access volumes have the following
 sequence, assuming that more than one volume is required for backup:

 FS_VOLUME
 FS_CLRI
 FS_BITS
 FS_FINDEX, followed by data
 FS_FINDEX (if applicable), followed by data
 FS_END

 Subsequent volumes have the following sequence:

 FS_VOLUME, followed by data
 FS_FINDEX, followed by data
 FS_FINDEX (if applicable), followed by data
 FS_END

 Inode backups to tapes have the same format as previously described,
 except there are no FS_FINDEX headers and the FS_BITS header appears on
 every volume.

 The format of backups by name does not depend on the output device. These
 backups have a simple format:

 FS_VOLUME Appears on each volume.

 FS_DS Appears on the first volume.

 FS_NAME Precedes the data for each file. The files are copied in
 the order they were named.

 FS_END Concludes the backup.

AIX Operating System Technical Reference
Header Sequence

¦ Copyright IBM Corp. 1985, 1991
2.3.7.2 - 1

 2.3.7.3 Header Format

 The location and size of the headers are independent of any blocking for
 either the file system or the backup device. Each header begins on an
 8-byte boundary. The length of a header depends on its type, but is
 always padded to a multiple of 8 bytes. Data from a file is similarly
 padded. Some headers contain addresses of other headers that are the
 offset in 8-byte units from the beginning of the backup volume.

 Each field in a header is written in low-order bytes first for
 portability. Inode numbers within directories also follow this order.
 The header begins with the following structure:

 struct hdr {
 unsigned char len;
 unsigned char type;
 ushort magic;
 ushort checksum;
 };

 The fields in this header indicate the following information:

 len The length of the header in 8-byte units.

 type The type of the header.

 magic The magic number, which identifies this file as a file system
 backup. The magic number is one of the following values:

 MAGIC Identifies this as a regular file system
 backup.

 PACKED_MAGIC Identifies this as a packed, or compressed,
 file system backup. Each data file within it
 is compressed using the same algorithm that is
 used by the pack command. Header information
 is not compressed.

 checksum A checksum.

AIX Operating System Technical Reference
Header Format

¦ Copyright IBM Corp. 1985, 1991
2.3.7.3 - 1

 2.3.7.4 Volume Headers

 FS_VOLUME headers have the following structure:

 struct {
 struct hdr h;
 ushort volnum;
 time_t date;
 time_t budate;
 daddr_t numwds;
 char disk[16];
 char fsname[16];
 char user[16];
 short incno;
 };

 The fields contain the following information:

 volnum Contains the volume number.

 date Indicates the date the backup was made.

 budate Indicates that all files changed since this date are backed up.

 numwds Indicates the number of 8-byte words in this backup.

 disk Identifies the device that was backed up.

 fsname Identifies the logical name of the backed-up device, for
 example, /a.

 user Identifies the user that made the backup.

 incno Shows the level number of the backup.

 For backups by name, budate, disk, and fsname have no meaning, and incno
 is 100.

AIX Operating System Technical Reference
Volume Headers

¦ Copyright IBM Corp. 1985, 1991
2.3.7.4 - 1

 2.3.7.5 Index Headers

 FS_FINDEX and FS_DFINDEX records are as follows:

 struct {
 struct hdr h;
 ushort dummy;
 ino_t ino[80];
 daddr_t addr[80];
 daddr_t link;
 };

 The fields are:

 ino I-numbers of files indexed

 addr Addresses of file indexed

 link Address of next index on this volume, or 0 if this is the last.

AIX Operating System Technical Reference
Index Headers

¦ Copyright IBM Corp. 1985, 1991
2.3.7.5 - 1

 2.3.7.6 Bit Maps

 FS_CLRI and FS_BITS headers have the same structure:

 struct {
 struct hdr h;
 ushort nwds;
 };

 In both cases, the bit map follows the header, and nwds gives the length
 of the map in 8-byte units. To save space, some zero bits at the end of
 the map are not backed up.

AIX Operating System Technical Reference
Bit Maps

¦ Copyright IBM Corp. 1985, 1991
2.3.7.6 - 1

 2.3.7.7 Location Headers

 FS_DS headers have the following format:

 struct {
 struct hdr h;
 char nid[8];
 char qdir[2];
 };

 The fields in this header are:

 nid Node ID of the system being backed up. For local files, this
 field contains the node ID of the local system.

 qdir Full path name of the directory that is being backed up,
 beginning at the root directory.

AIX Operating System Technical Reference
Location Headers

¦ Copyright IBM Corp. 1985, 1991
2.3.7.7 - 1

 2.3.7.8 File Headers

 FS_INODE and FS_NAME headers have similar formats:

 struct {
 struct hdr h;
 ulong ino;
 ulong mode;
 ushort nlink;
 ulong uid;
 ulong gid;
 off_t size;
 time_t atime;
 time_t mtime;
 time_t ctime;
 ushort devmaj;
 ushort devmin;
 ushort rdevmaj;
 ushort rdevmin;
 off_t dsize;
 ulong gen;
 ulong cmtcnt;
 ulong fstore;
 ulong version;
 ushort rdevsite;
 char sbflag;
 char pada;
 char name[4];
 };

 The fields mode through ctime are based on the inode on disk.

 Other fields are:

 ino I-number of file.

 devmaj,devmin Combined, these fields contain what is returned in st_dev
 by the statx system call for this file.

 rdevmaj Major device number of this file (character- and
 block-special files only).

 rdevmin Minor device number of this file (character- and
 block-special files only).

 dsize Size of the file after backup. This differs from size if
 the file was compressed during backup.

 gen Generation number of the inode which is a reuse count of
 the inode slot.

 cmtcnt Used in TCF replicated file systems. The sequence number
 within the file system of the last commit to this file.

 fstore Used in TCF replicated file systems. The storage attribute
 used in determining where copies of the file are to be
 stored.

 version Version of the file; sequence count of the number of
 commits on this generation number; resets on the last

AIX Operating System Technical Reference
File Headers

¦ Copyright IBM Corp. 1985, 1991
2.3.7.8 - 1

 unlink.

 rdevsite Device site number. TCF cluster site number to which this
 device is attached (character- and block-special files
 only).

 name The null-terminated name of the file that is supplied by
 the user. This field is absent from FS_INODE headers.

 FS_DINODE and FS_DNAME headers have similar formats. They are used by the
 -c flag of the backup command for compatibility with AIX/RT:

 struct {
 struct hdr h;
 ushort ino;
 ushort mode;
 ushort nlink;
 ushort uid;
 ushort gid;
 off_t size;
 time_t atime;
 time_t mtime;
 time_t ctime;
 ushort devmaj;
 ushort devmin;
 ushort rdevmaj;
 ushort rdevmin;
 off_t dsize;
 char name[4];
 };

AIX Operating System Technical Reference
File Headers

¦ Copyright IBM Corp. 1985, 1991
2.3.7.8 - 2

 2.3.7.9 End of Volume or Backup

 FS_VOLEND and FS_END headers contain only the hdr structure.

AIX Operating System Technical Reference
End of Volume or Backup

¦ Copyright IBM Corp. 1985, 1991
2.3.7.9 - 1

 2.3.7.10 Backup History

 A backup history is kept in the /etc/budate file. The entries are in no
 particular order. Each entry has the following format:

 struct {
 char id_name[16];
 char id_incno;
 time_t id_budate;
 };

 The fields of each entry are:

 id_name Name of the file system
 id_incno Incremental level number (0-9)
 id_budate Date of most recent backup of the file system at that level.

 Related Information
 In this book: "filesystems" in topic 2.3.18.

 The backup, pack, and restore commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
Backup History

¦ Copyright IBM Corp. 1985, 1991
2.3.7.10 - 1

 2.3.8 cc.cfg

 Purpose
 Defines values used by the C, FORTRAN, and Pascal compilers.

 Description
 The cc.cfg file defines values used by the cc program to run compilers.
 Normally, the cc.cfg file contains entries only for the C compiler
 provided with the system. Entries are made to this file to support C
 compilers for other systems as they are added.

 Besides the default stanza, AIX provides the stanza "posix" as a way for
 application programs to compile programs written to be strictly conformant
 to the POSIX 1003.1 standard, as defined in the Portable Operating System
 Interface for Computer Environments (POSIX), IEEE 1003.1-1988.
 Applications compiled with "cc -F:posix" will be compiled with the symbol
 _POSIX_SOURCE defined. This symbol hides all symbols in POSIX-defined
 header files which are not defined by the POSIX 1003.1 standard.
 Compiling an application in this way will guarantee that the application
 doesn't make use of any AIX extensions and hence is a portable
 application. Additionally, the hiding of AIX extensions guarantees that
 these extensions will not conflict with variables, data types and other
 data structures which the application has defined. Consult the POSIX
 1003.1 standard for details on how to write a strictly-conforming POSIX
 application.

 This file is an attribute file. The name you specify when you run the cc
 program (it can be linked to several different names) determines which
 stanza of the cc.cfg file is used. Normally, the cc program runs as cc;
 therefore, the first stanza is almost always selected.

 You can specify the following attributes:

 as The path name to be used for the assembler.

 asflags A string of values, separated by commas, to be passed to the
 assembler.

 asopt A string naming optional flags that, if encountered on the cc
 command line, should be passed to the assembler. See
 description of the cppopt field.

 ccom The path name to be used for the C compiler front end; this is
 the parser (vsc).

 ccomflags A string of values, separated by commas, to be passed to the C
 compiler.

 ccomopt A string naming optional flags that, if encountered on the cc
 command line, should be passed to the C compiler. See cppopt.

 cform The path name to be used for the code formatter (vspass3).

 Note: The code generator and the code formatter do not accept
 optional flags.

 cgen The path name to be used for the code generator (vspass2).

 cpp The path name to be used for the preprocessor.

AIX Operating System Technical Reference
cc.cfg

¦ Copyright IBM Corp. 1985, 1991
2.3.8 - 1

 cppflags The following C-preprocessor symbols are predefined for use by
 application development:

 _AIX Defined on all AIX platforms.
 AIX Defined on all AIX platforms.
 u370 Defined on AIX/370 machines.
 AIX370 Defined on AIX/370 machines.
 i386 Defined on AIX PS/2 machines.
 _I386 Defined on AIX/PS/2 machines.
 NLS Usable with NLS library routines.
 HIGHC Code conforms to the High C compiler
 standard.
 _POSIX_SOURCE Code conforms to POSIX standard.
 STDC Code conforms to ANSI C standard.

 cppopt A string naming optional flags that, if encountered on the cc
 command line, should be passed to the preprocessor. The string
 is formatted for getopt() subroutine, as a concatenation of flag
 letters, with a letter followed by a : (colon) if the
 corresponding flag takes a parameter.

 crt, mcrt The path name of the object file passed as the first parameter
 to the link editor. In the presence of the -p flag to cc, the
 mcrt value is used; otherwise the crt value is used. The
 defaults are /lib/crt0.o and /lib/mcrt0.o.

 crtn The path name of the object file passed as the parameter after
 the library flags to the link editor. This object file is
 necessary whenever shared libraries are being linked. The
 default is /lib/crtn.o.

 csuffix The suffix for C source programs, the default is c.

 dis Pathname to use for the disassembler.

 fcom The path name to be used for the FORTRAN compiler front end
 (vsfort).

 fcomflags A string of values, separated by commas, to be passed to the
 FORTRAN compiler.

 fcomopt A string naming optional flags that, if encountered on the cc
 command line, should be passed to the FORTRAN compiler.

 flib The path name to be used for the FORTRAN Library.

 fsuffix The suffix for VS FORTRAN source programs, the default is f.

 hsuffix A second suffix for C source (enabled by using the -h flag to
 the cc command), the default is h.

 hcpass1 First pass of the High C Compiler. This is the parser.

 hcpass2 Second pass of the High C Compiler. This takes intermediate
 code generated by a High C Compiler and produces object code.

 hcopt A string naming option flags that, if encountered on the cc
 command line, should be passed to the High C Compiler.

 hcflags A string of values, separated by commas, to be passed on to the

AIX Operating System Technical Reference
cc.cfg

¦ Copyright IBM Corp. 1985, 1991
2.3.8 - 2

 High C Compiler.

 hcansi Directory containing ANSI libraries. Used only if -Hansi flag
 is turned on.

 hcinline Inline code pass of High C Compiler.

 ld The path name to be used for the link editor.

 ldflags A string of values, separated by commas, to be passed to the
 link editor. These are in addition to those implicitly provided
 as described in the cc command.

 ldopt A string naming optional flags that, when encountered on the cc
 command line, to be passed to the link editor. See cppopt.

 libraries Flags, separated by commas, to be passed as the last parameters
 to the link editor as the default libraries, the default is
 -lrts,-lc.

 osuffix The suffix for object files, the default is o.

 pcom The path name to be used for the Pascal compiler front end
 (vspascal).

 pcomflags A string of values, separated by commas, to be passed to the
 Pascal compiler.

 pcomopt A string naming optional flags that, if encountered on the cc
 command line, should be passed to the Pascal compiler.

 plib The path name to be used for the Pascal Library.

 psuffix The suffix for VS Pascal source programs, the default is p.

 ssuffix The suffix for assembler programs, the default is s.

 use Values for attributes are taken from the named stanza in
 addition to the local stanza. For single-valued attributes,
 values in the use stanza apply if no value is provided in the
 local stanza (or default stanza). For comma-separated lists,
 the values from the use stanza are added to the values from the
 local stanza.

 Example

 * CC configuration file:

 default:
 cpp = /lib/cpp

 * standard cc
 cc:
 use = DEFLT
 crt = /lib/crt1.o
 crtn = /lib/crtn.o
 mcrt = /lib/mcrt1.o
 libraries = -lrts,-lc

 * common definitions

AIX Operating System Technical Reference
cc.cfg

¦ Copyright IBM Corp. 1985, 1991
2.3.8 - 3

 DEFLT:
 ccom = /lib/vsc
 ccomopt = ""
 fcom = /lib/vsfort
 fcomopt = ""
 pcom = /lib/vspascal
 pcomopt = ""

 cgen = /lib/vspass2
 cform = /lib/vspass3
 as = /bin/as
 ld = /bin/ld
 cppflags = D_AIX,-Daiws,-DAIX,-DNLS
 ldflags = -K,-T0x00400000

 hcpass1 = /lib/hc1com
 hcpass2 = /lib/hc2com
 hcopt = " "
 hcflags = " "
 hansi = /lib
 hcinline = /lib/inline

 File
 /etc/cc.cfg

 Related Information
 In this book: "getopt" in topic 1.2.106 and "attributes" in topic 2.3.5.

 The as, cc, and ld commands in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
cc.cfg

¦ Copyright IBM Corp. 1985, 1991
2.3.8 - 4

 2.3.9 connect.con

 Purpose
 Controls communication connections and data transfer.

 Description
 The connection configuration file, /usr/lib/INnet/connect.con or
 $HOME/bin/connect.con, controls the setup of connections for the connect
 program and for certain optional communications programs. It provides a
 very general, flexible mechanism to specify how connections are made and
 how data is transferred after making a connection.

 The connect.con files are attribute files. The following attributes may
 appear in the connection control file.

 Subtopics
 2.3.9.1 Connection Options
 2.3.9.2 Line Options and Parameters
 2.3.9.3 System Options
 2.3.9.4 Diagnostics
 2.3.9.5 Login Script
 2.3.9.6 Talker Program

AIX Operating System Technical Reference
connect.con

¦ Copyright IBM Corp. 1985, 1991
2.3.9 - 1

 2.3.9.1 Connection Options

 The connection options and their descriptions are:

 prefix, address, suffix
 The telephone number to dial or the network address to contact.
 The actual number is constructed by concatenating the prefix (if
 any), the address, and the suffix (if any). Usually the prefix
 and suffix are defined in /etc/ports because they depend on the
 peculiarities of the dialer, and the address is defined in
 connect.con.

 Multiple addresses can be specified by consecutive address
 assignment lines or by multiple address values separated by
 commas. The addresses are tried in the order given. To specify
 a comma as part of the command that is sent to the modem,
 enclose the entire address value in quotation marks.

 connect Type of connection to make. This option is specified in
 /etc/ports since it is usually associated with the hardware
 configuration of the outgoing line. Permissible values are:

 permanent The connection is hard-wired. No dialing or other
 special attention is needed.

 manual The connection must be completed manually. This
 generally implies a modem that does not dial, for
 example, an acoustic coupler.

 hayes_1200 The line has a Hayes Stack Smartmodem 1200.

 hayes_2400 The line has a Hayes Stack Smartmodem 2400.

 vadic The line has a Racal-Vadic 3451P autodialer.

 ventel The line has a Ventel MD212+ autodialer.

 other_name The line is associated with a dialer program, which
 is not built into the connect program. This option
 allows you to augment the capabilities of the
 connect program and other communications programs
 when dealing with new types of communications lines
 and dialers. The program searches for the named
 dialer program in /usr/lib/INnet/dialers or
 $HOME/bin.

 The assumptions made for dialer programs you supply
 are: the port to be used can be opened before
 dialing and the file will be opened as descriptor 3.
 Two parameters are passed: number to dial as
 parameter 1, and dialer hardware to use or value of
 the dialer option, if any as parameter 2. Any code
 exit from the dialer except 0 indicates the dialer
 failed. The failure code returned by the dialer
 determines the message printed by the programs.

 linetype Type of communication line protocols, either synchronous or
 asynchronous. Different protocols are used on different line
 types, so the talker programs may differ. The default linetype
 is asynchronous.

AIX Operating System Technical Reference
Connection Options

¦ Copyright IBM Corp. 1985, 1991
2.3.9.1 - 1

 type The name invoked with the connect program that determines the
 kind of connection attempted. Only those stanzas with the
 proper type are processed. Currently, the connect program
 itself uses only terminal type stanzas. The default type is
 terminal.

 use This option directs the connect program to read the named stanza
 and follow the instructions there.

AIX Operating System Technical Reference
Connection Options

¦ Copyright IBM Corp. 1985, 1991
2.3.9.1 - 2

 2.3.9.2 Line Options and Parameters

 Line options and parameters used are:

 min The minimum value to use in kernel buffering. Min value
 characters must be received before a call to the read system call
 returns, unless value specified in time elapses.

 parity The line is checked for the indicated parity: even, odd, any, or
 none.

 speed The transmission speed, generally 110, 300, 1200, 2400, 9600, and
 so on.

 time The value to use in kernel buffering. Time in tenths of a second
 to receive a character before a call to the read system call
 returns unless min characters are received. See the discussion
 of ICANON in "termio" in topic 2.5.28. Setting these parameters
 can result in improved performance.

 timeout The time limit to complete the connection in seconds. When the
 time limit expires, the connection is aborted. This attribute is
 not needed for devices with a built-in timeout.

AIX Operating System Technical Reference
Line Options and Parameters

¦ Copyright IBM Corp. 1985, 1991
2.3.9.2 - 1

 2.3.9.3 System Options

 The system options are:

 device The name of the special file to use to make the connection. The
 device must appear in /etc/ports (see "ports" in topic 2.3.46) and
 the information in the ports file entry that is made available to
 the connect program. Note that this attribute can appear only in
 the last of the list of stanzas associated with making the
 connection on this device, and that the use option must not
 appear.

 dialer This option specifies the dialer hardware to be used in dialing
 the number. It is normally in /etc/ports file, associated with
 the device to be used. It may also be specified in a connection
 file, so that its value can be passed to a user-specified dialer
 program.

AIX Operating System Technical Reference
System Options

¦ Copyright IBM Corp. 1985, 1991
2.3.9.3 - 1

 2.3.9.4 Diagnostics

 The following diagnostics are displayed, based on the return value from
 system- or user-supplied dialer programs. The values 8 through 14 are
 treated as fatal errors.

 Code Message

 0 Connected
 1 Cannot open dialer
 2 Busy or no answer
 3 Not able to fork
 4 Terminated attempts
 5 Communication failure
 6 Busy
 7 No answer
 8 Dead phone
 9 Bad phone number
 10 Cannot open device specified
 11 Address not specified
 12 Bad connect.con format
 13 Cannot run dialer
 14 No autodialer specified.

AIX Operating System Technical Reference
Diagnostics

¦ Copyright IBM Corp. 1985, 1991
2.3.9.4 - 1

 2.3.9.5 Login Script

 A login script is file with the given name that is interpreted before
 notifying you that the connection is complete. Script files are located
 either in the $HOME/bin file or in the /usr/lib/INnet/scripts file.

 script A script file is organized into a group of states. In each state,
 the script file optionally sends a string to the remote system,
 then waits for a response. Several possible responses can be
 listed for each state along with an action to be performed if the
 response is received. A time limit can also be set in each state,
 along with an action to be performed if the time expires without
 an expected string arriving. The actions are to terminate script
 interpretations, with either a success or failure indication, or
 to move to another state. A sample script is shown under
 "Example" in topic 2.3.9.6.

 DONE
 A successful termination of script interpretation.

 ERROR string
 An unsuccessful termination of script interpretation. The last
 message received from the remote site is reported to you.

 GOTO n
 Continues processing in state n.

 RECV string action
 This action is performed if the given string is received.

 SEND string
 Sends the given string to the remote system. Any name enclosed
 in braces in the string is taken to be an option reference and
 is replaced by the value of that option. If that option is not
 present in the list of stanzas, you are prompted for its value
 using the option name as the prompt. If a - (dash) precedes
 the name within the braces, the typed characters are not
 echoed. This is handy for including passwords as parameters in
 the script file without having them stored on the system.
 Thus, script files can be given parameters so that they can be
 used in different connection stanzas and by different users.

 STATE n
 Declares the beginning of state n.

 TIMER n action
 This action is performed if no expected string is received in n
 seconds.

AIX Operating System Technical Reference
Login Script

¦ Copyright IBM Corp. 1985, 1991
2.3.9.5 - 1

 2.3.9.6 Talker Program

 A talker program handles the work of moving data across a connection.
 This program runs after a connection is established. The default talker
 for the connect program is atalk. You can override this and specify your
 own talker program.

 talker This is the name of the program to run when the connection is
 made. The conventions observed between the connect program and
 the talker are not complex: the connection is opened by the
 program as file descriptor 3. The only flag passed by connect to
 the talker program is:

 -llockfile

 Note: If the -l flag is present, the talker must remove the named
 lockfile to make the port available to other users.

 flags This option passes flags (other than the above) to the talker
 program. This option is valid with both default or user-specified
 talkers.

 Example
 A typical script might be:

 STATE 0 RECV User: GOTO 1
 TIMER 10 ERROR "No login"

 STATE 1 SEND "{myname}\n"
 RECV Password: GOTO 2
 RECV "Unknown:" ERROR "Name unknown"
 TIMER 10 ERROR "No password msg"

 STATE 2 SEND "{-mypass}\n"
 RECV "$" DONE
 RECV Invalid ERROR "Wrong password"
 TIMER 20 ERROR "No prompt"

 This script could be used for login to a remote AIX system. In this file,
 connect waits up to 10 seconds for a User: prompt. When received, it
 sends the value of the myname option from the control file or by prompt,
 as the user name. It then waits for 10 seconds for the Password: prompt,
 then it sends the value of mypass as the password. The password is not
 echoed. It then waits another 20 seconds for another prompt. At each
 stage, it looks for messages that could occur if the given user name or
 password is invalid. With more states, you can write a script that tries
 several different user names and types the necessary information to dial
 through a port selector.

 Files

 /usr/lib/INnet/connect.con
 $HOME/bin/connect.con

 Related Information
 In this book: "attributes" in topic 2.3.5, "ports" in topic 2.3.46, and
 "termio" in topic 2.5.28.

 The connect and uucp commands in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
Talker Program

¦ Copyright IBM Corp. 1985, 1991
2.3.9.6 - 1

 2.3.10 core

 Purpose
 Contains an image of user memory at the time of an error.

 Synopsis

 #include <sys/b370/coredump.h>
 #include <sys/i386/coredump.h>
 #include <sys/reg.h>

 Description
 The system writes a memory image of a terminated process when various
 errors occur. See the sigaction system call for the list of errors. The
 most common are memory address violations, illegal instructions, bus
 errors, and user-generated quit signals. The memory image, called core,
 is written in the process working directory.

 This memory image file is not written if any of the following are true:

 � The process has an effective user ID that is different from the rea
 user ID.

 � A file named core already exists in the current directory and is not
 writable by this user or has a link count greater than 1 (one).

 � The user does not have write permission in the current directory whic
 is required to create the memory image file.

 � The memory image file resides in a system replicated file system, suc
 as the root file system. If it is important to create a memory image
 file for a daemon or other program which has its current directory in
 a directory such as "/", temporarily create a symbolic link named core
 which points to a file in another file system.

 The memory image file contains common sorts of information about processes
 running on AIX/370 and AIX PS/2; however, the files are binary data files
 and do need to be examined from the same type of machine on which they
 were created. Use the file command to determine which machine type
 created a memory image file. Use a user-level debugger such as dbx to
 interpret a memory image file.

 The first section of the memory image is a header containing parts of the
 system's per-user data for the process, including the registers as they
 were at the time of the error. It also contains an array of structures
 describing the layout of the rest of the memory image file. The remainder
 of the memory image file represents the actual contents of the
 user-writable portions of the process when the memory image was written.
 Read-only portions of the memory image are not dumped.

 The format of the information in the first section of the memory image
 (the header) is described by the corehdr structure, which is defined in
 the files /usr/include/sys/i386/coredump.h and
 /usr/include/sys/b370/coredump.h. The general purpose registers are in
 the cd_regs array as described within that file. The floating-point
 registers are in an fp87state structure defined in
 /usr/include/sys/regr.h.

 The process's memory image is written in segments. The header contains an
 array of up to MAX_CORE_SEGS dumpseg structures which describe the

AIX Operating System Technical Reference
core

¦ Copyright IBM Corp. 1985, 1991
2.3.10 - 1

 segments of the process (including those which are not dumped). If the
 segment was dumped, cs_offset is the segment's offset into the memory
 image file; otherwise, cs_offset is 0. The field cs_len is the length of
 the segment in bytes and the field cs_address is the virtual address of
 the segment in the process. The field cs_type describes the type of
 segment. The above structures, their fields, and the possible values of
 cs_type are described in the files /usr/include/sys/i386/coredump.h and
 /usr/include/sys/b370/coredump.h.

 File

 core

 Related Information
 In this book: "setuid, setgid" in topic 1.2.255 and "sigaction, sigvec,
 signal" in topic 1.2.263.

 The dbx command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
core

¦ Copyright IBM Corp. 1985, 1991
2.3.10 - 2

 2.3.11 cpio

 Purpose
 Describes copy in and out (cpio) archive file.

 Description
 When the -c flag of the cpio command is not used, the header structure is:

 struct {
 short
 h_magic,
 h_dev;
 unsigned short
 h_ino,
 h_mode,
 h_uid,
 h_gid;
 short
 h_nlink,
 h_rdev,
 h_mtime[2],
 h_namesize,
 h_filesize[2];
 char
 h_name[n]; /* described below */
 } Hdr;

 When the cpio command is used with the -c flag, the header for the cpio
 structure may be read as:

 sscanf(Chdr,"%6ho%6ho%6ho%6ho%6ho%6ho%6ho%6ho%11lo%6ho%11lo%s",
 &Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_mode,
 &Hdr.h_uid, &Hdr.h_gid, &Hdr.h_nlink, &Hdr.h_rdev,
 &Longtime, &Hdr.h_namesize, &Longfile, &Hdr.h_name);

 Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h_filesize,
 respectively. The contents of each file together with other items
 describing the file are recorded in an element of the array of varying
 length structures. The member h_magic contains the constant octal 070707
 (or 0x71c7). The stat system call explains the meaning of structure
 members h_dev through h_mtime. The length of the null-terminated path
 name, h_name, including the null byte is indicated by n, where n =
 (h_namesize % 2) + h_namesize. In other words, n is equal to h_namesize
 if h_namesize is even. If h_namesize is odd, n is equal to h_namesize +
 1.

 The last record of the archive always contains the name TRAILER!!!.
 Directories and the trailer are recorded with h_filesize equal to 0.

 Directories and special files are treated in a slightly different way. A
 directory is written with a 0 size, meaning no data blocks follow. Also,
 if the directory is a hidden directory, an @ (at) is appended to the name.
 A special file size is also 0; its major/minor device number is stored in
 the h_rdev field and its device site number is stored in the h_namesize
 field.

 Related Information
 In this book: "scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf,
 wsscanf" in topic 1.2.241 and "statx, fstatx, stat, fstat, fullstat,

AIX Operating System Technical Reference
cpio

¦ Copyright IBM Corp. 1985, 1991
2.3.11 - 1

 ffullstat, lstat" in topic 1.2.282.

 The cpio and find commands in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
cpio

¦ Copyright IBM Corp. 1985, 1991
2.3.11 - 2

 2.3.12 .cshrc, .login

 Purpose
 Sets the csh user environment at login time.

 Description
 The .cshrc file provides commands to be executed at login time and
 variable assignments to be set and exported into the environment. The
 .cshrc file is read every time the csh is started, while the .login file
 is read only on start up.

 After the login program adds the LOGNAME (login name) and HOME (login
 directory) parameters to the environment and starts csh, the commands in
 $HOME/.cshrc are executed, followed by the commands in $HOME/.login, if
 they are present. The .cshrc and .login files are used to tailor the user
 environment variables. The .cshrc file is often used to set exported
 environment variables and terminal modes. The system administrator can
 use adduser to set default .cshrc and .login files in each user home
 directory. Users can tailor their environment as desired by modifying
 their .cshrc and .login files.

 Files

 $HOME/.cshrc
 $HOME/.login

 Related Information
 In this book: "environment" in topic 2.4.6 and "TERM" in topic 2.4.26.

 The env, login, mail, csh, and stty commands in the AIX Operating System
 Commands Reference.

AIX Operating System Technical Reference
.cshrc, .login

¦ Copyright IBM Corp. 1985, 1991
2.3.12 - 1

 2.3.13 ddi

 Purpose
 Contains device-dependent information (ddi).

 Description
 A ddi file contains information for customizing classes (or types) of
 devices supported by the system. The information in this file may be
 modified using the devices command or an editor program. The ddi files
 are attribute files that are located in the /etc/ddi directory. See
 "attributes" in topic 2.3.5 for the format of attribute files.

 The equivalent of a ddi file can be created and added to the system.
 Customize helper programs convert the parameters in the files into a
 format required by the operating system device drivers. A ddi file
 contains the following information:

 � Device-dependent information. This is a series of keywords whos
 values the user supplies when the device is defined.

 � Instructions to the customize helper program for processing inpu
 parameters.

 � Mapping information for the ddi structure.

 � Bit field mapping information

 Devices that can be added, deleted, or changed by devices must have a ddi
 file.

 Note: In the multibyte environment, the ddi file can contain only ASCII
 characters.

 Subtopics
 2.3.13.1 Keywords

AIX Operating System Technical Reference
ddi

¦ Copyright IBM Corp. 1985, 1991
2.3.13 - 1

 2.3.13.1 Keywords

 The following keywords are used in the stanzas of device-dependent
 information files. These keywords describe attributes and settings for a
 particular device that may be changed to suit your device.

 Miscellaneous Keywords

 Key Possible
 Word Description Choices

 sysadd Specifies the action that the a, o, none
 devices command takes after
 adding the device. The valid
 choices are:

 a Rebuilds the kernel and
 IPLs the system
 o Runs the osconfig
 command
 none Takes no special action.

 sysdel Specifies the action that the a, o, none
 devices takes after deleting
 the device. The valid choices
 are:

 a Rebuilds the kernel and
 IPLs the system
 o Runs the osconfig
 command
 none Takes no special action.

 Printers and Plotters: Keywords followed by an asterisk (*) can be
 changed only when adding or changing information about a non-IBM printer.

 Key Possible
 Word Description Choices

 aa Automatic Answering: Does the
 printer support communication
 auto answering?

 alf Automatic Line Feed: Does the
 printer have automatic line
 feed with carriage return.

 ars* Aspect Ratio Support: Does yes, no
 the printer have a "Set Aspect
 Ratio" control?

 backs* Backspace Support: Does the yes, no
 printer have the ability to
 backspace (move print head
 backward while printing a
 line)?

 bigs Bit-Image Graphics Support: yes, no

AIX Operating System Technical Reference
Keywords

¦ Copyright IBM Corp. 1985, 1991
2.3.13.1 - 1

 Does the printer have bit
 image graphics controls?

 bm Bottom Margin (last line): 1 - [length(in.) x lines/in.]
 Refers to last line of text at
 bottom of a page; for
 instance, to leave a one-inch
 bottom margin on a page 66
 lines long, you might set the
 margin on line 60. The value
 is determined by multiplying
 the length of the page in
 inches by the number of lines
 per inch.

 caps Map Lowercase Alphanumerics: yes, no
 Maps lowercase alphanumerics
 to uppercase.

 cdp Condensed Print: Should a yes, no
 file be printed with condensed
 print?

 cdpg Code Page: Specifies the code 437 (PC), 850 (MLP)
 page loaded into the printer.

 colp* Color Printer: Is the printer yes, no
 capable of printing in color?

 cps* Condensed Print Support: Does yes, no
 the printer support printing
 in condensed characters?

 cr Color Ribbon: Is the printer yes, no
 capable of using a color
 ribbon?

 cs Character Set: Refers to the 1, 2
 specific character set to be
 used for printing.

 cus* Continuous Underscore Support: yes, no
 Is the printer capable of
 underscoring characters?

 dpc Default Print Color: Refers black, blue, red, yellow
 to the color to use for
 printing when a file doesn't
 contain codes that specify a
 color: usually black, blue,
 red, or yellow.

 dsp Double Strike Print: Should yes, no
 double-strike be turned on?

 dsps* Double Strike Print Support: yes, no
 Does the printer have a
 control to double-strike
 characters and provide
 boldface?

AIX Operating System Technical Reference
Keywords

¦ Copyright IBM Corp. 1985, 1991
2.3.13.1 - 2

 dwp Double Width Print: Should a yes, no
 file be printed with a
 double-width character set?

 dwps* Double Width Print Support: yes, no
 Does the printer have the
 ability to print with a
 double-width character set?

 ep Emphasized Print: Should yes, no
 emphasized print be turned on?
 Every character is overstruck
 with a second pass of the
 print head.

 eps* Emphasized Print Support: yes, no
 Does the printer have a
 control to do emphasized
 print?

 fid Font ID: ID of the font used 11
 by the printer.

 fl Form (page) Length: Refers to 1 - [length (in.) x
 the length of the paper in lines/in.]
 terms of the number of lines
 per page. The value is
 determined by multiplying the
 length of paper (in inches) by
 the number of lines printed
 per inch.

 fw Form Width (right margin): 1 - [width(in.) x pitch]
 Refers to the width of paper
 in terms of the number of
 characters per line. The
 value is determined by
 multiplying the width of the
 paper (in inches) by the
 number of characters printed
 per inch).

 hsi* Horizontal Spacing Increment: 60, 70
 What horizontal increment is
 used in the ESC K control?

 hts* Horizontal Tab Support: Does yes, no
 the printer have horizontal
 tab controls?

 htvi Text Vertical Increment: The 72
 vertical index increment used
 by subsequent CUU (ESC A)
 multibyte controls. (See
 "Multi-Byte Controls" in
 topic 2.4.3.3.2.)

 ip Initialize Printer: Refers to true, false
 the initial state of the

AIX Operating System Technical Reference
Keywords

¦ Copyright IBM Corp. 1985, 1991
2.3.13.1 - 3

 printer after power is
 applied.

 js* Justification Support: Does yes, no
 the printer support an even
 right margin?

 kpoe Keep Printing on Error: yes, no
 Should the printer complete
 the print job despite errors
 (without sending an error
 message to the user)?

 lm Left Margin: Refers to the 0 - [width(in.) x pitch]
 area on a page between the
 left edge and the leftmost
 character position on the
 page.

 lpi Lines Per Inch: Refers to the 6, 8
 number of print lines per
 inch, to line spacing density,
 and to the distance paper
 moves during a line feed.

 lrmc* Left/Right Margin Controls: yes, no
 Does the printer have the
 ability to change left and
 right margins (does it have
 left and right margin control
 codes)?

 mccs* Multibyte Control Code yes, no
 Support: Does the printer
 support IBM/OEM multibyte
 controls? Or does the printer
 act like an Epson (5152)?

 nocr No Carriage Returns: yes, no
 Substitute line feeds for
 carriage returns.

 noff No Form Feed: Simulate the yes, no
 form feed function.

 pacs* Print All Characters Support: yes, no
 Does the printer support ESC
 and ESC- controls?

 ph Paper Handling: Refers to the 0=manual; 1=automatic;
 ways the printer handles 2=continuous (continuous form
 different types of paper. The paper)
 manual-feed printer stops at
 the end of each page and waits
 for the user to insert another
 sheet and press the start
 button. A printer with an
 automatic sheet-feed mechanism
 feeds paper to the printer.

AIX Operating System Technical Reference
Keywords

¦ Copyright IBM Corp. 1985, 1991
2.3.13.1 - 4

 pitch Character Pitch: Refers to 10, 12, 15
 the number of characters per
 linear inch; for instance,
 10-pitch type has 10
 characters per inch.

 plot Pass Data Directly to Device yes, no
 Without Modification:
 Overrides NOFF, NONL, NOTAB,
 NOBS, CAPS, and WRAP.

 pq Print Quality: May select (on dp, text, letter
 some printers) degrees of
 print quality: dp (for fast,
 low quality), text (for better
 draft quality), letter (for
 high-quality final text).

 prin Printer Type: 0,1,2,3,4,5,6,7,8

 0 = 5152

 1 = 5182

 2 = 3812

 3 = 3852

 4 = 5201

 5 = 4201

 6 = 4202

 7 = 3852

 8 = 5202

 psd Paper Source Drawer: Refers 1=top; 2=bottom
 to the location of the paper
 drawer from which paper is
 drawn for printing.

 pss* Proportional Spacing Support: yes, no
 Does the printer support
 proportionally spaced
 printing?

 ptime Printer Timeout: Specifies 0-32768
 the printer timeout. Value is
 in seconds.

 rlfs* Reverse Line Feed Support: yes, no
 Does the printer support the
 ESC J control?

 slap Skip Lines at Perforation: 0-[length(in.) x lines/in.]
 Refers to the number of lines
 skipped at page breaks. The
 number is divided by 2, so

AIX Operating System Technical Reference
Keywords

¦ Copyright IBM Corp. 1985, 1991
2.3.13.1 - 5

 that half the blank lines
 appear at the bottom of one
 page and half at the top of
 the next.

 sp Select Printer. true, false

 sss* Superscript/Subscript Support: yes, no
 Does the printer have the
 ability to print in
 superscript and subscript
 mode?

 tbc Transmit Buffer Control: 0x00 - 0x10
 Number of bytes to buffer for
 transmitter.

 tm Top Margin: Refers to the 0 - [length(in.) x lines/in.]
 number of lines to be skipped
 at the top of a page before
 printing begins. If the user
 specifies 6 lines, the first
 print line will be line 7.
 The value is determined by the
 length of paper (in inches)
 multiplied by the number of
 lines per inch.

 urpim User to Receive Printer Any user ID, pjo=Print Job
 Intervention Messages: Refers Owner
 to whether printer
 intervention messages are sent
 to any valid user or to the
 user who queued the print job.

 vhs* Variable Horizontal Spacing: yes, no
 Does the printer have ESC d
 and ESC e controls?

 vpqs* Variable Print Quality yes, no
 Support: Does the printer
 have the ability to print
 different degrees of quality?

 vsi* Vertical Spacing Increment: 216, 144
 Refers to parts of inch
 supported in ESC J and ESC 3
 control.

 vts* Vertical Tab Support: Does yes, no
 the printer support vertical
 tabs?

 wll Wrap Long Lines: Does the yes, no
 printer "wrap" lines? That
 is, will it break at the right
 margin those lines longer than
 specified form width and print
 the remainder on the next
 line?

AIX Operating System Technical Reference
Keywords

¦ Copyright IBM Corp. 1985, 1991
2.3.13.1 - 6

 12ps* 12 Pitch Support: Does the yes, no
 printer support the printing
 of 12 characters per inch?

 Fonts: You can select any of the fonts or print type styles included on
 the font diskette. You must type the name of the font and the type style
 exactly as they appear on the diskette.

 IBM 5201 Quietwriter

 Key Possible
 Word Description Choices

 cp1 Code Page 1 PC, A, B, C, D

 fnt1 Font 1

 pitch1 Character Pitch 1

 type1 Typestyle 1

 IBM Proprinter (4201) and IBM Proprinter XL (4202): Four different sets
 of values are available for the IBM 4202 Proprinter (character pitch 1-4
 and code page 1-4). Each set contains a designation for character pitch
 and code page. The possible choices for each of the four sets are shown
 below.

 The code page choices for the IBM 4202 are the PC or multilingual code
 page (MLP). The PC code page contains the standard U.S. English alphabet,
 symbols, and punctuation marks. The MLP code page contains characters,
 symbols, and punctuation marks from many alphabets and languages.

 Key Possible
 Word Description Choices

 cp1 Code Page 1: On the American PC, MLP
 version of the 4201, cp1 must
 be set to PC.

 pitch Character Pitch 10, 12

 TTY, TTYN, or TTYP Devices

 Key Possible
 Word Description Choices

 aa Automatic Answering: Specifies true, false
 whether the device supports
 communication auto answering. If
 the aa keyword is true, the getty
 command will transmit a modem
 command sequence to place the modem
 in automatic answering mode.

 ae Automatic Enable: At boot time, true=enabled; false=not

AIX Operating System Technical Reference
Keywords

¦ Copyright IBM Corp. 1985, 1991
2.3.13.1 - 7

 this determines the original enabled For TTY devices
 enabling of the port. When ae is only:
 true, the port will be enabled share=shared/bidirectional
 whenever the system is ipl'ed. use; delay=delay logon
 When ae is false, the port will be herald
 disabled. Setting ae to share or
 delay will result in the port being
 enabled with the proper locking to
 permit outgoing calls to originate
 from the PS/2.

 bpc Bits Per Character: The number of 5, 6, 7, 8
 bits per character used to transmit
 data from the PS/2 to the terminal
 or modem. This is usually set to 7
 or 8 and must match whatever the
 terminal or modem is setup to use.
 NLS support requires a bpc value of
 8.

 dvam Device Attachment Method: Refers 0=local; 1=remote
 to whether the device is attached (modem)
 locally without a modem or remotely
 through a modem. Locally attached
 devices can be opened no matter
 what the state of the Carrier
 Detect, Clear To Send, Data Set
 Ready, and Ring Indicate signals.
 Opens do not complete for remote
 devices until Carrier Detect, Clear
 to Send, and Data Set Ready are all
 asserted.

 ixp Include Xon/Xoff Protocol: When true, false
 ixp is set to true, Xon/Xoff flow
 control is used on both the
 received and transmitted data
 streams. The values of the roffv,
 ronv, toffv, and tonv keywords
 determine the actual characters
 which will be used to implement the
 flow control.

 elevel Run-level of the getty process: 0-6, a, b, c
 Each getty process spawned by init
 is assigned to a run-level in which
 it is allowed to exist. For
 example, if elevel is set to 14,
 then the getty is executed when the
 system is in multi-user mode.
 Refer to the level attribute in the
 description of inittab for more
 information.

 logger Pty Supports Login Shell: True true, false
 indicates that a stanza for this
 pty will be put in the /etc/ports
 file that will allow the port to be
 enabled and disabled.

AIX Operating System Technical Reference
Keywords

¦ Copyright IBM Corp. 1985, 1991
2.3.13.1 - 8

 nosb Number of Stop Bits: Refers to the 1, 1.5, 2
 number of stop bits used to frame
 each data character transmitted.
 The value chosen must be compatible
 with the bpc selection. 1.5 stop
 bits is only valid when bpc is set
 to 5.

 pro Protocol: Refers to communication dtr, dc
 protocol which determines how the
 modem control lines are used during
 a communications session. The pro
 keyword is generally set to dtr.
 The dc (Direct Control) value
 allows attachment of devices that
 use hard-wired flow control, such
 as certain serial printers and
 plotters.

 Note: While hard-wired flow
 control is sometimes
 referred to as DTR pacing,
 the pro keyword must be set
 to dc to support this
 function.

 pt Parity Type: Specifies what type even, odd, mark, space,
 of parity, if any, the transmitted none
 data will have. Received data will
 be checked to ensure it has the
 proper parity. The Native Serial
 Ports do not support the mark or
 space parity.

 rts Receive/Transmit Speed: Refers to 50, 75, 110, 134.5, 150,
 the communication baud rate. 300, 600, 1200, 1800,
 2000, 2400, 3600, 4800,
 7200, 9600, 19200

 tt Terminal Type: Refers to the type
 of device attached.

 3270 Devices

 Key Possible
 Word Description Choices

 lobibp Buffer Length: Length of the 4096-65453
 buffers in the 3270 device
 driver buffer pool.

 serial Serial Number: PS/2 serial 0000001-9999999
 number, must be 7 digits.

 machtype PS/2 Machine Type. 8580, 8570

 mnonid Number of 3270 Sessions: 1-8

AIX Operating System Technical Reference
Keywords

¦ Copyright IBM Corp. 1985, 1991
2.3.13.1 - 9

 There may be up to eight
 simultaneous Distributed
 Function Terminal sessions per
 3270 Connection Adapter.

 slow Slow Device Mask Enables or 0-12345678
 Disables Slow Device on a per
 3270 Session Basis: If slow
 device is set to 2, then 3270
 session will be set to a slow
 device. If slow is set to 28,
 then 3270 sessions 2 and 8
 will be slow devices.

 printer Printer Device Mask: Refer to 0-12345678
 slow for interpretation of
 mask.

 Files

 /etc/ddi/diskette
 /etc/ddi/ethernet
 /etc/ddi/token
 /etc/ddi/opprinter
 /etc/ddi/plotter
 /etc/ddi/pprinter
 /etc/ddi/sprinter
 /etc/ddi/tty
 /etc/ddi/pty
 /etc/ddi/tape
 /etc/ddi/c327
 /etc/ddi/nty

 and possibly others.

 Related Information
 In this book: "attributes" in topic 2.3.5, "descriptions" in
 topic 2.3.14, "kaf" in topic 2.3.30, "master" in topic 2.3.32, "options"
 in topic 2.3.43, "predefined" in topic 2.3.47, and "system" in
 topic 2.3.56.

AIX Operating System Technical Reference
Keywords

¦ Copyright IBM Corp. 1985, 1991
2.3.13.1 - 10

 2.3.14 descriptions

 Purpose
 Describes the meaning of ddi file keywords.

 Description
 The /etc/ddi/descriptions file contains a sorted list of descriptions for
 each of the keywords used in ddi files. The devices command uses this
 file to explain the meanings of the keywords during the add, change, and
 showdev subcommands.

 The /etc/ddi/descriptions file must be sorted by keyword, and each line
 must follow the following format:

 keyworddescription

 where:

 keyword Names a keyword that is used in a ddi file. This field is
 exactly 10 characters long, is padded on the right with
 spaces, and contains no tabs.

 description Describes the meaning of the keyword. This field is exactly
 28 characters long, is padded on the right with spaces, and
 contains no tab characters.

 Note: The /etc/ddi/descriptions file must be sorted alphabetically by the
 keyword field. If it is not sorted, then the devices commands
 displays incorrect information about the meanings of keywords.

 The use of extended characters in the /etc/ddi/descriptions file is not
 supported.

 File

 /etc/ddi/descriptions

 Related Information
 In this book: "ddi" in topic 2.3.13 and "options" in topic 2.3.43.

AIX Operating System Technical Reference
descriptions

¦ Copyright IBM Corp. 1985, 1991
2.3.14 - 1

 2.3.15 devinfo

 Purpose
 Contains device characteristics.

 Synopsis
 #include <sys/devinfo.h>

 Description
 The devinfo structure is defined for each device. The IOCINFO operation
 of the ioctl system call fills in this structure. The information
 returned by a device varies. Most devices, other than disk devices,
 return a devtype value and the remainder of this structure contains zeros.
 This structure provides information about the capabilities of a device,
 rather than its current status or settings. For example, types of
 information provided are the number of characters a printer handles per
 line or the diskette capacity in number of blocks.

 struct devinfo
 { char devtype;
 char flags;
 union
 { struct /* for disks */
 {short bytpsec; /* bytes per sector */
 short secptrk; /* sectors per track */
 short trkpcyl; /* tracks per cylinder */
 long numblks; /* blocks this partition */
 } dk;
 struct /* for memory mapped displays */
 { char capab; /* capabilities */
 char mode; /* current mode */
 short hres; /* horizontal resolution */
 short vres; /* vertical resolution */
 } tt;
 struct /* for ethernet interfaces */
 { unsigned short capab; /* capabilities */
 char haddr[6]; /* hardware address */
 } en;
 struct /* for block i/o device */
 {
 struct
 {
 char type; /* hardware type: ethernet or token ring */
 char if_flags; /* up/down 1=ATTACHED
 2=RUNNING
 3=PRIMARY INTERFACE */
 char haddr[6]; /* hardware address: ethernet or token ring */
 long mymach; /* local IP address */
 long subnet_mask; /* subnet mask */
 int mtu; /* maximum transmission unit */
 char if_name[IFNAMSIZ];/* name of interface */
 } lan[MAXIFS];
 } bio;
 struct /* for magnetic tapes */

 { short type; /* what flavor of tape */
 /* defined below */
 } mt;
 struct /* for mouse */

AIX Operating System Technical Reference
devinfo

¦ Copyright IBM Corp. 1985, 1991
2.3.15 - 1

 { short m_xres; /* best x resolution (points/cm) */
 short m_yres; /* best y resolution (points/cm) */
 short pad; /* make it for both 286 & 386 procs */
 } mo;
 } un;
 };

 The following flags specify some generic capabilities (See DD_DISK) :

 Constant Value Function
 DF_FIXED 01 Non-removable
 DF_RAND 02 Random access possible
 DF_FAST 04 A relative term

 The following flags are System/370 only:

 Constant Value Function
 DF_FBA 0x80 Fixed-block-architecture disk (3310/3370)
 DF_CKD 0x40 Count-key-data disk (3310/3350/3375/3380)
 DF_BLKIO 0xc0 Bulk-I/O disk
 DF_MASK 0xc0 Mask for disk type

 The following flags are 386-only:

 Constant Value Function
 DF_ESDI 0x20 Enhanced small device interface
 DF_ST506 0x10 Seagate Technology 506 interface
 DF_I386_MASK 0x30 Mask for disk type

 The devinfo structures are defined for the following devices (specified in
 the devtype file) :

 DD_DISK Indicates a disk. This devtype is R. The driver determines
 the value. The fixed disk has flags
 DF_RAND|DF_FIXED|DF_FAST, while the diskette has flag
 DF_RAND (see "fd" in topic 2.5.9 and "hd" in topic 2.5.10).

 The number of the bytes per sector, sectors per track, and
 tracks per cylinder for the fixed disk are predetermined.
 The minidisk table determines the number of blocks. For the
 diskette, the minor device driver or the physical media
 determines this information when the device is opened.

 DD_LP Indicates a line printer. The devtype is 1. This fills in
 the devtype field and returns zeros for the rest of the
 structure.

 DD_PSEU Indicates a pseudo-device. The devtype is Z.

 DD_TAPE Indicates a magnetic tape. The devtype is M.

 DD_TTY Indicates a terminal. This returns a devtype of t and zeros
 for the rest of the structure.

 DD_PUN Indicates a card punch. The devtype is p.

 DD_RDR Indicates a card reader. The devtype is r.

 DD_NET Indicates a network. The devtype is N.

AIX Operating System Technical Reference
devinfo

¦ Copyright IBM Corp. 1985, 1991
2.3.15 - 2

 DD_EN Indicates an Ethernet interface. The devtype is E.

 DD_EM78 Indicates a 3278/79 emulator. The devtype is e.

 DD_TR Indicates a Token Ring interface. The devtype is t.

 DD_BIO Indicates a block I/O device. The devtype is B.

 DD_MOUS Indicates a mouse. The devtype is m.

 DD_OSM Indicates an OSM. The devtype is o.

 DD_VM Indicates a virtual machine command interface. The devtype
 is o.

 DD_MEM Indicates an interface to kernel memory. The devtype is k.

 DT_STREAM Indicates a streaming tape drive. The devtype is l.

 DT_STRTSTP Indicates a start-stop tape drive. The devtype is 2.

 Related Information
 In this book: "ioctlx, ioctl, gtty, stty" in topic 1.2.137, "fd" in
 topic 2.5.9, and "hd" in topic 2.5.10.

AIX Operating System Technical Reference
devinfo

¦ Copyright IBM Corp. 1985, 1991
2.3.15 - 3

 2.3.16 dir

 Purpose
 Describes the format of a directory.

 Synopsis

 #include <sys/types.h>
 #include <dirent.h>

 Description
 A directory is a file that a user is not allowed to write into directly.
 A directory file contains a variable-sized entry for each file in it. A
 bit in the file mode of the inode entry indicates that the corresponding
 file should be treated as a directory. For additional information about a
 system volume format, see "fs" in topic 2.3.20 and "inode" in
 topic 2.3.29.

 The recommended way for a program to read a directory is through readdir
 (see "directory: opendir, readdir, telldir, seekdir, rewinddir, closedir"
 in topic 1.2.60) or readx (see "read, readv, readx" in topic 1.2.224). If
 a program uses read, and that process hasn't been marked with the "real
 directory read" attribute (see "ulimit" in topic 1.2.313), the system will
 presume that the program is expecting fixed-sized directory entries. See
 System V compatibility, described below.

 A directory consists of some number of blocks of DIRBLKSIZ bytes (defined
 in <dirent.h>), or exactly one block of size SMBLKSZ bytes (defined in
 <sys/ino.h>). Each directory block contains some number of directory
 entry structures, which are of variable length. Each directory entry has
 a struct dirent at the front of it, containing its inode number, the
 length of the entry, and the length of the name contained in the entry.
 These are followed by the name padded to a 16-byte boundary with null
 bytes. All names are guaranteed null-terminated. The maximum length of a
 name in a directory is NAME_MAX. The maximum length of an entire path
 name is PATH_MAX. Neither NAME_MAX nor PATH_MAX includes the terminating
 null character.

 The macro NDIRSIZ(dp) gives the amount of space required to represent a
 directory entry. Free space in a directory is represented by entries that
 have dp->d_reclen > DIRSIZ(dp). All DIRBLKSIZ (or SMBLKSZ) bytes in a
 directory block are claimed by the directory entries. This usually
 results in the last entry in a directory having a large dp->d_reclen.
 When entries are deleted from a directory, the space is returned to the
 previous entry in the same directory block by increasing its
 dp->d_reclen. If the first entry of a directory block is freed, then its
 dp->d_ino is set to 0. Entries other than the first in a directory
 block do not normally have dp->d_ino set to 0.

 struct dirent {
 ino_t d_ino;
 u_short d_reclen;
 u_short d_namlen;
 char d_name[NAME_MAX + 1];
 /* typically shorter */
 };

 #define NDIRSIZ(dp) \
 (((sizeof(struct dirent) - (NAME_MAX+1)) + ((dp)->d_namlen+1 + 15)) &¬ 15)

AIX Operating System Technical Reference
dir

¦ Copyright IBM Corp. 1985, 1991
2.3.16 - 1

 By convention, the first two entries in each directory are for . (dot) and
 .. (dot dot). The first . is an entry for the directory itself. The ..
 entry is for the parent directory. The meaning of the .. entry for the
 root directory of the master file system is modified. There is no parent
 directory; therefore, the .. entry has the same meaning as the . entry.

 Subtopics
 2.3.16.1 Compatibility Interfaces

AIX Operating System Technical Reference
dir

¦ Copyright IBM Corp. 1985, 1991
2.3.16 - 2

 2.3.16.1 Compatibility Interfaces

 For compatibility with UNIX System V and earlier AIX systems, which
 employed fixed-sized 16-byte directory entries, the direct structure has
 been preserved. This is the structure returned by programs which call the
 read system call directly:

 #define DIRSIZ 14
 struct direct
 {
 s_ino_t d_ino;
 char d_name[DIRSIZ];
 };

 For compatibility with 4.3BSD, which uses struct direct and DIRSIZ to
 describe the variable-sized directory entries, the following definitions
 are made. One must define _BSD in a program to get these 4.3BSD
 definitions.

 #ifdef _BSD
 #define direct dirent
 #define DIRSIZ(dp) NDIRSIZ(dp)
 #endif

 Related Information
 In this book: "read, readv, readx" in topic 1.2.224, "ulimit" in
 topic 1.2.313, "fs" in topic 2.3.20, and "inode" in topic 2.3.29.

AIX Operating System Technical Reference
Compatibility Interfaces

¦ Copyright IBM Corp. 1985, 1991
2.3.16.1 - 1

 2.3.17 errfile

 Purpose
 Contains system event log.

 Synopsis
 #include <sys/erec.h>

 Description
 When a system event occurs and logging is active, it generates an event
 record and passes the record to the event-logging daemon to be recorded in
 the event log. The /etc/rasconf file specifies the files where the events
 are to be logged. The default event log file is /usr/adm/ras/errfile.

 Every record has a header. See "error" in topic 2.5.7 for the structure
 of a header. Each type of event record has its own format. The
 /usr/include/sys/erec.h file shows the format of the events currently
 logged. The error daemon process gathers the records from memory and
 writes them in the files on disk. The event log file is opened (if
 existing) or created. Next, the process opens the /dev/error special
 file, formats and writes the non-volatile random access memory (NVRAM),
 which can contain up to 16 bytes of information, and reads the events
 logged in memory. An analysis routine is called before an event is
 written to the errfile. For an error, this routine returns a buffer of
 probable cause information to aid in problem determination. This buffer
 is appended to the error entry, the length of the entry is adjusted, and
 then the entire entry is written to the file.

 Some records in the event file are administrative. These include the
 startup record entered when logging is activated, the stop record written
 if the daemon is terminated gracefully, and the time-change record that
 accounts for changes in the system time of day.

 Files

 /usr/adm/ras/errfile
 /dev/error
 /etc/rasconf

 Related Information
 In this book: "rasconf" in topic 2.3.50 and "error" in topic 2.5.7.

 The errdemon in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
errfile

¦ Copyright IBM Corp. 1985, 1991
2.3.17 - 1

 2.3.18 filesystems

 Purpose
 Centralizes file system characteristics.

 Description
 A file system is a complete directory structure, including a root
 directory and any directories and files beneath it. A file system is
 confined to a single partition. All of the information about the file
 system is centralized in the filesystems file. Most of the file system
 maintenance commands take their defaults from this file. The file is
 organized into stanzas whose names are file system names and whose
 contents are attribute-value pairs specifying characteristics of the file
 system.

 The filesystems file serves two purposes:

 � It documents the layout characteristics of the file systems

 � It frees the person who sets up the file system from having to ente
 and remember items such as the device where the file system resides
 because this information is defined in the file.

 If the Transparent Computing Facility is installed, there is a unique
 /etc/filesystems for each cluster site (/etc/filesystems is a symbolic
 link into the local file system).

 Subtopics
 2.3.18.1 File System Attributes

AIX Operating System Technical Reference
filesystems

¦ Copyright IBM Corp. 1985, 1991
2.3.18 - 1

 2.3.18.1 File System Attributes

 Each stanza names the directory (which must be the full pathname) where
 the file system is normally mounted. The attributes specify all of the
 parameters of the file system. See "attributes" in topic 2.3.5 for the
 format of an attribute file. The attributes currently used are:

 account Used by the dodisk command to determine the file systems to
 be processed by the accounting system. This value can be
 either TRUE or FALSE.

 backupden Used by the backup command to determine the density of the
 default backup device associated with each file system.
 Density is measured in bytes per inch. The parameter is
 ignored for diskettes.

 backupdev Used by the backup and restore commands to determine the
 default output device associated with each file system. The
 value of this keyword is usually the name of a diskette or
 magnetic tape special file.

 backuplen Used by the backup command to determine the size of the
 default backup device associated with each file system. The
 size of a tape is measured in tracks times feet. For
 example, the backuplen for a 300-foot 9-track tape is 2700.
 This parameter is ignored for diskettes.

 backuplev Used by the backup command to determine the default backup
 level to take for each file system. Backup levels are
 discussed in the backup command.

 bad List of physically flawed disk blocks which are excluded from
 the pool of available file system blocks.

 boot Used by the mkfs command to initialize the boot block of a
 new file system. This specifies the name of the load module
 to be placed into the first block of the file system.

 check Used by the fsck command to determine the default file
 systems to be checked. TRUE enables checking while FALSE
 disables checking. If a number, rather than TRUE is
 specified, the number indicates which of multiple concurrent
 fsck processes will check this file system. This parallel
 checking, described in fsck command in AIX Operating System
 Commands Reference, permits multiple file systems to be
 checked in parallel when multiple drives exist.

 cyl Used by the mkfs command to initialize the free list and
 super block of a new file system. The value is the number of
 blocks in one cylinder. It defines the size of an interleave
 cluster.

 dev Identifies, for local mounts, the block special file where
 the file system resides. System management utilities use
 this attribute to map file system names to the corresponding
 device names. For NFS mounts, the host:NFSdir form is used.
 Host specifies the host machine on which the remote file
 system resides. NFSdir specifies the path name of the remote
 file system being mounted. Use ASCII characters for
 filesystem name to ensure successful communication across

AIX Operating System Technical Reference
File System Attributes

¦ Copyright IBM Corp. 1985, 1991
2.3.18.1 - 1

 different locales.

 free Used by the df command to determine which file systems are to
 have their free space displayed by default. This value is
 either TRUE or FALSE.

 freq Used by the dumpbsd command, freq specifies dump frequency,
 indicated by number of days.

 ftype File system type. May include one of the following values:

 nfs An NFS mounted file system.

 nonrepl A standard file system which is not replicated
 on other sites. This filesystem is accessible
 by other sites in a TCF cluster only when the
 machine storing it is up.

 repl A filesystem which is one instance of multiple
 copies throughout a TCF cluster. The following
 value is used to differentiate between system
 and user replicated file systems:

 user This filesystem is user replicated.
 If this value is not present, the
 file system is system replicated.

 One of the following may also be present:

 primary This is the primary copy of the
 replicated file system, readable and
 writable by all sites in the TCF
 cluster.

 backbone A backup copy of a replicated
 filesystem, readable by all sites,
 but writable only by the primary
 site.

 System replicated filesystems which are not
 primary or backbone must include the following:

 fstore An fstore value found in /ect/fstore
 which indicates what files are
 present on this secondary copy.

 gfs Global file system number. Used by TCF. Every minidisk on a
 node has a different gfs number.

 gfspack Global file system. Always 1 for nonreplicated file systems.
 Used by TCF.

 inodes Used by the mkfs command for reference and to build the file
 system. The value is the number of inodes (files) in the
 file system. If this attribute is not specified, the value
 is calculated from the size attribute.

 mode Used by the dumpbsd command, mode specifies the type of file
 system desired, as follows:

AIX Operating System Technical Reference
File System Attributes

¦ Copyright IBM Corp. 1985, 1991
2.3.18.1 - 2

 rw Read/write device

 ro Read only device

 sw Swap device

 nm File system normally not mounted

 xx Ignore type.

 mount Used by the mount command to determine whether or not this
 file system should be mounted by default. The possible
 values of mount are:

 automatic Automatically mounts a filesystem when the system
 is rebooted. For example, in the sample file, the
 root file system is mount=automatic. This means
 the root file system mounts automatically when the
 system is rebooted. The TRUE value is not used so
 that mount all does not try to mount it. Also,
 the value is not FALSE because certain utilities,
 such as ncheck normally avoid file systems with a
 value of mount=false.

 false This file system is not mounted by default.

 true This file system is mounted by the mount all (or
 mount -a) command.

 After a value of true or false, the following can be
 specified:

 readonly The filesystem is mount read-only by default.

 options See -o options in the MOUNT command in AIX Operating System
 Commands Reference.

 site The name of the machine that contains the minidisk.

 size Used by the mkfs command for reference and to build the file
 system. The value is the number of blocks in the file
 system.

 skip Used by the mkfs command to initialize the free list and
 super block of a new file system. The value is the number of
 blocks to skip when the free list is interleaved. This
 number is processor- and device-specific.

 type Used by the mount command to determine whether or not this
 file system should be mounted. When the command
 mount -t string is issued, all of the currently unmounted
 file systems with a type equal to string are mounted.

 vol Used by the mkfs command when initializing the label on a new
 file system. The value is a volume or pack label using a
 maximum of eight characters. The file system label is always
 the stanza name.

 quotas Used to mark which file system will be affected when a -a
 flag is specified with a quotaon, quotaoff, quotacheck, or

AIX Operating System Technical Reference
File System Attributes

¦ Copyright IBM Corp. 1985, 1991
2.3.18.1 - 3

 repquota command. If the value is "on", the file system is
 affected. Otherwise, it is ignored.

 Example

 *
 * File system information
 *
 default:
 vol = "AIX"
 mount = false
 check = false
 free = false
 backupdev =/dev/fd0
 backuplen = 1440

 /u1:
 dev = /dev/hd1
 vol = "/u1"
 mount = true
 check = 1
 gfs = 2
 gfspack = 1
 size = 12000
 ftype = nonrepl
 free = true
 site = aixps

 /aixps:
 dev = /dev/hd2
 vol = "/aixps"
 mount = automatic
 check = 0
 gfs = 3
 gfspack = 1
 size = 6000
 ftype = nonrepl
 free = true
 site = aixps

 /:
 dev = /dev/hd3
 vol = "/"
 mount = automatic
 check = 0
 gfs = 1
 gfspack = 1
 size = 50000
 ftype = repl,primary
 free = true
 site = aixps

 *
 /aixps/tmp:
 dev = /dev/hd6
 vol = "/aixps/tmp"
 mount = true
 check = 1
 gfs = 4

AIX Operating System Technical Reference
File System Attributes

¦ Copyright IBM Corp. 1985, 1991
2.3.18.1 - 4

 gfspack = 1
 size = 4000
 ftype = nonrepl
 free = true
 site = aixps
 *
 /ul/aixps2:
 dev = "aixps2:/ul"
 vol = "/ul/aixps2"
 options = "rw,intr,bg"
 gfs = 101
 mount = false
 checks = false
 free = true
 type = nfs_mount
 ftype = nfs
 site = aixps

 File
 /etc/filesystems

 Related Information
 In this book: "attributes" in topic 2.3.5 and "fs" in topic 2.3.20.

 The backup, df, dumpbsd, fsck, mkfs, mount, restore, and umount commands
 in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
File System Attributes

¦ Copyright IBM Corp. 1985, 1991
2.3.18.1 - 5

 2.3.19 fonts

 Purpose
 Defines annotated and geometric character fonts (AIX PS/2 only).

 Description
 IBM supplies precompiled annotated text fonts with the AIX Operating
 System. For more information on how to use the fonts described in this
 section, see Chapter 6, "Advanced Display Graphics Support Library" in
 topic 2.6.

 The system console provided by the /dev/hft device driver does not use
 fonts that can be modified by the user. The display command can be used
 to choose between either a hardware-generated font which displays code
 page P0 or a software-generated font which displays all the symbols in
 code pages P0, P1, and P2. See "display symbols" in topic 2.4.4.

 The GSL-supported devices also recognize one geometric text font format
 that allows you to design your own set of characters. A geometric text
 font is also known as a programmable character set (PCS) font. The PCS
 font can be used on all GSL-supported devices.

 Subtopics
 2.3.19.1 Annotated Text Font Format
 2.3.19.2 Geometric Text Font Format
 2.3.19.3 rtfont File Format

AIX Operating System Technical Reference
fonts

¦ Copyright IBM Corp. 1985, 1991
2.3.19 - 1

 2.3.19.1 Annotated Text Font Format

 An annotated text font definition file has three major parts in the
 following sequence:

 � A header that describes the font. The header is the same for al
 annotated text fonts.

 � A set of condensed raster mosaics that describes each character in th
 font.

 � A look-up table that has an index entry to find each characte
 representation in the font.

 � Look-up table entries are 32 bits and each describes the start of it
 raster mosaics entry, its width, and the whitespace compressed from
 the top and bottom of its raster mosaics entry.

 Subtopics
 2.3.19.1.1 Annotated Text Font Header
 2.3.19.1.2 Annotated Text Font Raster Mosaics
 2.3.19.1.3 Annotated Text Font Look-up Table
 2.3.19.1.4 Annotated Text Font Files

AIX Operating System Technical Reference
Annotated Text Font Format

¦ Copyright IBM Corp. 1985, 1991
2.3.19.1 - 1

 2.3.19.1.1 Annotated Text Font Header

 The annotated text font header is a fixed-length structure common to all
 annotated text fonts for all displays. The information in header fields
 are shown in the following table.

 +--+
 ¦ Offset ¦ Length ¦ ¦ ¦
 ¦ in Bytes ¦ in Bytes ¦ Field ¦ Description ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0x00 ¦ 4 ¦ DDDFSIZE ¦ The size in bytes of the area ¦
 ¦ ¦ ¦ ¦ containing the font and the look-up ¦
 ¦ ¦ ¦ ¦ table. ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0x04 ¦ 2 ¦ fntclass ¦ A number that uniquely identifies the ¦
 ¦ ¦ ¦ ¦ format of the look-up table that ¦
 ¦ ¦ ¦ ¦ follows: ¦
 ¦ ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ 0x01 = not a 5081 font ¦
 ¦ ¦ ¦ ¦ 0x02 = a 5081 font ¦
 ¦ ¦ ¦ ¦ ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0x06 ¦ 2 ¦ fntid ¦ The name an application uses to ¦
 ¦ ¦ ¦ ¦ identify a font. This must be a ¦
 ¦ ¦ ¦ ¦ value within the range of 0 to 1024. ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0x08 ¦ 4 ¦ fntstyle ¦ Font style. ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0x0C ¦ 4 ¦ fntattr ¦ Identifies the attributes of the ¦
 ¦ ¦ ¦ ¦ font. Possible values are: ¦
 ¦ ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ 0x0000 - no special values ¦
 ¦ ¦ ¦ ¦ 0x0001 - bold version of this font ¦
 ¦ ¦ ¦ ¦ 0x0002 - italic version of this font¦
 ¦ ¦ ¦ ¦ ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0x10 ¦ 4 ¦ fnttotch ¦ The total number of characters in the ¦
 ¦ ¦ ¦ ¦ font. This is used to determine ¦
 ¦ ¦ ¦ ¦ whether a specified character code is ¦
 ¦ ¦ ¦ ¦ valid for this font. ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0x14 ¦ 4 ¦ fnttblsz ¦ Total number of words in the font ¦
 ¦ ¦ ¦ ¦ table. ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0x18 ¦ 2 ¦ fntbasln ¦ The scan line within a character box ¦
 ¦ ¦ ¦ ¦ of the baseline for characters in ¦
 ¦ ¦ ¦ ¦ this font (zero origin). ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0x1A ¦ 2 ¦ fntcapln ¦ The scan line within a character box ¦
 ¦ ¦ ¦ ¦ of the caps line for characters in ¦
 ¦ ¦ ¦ ¦ this font (zero origin). ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0x1C ¦ 2 ¦ fntcolmn ¦ Width of character box in pels. ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0x1E ¦ 2 ¦ fntrows ¦ Height of character box in pels. ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0x20 ¦ 2 ¦ fntchrbt ¦ Total number of bits per character. ¦
 +----------+----------+----------+---------------------------------------¦

AIX Operating System Technical Reference
Annotated Text Font Header

¦ Copyright IBM Corp. 1985, 1991
2.3.19.1.1 - 1

 ¦ 0x22 ¦ 2 ¦ fntultop ¦ The scan line within the character ¦
 ¦ ¦ ¦ ¦ box of the top line in the underscore ¦
 ¦ ¦ ¦ ¦ (zero origin). ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0x24 ¦ 2 ¦ fntulbot ¦ The scan line within the character ¦
 ¦ ¦ ¦ ¦ box of the bottom line in the ¦
 ¦ ¦ ¦ ¦ underscore (zero origin). ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0x26 ¦ 1 ¦ fntmonpt ¦ Mono pitch flag in leftmost bit of ¦
 ¦ ¦ ¦ ¦ this byte. ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0x28 ¦ 4 ¦ fntlkup ¦ Byte offset from the beginning of ¦
 ¦ ¦ ¦ ¦ this structure to the beginning of ¦
 ¦ ¦ ¦ ¦ the font look-up table. ¦
 +--+

AIX Operating System Technical Reference
Annotated Text Font Header

¦ Copyright IBM Corp. 1985, 1991
2.3.19.1.1 - 2

 2.3.19.1.2 Annotated Text Font Raster Mosaics
 This contains a definition for each character in the font. Each character
 is entered in this area with the horizontal slices bit-packed one right
 after the other. The first bit of the first character slice is forced to
 begin in the most significant bit of a byte. The raster mosaics start
 immediately after the header (0x2C from the start address of the font
 structure). See Annotated Text Example One on 2.3.19.1.3.

AIX Operating System Technical Reference
Annotated Text Font Raster Mosaics

¦ Copyright IBM Corp. 1985, 1991
2.3.19.1.2 - 1

 2.3.19.1.3 Annotated Text Font Look-up Table

 The look-up table immediately follows the raster mosaic. There is one
 32-bit look-up table entry for each character in the font. The look-up
 table can be found by adding the value fntlkup given in the header to the
 starting address of the font structure. The table entry for any given
 character is found by using the font position number as an index into the
 table. (See "display symbols" in topic 2.4.4 for a list of the font
 position numbers.) Each look-up table entry contains the following
 fields:

 +--+
 ¦ Offset ¦ Length ¦ ¦ ¦
 ¦ in Bits ¦ in Bits ¦ Field ¦ Description ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0 ¦ 5 ¦ lkup_top ¦ The number of blank scan lines that ¦
 ¦ ¦ ¦ ¦ have been eliminated from the top of ¦
 ¦ ¦ ¦ ¦ this character raster image ¦
 ¦ ¦ ¦ ¦ (whitespace). ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 5 ¦ 5 ¦ lkup_bot ¦ The number of blank scan lines that ¦
 ¦ ¦ ¦ ¦ have been eliminated from the bottom ¦
 ¦ ¦ ¦ ¦ of this character raster image ¦
 ¦ ¦ ¦ ¦ (whitespace). ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 10 ¦ 6 ¦ lkup_widt¦ Contains the width in pels of this ¦
 ¦ ¦ ¦ ¦ particular character. ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 16 ¦ 16 ¦ lkup_ref ¦ Byte offset from the start of the ¦
 ¦ ¦ ¦ ¦ raster mosaics of the first scanline ¦
 ¦ ¦ ¦ ¦ of the character's raster image. ¦
 +--+

 Annotated Text Example One
 See Figure 3-1 for this example. The character chosen is a capital A.
 This is shown as it would appear on the display and how it would be stored
 in the raster mosaics. Also shown is the font look-up table entry for
 this character. Note that the data associated with the top and bottom two
 scan lines of the character image do not appear in the raster mosaics
 since they consist of zeros.

 To reconstruct the character image from the raster mosaics, it is
 necessary to use the font look-up table. The display symbol code
 associated with the character that is to be displayed is used to access
 its corresponding 4-byte entry in the font look-up table. The information
 contained in a font look-up table entry is shown. The capital Ts
 represent the bits containing the number of top blank scan lines that were
 compressed from the character image. The capital Bs represent the bits
 containing the number of bottom blank scan lines that were compressed from
 the character image. The capital Ws represent the bits containing the
 width in pels of this character. Capital Os represent the bits containing
 the offset of the compressed portion of this character image data in the
 raster mosaics. For this example, the value associated with T is 2, the
 value associated with B is 2, and the width (W) is 5. The value
 associated with O is the offset of the y(th) byte of the raster mosaics.

 Figure 3-1. Example of Annotated Text Font Storage

AIX Operating System Technical Reference
Annotated Text Font Look-up Table

¦ Copyright IBM Corp. 1985, 1991
2.3.19.1.3 - 1

 If this font is defined in a file named /usr/lpp/gsl/font_src/nrm1.9x20.s,
 then compile it using the following commands:

 cd /usr/lpp/gsl
 cc font_src/nrm1.9x20.s -o fonts/nrm1.9x20

AIX Operating System Technical Reference
Annotated Text Font Look-up Table

¦ Copyright IBM Corp. 1985, 1991
2.3.19.1.3 - 2

 2.3.19.1.4 Annotated Text Font Files

 /usr/lpp/gsl/fonts/nrm1.4x8 Normal 4 by 8 micro font, compiled
 /usr/lpp/gsl/fonts/nrm1.6x9 Normal 6 by 9 font, compiled
 /usr/lpp/gsl/fonts/nrm1.6x11 Normal 6 by 11 font, compiled
 /usr/lpp/gsl/fonts/nrm1.7x15 Normal 7 by 15 font, compiled
 /usr/lpp/gsl/fonts/nrm1.7x22 Normal 7 by 22 font, compiled
 /usr/lpp/gsl/fonts/nrm1.8x14 Normal 8 by 14 font, compiled
 /usr/lpp/gsl/fonts/bld1.9x20 Bold 9 by 20 font, compiled
 /usr/lpp/gsl/fonts/erg1.9x20 Ergonomic 9 by 20 font, compiled
 /usr/lpp/gsl/fonts/itl1.9x20 Italic 9 by 20 font, compiled
 /usr/lpp/gsl/fonts/nrm1.9x20 Normal 9 by 20 font, compiled
 /usr/lpp/gsl/fonts/bld1.11x23 Bold 11 by 23 font, compiled
 /usr/lpp/gsl/fonts/nrm1.11x23 Normal 11 by 23 font, compiled
 /usr/lpp/gsl/fonts/nrm1.12x30 Normal 12 by 30 font, compiled
 /usr/lpp/gsl/fonts/nrm1.18x40 Normal 18 by 40 title font, compiled

 Many of the fonts are also supplied in rotated versions (for instance,
 nrm1.9x20.90 is the 90° rotated version of nrm1.9x20).

AIX Operating System Technical Reference
Annotated Text Font Files

¦ Copyright IBM Corp. 1985, 1991
2.3.19.1.4 - 1

 2.3.19.2 Geometric Text Font Format

 Geometric text fonts are also known as programmable character set (PCS)
 fonts and they can be used on all GSL supported devices. Each character
 is defined as a series of moves or draws that define the shape of the
 character. The moves and draws are specified as X-Y pairs of signed
 relative values (relative to the previous ending point, or to the bottom
 left of the character box for the first X-Y pair). The range of the
 incremental values for the X and Y coordinates is -64 to +63.

 Each character definition in the font consists of a 2-byte length field
 for the character definition followed by 2-byte X-Y entries:

 Length of definition 2 bytes
 sXXXXXX 1 sYYYYYY b 2 bytes
 sXXXXXX 1 sYYYYYY b 2 bytes
 sXXXXXX 1 sYYYYYY b 2 bytes
 sXXXXXX 1 sYYYYYY b 2 bytes

 sXXXXXX 1 sYYYYYY b 2 bytes

 s is the sign bit (0 = positive, 1 = negative). Negative values
 are in twos complement notation.

 b is the blanking bit. If b = 1, the primitive is blanked causing
 movement without display.

 1 is the low order bit of the X coordinate field and must always
 be a 1.

 If the first X-Y pair is a draw rather than a move, the line is drawn from
 the bottom left corner of the character box. A move is specified by the
 low-order bit of the Y coordinate being on. A draw is specified by the
 low-order bit being off. The last X-Y pair in the series for the
 character is defined by the length field.

 Subtopics
 2.3.19.2.1 Geometric Text Font Definition File

AIX Operating System Technical Reference
Geometric Text Font Format

¦ Copyright IBM Corp. 1985, 1991
2.3.19.2 - 1

 2.3.19.2.1 Geometric Text Font Definition File

 The PCS font definition file consists of:

 � A header that contains identifier and control informatio
 � A table of index values used to find each character definitio
 � The character definitions

 +--+
 ¦ Offset ¦ Length ¦ ¦ ¦
 ¦ in Bytes ¦ in Bytes ¦ Field ¦ Description ¦
 +----------+----------+----------+---¦
 ¦ 0x00 ¦ 2 ¦ length ¦ The length of the PCS descriptor record including the ¦
 ¦ ¦ ¦ ¦ length field. ¦
 +----------+----------+----------+---¦
 ¦ 0x02 ¦ 4 ¦ Reserved ¦ 0x00000000 ¦
 +----------+----------+----------+---¦
 ¦ 0x06 ¦ 1 ¦ ¦ ¦
 ¦ ¦ ¦ ¦ Bit 1 = 0 - EBCDIC ¦
 ¦ ¦ ¦ ¦ = 1 - ASCII ¦
 ¦ ¦ ¦ ¦ Bits 1-2 = Reserved ¦
 ¦ ¦ ¦ ¦ Bits 3-7 = (Type) specifies the data format ¦
 ¦ ¦ ¦ ¦ definition for programmable ¦
 ¦ ¦ ¦ ¦ characters. One is defined: ¦
 ¦ ¦ ¦ ¦ '00001'B = Type 1 ¦
 ¦ ¦ ¦ ¦ ¦
 +----------+----------+----------+---¦
 ¦ 0x07 ¦ 1 ¦ Reserved ¦ Must be 0. ¦
 +----------+----------+----------+---¦
 ¦ 0x08 ¦ 2 ¦ fontid ¦ This field identifies the programmable character set. ¦
 ¦ ¦ ¦ ¦ Font IDs within the range of 1025 to 3267 are ¦
 ¦ ¦ ¦ ¦ reserved for 1-byte character sets. IDs within the ¦
 ¦ ¦ ¦ ¦ range of 32768 to 65535 are reserved for 2-byte ¦
 ¦ ¦ ¦ ¦ character sets. ¦
 +----------+----------+----------+---¦
 ¦ 0x0A ¦ 1 ¦ segmented¦ For 2-byte character sets, this byte contains the ¦
 ¦ ¦ ¦ ¦ first byte of the 2-byte character code. ¦
 +----------+----------+----------+---¦
 ¦ 0x0B ¦ 1 ¦ Reserved ¦ Must be 0. ¦
 +----------+----------+----------+---¦
 ¦ 0x0C ¦ 2 ¦ P ¦ Range of X (between 0 and P) ¦
 +----------+----------+----------+---¦
 ¦ 0x0E ¦ 2 ¦ Q ¦ Range of Y (between 0 and Q) ¦
 +----------+----------+----------+---¦
 ¦ 0x10 ¦ 1 ¦ CP0 ¦ Starting character code within PCS (within the range ¦
 ¦ ¦ ¦ ¦ of 0x21 to 0xFE.) ¦
 +----------+----------+----------+---¦
 ¦ 0x11 ¦ 1 ¦ CPn ¦ The last character code within this PCS. If CP
 ¦ ¦ ¦ ¦ 0, 0xFE is assumed. CPn must not be less than CP0. ¦
 +----------+----------+----------+---¦
 ¦ 0x12 ¦ 2 ¦ font ¦ The value of the font baseline in pixels in the Y ¦
 ¦ ¦ ¦ baseline ¦ direction from the bottom line of the character. ¦
 ¦ ¦ ¦ ¦ This value is used in conjunction with the text ¦
 ¦ ¦ ¦ ¦ alignment function. ¦
 +----------+----------+----------+---¦
 ¦ 0x14 ¦ 2 ¦ font ¦ The value of the font capline in pixels in the Y ¦
 ¦ ¦ ¦ capline ¦ direction from the bottom line of the character. ¦
 ¦ ¦ ¦ ¦ This value is used in conjunction with the text ¦
 ¦ ¦ ¦ ¦ alignment function. ¦

AIX Operating System Technical Reference
Geometric Text Font Definition File

¦ Copyright IBM Corp. 1985, 1991
2.3.19.2.1 - 1

 +----------+----------+----------+---¦
 ¦ 0x16 ¦ 1 ¦ Reserved ¦ ¦
 +----------+----------+----------+---¦
 ¦ 0x17 ¦ 1 ¦ Default ¦ This is the character code within this PCS font that ¦
 ¦ ¦ ¦ error ¦ specifies the character to be displayed when an ¦
 ¦ ¦ ¦ code ¦ invalid code is encountered or the character code ¦
 ¦ ¦ ¦ point ¦ does not exist. ¦
 +----------+----------+----------+---¦
 ¦ 0x18 ¦ var ¦ Character¦ This field contains 2-byte offsets to each character ¦
 ¦ ¦ ¦ Index ¦ description. Each offset is from the beginning of ¦
 ¦ ¦ ¦ ¦ the descriptor record. ¦
 +----------+----------+----------+---¦
 ¦ var ¦ var ¦ Character¦ This field contains the character definitions, ¦
 ¦ ¦ ¦ Descripti¦nbeginning with code point CP0, in ascending order. ¦
 +--+

 P and Q together define the character box within which a normal character
 will fit. The values of P and Q are defined in device coordinate space
 (pixels) and control spacing between characters and new line spacing. The
 bottom left corner of the box is 0,0 and the top right corner is P,Q.
 Characters can extend outside this box as P and Q control only the
 intercharacter spacing. You can override the value of P specified in the
 header by specifying a character inline spacing value greater than 0.
 Undefined character codes (outside the range CP0-CPn, or those with an
 index value of 0) are displayed as the default code point character.

 Each character index value is the offset from the start of the header
 record to the actual character definition. The index must always be
 represented in its entirety, even if not all of the characters in the code
 range are defined. For example, the maximum length of the index, if CP0
 is specified as 0x41 and CPn as 0xFF, is 191 multiplied by 2 bytes. For
 undefined characters, the index value should contain an offset to the
 default code definition.

 Each character definition begins with a 2-byte length field which
 specifies the length of the character definition including the length
 field.

AIX Operating System Technical Reference
Geometric Text Font Definition File

¦ Copyright IBM Corp. 1985, 1991
2.3.19.2.1 - 2

 2.3.19.3 rtfont File Format

 The rtfont format is provided for use with X-Windows, Version 1.1 or
 higher, and with the Advanced Display Graphics Support Library, Version
 2.2 or higher. An rtfont definition file contains three major data
 structures in the following order:

 1. A header structure, called FONT_HEAD, which contains information about
 the font in general. The header also contains offsets to the
 following two structures.

 2. A character index array structure, called CHAR_INDEX, which contains
 modifiers of subsequent indices in the form of character offsets into
 the character data structure, also known as the character glyphs. The
 high-order four bits of each character index entry contain control
 information that defines how to interpret the 28 low-order bits of
 each entry.

 3. A character glyph structure, called CHAR_GLYPH, which contains the
 character image data and information unique to each character.

 Subtopics
 2.3.19.3.1 Header Structure for rtfont Format
 2.3.19.3.2 Character Index Array for rtfont Format
 2.3.19.3.3 Character Index Example
 2.3.19.3.4 Character Glyph Structure for rtfont Format
 2.3.19.3.5 Bounds Structure for rtfont Format

AIX Operating System Technical Reference
rtfont File Format

¦ Copyright IBM Corp. 1985, 1991
2.3.19.3 - 1

 2.3.19.3.1 Header Structure for rtfont Format

 The header is a fixed-length structure common to all fonts in the rtfont
 format. This structure, called FONT_HEAD, is defined in the rtfont.h
 header file, and it contains the following members:

 +--+
 ¦ Offset ¦ Length ¦ ¦ ¦
 ¦ in Bytes ¦ in Bytes ¦ Field ¦ Description ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x00 ¦ 16 ¦ font_id ¦ The ID of the font. ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x10 ¦ 4 ¦ off_to_index ¦ The offset in bytes from the ¦
 ¦ ¦ ¦ ¦ beginning of the file to the ¦
 ¦ ¦ ¦ ¦ character index array. ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x14 ¦ 4 ¦ off_to_glyphs ¦ The offset in bytes from the ¦
 ¦ ¦ ¦ ¦ beginning of the file to the ¦
 ¦ ¦ ¦ ¦ character glyphs. ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x18 ¦ 4 ¦ glyph_format ¦ The format of the character ¦
 ¦ ¦ ¦ ¦ image data. ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x1C ¦ 4 ¦ src_file_type ¦ The type of font file from ¦
 ¦ ¦ ¦ ¦ which this file was ¦
 ¦ ¦ ¦ ¦ generated. ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x20 ¦ 4 ¦ design_size ¦ The design size in (1/2)**16 ¦
 ¦ ¦ ¦ ¦ points. This field is for ¦
 ¦ ¦ ¦ ¦ use by T[E]X, a typesetting ¦
 ¦ ¦ ¦ ¦ system described in The ¦
 ¦ ¦ ¦ ¦ T[E]Xbook, Donald E. Knuth, ¦
 ¦ ¦ ¦ ¦ Addison Wesley Publishing ¦
 ¦ ¦ ¦ ¦ Company, 1986. (See Note ¦
 ¦ ¦ ¦ ¦ 1.) ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x24 ¦ 4 ¦ check_sum ¦ The checksum (T[E]X). (See ¦
 ¦ ¦ ¦ ¦ Note 1.) ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x28 ¦ 4 ¦ hppp ¦ The number of horizontal ¦
 ¦ ¦ ¦ ¦ pixels per point x 2**16. ¦
 ¦ ¦ ¦ ¦ (See Note 1.) ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x2C ¦ 4 ¦ vppp ¦ The number of vertical ¦
 ¦ ¦ ¦ ¦ pixels per point x 2**16. ¦
 ¦ ¦ ¦ ¦ (See Note 1.) ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x30 ¦ 4 ¦ fiFlags ¦ The flags field bits. (See ¦
 ¦ ¦ ¦ ¦ Note 1.) ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x34 ¦ 4 ¦ firstCol ¦ Reserved (set to 0). (See ¦
 ¦ ¦ ¦ ¦ Note 1.) ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x38 ¦ 4 ¦ lastCol ¦ Reserved (set to 0). (See ¦
 ¦ ¦ ¦ ¦ Note 1.) ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x3C ¦ 4 ¦ firstRow ¦ Reserved (set to 0). (See ¦
 ¦ ¦ ¦ ¦ Note 1.) ¦
 +----------+----------+-------------------+------------------------------¦

AIX Operating System Technical Reference
Header Structure for rtfont Format

¦ Copyright IBM Corp. 1985, 1991
2.3.19.3.1 - 1

 ¦ 0x40 ¦ 4 ¦ lastRow ¦ Reserved (set to 0). (See ¦
 ¦ ¦ ¦ ¦ Note 1.) ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x44 ¦ 4 ¦ nProps ¦ The number of properties. ¦
 ¦ ¦ ¦ ¦ (See Note 1.) ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x48 ¦ 4 ¦ chDefault ¦ The default character. (See ¦
 ¦ ¦ ¦ ¦ Note 1.) ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x4C ¦ 4 ¦ font_Descent ¦ Extent below baseline for ¦
 ¦ ¦ ¦ ¦ spacing. (See Note 1.) ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x50 ¦ 4 ¦ font_Ascent ¦ The extent above baseline ¦
 ¦ ¦ ¦ ¦ for spacing. (See Note 1.) ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x54 ¦ 20 ¦ minbounds ¦ The minimum glyph metrics ¦
 ¦ ¦ ¦ ¦ over all characters in font. ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x68 ¦ 20 ¦ maxbounds ¦ The maximum glyph metrics ¦
 ¦ ¦ ¦ ¦ over all characters in font. ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x7C ¦ 4 ¦ pixDepth ¦ The number of intensity bits ¦
 ¦ ¦ ¦ ¦ per pixel. (See Note 1.) ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x80 ¦ 4 ¦ glyphSets ¦ The number of sets of ¦
 ¦ ¦ ¦ ¦ glyphs. (See Note 1.) ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x84 ¦ 4 ¦ raster_align ¦ The scanline alignment for ¦
 ¦ ¦ ¦ ¦ glyphs. ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x88 ¦ 4 ¦ index_width ¦ The width of each entry in ¦
 ¦ ¦ ¦ ¦ the character index array. ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x8C ¦ 4 ¦ char_width ¦ Fixed width of each ¦
 ¦ ¦ ¦ ¦ character. (If set to 0, ¦
 ¦ ¦ ¦ ¦ characters are variable ¦
 ¦ ¦ ¦ ¦ width.) ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x90 ¦ 4 ¦ char_height ¦ Fixed height of each ¦
 ¦ ¦ ¦ ¦ character. (If set to 0, ¦
 ¦ ¦ ¦ ¦ characters are variable ¦
 ¦ ¦ ¦ ¦ height.) ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x94 ¦ 4 ¦ last_index ¦ The last character index in ¦
 ¦ ¦ ¦ ¦ the font. ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x98 ¦ 4 ¦ codepoints_less_1 ¦ The number of code points ¦
 ¦ ¦ ¦ ¦ minus 1. ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0x9C ¦ 16 ¦ app_var ¦ For application use. ¦
 +----------+----------+-------------------+------------------------------¦
 ¦ 0xAC ¦ 64 ¦ pad ¦ Reserved (set to 0). ¦
 +--+

 Notes:

 1. This value is not supported by the Advanced Display Graphics Support
 Library or by the X-Windows Version 1.1 program.

 2. This value is not supported by the X-Windows Version 1.1 program.

AIX Operating System Technical Reference
Header Structure for rtfont Format

¦ Copyright IBM Corp. 1985, 1991
2.3.19.3.1 - 2

 Some of the fields in the header structure require special values, as
 explained in the following list.

 glyph_format This field has two possible values:

 RASTER_DATA All glyphs are in raster format bit image.

 PK_DATA All glyphs are in PK format. (See Note 1.)

 src_file_type This field has one of the following values:

 VRM_SRC_FILE The origin of this font file was a VRM fonts
 file, provided with the AIX Operating System.

 PK_SRC_FILE The origin of this font file was a PK font
 file, a font structure generated by the
 METAFONT compiler. METAFONT is described in
 The METAFONT Book, Donald E. Knuth, Addison
 Wesley Publishing Company, 1986. For details
 on developing various font styles and sizes
 with METAFONT, refer to Computer Modern
 Typefaces, Donald E. Knuth, Addison Wesley
 Publishing Company, 1986.

 X10_SRC_FILE The origin of this font file was an X10 font
 file, distributed with the Massachusetts
 Institute of Technology X-Windows program,
 Version 10.4.

 X11_SRC_FILE The origin of this font file was an X11 font
 file, distributed with the Massachusetts
 Institute of Technology X-Windows program,
 Version 11.

 ORIG_SRC_FILE This is the original source file for this
 font.

 raster_align Raster format glyphs are stored beginning on a 32-bit
 boundary with scanlines packed from end to beginning. The
 first scanline of a raster format glyph is always on a
 32-bit boundary. The significant scanline bits begin at the
 boundary of the scanline and continue for the width of the
 character. The boundary for subsequent scanlines is defined
 by the raster_align field as follows:

 NO_ALIGN The first scanline is on a 32-bit boundary and
 subsequent scanlines for this character are bit
 packed. That is, the second scanline begins in
 the bit following the last bit of the first
 scanline, the third scanline follows the last
 bit of the second, and so on. (See Note 1.)

 BYTE_ALIGN The first scanline is on a 32-bit boundary and
 subsequent scanlines for this character begin on
 the next 8-bit boundary following the last bit
 of the previous scanline. (See Note 1.)

 HWD_ALIGN The first scanline is on a 32-bit boundary and

AIX Operating System Technical Reference
Header Structure for rtfont Format

¦ Copyright IBM Corp. 1985, 1991
2.3.19.3.1 - 3

 subsequent scanlines for this character begin on
 the next 16-bit boundary following the last bit
 of the previous scanline.

 FWD_ALIGN The first scanline is on a 32-bit boundary and
 subsequent scanlines for this character begin on
 the next 32-bit boundary following the last bit
 of the previous scanline. (See Note 2.)

 minbounds, maxbounds
 These fields contain the maximum and minimum values of each
 individual BOUNDS structure for all characters in the font,
 as explained in the following section on the CHAR_GLYPH
 structure. The minbounds.rbearing value, for instance, must
 exist in at least one individual BOUNDS structure and the
 rbearing field in any other individual BOUNDS structure must
 be greater than or equal to this value.

AIX Operating System Technical Reference
Header Structure for rtfont Format

¦ Copyright IBM Corp. 1985, 1991
2.3.19.3.1 - 4

 2.3.19.3.2 Character Index Array for rtfont Format

 Since the data bytes within the data stream are used to access the
 character index array, the array must contain at least 256 entries.
 Entries for which a character is not defined should be set to the offset
 values of a valid default character. One such valid offset is zero.
 Since each font has at least one character defined, there is always a
 first character pointed to by offset zero, the first character in the
 glyph structure.

 The character index information is contained in the CHAR_INDEX array, as
 defined in the rtfont.h header file. This structure contains the
 following elements:

 +--+
 ¦ Offset ¦ Length ¦ ¦ ¦
 ¦ in Bytes ¦ in Bytes ¦ Field ¦ Description ¦
 +----------+----------+----------------+---------------------------------¦
 ¦ 0x00 ¦ 4 ¦ CHAR_INDEX ¦ Character glyph offset or index ¦
 ¦ ¦ ¦ ¦ modifier. ¦
 +--+

 The low-order 28 bits of a character index array can be either an offset
 into the character glyph structure or a modifier value that modifies the
 next offset into the character index array. The high-order four bits of
 each entry define how the low-order 28 bits are interpreted. The value of
 the CHAR_INDEX field, when logically ANDed with the following values, is
 used to interpret the low-order 28 bits.

 INDBASE Specifies a base modifier, such as ANSI SG0, SG1, and so on.
 (See Note 1 in topic 2.3.19.3.1.)
 INDMOD Specifies an index modifier, such as ANSI SS1, SS2, and so on.
 INDCPT Indicates that the data stream source byte is not a code point.
 INDMASK Specifies an offset to a glyph whose data stream source byte is
 a code point.

 If the data source byte is not a code point and the low-order 28 bits do
 not indicate a base or index modifier, those bits must be a valid offset
 into the glyph structure.

AIX Operating System Technical Reference
Character Index Array for rtfont Format

¦ Copyright IBM Corp. 1985, 1991
2.3.19.3.2 - 1

 2.3.19.3.3 Character Index Example
 A sample data stream processing algorithm follows:

 unsigned base_modifier, index_modifier, value, n;
 Both base_modifier and index_modifier are to be initialized
 to 0 for each independent character stream to be processed;

 if ((n=data_stream+index_modifier+base_modifier)<=FONT_HEAD.last_index)
 {
 index_modifier=0;
 value=CHAR_INDEX[n]
 if (value & INDBASEU)
 {
 base_modifier=value & !INDMASK
 process next character in data stream
 }
 else if (value & INDMOD)
 {
 index_modifier=value & !INDMASK
 process next character in data stream
 }
 else
 {
 glyph_offset=value & !INDMASK
 process glyph
 process next character in data stream
 }
 }
 else
 offset into CHAR_INDEX is in error

AIX Operating System Technical Reference
Character Index Example

¦ Copyright IBM Corp. 1985, 1991
2.3.19.3.3 - 1

 2.3.19.3.4 Character Glyph Structure for rtfont Format

 The character glyph structure contains information pertinent to each
 character in the font. The information per character is defined via the
 CHAR_GLYPH structure, as defined in the rtfont.h header file. This
 structure contains the following members:

 +--+
 ¦ Offset ¦ Length ¦ ¦ ¦
 ¦ in Bytes ¦ in Bytes ¦ Field ¦ Description ¦
 +----------+----------+----------------+---------------------------------¦
 ¦ 0x00 ¦ 1 ¦ pk_format_flag ¦ METAFONT information. (See ¦
 ¦ ¦ ¦ ¦ Note 1 in topic 2.3.19.3.1.) ¦
 +----------+----------+----------------+---------------------------------¦
 ¦ 0x01 ¦ 3 ¦ resv ¦ Reserved field (set to 0.) ¦
 +----------+----------+----------------+---------------------------------¦
 ¦ 0x04 ¦ 4 ¦ tfm ¦ T[E]X font metric information. ¦
 ¦ ¦ ¦ ¦ (See Note 1 in ¦
 ¦ ¦ ¦ ¦ topic 2.3.19.3.1.) ¦
 +----------+----------+----------------+---------------------------------¦
 ¦ 0x08 ¦ 20 ¦ char_bounds ¦ Character BOUNDS structure, ¦
 ¦ ¦ ¦ ¦ defined below. ¦
 +----------+----------+----------------+---------------------------------¦
 ¦ 0x1C ¦ var ¦ char_bits ¦ Character image. ¦
 +--+

AIX Operating System Technical Reference
Character Glyph Structure for rtfont Format

¦ Copyright IBM Corp. 1985, 1991
2.3.19.3.4 - 1

 2.3.19.3.5 Bounds Structure for rtfont Format

 The BOUNDS structure, referenced by the CHAR_GLYPH structure above, is
 defined in the rtfont.h header file, and it contains the following
 members:

 +--+
 ¦ Offset ¦ Length ¦ ¦ ¦
 ¦ in Bytes ¦ in Bytes ¦ Field ¦ Description ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0x00 ¦ 4 ¦ rbearing ¦ Character origin to right edge of ¦
 ¦ ¦ ¦ ¦ raster. (See Note 2 in ¦
 ¦ ¦ ¦ ¦ topic 2.3.19.3.1.) ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0x04 ¦ 4 ¦ lbearing ¦ Character origin to left edge of ¦
 ¦ ¦ ¦ ¦ raster. (See Note 2 in ¦
 ¦ ¦ ¦ ¦ topic 2.3.19.3.1.) ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0x08 ¦ 4 ¦ descent ¦ Baseline to bottom edge of raster. ¦
 ¦ ¦ ¦ ¦ (See Note 2 in topic 2.3.19.3.1.) ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0x0C ¦ 4 ¦ ascent ¦ Baseline to top edge of raster. (See ¦
 ¦ ¦ ¦ ¦ Note 2 in topic 2.3.19.3.1.) ¦
 +----------+----------+----------+---------------------------------------¦
 ¦ 0x10 ¦ 4 ¦ width ¦ Advance to next character origin. ¦
 +--+

 The glyph, or character data, can be drawn relative to any point in a
 given x,y coordinate system. The following description of the BOUNDS
 variables assumes the x,y position is on the baseline of the character.
 Coordinates are positive to the right and positive in the downward
 direction. The pel box is the area where the glyph is positioned on the
 screen when the rtfont is used.

 The following diagram graphically portrays each of the fields in the
 BOUNDS structure and shows how these fields define the pel box, relative
 to the coordinates x and y. In this example:

 1. The left vertical edge of the pel box is located at x + lbearing.

 2. The right vertical edge of the pel box is located at x + rbearing.

 3. The upper horizontal edge of the pel box is located at y - ascent.

 4. The lower horizontal edge of the pel box is located at y + descent.

 5. The origin for the next character is at the point (x + width, y).

 6. The width of the pel box, which defines the number of scan columns, is
 rbearing - lbearing + 1.

 7. The height of the pel box, which defines the number of scan lines, is
 ascent + descent + 1.

 Figure 3-2. Example of an rtfont Pel Box

 (x,y) is the position from which this character's pel box is referenced.
 (x1,y1) is the position for the next character's pel box reference point.

AIX Operating System Technical Reference
Bounds Structure for rtfont Format

¦ Copyright IBM Corp. 1985, 1991
2.3.19.3.5 - 1

 Files

 /usr/include/rtfont.h Header file for the rtfont format.

 /usr/bin/vrm2rtfont Font conversion command.

 Related Information
 In this book: "master" in topic 2.3.32, "data stream" in topic 2.4.3,
 "display symbols" in topic 2.4.4, "gsgtat" in topic 2.6.28, "gsgtxt" in
 topic 2.6.29, "gstatt" in topic 2.6.52, "gstext" in topic 2.6.54, "gsxtat"
 in topic 2.6.60, and "gsxtxt" in topic 2.6.61.

 The display command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
Bounds Structure for rtfont Format

¦ Copyright IBM Corp. 1985, 1991
2.3.19.3.5 - 2

 2.3.20 fs

 Purpose
 Contains the format of a file system volume.

 Synopsis

 #include <sys/types.h>
 #include <sys/filsys.h>

 Description
 Every file system storage volume has a common format for certain vital
 information. Every such volume is divided into a certain number of
 4096-byte sectors. Sector 0 is unused and is available to contain a
 bootstrap program, pack label, or other information.

 Sector 1 is the super block. The super block describes the layout of the
 file system. The sectors immediately following the super block contain
 the inodes (see "inode" in topic 2.3.29). Each allocated inode describes
 a file in the file system. The remaining sectors of the file system are a
 pool of blocks from which the data blocks of files are allocated.

 A file system volume may be designated as being one of several replicated
 copies of a file system. When this is done, each copy (also called a
 pack) of the file system is given the same global file system number, and
 each copy, when mounted, must be mounted on separate sites and at the same
 place in the network-wide directory hierarchy (see "mount" in
 topic 1.2.172). All copies of a replicated file system must agree on the
 read-only status with which they are mounted.

 Each copy of a replicated file system must have the same number of inodes,
 thus allowing each copy to have the potential of storing any of the files
 in the file system. However, each copy of the file system need not
 actually store the data for all of the files in the file system. Because
 of this, the copies of a file system need not be the same size. Certain
 copies may have a smaller pool of blocks from which to allocate data
 blocks for files.

 One copy of a replicated file system is designated the primary copy. This
 copy must be mounted on one of the sites in the network (called the
 primary site for this file system) in order for any user or process to
 make a change to any file in the file system. When a change is made to a
 file, it is made first to the primary copy, and after the change has been
 committed (see "fsync, fcommit" in topic 1.2.87), the other sites which
 store this file are updated. If a copy of the file system is not mounted,
 is on a site which is down, or is on a site which is not in communication
 with the primary site, the propagation of the changed file to this copy is
 done automatically at a later time. If none of the currently mounted
 copies of a replicated file system is the primary copy, the files in the
 file system are treated as read-only.

 A copy other than the primary copy of a file system may be designated as
 storing all of the files in the file system. Such a copy is called a
 backbone copy of the file system, and the site on which it is mounted is
 called a backbone site.

 The remaining copies of the file system, those not designated as the
 primary copy or as a backbone copy, selectively store files according to
 the fstore attribute of each file (see "chfstore" in topic 1.2.41). The
 interpretation of a file's fstore attribute is different for file systems

AIX Operating System Technical Reference
fs

¦ Copyright IBM Corp. 1985, 1991
2.3.20 - 1

 designated as system-replicated than for file systems designated as
 user-replicated.

 In a system-replicated file system, the data pages of a file are stored in
 a non-primary, non-backbone copy if the logical AND of the file's fstore
 value and the super block's fstore value is nonzero. The program chfstore
 or the system call chfstore is used to change a file's fstore value if the
 file is in a system-replicated file system.

 In a user-replicated file system, the data pages of a file are stored in a
 nonprimary, non-backbone copy which has pack number packno if the packno
 bit of the file's fstore value is set. The low order bit (0x1) of the
 fstore value represents pack number 1, while the high order bit
 (0x80000000) represents pack number 32. The program store or the system
 call chfstore is used to change a file's fstore value if the file is in a
 user-replicated file system.

 The layout of the super block as defined by the include file
 <sys/filsys.h> is:

 #define NICFREE 600
 #define NICINOD 325
 #define NCMTLST 200
 #define NGENLST 25

 /* number of freeblock pointers in the super block for replicated file systems */
 #define NICSFREE NICFREE \
 - (NGENLST * sizeof(fsgen_t) \
 + NCMTLST * sizeof(commitcnt_t)) / sizeof(daddr_t)

 /*
 * Structure of the super block
 */
 struct filsys
 {
 long s_magic; /* identifies this as a TCF file system */
 /* defined as a constant below */
 gfs_t s_gfs; /* global file system number */
 daddr_t s_fsize; /* size in blocks of entire volume */
 commitcnt_t s_lwm; /* all prior commits propagated */
 commitcnt_t s_hwm; /* highest commit propagated */
 /* oldest committed version in the list.
 * llst mod NCMTLST is the offset of commit #llst in the list,
 * which wraps around from there.
 */
 commitcnt_t s_llst;
 fstore_t s_fstore; /* file system storage bit mask; if the
 filsys is replicated and this is not a
 primary or backbone copy, this bit mask
 determines which files are stored */

 time_t s_time; /* last super block update */
 daddr_t s_tfree; /* total free blocks*/

 ino_t s_isize; /* size in blocks of i-list */
 short s_nfree; /* number of addresses in s_free */
 unsigned short s_flags; /* filsys flags, defined below */

 #define s_ronly s_flags

AIX Operating System Technical Reference
fs

¦ Copyright IBM Corp. 1985, 1991
2.3.20 - 2

 ino_t s_tinode; /* total free inodes */
 ino_t s_lasti; /* start place for circular search */
 ino_t s_nbehind; /* est # free inodes before s_lasti */
 pckno_t s_gfspack; /* global file system pack number */
 short s_ninode; /* number of inodes in s_inode */
 short s_dinfo[4]; /* interleave stuff */
 #define s_m s_dinfo[0]
 #define s_skip s_dinfo[0]
 #define s_n s_dinfo[1]
 #define s_cyl s_dinfo[1]
 char s_flock; /* lock during free list manipulation */
 char s_ilock; /* lock during i-list manipulation */
 char s_fmod; /* super block modified flag */
 char s_version; /* version of the data format in fs. */
 char s_fsmnt[32]; /* name of this file system */
 char s_fpack[8]; /*name of this physical vol.*/

 #define s_fname s_fsmnt /* for backwards compatibility */
 ino_t s_inode[NICINOD]; /* free inode list */
 union { /* union of replicated and non-replicated filsystem types */
 daddr_t su_free[NICFREE]; /* free block list
 for non-replicated filsys */
 struct {
 daddr_t su_sfree[NICSFREE]; /* free block list
 for replicated filsys */
 ino_t su_cmtlst[NCMTLST]; /* list of recent*/
 /* commits */
 commitcnt_t su_mntcnt; /* prim site mounts */
 fsgen_t su_fsgens[NGENLST]; /* filsys generations */
 } su_st;
 } s_un;
 #define s_free s_un.su_free
 #define s_cmtlst s_un.su_st.su_cmtlst
 #define s_fsgens s_un.su_st.su_fsgens
 #define s_mntcnt s_un.su_st.su_mntcnt
 char s_byteorder; /* byte order of integers */

 };

 /* Current magic number */
 #define SB_MAGIC 0xffeeddcd /* word unlikely to be found in non-fs*/

 s_magic contains the value SB_MAGIC and identifies this storage medium as
 a valid AIX file system.

 s_version is a version number for the format of the file system. It is
 changed whenever the structure of the super block or inodes change in an
 incompatible way.

 The global file system number, s_gfs, is the unique name for this file
 system. Each file system has a distinct s_gfs number. Each copy of a
 replicated file system has the same s_gfs number, but has a distinct
 s_gfspack number. To uniquely identify a file in AIX, the pair
 gfs,inumber is used. To uniquely identify a copy of a replicated file,
 the triple gfs, gfspack, inumber is used.

 s_isize is the address of the first block after the i-list, which starts
 just after the super block, block 2. Thus the i-list is s_isize-2 blocks
 long. s_fsize is the address of the first block not potentially available
 for allocation to a file. These numbers are used by the system to check

AIX Operating System Technical Reference
fs

¦ Copyright IBM Corp. 1985, 1991
2.3.20 - 3

 for bad block addresses; if an "impossible" block address is allocated
 from the free list or is freed, a diagnostic message is written on the
 on-line console. Moreover, the free array is cleared, so as to prevent
 further allocation from a presumably corrupted free list.

 The free list for each volume is maintained as follows. The s_free array
 contains, in s_free [1], ... , s_free [s_nfree-1], up to NICFREE free
 block numbers. s_free [0] is the block address of the head of a chain of
 blocks constituting the free list. In a replicated file system, the
 number of free block numbers is only NICSFREE.

 The layout of each block of the free chain as defined in the include file
 <sys/fblk.h> is:

 struct fblk
 {
 long df_nfree;
 daddr_t df_free[NICFREE];
 };

 The fields df_nfree and df_free in a free block are used exactly like
 s_nfree and s_free in the super block. To allocate a block: decrement
 s_nfree, and the new block number is s_free [s_nfree]. If the new block
 address is 0, there are no blocks left, so give an error. If s_nfree
 became 0, read the new block into s_nfree and s_free. To free a block,
 check if s_nfree is NICFREE; if so, copy s_nfree and the s_free array into
 it, write it out, and set s_nfree to 0. In any event set s_free [s_nfree]
 to the freed block's address and increment s_nfree.

 s_cmtlst is a list of the last NCMTLST changed files. s_llst (module
 NCMTLST) is the index of the oldest entry in the list. s_hwm (module
 NCMTLST) is the index of the newest entry in the list; that is, the high
 water mark of commits seen. If s_lwm is within NCMTLST of s_hwm, s_lwm
 (module NCMTLST) is the index of the most recent entry in the list up to
 which every entry has been processed and the local file brought up to
 date; that is, the low water mark of commits propagated. These three
 indices always follow the relationship that s_llst <= s_lwm <= s_hwm. In
 the primary copy of the file system, s_lwm and s_hwm are always equal.

 s_ninode is the number of free i-numbers in the s_inode array. To
 allocate an inode: if s_ninode is greater than 0, decrement it and return
 s_inode [s_ninode]. If it was 0, read the i-list and place the numbers of
 all free inodes (up to NICINOD) into the s_inode array, then try again.
 To free an inode, provided s_ninode is less than NICINODE, place its
 number into s_inode [s_ninode] and increment s_ninode. If s_ninode is
 already NICINODE, don't bother to enter the freed inode into any table.
 This list of inodes is only to speed up the allocation process; the
 information as to whether the inode is really free or not is maintained in
 the inode itself.

 The fields s_lasti and s_nbehind are used to avoid searching the inode
 list from the beginning each time the system runs out of inodes. s_lasti
 gives the base of the block of inodes last searched on the file system
 when inodes ran out, and s_nbehind gives the number of inodes, whose
 numbers were less than s_lasti when they were freed with s_ninode already
 NICINODE. Thus s_nbehind is the number of free inodes before s_lasti.
 The system will search forward for free inodes from s_lasti for more
 inodes unless s_nbehind is sufficiently large, in which case it will
 search the file system inode list from the beginning. This mechanism
 serves to avoid n**2 behavior in allocating inodes.

AIX Operating System Technical Reference
fs

¦ Copyright IBM Corp. 1985, 1991
2.3.20 - 4

 s_flock and s_ilock are flags maintained in main memory while the file
 system is mounted and their values on disk are immaterial. The value of
 s_fmod on disk is likewise immaterial; it is used as a flag to indicate
 that the super block has changed and should be copied to the disk during
 the next periodic update of file system information.

 s_flags is a set of flag bits whose values are defined as follows:

 /* Flags used in s_flags */
 #define SB_RDONLY 0x1 /* no writes allowed on file system */
 #define SB_CLEAN 0x2 /* file system was unmounted cleanly */
 #define SB_DIRTY 0x4 /* file system was mounted without clean bit set */
 #define SB_PRIMPACK 0x10 /* This is primary pack of the file system */
 #define SB_REPLTYPE 0x20 /* This is a replicated type of file system */
 #define SB_USER 0x40 /* This is a user-replicated file system */
 #define SB_BACKBONE 0x80 /* This is a backbone copy of file system */

 The SB_RDONLY flag is used only in main memory to indicate that the file
 system is mounted read only. The SB_CLEAN flag is used to indicate that a
 file system has been unmounted cleanly or that file system checks have
 been successfully run. This indicates that file system checks are not
 necessary when the file system is next mounted. The SB_DIRTY flag is to
 guard against the SB_CLEAN flag being turned on when an unchecked file
 system is mounted and then unmounted.

 The SB_REPLTYPE flag indicates that this is a replicated file system. If
 it is a replicated file system, the SB_PRIMPACK flag identifies the
 primary copy -- the only copy of the replicated file system that can be
 modified. The SB_BACKBONE flag indicates a site which will store a
 complete copy of the file system. SB_PRIMPACK and SB_BACKBONE should not
 both be set. The SB_USER flag identifies a replicated file system as
 being a user-replicated file system, as opposed to a system-replicated
 file system. All copies of a file system should agree on whether the file
 system is user-replicated or system-replicated. As described above, the
 system interprets the file storage value (fstore) of a file in a
 user-replicated and system-replicated file system differently. In
 user-replicated file systems, the fstore bits refer to file system pack
 numbers; while in system-replicated file systems, the fstore bits of a
 file are compared to the s_fstore field in the super block. The s_fstore
 field is only relevant if neither SB_BACKBONE nor SB_PRIMPACK is set.
 System-replicated and user-replicated file systems also differ in the way
 symbolic links are deleted. The system call rmslink must be used to
 remove a symbolic link from a system-replicated file system. This
 restriction is to prevent symbolic links in the replicated root file
 system from being deleted inadvertently.

 s_time is the last time the super block of the file system was changed.

 The total number of unallocated blocks in a file system is maintained in
 the field s_tfree. In a replicated file system, this number may be
 different in the individual copies of the file system. The total number
 of unallocated inodes in a file system is maintained in the field
 s_tinode. In a replicated file system, this number is only maintained at
 the primary site. The value of s_tinode stored in the super block of
 other copies is undefined.

 The fields s_fpack and s_byteorder are not currently maintained.

 Files

AIX Operating System Technical Reference
fs

¦ Copyright IBM Corp. 1985, 1991
2.3.20 - 5

 /usr/include/sys/filsys.h
 /usr/include/sys/stat.h

 Related Information
 In this book: "chfstore" in topic 1.2.41 and "inode" in topic 2.3.29.

 The chfstore and store commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
fs

¦ Copyright IBM Corp. 1985, 1991
2.3.20 - 6

 2.3.21 fsmap

 Purpose
 Centralizes file system characteristics for all nodes in a network.

 Description
 This file contains a superset of the attributes in the /etc/filesystems
 file.

 Subtopics
 2.3.21.1 Network File System Attributes

AIX Operating System Technical Reference
fsmap

¦ Copyright IBM Corp. 1985, 1991
2.3.21 - 1

 2.3.21.1 Network File System Attributes
 Each stanza names the directory where the file system is normally mounted.
 The attributes specify all of the parameters of the file system. See
 "attributes" in topic 2.3.5 for the format of an attribute file. The
 attributes used are the same as those specified in /etc/filesystems.

 Example

 *
 * File system information
 *
 default:
 vol = "AIX"
 mount = false
 check = false
 free = false
 backupdev = /dev/rfd0
 backuplen = 1440
 *
 /:
 dev = /dev/hd02
 vol = "/"
 mount = automatic
 check = 0
 gfs = 1
 gfspack = 1
 type = repl,primary
 free = true
 site = aix
 *
 /aix:
 dev = /dev/hd03
 vol = "/aix"
 mount = automatic
 check = 0
 gfs = 2
 gfspack = 1
 type = nonrepl
 free = true
 site = aix

 *
 /u:
 dev = /dev/hd01
 vol = "/u"
 mount = true
 check = 1
 gfs = 3
 gfspack = 1
 size = 6000
 type = nonrepl
 free = true
 site = aix

 File
 /etc/fsmap

 Related Information
 In this book: "attributes" in topic 2.3.5 and "filesystems" in

AIX Operating System Technical Reference
Network File System Attributes

¦ Copyright IBM Corp. 1985, 1991
2.3.21.1 - 1

 topic 2.3.18.

 The backup, df, fsck, mkfs, mount, restore, and umount commands in AIX
 Operating System Commands Reference.

AIX Operating System Technical Reference
Network File System Attributes

¦ Copyright IBM Corp. 1985, 1991
2.3.21.1 - 2

 2.3.22 fspec

 Purpose
 Specifies formatting within text files.

 Description
 A text file format specification normally occurs in the first line of a
 text file. This format specifies how tabs expand in the remainder of the
 file.

 A format specification consists of a sequence of parameters separated by
 blanks and enclosed by the brackets <: and :>. Each parameter consists of
 a key-letter, possibly followed immediately by a value. The following
 parameters are recognized:

 d The d parameter takes no additional value. It indicates that
 the line containing the format specification is to be deleted
 from the converted file.

 e The e parameter takes no additional value. It indicates that
 the current format prevails until another format specification
 is encountered in the file.

 mmargin The m parameter specifies a number of spaces added to the
 beginning of each line. The value of margin must be an
 integer.

 ssize The s parameter specifies a maximum line size. The value of
 size must be an integer. Size checking is performed after tabs
 are expanded, but before inserting the margin.

 ttabs The t parameter specifies the tab settings for the file. The
 value of tabs must be one of the following:

 � A list of column numbers separated by commas, indicating
 tabs set at the specified columns.

 � A - (dash) followed immediately by an integer n, indicating
 tabs at intervals of n columns.

 � A - (dash) followed by the name of a supplied tab
 specification.

 Standard tabs are specified by t-8, or the equivalent t1, 9,
 17, 25, and so on. The tabs command defines the supplied tabs.

 Default values assumed for parameters not supplied are t-8 and m0. If the
 s parameter is not specified, no size checking is performed. If the first
 line of a file contains no format specification, the previous defaults are
 assumed for the entire file.

 The format specification can be entered as a comment. In that case it is
 not necessary to code the d parameter.

 Example
 The following is an example of a line containing a format specification:

 * <:t5,10,15 s72:> *

 Related Information

AIX Operating System Technical Reference
fspec

¦ Copyright IBM Corp. 1985, 1991
2.3.22 - 1

 The ed, newform, and tabs commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
fspec

¦ Copyright IBM Corp. 1985, 1991
2.3.22 - 2

 2.3.23 fstore

 Purpose
 Maps fstore bit patterns to CPU types.

 Description
 The fstore file explicitly maps fstore bit patterns to CPU types. This
 permits a convenient naming convention for controlling the replication of
 files in a system-replicated file system such as the root file system
 using the chfstore command.

 The fstore file is an ASCII file composed of entries that are
 position-dependent and have the following format:

 pattern:0:CPU-type

 Each entry is delimited by a new-line. There are no limits imposed on the
 number of entries within the fstore file. The second field is reserved
 for future use. The remaining fields of an entry are:

 pattern
 This is an octal integer representing the fstore bit pattern.

 0 Reserved.

 CPU-type
 This is the ASCII string for the CPU type corresponding to this fstore
 bit pattern. This string matches the CPU type string found in
 /etc/site.

 This file is used by the where command to make inferences about file
 systems which are not currently mounted anywhere in the cluster.

 File
 /etc/fstore

 Related Information
 In this book: "chfstore" in topic 1.2.41.

 The chfstore and where commands in the AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
fstore

¦ Copyright IBM Corp. 1985, 1991
2.3.23 - 1

 2.3.24 gettydefs

 Purpose
 Describes speed and terminal settings used by the getty command.

 Description
 The /etc/gettydefs file contains information used by the getty command to
 set up the speed and terminal settings for a line. Since /etc/gettydefs
 is a symbolic link to <LOCAL>/gettydefs, the information contained therein
 is specific to the individual cluster site. The /etc/gettydefs file
 supplies information on what the login prompt should look like. It also
 supplies the speed to try next if the user indicates that the current
 speed is not correct by typing a <break> character.

 Each entry in /etc/gettydefs has the following format:

 label# initial-flags # final-flags #login-prompt #next-label

 Each entry is followed by a blank line. Used within a line, the pound
 sign (#) acts as a field separator. Lines that begin with # are ignored
 and may be used to comment the file. The various fields can contain
 quoted characters of the form \b, \n, \c, and so on, as well as \nnn,
 where nnn is the octal value of the desired character. The various fields
 are:

 label
 This is the string against which getty tries to match its second
 argument. It is often the speed, such as 1200, at which the terminal
 is supposed to run, but it need not be (see the paragraph at the end of
 this list).

 initial-flags
 These flags are the initial ioctl system call settings to which the
 terminal is to be set if a terminal type is not specified in the getty
 command. The getty command understands the symbolic names (see
 "termio" in topic 2.5.28). Normally, only the speed flag is required
 in the initial-flags. The getty command automatically sets the
 terminal to raw input mode and takes care of most of the other flags.
 The initial-flag settings remain in effect until getty executes login.

 final-flags
 These flags take the same values as the initial-flags and are set just
 before getty executes login. The speed flag is again required. The
 composite flag SANE takes care of most of the other flags that need to
 be set so that the processor and terminal are communicating in a
 rational fashion. The other two commonly specified final-flags are:

 � TAB3 causes tabs to be sent to the terminal as spaces.
 � HUPCLcauses the line to be hung up on the final close.

 login-prompt
 This entire field is printed as the login-prompt. Unlike the previous
 fields where blanks are ignored (a space, tab, or new-line), they are
 included in the login-prompt field.

 next-label
 This indicates the next label of the entry in the table that getty
 should use if the user types a <break> or the input cannot be read.
 Usually, a series of speeds are linked together in this fashion, into a
 closed set. For instance, 2400 linked to 1200, which in turn is linked

AIX Operating System Technical Reference
gettydefs

¦ Copyright IBM Corp. 1985, 1991
2.3.24 - 1

 to 300, which finally is linked to 2400.

 If getty is called without a second argument, the first entry of
 /etc/gettydefs is used, thus making the first entry of /etc/gettydefs the
 default entry. This first entry is also used if getty cannot find the
 specified label. If /etc/gettydefs itself is missing, there is one entry
 built into the command which will bring up a terminal at 300 baud.

 It is strongly recommended that after making or modifying /etc/gettydefs,
 it be run through getty with the check option to be sure there are no
 errors.

 Files

 /etc/gettydefs A symbolic link to <LOCAL>/gettydefs

 <LOCAL>/gettydefs
 The actual gettydefs file

 Related Information
 In this book: "ioctlx, ioctl, gtty, stty" in topic 1.2.137 and "termio"
 in topic 2.5.28.

 The getty and login commands in the AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
gettydefs

¦ Copyright IBM Corp. 1985, 1991
2.3.24 - 2

 2.3.25 gps

 Purpose
 Used as the format for storing graphics file data as graphic primitive
 strings.

 Description
 A graphic primitive string (GPS) is used to store graphical data in a
 particular format. The plot and vtoc commands produce GPS output files.
 Several commands edit and display GPS files on various devices. A GPS
 file is composed of as many as five types of graphical data or primitives:

 comment A comment primitive is an integer string included within a GPS
 file that does not cause anything to be displayed. All GPS
 files begin with a comment of zero length.

 lines A lines primitive has a variable number of points from which
 zero or more connected line segments are produced. The first
 point given produces a move to that location, relocating the
 graphics cursor without drawing. Successive points produce line
 segments from the previous point.

 arc An arc primitive has a variable number of points to which a
 curve is fit. The first point produces a move to that point.
 If only two points are given, a line connecting the points is
 the result. If three points are given, a circular arc through
 the points is drawn. If more than three points are given,
 splines are fitted to connect the points.

 text The text primitive draws characters beginning at a given point,
 with the first character centered on that point.

 hardware The hardware primitive draws hardware characters or gives
 control commands to a hardware device. A single point locates
 the beginning location of the hardware string.

 Graphic primitive strings are given as 16-bit units called command words.
 The first command word determines the primitive type and sets the length
 of the string. Subsequent command words contain information in multiples
 of four bits of data. The following are the types of GPS and their
 parameters:

 comment cw [string]

 cw is the control word. The first four bits identify the
 comment primitive and have the value 0xF. The following bits
 give the command word count for the primitive.

 [string] is a string of characters terminated by a null
 character. If the string does not end on a command word
 boundary, another null character is added to align the string
 with the command word boundary.

 lines cw points sw

 cw is the control word. The first four bits identify the lines
 primitive and have the value 0x0. The remaining bits give the
 command word count for the primitive.

 points is one or more pairs of integer coordinates having values

AIX Operating System Technical Reference
gps

¦ Copyright IBM Corp. 1985, 1991
2.3.25 - 1

 within a Cartesian plane or universe of 65,536 points on each
 axis (-32,768 to +32,767).

 sw is the style command word. The first eight bits hold an
 integer value for color information. The next four bits contain
 an integer value for weight to indicate line thickness:

 0 Narrow
 1 Bold
 2 Medium.

 The last four bits of sw specify an integer value giving line
 style information:

 0 Solid
 1 Dotted
 2 Dot-dashed
 3 Dashed
 4 Long dashed.

 arc cw points sw

 cw is the control word. The first four bits identify the arc
 primitive and have the value 0x3. The next twelve bits contain
 the command word count for the primitive.

 points is one or more pairs of integer coordinates having values
 within a Cartesian plane or universe of 65,536 points on each
 axis (-32,768 to +32,767).

 sw is the style command word. The first eight bits are an
 integer value for color. The next four bits contain an integer
 value for weight to indicate line thickness:

 0 Narrow
 1 Bold
 2 Medium.

 The last four bits contain an integer value setting line style:

 0 Solid
 1 Dotted
 2 Dot-dashed
 3 Dashed
 4 Long dashed.

 text cw point fw so [string]

 cw is the control word. The first four bits identify the text
 primitive and have the value 0x2. The remaining twelve bits
 contain the command word count for the primitive.

 point is a pair of integer coordinates that are a value within a
 Cartesian plane or universe of 65,536 points per axis (-32,768
 to +32,767).

 fw is a font command word. The first eight bits contain an
 integer value for color information. The next eight bits
 contain an integer value for font information, with four bits
 giving the weight (density) value for the font, and four bits

AIX Operating System Technical Reference
gps

¦ Copyright IBM Corp. 1985, 1991
2.3.25 - 2

 giving the style (typeface) value for the font.

 so is a size/orientation command word. Eight bits specify
 textsize as an integer value to indicate the size of characters
 drawn. textsize represents character height in absolute
 universe units. The actual character height is five times the
 textsize value. The next eight bits are a signed integer value
 for textangle, and express the angle and direction of rotation
 of the character string around the beginning point. textangle
 is expressed in degrees from the positive x axis. The textangle
 value is 256/360 of its absolute value.

 hardware cw point [string]

 cw is the control word. The first four bits identify the
 hardware primitive and have the value 0x4. The next twelve bits
 indicate the command word count for the primitive.

 point is a pair of integer coordinates that are values within a
 Cartesian plane or universe of 65,536 points on each axis
 (-32,768 to +32,767). This point is the starting point for the
 string, which is a string of hardware characters or control
 commands to a hardware device.

 Related Information

 In this book: "stat.h" in topic 2.4.22.

AIX Operating System Technical Reference
gps

¦ Copyright IBM Corp. 1985, 1991
2.3.25 - 3

 2.3.26 group

 Purpose
 Identifies a group.

 Description
 Users can be assigned to one or more groups, each of which share certain
 protection privileges. The person who sets up the system may want to
 place users in the same group because they need access to a common set of
 files. Similarly, a certain group of users can have access restricted to
 certain files.

 When users log in, they are assigned to the group specified in the
 /etc/password file. In addition, they are assigned as a member of all
 groups specified in this file. Users are allowed to access any files that
 the group to which they are assigned has access. However, any files
 created by the user can be accessed only by the members of the primary
 group of which that user is a member. A user is allowed to change his
 primary group for the duration of the terminal session using the newgrp
 command.

 The /etc/group file defines to which groups a user has membership. Each
 line in this file defines a group and consists of four fields separated by
 colons. It contains the following information for each group:

 Note: In the multibyte environment, the group file may contain only ASCII
 characters.

 Group Description

 group name A character string of up to eight characters that
 references the group.

 password This field is optional. If specified, anyone attempting
 to enter the group must correctly supply the password to
 the system.

 group ID A number assigned to the group and used in access
 decisions.

 user group list A list that specifies the login names of all users
 allowed in the group. User IDs in the list are separated
 by commas. The user group list may contain up to 500
 eight-character login names.

 In newly distributed systems, there are typically only two groups: the
 staff group and the system group. New users can be added to groups and
 new groups can be added as necessary.

 If several users wish to share the same privileges, including the ability
 to terminate each other's processes as well as to access the files of
 others, the same numerical user ID can be assigned to each. This
 mechanism is sometimes used to give the same person several accounts on
 the system, each with potentially different login directories and other
 characteristics, such as electronic mailboxes or login programs. For
 example, the operator has the same user ID, and therefore superuser
 authority. However, this operator typically uses a restricted version of
 the shell that does not give access to commands that allow reading the
 files of others.

AIX Operating System Technical Reference
group

¦ Copyright IBM Corp. 1985, 1991
2.3.26 - 1

 Example
 The following is an example of the /etc/group file. This is an ASCII
 file. Each group is separated from the next by a new-line character. The
 fields are separated by colons. Because the password is encrypted, it can
 be used to map numerical group IDs to names without concern of compromise
 to user security.

 system::0:su,bill,jack,gary
 staff::1:
 bin::2:su,bin
 sys::3:su,bin.sys
 adm::4:su,bin,adm
 mail::6:su
 usr::100:guest

 File
 /etc/group

 Related Information
 In this book: "passwd" in topic 2.3.44.

 The newgrp, passwd, and users commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
group

¦ Copyright IBM Corp. 1985, 1991
2.3.26 - 2

 2.3.27 history

 Purpose
 Contains the history of an installed licensed program product.

 Description
 Each licensed program or component of a licensed program that is shipped
 by IBM contains a history file. The purpose of a history file is to
 identify the installed release and version of a licensed program or
 component and to provide a record of any updates (level changes). A
 history file is replaced when a component is reinstalled. History files
 for programs installed on the operating system are named
 /usr/lpp/pgm-name/lpp.hist, where pgm-name is the name of the licensed
 program or component.

 The history file consists of a series of 80-character records. The first
 two records contain the install data and all subsequent records contain
 update data. There are three different formats of 80-character records:

 Record Description

 Information Identified by an a, c, r, or v character in position 1. The
 install and update procedures use information records to
 identify the licensed program or component name; the current
 version, release, and level; the date the record was added;
 and the user who initiated the install or update. Figure 3-3
 shows the format of the fields in the information records.

 Title Identified by a t in character position 1. Contains the
 descriptive title (up to 30 characters) for the licensed
 program or component, starting in character position 3. The
 title record must always be the second record in the history
 file.

 Comment Identified by an * (asterisk) in character position 1.
 Allows descriptive comments to be entered into the history
 file. An * is usually placed in character position 79 to
 ensure a full 80-column record.

 The last character of each record (character position 80) must be a
 new-line character. Unused character positions must be blank-filled. Tab
 characters are not permitted.

 The first record in a history file must be an information record with a c
 in character position 1. The second record must be the title record.
 These two records contain data about the installation of the program. The
 remaining records in the file may be any combination of information and
 comment records, and they identify updates to the program.

 Figure 3-3 shows the format of an information record in the history file.
 The definitions for each of the fields other than character position 1 are
 explained following the figure.

 Figure 3-3. Information Record Format

 Location Field Description

 1 .S The type of information record:

AIX Operating System Technical Reference
history

¦ Copyright IBM Corp. 1985, 1991
2.3.27 - 1

 a Indicates that the update has been
 applied.
 c Indicates that the update or install has
 been committed (accepted).
 r Indicates that the update has been
 rejected.

 3-10 pgm-name The name assigned to the program (lowercase
 characters only). If the name contains less
 than 8 characters, it must be padded with
 blanks.

 11-17 reserved Reserved

 18-20 VV. A 2-digit numeric field followed by a period
 indicating the version number of the program.
 The version number indicates the level of the
 hardware and operating system with which the
 program works.

 21-23 RR. A 2-digit numeric field followed by a period
 indicating the release number of the program.
 The release number tracks changes to external
 programming interfaces since the last version
 change. This number is generally incremented
 each time the external interface to the
 program changes.

 24-28 LLLL. A 4-digit numeric field indicating the update
 level of the program. This field is
 incremented when the changes to the program do
 not affect external programs that may use the
 documented external interface for the program.
 The level, together with the S field, ensures
 that all changes up to and including the
 current change are installed on the system.

 The fourth (or units) digit of the level is
 normally 0. IBM reserves this digit for
 future use.

 29-32 FFFF A 4-digit numeric field indicating the fix
 number applied to the program. A fix number
 of 0 denotes an upgrade; all other values
 denote fixes.

 33 blank Blank

 34-39 DDMMYY These three numeric fields indicate the date
 the program changed:

 DD Day of the month (1 to 31).
 MM Month of the year (1 to 12).
 YY Year (00 to 99).

 40 blank Blank

 41-48 username An alphanumeric field that contains the user
 name of the person who installed the program.

AIX Operating System Technical Reference
history

¦ Copyright IBM Corp. 1985, 1991
2.3.27 - 2

 If the user name is shorter than eight
 characters, it must be padded with blanks.

 49 blank Blank

 50-79 comment A 30-character field for comments. An *
 field (asterisk) is usually placed in character
 position 79 to ensure a full 80-column record.

 80 \n A required new-line character, indicating the
 end of the record.

 Each cluster site also has a local history file that is used to log
 relevant information on changes made to the local file system on that
 site. This file is called /local/lpp.hist. Local history files are of
 interest to the system administrator as a log of each site's past. They
 are not used for determining the local changes pending for a site or as a
 means of controlling programs; these functions are performed by the queue
 mechanism.

 The format for the local history file is identical to the format described
 above.

 File

 /usr/lpp/pgm-name/lpp.hist

 Related Information
 The installp and updatep commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
history

¦ Copyright IBM Corp. 1985, 1991
2.3.27 - 3

 2.3.28 inittab

 Purpose
 Describes the information used by the init process.

 Description
 The inittab file supplies the script to init's role as a general process
 dispatcher. The process that constitutes the majority of init's process
 dispatching activities is the line process /etc/getty that initiates
 individual terminal lines. Other processes typically dispatched by init
 are daemons and the shell.

 Note: If the Transparent Computing Facility is installed, each cluster
 site has its own version of inittab (/etc/inittab is a symbolic
 link into the local file system).

 Subtopics
 2.3.28.1 File Format
 2.3.28.2 inittab Parameters

AIX Operating System Technical Reference
inittab

¦ Copyright IBM Corp. 1985, 1991
2.3.28 - 1

 2.3.28.1 File Format

 The inittab file consists of one or more named stanzas separated by blank
 lines. Each stanza begins with its name followed by a colon, and contains
 assignments of values to keyword attributes. The values, in turn, may be
 alphanumeric strings or arbitrary character strings enclosed in double
 quotes.

 Note: In the multibyte environment, the inittab file stanzas may contain
 only ASCII characters.

AIX Operating System Technical Reference
File Format

¦ Copyright IBM Corp. 1985, 1991
2.3.28.1 - 1

 2.3.28.2 inittab Parameters
 The inittab keywords and their meanings are as follows:

 id This is one to four characters used to uniquely identify an
 entry.

 level This defines the run-level in which this stanza is to be
 processed. Run-levels effectively correspond to a
 configuration of processes in the system. That is, each
 process spawned by init is assigned to a run-level or
 run-levels in which it is allowed to exist. The run-levels are
 represented by a number ranging from 0 through 6. As an
 example, if the system is in run-level 1, only those stanzas
 having a 1 in the level keyword are processed. When init is
 requested to change run-levels, all processes which do not have
 an entry in the level keyword for the target run-level will be
 sent the warning signal (SIGTERM) and allowed a 20-second grace
 period before being forcibly terminated by a kill signal
 (SIGKILL). The level keyword can define multiple run-levels
 for a process by selecting more than one run-level in any
 combination from 0 through 6. If no run-level is specified,
 then action will be taken on this process for all run-levels
 0-6. There are three other values, a, b, and c, which can
 appear in the level keyword, even though they are not true
 run-levels. Stanzas which have these characters in the level
 keyword are processed only when the telinit (see the init
 command in AIX Operating System Commands Reference) process
 requests them to be run (regardless of the current run-level of
 the system). They differ from run-levels in that the system is
 only in these states for as long as it takes to execute all the
 stanzas associated with the states. A process started by an a,
 b or c command is not killed when init changes levels. They
 are only killed if their stanza in /etc/inittab is marked off
 in the action keyword, their stanza is deleted entirely from
 /etc/inittab, or init goes into the SINGLE USER state.

 action Values for this keyword tell init how to treat the process
 specified in the command keyword. The actions recognized by
 init are as follows:

 respawn If the process does not exist then start the
 process, do not wait for its termination (continue
 scanning the inittab file), and, when it dies,
 restart the process. If the process currently
 exists, then do nothing and continue scanning the
 inittab file.

 wait Upon init's entering the run-level that matches the
 stanza's level, start the process and wait for its
 termination. All subsequent reads of the inittab
 file while init is in the same run-level will cause
 init to ignore this stanza.

 once Upon init's entering a run-level that matches the
 stanza's level, start the process, do not wait for
 its termination and when it dies, do not restart
 the process. If upon entering a new run-level,
 where the process is still running from a previous
 run-level change, the program is not restarted.

AIX Operating System Technical Reference
inittab Parameters

¦ Copyright IBM Corp. 1985, 1991
2.3.28.2 - 1

 boot The stanza is to be processed only at init's
 boot-time read of the inittab file. init is to
 start the process, not wait for its termination,
 and when it dies, not restart the process. In
 order for this instruction to be meaningful, the
 level should be the default or it must match init's
 run-level at boot time. This action is useful for
 an initialization function following a hardware
 reboot of the system.

 bootwait The stanza is to be processed only at init's
 boot-time read of the inittab file. init is to
 start the process, wait for its termination and,
 when it dies, not restart the process.

 powerfail Execute the process associated with this stanza
 only when init receives a power fail signal
 (SIGPWR); see "sigaction, sigvec, signal" in
 topic 1.2.263.

 powerwait Execute the process associated with this stanza
 only when init receives a power fail signal
 (SIGPWR) and wait until it terminates before
 continuing any processing of inittab.

 off If the process associated with this stanza is
 currently running, send the warning signal
 (SIGTERM) and wait 20 seconds before forcibly
 terminating the process via the kill signal
 (SIGKILL). If the process is nonexistent, ignore
 the stanza.

 ondemand This instruction is really a synonym of the respawn
 action. It is functionally identical to respawn
 but is given a different name in order to divorce
 its association with run-levels. This is used only
 with the a, b or c values described in the level
 keyword.

 initdefault A stanza with this action is only scanned when init
 is initially invoked. init uses this entry, if it
 exists, to determine which run-level to enter
 initially. It does this by taking the highest
 run-level specified in the level keyword and using
 that as its initial state. If the level keyword is
 empty, this is interpreted as 0123456 and so init
 will enter a run-level 6. Also, the stanza with
 the initdefault action can specify s or S in the
 level keyword to indicate that init is to start in
 the SINGLE USER state. Additionally, if init
 doesn't find an initdefault stanza in /etc/inittab,
 then it will request an initial run-level from the
 user at reboot time.

 sysinit Stanzas with this action are executed before init
 tries to access the console. It is expected that
 this stanza will be used to initialize devices on
 which init might try to ask the run-level question.
 These stanzas are executed and waited for before
 continuing.

AIX Operating System Technical Reference
inittab Parameters

¦ Copyright IBM Corp. 1985, 1991
2.3.28.2 - 2

 command This is an sh command to be executed.

 comment The text that follows is a comment. If the text includes a
 space (you have two or more words), then the test must be
 quoted. The commands WHO -l and WHO -u print the comment.

 Example
 The following example of an inittab file illustrates some of its features:

 *
 idef:
 id = idef
 level = 2
 action = initdefault
 command = "# default state: multi user"
 *
 sys1:
 id = sys1
 level = NULL
 action = sysinit
 command = "/etc/init.dir/shx Boot2singl"
 *
 mul1:
 id = mul1
 level = 2
 action = wait
 command = "/bin/kill -9 -1"
 *
 mul2:
 id = mul2
 level = 2
 action = wait
 command = "/etc/init.dir/shx Singl2multi"
 *
 sin1:
 id = sin1
 level = 03
 action = wait
 command = "/etc/init.dir/shx Multi2singl"
 *
 sin2:
 id = sin2
 level = 03
 action = wait
 command = "/bin/kill -15 -1"

 *
 sin3:
 id = sin3
 level = 03
 action = wait
 command = "sleep 10"
 *
 *
 sin4:
 id = sin4
 level = 03
 action = wait

AIX Operating System Technical Reference
inittab Parameters

¦ Copyright IBM Corp. 1985, 1991
2.3.28.2 - 3

 command = "/bin/kill -9 -1"
 *
 sin5:
 id = sin5
 level = 03
 action = wait
 command = "/etc/init.dir/shx Filesystems down"
 *
 sin6:
 id = sin6
 level = 3
 action = wait
 command = "/etc/init s </dev/console >/dev/console 2>&1"
 *
 hlt0:
 id = hlt0
 level = 0
 action = wait
 command = "/etc/haltsys"
 *
 lds:
 id = lds
 level = 4
 action = respawn
 command = "/etc/loadserver"
 *
 console:
 id = con
 action = respawn
 level = 14
 command = "/etc/getty console"
 *
 tty00:
 id = tt0
 action = respawn
 level = 14
 command = "/etc/getty tty00"
 *
 *
 tty01:
 id = tt1
 action = off
 level = 14
 command = "/etc/getty tty01"
 comment = "modem line"

 Files

 /etc/inittab
 /etc/locks

 Related Information
 In this book: "attributes" in topic 2.3.5, "connect.con" in topic 2.3.9,
 "environment" in topic 2.4.6, and "termio" in topic 2.5.28.

 The su, pstart, pdisable, getty, login, init, and stty commands in AIX
 Operating System Commands Reference.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

AIX Operating System Technical Reference
inittab Parameters

¦ Copyright IBM Corp. 1985, 1991
2.3.28.2 - 4

 2.3.29 inode

 Purpose
 Describes a file system file or directory entry as it appears on a disk.

 Synopsis

 #include <sys/types.h>
 #include <sys/ino.h>

 Description
 An inode for an ordinary file or directory in a file system has the
 following structure defined by sys/ino.h:

 /* Inode structure as it appears on a disk block. */

 #define NADDR 13
 #define SMBLKSZ 384 /* bytes available in the inode for data */

 struct dinode
 {
 unsigned short di_mode; /* mode and type of file */
 short di_nlink; /* number of links to file */
 short di_uid; /* owner's user id */
 short di_gid; /* owner's group id */
 ino_uniqid_t di_size; /* inode reuse count */
 short di_filler; /* filler */
 dflag_t di_dflag; /* disk flags */
 off_t di_uniqid; /* unique identifier */
 time_t di_mtime; /* time last modified */
 time_t di_atime; /* time last accessed */
 time_t di_ctime; /* time changed */
 commitcnt_t di_cmtcnt; /* gfs commit seq number */
 fstore_t di_fstore; /* file propagation attributes */
 long di_version; /* version number this copy of data */
 daddr_t di_blocks; /* actual number of blocks used */
 char di_pad[27]; /*reserved for future use */
 char di_sbflag; /* flags for small blocks */
 daddr_t di_addr[NADDR]; /* disk block addresses */
 char di_sbbuf[SMBLKSZ]; /* small block buffer */
 };

 The fields in the structure are as follows:

 di_addr Array of thirteen 4-byte block numbers assigned to this file.
 The first ten block numbers are direct addresses while the
 last three are indirect addresses.

 di_atime Time this file was last accessed.

 di_blocks The number of file system blocks used by this file.

 di_cmtcnt Commit sequence number; assigned when the file is committed.
 Replicated files are propagated to other sites in the order in
 which they were committed.

 di_ctime Time this file or inode was last changed.

 di_dflag Disk flags. DISOCKET, DIHIDDEN, and DILINK are used with

AIX Operating System Technical Reference
inode

¦ Copyright IBM Corp. 1985, 1991
2.3.29 - 1

 flags in di_mode to define additional file types. Other flags
 are:

 DIDEL File has been deleted (the inode is unallocated).

 DIALLOC The file is currently allocated.

 DILONGDIR File is a directory with variable-sized entries.
 This flag is set for all directories.

 DISTORE The file is stored. In a non-replicated file
 system, this flag is set in the same instances as
 DIALLOC. In a replicated file system, this flag
 indicates that the file is stored by this copy of
 the file system.

 di_fstore File storage attribute. Used to determine on which sites a
 file in a replicated file system is stored. This value is not
 used in a non-replicated file system.

 di_gid Group ID.

 di_mode Type and access permissions of file. This field is encoded
 identically to the st_mode field returned by the statx system
 call, with the following exceptions:

 Sockets are encoded with IFIFO in di_mode and DISOCKET in
 di_dflag, rather than S_IFSOCK.

 Hidden directories are encoded with IFDIR in di_mode and
 DIHIDDEN in di_dflag, rather than S_IHIDDEN.

 Symbolic links are encoded with IFREG in di_mode and
 DILINK in di_dflag, rather than S_IFLNK.

 di_mtime Time this file was last modified.

 di_nlink Number of directory entries that name this file.

 di_sbflag Has a nonzero value when the file is no more than SMBLKSZ
 bytes in size. It indicates that the entire file content can
 be found in di_sbbuf. All entries in di_addr are 0 when
 di_sbbuf is in use.

 di_sbbuf The buffer to store the file content when di_sbflag is
 nonzero.

 di_size Number of bytes in the file.

 di_uid Owner ID.

 di_uniqid Inode reuse count. This is incremented on file creation.
 Used to determine if a file has been deleted and then had its
 inode reused. This field corresponds to the st_gen field
 returned by statx.

 di_version A count of the number of times a file has been updated.

 See the types.h file for related information concerning the types used in
 struct dinode.

AIX Operating System Technical Reference
inode

¦ Copyright IBM Corp. 1985, 1991
2.3.29 - 2

 Related Information
 In this book: "fs" in topic 2.3.20, "stat.h" in topic 2.4.22, and
 "types.h" in topic 2.4.27.

AIX Operating System Technical Reference
inode

¦ Copyright IBM Corp. 1985, 1991
2.3.29 - 3

 2.3.30 kaf

 Purpose
 Specifies how to process ddi keywords and their parameters.

 Description
 Keyword Attribute Files, also called kaf files, define how the devices
 command and customize helpers are to process keywords used in ddi files.
 The kaf files:

 � Contain instructions for processing device informatio
 � Control whether the devices command displays the associated
 information
 � Control whether a user can change the information using the devices
 command
 � Specify the input validation that the devices command performs
 � Determine the action that the customize helper takes

 The kaf information can be included in the ddi file for the device, or it
 can appear in a separate file. If it is contained in a separate file,
 then the stanza for the device in the system file must name the kaf file
 as the value of the kaf_file keyword. The kaf_use keyword (also in the
 system file) specifies the stanza of the kaf file to use.

 The name of each stanza in a kaf file is the name of a keyword that is
 used in ddi files. The stanza defines how the devices command and
 customize helper programs process that ddi keyword. The following section
 defines the keywords that can appear in the stanzas of kaf files.

 The use of extended characters in kaf files is not supported.

 Devices that can be added, deleted, or changed by devices must have a kaf
 file.

 Subtopics
 2.3.30.1 Control over Display and Modification of the Keyword
 2.3.30.2 User Input Validation

AIX Operating System Technical Reference
kaf

¦ Copyright IBM Corp. 1985, 1991
2.3.30 - 1

 2.3.30.1 Control over Display and Modification of the Keyword

 display If set to TRUE, then the devices command displays the device
 characteristic keyword and allows the user to change its value.

AIX Operating System Technical Reference
Control over Display and Modification of the Keyword

¦ Copyright IBM Corp. 1985, 1991
2.3.30.1 - 1

 2.3.30.2 User Input Validation

 vtype Specifies the type of checking that the devices command performs
 on values entered by the user. vtype can be set to one of the
 following values:

 0 No validation.
 1 Mapping validation: The input value must be one of the
 keywords found in the stanza named by the map keyword.
 3 Range validation: The input value must have the data type
 specified by the type keyword and must fall in the range
 specified by the range keyword.

 map Names a stanza in the kaf file that contains a list of
 keyword=value pairs against which the input value is to be
 matched. If the input matches a given keyword, then the
 corresponding value is substituted in its place.

 opts Specifies the options to search for in the /etc/ddi/options file.
 opts is one of the following:

 k Keyword only
 c Keyword followed by device class
 t Keyword followed by device type
 s Keyword followed by device stanza name.

 If the opts keyword is not specified, its value defaults to k.
 See "options" in topic 2.3.43 for details about the
 /etc/ddi/options file.

 range Defines the valid range of values for a keyword so that the
 devices command can verify values entered by the user. The value
 of the range keyword has the format first,last,incr, where first
 is the first number in the range, last is the last number, and
 incr is the increment between values in the range. For example,
 range=2,10,2 specifies the values 2, 4, 6, 8, and 10.

 type Defines the data type for the value of a keyword. The devices
 command ensures that the values entered are the correct data
 type, specified by one of the following:

 F Floating-point (float)
 H Hexadecimal (int)
 I Integer (int)
 L Long integer (long int)
 S Short integer (short int)
 U Unsigned integer (unsigned int).

 Files

 /etc/ddi/opprinter.kf
 /etc/ddi/osprinter.kf
 /etc/ddi/plotter.kaf
 /etc/ddi/pprinter.kaf
 /etc/ddi/sprinter.kaf
 /etc/ddi/tty.kaf
 /etc/mdkaf
 /etc/ddi/c327
 /etc/ddi/nty.kaf
 /etc/ddi/pty

AIX Operating System Technical Reference
User Input Validation

¦ Copyright IBM Corp. 1985, 1991
2.3.30.2 - 1

 Related Information
 In this book: "attributes" in topic 2.3.5, "ddi" in topic 2.3.13,
 "descriptions" in topic 2.3.14, and "system" in topic 2.3.56.

AIX Operating System Technical Reference
User Input Validation

¦ Copyright IBM Corp. 1985, 1991
2.3.30.2 - 2

 2.3.31 loads

 Purpose

 Contains loads information on all sites. /etc/loads is read by the fast,
 fastsite, and loads commands.

 Description

 The /etc/loads file contains loads and user information for all sites. It
 includes, for each site, the site number, the site name, the number of
 users, the length of time in seconds the site has been up, and 1 minute, 5
 minute, and 15 minute load averages.

 The loadserver on each site updates /etc/local_loads, and in each cluster,
 one loadserver is responsible for extracting local load and user
 information and updating /etc/loads.

 Files

 /etc/loads
 /etc/local_loads

 Related Information

 The loads and loadserver commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
loads

¦ Copyright IBM Corp. 1985, 1991
2.3.31 - 1

 2.3.32 master

 Purpose
 Contains master configuration information.

 Description
 The master file is an attribute file that contains stanzas that describe
 all device drivers and the system parameters that could be configured into
 the system.

 There are two general kinds of stanzas in the master file. They are:

 � AIX device driver stanzas describing attributes relevant to th
 configuration of the drivers.

 � Stanzas describing system parameters that are relevant to the syste
 configuration.

 The type keyword in each stanza identifies the kind of stanza it is. AIX
 driver stanzas specify drivers to link into the kernel.

 The use of extended characters in the master file is not supported.

 Subtopics
 2.3.32.1 AIX Driver Stanzas
 2.3.32.2 System Parameter Stanzas
 2.3.32.3 Site-Specific Parameters

AIX Operating System Technical Reference
master

¦ Copyright IBM Corp. 1985, 1991
2.3.32 - 1

 2.3.32.1 AIX Driver Stanzas
 A unique set of keywords is associated with each type of stanza. It is
 not necessary, however, for a stanza to contain all the keywords
 associated with that type. If a keyword is omitted from the stanza, the
 default is used. Mandatory keywords must be supplied and are not
 defaulted. The name of each stanza is a logical AIX driver name
 referenced in other stanzas.

 The lines interpreted by the config and osconfig commands are:

 block Indicates if the device driver supports block interface (TRUE or
 FALSE).

 char Interpreted by the config program. char has the same
 interpretation as character; that is, the device is a CHARACTER
 device as opposed to a BLOCK device.

 config Indicates that this device has a customization helper program,
 which provides assistance in decoding other options. This value
 is the name of the helper program in the /etc directory.

 devhdrreqd
 Used by the config program. If TRUE, config adds the
 information listed below to the conf.c file it builds. Note
 that this keyword should not be used in PS/2 systems unless the
 driver is included in the base system provided, since the conf.c
 file is not compiled.

 � If the device is a BLOCK device, a #define B_hndlr devmajor
 where hndlr is replaced with the value from the prefix
 keyword and devmajor is replaced with the value from the
 major keyword.

 � If the device is a CHARACTER device, a #define C_hndlr
 devmajor where hndlr is replaced with the value from the
 prefix keyword and devmajor is replaced with the value from
 the major keyword.

 � If the device is neither a BLOCK nor a CHARACTER device, a
 #define M_hndlr devmajor where hndlr is replaced with the
 value from the prefix keyword and devmajor is replaced with
 the value from the major keyword.

 � A #define U_hndlr naddrs where hndlr is replaced with the
 value from the prefix keyword and subunits is replaced with
 the count of the configured subunits (not the keyword) for
 the given device.

 � A #define N_hndlr naddrs where hndlr is replaced with the
 value from the prefix keyword and naddrs is replaced with
 the number of configured addresses for the device.

 � A #include hndlconf.h where hndlr is replaced with the value
 from the prefix keyword.

 devtable Used by the config program. If TRUE, config adds the
 information listed below to the conf.c file it builds. Note
 that this keyword should not be used in PS/2 systems unless the
 PS/2 driver is included in the base system provided, since the
 conf.c file is not compiled.

AIX Operating System Technical Reference
AIX Driver Stanzas

¦ Copyright IBM Corp. 1985, 1991
2.3.32.1 - 1

 � An initialized declaration for struct dev_unit hndlrdevs[],
 where hndlr is replaced with the value from the prefix
 keyword. This structure is initialized with values taken
 from the device, including stanzaname, and the driver,
 units, and address keywords.

 � If devtable is TRUE, then the name of the handler table is
 output into the appropriate slot in the gensw table for the
 device. If devtable is false, this slot initializes with a
 zero.

 major Identifies the major device number for this driver. This is
 mandatory.

 mandatory Identifies this driver to be included into the AIX system kernel
 whether or not the system file asks for it. If this value is
 TRUE, include this driver.

 maxminor States the maximum number of minor devices this driver supports.
 This number should agree with the driver code.

 mpx Identifies a multiplexed special file when this value is TRUE.

 prefix Provides a prefix for the driver routines. For example, if this
 value is abc, then the open routine in the driver is abcopen.
 This keyword is mandatory. Note that all drivers are assumed to
 be archived into the system object libraries.

 routines Identifies the routines actually defined for this driver. The
 possible routines are open, close, read, write, strategy, ioctl,
 init, and select.

 struct Indicates the name of the iobuf structure associated with a
 block-type device.

 subunits This keyword is not used.

 type Specifies the type of stanza. The possible values for device
 drivers are:

 alias Allows two names for the same device driver.

 dev Indicates that this device is associated with an adapter.

 sw Indicates that this device is not associated with
 hardware, for example, the pseudo-device driver.

 tty Specifies that this stanza is a line discipline device
 driver.

 type=linedisc
 Provides the same attributes as type=tty;.

 block=TRUE:
 Interpreted by the config program. This causes struct iobuf
 hndlrtab entries to be generated in the conf.c file, with their
 addresses initialized in devsw. Indirectly causes the
 hndlrstragety entry points to be generated in the conf.c file,
 with their addresses initialized in devsw. Causes the b entries

AIX Operating System Technical Reference
AIX Driver Stanzas

¦ Copyright IBM Corp. 1985, 1991
2.3.32.1 - 2

 in the device types summary section of the configuration summary
 file. Causes block or bl/ch entries in the block and character
 device tables section of the configuration summary file.

 nocount=TRUE:
 Interpreted by the config program. Suppresses the declaration
 of int hndlr_cnt = numunits. Normally output to the conf.c
 file, where hndlr is replaced with the value from the prefix
 keyword and numunits represents the number of configured devices
 of that type.

 oneonly=TRUE:
 Interpreted by the config program. Causes an error to be
 generated if more than one stanza for this device is
 encountered.

 line=n Interpreted by the config. program. In stanzas with type=tty or
 type=linedisc, this is used to indicate the position within
 linesw, which this line discipline is to occupy.

 The line interpreted by crash and pstat is:

 ttyflg=alloc,ttysum,cntsym:
 If a device supports tty output and thus maintains a tty
 structure, the programs crash and pstat need to be able to read
 these structures. They read the /etc/master file for
 information on how these structures are allocated. The value of
 alloc describes the method the driver uses to allocate the
 struct tty:

 "static" -> struct tty xx_tty[COUNT];
 "static*" -> struct tty *xx_tty[COUNT];
 "auto" -> struct tty *xx_tty;
 "auto*" -> struct tty *xx_tty;

 The ttysym is the symbol name of the tty structure as declared
 in the device driver.

 The cntsym is the symbol name of the number of tty structures
 present, as declared in the device driver.

AIX Operating System Technical Reference
AIX Driver Stanzas

¦ Copyright IBM Corp. 1985, 1991
2.3.32.1 - 3

 2.3.32.2 System Parameter Stanzas

 System Parameter Keywords:

 The following is a list of keywords used to define system parameters in
 the master file:

 default The default value of the system parameter.

 patchaddr The address in the kernel which stores the value of the
 parameter.

 patchlen The parameter's length in bytes in the kernel.

 symbol The name of the system parameter as it appears temporarily in
 the defines of /tmp/sysgen.<machine-id>/conf.c; this file is
 removed during system build.

 type The type of the stanza. The following are the valid values of
 type:

 parm System parameters.

 special Special system parameters used in system
 configuration.

 text The file specified by default is included in
 conf.c when /etc/config is run.

 udev Special files like rootdev are for the system
 device.

 System Parameters:

 The following are object-code options for the PS/2 only:

 ipc43 Includes TCP/IP code in the kernel.

 kerndbg Includes kernel debugger code in the kernel.

 merge Includes the DOS Merge code in the kernel.

 nfserver Includes the NFS code in the kernel.

 Note: All system parameters that are listed in /etc/master/ may have
 their default values overriden by the values in /etc/system.

AIX Operating System Technical Reference
System Parameter Stanzas

¦ Copyright IBM Corp. 1985, 1991
2.3.32.2 - 1

 2.3.32.3 Site-Specific Parameters

 Note: Stanzas which do not have the patchaddr attribute cannot be
 patched. The parameters dump, dumplow, nswap, pipe, root, swap,
 swaplow, swapmap, and swbufs are automatically configured by the
 kernel. However, they can be overridden in /etc/system.

 bhash Buffer hash group size.

 buffers Buffers are used to provide the means to regroup I/O requests to
 a block device. Often user and file system block sizes differ,
 and it is more efficient to perform the I/O in an increment that
 optimizes slow device access. So when writing to a block
 device, for example, the kernel buffers the data until a
 convenient amount has been stored for writing all at once to the
 device. Also, buffers allow data to be cached so that disk I/O
 can be reduced. Normally this parameter is set to 0 and at
 system run-time 20% of free memory is allocated to buffers.
 This is bounded by the minbufs and maxbufs parameters. However,
 by changing this value, these calculations are not performed,
 and the user supplied value is used instead.

 callout Callouts are used by the kernel as a means of performing some
 task after a certain amount of time. It is possible that a
 user, upon purchasing a new device driver, could cause the
 system to reach its upper limit on the number of callouts
 allowed. Should this happen, the system would panic with
 Timeout table full. If the new functionality added to the
 system is error-free, increasing the number of callouts (which
 cost 24 bytes each) could solve the problem.

 clist Clists (character lists) transfer data between user input and
 the kernel. If there aren't enough clists, users notice long
 delays in even simple character echos. If there are a lot of
 users on the system, try increasing the number of clists. It
 costs 74 bytes per extra member.

 cluster_id
 Specifies the cluster ID in the Internet Protocol (IP) format
 (a.b.c.d.).

 daylight Nonzero if daylight savings time in effect.

 dcbuffs, dchash
 Directory cache buffers are an optimization for performing
 directory searches. For example, in the command cd /foo/bar,
 the following happens: in the directory /, the entry foo is
 searched in a linear fashion. Once the entry is found, its
 information is stored in a directory cache buffer on the theory
 that if a user needed that information once, he may need it
 again soon. The cache eliminates the need to linearly search
 the directory for the entry foo if it is referenced in the near
 future. To access the directory cache buffer efficiently, a
 directory hash table is used. The dchash parameter indicates
 the number of directory hash groups. The smaller the number,
 the larger the size of the hash table. Increasing the number of
 buffers could cause a performance increase in directory access.
 Each buffer costs 52 bytes plus any increase in the size of the
 hash table.

AIX Operating System Technical Reference
Site-Specific Parameters

¦ Copyright IBM Corp. 1985, 1991
2.3.32.3 - 1

 depsite Indicates that the kernel is to run on a site that does not
 store a copy of the root file system.

 dump Kernel core images (called a dump) are made when the system
 stops working. On systems with a dump minidisk located on the
 hard disk, the kernel auto-configures the dump properly. The
 user can change the dump device, by placing an entry in the
 system file and rebuilding the kernel using the newkernel
 command. The dump parameter should reference any unused portion
 of a minidisk.

 dumplow Offset in the dump minidisk to begin dumping a kernel image.
 This offset is in 4K blocks. Normally the value of the dumplow
 parameter is 0, but it can be changed to allow dumping to an
 arbitrary point on a minidisk. This could allow for the dump
 minidisk to overlap with another minidisk. The dumplow
 parameter is then set to last used block of the minidisk.

 errsize The size (in bytes) of the error buffer used for error logging.
 If error logs are wrapping too much, increasing this number
 helps.

 files This is the number of entries in the file table. The file table
 contains 1 entry per open file access in the system. If users
 find that programs are failing with ENFILE, the system
 administrator should check /dev/osm to discover which table
 overflowed. If it contains File table full at 'n' entries, try
 increasing the value of the files parameter. The cost is 20
 bytes per entry.

 generic Indicates an installation-mode kernel.

 ghash Specifies the optimum length of the hash chain for the mount
 table. Typically, the smaller the ghash parameter, the better
 the performamce.

 gmounts Maximum number of mounted filesystems in cluster.

 gpgscln Get pages clean. When the number of free pages on the swap
 device plus the number of free memory pages divided by 2 is less
 than this limit, the kernel removes unreferenced pages from
 working sets of the process.

 gpgslo, gpgshi
 Get pages low/high. These are low and high water marks
 indicating when to begin stealing memory from processes. If
 there is a lot of free memory available, AIX waits until gpgslo
 free pages are remaining before beginning to page out. Page out
 continues until gpgshi is reached.

 hz Frequency of hardware clock interrupts.

 ihash Inode (incore inodes) hash group size.

 killem When the amount of free swap space plus free memory space
 divided by 2 reaches this threshold, the kernel begins killing
 processes to free more swap space and memory.

 The gpgscln and killem parameters are used to calculate three
 additional parameters (internal to the kernel):

AIX Operating System Technical Reference
Site-Specific Parameters

¦ Copyright IBM Corp. 1985, 1991
2.3.32.3 - 2

 danger = gpgscln - ((gpgscln - killem) / 3)
 nofork = danger - ((gpgscln - killem) / 3)
 killcur = killem / 2

 Altogether, these five parameters indicate to the kernel what
 actions to take when the number of free pages falls below the
 specified value:

 gpgscln: Get pages clean.

 danger: Send SIGDANGER to all processes.

 nofork: Disallow nonsuperuser forks.

 killem: Kill processes with a large number of pages.

 killcur: Kill current process.

 locks These are responsible for locking files. Should the number of
 locks be too small, applications such as passwd will fail
 because the lockf system calls will fail. Increasing the number
 of locks costs 32 bytes each.

 locsite Uniquely identifies a TCF cluster site.

 maxbufs The maximum number of buffers that the system allocates.

 maxinod,mininod
 The inode table (described by its minimum and maximum values)
 contains mininod- one entry per open file in the system. This
 is different from the files parameter in that, while a file may
 have multiple entries in the file table, there is only one entry
 in the inode table. If the system administrator checks /dev/osm
 and notices Inode table full at 'n' entries, then he should try
 increasing the maximum number of inodes. The kernel begins
 allocating mininods and progressively more (as needed) until
 maxinod is reached.

 maxproc Maximum number of processes per user. If a user exceeds this
 limit, he won't be able to run any more programs. It keeps one
 user from tying up an entire system's resources.

 minbufs The minimum number of buffers that the system allocates.

 mounts Not used.

 msfiles Maximum swap minidisks allowed.

 msgmax The maximum message size that can be transmitted.

 msgmnb The maximum bytes allowed on the message queue.

 msgmni The number of message queue identifiers.

 msgssz Message segment size.

 msgtql Number of system message headers.

 name Each machine has a name associated with it.

AIX Operating System Technical Reference
Site-Specific Parameters

¦ Copyright IBM Corp. 1985, 1991
2.3.32.3 - 3

 net Contains the major number of the TCF Network File System.

 nfs Contains the number of the NFS logical device.

 nmasz Target number of netmsgs per allocation.

 nnetmsg Maximum number of netmsgs in system.

 npacks Number of packlist structures.

 npbuf Number of physio buffers. These buffers are used when swapping
 out processes and copying them between memory and the swap
 device.

 nswap Size (in 4K blocks) of the swap minidisk. Together with the
 swaplow parameter, these can describe any arbitrary region of
 the swap device.

 ntyunits The maximum number of AIX Access for DOS sessions that the host
 machine can handle at once. The default value is 8. Allowing
 one additional session costs 64 bytes plus 444 bytes once it's
 used.

 osmsize Size of the osm buffer (in bytes).

 phash Process hash group size.

 pipe The bootable AIX minidisk containing the kernel.

 procs Each process on the system has an entry in the process table.
 If there are many simultaneous tasks on the system, the process
 table could overflow. This creates a situation where users
 would often find that any command entered does not execute.
 Each member of the process table costs 224 bytes. However,
 there are many other parameters which are allocated based on the
 size of the process table, and so of course they will grow too.

 props Size of propagation table.

 ptrace Number of available local ipc structures.

 pvsegs The number of process vsegs is based on this value. The formula
 used is (number of processes * the pvsegs parameter). AIX
 assumes an average of 6 pvsegs per process (pvsegs has a 32-byte
 overhead).

 ptyunits The maximum number of pseudo-terminal login sessions that the
 host machine can handle at once. The default value is 8.
 Allowing one additional session costs 68 bytes plus 380 bytes
 once it is actually used.

 root The minidisk where the root file system is located.

 rprocs Relevant to number of remote processes this site originates.

 rsleep Remote sleep records.

 rwake Remote wakeup records.

AIX Operating System Technical Reference
Site-Specific Parameters

¦ Copyright IBM Corp. 1985, 1991
2.3.32.3 - 4

 semaem Maximum value of the adjust on exit status.

 semopm Maximum number of operations per semop system call.

 semume Maximum number of undo entries per process.

 semvmx Maximum value of a semaphore.

 semmni Number of semaphore identifiers.

 semmns Upper limit on number of semaphores in the system.

 semmsl Maximum number of semaphores per semaphore ID.

 shash Sleep hash group size.

 These parameters control the size of their respective hash
 tables. If the hash tables are often empty, then the hash group
 sizes could be increased, thereby freeing more memory. However,
 if the tables are continually full, decreasing the hash group
 sizes increases the size of the hash tables.

 shmbrk The gap (in clicks) between data and shared memory.

 shmseg Maximum number of shared memory segments per process.

 shmmax Maximum shared memory segment size.

 shmmin Minimum shared memory segment size.

 shmmni Number of shared memory identifiers. The upper limit of the
 shmmni parameter is dependent upon the procs parameter as
 defined in the following formula:

 1 < = shmmni < = 4 * procs - 50

 By default, the procs parameter is set to 74. This can be
 verified in the procs stanza in the /etc/master file and the
 definition of users can be noted in the sysparms stanza of the
 /etc/system file. The shmmni parameter has the following range:

 1 < shmmni < 250

 To use more than 250 shared memory segments, increase the value
 of the procs parameter.

 sites Maximum number of possible sites in network.

 sphiwat Idle count that causes sever processes to shut down.

 splowat Idle count that causes more sever processes to start up.

 swap When there is insufficient room for all active processes on the
 machine to reside in main memory, the kernel begins removing
 some processes. The swap device is the temporary location where
 these processes spend time waiting to run again. Like the dump
 device, the swap device is auto-configured so the user need not
 worry about setting it. However, this can be overridden, and
 the swap device can be set to any unused portion of a minidisk.

AIX Operating System Technical Reference
Site-Specific Parameters

¦ Copyright IBM Corp. 1985, 1991
2.3.32.3 - 5

 swaplow Starting offset in the swap minidisk (in 4K blocks) where
 swapping occurs.

 swapmap Maximum number of fragments of swap space.

 swbufs Number of buffers for swapping.

 timeslew: The time synchronization control parameter.

 timezone Local time zone.

 For this release, this value is always 1. Install/Maint changes
 the machine name if the user wishes. If the machine name
 differs from the default, aixps, Install/Maint places an entry
 in /etc/system to indicate that this value will be patched when
 the user rebuilds his kernel.

 tokens Number of file access tokens.

 tokloc Number of entries in token site request table.

 users Estimate of number of users on site.

 ulim_file The limit on the file size that a user may have. The units are
 in 512-byte blocks.

 ulim_data The limit on the largest data segment size that a user may have.
 The units are in bytes.

 ulim_stack
 The limit on the largest stack segment size that a user may
 have. The units are in bytes.

 vbuf The vbuf parameter is not used.

 vsasz, pvsasz
 These parameters are strictly for optimizing the number of
 dynamic allocation calls. vsasz is the number of vsegs
 allocated at one instance and pvsasz is the number of pvsegs.
 Increasing these values decreases the calls to the memory
 allocator but also decreases the amount of free memory available
 at a given instant. If vseg use is low, having high values
 would mean that memory utilization is being wasted. However, if
 vseg use is high, higher numbers could cause a performance
 increase.

 vsegs vsegs (virtual segments) describe virtual objects such as user
 data, shared memory, executable text, and so on. Associated
 with each process are pvsegs (process virtual segments). pvsegs
 relates the vseg resources to a given process. Multiple
 processes may share the same vseg resource. The number of vsegs
 allocated reflects the number of separate system resource
 objects allowed. The value for this variable is based on the
 number of processes allowed for the system, so it does not need
 to change. The current formula is (number of processes * 4).
 Each vseg has a 104-byte overhead for the data structure.

 vhandr Virtual hand rate. The frequency in ticks at which the page
 daemon wakes up and looks for memory to free. If this value is
 too high, the system spends too much time scanning the page

AIX Operating System Technical Reference
Site-Specific Parameters

¦ Copyright IBM Corp. 1985, 1991
2.3.32.3 - 6

 tables and performance is decreased. If it is too low, then the
 system won't be able to react quickly enough to fluctuations in
 system behavior, and again performance decreases.

 vhandfrc Virtual hand fraction. Controls when the pager starts to run.
 It runs every vhandr ticks if free memory is greater than
 maximum memory divided by vhandfrc.

 Example
 The following sample system parameter stanza contains AIX Operating System
 information:

 locsite: type = parm
 symbol = LOCSITE
 patchaddr = loc_site
 default = 0

 File

 /etc/master

 Related Information
 In this book: "mount" in topic 1.2.172, "attributes" in topic 2.3.5,
 "system" in topic 2.3.56, and "pty" in topic 2.5.21.

 The newkernel, osconfig and config commands in AIX Operating System
 Commands Reference.

 See "Generating a New Kernel" in Managing the AIX Operating System.

AIX Operating System Technical Reference
Site-Specific Parameters

¦ Copyright IBM Corp. 1985, 1991
2.3.32.3 - 7

 2.3.33 message

 Purpose
 Describes message, insert, and help formats.

 Synopsis
 # include <msg10.h>

 Description
 The puttext command is used to convert message, text insert, and help
 descriptions from a format that can be edited into a format that can be
 accessed at run time. The descriptions in the file can be accessed by
 using the msgimed, msgqued, msghelp, and msgrtrv subroutines. The gettext
 command converts the descriptions back into a format that can be edited.

 The file header contains a unique identifier indicating the type of file,
 a file format version number (currently 0), and the number of component
 entries in the file (currently, only one component entry per file is
 supported). The header file has the following form:

 struct filehdr { /* FILE HEADER */
 char unique[8]; /* unique file identifier "MSGSFILE" */
 unsigned short version; /* file format version number */
 unsigned short numcomp; /* number of component entries in file */
 };

 Following the file header is the component index table. Each entry
 (currently, there is only one) in the table identifies the component, the
 national language (EN for English), the maximum index numbers that have
 been allocated and the offsets to the message index table, insert index
 table and help index table.

 struct cmp_indx { /* Component index table entry */
 char compid[6]; /* component ID */
 char langid[2]; /* language ID */
 unsigned short flags; /* reserved for flags (zero) */
 unsigned short maxnum[3]; /* max index numbers used for */
 /* messages, inserts, and helps */
 unsigned long offset[3]; /* offsets to msg, insert, and help */
 /* index tables from start of file */
 unsigned long reserved; /* reserved */
 };

 The component index table is followed by the message index table and
 message text, the insert index table and insert text, and help index table
 and help text. The header for each entry in the message, insert, and help
 index tables identifies the component ID and index number where the text
 actually resides, the offset to the text (and its length) if the text
 actually resides in this entry, the version number (used with a common
 file), and an indicator of whether the entry is current (can be accessed)
 or null.

 /* Format of header for entries in the */
 /* message, insert, and help index tables */
 /* (Note that each index table must be */
 /* aligned on a long integer boundary.) */

 #define MSGHEADR
 char compid[6]; /* component ID for text source */
 /* file ('======' or 'common') */

AIX Operating System Technical Reference
message

¦ Copyright IBM Corp. 1985, 1991
2.3.33 - 1

 unsigned short index; /* index # for text source (zero */
 /* indicates same index # */
 unsigned long offset; /* offset to text from start of */
 /* index table */
 unsigned short textlen; /* text length (not incl null term) */
 unsigned short version; /* version */
 unsigned short flags; /* flag definition */
 /* 01 off: status = null */
 /* on: status = current */
 /* (other flags reserved (zero)) */
 unsigned short reserve1; /* reserved (zero) */

 /* flag definitions for MSGHEADR */
 #define mih_status 0x0001 /* off (0): status = null */
 /* on (1): status = current */

 Each entry in the insert index table contains only the header information.

 struct ins_indx { /* Insert table entry */
 /* (contains header info. only) */
 MSGHEADR /* header information */
 };

 Each entry in the message index table and help index table contains the
 header information plus the title length (used for helps), a message/help
 manual reference, and the index number for the help associated with a
 message.

 struct mih_indx { /* Entry in message or help index tables. May */
 /* also be used as entry in insert index table */
 /* if only header information is referenced. */
 MSGHEADER /* header information */
 unsigned short titlelen; /* title length (not incl null term) */
 char dcompid[3]; /* displayed component ID */
 char dmsgid[3]; /* displayed message help ID */
 short helpindx; /* help index number (zero if no help, */
 /* negative if help in common file) */
 unsigned short reserved; /* reserved (zero) */
 };

 Each index table must be aligned on a long integer boundary.

 Related Information
 In this book: "msghelp" in topic 1.2.175, "msgimed" in topic 1.2.176,
 "msgqued" in topic 1.2.177, and "msgrtrv" in topic 1.2.179.

 The gettext and puttext commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
message

¦ Copyright IBM Corp. 1985, 1991
2.3.33 - 2

 2.3.34 mh-alias

 Purpose
 Defines aliases for the Message Handling (MH) Package.

 Description

 The Message Handling (MH) Package supports both personal alias files and a
 system-wide alias file, /usr/lib/mh/MailAliases. Depending on the MH
 configuration, MH may also honor system-wide alias defined for the
 sendmail command. An alias file contains lines that associate an alias
 name with an address or a group of addresses.

 Subtopics
 2.3.34.1 File Format

AIX Operating System Technical Reference
mh-alias

¦ Copyright IBM Corp. 1985, 1991
2.3.34 - 1

 2.3.34.1 File Format

 Each line of an alias file has one of the following formats:

 alias : address-group

 alias ; address-group

 <file

 where

 address-group := address-list
 | <file
 | =AIX-group
 | +AIX-group
 | *

 address-list := address
 | address-list, address

 You can continue an alias definition on the next line by ending the line
 to be continued with the \ (backslash) character followed by the new-line
 character.

 The alias-file and file parameters must be AIX file names. AIX-group must
 be a group name (or number) from /etc/group. address must be a simple
 Internet-style address. MH treats alias file names as case sensitive
 names but ignores case elsewhere in alias files.

 If a line starts with the < (less than) character, MH reads the file
 specified after the < for more alias definitions. The reading is done
 recursively.

 If an address group starts with the < (less than) character, MH reads the
 file specified after the < and adds the contents of that file to the
 address list for the alias.

 If an address group starts with the = (equal) character, MH consults the
 /etc/group file for the AIX group specified after the equal character. MH
 adds each login name occurring as a member of the group to the address
 list for the alias.

 If an address group starts with the + (plus) character, MH consults the
 /etc/group file to determine the group ID of the AIX group specified after
 the plus character. MH adds each login name occurring in the /etc/passwd
 file whose group ID is indicated by this group to the address list for the
 alias.

 If an address group is specified as * (asterisk), MH consults the
 /etc/passwd file and adds all login names with a UID greater than 200, or
 the value set for everyone in /usr/lib/mh/mtstailor to the address list
 for the alias.

 An approximation of the way the system resolves aliases at posting time:

 1. The system builds a list of all addresses from the message to be
 delivered, eliminating duplicate addresses.

 2. If the draft originated on the local host, the system performs alias

AIX Operating System Technical Reference
File Format

¦ Copyright IBM Corp. 1985, 1991
2.3.34.1 - 1

 resolution for those addresses in the message that have no host
 specified.

 3. For each line in the alias file, the system compares the alias with
 all existing addresses. If a match is found, the system removes the
 matched alias from the address list, and adds each new address in the
 address group to the address list if it is not already in the list.
 The alias itself is not usually output; the address group that the
 alias maps to is output instead. If the alias is terminated with a ;
 (semicolon) instead of a : (colon), both the alias and the address are
 output in the correct form. (This correct form makes replies possible
 since MH aliases and personal aliases are unknown to the mail
 transport system.)

 In the MH system, aliases in alias files are expanded into the headers of
 messages posted. This aliasing occurs first, at posting time, without the
 knowledge of the message transport system. In contrast, once the message
 transport system is given a message to deliver to a list of addresses, for
 each address that appears to be local, a system-wide alias file is
 consulted. These aliases are not expanded into the headers of messages
 delivered.

 Since alias files are read line by line, forward references work, but
 backward references are not recognized. Although this forward referencing
 semantics prevents recursion, the <alias-file syntax may defeat this.
 Since the number of file descriptors is limited, such recursion will end
 when all file descriptors are depleted.

 Example

 The following example of a mh-alias file illustrates some features:

 </user/lib/mh/DraftingAlias
 temps:peggy,tina
 tina:temp5@NODE3
 p1:<project1.aliases
 staff:=staff
 support:+syssup
 everyone:*
 news.*:news

 The first line says that more aliases should immediately be read from the
 file /usr/lib/mh/DraftingAliases. Following this, tina is defined as an
 alias for temp5@NODE3, and temps is defined as an alias for the two names
 peggy and tina. The definition of p1 is given by reading the file
 user_mh_directory/project1.aliases. staff is defined as all users who are
 listed as members of the group staff in the /etc/group file, and support
 is defined as all users whose group ID in /etc/passwd is equivalent to the
 syssup group. Finally, everyone is defined as all users with a user ID in
 /etc/passwd greater than 200, and all aliases of the form news.anything
 are defined to be news.

 Files

 /usr/lib/mh/MailAliases The default system alias file.

 /usr/lib/mh/mtstailor The MH tailor file.

 Related Information
 In this book: "group" in topic 2.3.26 and "passwd" in topic 2.3.44.

AIX Operating System Technical Reference
File Format

¦ Copyright IBM Corp. 1985, 1991
2.3.34.1 - 2

 The ali, conflict, post, send, sendmail, and whom commands in AIX
 Operating System Commands Reference.

 The "Overview of the Message Handling Package" in Managing the AIX
 Operating System.

AIX Operating System Technical Reference
File Format

¦ Copyright IBM Corp. 1985, 1991
2.3.34.1 - 3

 2.3.35 mh-format

 Purpose
 Defines message formats for the Message Handling (MH) Package.

 Description

 Several MH commands use either a format string (similar to a printf
 string) or a format file to format their output. For example, the scan
 command uses a format string to format the scan listing for each message,
 while the repl command uses a format file to format a message reply.

 A MH format string is similar to a printf string, but uses multi-letter
 escape sequences beginning with the % character. In addition, the usual C
 language backslash characters (\b, \f, \n, \r, and \t) are recognized. To
 continue a format line to the next line, precede the new-line character
 with a \ (backslash).

 The interpretation model is based on a simple machine with two registers,
 num and str. The former contains an integer value; the latter a string
 value. When an escape is processed, if the escape requires an argument,
 the system reads the current value of either num or str, and if the escape
 returns a value, the system writes either num or str.

 Note: The MHL command will look for inbox in $CWD/Mail instead of
 $HOME/Mail.

 Subtopics
 2.3.35.1 Escapes
 2.3.35.2 mhl.format

AIX Operating System Technical Reference
mh-format

¦ Copyright IBM Corp. 1985, 1991
2.3.35 - 1

 2.3.35.1 Escapes

 Escapes are of three types: component, function, or control. A component
 escape, specified as %{name}, is created for each header found in the
 message being processed. For example, %{date} refers to the Date: field
 of the appropriate message. A component escape is always string valued.

 A control escape is one of:

 %<escape
 %|
 %>

 which corresponds to an if-then-else construct. If escape has a nonzero
 value (for integer-valued escapes) or is not empty (for string-valued
 escapes), then everything up to %| or %> (whichever comes first) is
 interpreted; otherwise, processing skips to %| or %> (whichever comes
 first) and starts interpreting again.

 A function escape is specified as %(name) and is statically defined. Here
 is the list:

 +--+
 ¦ Escape ¦ Argument ¦ Returns Interpretation ¦
 +------------+----------------------+------------------------------------¦
 ¦ nonzero ¦ integer integer ¦ num has a nonzero value ¦
 +------------+----------------------+------------------------------------¦
 ¦ zero ¦ integer integer ¦ num is zero ¦
 +------------+----------------------+------------------------------------¦
 ¦ eq ¦ integer integer ¦ num == width ¦
 +------------+----------------------+------------------------------------¦
 ¦ ne ¦ integer integer ¦ num != width ¦
 +------------+----------------------+------------------------------------¦
 ¦ gt ¦ integer integer ¦ width > num ¦
 +------------+----------------------+------------------------------------¦
 ¦ null ¦ string integer ¦ str is empty ¦
 +------------+----------------------+------------------------------------¦
 ¦ nonnull ¦ string integer ¦ str is not empty ¦
 +------------+----------------------+------------------------------------¦
 ¦ putstr ¦ string ¦ Display str ¦
 +------------+----------------------+------------------------------------¦
 ¦ putstrf ¦ string ¦ Display str in the specified ¦
 ¦ ¦ ¦ width, for example: ¦
 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ %20(putstrf{subject}) ¦
 ¦ ¦ ¦ ¦
 +------------+----------------------+------------------------------------¦
 ¦ putnum ¦ integer ¦ Display num ¦
 +------------+----------------------+------------------------------------¦
 ¦ putnumf ¦ integer ¦ Display num in the specified ¦
 ¦ ¦ ¦ width, for example: ¦
 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ %4(putnum(msg)) ¦
 ¦ ¦ ¦ ¦
 +------------+----------------------+------------------------------------¦
 ¦ msg ¦ integer ¦ Message number ¦
 +------------+----------------------+------------------------------------¦
 ¦ cur ¦ integer ¦ Message is current ¦

AIX Operating System Technical Reference
Escapes

¦ Copyright IBM Corp. 1985, 1991
2.3.35.1 - 1

 +------------+----------------------+------------------------------------¦
 ¦ size ¦ integer ¦ Size of message ¦
 +------------+----------------------+------------------------------------¦
 ¦ strlen ¦ string integer ¦ Length of str ¦
 +------------+----------------------+------------------------------------¦
 ¦ me ¦ string ¦ The user's mailbox ¦
 +------------+----------------------+------------------------------------¦
 ¦ plus ¦ integer ¦ Add width to num ¦
 +------------+----------------------+------------------------------------¦
 ¦ minus ¦ integer ¦ Subtract num from width ¦
 +------------+----------------------+------------------------------------¦
 ¦ charleft ¦ integer ¦ Space left in output buffer ¦
 +------------+----------------------+------------------------------------¦
 ¦ timenow ¦ integer ¦ Seconds from 00:00:00 GMT ¦
 ¦ ¦ ¦ January 1, 1970 ¦
 +--+

 When str is a date, these escapes are useful:

 +--+
 ¦ Escape ¦ Argument ¦ Returns Interpretation ¦
 +------------+----------------------+------------------------------------¦
 ¦ sec ¦ string integer ¦ Seconds of the minute ¦
 +------------+----------------------+------------------------------------¦
 ¦ min ¦ string integer ¦ Minutes of the day ¦
 +------------+----------------------+------------------------------------¦
 ¦ hour ¦ string integer ¦ Hours of the day (24-hour clock) ¦
 +------------+----------------------+------------------------------------¦
 ¦ mday ¦ string integer ¦ Day of the month ¦
 +------------+----------------------+------------------------------------¦
 ¦ mon ¦ string integer ¦ Month of the year ¦
 +------------+----------------------+------------------------------------¦
 ¦ wday ¦ string integer ¦ Day of the week (Sunday=0) ¦
 +------------+----------------------+------------------------------------¦
 ¦ year ¦ string integer ¦ Year of the century ¦
 +------------+----------------------+------------------------------------¦
 ¦ yday ¦ string integer ¦ Day of the year ¦
 +------------+----------------------+------------------------------------¦
 ¦ dst ¦ string integer ¦ Daylight savings in effect ¦
 +------------+----------------------+------------------------------------¦
 ¦ zone ¦ string integer ¦ Time zone ¦
 +------------+----------------------+------------------------------------¦
 ¦ sday ¦ string integer ¦ Day of the week known. Values ¦
 ¦ ¦ ¦ are: ¦
 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ 1 Explicit day ¦
 ¦ ¦ ¦ 0 Implicit (the MH package ¦
 ¦ ¦ ¦ figured it out) ¦
 ¦ ¦ ¦ -1 Unknown (the MH package could ¦
 ¦ ¦ ¦ not figure it out) ¦
 +------------+----------------------+------------------------------------¦
 ¦ clock ¦ string integer ¦ Seconds from 00:00:00 GMT January ¦
 ¦ ¦ ¦ 1, 1970 ¦
 +------------+----------------------+------------------------------------¦
 ¦ rclock ¦ string integer ¦ Seconds prior to current time ¦
 +------------+----------------------+------------------------------------¦
 ¦ month ¦ string string ¦ Month of the year ¦
 +------------+----------------------+------------------------------------¦
 ¦ lmonth ¦ string string ¦ Month of the year (long form) ¦

AIX Operating System Technical Reference
Escapes

¦ Copyright IBM Corp. 1985, 1991
2.3.35.1 - 2

 +------------+----------------------+------------------------------------¦
 ¦ tzone ¦ string string ¦ Time zone ¦
 +------------+----------------------+------------------------------------¦
 ¦ day ¦ string string ¦ Day of the week ¦
 +------------+----------------------+------------------------------------¦
 ¦ weekday ¦ string string ¦ Day of the week (long) ¦
 +------------+----------------------+------------------------------------¦
 ¦ tws ¦ string string ¦ RFC 822 rendering of the date ¦
 +------------+----------------------+------------------------------------¦
 ¦ pretty ¦ string string ¦ A more user-friendly rendering ¦
 +------------+----------------------+------------------------------------¦
 ¦ nodate ¦ string ¦ Date was not parseable ¦
 +--+

 When str is an address, these escapes are useful:

 +--+
 ¦ Escape ¦ Argument ¦ Returns Interpretation ¦
 +------------+----------------------+------------------------------------¦
 ¦ pers ¦ string string ¦ The personal name of the address ¦
 +------------+----------------------+------------------------------------¦
 ¦ mbox ¦ string string ¦ The local part of the address ¦
 +------------+----------------------+------------------------------------¦
 ¦ host ¦ string string ¦ The domain part of the address ¦
 +------------+----------------------+------------------------------------¦
 ¦ path ¦ string string ¦ The route part of the address ¦
 +------------+----------------------+------------------------------------¦
 ¦ type ¦ string integer ¦ The type of host. Values are: ¦
 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ -1 uucp ¦
 ¦ ¦ ¦ 0 Local ¦
 ¦ ¦ ¦ 1 Network ¦
 ¦ ¦ ¦ 2 Unknown ¦
 +------------+----------------------+------------------------------------¦
 ¦ nohost ¦ string integer ¦ No host was present in the address ¦
 +------------+----------------------+------------------------------------¦
 ¦ ingrp ¦ string integer ¦ The address appeared inside a ¦
 ¦ ¦ ¦ group ¦
 +------------+----------------------+------------------------------------¦
 ¦ gname ¦ string string ¦ The name of the group (present for ¦
 ¦ ¦ ¦ first address only) ¦
 +------------+----------------------+------------------------------------¦
 ¦ note ¦ string string ¦ Commentary text ¦
 +------------+----------------------+------------------------------------¦
 ¦ proper ¦ string string ¦ RFC 822 rendering of the address ¦
 +------------+----------------------+------------------------------------¦
 ¦ friendly ¦ string string ¦ A more user-friendly rendering ¦
 +------------+----------------------+------------------------------------¦
 ¦ mymbox ¦ string ¦ The address refers to the user's ¦
 ¦ ¦ ¦ mailbox ¦
 +------------+----------------------+------------------------------------¦
 ¦ formataddr ¦ string ¦ Display str in an address list ¦
 +--+

AIX Operating System Technical Reference
Escapes

¦ Copyright IBM Corp. 1985, 1991
2.3.35.1 - 3

 2.3.35.2 mhl.format

 The mhl.format file is similar to other MH format files, but controls the
 format of output when mhl is the message listing program. Each line of
 the mhl.format file must have one of the following forms:

 ;comment
 :cleartext
 variable[,variable...]
 component:[variable...]

 A line beginning with the ; character contains comments that are ignored.
 A line beginning with the : character contains text for output. A line
 that contains the : character only produces a blank output line. A line
 beginning with component defines the format of the specified component.
 If a variable follows a component, the variable applies only to that
 component. Lines having other formats define the global environment.

 Variables that have integer or string values as arguments must be followed
 by an = (equal) character and the integer or string value (for example,
 overflowoffset=5). String values must also be enclosed in double
 quotation characters (for example, overflow"***"). An argument specified
 with the suffix /G has global scope. An argument specified with the
 suffix /L has local scope.

 The entire mhl.format file is parsed before output processing begins.
 Thus, if a variable's global setting is defined in multiple places, the
 last global definition for that variable describes the real global
 setting.

 The following table lists the mhl.format variables and their arguments:

 +--+
 ¦ Variable ¦ Argument ¦ Description ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ width ¦ integer ¦ Set the screen width or component ¦
 ¦ ¦ ¦ width ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ length ¦ integer ¦ Set the screen length or component ¦
 ¦ ¦ ¦ length ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ offset ¦ integer ¦ Indent component the specified ¦
 ¦ ¦ ¦ number of columns ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ overflowtext ¦ string ¦ Output string at the beginning of ¦
 ¦ ¦ ¦ each overflow line ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ overflowoffset ¦ integer ¦ Indent overflow lines the specified ¦
 ¦ ¦ ¦ number of columns ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ compwidth ¦ integer ¦ Indent component text the specified ¦
 ¦ ¦ ¦ number of columns after the first ¦
 ¦ ¦ ¦ line of output ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ uppercase ¦ flag ¦ Output text of component in all ¦
 ¦ ¦ ¦ upper case characters ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ nouppercase ¦ flag ¦ Output text of component in the ¦
 ¦ ¦ ¦ case entered ¦
 +-------------------+--------------+-------------------------------------¦

AIX Operating System Technical Reference
mhl.format

¦ Copyright IBM Corp. 1985, 1991
2.3.35.2 - 1

 ¦ clearscreen ¦ flag/G ¦ Clear the screen before each page ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ noclearscreen ¦ flag/G ¦ Do not clear the screen before each ¦
 ¦ ¦ ¦ page ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ bell ¦ flag/G ¦ Produce an audible indicator at the ¦
 ¦ ¦ ¦ end of each page ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ nobell ¦ flag/G ¦ Do not produce an audible indicator ¦
 ¦ ¦ ¦ at the end of each page ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ component ¦ string/L ¦ Use string as the name for the ¦
 ¦ ¦ ¦ specified component instead of the ¦
 ¦ ¦ ¦ string component ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ nocomponent ¦ flag ¦ Do not output the string component ¦
 ¦ ¦ ¦ for the specified component ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ center ¦ flag ¦ Center component on line. This ¦
 ¦ ¦ ¦ variable works for one-line ¦
 ¦ ¦ ¦ components only. ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ nocenter ¦ flag ¦ Do not center component ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ leftadjust ¦ flag ¦ Strip off the leading whitespace ¦
 ¦ ¦ ¦ characters from each line of text ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ noleftadjust ¦ flag ¦ Do not strip off the leading ¦
 ¦ ¦ ¦ whitespace characters from each ¦
 ¦ ¦ ¦ line of text ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ compress ¦ flag ¦ Change new-line characters in text ¦
 ¦ ¦ ¦ to space characters ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ nocompress ¦ flag ¦ Do not change new-line characters ¦
 ¦ ¦ ¦ in text to space characters ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ formatfield ¦ string ¦ Use string as the format string for ¦
 ¦ ¦ ¦ the specified component ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ addrfield ¦ flag ¦ The specified component contains ¦
 ¦ ¦ ¦ addresses ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ datefield ¦ flag ¦ The specified component contains ¦
 ¦ ¦ ¦ dates. ¦
 +-------------------+--------------+-------------------------------------¦
 ¦ ignore ¦ unquoted ¦ Do not output component specified ¦
 ¦ ¦ string ¦ by string ¦
 +--+

 Example

 The following format string is the default for the scan command. It has
 been divided into several pieces for readability. The first part is:

 %4(putnum(msg))%<(cur)+%| %>%<{replied}-%| %>

 This says that the message number should be displayed in four digits. If
 the message is the current message, a + character is displayed next;
 otherwise, a space character is displayed. If a replied: field is

AIX Operating System Technical Reference
mhl.format

¦ Copyright IBM Corp. 1985, 1991
2.3.35.2 - 2

 present, then a - (minus) is displayed; otherwise, a space is displayed.
 Next:

 %02(putnumf(mon{date}))%02(putnumf(mday{date}))

 The month and day are displayed in two digits (zero filled). Next:

 %<{date} %|*>

 If no date: field is present, then an * (asterisk) character is displayed;
 otherwise, a space character is displayed. Next:

 %<(mymbox{from})To:%14(putstr(friendly{to}))

 If the message is from me, display to: followed by a friendly rendering of
 the first address in the To: field. Continuing:

 %|%17(putstrf(friendly{from}))%

 If the message is not from me, display from: followed by the from:
 address. And finally:

 %{subject}<<%{body}>>

 Display the subject and initial body of the message.

 This method of formatting messages allows you to extract individual fields
 and display them in the format you desire.

 If you use the -form file argument when you run scan, it treats each line
 in file as a format string and acts accordingly. The following files
 contain scan listing formats that you can look at: /usr/lib/mh/scan.time,
 /usr/lib/mh/scan.size, and /usr/lib/mh/scan.timely.

 The following line is an example of a line that could appear in the
 mhl.format file:

 width=80,length=40,clearscreen,overflow"***",overflowoffset=5

 This format line defines the screen size to be 80 columns by 40 rows and
 specifies that the screen should be cleared before each page, that the
 overflow text should be flagged with the string ***, and that the overflow
 indentation should be 5 columns.

 Related Information

 The ap, dp, mhl, and scan commands in AIX Operating System Commands
 Reference.

 The "Overview of the Message Handling Package" in Managing the AIX
 Operating System.

AIX Operating System Technical Reference
mhl.format

¦ Copyright IBM Corp. 1985, 1991
2.3.35.2 - 3

 2.3.36 mh-mail

 Purpose
 The message format for the Message Handling (MH) Package.

 Description
 The Message Handling (MH) Package processes messages in a particular
 format. While this format is different from that used by the Bell and
 Berkeley mail systems, the MH package can read Bell and Berkeley message
 files.

 Each user has a mail drop that initially receives all messages processed
 by the post or spost command. The inc command reads from that mail drop
 and incorporates the new messages found there into the user's own mail
 folder (typically inbox). The mail drop consists of one or more messages.

 Messages are expected to consist of lines of text. Graphics and binary
 data are not handled. No data compression is accepted. All text is ASCII
 7-bit data.

 The general memo framework of the ARPA Internet RFC 822 standard is used.
 A message consists of a block of information in a rigid format, followed
 by general text with no specified format. The rigidly formatted first
 part of a message is called the header, and the free-format portion is
 called the body. The header must always exist, but the body is optional.
 These parts are separated by an empty line, that is, two consecutive
 new-line characters. Within messages, the header and body may be
 separated by a line consisting of dashes:

 To:
 cc:
 Subject

 The header is composed of one or more header components. Each header
 component can be viewed as a single logical line of ASCII characters. If
 the text of a header component extends across several lines, the
 continuation lines are indicated by leading spaces or tab characters.

 Each header component is composed of a keyword or name, along with
 associated text. The keyword begins at the left margin, may not contain
 space or tab characters, may not exceed 63 characters, and ends with a :
 (colon). Certain components (as identified by their keywords) must follow
 rigidly the defined formats in their text portions.

 The text for most formatted components (for example, Date: and
 Message-Id:) is produced automatically. The text for other components
 must be entered by the user (for example, To: and cc:). Multiple
 addresses are separated by commas. A missing host/domain is assumed to be
 the local host domain.

 Header Components

 Date: Added by post, spost, or the mail transport system;
 contains the date and time of the message's entry into
 the transport system.

 From: Added by post or spost; contains the address of the
 author or authors (may be more than one if a Sender
 field is present). Replies are typically directed to

AIX Operating System Technical Reference
mh-mail

¦ Copyright IBM Corp. 1985, 1991
2.3.36 - 1

 addresses in the Reply-To: or From: field (the former
 has precedence if both are present).

 Sender: Added by post or spost in the event that the message
 already has a From: line. This line contains the
 address of the actual sender. Replies are never sent
 to addresses in the Sender: field.

 To: Contains addresses of primary recipients.

 cc: Contains addresses of secondary recipients

 Bcc: Contains still more recipients. However, the Bcc:
 line is not copied into the message as delivered, so
 these recipients are not listed. The MH package uses
 an encapsulation method for blind copies.

 Fcc: Causes the post or spost command to copy the message
 into the specified folder for the sender, if the
 message was successfully given to the transport
 system.

 Message-Id: A unique message identifier added by post or spost if
 the -msgid flag is set.

 Subject: Sender's commentary. It is displayed by the scan
 command.

 In-Reply-To: A commentary line added by the repl command when
 replying to a message.

 Resent-Date: Added when redistributing a message by post or spost.

 Resent-From: Added when redistributing a message by post or spost.

 Resent-To: New recipients for a message resent by the dist
 command.

 Resent-cc: More recipients. See cc: and Resent-To:.

 Resent-Bcc: More recipients. See Bcc: and Resent-To:.

 Resent-Fcc: Copies resent message into a folder. See Fcc: and
 Resent-To:.

 Resent-Message-Id: A unique identifier attached by post or spost if you
 specify the -msgid flag. See Message-Id: and
 Resent-To:.

 Resent: Annotation that dist uses when you specify the
 -annotate flag.

 Forwarded: Annotation that the forw command uses when you specify
 the -annotate flag.

 Replied: Annotation that repl uses when you specify the
 -annotate flag.

 File

AIX Operating System Technical Reference
mh-mail

¦ Copyright IBM Corp. 1985, 1991
2.3.36 - 2

 $HOME/.newmail Location of mail drop

 Related Information
 Standard for the Format of ARPA Internet Text Messages, RFC 822. See
 "Related Network Publications" in topic 1.2.277.4.

 The "Overview of the Message Handling Package" in Managing the AIX
 Operating System.

AIX Operating System Technical Reference
mh-mail

¦ Copyright IBM Corp. 1985, 1991
2.3.36 - 3

 2.3.37 mhook

 Purpose

 Specifies actions to be taken when mail is received.

 Description

 An mhook (or receive-mail hook) is an action that is automatically
 performed when new mail is received through the Message Handling (MH)
 Package. Whenever you receive a new message, the sendmail command
 searches for the file .forward in your $HOME directory. sendmail pipes
 the new message to the slocal program when $HOME/.forward exists and
 contains the following line:

 | /usr/lib/mh/slocal

 The slocal program reads the file $HOME/.maildelivery and performs the
 actions specified in that file for each message being delivered. You can
 specify your own mail delivery instructions (or mhooks) in
 $HOME/.maildelivery. Each line in $HOME/.maildelivery describes an action
 and the conditions under which the action should be performed. Each line
 must contain five arguments separated by commas or space characters.
 These arguments are:

 field pattern action result string

 The following list describes each argument:

 field Specifies a header component field to be searched for a match to
 the character string specified in the pattern argument. You can
 specify one of the following values for the field argument:

 component Searches the specified header component.

 * Always matches.

 addr Searches whatever field was used to deliver the
 message to you.

 default Matches only if the message has not been delivered
 yet.

 source Specifies the out-of-band sender information.

 pattern Specifies the character string to search for in the header
 component given by the field argument. The pattern argument is
 not case sensitive. Thus, the character string matches any
 combination of upper case and lower case characters. You must
 specify a dummy pattern if you use * or default in the field
 argument.

 action Specifies an action to take with the message if the message
 contains the pattern specified in the pattern argument. You can
 specify the following actions:

 file or > Appends the message to the file given by the string
 argument. If the message can be written to the
 file, the action is considered successful. When a
 message is appended to a file, the header component

AIX Operating System Technical Reference
mhook

¦ Copyright IBM Corp. 1985, 1991
2.3.37 - 1

 Delivery-Date: is added to the message to indicate
 when the message was appended to the file.

 pipe or | Pipes the message as standard input to the command
 named by the string argument, using the shell to
 interpret the string. If the exit status from the
 command is 0 (zero), the action is considered
 successful. Prior to giving the string to the
 shell, the string is expanded with the following
 built-in variables:

 $(sender) The return address for the message.

 $(address) The address that was used to deliver
 the message.

 $(size) The size of the message in bytes.

 $(reply-to) Either the Reply-To: or From: header
 component of the message.

 $(info) Miscellaneous out-of-band information.

 qpipe or ^ Similar to pipe, but executes the command directly
 after built-in variable expansion without assistance
 from the shell. If the exit status from the command
 is 0 (zero), the action is successful.

 destroy Always succeeds.

 result Indicates how the action should be performed. You can specify
 one of the following values for this argument:

 A Performed the action. If the action succeeds, the message
 is considered delivered.

 R Performs the action. Even if the action succeeds, the
 message is not considered delivered.

 ? Performs the action only if the message has not been
 delivered. If the action succeeds, the message is
 considered delivered.

 string If you use file as the action argument, string specifies the
 file to which the message can be appended. If you use pipe or
 qpipe, string specifies the command to execute. If you use
 destroy as the action argument, string is not used, but you must
 still include a dummy string argument.

 All five arguments must be present in each line of the file. Blank lines
 in .maildelivery are ignored. Put a # in the first column to indicate a
 comment.

 If .maildelivery cannot be found, or does not deliver the message,
 /usr/lib/mh/maildelivery is used in the same manner. If the message is
 still not delivered, it is delivered to the user's maildrop,
 $HOME/.newmail.

 MH contains four standard programs that can be run as receive-mail hooks:
 rcvdist, rcvpack, rcvstore, and rcvtty. AIX Operating System Commands

AIX Operating System Technical Reference
mhook

¦ Copyright IBM Corp. 1985, 1991
2.3.37 - 2

 Reference contains descriptions of these programs.

 Example

 The following example shows some lines that can be specified as mhooks in
 $HOME/.maildelivery:

 # If the message is from George, save it.
 From george file A george.mail

 # If the message is to the project manager, save a copy in log.
 addr manager > R proj_X/statlog
 # and forward it to Amy
 addr manager | A "/usr/lib/mh/rcvdist amy"

 # Save any messages not delivered.
 default - > ? mailbox

 Files

 $HOME/.forward The file searched by the sendmail command when
 mail is received.

 /usr/lib/mh/slocal The slocal program that, when specified in
 $HOME/.forward, reads the file $HOME/.maildelivery
 and performs the actions specified in that file
 for each message being processed.

 /usr/lib/mh/maildelivery The mail delivery instructions. $HOME/.forward,
 performs actions defined in $HOME/.maildelivery.

 $HOME/.maildelivery The file specifying receive-mail hooks for slocal
 to perform.

 Related Information
 The rcvdist, rcvpack, rcvstore, rcvtty, sendmail, and slocal commands in
 AIX Operating System Commands Reference.

 The "Overview of the Message Handling Package" in Managing the AIX
 Operating System.

AIX Operating System Technical Reference
mhook

¦ Copyright IBM Corp. 1985, 1991
2.3.37 - 3

 2.3.38 mh-profile

 Purpose

 Customizes the Message Handling (MH) Package.

 Description

 Each user of the Message Handling (MH) Package is expected to have a file
 named .mh_profile in the home directory. This file contains a set of user
 parameters used by some or all of the MH programs. Each line of the file
 is in the following format:

 profile-entry: value

 Profile Entries

 Of the possible profile entries, only Path: is required. The others are
 optional. Some entries have default values if the entries are not
 present. In the notation used in the following list (profile, default)
 indicates whether the information is kept in the user's MH profile or
 context file and indicates the default value.

 Path: Specifies the location of the user_mh_directory
 directory. The usual location is $HOME/Mail.
 (profile, no default)

 context: Declares the location of the MH context file.
 (profile, default: user_mh_directory/context)

 Current-Folder: Keeps track of the current open folder. (context,
 default: inbox)

 Previous-Sequence: Names the sequences that should be defined as the
 msgs or msg argument given to the program. If not
 present, or empty, no sequences are defined.
 Otherwise, for each name given, the sequence is
 first set to zero and then each message is added to
 the sequence. (profile, no default)

 Sequence-Negation: Defines the string which, when prefixed to a
 sequence name, negates that sequence. Thus, if
 Sequence-Negation: is set to not, notseen means all
 those messages that are not a member of the
 sequence seen. (profile, no default)

 Unseen-Sequence: Names the sequences that are defined as those
 messages recently incorporated by the inc command.
 The show command removes messages from this
 sequence after they have been seen. If not
 present, or empty, no sequences are defined.
 Otherwise, for each name given, the sequence is
 first set to zero and then each message is added to
 the sequence. (profile, no default)

 mh-sequences: Names the file in each folder that defines public
 sequences. To disable the use of public sequences,
 leave the value of this entry blank. (profile,
 default: .mh_sequences)

AIX Operating System Technical Reference
mh-profile

¦ Copyright IBM Corp. 1985, 1991
2.3.38 - 1

 atr-seq-folder: Keeps track of the private sequence named seq in
 the specified folder. (context, no default)

 Editor: Defines the editor to be used by the comp, dist,
 forw, and repl commands. (profile, default:
 prompter)

 Msg-Protect: Defines octal protection bits for message files.
 See the chmod command in AIX Operating System
 Commands Reference for an explanation of the octal
 number. (profile, default: 0644)

 Folder-Protect: Defines protection bits for folder directories.
 (profile, default: 0711)

 program: Sets default flags to be used whenever the
 specified MH program is invoked. For example, you
 can override the Editor: profile component when
 replying to messages by adding the profile entry:

 repl: -editor /bin/ed

 (profile, no defaults)

 lasteditor-next: Specifies the editor that is the default editor
 after using lasteditor. This takes effect at the
 What now? level of the comp, dist, forw, and repl
 commands. After editing the draft with lasteditor,
 the default editor is set to be nexteditor. If you
 enter edit without any arguments to What now?, then
 nexteditor is used. (profile, no default)

 Folder-Stack: Defines the contents of the folder stack of the
 folder command. (context, no default)

 Alternate-Mailboxes: Tells the repl and scan commands which addresses
 are really yours. In this way, repl knows which
 addresses should be included in the reply, and scan
 knows if the message really originated from you.
 Addresses must be separated by a comma, and the
 host names listed should be the official host names
 for the mailboxes you indicate, as local nicknames
 for hosts are not replaced with their official site
 names. For each address, if a host is not given,
 then that address on any host is considered to be
 you. In addition, an asterisk may appear at either
 or both ends of the mailbox and host to indicate
 wildcard matching. (profile, default: $LOGNAME)

 Draft-Folder: Indicates a default draft folder for the comp,
 dist, forw, and repl commands. (profile, no
 default)

 digest-issue-list: Tells forw the last issue of the last volume sent
 for the digest list. (context, no default)

 digest-volume-list: Tells forw the last volume sent for the digest
 list. (context, no default)

 MailDrop: Tells inc your mail drop, if different from the

AIX Operating System Technical Reference
mh-profile

¦ Copyright IBM Corp. 1985, 1991
2.3.38 - 2

 default. This is superseded by the $MAILDROP
 environment variable. (profile, default:
 $HOME/.newmail)

 Signature: Tells inc your mail signature. This is superseded
 by the $SIGNATURE environment variable. (profile,
 no default)

 The following profile elements are used whenever a MH program invokes some
 other program. You can use .mh_profile to select alternate programs. The
 following list gives the default values.

 fileproc: /usr/bin/refile

 incproc: /usr/bin/inc

 installproc: /usr/lib/mh/install-mh

 lproc: /bin/pg

 mailproc: /usr/bin/mhmail

 mhlproc: /usr/lib/mh/mhl

 moreproc /bin/pg

 mshproc: /usr/bin/msh

 packproc: /usr/bin/packf

 postproc: /usr/lib/mh/spost (1)

 rmmproc: none

 rmfproc: /usr/bin/rmf

 sendproc: /usr/bin/send

 showproc: /bin/pg

 whatnowproc: /usr/bin/whatnow

 whomproc: /usr/bin/whom

 When you invoke a MH program, it reads the .mh_profile file by default.
 If you define the environment variable $MH, you can specify another
 profile file. If the file of $MH is not absolute (does not begin with /
), it is presumed to start in the current directory. This is one of the
 few exceptions in the MH package where nonabsolute path names are not
 considered relative to your MH directory.

 Similarly, if you define the environment variable $MHCONTEXT, you can
 specify a context other than the normal context file (as specified in the
 MH profile). If the value of $MHCONTEXT is not absolute, it is presumed
 to start from your MH directory.

 MH programs also support the following other environment variables:

 $MAILDROP Tells inc the default mail drop. This supersedes the
 MailDrop: profile entry.

AIX Operating System Technical Reference
mh-profile

¦ Copyright IBM Corp. 1985, 1991
2.3.38 - 3

 $SIGNATURE Tells send and post your mail signature. This supersedes the
 Signature: profile entry.

 $HOME Tells all MH programs your home directory.

 $TERM Tells the MH package your terminal type. The TERMCAP variable
 is also consulted. In particular, these tell scan and mhl how
 to clear your terminal and how many columns wide your terminal
 is. They also tell mhl how many lines long your terminal
 screen is.

 $editalt Specifies an alternate message. This is set by dist and repl
 during edit sessions so that you can read the message being
 distributed or replied to. This message is also available
 through a link called @ in the current directory if your
 current directory and the folder the message lives in are on
 the same AIX file system.

 $mhdraft Specifies the path of the working draft.

 $mhfolder Specifies the folder containing the alternate message. This
 is set by dist and repl during edit sessions so you can read
 other messages in the current folder besides the one being
 distributed. The $mhfolder environment variable is also set
 by show, prev, and next for use by mhl.

 Files

 $HOME/.mh_profile The user profile.

 user_mh_directory/context The user context file.

 folder/.mh_sequences Public sequences for folder.

 Related Information
 In this book: "environment" in topic 2.4.6.

 The mh command in AIX Operating System Commands Reference.

 The "Overview of the Message Handling Package" in Managing the AIX
 Operating System.

 (1) The spost command uses the address handling capabilities of
 the sendmail command. If you do not have sendmail installed
 on your system, set the postproc: profile entry to
 /usr/lib/post.

AIX Operating System Technical Reference
mh-profile

¦ Copyright IBM Corp. 1985, 1991
2.3.38 - 4

 2.3.39 mh-tailor

 Purpose
 Defines how MH commands work.

 Description

 The entries located in the file /usr/lib/mh/mtstailor tailor how MH
 commands work.

 File Entries

 The following list describes the /usr/lib/mh/mtstailor file entries and
 their default values. All of the file entries are optional.

 File Entry Description

 localname: Specifies the host name of the local system. If this
 entry is not defined, MH queries the system for the
 default value.

 systemname: Specifies the host name of the local system in the uucp
 domain. If this entry is not defined, MH queries the
 system for the default value.

 mmdfldir: Specifies the location of mail drops. If this entry is
 not present, or is present and empty, mail drops are
 located in the user's $HOME directory.

 mmdflfil: Specifies the name of the file used as the maildrop. If
 this entry is not defined, the default file name is
 .newmail.

 mmdelim1: Specifies the beginning-of-message delimiter for mail
 drops. The default value is \001\001\001\001\n.

 mmdelim2: Specifies the end-of-message delimiter for mail drops.
 The default value is \001\001\001\001\n.

 mmailid: Specifies whether support for MMailids in /etc/passwd is
 enabled. If mmailid: is set to a nonzero value, support
 is enabled. The pw_gecos field in the password file has
 the form:

 My Full Name mailid

 When support for MMailids is enabled, the internal MH
 routines that deal with user and full names return mailid
 and My Full Name respectively. The default value is 0
 (zero).

 lockstyle: Specifies the locking discipline. The default value is 0.

 lockldir: Specifies the directory for locked files. This entry is
 not used when lockstyle is 0.

 sendmail: Specifies the path name of the sendmail program. The
 default value is /usr/lib/sendmail.

 maildelivery: Specifies the path name of the file containing the system

AIX Operating System Technical Reference
mh-tailor

¦ Copyright IBM Corp. 1985, 1991
2.3.39 - 1

 default maildelivery instructions. The default value is
 /usr/lib/mh/maildelivery.

 everyone: Specifies the users to receive messages addressed to
 everyone. All users having UIDs greater than the
 specified number (not inclusive) receive messages
 addressed to everyone. The default value is 200.

 File

 /usr/lib/mh/mtstailor The MH tailor file.

 Related Information

 The ap, conflict, inc, msgchk, msh, post, rcvdist, and rcvpack commands in
 AIX Operating System Commands Reference.

 The "Overview of the Message Handling Package" in Managing the AIX
 Operating System.

AIX Operating System Technical Reference
mh-tailor

¦ Copyright IBM Corp. 1985, 1991
2.3.39 - 2

 2.3.40 mntent, mtab

 Purpose
 Contains information about mounted file systems.

 Synopsis

 #include <mntent.h>

 Description

 The file /etc/mtab describes the file systems currently mounted on the
 local machine. It is a symbolic link to a local-only file. To find out
 about file systems mounted on other sites in a TCF cluster, specify a
 specific site's <LOCAL>/mtab file to the setmtnent routine.

 The file /etc/mtab is created at system-startup time to include the root
 and <LOCAL> file systems by the setmnt command. When run, the mount
 command adds entries to the /etc/mtab file, and the umount command removes
 entries.

 The /etc/mtab file consists of a number of lines of the form:

 fsname dir type opts freq passno flags gfs pack time

 For example,

 /dev/xy0a/ufs rw,noquota 1 2 40 1 7 604161472

 The entries in this file are accessed using the routines in getmntent,
 which returns a structure of the following form:

 struct mntent {
 char *mnt_fsname; /* file system name */
 char *mnt_dir; /* file system path prefix */
 char *mnt_type; /* ufs, nfs */
 char *mnt_opts; /* ro, quota, etc. */
 int mnt_freq; /* dump frequency, in days */
 int mnt_checkno; /* check number for parallel fsck */
 char *mnt_flags; /* file system flags */
 gfs_t mnt_gfs; /* global file system numbers */
 pckno_t mnt_pack; /* pack number */
 long mnt_time; /* time when mounted */
 };

 There is one entry per line in the file and the fields are separated by
 blanks.

 The mnt_opts field consists of a string of options separated by commas.
 Some of the options are common to all file system types while others only
 make sense for a single file system type. For more information on the
 options available with the mount command, see AIX Operating System
 Commands Reference.

 The mnt_type field determines how the mnt_fsname and mnt_opts fields will
 be interpreted. Below is a list of file system types currently supported
 and the way in which each interprets these fields:

 +--+
 ¦ ufs ¦ mnt_fsname ¦ Must be a block special device. ¦

AIX Operating System Technical Reference
mntent, mtab

¦ Copyright IBM Corp. 1985, 1991
2.3.40 - 1

 +------------+------------+--¦
 ¦ ¦ mnt_opts ¦ Valid options are ro, rw, suid, nosuid, ¦
 ¦ ¦ ¦ quota, noquota. ¦
 +------------+------------+--¦
 ¦ nfs ¦ mnt_fsname ¦ The path on the server of the directory to ¦
 ¦ ¦ ¦ be served. ¦
 +------------+------------+--¦
 ¦ ¦ mnt_opts ¦ Valid options are ro, rw, suid, nosuid, ¦
 ¦ ¦ ¦ hard, soft, bg, fg, retry, rsize, wsize, ¦
 ¦ ¦ ¦ timeo, retrans, port, intr. ¦
 +--+

 The mnt_freq field indicates how often each partition should be dumped by
 the dumpbsd command, and also triggers the w option of the dumpbsd command
 indicating the file systems that should be dumped. Most systems set the
 mnt_freq field to 1, indicating that the file systems are dumped each day.

 The mnt_checkno field is used by the disk consistency check program fsck
 to control simultaneous checking of file systems during a reboot. To
 avoid having two file systems checked simultaneously, make sure the values
 of mnt_checkno are the same.

 The mnt_flags field corresponds to the s_flags field in the file system
 super block. For more information, see "fs" in topic 2.3.20.

 The mnt_gfs field indicates the global file system number for the file
 system.

 The mnt_pack field indicates the global file system pack number for the
 file system.

 The mnt_time field indicates the time the file system was mounted by
 specifying the number of seconds since Jan 1, 1970 00:00:00 GMT.

 File
 /etc/mtab

 Related Information
 In this book: "getmntent, setmntent, addmntent, endmntent, hasmntopt" in
 topic 1.2.104.

 The fsck, mount, quotacheck, and quotaon commands in AIX Operating System
 Commands Reference.

AIX Operating System Technical Reference
mntent, mtab

¦ Copyright IBM Corp. 1985, 1991
2.3.40 - 2

 2.3.41 netparams

 Purpose

 Describes the TCF (Transparent Computing Facility) cluster networking
 parameters.

 Description

 The /etc/netparams file contains information on the TCF cluster networking
 parameters. Lines in the file, starting with "#" are comment lines and
 are discarded. The fields are:

 site Indicates the site number of the TCP cluster site. Valid ranges
 for this field are 1 through 31.

 timeout Indicates the number of "network ticks" between retransmissions if
 no acknowledgement is received. (At present, a network tick
 corresponds to 2/3 of a second.) Valid ranges for this field are
 1 through 255.

 retries Specifies the number of retransmissions a TCF network message will
 be attempted before TCF site is considered to be down. If the TCF
 site was known to be up just prior to sending this message, then
 the number of retries is multiplied by 3 (for example, if the
 retries field specifies "3" and if the site was not up before, the
 message is sent 4 times--one original message plus 3
 retransmissions; if the site was up before, then the message would
 be sent 10 times--one original message plus 3*3 transmissions).
 Valid ranges for this field are 1 through 255.

 window Specifies the number of "normal" (non-topology change) messages
 that may be sent by one site to another without an intervening
 acknowledgement, before the transmitting site will wait for a
 receipt of an acknowledgement. The windowing algorithm is "fixed"
 (non-dynamic) in nature. Valid ranges for this field are 2
 through 255.

 special Specifies the number of "special" (topology change) messages that
 may be sent without an intervening acknowledgement. These two
 windows act independently of one another. Valid ranges for this
 field are 2 through 255.

 checksum Indicates whether or not checksums should be calculated and
 inserted into TCF messages that are being transmitted to the TCF
 site in question. The receiving site only checks for checksum
 correctness if the check field(s) are non-zero. Valid checksum
 fields are "yes" or "no" (case insensitive). A valid checksum is
 guaranteed to be non-zero.

 Related Information
 In this book: "netctrl" in topic 1.2.185.

 The netparams, inetstat, and probe commands in the AIX Operating System
 Command Reference.

AIX Operating System Technical Reference
netparams

¦ Copyright IBM Corp. 1985, 1991
2.3.41 - 1

 2.3.42 openfiles

 Purpose
 Specifies files to be kept open by cron.

 Description
 For performance reasons, if you want your most heavily used directories
 and files to be kept open by the cron command, you must specify their
 pathnames in the openfiles special file.

 A default openfiles is provided with your system. When you edit this
 file, you may include comments preceded by a pound sign (#) in the first
 column position; any blank lines in the file are ignored by cron.

 The maximum number of pathnames you may specify in openfiles is 48.

 File

 /etc/openfiles

 Related Information
 The cron command in the AIX Operating System Commands Reference.

AIX Operating System Technical Reference
openfiles

¦ Copyright IBM Corp. 1985, 1991
2.3.42 - 1

 2.3.43 options

 Purpose
 Defines the valid choices for each ddi option.

 Description
 The /etc/ddi/options file contains a sorted list of the valid choices for
 each keyword used in ddi files. The devices command uses this file to
 display the valid choices for the keywords during the add, change, and
 showdev subcommands.

 Each line must follow the following format:

 optionchoices

 where:

 option This field is exactly 20 characters long, is padded on the right
 with spaces, and contains no tab characters. An option is one of
 the following:

 keyword The keyword for which the valid choices are to be
 specified

 keywordadapter The keyword followed by the adapter name

 keywordclass The keyword followed by the device class

 keywordtype The keyword followed by the device type

 keywordstanza The keyword followed by the name of the device
 stanza in the system file.

 The devices command looks for one of these combinations based on
 the setting of the opts keyword in the kaf file for the device.

 choices This field is exactly 29 characters long, is padded on the right
 with spaces, and contains no tab characters.

 Note: The /etc/ddi/options file must be sorted alphabetically by the
 option field. If it is not sorted, then the devices command
 displays incorrect information about the options available for a
 given keyword.

 The use of extended characters in the /etc/ddi/options file is not
 supported.

 File

 /etc/ddi/options

 Related Information
 In this book: "ddi" in topic 2.3.13, "descriptions" in topic 2.3.14, and
 "kaf" in topic 2.3.30.

AIX Operating System Technical Reference
options

¦ Copyright IBM Corp. 1985, 1991
2.3.43 - 1

 2.3.44 passwd

 Purpose
 Contains passwords and user account information.

 Synopsis

 #include <pwd.h>

 Description
 The passwd file is an ASCII file that contains all the information that
 defines a user on the system. It contains the following information:

 � Login nam
 � Encrypted passwor
 � Numerical user I
 � Numerical group I
 � Additional data for each use
 � Initial current director
 � Program to use as shell

 Each field is separated from the next by a colon. The file has general
 read permission and the passwords are encrypted. Therefore, a user can
 use the file to map numerical user IDs to names without potentially
 compromising the security of other users.

 The adduser command is used to maintain this file. Programs should use
 the getpwent subroutines to extract various fields in this file.

 If the user password field is null, the user has no password. If the
 program field is null, the shell (/bin/sh) is used. The program field can
 contain parameters passed when the exec system call is issued. Parameters
 are separated by space (such as a space or tab characters). A \
 (backslash) is used for escapement when a parameter contains a space. The
 login command accepts the program name and as many as 14 parameters. Any
 more than 14 parameters are ignored. A maximum of 4096 characters can be
 used for the program name and its parameters. More than 4096 characters
 causes login to exit. Parameters in this field can use symbolic
 escapement for the following special characters: \n, \r, \v (produces
 013), \b, \t, and \f. Additionally, \0 through \7 builds a one-byte octal
 number. Anything else that is preceded by a \ (backslash) passes through.

 The contents of the additional data for each user has the following
 format:

 full_name / file_limit ; site_info;site_exec_perm

 where:

 full_name Contains the name of the user whose 8-character (or fewer)
 login name is in the first field.

 If a user group list is used, the list may not exceed 500
 eight-character login names.

 file_limit Specifies the maximum length file the user can create. The
 length is specified as the number of 512-byte blocks. See
 the login command in AIX Operating System Commands Reference
 and the ulimit system call.

AIX Operating System Technical Reference
passwd

¦ Copyright IBM Corp. 1985, 1991
2.3.44 - 1

 site_info Contains any printable character other than a colon or
 semicolon. This subfield is unused by the system software
 and is available for information for each user as required by
 applications specific to the site.

 site_exec_perm Contains a site group name identifying the sites on which
 this user can log in and/or execute programs. (See
 "sitegroup" in topic 2.3.55 to find the site group name.)

 Any or all of the subfields can be omitted. If the file_limit subfield is
 omitted, the preceding / (slash) is omitted and the system-wide default
 limit is used. If the site_info and site_exec_perm subfields are omitted,
 the ; (semicolon) preceding each of these subfields must also be omitted.
 If, however, the site_info subfield is omitted but the site_exec_perm
 subfield is present, the ; preceding each of these subfields must be
 present.

 Subtopics
 2.3.44.1 Passwords

AIX Operating System Technical Reference
passwd

¦ Copyright IBM Corp. 1985, 1991
2.3.44 - 2

 2.3.44.1 Passwords

 The encrypted password is 13 characters long. The characters used come
 from the extended characters (code page P0, see "data stream" in
 topic 2.4.3) and may be uppercase or lowercase characters, numerals, and
 the . (period) and / (slash) characters except when the password is null.
 In this case, the encrypted password is also null. Password aging affects
 a particular user if a comma and a string of characters that are not null
 follows the user password in this file. Such a string must be initially
 introduced by a person with superuser authority.

 The first character of the age, M for example, is the maximum number of
 weeks a password is valid. The next character, m for example, is the
 minimum number of weeks, before the password can be changed. The
 remaining characters indicate when the password was last changed, given as
 the number of weeks since the beginning of 1970 to the time of the
 password change. A null string is equivalent to 0. M and m have
 numerical values in the range 0 through 63. If m = M = 0, the user is
 forced to change the password at the next login. This causes the age to
 disappear from the password file entry. If m > M, only someone with
 superuser authority is able to change the password.

 Note: All userid's and passwords must contain ASCII characters only.

 File

 /etc/passwd

 Related Information

 In this book: "a64l, l64a" in topic 1.2.6, "crypt, encrypt, setkey" in
 topic 1.2.52, "getpwent, getpwuid, getpwnam, setpwent, endpwent" in
 topic 1.2.114, "ulimit" in topic 1.2.313, "group" in topic 2.3.26,
 "sitegroup" in topic 2.3.55, and "data stream" in topic 2.4.3.

 The login and passwd commands in AIX Operating System Commands Reference.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

AIX Operating System Technical Reference
Passwords

¦ Copyright IBM Corp. 1985, 1991
2.3.44.1 - 1

 2.3.45 plot

 Purpose
 Provides the graphics interface.

 Description
 The tplot commands interpret these graphics files for various devices,
 performing the plotting instructions in the order that they appear.

 A graphics file consists of a stream of plotting instructions. Each
 instruction consists of an ASCII letter usually followed by bytes of
 binary information. A point is designated by 4 bytes representing the x
 and y values; each value is a two-byte signed integer. The last
 designated point in an l, m, n, or p instruction becomes the current point
 for the next instruction.

 The following table lists each of the plot instructions and the
 corresponding plot subroutines.

 Instr Sub Description

 a arc Draws the arc described by the following 12 bytes.
 The first 4 bytes describe the center point (x, y) of
 the arc or circle. The second 4 bytes describe the
 beginning point of the arc. The third 4 bytes
 describe the ending point of the arc. Arcs are drawn
 counterclockwise. The results are unpredictable if
 the three points do not really form an arc.

 c circle Draws a circle whose center point is defined by the
 first 4 bytes, and whose radius is given as an integer
 in the following two bytes.

 e erase Starts another frame of output.

 f linemod Uses the following string, terminated by a new-line
 character, as the style for drawing further lines.
 The styles are dotted, solid, long-dashed,
 short-dashed, and dot-dashed.

 l line Draws a line from the point designated by the next 4
 bytes to the point designated by the following 4
 bytes.

 m move The next 4 bytes designate a new current point.

 n cont Draws a line from the current point to the point
 designated by the next 4 bytes.

 p point Plots the point designated by the next 4 bytes.

 s space The next 4 bytes designate the lower left corner of
 the plotting area; followed by 4 bytes for the upper
 right corner. The plot is magnified or reduced to fit
 the device as closely as possible.

 t label Places the following ASCII string so that its first
 character falls on the current point. A new-line
 character terminates the string.

AIX Operating System Technical Reference
plot

¦ Copyright IBM Corp. 1985, 1991
2.3.45 - 1

 The space setting

 space(0, 0, 480, 432);

 exactly fills the plotting area with unity scaling for the IBM Personal
 Computer Graphics Printer. The upper limit is immediately outside the
 plotting area, which is taken to be square. Points outside the plotting
 area can be displayed on devices that do not have square displays.

 Related Information
 In this book: "plot" in topic 1.2.206 and "TERM" in topic 2.4.26.

 The graph and tplot commands in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
plot

¦ Copyright IBM Corp. 1985, 1991
2.3.45 - 2

 2.3.46 ports

 Purpose
 Describes the ports.

 Description
 The ports file contains the names and characteristics of all the system
 terminal ports. It provides a convenient means to associate values with
 named keyword parameters on a port-by-port basis, with defaults supplied
 as desired.

 The getty process is the principal user of the information in this file.
 Since programs using this file look for specific keyword parameters and
 ignore all others, parameters other than those discussed here can be added
 to this file as necessary.

 Subtopics
 2.3.46.1 File Format
 2.3.46.2 Port-Control Parameters
 2.3.46.3 Other Port Parameters

AIX Operating System Technical Reference
ports

¦ Copyright IBM Corp. 1985, 1991
2.3.46 - 1

 2.3.46.1 File Format

 The ports file consists of one or more named stanzas usually separated by
 blank lines. Each stanza begins with its name followed by a colon, and
 contains assignments of values to keyword attributes. The values, in
 turn, may be alphanumeric strings or arbitrary character strings enclosed
 in double quotes.

 Stanzas headed by the name default specify attribute-value pairs that are
 associated with all of the ports following it to the next default stanza.
 Explicit values within a port stanza override this association.

AIX Operating System Technical Reference
File Format

¦ Copyright IBM Corp. 1985, 1991
2.3.46.1 - 1

 2.3.46.2 Port-Control Parameters

 Most of the parameters in the ports file are port controls for login
 terminals. Because there are system defaults, specified in the getty
 process, it is not usually necessary to specify more than a few attributes
 in the ports file, as in the example. The port control parameters and
 their meanings are as follows:

 aa When the value of aa is TRUE, the following Hayes modem
 command sequences are output:

 +++ Hayes command escape sequence.

 atz Reset modem to default settings as determined by
 switches.

 ATE0q1C1 No echo, no result codes, carrier enabled.

 ats0=1 Auto answer after first ring.

 chat If aa=TRUE, then string (in chat = string) will be output.

 enabled The getty program uses this attribute to determine if special
 printing of the login prompt is needed. If the port should
 permit a logger, the value may be TRUE, SHARE, or DELAY. (To
 disable a port, use the devices command as described in the
 AIX Operating System Commands Reference.) Normally the value
 of TRUE is used if the port is to be enabled; however, if the
 port is to be shared (bi-directional use), then the value
 should be SHARE or DELAY. The value SHARE is used to make the
 port bi-directional with the device-locking scheme used by
 uucp, cu, ate and connect. DELAY operates like SHARE except
 that one or more characters must be read from the port by the
 getty process before the login herald will be printed. DELAY
 is useful with direct connections and intelligent modems. The
 penable, pshare, pdelay, pdisable, and phold commands will
 override the value specified by directly modifying
 /etc/inittab and sending a signal to the init process.

 eof An octal integer specifying the character code that causes an
 end of file to be generated from the terminal. The system
 default is 004 (or 0x04), the ASCII EOT character, which is
 generated by Ctrl-D.

 eol An optional and seldom-used alternate line termination
 character to use in addition to the ASCII new-line (line-feed)
 character.

 erase An octal integer specifying the character code that deletes
 the previously received character. The system default for the
 erase character is 010 (or 0x08), Ctrl-h, which is generated
 by the Backspace key on many terminals.

 herald An arbitrary string, enclosed in double quotes, printed by the
 getty process to prompt for login. The C language
 \(backslash) escapes \r, \n, \t, \b, and \f are recognized as
 carriage return, new-line, tab, backspace, and formfeed,
 respectively.

 imap This attribute is used by getty to set the terminal input map.

AIX Operating System Technical Reference
Port-Control Parameters

¦ Copyright IBM Corp. 1985, 1991
2.3.46.2 - 1

 If imap is not specified, getty resets the map to the system
 default.

 intr An octal integer specifying the character code that interrupts
 the running process. The system default is 0177 (or 0x7f),
 which is usually generated by a key labeled Del or Rubout.

 kill An octal integer specifying the character code that deletes
 the input line. The system default for the kill character is
 025 (or 0x15), Ctrl-u, which is the ASCII NAK character.

 lang This parameter defines the default value for the LANG
 environment variable of the programs started on the specified
 port.

 lock This attribute is used to request port locking. If the value
 is TRUE, init creates a file in /etc/locks when the port is
 enabled and deletes the lock file when the port is disabled.
 Similarly, penable does not enable a port whose lock attribute
 is TRUE when the corresponding lock file exists. Programs
 using the port for some other purpose (such as a link between
 processors) should check for an outstanding lock (and create a
 lock file, if necessary) before opening the port.

 log This parameter causes logins to be recorded for a port on the
 console or in file /usr/adm/sulog. If log=true, all logins
 are reported, and if log=root, logins by root (superuser) are
 recorded. See super parameter on 2.3.46.2 for related
 information.

 logger A character string giving the names the program is to use at
 login. The default is /bin/login.

 logmodes Console modes in effect while prompting for and reading in the
 user name. Modes are specified as a series of terminal
 options separated by a + (plus). Terminal options are as
 listed in the stty command. All listed modes not preceded
 with - (dash) are recognized. For example, the default
 logmodes parameter is specified as:

 logmodes = cread+cs8+hupcl+echoe+echok

 Because a speed value is not recognized in logmodes under any
 circumstances, the baud rate must be set with the speed
 parameter (see below).

 min See the discussion of ICANON under "termio" in topic 2.5.28.

 omap This attribute is used by getty to set the terminal output
 map. If omap is not specified, getty resets the map to the
 system default.

 owner Normally, when a port is logged in, the login program sets the
 logged-in user to be the owner of that port. Specifying an
 owner (either a UID or user name), the system manager forces
 the getty process to set ownership even before opening the
 port.

 parity The values ODD, EVEN, and NONE cause the generation of odd,
 even, and no parity, respectively, while inpck, ignpar, and

AIX Operating System Technical Reference
Port-Control Parameters

¦ Copyright IBM Corp. 1985, 1991
2.3.46.2 - 2

 parmrk cause the checking input for parity errors, ignoring
 input characters with parity errors, and "marking" input
 parity errors as specified under "termio" in topic 2.5.28.
 These values can be combined, as in parity=odd+inpck.

 program If a value is specified, it is taken as the name of a program
 to run immediately after setting the logmodes. This feature
 is useful for establishing special purpose server ports that
 respond to a connection with a special protocol handler. If
 the special assignment program=HOLD is specified, no program
 runs on the port, but the logmodes, ownership, and protection
 are set and the port is held open. This is useful to keep the
 desired modes associated with a port that is occasionally
 seized for some special purpose.

 protection Normally the protection on terminal is set to rw--w--w- (octal
 622 or 0x192). The protection parameter overrides this
 default. The value can be set to an octal mask or a string
 such as rw-rw-rw- (octal 666 or 0x1b6).

 quit An octal integer specifying the character code that causes the
 running process to abort. The system default is 026 (or
 0x16), which is generated by pressing Ctrl-V.

 runmodes Console modes in effect after the user name is read. The mode
 in which the port is left, specified similar to logmodes.

 speed A decimal integer from the set {50, 75, 110, 134.5, 150, 300,
 600, 1200, 1800, 2000, 2400, 3600, 4800, 7200, 9600, 19200}
 depending on the hardware capability.

 super This parameter is passed on the logger in its environment. If
 super=false, then login does not allow root (the superuser) to
 log in on the port. This is useful for security on off-site
 terminal connections such as telephone links. (See log
 parameter, on page 2.3.46.2.)

 term This parameter is passed to the logger and shell in their
 environment (see "environment" in topic 2.4.6) in the variable
 TERM. Some application software uses this information to
 determine the type of terminal the user is using.

 time See the discussion of ICANON under "termio" in topic 2.5.28.

 timeout A decimal integer. If a user name is not specified before the
 given number of seconds, the getty process advances to the
 next port setting, or exits if all settings were exhausted.

 Multiple values, separated by commas, can be specified as in the
 speed=300,1200 line for dial-in terminals. This causes the port to be set
 up according to the first set of values for each attribute. If a framing
 error occurs, as a result of a user-generated BREAK on the line or a speed
 mismatch between the terminal and the set speed, the getty process
 advances to the next value on the list.

 If multiple specifications occur for more than one parameter, all are
 advanced at the same time. Thus, a specification such as:

 speed=300,1200
 parity=none,odd+inpck

AIX Operating System Technical Reference
Port-Control Parameters

¦ Copyright IBM Corp. 1985, 1991
2.3.46.2 - 3

 first tries the line at 300 baud with no parity. If a framing error
 occurs, it tries 1200 baud generation and checks for odd parity.

AIX Operating System Technical Reference
Port-Control Parameters

¦ Copyright IBM Corp. 1985, 1991
2.3.46.2 - 4

 2.3.46.3 Other Port Parameters

 The ports file has all the port-specific information, not just information
 about loggers. The other parameters in the file are:

 loc The location of the terminal connected to the port. This
 parameter is presently unused by any AIX software. Because
 programs that access this file ignore keywords they do not
 use, helpful information can be added to keep all
 port-specific information together in one area.

 printer The hard copy device used for output from optional word
 processing packages.

 Example
 The following example of a ports file illustrates some of its features:

 default:
 enabled = false
 speed = 9600
 herald = "\r\n\r\n ps2aix PS/2 login: "
 logmodes = echoe+hupcl+parenb+cs7
 runmodes = parenb+cs8+hupcl+cread+clocal+brkint+istrip
 +icrnl+ixon+isig+icanon+echo+echoe+echok
 +opost+onclr+tab3
 parity = true

 /dev/console:
 term = ibm 8513
 enabled = true
 herald = "\r\n\r\n ps2aix PS/2 Console login:"

 Files

 /etc/ports
 /etc/locks

 Related Information
 In this book: "attributes" in topic 2.3.5, "connect.con" in topic 2.3.9,
 "environment" in topic 2.4.6, and "termio" in topic 2.5.28.

 The su, pstart, pdisable, getty, login, init, and stty commands in AIX
 Operating System Commands Reference.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

AIX Operating System Technical Reference
Other Port Parameters

¦ Copyright IBM Corp. 1985, 1991
2.3.46.3 - 1

 2.3.47 predefined

 Purpose
 Provides information for predefined devices.

 Description
 The predefined file contains information about hardware adapters and
 devices that is used by the devices command. Some of these devices may
 not be present in a particular configuration, but all of them are
 supported by the system. The predefined file contains information needed
 when adding one of these devices so that you do not have to supply the
 information yourself. The size of this file increases with new entries as
 additional licensed programs are installed in the system.

 The devices command uses the information in this file to set up stanzas in
 the system and qconfig files when devices are added to the system. Note
 that information in this file has no effect on the system until it is
 moved to a stanza in the system or qconfig file.

 The predefined file is similar in structure and content to the system
 file, and its stanzas can contain any of the keywords that are allowed in
 the system file.

 The use of extended characters in the predefined file is not supported.

 The predefined file contains several special stanzas:

 defqueue Used by the devices command to create the queue stanza in the
 qconfig file when a printer or plotter is added.

 defdevice Used by the devices command to create the device stanza in the
 qconfig file when a printer or plotter is added.

 default Contains keywords and their values that are common to all
 device stanzas.

 ports Contains a list of ports supported by devices. A port is an
 adapter or a communications port, for example, an RS232 port, a
 parallel port, the PS/2 Tape Adapter, or the 3270 Connection
 Adapter. A port is described by the following lines:

 xyzn = minor
 * port description

 where:

 xyz is a unique port prefix, consisting of letters only

 n is any positive decimal number

 minor is the port's minor number

 port description
 is less than 20 characters in length. Port description
 must be the same length as the line that follows the
 pflag parameter in a device's predefined stanza that
 references xyzn.

 n and minor do not have to be equal. If there are multiple
 ports with the same port prefix, the value of n must increment

AIX Operating System Technical Reference
predefined

¦ Copyright IBM Corp. 1985, 1991
2.3.47 - 1

 from one port to the next.
 For example, AIX PS/2 supports three parallel ports. Their
 port descriptions are as follows:

 p1 = 0
 * Parallel port 1
 p2 = 1
 * Parallel port 2
 p3 = 2
 * Parallel port 3

 Note that the description of all ports of prefix xyz must be
 the same length.

 adapts Assigns ports to adapters. Each line in the adapts stanza has
 the following format:

 ID = portrange

 where

 ID is the adapter ID contained in the adapter's POS
 registers.

 portrange
 is the range of valid ports.

 For example, the Dual Asyn Adapter (DAA) has an adapter ID
 equal to eeff. The two DAA ports may be assigned to any one of
 eight serial ports. Given that the port prefix for serial
 ports is s, the port assignment for the DAA is:

 eeff = s1-8

 where valid serial port names are:

 s1, s2, s3, s4, s5, s6, s7, and s8.

 An adapter ID can be assigned only one port range.

 Example
 The following shows sample entries of the predefined file.

 defqueue:
 argname = none
 device = none

 defdevice:
 file = /dev/none
 backend = /usr/lpd/piobe

 default:
 modes = rw-rw-rw-
 owner = root
 *
 ports:
 s1 = 0
 * serial port 1
 s2 = 1
 * serial port 2

AIX Operating System Technical Reference
predefined

¦ Copyright IBM Corp. 1985, 1991
2.3.47 - 2

 s3 = 2
 * serial port 3
 s4 = 3
 * serial port 4
 s5 = 4

 * serial port 5
 s6 = 5
 * serial port 6
 s7 = 6
 * serial port 7
 s8 = 7
 * serial port 8
 p1 = 0
 * parallel port 1
 *
 adapts:
 0 = s1-8 *serial port on planar
 1 = p1-3 *parallel port on planar
 eeff = s1-8 *serial ports on Dual Async Adapter
 ddff = s1-8 *serial ports on internal modem

 4202s:
 * IBM 4202 Proprinter XL on a serial port
 name = 4202s
 driver = sa
 minor = c
 kaf_file = /etc/ddi/sprinter.kaf
 kaf_use = kserial
 file = /etc/ddi/sprinter
 par = false
 use = d4202s
 noddi = false
 dtype = printer
 * Printer
 specproc = cfgaqcfg
 noduplicate = false
 dname = lp
 noshow = false
 pflag = true
 * Serial port 1
 port = s1-8
 slot = 0

 File

 /etc/predefined

 Related Information
 In this book: "attributes" in topic 2.3.5 and "system" in topic 2.3.56.

AIX Operating System Technical Reference
predefined

¦ Copyright IBM Corp. 1985, 1991
2.3.47 - 3

 2.3.48 profile

 Purpose
 Sets the sh user environment at login time.

 Description
 The profile file contains commands to be executed at login and variable
 assignments to be set and exported into the environment. The /etc/profile
 file contains commands executed by all users at login.

 After the login program adds the LOGNAME (login name) and HOME (login
 directory) parameters to the environment, the /bin/sh program is executed
 (if so indicated in the /etc/passwd file). The sh command executes the
 commands in /etc/profile and then, if present, the commands in
 $HOME/.profile are executed. The .profile file is the individual user
 profile that overrides the variables set in the profile file and is used
 to tailor the user environment variables set in /etc/profile. The
 .profile file is often used to set exported environment variables and
 terminal modes. The person who customizes the system can use adduser to
 set default .profile files in each user home directory. Users can tailor
 their environment as desired by modifying their .profile file.

 Example
 The following example is typical of a /etc/profile file:

 # Set file creation mask
 unmask 022
 # Tell me when new mail arrives
 MAIL=/usr/mail/$LOGNAME
 # Add my /bin directory to the shell search sequence
 $HOME/bin:$PATH
 # Set terminal type
 TERM=hft
 # Make some environment variables global
 export MAIL PATH TERM

 Files

 $HOME/.profile
 /etc/profile

 Related Information
 In this book: "passwd" in topic 2.3.44, "environment" in topic 2.4.6, and
 "TERM" in topic 2.4.26.

 The env, login, mail, sh, stty, and su commands in AIX Operating System
 Commands Reference.

AIX Operating System Technical Reference
profile

¦ Copyright IBM Corp. 1985, 1991
2.3.48 - 1

 2.3.49 qconfig

 Purpose
 Configures a printer queueing system.

 Description
 The /etc/qconfig file describes the queues and devices available for use
 by the print command, which places requests on a queue, and the qdaemon
 command, which removes requests from the queue and processes them. The
 /etc/qconfig file is an attribute file.

 Some stanzas in this file describe queues, and other stanzas describe
 devices. Every queue stanza requires that one or more device stanzas
 immediately follow it in the file. The first queue stanza describes the
 default queue. The print command uses this queue when it receives no
 queue parameter.

 The name of a queue stanza must be one to three characters long. The
 following table shows some of the field names along with some of the
 possible values that appear in this file:

 acctfile Identifies the file used to save print accounting information.
 FALSE, the default, indicates suppress accounting. If the
 named file does not exist, no accounting is done.

 argname Identifies the queue name identifier that is used in the print
 command to specify the queue.

 device Identifies the symbolic name that refers to the device stanza.

 discipline Defines the queue serving algorithm. The default, fcfs, means
 first come first served, while sjn means shortest job next.

 node Identifies, by name, the TCF (Transparent Computing Facility)
 cluster site which serves the queue. The special symbol local
 is used to describe a generic queue which runs on all the
 sites in the cluster. The /etc/qconfig file looks for the
 node name in the TCF cluster sitenam field of the /etc/site
 file.

 friend Indicates whether the backend updates the status file and
 responds to terminate signals. TRUE is the default. FALSE
 indicates it does not.

 up Defines the state of the queue. TRUE, the default, indicates
 that it is running. FALSE indicates that it is not running.

 If a field is omitted, its default value is assumed. The default values
 for a queue stanza are:

 friend = TRUE
 discipline = fcfs
 up = TRUE
 acctfile = FALSE

 Also, the default argname value is the name of the stanza preceded by a -
 (minus). The device and node fields cannot be omitted.

 The name of a device stanza is arbitrary. The fields that can appear in a
 stanza are:

AIX Operating System Technical Reference
qconfig

¦ Copyright IBM Corp. 1985, 1991
2.3.49 - 1

 access Specifies the type of access the backend has to the file
 specified by the file field. The value of access is write if the
 backend has write access to the file, or both if it has both read
 and write access. This field is ignored if the file field has
 the value FALSE.

 align Specifies whether the backend sends a form-feed control before
 starting the job if the printer was idle. The default is FALSE.

 backend Specifies the full path name of the backend, optionally followed
 by flags and parameters to be passed to it.

 feed Specifies the number of separator pages to print when the device
 becomes idle, or the value never, which indicates that the
 backend is not to print separator pages.

 file Identifies the special file where the output of backend is to be
 redirected. FALSE, the default, indicates no redirection. In
 this case, the backend opens the output file.

 header Specifies whether a header page prints before each job or group
 of jobs. The default, never, indicates no header page at all,
 while always specifies a header page before each job, and group
 specifies a header before each group of jobs for the same user.

 trailer Specifies whether a trailer page prints after each job or group
 of jobs. never, the default, means no trailer page at all.
 always means a trailer page after each job. group means a
 trailer page after each group of jobs for the same user.

 The qdaemon places the information contained in the feed, header, trailer,
 and align fields into a status file that is sent to the backend. Backends
 that do not update the status file do not use the information it contains.

 If a field is omitted, its default value is assumed. The backend field
 cannot be omitted. The default values in a device stanza are:

 file = FALSE
 access = write
 feed = never
 header = never
 trailer = never
 align = FALSE

 The print command automatically converts the ASCII qconfig file to binary
 when the binary version is missing or older than the ASCII version. The
 binary version is found in /etc/qconfig.bin.

 Unlike the format of the ports file, the qconfig file format does not
 allow default stanzas.

 Examples

 1. The batch queue supplied with the AIX system might contain these
 stanzas:

 bsh:
 argname = bsh
 friend = FALSE

AIX Operating System Technical Reference
qconfig

¦ Copyright IBM Corp. 1985, 1991
2.3.49 - 2

 discipline = fcfs
 device = bshdev
 node = local

 bshdev:
 backend = /bin/sh

 To run a shell procedure called myproc using this batch queue, enter:

 print bsh myproc

 The queuing system runs the files one at a time, in the order
 submitted. The qdaemon process redirects standard input, standard
 output, and standard error to the /dev/null file.

 2. To allow two batch jobs to run at once:

 bsh:
 argname = save
 friend = FALSE
 discipline = fcfs
 node = local
 device = bsh1,bsh2

 bsh1:
 backend = /bin/sh

 bsh2:
 backend = /bin/sh

 Files

 /etc/qconfig
 /etc/qconfig.bin
 /usr/lpd/digest

 Related Information
 In this book: "attributes" in topic 2.3.5.

 The print, lp, and qdaemon commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
qconfig

¦ Copyright IBM Corp. 1985, 1991
2.3.49 - 3

 2.3.50 rasconf

 Purpose
 Defines the reliability, availability, and serviceability (RAS)
 configuration file.

 Description
 The rasconf file defines attributes of the reliability, availability, and
 serviceability (RAS) system. Initially, RAS logging is inactive and must
 be activated before any RAS data can be collected.

 This attribute file consists of stanzas that govern the actions of daemons
 associated with individual RAS devices. Each stanza name is the name of
 the associated RAS device.

 The following attributes are valid:

 file = file Specifies the file into which the daemon will write the RAS
 information.

 size = blocks Specifies the maximum size, in 1024-byte blocks, to which
 the daemon will allow the file to grow.

 Example
 A typical rasconf file can contain the following:

 /dev/klog:
 file = /usr/adm/messages
 size = 100

 /dev/error:
 file = /usr/adm/ras/errfile
 size = 50

 /dev/trace:
 file = /usr/adm/ras/trcfile
 size = 80
 buffer = 6

 File
 /etc/rasconf

 Related Information
 In this book: "attributes" in topic 2.3.5, "error" in topic 2.5.7, "osm"
 in topic 2.5.20, and "trace" in topic 2.5.29.

 The errdemon, syslogd and trace commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
rasconf

¦ Copyright IBM Corp. 1985, 1991
2.3.50 - 1

 2.3.51 RPC

 Purpose
 Contains RPC program information.

 Description
 The rpc file contains user readable names that can be used in place of RPC
 program numbers. Each line has the following information:

 � Name of server for the RPC progra

 � RPC program numbe

 � Aliases

 Items are separated by any number of blanks and/or tab characters. A "#"
 indicates the beginning of a comment; characters up to the end of the line
 are not interpreted by routines which search the file.

 Example

 Here is an example of the /etc/rpc file:

 #
 # rpc 1.1 LCC) /* Modified: 13:45:24 12/22/88 */
 #
 portmapper 100000 portmap sunrpc
 rstatd 100001 rstat rup perfmeter
 rusersd 100002 rusers
 nfs 100003 nfsprog
 ypserv 100004 ypprog
 mountd 100005 mount showmount
 ypbind 100007
 walld 100008 rwall shutdown
 yppasswdd 100009 yppasswd
 etherstatd 100010 etherstat
 rquotad 100011 rquotaprog quota rquota
 sprayd 100012 spray
 3270_mapper 100013
 rje_mapper 100014
 selection_svc 100015 selnsvc
 database_svc 100016
 rexd 100017 rex
 alis 100018
 sched 100019
 llockmgr 100020
 nlockmgr 100021
 x25.inr 100022
 statmon 100023
 status 100024

 Files

 /etc/rpc

 Related Information
 The rpcinfo command in the AIX Operating System Commands Reference.

AIX Operating System Technical Reference
RPC

¦ Copyright IBM Corp. 1985, 1991
2.3.51 - 1

 2.3.52 sccsfile

 Purpose
 Contains the Source Code Control System (SCCS) information.

 Description
 The SCCS file is an ASCII file consisting of the following six logical
 parts:

 checksum The sum value of all characters, except the characters in the
 first line.

 delta table Information about each delta including type, SCCS
 identification (SID) date and time of creation, and comments.

 user names Login names and numerical group IDs, or both, of users who are
 allowed to add or remove deltas from the SCCS file.

 flags Definitions of internal keywords.

 comments Descriptive information about the file.

 body The actual text lines intermixed with control lines.

 There are lines throughout an SCCS file that begin with the ASCII SOH
 (start of heading) character (octal 001). This character is called the
 control character and is represented graphically as @ (at sign) in the
 following text. Any line described in the following text not shown
 beginning with the control character cannot begin with the control
 character.

 The DDDDD entries represent a 5-digit string (a number from 00000 to
 99999).

 The following describes each logical part of an SCCS file.

 Subtopics
 2.3.52.1 Checksum
 2.3.52.2 Delta Table
 2.3.52.3 User Names
 2.3.52.4 Flags
 2.3.52.5 Comments
 2.3.52.6 Body

AIX Operating System Technical Reference
sccsfile

¦ Copyright IBM Corp. 1985, 1991
2.3.52 - 1

 2.3.52.1 Checksum

 The checksum is the first line of an SCCS file. The value of the checksum
 is the sum of all characters, except those of the first line. The @h
 designates a magic number of 064001 octal (or 0x6801). The format of the
 line is:

 @hDDDDD

AIX Operating System Technical Reference
Checksum

¦ Copyright IBM Corp. 1985, 1991
2.3.52.1 - 1

 2.3.52.2 Delta Table

 The delta table consists of a variable number of entries such as:

 @sDDDDD/DDDDD/DDDDD
 @d type SCCS_ID yr/mo/da hh:mm:ss pgmr DDDDD DDDDD
 @i DDDDD...
 @x DDDDD...
 @g DDDDD...
 @m MR_number
 .
 .
 .
 @c comments...
 .
 .
 .
 @e

 @s The first line, which contains the number of lines inserted or deleted
 or unchanged, respectively.

 @d The second line, which contains:

 � The type of delta. D designates normal delta and R designates
 removed.

 � The SCCS_ID (SID) of the delta.

 � The date and time the delta was created.

 � The login name that corresponds to the real user ID at the time
 the delta was created.

 � The serial numbers of the delta and its predecessor.

 @i Contains the serial numbers of the deltas included. This line is
 optional.

 @x Contains the serial numbers of deltas excluded. This line is optional.

 @g Contains the serial numbers of the deltas ignored. This line is
 optional.

 @m Optional lines, each one containing one modification request (MR)
 number associated with the delta.

 @c Comment lines associated with the delta.

 @e Ends the delta table entry.

AIX Operating System Technical Reference
Delta Table

¦ Copyright IBM Corp. 1985, 1991
2.3.52.2 - 1

 2.3.52.3 User Names

 The list of login names and numerical group IDs, or both, of users who can
 add deltas to the file, separated by new-line characters. The bracketing
 lines @u and @U surround the lines containing the list. An empty list
 allows any user to make a delta.

AIX Operating System Technical Reference
User Names

¦ Copyright IBM Corp. 1985, 1991
2.3.52.3 - 1

 2.3.52.4 Flags

 Flags are keywords used internally in the system. For more information
 about their use, see the admin command in AIX Operating System Commands
 Reference. The format of each flag line is:

 @f flag optional text

 The following flags are defined:

 @ft type of program
 @fv program name
 @fi
 @fb
 @fm module name
 @ff floor
 @fc ceiling
 @fd default-sid
 @fn
 @fj
 @fl lock-releases
 @fq user defined

 The flags are used as follows:

 b Allows the use of the -b option on the get command to cause a branch in
 the delta tree.

 c Defines the highest release number that can be retrieved by a get
 command for editing. This release number must be less than or equal to
 9999, and its default value is 9999. This release number is called the
 ceiling release number.

 d Defines the default SID to be used when one is not specified with a get
 command.

 f Defines the lowest release number that can be retrieved by a get
 command for editing. This release number must be between 0 and 9999,
 and its default value is 1. This release number is called the floor
 release number.

 i Controls the error warning message No ID keywords. When this flag is
 not present, this message is only a warning. When this flag is
 present, the file is not used and the delta is not made.

 j Causes the get command to allow concurrent edits of the same base SID.

 l Defines a list of releases that cannot be edited with get using the -e
 flag.

 m Defines the first choice for the replacement text of the %M%
 identification keyword.

 n Causes the delta command to insert a delta that applies no changes for
 those skipped releases when a delta for a new release is made. For
 example, delta 5.1 is made after delta 2.1, skipping releases 3 and 4.
 When this flag is omitted, it causes skipped releases to be completely
 empty.

AIX Operating System Technical Reference
Flags

¦ Copyright IBM Corp. 1985, 1991
2.3.52.4 - 1

 q Defines the replacement for the %Q% identification keyword.

 t Defines the replacement for the %Y% identification keyword.

 v Controls prompting for MR numbers in addition to comments. If optional
 text is present, it defines an MR number validity checking program.

AIX Operating System Technical Reference
Flags

¦ Copyright IBM Corp. 1985, 1991
2.3.52.4 - 2

 2.3.52.5 Comments

 Typically, the comments section contains a description of the purpose of
 the file. Bracketing lines @t and @T surrounding text designate the
 comments section.

AIX Operating System Technical Reference
Comments

¦ Copyright IBM Corp. 1985, 1991
2.3.52.5 - 1

 2.3.52.6 Body

 The body section consists of control and text lines. Control lines begin
 with the control character, text lines do not. There are three kinds of
 control lines: insert, delete, and end, represented by:

 @I DDDDD
 @D DDDDD
 @E DDDDD

 respectively. The digit string is the serial number corresponding to the
 delta for the control line.

 Related Information
 The admin, delta, get, and prs commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
Body

¦ Copyright IBM Corp. 1985, 1991
2.3.52.6 - 1

 2.3.53 sendmail.cf

 Purpose
 Contains sendmail configuration file data.

 Description
 The configuration file contains the configuration information for the
 sendmail program. The configuration information includes such items as
 the host name and domain and the sendmail rule sets. If you have TCF
 installed, the cluster name is also defined in this file.

 The configuration file has three major purposes:

 � To initialize the environment for sendmail by setting the options

 � To rewrite addresses in messages by first mapping the addresses fro
 any format into a canonical form and then mapping the canonical form
 into the appropriate syntax for the receiving mailer.

 � To translate the address into the set of instructions needed t
 deliver the message.

 The configuration file entries consist of lines, each of which begins with
 a single character command. Entries can continue onto multiple lines by
 placing blanks at the beginning of each subsequent line. Comments are
 included on lines beginning with the # (sharp sign). The commands and
 operands are:

 CX word1 word2 ...
 Defines the class, specified by X, of words to match on the left hand
 side of rewriting rules. Class specifiers may be any of the uppercase
 letters from the ASCII character set. Lowercase letters and special
 characters are reserved for system use.

 DX value
 Defines the macro specified by X and its associated value. A macro is
 named using a single character. The character may be any character
 from the ASCII character set, but user-defined macros can only use the
 uppercase letters. Lowercase letters and special characters are
 reserved for system use. Macros can be interpolated in most places
 using the escape sequence $x. See "Special Macros" in topic 2.3.53.1
 for additional information.

 FX filename [format]
 Reads the elements of the class specified by X from filename using an
 optional scanf format specifier.

 H[?mflags?]hdrname: htemplate
 Defines the header format the sendmail program inserts into a message.
 Continuation lines are a part of the definition and write into the
 outgoing message. The htemplate is macro expanded before insertion
 into the message. If the mflags are specified, at least one of the
 specified flags must be stated in the mailer definition for this header
 to be automatically output. If one of these headers is in the input,
 the header writes into the output message regardless of these flags.

 Mname, [field=value]*
 Defines a mailer where name is the name of the mailer (used internally
 only) and field=value defines attributes of the mailer. Allowable
 fields and values are:

AIX Operating System Technical Reference
sendmail.cf

¦ Copyright IBM Corp. 1985, 1991
2.3.53 - 1

 P=value Defines the path name of the mailer, where value is the
 path name. SMTP internal mail uses a value of [IPC].

 F=value Defines the special flags for this mailer, where value can
 be a string composed of the following:

 C Saves the sender domain. For this function only,
 the sender domain is defined to be everything from
 the first @ (at sign) to the end of the sender
 address. This string is appended to header
 addresses which contain no @ whenever mail is sent
 to any mailer. This also applies to calculation of
 the $g macro and everything dependent on it. This
 flag offsets the SMTP mail and rcpt commands.

 D Requires a Date header line.

 e This mailer is expensive to connect to. Avoid
 connecting normally. Any necessary connection will
 occur during a queue run. See the c option on
 2.3.53.

 E Escape From lines to >From in message bodies.

 f The mailer wants a -f (from) flag only if this is a
 network forward operation (for example, the mailer
 gives an error if the executing user does not have
 special permissions).

 F Requires a From header line.

 h Preserves uppercase in host names for this mailer.

 I Uses SMTP to communicate with another sendmail and
 can use special protocol features.

 l This mailer is local; final delivery is performed.

 L Limits the line length of a text line to less than
 1000 characters. Any leading dot duplicated due to
 the X flag is not included in the count. Only
 allows 7-bit data to pass either way through the
 mailer.

 m This mailer can send to multiple users on the same
 host in one transaction. When a $u macro occurs in
 the A part of the mailer definition, that field will
 be repeated as necessary for all qualifying users.

 M Requires a Message_ID header line.

 n The AIX-style From line on the front of the message
 is not inserted.

 N International Character Support. Only has meaning
 when used with the L flag. Allows 8-bit data to
 pass.

 p Uses the return-path in the SMTP MAIL FROM: command

AIX Operating System Technical Reference
sendmail.cf

¦ Copyright IBM Corp. 1985, 1991
2.3.53 - 2

 rather than just the return address.

 P Requires a Return_Path header line.

 r Same as option f except a -r flag is generated.

 s Strips quote characters off of the address before
 calling the mailer.

 S User ID is not reset before calling the mailer.

 u Preserves uppercase in users names for this mailer.

 U Requires From lines with UUCP-style remote from host
 on the end.

 x Requires a Full_Name header line.

 X This mailer uses the hidden-dot algorithm. (Any
 line beginning with a dot has an extra dot
 prepended. This ensures that the lines in the
 message containing a leading dot will not terminate
 the message prematurely. See the sendmail -i flag
 or the config option.

 S=value The rewriting rule set to be used for sender addresses,
 where value is the rewriting rule set number.

 R=value The rewriting rule set to be used for recipient addresses,
 where value is the rewriting rule set number.

 A=arg Defines the argument string arg to exec the mailer with.
 Embedded spaces may be included. If embedded spaces are
 used, enclose the argument string with " (double quotes).
 For an SMTP mailer, A=[IPC].

 E=string Defines the string to use as an end-of-line indication. A
 string containing only new-line is the default.

 M=length Defines the maximum message length to be sent to the
 mailer.

 Ox[value]
 Sets option x to value. If the option is a valued option, you must
 also specify value. Options may also be selected from the command
 using the -o flag of the sendmail command. The options and the
 possible values are described as follows:

 Afile Uses the named file as the alias file.

 Bc Sets the blank substitution character to the character
 specified in the parameter c. The sendmail program replaces
 unquoted spaces in addresses with this character. The
 supplied configuration file uses the . (period) for this
 character.

 c If an outgoing mailer is marked as being expensive to use,
 this option causes sendmail to queue messages for that
 mailer program without sending them. The queue can be run
 later when costs are lowest or when the queue is large

AIX Operating System Technical Reference
sendmail.cf

¦ Copyright IBM Corp. 1985, 1991
2.3.53 - 3

 enough to send the message efficiently.

 dx Sets the delivery mode to x. Valid modes are:

 b Deliver in background (asynchronously). This is the
 default setting.
 i Deliver interactively (synchronously)
 q Queue the message only and deliver during queue run.

 ex Sets error processing to mode x. Valid modes are:

 e Mails the error message to the user's mail box, but
 always exits with a 0 exit status (normal return).
 m Mails the error message to the user's mail box.
 p Displays the error message on the terminal (default).
 q Discards the error message and returns the exit status
 only.
 w Writes the error message to the terminal or mails it if
 the user is not logged in.

 f Saves From lines at the front of messages. These lines are
 normally discarded. Causes all other headers to be regarded
 as part of the message body.

 gN Sets the default group ID to use when calling mailers to the
 value specified by N.

 hdir If TCF is installed, this defines the master spool
 directory.

 Hfile Specifies the name of the SMTP help file.

 i Does not interpret a . (period) on a line by itself as a
 message terminator. Removes the excess dot inserted by a
 remote mailer at the beginning of a line, if mail is
 received through SMTP. In addition, if receiving mail
 through SMTP, any dot at the front of a line followed by
 another dot is removed. This is the opposite of the action
 performed by the X mailer flag.

 Ix Allows spaces as well as tabs to separate the LHS and RHS of
 rewrite rules. In both the LHS and RHS, x must be used in
 place of embedded spaces. The default for x is _
 (underscore). All instances of x are changed to spaces
 after the LHS and RHS are separated by the sendmail program.
 This option allows rewrite rules to be modified using an
 editor that replaces tabs with spaces.

 Ln Specifies the log level to be the value supplied in the n
 parameter. Each number in the following list includes the
 activities of all numbers of lesser value and adds the
 activity that it represents. Valid levels and the
 activities they represent are:

 0 No logging

 1 Major problems only

 2 Message collections and failed deliveries

AIX Operating System Technical Reference
sendmail.cf

¦ Copyright IBM Corp. 1985, 1991
2.3.53 - 4

 3 Successful deliveries

 4 Messages being deferred

 5 Placing messages in the queue

 6 Unusual but benign incidents

 9 Log internal queue ID to external message ID mappings

 12 Several messages that are of interest when debugging

 16 Verbose information regarding the queue.

 m If the sender is in an alias expansion, also send to the
 sender.

 Mx value Defines macro x to have value. This option is normally used
 only from the sendmail command line.

 n Validates the RHS of aliases when performing the newaliases
 function.

 Nnetname Sets the name of the host network to netname. The sendmail
 program compares the argument of an SMTP HELO command to
 hostname.netname (value of hostname comes from the kernel).
 If these values do not match, it adds the hostname.netname
 string to the Received: line in the message so that messages
 can be traced accurately.

 o Indicates that this message may have old style headers.
 Without this option, the message has new style headers
 (commas instead of spaces between addresses). If this
 option is set, an adaptive algorithm correctly determines
 the header format in most cases.

 Paddress Identifies the person who is to receive a copy of all
 returned mail.

 qfactor Use factor to decide when to queue messages rather than send
 them. This value is divided by the difference between the
 current load average and the load average limit (see the x
 option below) to determine the maximum message priority that
 will be sent. The default value is 10000.

 Qdir Sets the directory in which to queue messages. The
 directory will be created if it does not exist.

 rtime Sets the timeout for reads from a mailer program to the
 value specified by time. If no timeout value is set,
 sendmail waits indefinitely for a mailer to respond.

 Sfile Sets the mail statistics file to the file. Statistics are
 only collected if the file exists. This file must be
 created by the user.

 s Enqueues before delivery, even when in immediate delivery
 mode.

AIX Operating System Technical Reference
sendmail.cf

¦ Copyright IBM Corp. 1985, 1991
2.3.53 - 5

 Ttime Sets the timeout on messages in the queue to the specified
 time. After this interval, sendmail returns the message to
 the sender. The default is three days.

 uN Sets the default user ID to use when calling mailers to the
 value specified by N.

 v Run in verbose mode.

 xlavg When the system load average exceeds lavg, queue messages
 instead of sending them. The default value is 8.

 Xlavg When the system load average exceeds lavg, incoming SMTP
 connections are refused. The default value is 12.

 yfactor factor is added to the priority of the message once for each
 recipient (lowering the priority of the message). Messages
 with many recipients are thus penalized. The default value
 is 1000.

 Y The sendmail program delivers each message in the mail queue
 from a separate process. This option is not required and
 may increase overhead in the AIX environment.

 zfactor factor is multiplied by the message class (determined by the
 Precedence: field in the header and the P lines in the
 configuration file) and subtracted from the message
 priority. Thus, messages with higher Precedence: values are
 favored.

 Zfactor factor is added to the message priority every time a message
 is processed, decreasing its priority. In most situations,
 factor should be positive, since hosts that are down are
 usually down for a long time. The default value is 9000.

 Pname=num
 Defines values for the Precedence: field. When name is found in a
 Precedence: field, the message class is set to num. Higher numbers
 indicate higher precedence. Negative numbers indicate that error
 messages are not returned. The default num is 0. The precedence of
 mail is defined by a header of that name within the mail.

 Rlhs rhs comments
 Defines a rewriting rule. One or more tab characters separate the
 three fields of this command. If space characters are to be used, the
 configuration option I must be set. The fields may contain embedded
 spaces, unless the I option is set. If the I option is set, the
 embedded spaces must be represented by the character defined in I.
 After the fields are separated, the character representing the space is
 changed to an actual space.

 Sx
 Begins the definition of a rule set. If a rule set definition is begun
 more than once, the new definition overwrites the old one.

 Tuser1 user2...
 Defines system administrative (trusted) user IDs. These IDs have
 permission to override the sender address using the -f flag. There may
 be more than one ID specified per line.

AIX Operating System Technical Reference
sendmail.cf

¦ Copyright IBM Corp. 1985, 1991
2.3.53 - 6

 Subtopics
 2.3.53.1 Special Macros

AIX Operating System Technical Reference
sendmail.cf

¦ Copyright IBM Corp. 1985, 1991
2.3.53 - 7

 2.3.53.1 Special Macros

 Macros are interpolated using the construct $x, where x is the name of the
 macro to be interpolated. Lowercase letters are reserved to have special
 semantics, used to pass information in or out of the sendmail program.

 The following macros must be defined to transmit information into the
 sendmail program.

 e The SMTP entry message. This message is sent by the SMTP handler
 in the sendmail domain when the host connects to it.

 j The official domain name for the site. This must be the first word
 in the $e macro. The domain name is a sequence of domain element
 strings, ordered from the most specific to the most general,
 separated by periods. The use of nicknames or aliases is not
 allowed. The maximum domain name length is 64 characters. The $j
 macro should use this format.

 l The format of the AIX From line. This macro is usually a constant.

 n The name of the daemon (for error messages). This macro is usually
 a constant.

 o The set of operators in addresses. This macro consists of a list
 of characters considered to be tokens and separates tokens during
 parsing. For example, if r exists in the $o macro, the input,
 address, parses into three tokens: add, r, and ess. There are many
 internal hard-coded delimiters added to this list by sendmail. It
 is recommended that this list not be changed.

 q The default format of the sender address.

 Sendmail defines some macros for interpolation into argument variables
 for mailers or for other contexts. These macros are:

 a The origination date in Arpanet form. $a contains the time
 extracted from the Date line of the message (if there is one). If
 the incoming message has no Date: line, the $a macro contains the
 current time.

 b The current date in Arpanet form. $b equals the current date and
 time (used for postmarks).

 c The hop count. The hop count is the number of times the message
 has been processed. The -h flag of the command line or the number
 of Received: headers in the message determine the hop count.

 d The date in AIX (ctime) format.

 f The sender (from) address. The $f macro is the sender address as
 seen from the current host.

 g The sender address relative to the receiver. When mailing to a
 specific host, the $g macro contains the address of the sender
 relative to the receiver. For example, if the user, newton, at
 system, appletree, sends a message to chopin@piano, the $f macro
 equals newton and the $g macro equals newton@appletree.

 h The receiving host.

AIX Operating System Technical Reference
Special Macros

¦ Copyright IBM Corp. 1985, 1991
2.3.53.1 - 1

 i The queue ID of the host. The $i macro is useful for tracking
 messages if put into the message ID line.

 p The process ID of sendmail. $p and $t are used to create unique
 strings for the Message_ID field.

 s The host name of the sender.

 t A numeric representation of the current time. The macros, $p and
 $t, are used to create unique strings for the Message_ID field.

 u The receiving user

 v The version number of the sendmail program. The $v macro can be
 found in Received: header messages and is useful for debugging.

 w The hostname of the local site and, if present, the address.

 x The full name of the sender. The name is determined by one of the
 following: the full name passed as a flag to sendmail, the value
 found in the Full_Name line of the header, the value found in the
 comment field of a From line, or if the message originates locally,
 the full name found in /etc/passwd.

 y The terminal ID of the sender.

 z The home directory of the receiver.

 Files

 /usr/lib/sendmail.cf The sendmail configuration file.

 /usr/lib/sendmail.cfDB The compiled version of the sendmail configuration
 file.

 Related Information

 The sendmail command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
Special Macros

¦ Copyright IBM Corp. 1985, 1991
2.3.53.1 - 2

 2.3.54 site

 Purpose
 Stores information about TCF cluster sites.

 Description
 The file /etc/site is used primarily by the Transparent Computing Facility
 and contains information about each machine in the TCF cluster. If TCF is
 not installed, the site file has one entry for the local machine. This
 entry contains the name of the machine as entered during the installation
 of the AIX Operating System (this name is returned by the uname command
 with the -n flag and in nodename by the uname system call.

 The site file is an ASCII file with one entry per line; each entry
 contains position-dependent fields in the following format:

 sitenum:sitenam:locnam:cputype:comment:fullnam:speed

 If TCF is not installed, sitenam is obtained during installation of the
 Operating System; the other fields assume default values. The fields are:

 sitenum Site number of the cluster site.

 sitenam One-word name of the cluster site.

 locnam Name of the cluster site's local file system.

 cputype CPU type of the cluster site, for instance, i386, i370, or
 xa370.

 comment Any information pertinent to the cluster site. For example,
 this field may contain CPU model numbers or configuration.

 fullnam Full descriptive name of the cluster site.

 speed Relative speed of the CPU of the cluster site. Its value is
 meaningful only in relation to the entries for other cluster
 sites.

 The site file access routines (see "sfent, sfnum, sfname, sfctype,
 sfxcode, setsf, endsf" in topic 1.2.257) should be used to access this
 file.

 File

 /etc/site Site description file.

 Related Information
 In this book: "sfent, sfnum, sfname, sfctype, sfxcode, setsf, endsf" in
 topic 1.2.257.

 The site command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
site

¦ Copyright IBM Corp. 1985, 1991
2.3.54 - 1

 2.3.55 sitegroup

 Purpose
 Site permission file.

 Description
 The sitegroup file contains two fields, which are separated by colons.
 The first field contains a site access group which may be placed in the
 site_exec_perm field of entries in the file /etc/passwd. The second field
 is divided into subfields, each separated by semicolons. Each field
 consists of a number (an integer) which is the site number on which the
 group can execute or log in.

 Examples
 The following example allows users in sitegroup group A to run programs or
 log in on sites 1, 2, and 17.

 groupA:1;2;17

 File

 /etc/sitegroup

 Related Information
 In this book: "passwd" in topic 2.3.44.

AIX Operating System Technical Reference
sitegroup

¦ Copyright IBM Corp. 1985, 1991
2.3.55 - 1

 2.3.56 system

 Purpose
 Identifies the system devices.

 Description
 The system file contains entries for currently configured real devices and
 virtual devices.

 The system file is an attribute file containing stanzas that generally
 describe special files including information about AIX drivers or system
 parameters. See "attributes" in topic 2.3.5 for a description of
 attribute files.

 Subtopics
 2.3.56.1 Special File Stanzas
 2.3.56.2 System Parameter Stanzas

AIX Operating System Technical Reference
system

¦ Copyright IBM Corp. 1985, 1991
2.3.56 - 1

 2.3.56.1 Special File Stanzas
 Each special file named in the system file refers to a device driver entry
 in the master file. The driver entries specify the AIX device drivers to
 be configured. All drivers needed for specified special files are
 included, and those drivers marked as mandatory.

 The name of each stanza is the simple name of the special file.

 The use of extended characters in the system file is not supported.

 address The device address for the virtual device (AIX/370 only).

 aflag Not used.

 arg The device's name and minor number for the corresponding disk
 or minidisk where arg activities should be performed.

 ctibuf Number of input buffers that should be available for the
 device simultaneously.

 ctobuf Number of output buffers that should be available for the
 device simultaneously.

 dname Indicates the prefix name that is used to create the name of
 the device stanza in the /etc/system file and the special
 file in the /dev directory. The devices command uses this
 value when it creates a stanza name for a new special file.

 driver Identifies the associated driver in the master file. This is
 mandatory in all device stanzas.

 dtype Specifies the class of the device. Examples of this are
 printer and disk. The devices command displays this value
 when asking the user to choose a device class. It also uses
 this value to construct a list of device classes.

 dump The device's name and minor number for the corresponding disk
 or minidisk where dump activities should be performed.

 dumplow Location of the number of blocks into the dump partition
 where core dump should be started.

 features Device-dependent parameter which is interpreted by the device
 driver on a device-by-device basis (refer to description of
 individual device).

 fd The name of the fixed disk that the minidisk resides on, such
 as hdisk0 and hdisk1. Used by minidisks.

 file Identifies the file that contains the stanzas included by the
 use attribute. This is the /etc/ddi file associated with the
 device.

 files Maximum number of entries in the system file table.

 gmounts Number of different file systems that can be mounted in the
 same cluster simultaneously.

 kaf_file Indicates the name of the keyword attribute file to be used
 by the customization helper programs for the device described

AIX Operating System Technical Reference
Special File Stanzas

¦ Copyright IBM Corp. 1985, 1991
2.3.56.1 - 1

 in the device stanza.

 kaf_use Indicates the name of the stanza in the kaf_file that
 contains information about the attributes for the device.

 locsite Specifies the cluster site number.

 minor Has a value of the form cn, where c is either b to denote a
 block device, or c to denote a character device. n is the
 minor device number.

 modes Sets the protection bits for the special file, specified in
 the form rwxrwxrwx. Hyphens replace modes that are turned
 off, for example, rw-r--r--.

 mounts Not used.

 name Is a required keyword that identifies the device type. For
 example, 4202, 4201 for printers.

 nchann Number of AIX/370 channels.

 nob Number of Blocks - used by minidisks

 noddi Indicates whether any device-dependent information is
 associated with the device. The value TRUE indicates there
 is none. If noddi=TRUE, then the change subcommand of the
 devices command does not allow the user to change device
 characteristics. Although tape, Ethernet, and Token Ring
 have ddi files, noddi indicates that there is no information
 in them.

 nodelete Indicates whether to delete the special file when this driver
 is removed. When this value is TRUE, no attempt is made to
 delete the special file.

 nodl Indicates whether the device can be deleted from the system
 by the devices command. The value TRUE indicates the device
 cannot be deleted using this command.

 noduplicate Indicates whether another device of this type can be added to
 the system. The value TRUE indicates another device cannot
 be added.

 noipl Indicates whether this stanza is processed at initial program
 load (IPL) time. When this value is TRUE, this stanza is not
 processed at system initial program load (IPL) time.

 noshow Indicates whether the devices command displays information
 from the stanza to the user. If noshow=FALSE, then the
 showdev subcommand of the devices command displays all device
 characteristics and the showall subcommand displays the
 device.

 nospecial When this value is TRUE, no special file (/dev file) is to be
 created.

 owner Specifies the name of the owner assigned to the /dev special
 file when it is created.

AIX Operating System Technical Reference
Special File Stanzas

¦ Copyright IBM Corp. 1985, 1991
2.3.56.1 - 2

 par A required keyword for printer stanzas. Indicates if the
 printer attaches to a parallel (TRUE) or serial (FALSE) port.

 pflag Is a required keyword that indicates whether there is a port
 associated with the device. If the value is TRUE, then the
 devices command constructs the name of the ddi stanza when
 adding the device by concatenating the value of the use
 keyword and the port name.

 If FALSE, then devices constructs the name of the ddi stanza
 by concatenating the value of the use keyword and a port
 number. A maxminor keyword must be defined if the value of
 pflag is FALSE.

 The showall subcommand of the devices command displays the
 comment line that immediately follows the aflag definition as
 a description of the port. This comment line must have the
 same length as those that describe the relevant ports in the
 ports stanza.

 pipe The device's name and minor number for the corresponding disk
 or minidisk where pipe activities should be performed.

 port A required keyword for all stanzas with pflag set to TRUE.
 When port is used in an /etc/predefined stanza, it defines
 the range of valid ports for this device, like port ranges
 specified for adapters in the adapts stanza.

 When a device, that is assigned a port, is added to
 /etc/system, devices removes the port range from the right
 side of the equal sign and replaces it with a port number in
 the port range.

 root The device's name and minor number for the corresponding disk
 or minidisk where root activities should be performed.

 slot Defines the slot number associated with a device. When
 defined in /etc/predefined, slot must be set to 0 if pflag is
 TRUE or --- if pflag is FALSE. If pflag is TRUE, devices
 will assign slot a valid slot number when adding the stanza
 to /etc/system.

 specproc Indicates the name of the special processing routine that is
 to be invoked when customizing the system for the device.
 See "cfgadev" in topic 1.2.31 for information about the
 application program interface to this feature.

 swap The device's name and minor number for the corresponding disk
 or minidisk where swap activities should be performed.

 ttype Specifies the value to be used by config in the device-type
 field when building device configuration table for devices.
 When present, ttype overrides the contents of the drive
 value.

 uinfo Specifies the hexadecimal bytes to pass to the CFUDRV type
 ioctl call to configure an AIX device driver. If a
 customization helper program is invoked, this attribute is
 not used.

AIX Operating System Technical Reference
Special File Stanzas

¦ Copyright IBM Corp. 1985, 1991
2.3.56.1 - 3

 units Number of devices; the number must be specified for each type
 of device available.

 use Identifies a stanza to be logically included in the current
 stanza. If a file attribute is present, the file is searched
 to find the indicated stanza for device dependent
 information. This keyword is required if the file keyword is
 present.

 vbuf Not used.

AIX Operating System Technical Reference
Special File Stanzas

¦ Copyright IBM Corp. 1985, 1991
2.3.56.1 - 4

 2.3.56.2 System Parameter Stanzas
 All system parameters that are listed in /etc/master may have their
 default values overridden in the sysparms stanza. The format of system
 parameter keywords in sysparms is:

 parm = value

 Where:

 parm Is a stanza name of a system parameter stanza in /etc/master

 value Is the new value of the system parameter

 Refer to /etc/master for a definition of all system parameters.

 Other parameters can be given for special customization helper programs.

 Example
 The following is an excerpt of the system file entries:

 Smallest possible stanza:

 error:
 driver = err
 nospecial = true
 noshow = true

 Sample stanza with pflag set to false
 tokennet0:
 * Token Ring Device Driver
 name = token
 driver = token
 minor = c0
 kaf_file = /etc/ddi/token
 kaf_use = ktoken
 file = /etc/ddi/token
 noddi = true
 dtype = lan
 * Local Area Network
 pflag = false
 * Token Ring Device Driver
 modes = rw-rw-rw-
 noshow = false
 slot = ---
 nospecial = true
 specproc = /etc/lanspecial
 owner = root
 dname = tokennet0
 use = dtokennet0

 Sample stanza with pflag set to true (tty connected to a Dual Async
 Adapter port):
 tty0:
 * Asynchronous Terminal
 name = tty
 driver = sa
 minor = c0
 kaf_file = /etc/ddi/tty.kaf
 kaf_use = ktty
 file = /etc/ddi/tty

AIX Operating System Technical Reference
System Parameter Stanzas

¦ Copyright IBM Corp. 1985, 1991
2.3.56.2 - 1

 noddi = true
 noduplicate = false
 dtype = ttydev
 * Asynchronous Terminal
 specproc = cfgaport
 noshow = false
 pflag = true
 * Serial port 1
 port = s1
 slot = 03
 noipl = false
 modes = rw-rw-rw-
 owner = root
 dname = tty0
 use = dttys1

 File

 /etc/system

 Related Information
 In this book: "attributes" in topic 2.3.5, "ddi" in topic 2.3.13,
 "master" in topic 2.3.32, and "predefined" in topic 2.3.47.

 The config, devices, and osconfig commands in AIX Operating System
 Commands Reference.

AIX Operating System Technical Reference
System Parameter Stanzas

¦ Copyright IBM Corp. 1985, 1991
2.3.56.2 - 2

 2.3.57 System.Netid

 Purpose
 Describes RSCS connection information for AIX/370.

 Description
 The /etc/System.Netid file describes the connection between an AIX/370
 guest and the RSCS mail and file transfer guest on the same VM host. RSCS
 is responsible for transmitting files or mail across a VM network or to
 the target guest machine on the same VM host.

 Each AIX/370 system in a TCF cluster will maintain its own copy of this
 file. /etc/System.Netid is established as a symbolic link to
 <LOCAL>/System.Netid.

 Lines of the file beginning with a "#" (pound sign) are treated as
 comments and are ignored. The rest of the file should consist of a single
 line with the six fields listed below; fields must be separated from one
 another by single spaces.

 VM-nodeid AIX/370-guest AIX/370-Nodeid RSCS-Userid Class Hold_class

 Where:

 VM-nodeid Is the the node ID of the local VM system.

 AIX/370-guest Is the user ID of the AIX/370 guest virtual machine. This
 should be the site name of the AIX/370 virtual machine.

 AIX/370-Nodeid Is the node ID used to identify this AIX/370 system to the
 RSCS network. This should also be the site name of the
 AIX/370 virtual machine.

 RSCS-Userid Is the user ID of the RSCS virtual machine used for
 network control. This is usually RSCS or NET. Consult
 your VM administrator for assistance.

 Class Is the CP spool class used to mark files for this AIX/370
 System. Class A is often chosen as the spool class for
 AIX/370.

 Hold_class Is the CP spool class used to mark files put on temporary
 hold by the rdrdaemon command. Class B is often chosen as
 the hold spool class for AIX/370.

 Example
 The following is an example of a System.Netid file for the AIX/370 machine
 AIX370 on VM with the node ID ABCVM1:

 ABCVM1 AIX370 AIX370 RSCS A B

 Files which cannot be delivered due to temporary conditions (for example,
 if the user's $HOME/netfile directory is unavailable) are put in a 'hold'
 state and delivery is retried approximately every 30 minutes. The values
 chosen for the Class and Hold_class fields must be different.

 Related Information
 The rdrdaemon, uvcp, and vucp commands in the AIX Operating Systems
 Commands Reference.

AIX Operating System Technical Reference
System.Netid

¦ Copyright IBM Corp. 1985, 1991
2.3.57 - 1

 2.3.58 tar

 Purpose
 Describes the tape archive format.

 Description
 The tar command reads and writes tapes in tape archive format. A tar tape
 consists of several 512-byte logical blocks that can be grouped (on
 magnetic tape) into records, which are some constant multiple of 512-byte
 blocks long. Block in the following description means logical block.

 The following is the format of a file header that precedes each disk file
 written on the tape:

 struct {
 char name[100];
 char mode[8];
 char uid[8];
 char gid[8];
 char size[12];
 char mtime[12];
 char chksum[8];
 char typeflag;
 char linkname[100];
 char magic[6];
 char version[2];
 char uname[32];
 char gname[32];
 char devmajor[8];
 char devminor[8];
 char prefix[155];
 };

 All fields, except typeflag, are ASCII null-terminated strings. Numeric
 fields can contain leading blanks. The fields have the following
 meanings:

 chksum Contains a byte-by-byte sum of the entire header block assuming
 that the chksum field is all blanks.

 gid Contains the group identification of the file, in octal.

 typeflag

 Contains '0' or '\0' for a regular file.
 Contains '1' if this file is a link to a previous file on the file
 on the tape.
 Contains '2' for a symbolic link.
 Contains '3' for a character special file.
 Contains '4' for a block special file.
 Contains '5' for a directory.
 Contains '6' for a FIFO special file.

 linkname Contains the name of a file if linkflag has a value of 1. The
 file named in this field is linked to the name file.

 mode Contains the mode of the file, which includes the protection
 bits, setuid bits, setgid bits, and file type, in octal.

 mtime Contains the modification time, in octal. This field gives the

AIX Operating System Technical Reference
tar

¦ Copyright IBM Corp. 1985, 1991
2.3.58 - 1

 major/minor device number and device site number for special
 files (the device site number is used by TCF).

 name Contains the name of the file.

 size Contains the size in bytes, in octal. This field is 0 for
 special files.

 uid Contains the user identification of the file, in octal.

 magic Contains the string TMAGIC ("ustar") indicating that this
 archive has been written in the POSIX-extended tar format.

 version Contains the string TVERSION ("00").

 uname Contains the ASCII representation of the owner of the file.

 gname Contains the ASCII representation of the group of the file.

 devmajor Contains the device major number for character and block special
 files.

 devminor Contains the device minor number for character and block special
 files.

 prefix Contains the path prefix of the archive file.

 Unused bytes are null. Following the file header block are the data
 blocks of the file. The last block is null-padded if necessary. Two null
 blocks designate the end of the tape.

 Directories and special files are treated in a slightly different way. A
 directory size is 0, meaning no data blocks follow, and its name ends with
 a / (slash). Also, if the directory is a hidden directory, an @ (at) is
 appended to the name prior to the / (slash). A special file is also
 written with 0 size. Its major/minor device number and device site number
 are in the mtime field.

 File

 /usr/include/tar.h

 Related Information
 The tar command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
tar

¦ Copyright IBM Corp. 1985, 1991
2.3.58 - 2

 2.3.59 terminfo

 Purpose
 Describes terminals by capability.

 Description
 A terminfo file is a data base that describes terminals, defining their
 capabilities and their methods of operation. It is used by various
 programs, including the Extended Curses Library (libcur.a) and the vi
 editor. The information defined includes initialization sequences,
 padding requirements, cursor positioning, and other command sequences that
 control specific terminals.

 This section explains the terminfo source file format. Before a terminfo
 source file can be used, it must be compiled using the tic command, which
 is described in AIX Operating System Commands Reference. You can edit and
 modify these source files, such as /usr/lib/terminfo/ibm.ti, which
 describes IBM terminals, and /usr/lib/terminfo/dec.ti, which describes DEC
 terminals.

 See "TERM" in topic 2.4.26 for a list of some of the terminals supported
 by predefined terminfo data base files and the corresponding values for
 the TERM environment variable.

 If you have a terminal which is not supported, see if one of the many
 sample terminfo files supplied with your system will meet your need; if
 such a sample file exists, you can install it on your system (you may have
 to make some minor adjustments) using the "tic" program supplied with your
 system. Also, if you have termcap descriptions from other UNIX systems,
 you may translate them into terminfo descriptions, using an "ex" script
 called /usr/lib/terminfo/cvt.ex (supplied with your system, as well).

 Each terminfo entry consists of a number of fields separated by commas,
 ignoring any white space between commas. The first field for each
 terminal gives the various names the terminal is known separated by |
 (vertical bar) characters. The first name given should be the most common
 abbreviation for the terminal, the last name given should be a long name
 fully identifying the terminal, and all others are understood as synonyms
 for the terminal name. All names except the last should be in lowercase
 and not contain blanks. The last name can contain uppercase characters
 for readability.

 Terminal names (except the last) should be chosen using the following
 conventions. A root name should be chosen to represent the particular
 hardware class of the terminal. This name should not contain hyphens,
 except to avoid synonyms that conflict with other names. Possible modes
 for the hardware or user preferences are indicated by appending a
 - (hyphen) and an indicator of the mode to the root name. Thus, a
 terminal in 132 column mode would be term-w. The following suffixes
 should be used where possible:

 Suffix Meaning Example

 -am With automatic margins (usually default) term-am
 -c Color mode term-c
 -w Wide mode (more than 80 columns) term-w
 -nam Without automatic margins term-nam
 -n Number of lines on the screen term-60
 -na No arrow keys (leave them in local) term-na
 -np Number of pages of memory term-4p

AIX Operating System Technical Reference
terminfo

¦ Copyright IBM Corp. 1985, 1991
2.3.59 - 1

 -rv Reverse video term-rv

 Subtopics
 2.3.59.1 Types of Capabilities
 2.3.59.2 List of Capabilities
 2.3.59.3 Preparing Descriptions
 2.3.59.4 Basic Capabilities
 2.3.59.5 Parameterized Strings
 2.3.59.6 Cursor Motions
 2.3.59.7 Area Clears
 2.3.59.8 Insert/Delete Line
 2.3.59.9 Insert/Delete Character
 2.3.59.10 Highlighting, Underlining, and Visual Bells
 2.3.59.11 Keypad
 2.3.59.12 Tabs and Initialization
 2.3.59.13 Miscellaneous Strings
 2.3.59.14 Indicating Terminal Problems
 2.3.59.15 Similar Terminals
 2.3.59.16 Data Base File Names

AIX Operating System Technical Reference
terminfo

¦ Copyright IBM Corp. 1985, 1991
2.3.59 - 2

 2.3.59.1 Types of Capabilities

 Capabilities in terminfo are of three types: boolean, numeric, and
 string. Boolean capabilities indicate that the terminal has some
 particular feature. Boolean capabilities are true if the corresponding
 name is in the terminal description. Numeric capabilities give the size
 of the terminal or the size of particular delays. String capabilities
 give a sequence that can be used to perform particular terminal
 operations.

 Entries can continue onto multiple lines by placing white space at the
 beginning of each subsequent line. Comments are included on lines
 beginning with the # (sharp sign) character.

AIX Operating System Technical Reference
Types of Capabilities

¦ Copyright IBM Corp. 1985, 1991
2.3.59.1 - 1

 2.3.59.2 List of Capabilities

 The following table shows VARIABLE, which is the name the programmer uses
 to access the terminfo capability. The CAP NAME (capability name) is the
 short name used in the text of the data base, and is used by a person
 updating the data base. The I. CODE is the 2-letter internal code used in
 the compiled data base, and always corresponds to a termcap capability
 name.

 Capability names have no absolute length limit. An informal limit of five
 characters is adopted to keep them short and to allow the tabs in the
 source file caps to be aligned. Whenever possible, names are chosen to be
 the same as or similar to the ANSI X3.64 standard of 1979.

 (P) Indicates that padding may be specified.

 (G) Indicates that the string is passed through tparm with parameters as
 given (#i).

 (*) Indicates that padding may be based on the number of lines affected.

 (#i) Indicates the i(th) parameter.

 CAP I.
 VARIABLE NAME CODE DESCRIPTION

 Booleans:

 auto_left_margin bw bw Indicates cub1 wraps from
 column 0 to last column.
 auto_right_margin am am Indicates terminal has
 automatic margins.
 beehive_glitch xsb xs Indicates a terminal with
 fl=escape and f2=Ctrl-C.
 ceol_standout_glitch xhp xs Indicates standout not erased
 by overwriting.
 eat_newline_glitch xenl xn Ignores new-line character
 after 80 columns.
 erase_overstrike eo eo Erases overstrikes with a
 blank.
 generic_type gn gn Indicates generic line type
 (such as, dialup, switch)
 hard_copy hc hc Indicates hardcopy terminal.
 has_meta_key km km Indicates terminal has a meta
 key (shift, sets parity bit).
 has_status_line hs hs Indicates terminal has extra
 "status line".
 insert_null_glitch in in Indicates insert mode
 distinguishes nulls.
 memory_above da da Retains information above
 display in memory.
 memory_below db db Retains information below
 display in memory.
 move_insert_mode mir mi Indicates safe to move while
 in insert mode.
 move_standout_mode msgr ms Indicates safe to move in
 standout modes.
 over_strike os os Indicates terminal
 overstrikes.

AIX Operating System Technical Reference
List of Capabilities

¦ Copyright IBM Corp. 1985, 1991
2.3.59.2 - 1

 status_line_esc_ok eslok es Indicates escape can be used
 on the status line.
 teleray_glitch xt xt Indicates destructive tabs and
 blanks inserted while entering
 standout mode.
 tilde_glitch hz hz Indicates terminal cannot
 print ~ characters.
 transparent_underline ul ul Overstrikes with underline
 character.
 xon_xoff xon xo Indicates terminal uses
 xon/xoff handshaking.

 Numbers:

 columns cols co Specifies the number of
 columns in a line.
 init_tabs it it Provides tabs initially every
 # spaces.
 lines lines li Specifies the number of lines
 on screen or page
 lines_of_memory lm lm Specifies the number of lines
 of memory if > lines. A value
 of 0 indicates variable.
 magic_cookie_glitch xmc sg Indicates number of blank
 characters left by smso or
 rmso.
 padding_baud_rate pb pb Indicates lowest baud where
 carriage return and line
 return padding is needed.
 virtual_terminal vt vt Indicates virtual terminal
 number.
 width_status_lines wsl ws Specifies the number of
 columns in status line.

 Strings:

 appl_defined_str apstr za Application defined terminal
 string.
 back_tab cbt bt Back tab. (P)
 bell bel bl Produces an audible signal
 (bell). (P)
 box_chars_1 box1 bx Box characters primary set.
 box_chars_2 box2 by Box characters alternate set.
 box_attr_1 batt1 Bx Attributes for box_chars_1.
 box_attr_2 batt2 By Attributes for box_chars_2.
 carriage_return cr cr Indicates carriage return.
 (P*)
 change_scroll_region csr cs Changes scroll region to lines
 #1 through #2. (PG)
 clear_all_tabs tbc ct Clears all tab stops. (P)
 clear_screen clear cl Clears screen and puts cursor
 in home position. (P*)
 clr_eol el ce Clears to end of line. (P)
 clr_eos ed cd Clears to end of the display.
 (P*)
 color_bg_0 colb0 d0 Background color 0 black.
 color_bg_1 colb1 d1 Background color 1 red.
 color_bg_2 colb2 d2 Background color 2 green.
 color_bg_3 colb3 d3 Background color 3 brown.
 color_bg_4 colb4 d4 Background color 4 blue.

AIX Operating System Technical Reference
List of Capabilities

¦ Copyright IBM Corp. 1985, 1991
2.3.59.2 - 2

 color_bg_5 colb5 d5 Background color 5 magenta.
 color_bg_6 colb6 d6 Background color 6 cyan.
 color_bg_7 colb7 d7 Background color 7 white.
 color_fg_0 colf0 c0 Foreground color 0 white.
 color_fg_1 colf1 c1 Foreground color 1 red.
 color_fg_2 colf2 c2 Foreground color 2 green.
 color_fg_3 colf3 c3 Foreground color 3 brown.
 color_fg_4 colf4 c4 Foreground color 4 blue.
 color_fg_5 colf5 c5 Foreground color 5 magenta.
 color_fg_6 colf6 c6 Foreground color 6 cyan.
 color_fg_7 colf7 c7 Foreground color 7 black.
 column_address hpa ch Sets cursor column. (PG)
 command_character cmdch CC Indicates terminal command
 prototype character can be
 set.
 cursor_address cup cm Indicates screen relative
 cursor motion row #1 col #2.
 (PG)
 cursor_down cud1 do Moves cursor down one line.
 cursor_home home ho Moves cursor to home position
 (if no cup).
 cursor_invisible civis vi Makes cursor invisible.
 cursor_left cubl le Moves cursor left one space.
 cursor_mem_address mrcup CM Indicates memory relative
 cursor addressing.
 cursor_normal cnorm ve Makes cursor appear normal
 (undo vs or vi).
 cursor_right cuf1 nd Indicates nondestructive space
 (cursor right).
 cursor_to_ll ll ll Moves cursor to first column
 of last line (if no cup).
 cursor_up cuu1 up Moves cursor up one line
 (cursor up).
 cursor_visible cvvis vs Makes cursor very visible.
 delete_character dch1 dc Deletes character. (P*)
 delete_line dl1 dl Deletes line. (P*)
 dis_status_line dsl ds Disables status line.
 down_half_line hd hd Indicates subscript (forward
 1/2 line feed).
 enter_alt_charset_mode smacs as Starts alternate character
 set. (P)
 enter_blink_mode blink mb Enables blinking.
 enter_bold_mode bold md Enables bold (extra bright)
 mode.
 enter_ca_mode smcup ti Begins programs that use cup.
 enter_delete_mode smdc dm Starts delete mode.
 enter_dim_mode dim mh Enables half-bright mode.
 enter_insert_mode smir im Starts insert mode.
 enter_protected_mode prot mp Enables protected mode.
 enter_reverse_mode rev mr Enables reverse video mode.
 enter_secure_mode invis mk Enables blank mode (characters
 invisible).
 enter_standout_mode smso so Begins standout mode.
 enter_underline_mode smul us Starts underscore mode.
 erase_chars ech ec Erases #1 characters. (PG)
 exit_alt_charset_mode rmacs ae Ends alternate character set.
 (P)
 exit_attribute_mode sgr0 me Disables all attributes.
 exit_ca_mode rmcup te Ends programs that use cup.
 exit_delete_mode rmdc ed Ends delete mode.

AIX Operating System Technical Reference
List of Capabilities

¦ Copyright IBM Corp. 1985, 1991
2.3.59.2 - 3

 exit_insert_mode rmir ei Ends insert mode.
 exit_standout_mode rmso se Ends stand out mode.
 exit_underline_mode rmul ue Ends underscore mode.
 flash_screen flash vb Indicates visual bell (may not
 move cursor).
 font_0 font0 f0 Select font 0.
 font_1 font1 f1 Select font 1.
 font_2 font2 f2 Select font 2.
 font_3 font3 f3 Select font 3.
 font_4 font4 f4 Select font 4.
 font_5 font5 f5 Select font 5.
 font_6 font6 f6 Select font 6.
 font_7 font7 f7 Select font 7.
 form_feed ff ff Ejects page (hardcopy
 terminal). (P*)
 from_status_line fsl fs Returns from status line.
 init_1string is1 is Initializes terminal.
 init_2string is2 is Initializes terminal.
 init_3string is3 (none) Initializes terminal.
 init_file if if Identifies file containing is.
 insert_character ich1 ic Inserts character. (P)
 insert_line il1 al Adds new blank line. (P*)
 insert_padding ip ip Inserts pad after character
 inserted. (P*)
 key_backspace kbs kb Sent by backspace key.
 key_back_tab kbtab k0 Sent by backtab key.
 key_catab ktbc ka Sent by clear-all-tabs key.
 key_clear kclr kC Sent by clear-screen or erase
 key.
 key_ctab kctab kt Sent by clear-tab key.
 key_command kcmd kc Command request key.
 key_command_pane kcpn kW Command pane key.
 key_dc kdch1 kD Sent by delete-character key.
 key_dl kdl1 kL Sent by delete-line key.
 key_do kdo ki Do request key.
 key_down kcud1 kd Sent by terminal down arrow
 key.
 key_eic krmir kM Sent by rmir or smir in insert
 mode.
 key_end kend kw End key.
 key_eol ke1 kE Sent by clear-to-end-of-line
 key.
 key_eos ked kS Sent by clear-to-end-of-screen
 key.
 key_f0 kf0 k0 Sent by function key F0.
 key_f1 kf1 k1 Sent by function key F1.
 key_f2 kf2 k2 Sent by function key F2.
 key_f3 kf3 k3 Sent by function key F3.
 key_f4 kf4 k4 Sent by function key F4.
 key_f5 kf5 k5 Sent by function key F5.
 key_f6 kf6 k6 Sent by function key F6.
 key_f7 kf7 k7 Sent by function key F7.
 key_f8 kf8 k8 Sent by function key F8.
 key_f9 kf9 k9 Sent by function key F9.
 key_f10 kf10 k; Sent by function key F10.
 key_f11 kf11 k< Sent by function key F11.
 key_f12 kf12 k> Sent by function key F12.
 key_help khlp kq Help key.
 key_home khome kh Sent by home key.
 key_ic kich1 kI Sent by insert character/enter

AIX Operating System Technical Reference
List of Capabilities

¦ Copyright IBM Corp. 1985, 1991
2.3.59.2 - 4

 insert mode key.
 key_il kil1 kA Sent by insert line key.
 key_left kcub1 kl Sent by terminal left arrow
 key.
 key_ll kll kH Sent by home-down key.
 key_newline knl nl New-line key.
 key_next_pane knpn kv Next-pane key.
 key_npage knp kN Sent by next-page key.
 key_ppage kpp kP Sent by previous-page key.
 key_prev_cmd kpcmd kp Sent by previous-command key.
 key_quit kquit kQ Quit key.
 key_right kcuf1 kr Sent by terminal right arrow
 key.
 key_scroll_left kscl kz Scroll left.
 key_scroll_right kscr kZ Scroll right.
 key_select ksel kU Select key.
 key_sf kind kF Sent by scroll-forward/down
 key.
 key_smap_in1 kmpf1 Kv Input for special mapped key
 1.
 key_smap_out1 kmpt1 KV Output for mapped key 1.
 key_smap_in2 kmpf2 Kw Input for special mapped key
 2.
 key_smap_out2 kmpt2 KW Output for mapped key 2.
 key_smap_in3 kmpf3 Kx Input for special mapped key
 3.
 key_smap_out3 kmpt3 KX Output for mapped key 3.
 key_smap_in4 kmpf4 Ky Input for special mapped key
 4.
 key_smap_out4 kmpt4 KY Output for mapped key 4.
 key_smap_in5 kmpf5 Kz Input for special mapped key
 5.
 key_smap_out5 kmpt5 KZ Output for mapped key 5.
 key_sr kri kR Sent by scroll-backward/up
 key.
 key_stab khts kT Sent by set-tab key.
 key_tab ktab kn Tab key.
 key_up kcuu1 ku Sent by terminal up arrow key.
 keypad_local rmkx ke Ends keypad transmit mode.
 keypad_xmit smkx ks Puts terminal in keypad
 transmit mode.
 lab_f0 lf0 l0 Labels function key F0 if not
 F0.
 lab_f1 lf1 l1 Labels function key F1 if not
 F1.
 lab_f2 lf2 l2 Labels function key F2 if not
 F2.
 lab_f3 lf3 l3 Labels function key F3 if not
 F3.
 lab_f4 lf4 l4 Labels function key F4 if not
 F4.
 lab_f5 lf5 l5 Labels function key F5 if not
 F5.
 lab_f6 lf6 l6 Labels function key F6 if not
 F6.
 lab_f7 lf7 l7 Labels function key F7 if not
 F7.
 lab_f8 lf8 l8 Labels function key F8 if not
 F8.
 lab_f9 lf9 l9 Labels function key F9 if not

AIX Operating System Technical Reference
List of Capabilities

¦ Copyright IBM Corp. 1985, 1991
2.3.59.2 - 5

 F9.
 lab_f10 lf10 la Labels function key F10 if not
 F10.
 meta_on smm mm Enables "meta mode" (8th bit).
 meta_off rmm mo Disables "meta mode".
 newline nel nw Performs new-line function
 (behaves like CR followed by
 LF).
 pad_char pad pc Pads character (instead of
 NUL).
 parm_dch dch DC Deletes #1 characters. (PG*)
 parm_delete_line dl DL Deletes #1 lines. (PG*)
 parm_down_cursor cud DO Moves cursor down #1 lines.
 (PG*)
 parm_ich ich IC Inserts #1 blank characters.
 (PG*)
 parm_index indn SF Scrolls forward #1 lines. (PG)
 parm_insert_line il AL Adds #1 new blank lines. (PG*)
 parm_left_cursor cub LE Moves cursor left #1 spaces.
 (PG)
 parm_right_cursor cuf RI Moves cursor right #1 spaces.
 (PG*)
 parm_rindex rin SR Scrolls backward #1 lines.
 (PG)
 parm_up_cursor cuu UP Moves cursor up #1 lines.
 (PG*)
 pkey_key pfkey pk Programs function key #1 to
 type string #2.
 pkey_local pfloc pl Programs function key #1 to
 execute string #2.
 pkey_xmit pfx px Programs function key #1 to
 xmit string #2.
 print_screen mc0 ps Prints contents of the screen.
 prtr_off mc4 pf Disables the printer.
 prtr_on mc5 po Enables the printer.
 repeat_char rep rp Repeats character #1 #2 times.
 (PG*)
 reset_1string rs1 r1 Resets terminal to known
 modes.
 reset_2string rs2 r2 Resets terminal to known
 modes.
 reset_3string rs3 r3 Resets terminal to known
 modes.
 reset_file rf rf Identifies the file containing
 reset string.
 restore_cursor rc rc Restores cursor to position of
 last sc.
 row_address vpa cv Positions cursor to an
 absolute vertical position
 (set row). (PG)
 save_cursor sc sc Saves cursor position. (P)
 scroll_forward ind sf Scrolls text up. (P)
 scroll_reverse ri sr Scrolls text down. (P)
 set_attributes sgr sa Defines the video attributes.
 (PG9)
 set_tab hts st Sets a tab in all rows,
 current column.
 set_window wind wi Indicates current window is
 lines #1-#2 cols #3-#4.
 tab ht ta Tabs to next 8-space hardware

AIX Operating System Technical Reference
List of Capabilities

¦ Copyright IBM Corp. 1985, 1991
2.3.59.2 - 6

 tab stop.
 to_status_line tsl ts Moves to status line, column
 #1.
 underline_char uc uc Underscores one character and
 moves beyond it.
 up_half_line hu hu Indicates superscript (reverse
 1/2 line-feed).
 init_prog iprog iP Locates the program for init.
 key_a1 ka1 K1 Specifies upper left of
 keypad.
 key_a3 ka3 K3 Specifies upper right of
 keypad.
 key_b2 kb2 K2 Specifies center of keypad.
 key_c1 kc1 K4 Specifies lower left of
 keypad.
 key_c3 kc3 K5 Specifies lower right of
 keypad.
 prtr_non mc5p pO Enables the printer for #1
 bytes.

 Terminal capabilities have names. For instance, the fact that a terminal
 has automatic margins (such as, an automatic new-line when the end of a
 line is reached) is indicated by the capability am. Hence the description
 of the terminal includes am. Numeric capabilities are followed by the #
 (sharp sign) character and then the value. Thus the cols#80 capability,
 which indicates the number of columns the terminal has, gives the value 80
 for the terminal.

 Finally, string-valued capabilities, such as el (clear to end of line
 sequence) are given by the 2-character code, an = (equal sign), and then a
 string ending at the following , (comma). A delay in milliseconds may
 appear anywhere in a string capability, enclosed between a $< and a > as
 in el=\EK$<3>, and padding characters are supplied by tputs to provide
 this delay. The delay can be either a number, such as 20, or a number
 followed by an * (asterisk), such as 3*. An asterisk indicates that the
 padding required is proportional to the number of lines affected by the
 operation, and the amount given is the per-affected-unit padding required.
 (In the case of insert character, the factor is still the number of lines
 affected. This is always 1, unless the terminal has xenl and the software
 uses it.) When an asterisk is specified, it is sometimes useful to give a
 delay of the form a.b, such as, 3.5, to specify a delay per unit to tenths
 of milliseconds. (Only one decimal place is allowed.)

 A number of escape sequences are provided in the string-valued
 capabilities for easy encoding of characters there. Both \E and \e map to
 an Escape character, ^x maps to a Ctrl-x for any appropriate x, and the
 sequences \n, \l, \r, \t, \b, \f, \s give a new-line, line-feed, return,
 tab, backspace, form-feed, and space. Other escapes include \^ (backslash
 caret) for a ^ (caret), \ \ (backslash backslash) for a \ (backslash), \,
 (backslash comma) for a , (comma), \: (backslash colon) for a : (colon),
 and \0 (backslash) for the null character. (\0 will produce \200, which
 does not terminate a string but behaves as a null character on most
 terminals.) Finally, characters can be given as 3 octal digits after a \
 (backslash).

 Sometimes, individual capabilities must be commented out. To do this, put
 a period before the capability name.

AIX Operating System Technical Reference
List of Capabilities

¦ Copyright IBM Corp. 1985, 1991
2.3.59.2 - 7

 2.3.59.3 Preparing Descriptions

 An effective way to prepare a terminal description is to imitate the
 description of a similar terminal in the terminfo file and add to the
 description gradually, using partial descriptions with vi to check that
 they are correct. Be aware that a very unusual terminal may expose
 deficiencies in the ability of this file to describe it or bugs in vi. To
 test a new terminal description, set the environment variable TERMINFO to
 a path name of a directory containing the compiled description you are
 working on and programs will look there rather than in /usr/lib/terminfo.
 A test to get the correct padding (if not known) is to edit the
 /etc/passwd file at 9600 baud, delete about 16 lines from the middle of
 the screen, then hit the u key several times quickly. If the terminal
 fails to display the result properly, more padding is usually needed. A
 similar test can be used for insert character.

AIX Operating System Technical Reference
Preparing Descriptions

¦ Copyright IBM Corp. 1985, 1991
2.3.59.3 - 1

 2.3.59.4 Basic Capabilities

 The following describe basic terminal capabilities:

 am Indicates that the cursor moves to the beginning of the next
 line when it reaches the right margin. This capability also
 indicates whether the cursor can move beyond the bottom right
 corner of the screen.

 bel Produces an audible signal (such as a bell or a beep).

 bw Indicates that a backspace from the left edge of the terminal
 moves the cursor to the last column of the previous row.

 clear Clears the screen leaving the cursor in the home position.

 cols Specifies the number of columns on each line for the terminal.

 cr Moves the cursor to the left edge of the current row. This code
 is usually carriage return (Ctrl-M).

 cub1 Moves the cursor one space to the left, such as backspace.

 cuf1, cuu1, and cud1
 Moves the cursor to the right, up, and down, respectively.

 hc Specifies a printing terminal. The os capability should also be
 specified.

 lines Specifies the number of lines on a cathode ray tube (CRT)
 terminal.

 os Indicates that when a character is displayed or printed in a
 position already occupied by another character, the terminal
 overstrikes the existing character, rather than replacing it
 with the new character. os applies to storage scope, printing,
 and APL terminals.

 The terminfo initialization subroutine, setupterm, calls termdef to
 determine the number of lines and columns on the display. If termdef
 cannot supply this information, then setupterm uses the lines and cols
 values in the data base.

 A point to note here is that the local cursor motions encoded in terminfo
 are undefined at the left and top edges of a CRT terminal. Programs
 should never attempt to backspace around the left edge, unless bw is
 given, and never attempt to go up locally off the top. In order to scroll
 text up, a program should go to the bottom left corner of the screen and
 send the ind (index) string.

 To scroll text down, a program goes to the top left corner of the screen
 and sends the ri (reverse index) string. The strings ind and ri are
 undefined when not on their respective corners of the screen.

 The am capability tells whether the cursor sticks at the right edge of the
 screen when text is output, but this does not necessarily apply to a cuf1
 from the last column. Local motion is defined from the left edge only if
 bw is given. In this case, a cub1 from the left edge moves to the right
 edge of the previous row. If bw is not given, the effect is undefined.
 This is useful for drawing a box around the edge of the screen, for

AIX Operating System Technical Reference
Basic Capabilities

¦ Copyright IBM Corp. 1985, 1991
2.3.59.4 - 1

 example. If the terminal has switch-selectable automatic margins, the
 terminfo file usually assumes that it is on by specifying am. If the
 terminal has a command that moves to the first column of the next line,
 that command can be given as nel (newline). It does not matter if the
 command clears the remainder of the current line, so if the terminal has
 no cr and lf, it may still be possible to craft a working nel out of one
 or both of them.

 These capabilities suffice to describe printing terminals and simple CRT
 terminals. Thus, the Model 33 Teletype is described as:

 33 | tty33 | tty | Model 33 Teletype,
 bel=^G, cols#72, cr=^M, cud1=^J, hc, ind=^J, os,

 And another terminal is described as:

 xxxx | x | xxxxxxxx,
 am, bel=^G, clear=^Z, cols#80, cr=^M, cub1=^H, cud1=^J,
 ind=^J, lines#24,

AIX Operating System Technical Reference
Basic Capabilities

¦ Copyright IBM Corp. 1985, 1991
2.3.59.4 - 2

 2.3.59.5 Parameterized Strings

 Cursor addressing and other strings requiring parameters in the terminal
 are described by a parameterized string capability, with escapes similar
 to printf %x in it. For example, to address the cursor, the cup
 capability is given using two parameters: the row and column to address
 to. (Rows and columns are numbered starting with 0 and refer to the
 physical screen visible to the user, not to any unseen memory.) If the
 terminal has memory relative cursor addressing, that can be indicated by
 mrcup.

 The capabilities and their parameters, with descriptions, are:

 cub1 Backspaces the cursor one space.

 cup Addresses the cursor using two parameters: the row and column to
 address. Rows and columns are numbered starting with 0 and
 refer to the physical screen visible to the user, not to memory.

 cuu1 Moves the cursor up one line on the screen.

 hpa and vpa
 Indicates the cursor has row or column absolute cursor
 addressing, horizontal position absolute (hpa) and vertical
 position absolute (vpa).

 Sometimes the hpa and vpa capabilities are shorter than the more
 general two parameter sequence and can be used in preference to
 cup. If there are parameterized local motions (such as, move n
 spaces to the right) these can be given as cud, cub, cuf, and
 cuu with a single parameter indicating how many spaces to move.
 These are primarily useful if the terminal does not have cup.

 indn and rin
 Scrolls text. These are parameterized versions of the basic
 capabilities ind and ri. n is the number of lines.

 mrcup Indicates the terminal has memory-relative cursor addressing.

 The parameter mechanism uses a stack and special % codes to manipulate it.
 Typically a sequence pushes one of the parameters onto the stack and then
 prints it in some format. Often more complex operations are necessary.

 The % encodings have the following meanings:

 %% Outputs a %. (percent sign).
 %d Print pop() as in printf (numeric string from stack).
 %2d Print pop() like %2d (minimum 2 digits output from stack).
 %3d Print pop() like %3d (minimum 3 digits output from stack).
 %02d Prints as in printf (2 digits output).
 %03d Prints as in printf (3 digits output).
 %c Print pop() gives %c (character output from stack).
 %s Print pop() gives %s (string output from stack).

 %p[i] Pushes the i(th) parameter onto stack.
 %P[a-z] Sets variable [a-z] to pop() (variable output from stack).
 %g[a-z] Gets variable [a-z] and pushes it onto the stack.
 %'c' Character constant c.
 %{nn} Integer constant nn.

AIX Operating System Technical Reference
Parameterized Strings

¦ Copyright IBM Corp. 1985, 1991
2.3.59.5 - 1

 %+ %- %* %/ %m
 Arithmetic (%m is modulus): push(pop() operation pop())
 %& %| %^ Bit operations: push(pop() operation pop())
 %= %> %< Logical operations: push(pop() operation pop()).
 %! %¬ Unary operations push(operation pop())
 %i Add 1 to first two parameters (for ANSI terminals).

 %? expr %t thenpart %e elsepart %;
 If-then-else. The %e elsepart is optional. You can make
 an else-if construct as with Algol 68:

 %? c[1] %t b[1] %e c[2] %t b[2] %e c[3] %t b[3] %e b[4] %;

 In this example, c[i] denote conditions, and b[i] denote
 bodies.

 Binary operations are in postfix form with the operands in the usual
 order. That is, to get x - 5 one would use %gx%{5}%-.

 Consider a terminal, which, to get to row 3 and column 12, needs to be
 sent \E&a12c03Y padded for 6 milliseconds. Note that the order of the
 rows and columns is inverted here, and that the row and column are printed
 as two digits. Thus its cup capability is cup=6\E&a%p2%2dc%p1%2dY.

 Some terminals need the current row and column sent preceded by a ^T with
 the row and column simply encoded in binary; cup=^T%p1%c%p2%c. Terminals
 that use %c need to be able to backspace the cursor (cub1), and to move
 the cursor up one line on the screen (cuu1). This is necessary because it
 is not always safe to transmit \n, ^D, and \r, as the system may change or
 discard them. (The library routines dealing with terminfo set terminal
 modes so that tabs are not expanded by the operating system; thus \t is
 safe to send.)

 A final example is a terminal that uses row and column offset by a blank
 character, thus cup=\E=%p1%' '%+%c%p2%' '%+%c. After sending \E=, this
 pushes the first parameter, pushes the ASCII value for a space (32), adds
 them (pushing the sum on the stack in place of the two previous values)
 and outputs that value as a character. Then the same is done for the
 second parameter. More complex arithmetic is possible using the stack.

AIX Operating System Technical Reference
Parameterized Strings

¦ Copyright IBM Corp. 1985, 1991
2.3.59.5 - 2

 2.3.59.6 Cursor Motions

 If the terminal has a fast way to home the cursor (to very upper left
 corner of screen) then this can be given as home. Similarly a fast way of
 getting to the lower left-hand corner can be given as ll; this may involve
 going up with cuu1 from the home position, but a program should never do
 this itself (unless ll does) because it can make no assumption about the
 effect of moving up from the home position. Note that the home position
 is the same as addressing (0,0) to the top left corner of the screen, not
 of memory. (Thus, the \EH sequence on some terminals cannot be used for
 home.)

AIX Operating System Technical Reference
Cursor Motions

¦ Copyright IBM Corp. 1985, 1991
2.3.59.6 - 1

 2.3.59.7 Area Clears

 The following areas are used to clear large areas of the terminal:

 ed Clears from the current position to the end of the display.
 This is defined only from the first column of a line. (Thus, it
 can be simulated by a request to delete a large number of lines,
 if a true ed is not available.)

 el Clears from the current cursor position to the end of the line
 without moving the cursor.

AIX Operating System Technical Reference
Area Clears

¦ Copyright IBM Corp. 1985, 1991
2.3.59.7 - 1

 2.3.59.8 Insert/Delete Line

 The following describes the insert and delete line capabilities:

 csr Indicates the terminal has a scrolling region that can be set.
 This capability takes two parameters: the top and bottom lines
 of the scrolling region.

 da Indicates the terminal can retain display memory above what is
 visible.

 db Indicates the display memory can be retained below what is
 visible.

 dl1 Indicates the line the cursor is on can be deleted. This done
 only from the first position on the line to be deleted.
 Additionally, the dl capability takes a single parameter
 indicating the number of lines to be deleted.

 il1 Creates a new blank line before the line where the cursor is
 currently located and scrolls the rest of the screen down. This
 is done only from the first position of a line. The cursor then
 appears on the newly blank line. Additionally, the il
 capability can take a single parameter indicating the number of
 lines to insert.

 rc Restores the cursor. When used after the csr capability, it
 gives an effect similar to delete line.

 sc Saves the cursor. When used after the csr capability, it gives
 an effect similar to insert line.

 wind Indicates the terminal has the ability to define a window as
 part of memory. This a parameterized string with 4 parameters:
 the starting and ending lines in memory and the stating and
 ending columns in memory, in that order.

AIX Operating System Technical Reference
Insert/Delete Line

¦ Copyright IBM Corp. 1985, 1991
2.3.59.8 - 1

 2.3.59.9 Insert/Delete Character

 Generally, there are two kinds of programmable terminals with respect to
 insert/delete character operations which can be described using the
 terminfo file. The most common insert/delete character operations affect
 only the characters on the current line and shift characters to the right
 and off the line. Other terminals make a distinction between typed and
 untyped blanks on the screen, shifting data displayed to insert or delete
 at a position on the screen occupied by an untyped blank, which is either
 eliminated or expanded to two untyped blanks. Clearing the screen and
 then typing text separated by cursor motions differentiates between the
 terminal types. You can determine the kind of terminal you have by doing
 the following:

 1. Type abc def using local cursor movements, not spaces, between the
 abc and the def.

 2. Position the cursor before the abc and place the terminal in insert
 mode. If typing characters causes the characters on the line to the
 right of the cursor to shift and exit the right side of the display,
 the terminal does not distinguish between blanks and untyped
 positions. If the abc moves to positions to the immediate left of the
 def and the characters move to the right on the line, around the end,
 and to the next line, the terminal is the second type. This is
 described by the in capability, which signifies insert null.

 While these are two logically separate attributes (one line vs. multiline
 insert mode, and special treatment of untyped spaces) there are no known
 terminals whose insert mode cannot be described with the single attribute.

 The terminfo file can describe both terminals having an insert mode and
 terminals that send a simple sequence to open a blank position on the
 current line. The following are used to describe insert or delete
 character capabilities:

 dch1 Deletes a single character. dch with one parameter, n deletes n
 characters.

 ech Erases n characters (equivalent to typing n blanks without
 moving the cursor) with one parameter.

 ich1 Precedes the character to be inserted. Most terminals with an
 insert mode do not use this. Terminals that send a sequence to
 open a screen position should give it. (If the terminal has
 both, insert mode is usually preferable to ich1. Do not give
 both unless the terminal actually requires both to be used in
 combination.)

 ip Indicates post padding needed. This is given as a number of
 milliseconds. Any other sequence that may need to be sent after
 inserting a single character can be given in this capability.

 mir Allows cursor motion while in insert mode. It is sometimes
 necessary to move the cursor while in insert mode to delete
 characters on the same line. Some terminals may not have this
 capability due to their handling of insert mode.

 rmdc Exits delete mode.

 rmir Ends insert mode.

AIX Operating System Technical Reference
Insert/Delete Character

¦ Copyright IBM Corp. 1985, 1991
2.3.59.9 - 1

 smdc Enters delete mode.

 smir Begins insert mode.

 Note that if your terminal needs both to be placed in an insert mode and a
 special code to precede each inserted character, then both smir/rmir and
 ich1 can be given, and both will be used. The ich capability, with one
 parameter, n, will repeat the effects of ich1 n times.

AIX Operating System Technical Reference
Insert/Delete Character

¦ Copyright IBM Corp. 1985, 1991
2.3.59.9 - 2

 2.3.59.10 Highlighting, Underlining, and Visual Bells

 If your terminal has one or more kinds of display attributes such as
 highlighting, underlining, and visual bells, these can be presented in a
 number of ways. Highlighting, such as standout mode, presents a good,
 high contrast, easy-on-the-eyes format to add emphasis to error messages,
 and other attention getters. Underlining is another method to focus
 attention to a particular portion of the terminal. Visual bells include
 methods such as flashing the screen. The following capabilities describe
 highlighting, underlining, and visual bells for a terminal:

 blink Indicates terminal has blink highlighting mode.

 bold Indicates terminal has extra bright highlighting mode.

 civis Causes the cursor to be invisible.

 cnorm Causes the cursor to display normal. This capability reverses
 the effects of the civis and cvvis capabilities.

 cvvis Causes the cursor to be more visible than normal when it is not
 on the bottom line.

 dim Indicates the terminal has half-bright highlighting modes.

 eo Indicates blanks erase overstrikes.

 flash Indicates the terminal has a way of flashing the screen (a bell
 replacement) for errors without moving the cursor.

 invis Indicates the terminal has blanking or invisible text
 highlighting modes.

 msgr Indicates it is safe to move the cursor while in standout mode.
 Otherwise, programs using standout mode should exit standout
 mode before moving the cursor or sending a new-line. Some
 terminals automatically leave standout mode when they move to a
 new line or the cursor is addressed.

 prot Indicates the terminal has protected highlighting mode.

 rev Indicates the terminal has reverse video mode.

 rmso Exits standout mode.

 rmul Ends underlining.

 sgr Sets attributes. sgr0 turns off all attributes. Otherwise, if
 the terminal allows a sequence to set arbitrary combinations of
 modes, sgr takes 9 parameters. Each parameter is either 0 or 1,
 as the corresponding attribute is on or off. The 9 parameters
 are in this order: standout, underline, reverse, blink, dim,
 bold, blank, protect, and alternate character set. (sgr can
 only support those modes for which separate attributes exist on
 a particular terminal.)

 smcup and rmcup
 Indicates the terminal needs to be in a special mode when
 running a program that uses any of the highlighting, underlining
 or visual bell capabilities. smcup enters this mode, while

AIX Operating System Technical Reference
Highlighting, Underlining, and Visual Bells

¦ Copyright IBM Corp. 1985, 1991
2.3.59.10 - 1

 rmcup exits this mode. This need arises, for example, from
 terminals with more than one page of memory. If the terminal
 has only memory relative cursor addressing, and not screen
 relative cursor addressing, a screen-sized window must be fixed
 into the terminal for cursor addressing to work properly. This
 is also used where smcup sets the command character to be used
 by the terminfo file.

 smso Enters standout mode.

 smul Begins underlining.

 uc Underlines the current character and moves the cursor one space
 to the right.

 ul Indicates the terminal correctly generates underlined characters
 (with no special codes needed) even though it does not
 overstrike.

 xmc Indicates the number of blanks left if the capability to enter
 or exit standout mode leaves blank spaces on the screen.

AIX Operating System Technical Reference
Highlighting, Underlining, and Visual Bells

¦ Copyright IBM Corp. 1985, 1991
2.3.59.10 - 2

 2.3.59.11 Keypad

 If the terminal has a keypad that transmits codes when the keys are
 pressed, this information can be given. Note that it is not possible to
 handle terminals where the keypad only works in local mode. If the keypad
 can be set to transmit or not transmit, give these codes as smkx and rmkx.
 Otherwise the keypad is assumed to always transmit. The codes sent by the
 left arrow, right arrow, up arrow, down arrow, and home keys can be given
 as kcub1, kcuf1, kcuu1, kcud1, and khome, respectively. If there are
 function keys such as F0, F1,..., F10, the codes they send
 can be given as kf0, kf1,..., kf10. If these keys have labels other than
 the default F0 through F10, the labels can be given as lf0, lf1,..., lf10.
 The codes transmitted by certain other special keys can be given as:

 kbs Indicates the backspace key.

 kclr Indicates the clear screen or erase key.

 kctab Indicates clear the tab stop in this column.

 kdch1 Indicates the delete character key.

 kdl1 Indicates the delete line key.

 ked Indicates clear to end of screen.

 kel Indicates clear to end of line.

 khts Indicates set a tab stop in this column.

 kich1 Indicates insert character or enter insert mode.

 kil1 Indicates insert line.

 kind Indicates scroll forward and/or down.

 kll Indicates home down key (home is the lower left corner of the
 display, in this instance).

 kmir Indicates exit insert mode.

 knp Indicates next page.

 kpp Indicates previous page.

 ktbc Indicates the clear all tabs key.

 ri Indicates scroll backward and/or up.

 In addition, if the keypad has a 3-by-3 array of keys including the 4
 arrow keys, the other 5 keys can be given as ka1, ka3, kb2, kc1, and kc3.
 These keys are useful when the effects of a 3-by-3 directional pad are
 needed.

AIX Operating System Technical Reference
Keypad

¦ Copyright IBM Corp. 1985, 1991
2.3.59.11 - 1

 2.3.59.12 Tabs and Initialization

 If the terminal has hardware tabs, the command to advance to the next tab
 stop can be given as ht (usually Ctrl-I). A "backtab" command which moves
 left toward the previous tab stop can be given as cbt. By convention, if
 the terminal modes indicate that tabs are being expanded by the operating
 system rather than being sent to the terminal, programs should not use ht
 or cbt even if they are present, since the user may not have the tab stops
 properly set. If the terminal has hardware tabs that are initially set
 every n spaces when the terminal is powered up, the numeric parameter it
 is given, showing the number of spaces the tabs are set to. This is
 normally used by the tset command to determine whether to set the mode for
 hardware tab expansion, and whether to set the tab stops. If the terminal
 has tab stops that can be saved in nonvolatile memory, the terminfo
 description can assume that they are properly set.

 Other capabilities include is1, is2, and is3, initialization strings for
 the terminal, iprog, the path name of a program to be run to initialize
 the terminal, and if, the name of a file containing long initialization
 strings. These strings are expected to set the terminal into modes
 consistent with the rest of the terminfo description. They are normally
 sent to the terminal, by the tset program, each time the user logs in.
 They are printed in the following order: is1, is2, setting tabs using tbc
 and hts; if; running the program iprog; and finally is3. Most
 initialization is done with is2. Special terminal modes can be set up
 without duplicating strings by putting the common sequences in is2 and
 special cases in is1 and is3. A pair of sequences that does a harder
 reset from a totally unknown state can be analogously given as rs1, rs2,
 rf, and rs3, analogous to is2 and if. These strings are output by the
 reset program, which is used when the terminal starts behaving strangely,
 or not responding at all. Commands are normally placed in rs2 and rf only
 if they produce annoying effects on the screen and are not necessary when
 logging in. For example, the command to set the terminal into 80-column
 mode would normally be part of is2, but it causes an annoying screen
 behavior and is not normally needed since the terminal is usually already
 in 80-column mode.

 If there are commands to set and clear tab stops, they can be given as tbc
 (clear all tab stops) and hts (set a tab stop in the current column of
 every row). If a more complex sequence is needed to set the tabs than can
 be described by this, the sequence can be placed in is2 or if.

 Certain capabilities control padding in the terminal driver. These are
 primarily needed by hard copy terminals, and are used by the tset program
 to set terminal modes appropriately. Delays embedded in the capabilities
 cr, ind, cub1, ff, and tab cause the appropriate delay bits to be set in
 the terminal driver. If pb (padding baud rate) is given, these values can
 be ignored at baud rates below the value of pb.

AIX Operating System Technical Reference
Tabs and Initialization

¦ Copyright IBM Corp. 1985, 1991
2.3.59.12 - 1

 2.3.59.13 Miscellaneous Strings

 If the terminal requires other than a null (zero) character as a pad, then
 this can be given as pad. Only the first character of the pad string is
 used.

 If the terminal has an extra "status line" that is not normally used by
 software, this fact can be indicated. If the status line is viewed as an
 extra line below the bottom line, into which one can cursor address
 normally, the capability hs should be given. Special strings to go to the
 beginning of the status line and to return from the status line can be
 given as tsl and fsl. (fsl must leave the cursor position in the same
 place it was before tsl. If necessary, the sc and rc strings can be
 included in tsl and fsl to get this effect.) The parameter tsl takes one
 parameter, which is the column number of the status line the cursor is to
 be moved to. If escape sequences and other special commands, such as tab,
 work while in the status line, the flag eslok can be given. A string that
 turns off the status line (or otherwise erases its contents) should be
 given as dsl. If the terminal has commands to save and restore the
 position of the cursor, give them as sc and rc. The status line is
 normally assumed to be the same width as the rest of the screen, such as,
 cols. If the status line is a different width (possibly because the
 terminal does not allow an entire line to be loaded) the width, in
 columns, can be indicated with the numeric parameter wsl.

 If the terminal can move up or down half a line, this can be indicated
 with hu (half-line up) and hd (half-line down). This is primarily useful
 for superscripts and subscripts on hardcopy terminals. If a hardcopy
 terminal can eject to the next page (form-feed), give this as ff (usually
 Ctrl-L).

 If there is a command to repeat a given character a given number of times
 (to save time transmitting a large number of identical characters) this
 can be indicated with the parameterized string rep. The first parameter
 is the character to be repeated and the second is the number of times to
 repeat it. Thus, tparm(repeat_char,'x',10) is the same as xxxxxxxxxx.

 If the terminal has a "meta key" which acts as a shift key, setting the
 eighth bit of any character transmitted, this fact can be indicated with
 km. Otherwise, software will assume that the eighth bit is parity and it
 will usually be cleared. If strings exist to turn this "meta mode" on and
 off, they can be given as smm and rmm.

 If the terminal has more lines of memory than will fit on the screen at
 once, the number of lines of memory can be indicated with lm. A value of
 lm#0 indicates that the number of lines is not fixed, but that there is
 still more memory than fits on the screen.

 Media copy strings that control an auxiliary printer connected to the
 terminal can be given in the following ways: mc0 prints the contents of
 the screen, mc4 turns off the printer, and mc5 turns on the printer. When
 the printer is on, all text sent to the terminal is sent to the printer.
 It is undefined whether the text is also displayed on the terminal screen
 when the printer is on. A variation mc5p takes one parameter, and leaves
 the printer on for as many characters as the value of the parameter, then
 turns the printer off. The parameter should not exceed 255. All text,
 including mc4, is transparently passed to the printer while an mc5p is in
 effect.

 Strings to program function keys can be given as pfkey, pfloc, and pfx.

AIX Operating System Technical Reference
Miscellaneous Strings

¦ Copyright IBM Corp. 1985, 1991
2.3.59.13 - 1

 Each of these strings takes two parameters: the function key number to
 program (from 0 to 10) and the string to program it with. Function key
 numbers out of this range can program undefined keys in a
 terminal-dependent manner. The difference between the capabilities is
 that pfkey causes pressing the given key to be the same as the user typing
 the given string; pfloc causes the string to be executed by the terminal
 in local mode; and pfx causes the string to be transmitted to the
 computer.

AIX Operating System Technical Reference
Miscellaneous Strings

¦ Copyright IBM Corp. 1985, 1991
2.3.59.13 - 2

 2.3.59.14 Indicating Terminal Problems

 Terminals that do not allow ~ (tilde) characters to be displayed should
 indicate hz.

 Terminals that ignore a line-feed character immediately after an am wrap
 should indicate xenl.

 If el is required to get rid of standout (instead of merely writing normal
 text on top of it), xhp should be given.

 Terminals for which tabs turn all characters moved to blanks should
 indicate xt (destructive tabs). This capability is interpreted to mean
 that it is not possible to position the cursor on top of the pads inserted
 for standout mode. Instead, it is necessary to erase standout mode using
 delete and insert line.

 The terminal that is unable to correctly transmit the ESC (escape) or
 Ctrl-C characters has xsb, indicating that the F1 key is used for ESC and
 F2 for Ctrl-C.

 Other specific terminal problems can be corrected by adding more
 capabilities of the form xx.

AIX Operating System Technical Reference
Indicating Terminal Problems

¦ Copyright IBM Corp. 1985, 1991
2.3.59.14 - 1

 2.3.59.15 Similar Terminals

 If two terminals are very similar, one can be defined as being just like
 the other with certain exceptions. The string capability use can be given
 with the name of the similar terminal. The capabilities given before use
 override those in the terminal type invoked by use. A capability can be
 cancelled by placing xx@ to the left of the capability definition, where
 xx is the capability. For example, the entry:

 term-nl, smkx@, rmkx@, use=term,

 defines a terminal that does not have the smkx or rmkx capabilities, and
 hence does not turn on the function key labels when in visual mode. This
 is useful for different modes for a terminal, or for different user
 preferences.

AIX Operating System Technical Reference
Similar Terminals

¦ Copyright IBM Corp. 1985, 1991
2.3.59.15 - 1

 2.3.59.16 Data Base File Names

 Compiled terminfo descriptions are placed in subdirectories under
 /usr/lib/terminfo in order to avoid performing linear searches through a
 single directory containing all of the terminfo description files. A
 given description file is stored in /usr/lib/terminfo/c/name, where name
 is the name of the terminal, and c is the first letter of the terminal
 name. For example, the compiled description for the terminal term4-nl can
 be found in the file /usr/lib/terminfo/t/term4-nl You can create synonyms
 for the same terminal by making multiple links to the same compiled file.
 (See the ln command in AIX Operating System Commands Reference on how to
 create multiple links to a file.)

 Example
 The following entry, which describes a terminal, is among the entries in
 the terminfo file.

 hft|High Function Terminal,
 cr=^M, cud1=|J, ind=\E[S, bel=^G, il1=\E[L, am, cub1=^H, ed=\E[J,
 el=\E[K, clear=\E[H\E[J, cup=\E[%ip1%d;%p2%dH, cols#80, lines#25,
 dch1=\E[P, dl1=\E[M, home=\E[H,
 ich=\E[%p1%d@, ich1=\E[@, smir=\E[4h, rmir=\E4l,
 bold=\E[1m, rev=\E[7m, blink=\E[5m, invis=\E[8m, sgr0=\E[0m,
 sgr=\E[%?%p1%t7;%;%?%p2%t4;%;%?%p3%t7;%;%?%p4%t5;%;%?%p6%t1;%;m,
 kcuu1=\E[A, kcud1=\E[B, kcub1=\E[D,
 kcuf1=\E[C, khome=\E[H, kbs=^H, kbtab=\[Z
 cuf1=\E[C, ht=^I, cuu1=\E[A, xon,
 rmul=\E[m, smul=\E[4m, rmso=\E[m, smso=\E[7m,
 kpp=\E[150q, knp=\E[154q,
 kf1=\E[001q, kf2=\E[002q, kf3=\E[003q, kf4=\E[004q,
 kf5=\E[005q, kf6=\E[006q, kf7=\E[007q, kf8=\E[008q,
 kf9=\E[009q, kf10=\E[010q, kf11=\E[011q, kf12=\E[012q,
 bw, it#8, ms,
 hpa=\E%i%p1%dG, ech=\E[%p1dx,
 kdch1=\E[P, kind=\E[151q, kich1=\E[139q, krmir=\E[41,
 knl=^M, ko=^I, ktab=^I, kri=\E[155q, kend=\E[146q
 cub=\E[%p1%dD, cuf=\E[%p1%dC, indn=\E[%p1dS, rin=\E[%p1%dT,
 ri=\E[T, cuu=\E[%p1%dA, cud=\E[%p1%dB,
 box1=\332\304\277\263 \331\300\302\264\301\303\305,
 box2=\311\315\273\272 \274\310\313\271\312\314\316,
 batt2=md,

 File

 /usr/lib/terminfo/?/* Compiled terminal capability data base.

 Related Information
 In this book: "curses" in topic 1.2.56, "Terminfo Level Subroutines" in
 topic 1.2.56.2, "extended curses library" in topic 1.2.74, "printf,
 fprintf, sprintf, NLprintf, NLfprintf, NLsprintf, wsprintf" in
 topic 1.2.208, "termdef" in topic 1.2.302, and "TERM" in topic 2.4.26.

 The display and tic commands in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
Data Base File Names

¦ Copyright IBM Corp. 1985, 1991
2.3.59.16 - 1

 2.3.60 utmp, wtmp, .ilog

 Purpose
 Contains user and accounting information.

 Synopsis

 #include <utmp.h>

 Description

 When a user logs in successfully, the login program writes entries in
 /etc/utmp, the record of users logged into the system, and in
 /usr/adm/wtmp (if it exists), for use in accounting. On invalid login
 attempts (due to an incorrect login name or password), login makes entries
 in the /etc/.ilog file. When you log in as user root or su and the
 /etc/.ilog file is not empty, you see a message advising you to check the
 /etc/.ilog file for a record of unsuccessful login attempts.

 If the Transparent Computing Facility is installed, there is a unique
 /etc/utmp and a unique /usr/adm/wtmp for each cluster site (/etc/utmp and
 /usr/adm/wtmp are symbolic links into the local file system).

 The records in these files follow the utmp structure, which is defined in
 the utmp.h header file:

 #define UTMP_FILE "/etc/utmp"
 #define WTMP_FILE "/usr/adm/wtmp"
 #define ILOG_FILE "/etc/.ilog"

 #define ut_name ut_user

 struct utmp
 {
 char ut_user[8]; /* User login name */
 char ut_id[6]; /* id from /etc/inittab */
 char ut_line[12]; /* device name (console, ttyx) */
 pid_t ut_pid; /* process id */
 short ut_type; /* type of entry */
 struct exit_status
 {
 short e_termination; /* Process termination status */
 short e_exit; /* Process exit status */
 }
 ut_exit; /* The exit status of a process */
 /* marked as DEAD_PROCESS. */
 time_t ut_time; /* time entry was made */
 char ut_host[16]; /* host name if remote login */
 long ut_lsite; /* reserved */
 datarep_t ut_datarep[4]; /* reserved */
 };

 /* Definitions for ut_type */

 #define EMPTY 0
 #define RUN_LVL 1
 #define BOOT_TIME 2
 #define OLD_TIME 3

AIX Operating System Technical Reference
utmp, wtmp, .ilog

¦ Copyright IBM Corp. 1985, 1991
2.3.60 - 1

 #define NEW_TIME 4
 #define INIT_PROCESS 5 /* Process spawned by "init" */
 #define LOGIN_PROCESS 6 /* A "getty" process waiting for login */
 #define USER_PROCESS 7 /* A user process */
 #define DEAD_PROCESS 8
 #define ACCOUNTING 9
 #define UTMAXTYPE ACCOUNTING /* Largest legal value of ut_type */

 /* Special strings or formats used in the "ut_line" field when */
 /* accounting for something other than a process. */
 /* No string for the ut_line field can be more than 11 chars + */
 /* a NULL in length. */

 #define RUNLVL_MSG "run-level ?"
 #define BOOT_MSG "system boot"
 #define OTIME_MSG "old time"
 #define NTIME_MSG "new time"

 Files

 /etc/utmp Record of users logged into the system
 /usr/adm/wtmp Accounting information
 /etc/.ilog Record of invalid logins.

 The ut_datarep field has the value DR_LOCAL_FORMAT. This value encodes
 the CPU byte ordering for the machine on which the entry was created.
 This value is different for AIX/370 and AIX PS/2.

 Related Information
 The login, who, and write commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
utmp, wtmp, .ilog

¦ Copyright IBM Corp. 1985, 1991
2.3.60 - 2

 2.4 Chapter 4. Miscellaneous Facilities

 Subtopics
 2.4.1 About This Chapter
 2.4.2 ascii
 2.4.3 data stream
 2.4.4 display symbols
 2.4.5 ebcdic
 2.4.6 environment
 2.4.7 eqnchar
 2.4.8 fcntl.h
 2.4.9 greek
 2.4.10 langinfo.h
 2.4.11 limits.h
 2.4.12 locale.h
 2.4.13 math.h
 2.4.14 mbcs.h
 2.4.15 mm
 2.4.16 mptx
 2.4.17 mv
 2.4.18 netgroup
 2.4.19 nl_types.h
 2.4.20 param.h
 2.4.21 stdarg.h
 2.4.22 stat.h
 2.4.23 stddef.h
 2.4.24 stdlib.h
 2.4.25 string.h
 2.4.26 TERM
 2.4.27 types.h
 2.4.28 values.h

AIX Operating System Technical Reference
Chapter 4. Miscellaneous Facilities

¦ Copyright IBM Corp. 1985, 1991
2.4 - 1

 2.4.1 About This Chapter

 This chapter describes miscellaneous facilities, such as macro packages
 and character set tables.

AIX Operating System Technical Reference
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
2.4.1 - 1

 2.4.2 ascii

 Purpose
 Maps the ASCII character set.

 Synopsis
 cat /usr/pub/ascii

 Description
 ASCII is a map of the ASCII character set that gives both the octal and
 hexadecimal equivalents for each character. This file can be printed as
 needed.

 Note: This is neither the PC ASCII nor the AIX ASCII character set. See
 "data stream" in topic 2.4.3 for information about these character
 sets.

 The contents of this file are:

 Figure 4-1. Octal ASCII Character Set

 Figure 4-2. Hexadecimal ASCII Character Set

 File
 /usr/pub/ascii

AIX Operating System Technical Reference
ascii

¦ Copyright IBM Corp. 1985, 1991
2.4.2 - 1

 2.4.3 data stream

 Purpose
 Defines the data stream that an HFT virtual terminal uses in KSR mode.

 Description
 AIX is capable of addressing 1024 distinct displayable characters. To
 designate these characters using 8-bit bytes, a code page convention is
 used. Each code page is an ordered set of up to 256 characters, which are
 called code points. The first 32 code points of each code page are
 reserved for control codes and are the same for all code pages. The
 control codes do not have graphic representations, so each code page can
 have a maximum of 224 distinct graphic characters.

 The remaining characters are included in a code page called P0. Two
 additional code pages called USER1 and USER2 are provided for user-defined
 symbols.

 Code points in the range 32 to 127 (0x20 to 0x7F) of code page P0
 represent the standard 7-bit US ASCII graphic symbols. P0 code points 128
 to 255 (0x80 to 0xFF).

 The following code page map shows the predefined graphic display symbols
 and their code point values in code page P0.

 Subtopics
 2.4.3.1 Hardware limitation
 2.4.3.2 Nonspacing Characters
 2.4.3.3 Controls

AIX Operating System Technical Reference
data stream

¦ Copyright IBM Corp. 1985, 1991
2.4.3 - 1

 2.4.3.1 Hardware limitation

 You will not be able to display all the symbols described in this section
 on the VGA adapter if you have changed from the standard software
 character mode to the optional hardware character mode. This can be done
 with either the display command or with a change font order to the hft
 device driver.

 Figure 4-3. Code Page P0

AIX Operating System Technical Reference
Hardware limitation

¦ Copyright IBM Corp. 1985, 1991
2.4.3.1 - 1

 2.4.3.2 Nonspacing Characters

 For convenience when typing diacritical (accented) characters, a
 nonspacing or "dead" character facility is provided. A nonspacing
 character sequence is a two-key sequence consisting of one of the 13
 diacritics followed by an alphabetic character or a space. The virtual
 terminal subsystem converts this two-key sequence into a single code point
 that may have a single-shift prefix. The resulting character is the
 alphabetic character with the specified diacritic mark. A diacritic
 followed by a space translates to the diacritic character itself.
 The 13 valid diacritics are:

 If a nonspacing character and the following character do not combine to
 form a diacritical character in the set of predefined graphic symbols,
 then the diacritic is treated as a separate character code. For example,
 ~Q is treated as two characters, ~ and Q.

 Note that nonspacing characters apply only to keyboard input and are not a
 feature of the data stream used by applications. Also, a diacritic must
 be explicitly designated as being nonspacing in the keyboard mapping for
 this facility to operate. None of the keys on the standard U.S. keyboard
 mapping are defined to be nonspacing characters. However, nonspacing
 characters can be defined. See "Set Keyboard Map (HFSKBD)" in
 topic 2.5.11.8.5 for details.

AIX Operating System Technical Reference
Nonspacing Characters

¦ Copyright IBM Corp. 1985, 1991
2.4.3.2 - 1

 2.4.3.3 Controls

 Two types of controls are valid in a character stream data:

 � Single-byte controls (also called control characters and control
 codes), which have character values from 0 to 31 (0x00 to 0x1F)

 � Multi-byte controls, which are also called escape sequences an
 control sequences.

 Subtopics
 2.4.3.3.1 Single-Byte Controls
 2.4.3.3.2 Multi-Byte Controls

AIX Operating System Technical Reference
Controls

¦ Copyright IBM Corp. 1985, 1991
2.4.3.3 - 1

 2.4.3.3.1 Single-Byte Controls

 The following list shows the single-byte controls and their interpretation
 in KSR coded data. A line introducing each control gives its mnemonic,
 its code value, and its function.

 � NUL, 0x00, (Null) has no terminal function

 � SOH, 0x01, (Start of Header) has no terminal function

 � STX, 0x02, (Start of Text) has no terminal function

 � ETX, 0x03, (End of Text) has no terminal function

 � EOT, 0x04, (End of Transmission) has no terminal function

 � ENQ, 0x05, (Enquiry) has no terminal function

 � ACK, 0x06, (Acknowledge) has no terminal function

 � BEL, 0x07, (Bell) causes an audible alarm to sound

 � BS, 0x08, (Backspace) moves the cursor position to the left on
 column, unless the cursor is at the left boundary of the presentation
 space. In that case, the cursor position does not change.

 � HT, 0x09, (Horizontal Tab) moves the cursor position forward to th
 next tab stop. If the cursor is already in the last column of a line,
 then the cursor position does not change. Note that the CHT (cursor
 horizontal tab) multibyte control performs a similar operation, but
 also performs line wrapping.

 � LF, 0x0A, (Line Feed) if the LNM mode is reset, the line feed move
 the cursor position down one line. If the LNM mode is set (default),
 the line feed is treated as a NEL and moves the cursor position to the
 first position of the next line. In either case, if the cursor is
 already on the last line of the PS, the PS lines scroll up one line.
 The top line of the PS disappears and a blank line is inserted as the
 new bottom line.

 � VT, 0x0B, (Vertical Tab) moves the cursor position down to the nex
 line that is defined as a vertical tab stop. Tabs stops are always
 set at the first and last lines of the PS. If the cursor was already
 on the last line of the PS and HFWRAP mode is not set, the cursor
 stays on the last line in the PS. If HFWRAP mode is set, the cursor
 moves to the top line in the PS. The column position does not change
 in any case.

 � FF, 0x0C, (Form Feed) treated as a line end

 � CR, 0x0D, (Carriage Return) if the CNM mode is reset (default), th
 carriage return moves the cursor position to the first character of
 the line indicated by the cursor. If the CNM mode is set, the
 carriage return is treated as an NEL and causes the cursor position to
 move to the first position of the next line. In this case, if the
 cursor is already on the last line of the PS, the PS lines scroll up
 one line. The top line of the PS disappears and a blank line is
 inserted as the new bottom line.

 � SO, 0x0E, (Shift Out) maps the subsequently received graphic codes t

AIX Operating System Technical Reference
Single-Byte Controls

¦ Copyright IBM Corp. 1985, 1991
2.4.3.3.1 - 1

 display symbols according to the active G1 character set. See
 "display symbols" in topic 2.4.4 for a list of the display symbols.

 � SI, 0x0F, (Shift In) maps the subsequently received graphic codes t
 display symbols according to the active G0 character set. See
 "display symbols" in topic 2.4.4 for a list of the display symbols.

 � DLE, 0x10, (Data Link Escape) has no terminal function

 � DC1, 0x11, (Device Control 1) has no terminal function when output

 � DC2, 0x12, (Device Control 2) has no terminal function

 � DC3, 0x13, (Device Control 3) has no terminal function when output

 � DC4, 0x14, (Device Control 4) has no terminal function

 � NAK, 0x15, (Negative Acknowledgment) has no terminal function

 � SYN, 0x16, (Synchronous) has no terminal function

 � ETB, 0x17, (End of Block) has no terminal function

 � CAN, 0x18, (Cancel) has no terminal function

 � EM, 0x19, (End of Medium) has no terminal function

 � SUB, 0x1A, (Substitute) has no terminal function

 � ESC, 0x1B, (Escape) defines the beginning of a multibyte contro
 sequence as defined in "Multi-Byte Controls" in topic 2.4.3.3.2.

 � DEL, 0x7F, (Delete) has no terminal function

AIX Operating System Technical Reference
Single-Byte Controls

¦ Copyright IBM Corp. 1985, 1991
2.4.3.3.1 - 2

 2.4.3.3.2 Multi-Byte Controls

 This section defines the code points and effects on the virtual terminal
 for multibyte control sequences that are recognized in KSR mode. All of
 them begin with the ESC code (0x1B) followed by a [(0x5B) and include all
 subsequent bytes up to and including the first code in the range
 0x40--0x7F. Any multibyte control sequences not defined below are
 ignored. Invalid sequences return an error Device Status Report to the
 program. Multi-byte control sequences of more than 16 codes are
 considered invalid on receipt of the 17th code. The next code is not
 considered a part of that sequence. Also, numeric parameters in control
 sequences contain no more than 3 digits. The numeric value of the
 parameter may be incorrect if more than three digits are used, and the
 numeric value never exceeds 255.

 Controls effect a virtual terminal's presentation space (PS) and its
 related cursor (pointer into the PS). The presentation space is a logical
 array of display symbols, N columns by M lines.

 The following list gives the valid multibyte control code sequences. A
 line introducing each control gives its mnemonic, its code sequence, and
 its function. The code sequence is shown in terms of ASCII characters.
 For example, the sequence ESC A represents two codes with a value of
 0x1B41.

 � CBT ESC [PN Z Cursor Back Tab

 Moves the cursor back the number of horizontal tab stops specified by
 PN. Tab stops are always set at the first and last columns of each
 line. If the cursor is already in the first column of a line and
 HFWRAP mode is set, the cursor moves to the last column. If AUTONL is
 also set, the cursor moves to the last column of the previous line.
 In this case, if the cursor is already on the first row of the PS, it
 moves to the last row.

 � CHA ESC [PN G Cursor Horizontal Absolute

 Moves the cursor to the column specified by PN, unless the column
 exceeds the PS width. If the column exceeds the PS width, the cursor
 moves to the PS column farthest to the right.

 � CHT ESC [PN I Cursor Horizontal Tab

 Moves the cursor position forward to the PN(th) following tab stop.
 If the cursor is already in the last column of a line and HFWRAP mode
 is set, then the cursor returns to the first column of the line. If
 AUTONL mode is also set, then the cursor moves to the first column of
 the next line. In this case, if the cursor is already on the last
 line of the PS, then the cursor moves to the first column of the first
 line. Note that the HT (horizontal tab) single-byte control does not
 cause wrapping to occur.

 � CTC ESC [PS W Cursor Tab Stop Control

 0 Set a horizontal tab at cursor.
 1 Set a vertical tab at cursor.
 2 Clear a horizontal tab at cursor.
 3 Clear a vertical tab at cursor.
 4 Clear all horizontal tabs on line.
 5 Clear all horizontal tabs.

AIX Operating System Technical Reference
Multi-Byte Controls

¦ Copyright IBM Corp. 1985, 1991
2.4.3.3.2 - 1

 6 Clear all vertical tabs.

 Sets or clears one or more tabulation stops according to the parameter
 specified. Tab stops on the first or last column cannot be cleared.
 When horizontal tab stops are set or cleared, the number of lines
 affected is all (if Tabulation Stop Mode is set) or one (if Tabulation
 Stop Mode is reset). This control does not change the position of
 characters already in the presentation space.

 � CNL ESC [PN E Cursor Next Line

 Moves the cursor down the number of lines specified by PN, and over to
 the first position of that line. If the cursor was already on the
 bottom PS line and HFWRAP mode is not set, it is positioned at the
 beginning of that line. If HFWRAP mode is set, the cursor wraps from
 the bottom line to the top PS line.

 � CPL ESC [PN F Cursor Preceding Line

 Moves the cursor back the number of lines specified by PN, and over to
 the first position of that line. If the cursor was already on the top
 PS line and HFWRAP mode is not set, the cursor is positioned at the
 beginning of that line. If HFWRAP mode is set, the cursor wraps from
 the top line to the bottom line of the PS.

 � CPR ESC [PN ; PN R Cursor Position Report

 This is the report that is returned when you issue the Device Status
 Report Request (see DSR control). The first numeric parameter is the
 line number, and the second is the column. Line and column values are
 sent to the application as information. You do not normally send this
 report to the virtual terminal, but if you do, it is treated as a CUP
 control.

 � CUB ESC [PN D Cursor Backward

 Moves the cursor backward on the line the specified number of columns.
 If this cursor movement exceeds the left PS boundary and HFWRAP mode
 is not set, the cursor stops at the leftmost PS position. If HFWRAP
 mode is set, the cursor wraps from the leftmost column to the
 rightmost column of the preceding PS line. In HFWRAP mode the cursor
 also wraps from the home to the rightmost bottom position of the PS.

 � CUD ESC [PN B Cursor Down

 Moves the cursor down the number of lines specified by PN. If this
 cursor movement exceeds the bottom PS boundary and HFWRAP mode is not
 set, the cursor stops on the last PS line. If HFWRAP mode is set, the
 cursor wraps from the bottom line to the top line of the PS.

 � CUF ESC [PN C Cursor Forward

 Moves the cursor forward on the line the specified number of columns.
 If this cursor movement exceeds the right PS boundary and HFWRAP mode
 is not set, the cursor stops at the rightmost PS position. If HFWRAP
 mode is set, the cursor wraps from the rightmost column to the
 leftmost column of the following line in the PS. In HFWRAP mode, the
 cursor also wraps from rightmost bottom position to the home position
 of the PS.

AIX Operating System Technical Reference
Multi-Byte Controls

¦ Copyright IBM Corp. 1985, 1991
2.4.3.3.2 - 2

 � CUP ESC [PN ; PN H Cursor Position

 Moves the cursor to the line specified by the first parameter, and to
 the column specified by the second parameter. If this movement
 crosses a PS boundary, the cursor stops at the PS boundary.

 � CUU ESC [PN A Cursor up

 Moves the cursor up the specified number of lines. If this cursor
 movement exceeds the top PS boundary and HFWRAP mode is not set, the
 cursor stops on the first PS line. If HFWRAP mode is set, the cursor
 wraps from the top line to the bottom line in the PS.

 � CVT ESC [PN Y Cursor Vertical Tab

 Moves the cursor down the number of vertical tab stops specified. Tab
 stops are assumed at the top and bottom PS lines. If there are not
 enough vertical tab stops in the PS and HFWRAP mode is not set, the
 cursor stops on the last line in the PS. If HFWRAP mode is set, the
 cursor wraps from the bottom line to the top line of the PS.

 � DCH ESC [PN P Delete Character

 Deletes the cursor character and the following PN-1 characters on the
 line indicated by the cursor. The characters following the deleted
 characters on the line overlay the deleted character positions. The
 line is cleared from the end of the line to the edge of the
 presentation space. If the number of characters to be deleted exceeds
 the number of columns from the cursor to the PS right boundary, then
 all the characters from the cursor to the PS boundary are replaced
 with empty spaces and a DSR control sequence identifying an error is
 returned to the application.

 � DL ESC [PN M Delete Line

 Deletes the line and the PN-1 following lines in the PS. The lines
 following the deleted lines are scrolled up PN lines and PN blanks
 lines are placed at the bottom of the PS. If there are less than PN
 lines from the line indicated by the cursor to the bottom of the PS,
 the line indicated by the cursor and all the following PS lines are
 replaced with empty lines.

 � DSR ESC [PN n Device Status Report Request

 6 Request Cursor Position Report

 13 Error Report

 A request cursor position report (CPR) sends a cursor position report
 from the virtual terminal to the application. An error report is sent
 from the virtual terminal to the application when the virtual terminal
 receives an invalid control sequence. Error reports are private
 reports which conform to the ANSI standard for private parameters.

 � DMI ESC ' (left quote) Disable Manual Inpu

 This control, when received in an output data stream, causes keyboard
 input to this terminal to be ignored. This control is ignored when
 received from the keyboard.

AIX Operating System Technical Reference
Multi-Byte Controls

¦ Copyright IBM Corp. 1985, 1991
2.4.3.3.2 - 3

 � EMI ESC b Enable Manual Inpu

 This control, when received in an output data stream, restarts
 keyboard input recognition and buffering if previously disabled with a
 DMI multibyte control. This control is ignored when received from the
 keyboard.

 � EA ESC [0 O Erase to End of Are

 ESC [1 O Erase from Start of Area

 ESC [2 O Erase All of Area.

 This control is treated like an EL control sequence.

 � ED ESC [0 J Erase to End of Displa

 ESC [1 J Erase from Start of Display

 ESC [2 J Erase All of Display.

 Erases certain characters within the PS. Erased characters are
 replaced with empty spaces. Erase to end of display erases the
 character indicated by the cursor and all following characters in the
 PS. Erase from start of display erases the first character of first
 line and the following characters up to and including the character
 indicated by the cursor. Erase all of display erases all the
 characters on the PS.

 � EF ESC [0 N Erase to End of Fiel

 ESC [1 N Erase from Start of Field

 ESC [2 N Erase All of Field.

 Erases certain characters between horizontal tab stops. Erased
 characters are replaced with empty spaces. Erase to end of field
 erases the character indicated by the cursor and all following
 characters before the next tab stop. Erase from start of field erases
 the character at the tab stop preceding the cursor an the following
 characters up to and including the character indicated by the cursor.
 Erase all of field erases the character at the tab stop preceding the
 cursor, and the following characters up to and including the character
 at the tab stop following the cursor. Tab stops are assumed at the
 first and last columns of the PS when executing this control.

 � EL ESC [0 K Erase to End of Lin

 ESC [1 K Erase from Start of Line

 ESC [2 K Erase All of Line.

 Erases certain characters within a line. Erased characters are
 replaced with empty spaces. Erase to end of line erases the character
 indicated by the cursor and all following characters on the line.
 Erase from start of line erases the first character of first line and
 the following characters up to and including the character indicated
 by the cursor. Erase all of line erases all the characters on the
 line.

AIX Operating System Technical Reference
Multi-Byte Controls

¦ Copyright IBM Corp. 1985, 1991
2.4.3.3.2 - 4

 � ECH ESC [PN X Erase Character

 Erases the character indicated by the cursor and the following PN-1
 characters on that line. Erased characters are replaced with empty
 spaces. If there are less than PN characters from the cursor to the
 PS right boundary, then the character indicated by the cursor and all
 the following characters on the line are replaced empty spaces.

 � HTS ESC H Horizontal Tab Sto

 Sets a horizontal tab stop at the current horizontal position. If TSM
 is set, then the tab stop applies only to this line. If TSM is reset,
 then the tab stop applies to all PS lines. This control does not
 change the positioning of characters already in the presentation
 space.

 � HVP ESC [PN ; PN f Horizontal and Vertical Position

 Moves the cursor to the line specified by the first parameter, and to
 the column specified by the second parameter. If this movement would
 cross a PS boundary, the cursor stops at the current PS boundary.

 � ICH ESC [PN @ Insert Character

 Inserts PN empty spaces before the character indicated by the cursor.
 The string of characters starting with the character indicated by the
 cursor and ending with last character of the line are shifted PN
 columns to the right. Characters shifted past the PS right boundary
 are lost. The cursor does not move.

 � IL ESC [PN L Insert Line

 Inserts PN empty lines before the line indicated by the cursor. The
 line indicated by the cursor is scrolled down. The cursor position on
 the screen is not affected.

 � IND ESC D Inde

 Moves cursor down one line. If the cursor was already on the bottom
 line of the PS, then the top line is lost, the other lines move up one
 line, and a blank line becomes the new bottom line.

 � NEL ESC E Next Lin

 Moves the cursor to the first position of the following line. If the
 cursor was already on the bottom line of the PS, then the top line is
 lost, the other lines move up one, and a blank line becomes the new
 bottom line.

 � KSI ESC [PS p Keyboard Status Information

 The virtual terminal generates this control whenever HFHOSTS and
 HFXLATKBD are set and the status of the keyboard changes. Each
 selective parameter is the character-coded decimal value of a keyboard
 status byte. For example, if the keyboard has two status bytes, the
 control sequence is ESC [xxx;yyy p, where xxx is the value of the
 high-order byte and yyy is the value of the low-order byte. This is a
 private control that conforms to the ANSI standards for private
 control sequences. The virtual terminal display handler ignores this
 sequence whether it is received from the application or echoed.

AIX Operating System Technical Reference
Multi-Byte Controls

¦ Copyright IBM Corp. 1985, 1991
2.4.3.3.2 - 5

 � PFK ESC [PN q PF Key Report

 The control sequence is sent by the virtual terminal to the
 application when a program function key (PFK) code is received from
 the keyboard. The parameter PN is a PF key number from 1 to 255.
 This is a private control that conforms to the ANSI standards for
 private control sequences. This sequence is ignored by the virtual
 terminal display handler whether received from the application or
 echoed.

 � RCP ESC [u Restore Cursor Positio

 Moves the cursor to the position saved by the last SCP control. If no
 SCP has been received, then the cursor position is set to the first
 character of the first line. This is a private control that conforms
 to the ANSI standards for private controls. This control has no
 terminal function when received from the keyboard.

 � RI ESC L Reverse Inde

 Moves the cursor up one line, unless the cursor is already on the PS
 top line. In that case, if HFWRAP mode is not set, then the cursor
 does not move. If HFWRAP mode is set, the cursor moves to the bottom
 line of the PS. The column position does not change.

 � RIS ESC c Reset to Initial Stat

 Resets the virtual terminal to the state of a newly-opened virtual
 terminal: erases all PS data, places the cursor at the home position,
 resets graphic rendition to normal, resets subscripting and
 superscripting, and sets tab stops, modes, keyboard map, character
 maps and echo maps to their default values.

 � RM ESC [PS l Reset Mode

 20 LNM - Line Feed - New Line Mode
 4 IRM - Insert Mode
 12 SRM - Send Receive Mode (set ECHO off)
 18 TSM - Tabulation Stop Mode
 ?21 CNM - Carriage Return - New Line Mode
 ?7 AUTONL - Wrap character to following line when end of current
 line reached

 Resets the modes specified in the parameter string. Multiple
 parameters must be separated by semicolons. The modes that can be
 reset are listed above with the appropriate parameter code. All other
 mode parameters are ignored.

 TSM mode determines whether horizontal tabs apply identically to all
 line (TSM reset) or uniquely to each line on which they are set (TSM
 set).

 � SCP ESC [s Save Cursor Positio

 Saves the current cursor position. Any previously saved cursor
 position is lost. The cursor can be restored to this position with an
 RCP control. This is a private control that conforms to the ANSI
 standards for private controls. This control has no terminal function
 when received from the keyboard.

AIX Operating System Technical Reference
Multi-Byte Controls

¦ Copyright IBM Corp. 1985, 1991
2.4.3.3.2 - 6

 � SD ESC [PN T Scroll Down

 Moves all the PS lines down PN lines. The bottom PN lines are lost,
 and PN empty lines are put at the top of the presentation space.
 Physical cursor position does not change due to the scroll.

 � SL ESC [PN SP @ Scroll Left

 Moves all the PS characters PN column positions to the left. The
 characters in the PN leftmost PS columns are lost, and empty spaces
 are put in the rightmost PN columns of all lines. Physical cursor
 position does not change due to the scroll.

 � SR ESC [PN SP A Scroll Right

 Moves all the PS characters PN column positions to the right. The
 characters in the PN rightmost PS columns are lost, and empty spaces
 are put in the leftmost PN columns of all lines. Physical cursor
 position does not change due to the scroll.

 � SU ESC [PN S Scroll Up

 Moves all the PS lines up PN lines. The top PN lines are lost, and
 PN empty lines are put at the bottom of the presentation space. The
 physical cursor position does not change due to the scroll.

 � SGR ESC [PS m Set Graphic Rendition

 0 Normal (none of attributes 1-9)
 1 Bold or Bright
 4 Underscore
 5 Slow Blink
 7 Negative (reverse image)
 8 Cancelled On (invisible: set to background color)
 10 Primary Font
 11 First Alternate Font
 12 Second Alternate Font
 13 Third Alternate Font
 14 Fourth Alternate Font
 15 Fifth Alternate Font
 16 Sixth Alternate Font
 17 Seventh Alternate Font
 30 Color palette entry 0 foreground
 31 Color palette entry 1 foreground
 32 Color palette entry 2 foreground
 33 Color palette entry 3 foreground
 34 Color palette entry 4 foreground
 35 Color palette entry 5 foreground
 36 Color palette entry 6 foreground
 37 Color palette entry 7 foreground
 40 Color palette entry 0 background
 41 Color palette entry 1 background
 42 Color palette entry 2 background
 43 Color palette entry 3 background
 44 Color palette entry 4 background
 45 Color palette entry 5 background
 46 Color palette entry 6 background
 47 Color palette entry 7 background
 90 Color palette entry 8 foreground

AIX Operating System Technical Reference
Multi-Byte Controls

¦ Copyright IBM Corp. 1985, 1991
2.4.3.3.2 - 7

 91 Color palette entry 9 foreground
 92 Color palette entry 10 foreground
 93 Color palette entry 11 foreground
 94 Color palette entry 12 foreground
 95 Color palette entry 13 foreground
 96 Color palette entry 14 foreground
 97 Color palette entry 15 foreground
 100 Color palette entry 8 background
 101 Color palette entry 9 background
 102 Color palette entry 10 background
 103 Color palette entry 11 background
 104 Color palette entry 12 background
 105 Color palette entry 13 background
 106 Color palette entry 14 background
 107 Color palette entry 15 background.

 Causes the next characters received in the data stream or from the
 keyboard to have the display attributes specified by the parameter
 string. Any parameter not listed above is ignored.

 The attributes corresponding to parameters 1 through 9 are cumulative.
 For example, specifying underscore and then specifying blink causes
 following characters to be underscored and blink. To reset one of
 these attributes, specify normal and then reinstate the desired
 parameters. Multiple parameters are processed in the order listed.

 Whether the characters really have the requested attributes on the
 display depends on the capabilities of the physical display device
 used by the virtual terminal. The VGA adapter of the PS/2 does not
 implement all of the defined capabilities. See "Change Fonts" in
 topic 2.5.11.7.3 in the hft section of this manual for more
 information on this topic.

 You can obtain the attributes of any portion of the screen by issuing
 the query presentation space command which is also defined in the hft
 section of this manual under "Query Presentation Space Command" in
 topic 2.5.11.5.6.

 Characters that cannot be displayed do not exist in the system.

 � SG0A ESC (f Set G0 Character Se

 SG0B ESC , f Set G0 Character Set (Alternate form)

 : Unique One (User-defined)
 ; Unique Two (User-defined)
 < P0 (Display Symbols 32-255)
 = P1 (Display Symbols 256-479)
 > P2 (Display Symbols 480-703)
 ? User1 (Display Symbols 704-927)
 @ User2 (Display Symbols 928-1023)

 Designates the set of characters to use as the G0 set when the G0 set
 is invoked by SI. The default G0 set is the 224-character code page
 P0. Unique One and Unique Two may have unique definitions for each
 virtual terminal. When a virtual terminal is opened, these two sets
 are equivalent to <. See "Set User-Defined Character Set" in
 topic 2.5.11.8.3 about defining Unique One and Unique Two.

 � SG1A ESC) f Set G1 Character Se

AIX Operating System Technical Reference
Multi-Byte Controls

¦ Copyright IBM Corp. 1985, 1991
2.4.3.3.2 - 8

 SG1B ESC - f Set G1 Character Set (Alternate)

 : Unique One (User-defined)
 ; Unique Two (User-defined)
 < P0 (Display Symbols 32-255)
 = P1 (Display Symbols 256-479)
 > P2 (Display Symbols 480-703)
 ? User1 (Display Symbols 704-927)
 @ User2 (Display Symbols 928-1023)

 Designates the set of characters to use as the G1 set when the G1 set
 is invoked by SO. The default G1 set is the 224-character code page
 P0. Unique One and Unique Two may have unique definitions for each
 virtual terminal. When a virtual terminal is opened, these two sets
 are equivalent to <. See "Set User-Defined Character Set" in
 topic 2.5.11.8.3 about defining Unique One and Unique Two.

 � SM ESC [PS h Set Mode

 2 0 LNM - Line Feed - New Line Mode (default = 1)
 4 IRM - Insert Replace Mode (default = 0)
 1 2 SRM - Send Receive Mode (set echo off) (default = 0)
 1 8 TSM - Tabulation Stop Mode (default = 0)
 ? 2 1 CNM - Carriage Return - New Line Mode (default = 0)
 ? 7 AUTONL - Wrap to next line when end of line reached (default =
 1)

 Sets the modes specified in the parameter string. Multiple parameters
 must be separated by semicolons. The modes that can be set are listed
 above with the appropriate parameter code. All other mode parameters
 are ignored.

 SRM mode affects translated keyboard input handling. If SRM mode is
 set, translated keyboard input is never echoed by the virtual
 terminal, but is immediately returned to the application.

 TSM mode determines whether horizontal tabs apply to all lines
 identically (TSM reset) or if horizontal tabs apply uniquely to each
 line on which they are set (TSM set).

 � TBC ESC [PS g Tabulation Clear

 0 Horizontal tab at cursor column
 1 Vertical tab at line indicated by the cursor
 2 Horizontal tabs on line
 3 Horizontal tabs in presentation space
 4 Vertical tabs in presentation space.

 Clears tabulation stops specified by the parameters. Horizontal tab
 changes affect only the line indicated by the cursor if TSM is set,
 and horizontal tab changes affect all lines if TSM is reset. Any
 parameters not listed above are ignored. This control does not change
 the positioning of characters already in the presentation space.

 � VTA ESC [r Virtual Terminal Addressabilit

 This private control sequence precedes a binary header and associated
 data that provide status information on the IBM 5081 Display Adapter.

AIX Operating System Technical Reference
Multi-Byte Controls

¦ Copyright IBM Corp. 1985, 1991
2.4.3.3.2 - 9

 � VTD ESC [x Virtual Terminal Dat

 This private control sequence precedes a binary header and associated
 data. The block of data can be in formats other than character-coded
 data, such as binary format.

 � VTL ESC [y Virtual Terminal Device Inpu

 This private control sequence precedes binary format input data from a
 mouse, tablet, LPFK, or valuator device. See "Input Device Report" in
 topic 2.5.11.3.1 for details about how this control sequence is used.

 � VTR ESC [w Virtual Terminal Raw Keyboard Inpu

 This private control sequence precedes "raw" (untranslated) keyboard
 input data, which is in a binary format.

 � VTS ESC I Vertical Tab Sto

 Sets a vertical tab stop at the line indicated by the cursor. This
 control does not change the positioning of characters already in the
 presentation space.

 File

 /usr/pub/charset.ibm Contains AIX character set.

 Related Information
 In this book: "display symbols" in topic 2.4.4 and "hft" in topic 2.5.11.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

 The display command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
Multi-Byte Controls

¦ Copyright IBM Corp. 1985, 1991
2.4.3.3.2 - 10

 2.4.4 display symbols

 Purpose
 Defines the set of US and European character symbols that can be displayed
 on an HFT display device in KSR mode.

 Description

 Each character code passed in KSR data is translated into one of 1024
 10-bit display symbol codes. Codes 0 through 703 (0x2bf) are predefined
 to be common across all virtual terminals. Codes 704 (0x2c0) through 1023
 (0x3ff) are reserved for user-defined extensions to the display symbol
 set. Display symbols 0 through 31 (0x1f) represent control functions and
 have no graphic representations.

 Code page P0 contains all of the predefined characters. In addition to
 the predefined code page P0, you can define two code pages called Unique
 One and Unique Two. See "fonts" in topic 2.3.19, "data stream" in
 topic 2.4.3, and "Reconfigure (HFRCONF)" in topic 2.5.11.8.2 for
 information you need to define such character sets.

 The columns of the following tables represent:

 Font Position
 The position of the graphic display symbol within the font definition.

 Code Page/Code Point
 The code page of the symbol and the offset within that code page.

 char String
 The internal hexadecimal representation as a string of type char.

 NLchar Value
 The value of the NLchar data type that corresponds to the character.

 NCesc Esc Seq
 The ASCII character or escape sequence that corresponds to the
 character after being translated by the NCesc macro. See "conv" in
 topic 1.2.50 and "NLescstr, NLunescstr, NLflatstr" in topic 1.2.189 for
 related information.

 Subtopics
 2.4.4.1 Hardware limitation

AIX Operating System Technical Reference
display symbols

¦ Copyright IBM Corp. 1985, 1991
2.4.4 - 1

 2.4.4.1 Hardware limitation

 You will not be able to display all the symbols described in this section
 on the VGA adapter if you have changed from the standard software
 character mode to the optional hardware character mode. This can be done
 with either the display command or with a change font order to the hft
 device driver.

 The table begins at font position 32 because the first 32 positions are
 reserved for the single-byte controls.

 File

 /usr/pub/ibmcharset Contains PS/2 character set.

 Related Information
 In this book: "conv" in topic 1.2.50, "NLchar" in topic 1.2.188,
 "NLescstr, NLunescstr, NLflatstr" in topic 1.2.189, "fonts" in
 topic 2.3.19, "data stream" in topic 2.4.3, "hft" in topic 2.5.11, and
 "keyboard" in topic 2.5.13.

AIX Operating System Technical Reference
Hardware limitation

¦ Copyright IBM Corp. 1985, 1991
2.4.4.1 - 1

 2.4.5 ebcdic

 Purpose
 Maps the EBCDIC character set.

 Synopsis
 cat /usr/pub/ebcdic

 Description
 In the following table columns correspond to the high-order hexadecimal
 digits and rows correspond to low-order hexadecimal digits. The cells
 contain equivalent hexadecimal ASCII values, the symbols, and mnemonics
 common to EBCDIC and ASCII. Exceptions are flagged in Figure 4-5.

 Figure 4-4. EBCDIC Character Set

 EBCDIC ASCII
 (1) 13 tm 13 dc3
 (2) 1C ifs 1C fs
 (3) 1D igs 1D gs
 (4) 1E irs 1E rs
 (5) 1F ius 1F us
 (6) 4F or 7C or
 (7) 5F not 7E ¬
 (8) 9A 5E ^

 Figure 4-5. EBCDIC and ASCII Character Set Exceptions

 Note: The information provided in these tables describe only the EBCDIC
 character set which is used with the C locale. Other extended
 EBCDIC character sets are used for other locales. See the iconv
 command in the AIX Commands Reference for more information.

 File
 /usr/pub/ebcdic

 Related Information
 The dd command in AIX Operating System Commands Reference. The iconv,
 axeb, and ebxa commands in the AIX Commands Reference.

AIX Operating System Technical Reference
ebcdic

¦ Copyright IBM Corp. 1985, 1991
2.4.5 - 1

 2.4.6 environment

 Purpose
 Describes the user environment.

 Synopsis

 Subtopics
 2.4.6.1 Basic Environment
 2.4.6.2 International Character Support Environment
 2.4.6.3 The Basic Environment

AIX Operating System Technical Reference
environment

¦ Copyright IBM Corp. 1985, 1991
2.4.6 - 1

 2.4.6.1 Basic Environment

 HOME=path name of home directory
 PATH=directory search sequence
 TERM=terminal type
 TZ=time zone information
 LOGNAME=user's login name
 USER=user's login name
 LOGTTY=user's logged-in terminal line
 SHELL=default shell (sh only)
 CWD=current working directory
 MAIL=user's mailbox

AIX Operating System Technical Reference
Basic Environment

¦ Copyright IBM Corp. 1985, 1991
2.4.6.1 - 1

 2.4.6.2 International Character Support Environment

 NLIN=path name of the EBCDIC-to-ASCII translation table
 NLOUT=path name of the ASCII-to-EBCDIC translation table

 LANG=names entire locale
 LC_COLLATE=ordering of characters
 LC_CTYPE=character examination functions
 LC_MONETARY=monetary values
 LC_NUMERIC=type of decimal point
 LC_TIME=time conversion
 LC_MESSAGE=language of error messages

 The following environment variables are understood only by executables
 generated under the AIX 1.2 or earlier environment. The same
 functionality can be achieved by using the environment variables used by
 setlocale.

 NLFILE=path name of environment file
 NLCTAB=path name of collating tables
 NLLANG=language name

 NLCURSYM=currency symbol
 NLNUMSEP=triad and decimal separators

 NLLDAY=long day names
 NLLMONTH=long month names
 NLSDAY=short day names
 NLSMONTH=short month names
 NLTMISC=miscellaneous time strings
 NLTSTRS=relative time names
 NLTUNITS=time unit names

 NLDATE=short date format
 NLLDATE=long date format
 NLTIME=time format

 Description
 When a new process begins, the exec system call makes an array of strings
 available that have the form name=value. This array of strings is called
 the environment. Each name defined by one of the strings is called an
 environment variable or shell variable.

 When using the sh command interpreter, additional names can be placed in
 the environment with the export or env command, or by adding a name=value
 prefix to any other command. See the sh command in AIX Operating System
 Commands Reference for more information about setting environment
 variables with shell commands.

 When using the csh command interpreter, additional names can be placed in
 the environment with the setenv command. See the csh command in AIX
 Operating System Commands Reference for more information about setting
 environment variables with shell commands.

 Within a program, the getenv subroutine can be used to search the
 environment for the value of a given variable. The exec system call
 allows the entire environment to be set at one time, usually for a newly
 started child process.

 When creating new environment variables, ensure that their names do not

AIX Operating System Technical Reference
International Character Support Environment

¦ Copyright IBM Corp. 1985, 1991
2.4.6.2 - 1

 conflict with those of standard variables used by the shell and other
 programs, such as MAIL, PS1, PS2, and IFS.

AIX Operating System Technical Reference
International Character Support Environment

¦ Copyright IBM Corp. 1985, 1991
2.4.6.2 - 2

 2.4.6.3 The Basic Environment

 When you log in, a number of environment variables are automatically set
 by the system before running your login profile, .profile. These
 variables make up the basic environment:

 CWD Current working directory.

 HOME The full path name of the user's login or home directory. The
 login program sets this to the name specified in the /etc/passwd
 file.

 LOGNAME User's login name.

 LOGTTY User's logged-in terminal.

 MAIL User's mailbox.

 NLSPATH Contains a sequence of templates which catopen uses when
 attempting to locate message catalogs. Each template consists of
 an optional prefix, one or more substitution fields, a filename
 and an optional suffix.

 For example:

 NLSPATH="/system/nlslib/%N.cat"

 indicates that catopen should look for all message catalogs in
 the directory /system/nlslib, where the catalog name should be
 constructed from the name parameter passed to catopen, %N, with
 the suffix .cat.

 Substitution fields consist of a % (percent) symbol, followed by
 a single letter keyword. The following keywords are currently
 defined:

 %N The value of the name parameter passed to catopen.

 %L The value of LANG.

 %l The language element from LANG.

 %t The territory element from LANG.

 %c The codeset element from LANG.

 %% A single % character.

 An empty string is substituted if the specified value is not
 currently defined. The separators _ and . are not included in %t
 and %c substitutions.

 Templates defined in NLSPATH are separated by colons (:). A
 leading colon or two adjacent colons (::) is equivalent to
 specifying %N. For example:

 NLSPATH=":%N.cat:/nlslib/%L/%N.cat"

 indicates to catopen that it should look for the requested
 message catalog in name, name.cat, and nlslib/$LANG/name.cat.

AIX Operating System Technical Reference
The Basic Environment

¦ Copyright IBM Corp. 1985, 1991
2.4.6.3 - 1

 PATH The sequence of directories that commands such as sh, time, nice,
 and nohup search when looking for a command whose path name is
 incomplete. The directory names are separated by colons. PATH
 is set by the system login profile, /etc/profile.

 SHELL User's shell (sh only).

 TERM The type of terminal for which output is to be prepared.
 Commands such as mm and tplot use this information to manipulate
 special capabilities, if any, of that terminal. The curses,
 extended curses, and terminfo subroutines also use the value of
 TERM. TERM is set by the getty command to a value defined in
 /etc/ports.

 TZ Time zone information. TZ is set in the system environment file,
 /etc/environment.

 The value of TZ has the following form (spaces inserted for
 clarity):

 std offset dst offset, rule

 The expanded format is as follows:

 stdoffset[dst[offset][,start[/time],end[/time]]]

 Where:

 std and dst Three or more bytes that are the designation for the
 standard (std) or summer (dst) time zone. Only std
 is required; if dst is missing, then summer time
 does not apply in this locale. Upper- and lowercase
 letters are explicitly allowed. Any characters
 except a leading colon (:), digits, comma (,), minus
 (-), plus (+), and ASCII NULL are allowed.

 offset Indicates the value one must add to the local time
 to arrive at Coordinated Universal Time. The offset
 has the following form:

 hh[:mm[:ss]]

 The minutes (mm) and seconds (ss) are optional. The
 hour (hh) shall be required and may be a single
 digit. The offset following std shall be required.
 If no offset follows dst, summer time is assumed to
 be one hour ahead of standard time. One or more
 digits may be used; the value is always interpreted
 as a decimal number. The hour shall be between 0
 and 24, and the minutes (and seconds) - if present -
 between 0 and 59. Out of range values may cause
 unpredictable behavior. If preceded by a "-", the
 time zone shall be east of the Prime Meridian;
 otherwise it shall be west (which may be indicated
 by an optional preceding "+").

 rule Indicates when to change to and from summer time.
 The rule has the following form:

AIX Operating System Technical Reference
The Basic Environment

¦ Copyright IBM Corp. 1985, 1991
2.4.6.3 - 2

 date/time,date/time

 where the first date describes when the change from
 standard to summer time occurs and the second date
 describes when the change back happens. Each time
 field describes when, in current local time, the
 change to the other time is made.

 The format of date shall be one of the following:

 Jn The Julian day n (1=n=365). Leap days shall
 not be counted. That is, in all years -
 including leap years - February 28 is day 59
 and March 1 is day 60. It is impossible to
 explicitly refer to the occasional February
 29.

 n The zero-based Julian day (0=n=365). Leap
 days shall be counted, and it is possible to
 refer to February 29.

 Mm.n.d The d(th) day (0=d=6) of week n of month m
 of the year (1=n=5, 1=m=12, where week 5
 means "the last d day in month m" which may
 occur in either the fourth or the fifth
 week). Week 1 is the first week in which
 the d(th) day occurs. Day 0 is Sunday.

 The time has the same format as offset except that
 no leading sign ("-" or "+") shall be allowed. The
 default, if time is not given, shall be 02:00:00.

 USER User's login name.

 Subtopics
 2.4.6.3.1 International Character Support Environment

AIX Operating System Technical Reference
The Basic Environment

¦ Copyright IBM Corp. 1985, 1991
2.4.6.3 - 3

 2.4.6.3.1 International Character Support Environment

 A special set of environment variables defines the international character
 support configuration. These environment variables locate configuration
 information and tailor input and output forms of dates, times, and
 monetary sums according to "national" or local requirements. If an
 environment variable value for international character support contains
 blanks, the value appears in quotes and blanks cannot separate the equals
 sign from the variable name or the value.

 The NLgetenv subroutine provides a program with a method to retrieve a
 value associated with an international character support environment
 variable.

 Note that when the NLgetenv subroutine is called, the values returned are
 associated with internal variables maintained by the setlocale subroutine.
 If you do not call setlocale or the front-ends to it (NLgetctab and
 NLgetfile), NLgetenv returns the hard-coded C locale default values. If
 you do call setlocale, NLgetenv returns the values of the tokens defined
 in /usr/lib/mbcs/$LANG (the setlocale subroutine binds the user's language
 requirements, as specified by LANG, to a program's locale).

 The environment variables NLCTAB and NLFILE are used by the NLgetctab and
 NLgetfile subroutines to resolve the environment file path. If you wish
 to write portable programs, avoid using these routines which are only
 front-ends to setlocale (see "setlocale" in topic 1.2.251 and
 "nl_langinfo" in topic 1.2.198).

 The environment variables are described as follows:

 LANG Identifies the user's requirements as an ASCII character
 string in the form:

 LANG=language[_territory[.codeset]]

 Specific language operation is initiated at program start-up
 by calling the setlocale subroutine, binding the user's
 requirements specified in LANG to a program's locale as
 follows:

 setlocale (LC_ALL, "");

 On AIX systems, this form of a setlocale call is defined to
 initialize the program's entire locale from the associated
 environment variables. LANG names the program's entire
 locale and it provides the necessary defaults if any of the
 category variables are not set or set to the empty string.

 LC_COLLATE Loads in a new collation table that determines the ordering
 of characters. LC_COLLATE affects the behavior of all
 subroutines which handle character comparisons.

 LC_TYPE Loads in a new ctype table to be used for handling regular
 expressions and affects the behavior of all subroutines
 which handle characters with typing information.

 LC_MONETARY Affects the monetary formatting information, such as
 language, territory and codeset, returned by the localeconv
 subroutine.

AIX Operating System Technical Reference
International Character Support Environment

¦ Copyright IBM Corp. 1985, 1991
2.4.6.3.1 - 1

 LC_NUMERIC Affects the decimal point character for the formatted
 input/output functions in scanf and printf and the string
 conversion functions in strtod, as well as the non_monetary
 information returned by the localeconv subroutine.

 LC_TIME Affects the time and weekday functions in the strftime
 subroutine.

 LC_MESSAGE Specifies the language in which the system error messages
 are to be displayed.

 The following environment variables are understood only by
 executables generated under the AIX 1.2 environment. The
 same functionality can be achieved by using the environment
 variables used by setlocale.

 NLCTAB The path name of the file containing tables that define the
 current collating sequence, as produced by the ctab command.
 The default path name is:

 /etc/nls/ctab/default

 NLCURSYM The currency symbol name and placement. The default value
 is:

 :$:L:

 NLDATE The environment format string specifying the short form of
 the date. This format is used by NLstrtime when the format
 %D is encountered. The default is:

 MM/DD/YY

 NLFILE The path name of a file containing other environment
 variable definitions for international character support.
 NLFILE cannot be defined within a file that is identified by
 another NLFILE definition. There is no default path name.

 NLIN The value of NLIN is the path name of the EBCDIC-to-ASCII
 translation table. The path name may be an absolute path
 name or a partial path name. The path name may also be the
 name of a system supplied translation table or a user
 configured translation table. For a complete list of system
 supplied tables, see /usr/lib/nls/nlin.

 NLLANG The environment language label for the set of variables and
 environment format strings used for language conventions.
 The default value is:

 u.s.english

 NLLDATE The environment format string specifying the long form of
 the date. This form is used by NLstrtime when the formats
 %lD or %sD are encountered. The default long date format
 string is:

 mon DD, YYYY

 NLLDAY The full (long) names for the days of the week. The default
 value is:

AIX Operating System Technical Reference
International Character Support Environment

¦ Copyright IBM Corp. 1985, 1991
2.4.6.3.1 - 2

 Sunday:Monday:Tuesday:Wednesday:Thursday:Friday:Saturday

 NLLMONTH The full (long) names for the months of the year. The
 default value is:

 January:February:March:April:May:June:July:\
 August:September:October:November:December

 NLNUMSEP The numeric triad and decimal separators. The first of the
 two separators is the triad separator, which is used to
 separate groups of three digits in decimal values. The
 default value for NLNUMSEP is:

 :,:.:

 NLOUT The value of NLOUT is the path name of the ASCII-to-EBCDIC
 translation table. The path name may be an absolute path
 name or a partial path name. The path name may also be the
 name of a system supplied translation table or a user
 configured translation table. For a complete list of system
 supplied tables, see /usr/lib/nls/nlout.

 NLSDAY The short names of the days of the week. Names should be
 the same length, and of 5 or fewer characters. The default
 short name string is:

 Sun:Mon:Tue:Wed:Thu:Fri:Sat

 NLSMONTH The short names of the months of the year. Names should be
 the same length, and of 5 or fewer characters. The default
 value is:

 Jan:Feb:Mar:Apr:May:Jun:Jul:Aug:Sep:Oct:Nov:Dec

 NLTIME The environment format string specifying the format of the
 time, that is used by NLstrtime when the formats %T, %sT, or
 %r are encountered. The default time format string is:

 hh:mm:ss

 NLTMISC Miscellaneous strings needed for input and output of date
 and time specifications. The default miscellaneous string
 value is:

 at:each:every:on:through:am:pm:zulu

 NLTSTRS The relative or informal names needed for input of date and
 time specifications to the remind and at commands (see the
 remind and at commands in AIX Operating System Commands
 Reference). The default informal time string value is:

 now:yesterday:tomorrow:noon:midnight:next:weekdays:weekend:today

 NLTUNITS The singular and plural forms for all names of units of
 time, used for input of date specifications to the at
 command. The default string value for units of time is:

 minute:minutes:hour:hours:day:days:week:weeks:month:months:year:years:min:mins

AIX Operating System Technical Reference
International Character Support Environment

¦ Copyright IBM Corp. 1985, 1991
2.4.6.3.1 - 3

 Files

 /etc/environment Sets the basic environment for all processes.

 /etc/profile Allows variables to be added to the environment by
 the shell.

 $HOME/.profile Sets the environment for a specific user's needs.

 /etc/nls/ctab/default Sets the international character support
 environment (Release 1.2 only).

 Related Information

 In this book: "exec: execl, execv, execle, execve, execlp, execvp" in
 topic 1.2.71, "getenv, NLgetenv" in topic 1.2.94, "NLstrtime" in
 topic 1.2.194, "NLtmtime" in topic 1.2.195, "termdef" in topic 1.2.302,
 "passwd" in topic 2.3.44, "profile" in topic 2.3.48, "TERM" in
 topic 2.4.26, "setlocale" in topic 1.2.251, "nl_langinfo" in
 topic 1.2.198, and "strftime" in topic 1.2.287.

 The ctab, env, export, login, and sh commands in AIX Operating System
 Commands Reference.

 "Introduction to International Character Support" in Managing the AIX
 Operating System.

 AIX Guide to Multibyte Character Set (MBCS) Support.

AIX Operating System Technical Reference
International Character Support Environment

¦ Copyright IBM Corp. 1985, 1991
2.4.6.3.1 - 4

 2.4.7 eqnchar

 Purpose
 Identifies special character definitions for eqn and neqn formatters.

 Synopsis

 eqn /usr/pub/eqnchar [files] | troff [options]
 neqn /usr/pub/eqnchar [files] | nroff [options]

 Description
 The eqnchar file contains troff and nroff character definitions used to
 construct special scientific symbols. These definitions are primarily
 intended to be used with the eqn and neqn formatters. The eqnchar file
 contains definitions for the following characters:

 File
 /usr/pub/eqnchar

 Related Information
 The eqn, nroff, and troff commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
eqnchar

¦ Copyright IBM Corp. 1985, 1991
2.4.7 - 1

 2.4.8 fcntl.h

 Purpose
 Defines file control options.

 Synopsis
 #include <fcntl.h>

 Description
 The fcntl.h header file defines the values that can be specified for the
 cmd and arg parameters of the fcntl system call, and for the oflag
 parameter of the open system call.

 /* Flag values accessible to open and fcntl */
 /* The first three can only be set by open */

 #define O_RDONLY 0
 #define O_WRONLY 1
 #define O_RDWR 2
 #define O_NDELAY 04 /* Non-blocking I/O */
 #define O_APPEND 010 /* (0x08) append (writes guaranteed */
 /* at the end) */
 #define O_SYNC 0200000 /* Synchronous write */
 #define O_REPLSYNC 0400000 /* Synchronous replicated write */

 /* Flag values accessible only to fcntl */
 #define O_ASYNC 020 /* (0x10) signal pgrp when data ready */
 /* Flag values accessible only to open */

 #define O_DEFERC 00040 /* (0x0020) delay commits of changes */
 #define O_EDELAY 00100 /*Return EAGAIN if block would have occurred*/
 #define O_NONBLOCK (O_NDELAY | O_EDELAY) /* POSIX compatibility */
 #define O_CREAT 00400 /* (0x0100) open with create (uses third */
 /* open arg) */
 #define O_TRUNC 01000 /* (0x0200) open with truncation */
 #define O_EXCL 02000 /* (0x0400) exclusive open */

 /* fcntl requests */
 #define F_DUPFD 0 /* Duplicate fildes */
 #define F_GETFD 1 /* Get fildes flags */
 #define F_SETFD 2 /* Set fildes flags */
 #define F_GETFL 3 /* Get file flags */
 #define F_SETFL 4 /* Set file flags */
 #define F_GETLK 5 /* Get file lock */
 #define F_SETLK 6 /* Set file lock */
 #define F_SETLKW 7 /* Set file lock and wait */
 #define F_GETOWN 9 /* get pgrp */
 #define F_SETOWN 10 /* set pgrp for SIGIO */

 /* file segment locking set data type - information passed to */
 /* system by user */

 struct flock {
 short l_type;
 short l_whence;
 long l_start;
 long l_len; /* len = 0 means until end of file */
 unsigned long l_sysid;
 pid_t l_pid;

AIX Operating System Technical Reference
fcntl.h

¦ Copyright IBM Corp. 1985, 1991
2.4.8 - 1

 };

 /* file segment locking types */
 #define F_RDLCK 01 /* Read lock */
 #define F_WRLCK 02 /* Write lock */
 #define F_UNLCK 03 /* Remove lock(s) */

 File

 /usr/include/fcntl.h

 Related Information
 In this book: "fcntl, flock, lockf" in topic 1.2.78 and "open, openx,
 creat" in topic 1.2.199.

AIX Operating System Technical Reference
fcntl.h

¦ Copyright IBM Corp. 1985, 1991
2.4.8 - 2

 2.4.9 greek

 Purpose
 Maps Greek characters.

 Synopsis
 cat /usr/pub/greek [| greek -Tterminal]

 Description
 The /usr/pub/greek file shows the mapping from ASCII characters to the
 "shift-out" graphics in effect between SO and SI on TELETYPE Model 37
 workstations equipped with an extended (128) character set. These codes
 are the default Greek characters produced by the nroff command. Use the
 greek command to translate these characters for display on other
 workstations. The file contains:

 File
 /usr/pub/greek

 Related Information
 The 300, 4014, 450, greek, hp, nroff, tc, and troff commands in AIX
 Operating System Commands Reference.

AIX Operating System Technical Reference
greek

¦ Copyright IBM Corp. 1985, 1991
2.4.9 - 1

 2.4.10 langinfo.h

 Purpose
 Contains language information constants.

 Synopsis

 #include <langinfo.h>

 Description

 This header file contains the constants used to identify langinfo data
 items (see "nl_langinfo" in topic 1.2.198). The header file nl_types.h
 describes the mode of the constants defined below.

 The entries under 'Category' refer to the categories defined in the
 setlocale subroutine.

 +--+
 ¦ Constant ¦ Category ¦ Meaning ¦
 +-----------+-------------+--¦
 ¦ D_T_FMT ¦ LC_TIME ¦ string for formatting date and time ¦
 +-----------+-------------+--¦
 ¦ D_FMT ¦ LC_TIME ¦ date format string ¦
 +-----------+-------------+--¦
 ¦ T_FMT ¦ LC_TIME ¦ time format string ¦
 +-----------+-------------+--¦
 ¦ AM_STR ¦ LC_TIME ¦ Ante Meridiem affix ¦
 +-----------+-------------+--¦
 ¦ PM_STR ¦ LC_TIME ¦ Post Meridiem affix ¦
 +-----------+-------------+--¦
 ¦ DAY_1 ¦ LC_TIME ¦ name of the first day of the week (e.g., ¦
 ¦ ¦ ¦ Sunday) ¦
 +-----------+-------------+--¦
 ¦ DAY_2 ¦ LC_TIME ¦ name of the second day of the week (e.g., ¦
 ¦ ¦ ¦ Monday) ¦
 +-----------+-------------+--¦
 ¦ DAY_3 ¦ LC_TIME ¦ name of the third day of the week (e.g., ¦
 ¦ ¦ ¦ Tuesday) ¦
 +-----------+-------------+--¦
 ¦ DAY_4 ¦ LC_TIME ¦ name of the fourth day of the week (e.g., ¦
 ¦ ¦ ¦ Wednesday) ¦
 +-----------+-------------+--¦
 ¦ DAY_5 ¦ LC_TIME ¦ name of the fifth day of the week (e.g., ¦
 ¦ ¦ ¦ Thursday) ¦
 +-----------+-------------+--¦
 ¦ DAY_6 ¦ LC_TIME ¦ name of the sixth day of the week (e.g., ¦
 ¦ ¦ ¦ Friday) ¦
 +-----------+-------------+--¦
 ¦ DAY_7 ¦ LC_TIME ¦ name of the seventh day of the week (e.g., ¦
 ¦ ¦ ¦ Saturday) ¦
 +-----------+-------------+--¦
 ¦ ABDAY_1 ¦ LC_TIME ¦ abbreviated name of the first day of the ¦
 ¦ ¦ ¦ week ¦
 +-----------+-------------+--¦
 ¦ ABDAY_2 ¦ LC_TIME ¦ abbreviated name of the second day of the ¦
 ¦ ¦ ¦ week ¦
 +-----------+-------------+--¦
 ¦ ABDAY_3 ¦ LC_TIME ¦ abbreviated name of the third day of the ¦

AIX Operating System Technical Reference
langinfo.h

¦ Copyright IBM Corp. 1985, 1991
2.4.10 - 1

 ¦ ¦ ¦ week ¦
 +-----------+-------------+--¦
 ¦ ABDAY_4 ¦ LC_TIME ¦ abbreviated name of the fourth day of the ¦
 ¦ ¦ ¦ week ¦
 +-----------+-------------+--¦
 ¦ ABDAY_5 ¦ LC_TIME ¦ abbreviated name of the fifth day of the ¦
 ¦ ¦ ¦ week ¦
 +-----------+-------------+--¦
 ¦ ABDAY_6 ¦ LC_TIME ¦ abbreviated name of the sixth day of the ¦
 ¦ ¦ ¦ week ¦
 +-----------+-------------+--¦
 ¦ ABDAY_7 ¦ LC_TIME ¦ abbreviated name of the seventh day of the ¦
 ¦ ¦ ¦ week ¦
 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦
 +-----------+-------------+--¦
 ¦ MON_1 ¦ LC_TIME ¦ name of the first month in the Gregorian ¦
 ¦ ¦ ¦ calendar ¦
 +-----------+-------------+--¦
 ¦ MON_2 ¦ LC_TIME ¦ name of the second month ¦
 +-----------+-------------+--¦
 ¦ MON_3 ¦ LC_TIME ¦ name of the third month ¦
 +-----------+-------------+--¦
 ¦ MON_4 ¦ LC_TIME ¦ name of the fourth month ¦
 +-----------+-------------+--¦
 ¦ MON_5 ¦ LC_TIME ¦ name of the fifth month ¦
 +-----------+-------------+--¦
 ¦ MON_6 ¦ LC_TIME ¦ name of the sixth month ¦
 +-----------+-------------+--¦
 ¦ MON_7 ¦ LC_TIME ¦ name of the seventh month ¦
 +-----------+-------------+--¦
 ¦ MON_8 ¦ LC_TIME ¦ name of the eighth month ¦
 +-----------+-------------+--¦
 ¦ MON_9 ¦ LC_TIME ¦ name of the ninth month ¦
 +-----------+-------------+--¦
 ¦ MON_10 ¦ LC_TIME ¦ name of the tenth month ¦
 +-----------+-------------+--¦
 ¦ MON_11 ¦ LC_TIME ¦ name of the eleventh month ¦
 +-----------+-------------+--¦
 ¦ MON_12 ¦ LC_TIME ¦ name of the twelfth month ¦
 +-----------+-------------+--¦
 ¦ ABMON_1 ¦ LC_TIME ¦ abbreviated name of the first month ¦
 +-----------+-------------+--¦
 ¦ ABMON_2 ¦ LC_TIME ¦ abbreviated name of the second month ¦
 +-----------+-------------+--¦
 ¦ ABMON_3 ¦ LC_TIME ¦ abbreviated name of the third month ¦
 +-----------+-------------+--¦
 ¦ ABMON_4 ¦ LC_TIME ¦ abbreviated name of the fourth month ¦
 +-----------+-------------+--¦
 ¦ ABMON_5 ¦ LC_TIME ¦ abbreviated name of the fifth month ¦
 +-----------+-------------+--¦
 ¦ ABMON_6 ¦ LC_TIME ¦ abbreviated name of the sixth month ¦
 +-----------+-------------+--¦
 ¦ ABMON_7 ¦ LC_TIME ¦ abbreviated name of the seventh month ¦
 +-----------+-------------+--¦
 ¦ ABMON_8 ¦ LC_TIME ¦ abbreviated name of the eighth month ¦
 +-----------+-------------+--¦
 ¦ ABMON_9 ¦ LC_TIME ¦ abbreviated name of the ninth month ¦
 +-----------+-------------+--¦

AIX Operating System Technical Reference
langinfo.h

¦ Copyright IBM Corp. 1985, 1991
2.4.10 - 2

 ¦ ABMON_10 ¦ LC_TIME ¦ abbreviated name of the tenth month ¦
 +-----------+-------------+--¦
 ¦ ABMON_11 ¦ LC_TIME ¦ abbreviated name of the eleventh month ¦
 +-----------+-------------+--¦
 ¦ ABMON_12 ¦ LC_TIME ¦ abbreviated name of the twelfth month ¦
 +-----------+-------------+--¦
 ¦ RADIXCHAR ¦ LC_NUMERIC ¦ radix character ¦
 +-----------+-------------+--¦
 ¦ THOUSEP ¦ LC_NUMERIC ¦ separator for thousands ¦
 +-----------+-------------+--¦
 ¦ YESSTR ¦ LC_ALL ¦ affirmative response for yes/no queries ¦
 +-----------+-------------+--¦
 ¦ NOSTR ¦ LC_ALL ¦ negative response for yes/no queries ¦
 +-----------+-------------+--¦
 ¦ CRNCYSTR ¦ LC_MONETARY ¦ currency symbol, preceded by "-" if the ¦
 +-----------+-------------+--¦
 ¦ ¦ ¦ symbol should appear before the value, ¦
 +-----------+-------------+--¦
 ¦ ¦ ¦ "+" if the symbol should appear after ¦
 +-----------+-------------+--¦
 ¦ ¦ ¦ the value, or "." if the symbol should ¦
 ¦ ¦ ¦ replace the radix character ¦
 +-----------+-------------+--¦
 ¦ ¦ ¦ ¦
 +--+

 File

 /usr/include/langinfo.h

 Related Information
 In this book: "nl_langinfo" in topic 1.2.198.

AIX Operating System Technical Reference
langinfo.h

¦ Copyright IBM Corp. 1985, 1991
2.4.10 - 3

 2.4.11 limits.h

 Purpose
 Defines implementation specific constants.

 Synopsis

 #include <limits.h>

 Description

 This header file defines different categories of names which represent
 various limits on resources imposed by the system on applications.

 For maximum portability, an application should not require more resources
 than the quantity listed in the "Minimum Acceptable Value" column. An
 application can have the full amount of a resource available on an
 implementation by making use of the value given in limits.h on that
 particular system, using the symbolic names listed in the first column of
 the table.

 Because the value of a limit on a particular system may differ from those
 listed in this header file, an application may use the pathconf and
 sysconf functions to determine the actual value of a limit at run-time.

 The following constants are defined in limits.h:

 +---+
 ¦ CHAR_BIT ¦ Number of bits in a ¦ 8 ¦
 ¦ ¦ char ¦ ¦
 +------------+------------------------+-------------------¦
 ¦ CHAR_MIN ¦ Min integer value of a ¦ 0 ¦
 ¦ ¦ char ¦ ¦
 +------------+------------------------+-------------------¦
 ¦ CHAR_MAX ¦ Max integer value of a ¦ +255 ¦
 ¦ ¦ char ¦ ¦
 +------------+------------------------+-------------------¦
 ¦ UCHAR_MAX ¦ Max value of an ¦ +255 ¦
 ¦ ¦ unsigned char ¦ ¦
 +------------+------------------------+-------------------¦
 ¦ SCHAR_MIN ¦ Min value of a signed ¦ -128 ¦
 ¦ ¦ char ¦ ¦
 +------------+------------------------+-------------------¦
 ¦ SCHAR_MAX ¦ Max value of a signed ¦ +127 ¦
 ¦ ¦ char ¦ ¦
 +------------+------------------------+-------------------¦
 ¦ INT_MIN ¦ Min decimal value of ¦ -2147483648 ¦
 ¦ ¦ an int ¦ ¦
 +------------+------------------------+-------------------¦
 ¦ INT_MAX ¦ Max decimal value of ¦ +2147483647 ¦
 ¦ ¦ an int ¦ ¦
 +------------+------------------------+-------------------¦
 ¦ UINT_MAX ¦ Max value of an ¦ +4294967295 ¦
 ¦ ¦ unsigned int ¦ ¦
 +------------+------------------------+-------------------¦
 ¦ LONG_MIN ¦ Min decimal value of a ¦ -2147483648 ¦
 ¦ ¦ long ¦ ¦
 +------------+------------------------+-------------------¦
 ¦ LONG_MAX ¦ Max decimal value of a ¦ +2147483647 ¦

AIX Operating System Technical Reference
limits.h

¦ Copyright IBM Corp. 1985, 1991
2.4.11 - 1

 ¦ ¦ long ¦ ¦
 +------------+------------------------+-------------------¦
 ¦ ULONG_MAX ¦ Max value of an ¦ +4294967295 ¦
 ¦ ¦ unsigned long int ¦ ¦
 +------------+------------------------+-------------------¦
 ¦ SHRT_MIN ¦ Min decimal value of a ¦ -32768 ¦
 ¦ ¦ short ¦ ¦
 +------------+------------------------+-------------------¦
 ¦ SHRT_MAX ¦ Max decimal value of a ¦ +32767 ¦
 ¦ ¦ short ¦ ¦
 +------------+------------------------+-------------------¦
 ¦ USHRT_MAX ¦ Max value for an ¦ ¦
 ¦ ¦ unsigned short ¦ ¦
 +------------+------------------------+-------------------¦
 ¦ ¦ int ¦ +65535 ¦
 +---+

 pathconf specific constants:

 +---+
 ¦ LINK_MAX ¦ Max number of links to a ¦ 32767 ¦
 ¦ ¦ single file ¦ ¦
 +------------+---------------------------+----------¦
 ¦ MAX_INPUT ¦ Max number of bytes ¦ ¦
 ¦ ¦ allowed in a ¦ ¦
 +------------+---------------------------+----------¦
 ¦ ¦ terminal input queue ¦ 255 ¦
 +------------+---------------------------+----------¦
 ¦ MAX_CANON ¦ Max number of bytes in a ¦ ¦
 ¦ ¦ terminal ¦ ¦
 +------------+---------------------------+----------¦
 ¦ ¦ canonical input line ¦ 255 ¦
 +------------+---------------------------+----------¦
 ¦ NAME_MAX ¦ Max number of characters ¦ ¦
 ¦ ¦ in a filename ¦ ¦
 +------------+---------------------------+----------¦
 ¦ ¦ (not including ¦ 255 ¦
 ¦ ¦ terminating null) ¦ ¦
 +------------+---------------------------+----------¦
 ¦ PATH_MAX ¦ Max number of characters ¦ ¦
 ¦ ¦ in a pathname ¦ ¦
 +------------+---------------------------+----------¦
 ¦ ¦ (not including ¦ 1023 ¦
 ¦ ¦ terminating null) ¦ ¦
 +------------+---------------------------+----------¦
 ¦ PIPE_BUF ¦ Max number of bytes that ¦ ¦
 ¦ ¦ is guaranteed ¦ ¦
 +------------+---------------------------+----------¦
 ¦ ¦ to be atomic when writing ¦ 40960 ¦
 ¦ ¦ to a pipe ¦ ¦
 +---+

 sysconf specific constants:

 +--+
 ¦ NGROUPS_MAX ¦ Max number of simultaneous ¦ ¦
 ¦ ¦ supplemen- ¦ ¦
 +--------------+-----------------------------+-------¦
 ¦ ¦ tary group IDs per process ¦ 32 ¦

AIX Operating System Technical Reference
limits.h

¦ Copyright IBM Corp. 1985, 1991
2.4.11 - 2

 +--------------+-----------------------------+-------¦
 ¦ OPEN_MAX ¦ Max number of files that ¦ ¦
 ¦ ¦ one process ¦ ¦
 +--------------+-----------------------------+-------¦
 ¦ ¦ can have open at any one ¦ 200 ¦
 ¦ ¦ time ¦ ¦
 +--------------+-----------------------------+-------¦
 ¦ ARG_MAX ¦ Max length of argument to ¦ ¦
 ¦ ¦ the exec ¦ ¦
 +--------------+-----------------------------+-------¦
 ¦ ¦ functions including ¦ 16384 ¦
 ¦ ¦ environment data ¦ ¦
 +--------------+-----------------------------+-------¦
 ¦ CHILD_MAX ¦ Max number of processes per ¦ 40 ¦
 ¦ ¦ user ID ¦ ¦
 +--+

 POSIX Limit Values:

 +---+
 ¦ _POSIX_ARG_MAX ¦ The length of the ¦ ¦
 ¦ ¦ argument strings for ¦ ¦
 ¦ ¦ the exec functions ¦ ¦
 +-------------------+-----------------------+-------¦
 ¦ ¦ in bytes, including ¦ ¦
 ¦ ¦ environment ¦ ¦
 +-------------------+-----------------------+-------¦
 ¦ ¦ data ¦ 4096 ¦
 +-------------------+-----------------------+-------¦
 ¦ _POSIX_CHILD_MAX ¦ The number of ¦ ¦
 ¦ ¦ simultaneous ¦ ¦
 +-------------------+-----------------------+-------¦
 ¦ ¦ processes per real ¦ 6 ¦
 ¦ ¦ user ID ¦ ¦
 +-------------------+-----------------------+-------¦
 ¦ _POSIX_LINK_MAX ¦ The value of a file's ¦ ¦
 ¦ ¦ link ¦ ¦
 +-------------------+-----------------------+-------¦
 ¦ ¦ count ¦ 8 ¦
 +-------------------+-----------------------+-------¦
 ¦ _POSIX_MAX_CANON ¦ The number of bytes ¦ ¦
 ¦ ¦ in a ¦ ¦
 +-------------------+-----------------------+-------¦
 ¦ ¦ terminal canonical ¦ 255 ¦
 ¦ ¦ input queue ¦ ¦
 +-------------------+-----------------------+-------¦
 ¦ _POSIX_MAX_INPUT ¦ The number of bytes ¦ ¦
 ¦ ¦ for which ¦ ¦
 +-------------------+-----------------------+-------¦
 ¦ ¦ space will be ¦ ¦
 ¦ ¦ available in ¦ ¦
 +-------------------+-----------------------+-------¦
 ¦ ¦ a terminal output ¦ 255 ¦
 ¦ ¦ queue ¦ ¦
 +-------------------+-----------------------+-------¦
 ¦ _POSIX_NAME_MAX ¦ The number of bytes ¦ ¦
 ¦ ¦ in a ¦ ¦
 +-------------------+-----------------------+-------¦
 ¦ ¦ filename ¦ 14 ¦

AIX Operating System Technical Reference
limits.h

¦ Copyright IBM Corp. 1985, 1991
2.4.11 - 3

 +-------------------+-----------------------+-------¦
 ¦ _POSIX_NGROUPS_MAX¦ The number of ¦ ¦
 ¦ ¦ simultaneous ¦ ¦
 +-------------------+-----------------------+-------¦
 ¦ ¦ supplementary group ¦ ¦
 ¦ ¦ IDs per ¦ ¦
 +-------------------+-----------------------+-------¦
 ¦ ¦ process ¦ 0 ¦
 +-------------------+-----------------------+-------¦
 ¦ _POSIX_OPEN_MAX ¦ The number of files ¦ ¦
 ¦ ¦ that one ¦ ¦
 +-------------------+-----------------------+-------¦
 ¦ ¦ process can have open ¦ ¦
 ¦ ¦ at ¦ ¦
 +-------------------+-----------------------+-------¦
 ¦ ¦ one time ¦ 16 ¦
 +-------------------+-----------------------+-------¦
 ¦ _POSIX_PATH_MAX ¦ The number of bytes ¦ ¦
 ¦ ¦ in ¦ ¦
 +-------------------+-----------------------+-------¦
 ¦ ¦ a pathname ¦ 255 ¦
 +-------------------+-----------------------+-------¦
 ¦ _POSIX_PIPE_BUF ¦ The number of bytes ¦ ¦
 ¦ ¦ that ¦ ¦
 +-------------------+-----------------------+-------¦
 ¦ ¦ can be written ¦ ¦
 ¦ ¦ atomically ¦ ¦
 +-------------------+-----------------------+-------¦
 ¦ ¦ when writing to a ¦ 512 ¦
 ¦ ¦ pipe ¦ ¦
 +---+

 Multibyte character specific constant:

 +---+
 ¦ MB_LEN_MA¦_Max number of bytes in a ¦ ¦
 ¦ ¦ multibyte ¦ ¦
 +----------+------------------------------+-------¦
 ¦ ¦ character for ANY character ¦ ¦
 ¦ ¦ code ¦ ¦
 +----------+------------------------------+-------¦
 ¦ ¦ set ¦ 4 ¦
 +---+

 Defines for message catalog usage:

 +---+
 ¦ NL_ARGMAX¦ Max value of 'digit' in ¦ ¦
 ¦ ¦ calls to ¦ ¦
 +----------+------------------------------+-------¦
 ¦ ¦ the printf and scanf ¦ 9 ¦
 ¦ ¦ subroutines ¦ ¦
 +----------+------------------------------+-------¦
 ¦ NL_MSGMAX¦ Max message number ¦ 65535 ¦
 +----------+------------------------------+-------¦
 ¦ NL_SETMAX¦ Max set number ¦ 65535 ¦
 +----------+------------------------------+-------¦
 ¦ NL_TEXTMA¦ Max number of bytes in a ¦ ¦

AIX Operating System Technical Reference
limits.h

¦ Copyright IBM Corp. 1985, 1991
2.4.11 - 4

 ¦ ¦ message ¦ ¦
 +----------+------------------------------+-------¦
 ¦ ¦ string ¦ 4096 ¦
 +---+

 File

 /usr/include/limits.h

 Related Information
 In this book: "pathconf, fpathconf" in topic 1.2.201, and "sysconf" in
 topic 1.2.296.

AIX Operating System Technical Reference
limits.h

¦ Copyright IBM Corp. 1985, 1991
2.4.11 - 5

 2.4.12 locale.h

 Purpose
 Defines categories.

 Synopsis

 #include <locale.h>

 Description

 This header file defines categories as macros which expand to distinct
 integral-constant expressions to be used as the first argument to the
 setlocale subroutine.

 Included in locale.h are the categories LC_ALL, LC_COLLATE, LC_CTYPE,
 LC_MONETARY, LC_NUMERIC, and LC_TIME.

 A structure type, lconv, used by the localeconv subroutine, is also
 defined in locale.h.

 Related Information
 In this book: "setlocale" in topic 1.2.251, and "localeconv" in
 topic 1.2.158.

AIX Operating System Technical Reference
locale.h

¦ Copyright IBM Corp. 1985, 1991
2.4.12 - 1

 2.4.13 math.h

 Purpose
 Defines math subroutines and constants.

 Synopsis
 #include <math.h>

 Description
 This header file contains declarations of all the subroutines in the Math
 Library (libm.a) and of various subroutines in the Standard C Library
 (libc.a) that return floating-point values.

 It defines the structure and constants for the matherr error-handling
 mechanism used by the math subroutines. (See "matherr" in topic 1.2.163
 for details about this mechanism.)

 Among other things, math.h defines the following constant, which is used
 as an error-return value:

 HUGE The maximum value of a single-precision floating-point number.

 The following mathematical constants are also defined for your
 convenience:

 M_E The base of natural logarithms (e)

 M_LOG2E The base-2 logarithm of e (log[2] e)

 M_LOG10E The base-10 logarithm of e (log[10] e)

 M_LN2 The natural logarithm of 2 (log[e] 2)

 M_LN10 The natural logarithm of 10 (log[e] 10)

 M_PI &pi., the ratio of the circumference of a circle to its
 diameter

 M_PI_2 The value of &pi. ÷ 2

 M_PI_4 The value of &pi. ÷ 4

 M_1_PI The value of 1 ÷ &pi.

 M_2_PI The value of 2 ÷ &pi.

 M_2_SQRTPI The value of 2 divided by the positive square root of &pi.

 M_SQRT2 The positive square root of 2

 M_SQRT1_2 The positive square root of 1/2.

 The math.h file contains an #include statement that imbeds another header
 file named values.h. This header file defines a number of
 machine-dependent constants, and it is discussed on page 2.4.28.

 Files

 /usr/include/math.h
 /usr/include/values.h

AIX Operating System Technical Reference
math.h

¦ Copyright IBM Corp. 1985, 1991
2.4.13 - 1

 Related Information
 In this book: "matherr" in topic 1.2.163 and "values.h" in topic 2.4.28.

AIX Operating System Technical Reference
math.h

¦ Copyright IBM Corp. 1985, 1991
2.4.13 - 2

 2.4.14 mbcs.h

 Purpose
 Defines library subroutines used in internationalized programs.

 Synopsis

 #include <mbcs.h>

 Description

 The mbcs.h header file defines the macro constant MB_CUR_MAX, the data
 type mbchar_t, and the macros _mbdwidth, _mblen, and _mbsadvance.

 The following are declared as either functions or macros:

 mbsadvance mbsinvalid
 mbstomb mbscat mbsncat
 mbscpy mbsncpy mbschr
 mbsrchr mbspbrk mbstok
 mbtowc mbstowcs mbslen
 mblen mbdwidth mbsspn
 mbscspn mbscmp mbsncmp
 wcscat wcsncat wcscpy
 wcsncpy wcschr wcsrchr
 wcspbrk wcstok
 wcslen wcscmp wcsncmp
 wcsspn wcscspn

 Related Information
 In this book: "mbstring" in topic 1.2.164, "mbtowc, mbstowcs, mbstomb" in
 topic 1.2.165, and "wcstring" in topic 1.2.327.

AIX Operating System Technical Reference
mbcs.h

¦ Copyright IBM Corp. 1985, 1991
2.4.14 - 1

 2.4.15 mm

 Purpose
 Provides the mm macro package for formatting documents.

 Synopsis

 mm [options] [files]
 nroff -mm [options] [files]
 nroff -cm [options] [files]
 mmt [options] [files]
 troff -mm [options] [files]

 Description
 This package provides a formatting capability for a very wide variety of
 documents. How a document is typed and edited on the system is
 independent of whether the document is to be eventually formatted at a
 terminal or photoset. See the following references for further details.

 Files

 /usr/lib/tmac/tmac.m
 /usr/lib/tmac/sys.name
 /usr/lib/tmac/mm[nt]

 Related Information
 The mm, mmt, nroff, and troff commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
mm

¦ Copyright IBM Corp. 1985, 1991
2.4.15 - 1

 2.4.16 mptx

 Purpose
 Provides the macro package for formatting a permuted index.

 Synopsis

 nroff -mptx [flag...] [file...]
 troff -mptx [flag...] [file...]

 Description
 This package provides a definition for the .xx macro which is used for
 formatting a permuted index produced by the ptx program. This package
 does not provide any other formatting capabilities such as headers and
 footers. Use this macro package in conjunction with the mm macro package
 for these or other capabilities. In this case, the -mptx flag must follow
 the -mm flag. For example:

 nroff -mm -mptx file

 or

 mm -mptx file

 Files

 /usr/lib/tmac/tmac.ptx
 /usr/lib/macros/ptx

 Related Information
 In this book: "mm" in topic 2.4.15.

 The mm, nroff, ptx, troff commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
mptx

¦ Copyright IBM Corp. 1985, 1991
2.4.16 - 1

 2.4.17 mv

 Purpose
 Provides a troff macro package for typesetting view graphs and slides.

 Synopsis

 mvt [-a] [-rw1] [flag...]
 [file...]
 troff [-a] [-rw1] [-rX1] -mv
 [flag...]
 [file...]

 Description
 This package makes it easy to typeset view graphs and projection slides in
 a variety of sizes. A few macros (briefly described in the following)
 accomplish most of the formatting tasks needed in making transparencies.
 The facilities of troff, cw, eqn, and tbl are available for more difficult
 tasks.

 The output can be previewed on most terminals. To preview on some
 devices, specify the -rX1 option (this option is automatically specified
 by the mvt command, when that command is invoked with certain options).
 To preview output on other terminals, specify the -a option. The -rw1
 option suppresses the printing of cross-hairs and crop marks.

 The available macros are:

 .A [x] Places text that follows at the first indentation level (left
 margin); the presence of x suppresses the 1/2 line spacing from
 the preceding text.

 .B [m[s]]
 Places text that follows at the second indentation level. Text
 is preceded by a mark. m is the mark, the default is a large
 bullet. s is the increment or decrement to the point size of
 the mark with respect to the prevailing point size. The default
 is 0. If s is 100, it causes the point size of the mark to be
 the same as that of the default mark.

 .BX str1 [str2] [f]
 Encloses str1 in a box and appends str2 (if any) to it. str1 is
 set in the prevailing font unless f names a different font.

 .C [m [s]]
 Same as .B, but for the third indentation level. The default
 mark is a dash.

 .CN [args]
 Ends a constant-width font display.

 .CW [args]
 Begins a constant-width font display at the current indentation
 level.

 .D [m [s]]
 Same as .B, but for the fourth indentation level. The default
 mark is a small bullet.

 .DF n f [n f...]

AIX Operating System Technical Reference
mv

¦ Copyright IBM Corp. 1985, 1991
2.4.17 - 1

 Defines font positions. This may not appear within a foil's
 input text (for example, it may only appear after all the input
 text for a foil, but before the next foil-start macro). n is
 the position of font f, up to four "n f" pairs can be specified.
 The first font named becomes the prevailing font. The initial
 setting is (H is a synonym for G):

 .DF 1 H 2 I 3 B 4 S

 .DV [a] [b] [c] [d] [e]
 Alters the vertical spacing between indentation levels. The a,
 b, c, and d values alter the spacing for .A, .B, .C, and .D
 respectively. The e value is the pre-spacing and post-spacing
 for constant-width font displays bracketed by the .CW and .CN
 macros. Arguments that are not null must have dimensions. Null
 arguments leave the corresponding spacing unaffected. Initial
 setting is:

 .DV .5v .5v .5v 0v .5v

 .I [in] [a [x]]
 Changes the current text indent, but does not affect titles. in
 is the indent in inches, unless dimensioned. The default is 0.
 If in is signed, it is an increment or decrement. The presence
 of a invokes the .A macro and passes x, if any, to it.

 .S [p] [l]
 Sets the point size and line length. p is the point size, the
 default is previous. If p is 100, the point size reverts to the
 initial default for the current foil-start macro. If p is
 signed, it is an increment or decrement. The default is 18 for
 .VS, .VH, and .SH, and 14 for the other foil-start macros. l is
 the line length in inches unless dimensioned. The default is
 4.2 inches for .Vh, 3.8 inches for .Sh, 5 inches for .SH, and 6
 inches for the other foil-start macros.

 .Sh [n] [i] [d]
 Same as .VS, except that foil size is 5 ¦ 7 inches.

 .SH [n] [i] [d]
 Same as .VS, except that foil size is 7 ¦ 9 inches.

 .Sw [n] [i] [d]
 Same as .VS, except that foil size is 7 ¦ 5 inches.

 .SW [n] [i] [d]
 Same as .VS, except that foils size is 7 ¦ 5.4 inches.

 .T string Prints string as an over-size, centered title.

 .U str1 [str2]
 Underlines str1 and concatenates str2 (if any) to it.

 .Vh [n] [i] [d]
 Same as .VS, except that foil size is 5 ¦ 7 inches.

 .VH [n] [i] [d]
 Same as .VS, except that foils size is 7 ¦ 9 inches.

 .VS [n] [i] [d]

AIX Operating System Technical Reference
mv

¦ Copyright IBM Corp. 1985, 1991
2.4.17 - 2

 Foil-start macro; foil size is to be 7 ¦ 7 inches. n is the
 foil number, i is the foil identification, d is the date. The
 foil-start macro resets all parameters (indent, point size, and
 so on) to initial default values, except for the values of i and
 d arguments that came from a previous foil-start macro; it also
 invokes the .A macro.

 The naming convention for this and the eight other foil-start
 macros is that the first character of the name (V or S)
 distinguishes between view graphs and slides, respectively,
 while the second character indicates whether the foil is square
 (S), small wide (w), small high (h), big wide (W), or big high
 (H). Slides are thinner than the corresponding view graphs.
 For slides, the ratio of the longer dimension to the shorter one
 is larger than for view graphs. As a result, slide foils can be
 used for view graphs, but not the opposite. Alternately, view
 graphs can accommodate a bit more text.

 .Vw [n] [i] [d]
 Same as .VS, except that foil size is 7 inches wide ¦ 5 inches
 high.

 .VW [n.] [i] [d]
 Same as .VS, except that foil size is 7 ¦ 5.4 inches.

 .WS [w] [string]
 Reserves w amount of whitespace. w must have dimensions. If
 string is present, prints, in the reserved space, the caption:

 Paste up string here.

 The .S, .DF, .DV, .U and .BX macros do not cause a break. The .I macro
 causes a break only if it is invoked with more than one argument. All the
 other macros cause a break.

 The macro package also recognizes the following uppercase synonyms for the
 corresponding lower case troff requests:

 .AD .BR .CE .HY .NA .NH .NX .SO .SP .TA .TI

 The Tm string produces the trademark symbol.

 The ~ (tilde) character is translated into a blank on output.

 The following troff symbols are defined:

 *t The ASCII tab character.

 *E The ellipsis (...). Do not use this symbol within
 constant-width text.

 *u The short name of the operating system in small capital letters.

 *(UU The short name of the operating system with a leading full-cap
 letter.

 *(UF The full name of the operating system.

 *(Tm The trademark symbol.

AIX Operating System Technical Reference
mv

¦ Copyright IBM Corp. 1985, 1991
2.4.17 - 3

 Note: The VW and SW foils are meant to be 9 inches wide by 7 inches high.
 However, the typesetter paper is generally only 8 inches wide, so
 they are printed 7 inches wide by 5.4 inches high. They need to be
 enlarged by a factor of 9/7 before they can be used as view graphs.

 Files

 /usr/lib/tmac/tmac.v
 /usr/lib/macros/vmca

 Related Information
 The cw, eqn, mmt, tbl, and troff commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
mv

¦ Copyright IBM Corp. 1985, 1991
2.4.17 - 4

 2.4.18 netgroup

 Purpose
 Provides list of network groups.

 Description
 The netgroup facility defines network wide groups, used for permission
 checking when doing remote mounts, remote logins and remote shells. For
 remote mounts, the information in netgroup is used to classify machines;
 for remote logins and remote shells, it is used to classify users. Each
 line of the netgroup file defines a group and has the following format:

 groupname member1 member2...

 where member1 is either another group name or:

 (hostname, username, domainname)

 Any of these three fields may be empty, in which case it signifies a
 wildcard. For example:

 biggroup (, ,)

 defines a group to which everyone belongs.

 A gateway machine should be listed under all possible names by which it
 may be recognized.

 ying (gateway, ,) (gateway-rlt, ,)

 Field names that begin with something other than a letter, digit or
 underscore (such as a hyphen) work in the opposite fashion. For example,
 consider the following entries:

 groupa (sitea,-,la)
 groupb (-,george,la)

 The machine sitea belongs to the group groupa in the domain la, but no
 users belong to it. Similarly, the user george belongs to the group
 groupb in the domain la, but no machines belong to it.

 The domainname field refers to the domain n where the entry is valid, not
 the name containing the trusted host.

 Files
 /etc/netgroup

 Related Information
 The makedbm and ypserv commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
netgroup

¦ Copyright IBM Corp. 1985, 1991
2.4.18 - 1

 2.4.19 nl_types.h

 Purpose
 Contains definitions of data types.

 Synopsis

 #include <nl_types.h>

 Description

 This header file contains definitions for the following file types:

 nl_catd Used by the message catalog functions catopen, catgets, and
 catclose to identify a catalog descriptor.

 nl_item Used by nl_langinfo to identify items of langinfo data. Values
 of objects of type nl_item are defined in langinfo.h.

 Related Information
 In this book: "langinfo.h" in topic 2.4.10

 The catclose, catgets, and catopen subroutines in AIX Operating System
 Technical Reference.

AIX Operating System Technical Reference
nl_types.h

¦ Copyright IBM Corp. 1985, 1991
2.4.19 - 1

 2.4.20 param.h

 Purpose
 Describes system parameters.

 Synopsis
 #include <sys/param.h>

 Description
 Parameters vary among systems using the AIX Operating System. For AIX/370
 and AIX PS/2, these parameters are in the /sys/param.h file. The most
 significant parameters are:

 BSIZE Indicates the kernel buffer size. Both AIX/370 and AIX PS/2 have a
 buffer size of 4096 bytes.

 NOFILE Indicates the maximum number of open files allowed per process.
 This value is 200.

 NCARGS Indicates the maximum number of characters, including terminating
 NULLs that may be passed using the exec system call.

 File
 /usr/include/sys/param.h

AIX Operating System Technical Reference
param.h

¦ Copyright IBM Corp. 1985, 1991
2.4.20 - 1

 2.4.21 stdarg.h

 Purpose
 Defines variable argument list access macros.

 Synopsis

 #include <stdarg.h>

 Description

 The stdarg.h header file defines the data type va_list and the following
 macros used for advancing through a list of arguments:

 #include <stdarg.h>

 void va_start (va_list ap, parmN);
 type va_arg (va_list ap, type);
 void va_end (va_list ap);

 Related Information
 In this book: "varargs" in topic 1.2.323.

AIX Operating System Technical Reference
stdarg.h

¦ Copyright IBM Corp. 1985, 1991
2.4.21 - 1

 2.4.22 stat.h

 Purpose
 Defines the data structure returned by the statx, fstatx, stat, fstat,
 fullstat, ffullstat, and lstat system calls.

 Synopsis

 #include <sys/stat.h>

 Description
 The statx and fstatx system calls obtain information about a file. These
 system calls return a data structure defined by the <sys/stat.h> include
 file.

 struct stat
 {
 /* Beginning of stat structure replica ... */
 dev_t st_dev; /* Global file system (gfs) */
 /* number of the file system */
 /* containing a directory */
 /* entry for this file. File */
 /* index+gfs number uniquely */
 /* identifies the file within */
 /* the system. */
 ino_t st_ino; /* File index number (inode no.)*/
 mode_t st_mode; /* File mode; see below */
 nlink_t st_nlink; /* Number of links */
 u_short_t st_spare0; /* Reserved */
 uid_t st_uid; /* User ID of the file's owner */
 gid_t st_gid; /* Group ID of the file's group */
 dev_t st_rdev; /* ID of device */
 /* This entry is defined only */
 /* for character or block */
 /* special files. */
 off_t st_size; /* File size in bytes */

 /* Times are seconds since 00:00:00 GMT, Jan. 1, 1970 */
 time_t st_atime; /* Time of last access */
 u_long_t st_spare1;
 time_t st_mtime; /* Time data last modified */
 u_long_t st_spare2;
 time_t st_ctime; /* Time file status last changed */
 u_long_t st_spare3;

 u_long_t st_blksize; /* Size of block in file */
 u_long_t st_blocks; /* Number of blocks in file */

 u_long_t st_gen; /* Inode generation number */
 u_long_t st_type; /* Vnode type */

 # define VNON 0
 # define VBAD 1
 # define VREG 2
 # define VDIR 3
 # define VHDIR 4
 # define VBLK 5
 # define VCHR 6
 # define VLNK 7

AIX Operating System Technical Reference
stat.h

¦ Copyright IBM Corp. 1985, 1991
2.4.22 - 1

 # define VSOCK 8
 # define VFIFO 9
 # define VMPC 10

 u_long_t st_vfs; /* vfs id */
 u_long_t st_flag; /* flag word */
 # define FS_NOFLAG 0x00 /* clear flag */
 # define FS_MOUNT 0x01 /* this file is the root of a */
 /* file system or is mounted */
 /* over */
 # define FS_REMOTE 0x02 /* file is remote */
 # define FS_VMP FS_MOUNT

 /* The following fields are used by TCF */
 u_long_t st_cmtcnt; /* gfs commit sequence number */
 fstore_t st_fstore; /* file-replication storage */
 /* attribute */
 long st_version; /* version number of file */
 siteno_t st_css; /* current synchronization site */
 siteno_t st_ss; /* current storage site (fstat) */
 siteno_t st_rdevsite; /* rdev site (devices only) */
 short st_spare4;

 /* ... end of old stat structure replica ... */
 # define STATSIZE \
 (((int)(char*)&(((struct stat *)0)->st_spare4))+(sizeof(short)))

 /*
 * the stat() compatibility interface does not
 * return any of the following fields.
 */

 /* ... beginning of fullstat structure, used by DS ... */

 long st_nid; /* Node id */
 uid_t st_uid_raw; /* The file's untranslated uid */
 gid_t st_gid_raw; /* The file's untranslated gid */
 u_long_t st_uid_rev_tag; /* uid translation tag */
 u_long_t st_gid_rev_tag; /* gid translation tag */

 #define IDTAG_CALLER 1 /* definitions for _rev_tag */
 #define IDTAG_OTHER 2 /* fields */
 #define IDTAG_SOMEONE 3
 #define IDTAG_NO_ONE 4

 /* ... End of fullstat structure replica */
 # define FULLSTATSIZE \
 (((int)(char*)&(((struct stat *)0)->st_gid_rev_tag))+sizeof(u_long_t))

 }

 /*
 * Defines for statx cmd argument
 */
 #define STX_LINK 0x0001 /* do not traverse final symbolic */
 /* link (lstat) */
 #define STX_MOUNT 0x0002 /* If a mount point return status */
 /* of mounted-over directory */
 #define STX_HIDDEN 0x0004 /* do not traverse final hidden */

AIX Operating System Technical Reference
stat.h

¦ Copyright IBM Corp. 1985, 1991
2.4.22 - 2

 /* directory */

 #define STX_TRANS 0x0000 /* Normal uid/gid translation */
 #define STX_TRANS_NONE 0x0008 /* No uid/gid translation */
 #define STX_TRANS_OTHER 0x0010 /* Biased uid/gid translation */

 /*
 * Defines for file types in st_mode
 */
 #define S_IFMT 0x3000F000 /* type of file */
 #define S_IFDIR 0x00004000 /* directory */
 #define S_ISDIR(m) (((m) & (S_IFMT)) == (S_IFDIR))
 #define S_IFCHR 0x00002000 /* character special */
 #define S_ISCHR(m) (((m) & (S_IFMT)) == (S_IFCHR))
 #define S_IFBLK 0x00006000 /* block special */
 #define S_ISBLK(m) (((m) & (S_IFMT)) == (S_IFBLK))
 #define S_IFREG 0x00008000 /* regular */
 #define S_ISREG(m) (((m) & (S_IFMT)) == (S_IFREG))
 #define S_IFIFO 0x00001000 /* fifo (named pipe) */
 #define S_ISFIFO(m) (((m) & (S_IFMT)) == (S_IFIFO))
 #define S_IFLNK 0x0000a000 /* symbolic link (lstat only) */
 #define S_ISLNK(m) (((m) & (S_IFMT)) == (S_IFLNK))
 #define S_IFSOCK 0x0000c000 /* socket */
 #define S_ISOCK(m) (((m) & (S_IFMT)) == (S_IFSOCK))

 /*
 * file attributes in st_mode
 */
 #define S_ISUID 0x00000800 /* set user id on execution */
 #define S_ISGID 0x00000400 /* set group id on execution */
 #define S_IMPX 0x00000200 /* multiplexed device */
 #define S_ISVTX 0x00000200 /* save swapped text even after */
 /* use */
 #define S_IHIDDEN 0x08000000 /* hidden directory */
 #define S_ENFMT S_ISGID /* record locking enforcement */
 /* flag */

 #define S_IFMPX (S_IFCHR | S_IMPX) /* mode for multiplexed file */

 #define S_ISMPX(m) (((m) & (S_IFMT | S_IMPX)) == (S_IFMPX))
 #define S_ISHIDDEN(m) (((m) & (S_IFMT | S_IHIDDEN)) == \
 (S_IFDIR | S_IHIDDEN))

 /*
 * file permissions in st_mode
 */
 #define S_IRWXU 00700 /* (0x01C0) owner read,write,execute */
 /* permission */
 #define S_IREAD 00400 /* (0x0100) owner read permission */
 #define S_IRUSR 00400 /* (0x0100) read permission, owner */
 #define S_IWRITE 00200 /* (0x0080) owner write permission */
 #define S_IWUSR 00200 /* (0x0080) owner write permission */
 #define S_IEXEC 00100 /* (0x0040) owner execute/search permission */
 #define S_IXUSR 00100 /* (0x0040) owner execute/search permission */

 #define S_IRWXG 00070 /* (0x0038) group read,write,execute */
 /* permission */

AIX Operating System Technical Reference
stat.h

¦ Copyright IBM Corp. 1985, 1991
2.4.22 - 3

 #define S_IRGRP 00040 /* (0x0020) group read permission */
 #define S_IWGRP 00020 /* (0x0010) group write permission */
 #define S_IXGRP 00010 /* (0x0008) group execute/search permission */

 #define S_IRWXO 00007 /* (0x0007) other read,write,execute */
 /* permission */
 #define S_IROTH 00004 /* (0x0004) other read permission */
 #define S_IWOTH 00002 /* (0x0002) other write permission */
 #define S_IXOTH 00001 /* (0x0001) other execute/search permission */

 The meanings of the stat structure fields are:

 st_dev The gfs number of the file system containing a directory entry
 for this file. The file index together with the gfs number
 uniquely identifies the file within the system.

 st_ino The index (inode number) of this file in this file system. A
 file is uniquely identified by specifying the file system on
 which it resides and its inode number in this file system.

 st_mode The file mode. The values of this field are described above.

 st_nlink The number of hard links to the file. See "link" in
 topic 1.2.156.

 st_size The end-of-file mark. For a regular file or directory, st_size
 specifies the length of the file in bytes; for a FIFO or pipe,
 it specifies the number of unread bytes. For a device, st_size
 is undefined.

 st_rdev The ID of the device. This field is defined only for block or
 character special files.

 st_atime The time when file data was last accessed.

 st_mtime The time when data was last modified.

 st_ctime The time when file status was last changed.

 st_blksize
 The size, in bytes, of each block of the file.

 st_blocks The number of blocks used to represent the file on permanent
 storage. This includes indirect blocks.

 st_gen The generation number of this inode.

 st_type The type of the vnode for this object. This is one of the
 following values:

 VNON An unallocated object; this should not occur

 VBAD An unknown type of object

 VREG regular file

 VDIR directory

 VHDIR hidden directory

AIX Operating System Technical Reference
stat.h

¦ Copyright IBM Corp. 1985, 1991
2.4.22 - 4

 VBLK block device

 VCHR character device

 VLNK symbolic link

 VSOCK socket

 VFIFO FIFO

 VMPC multiplexed character device

 st_vfs Virtual file system ID.

 st_flag A flag indicating whether the file or directory is a mount
 point. A value of FS_MOUNT indicates that it is a mount point.

 st_uid The file owner ID.

 st_gid The file group ID.

 File
 /usr/include/sys/stat.h

 Related Information
 In this book: "statx, fstatx, stat, fstat, fullstat, ffullstat, lstat" in
 topic 1.2.282 and "types.h" in topic 2.4.27.

AIX Operating System Technical Reference
stat.h

¦ Copyright IBM Corp. 1985, 1991
2.4.22 - 5

 2.4.23 stddef.h

 Purpose
 Lists common definitions.

 Synopsis

 #include <stddef.h>

 Description

 The stddef.h header file defines the macro constant NULL, the types
 ptrdiff_t, size_t, and wchar_t, and the macro offsetof (type,
 member-designator).

AIX Operating System Technical Reference
stddef.h

¦ Copyright IBM Corp. 1985, 1991
2.4.23 - 1

 2.4.24 stdlib.h

 Purpose
 Lists standard library definitions.

 Synopsis

 #include <stdlib.h>

 Description

 The stdlib.h header file defines the macro constants RAND_MAX,
 EXIT_SUCCESS, EXIT_FAILURE, NULL, and MB_CUR_MAX and the data types
 size_t, wchar_t and mbchar_t, defined through typedef.

 The following are declared as either functions or macros:

 abort abs atof atoi
 atol bsearch calloc exit
 free getenv labs malloc
 mblen mbtowc mbstowcs srand
 qsort rand realloc
 strtod strtol system
 wcstombs wctomb

AIX Operating System Technical Reference
stdlib.h

¦ Copyright IBM Corp. 1985, 1991
2.4.24 - 1

 2.4.25 string.h

 Purpose
 Defines string operations.

 Synopsis

 #include <string.h>

 Description

 The string.h header file defines the macro constant NULL and the data type
 size_t defined through typedef.

 The following are declared as either subroutines or macros:

 strcpyn strcatn strcmpn
 strcpy strncpy strcat
 strncat strchr strrchr
 strstr strcmp strncmp
 strcspn strlen strspn
 memchr memcpy memset memcmp

 index rindex
 strpbrk strtok strtol

 NLstrcpy NLstrncpy NLstrcat NLstrncat
 NLstrchr NLstrrchr NLstrpbrk NLstrtok
 *NCstrcpy *NCstrncpy *NCstrcat *NCstrncat
 *NCstrchr *NCstrrchr *NCstrpbrk *NCstrtok

 Related Information
 In this book: "NLstring" in topic 1.2.193 and "string" in topic 1.2.288.

AIX Operating System Technical Reference
string.h

¦ Copyright IBM Corp. 1985, 1991
2.4.25 - 1

 2.4.26 TERM

 Purpose
 Lists conventional names for terminals.

 Description
 These names are used primarily for commands such as mm and nroff. These
 names are maintained as part of the shell environment in the variable
 TERM. See the sh command in AIX Operating System Commands Reference for
 an explanation of the shell. Also see "profile" in topic 2.3.48 and
 "environment" in topic 2.4.6 in this book for use of the TERM environment
 variable.

 TERM Terminal Description

 ibm3161 IBM 3161 ASCII Display Station
 ibm3161 IBM 3163 ASCII Display
 ibm3161-C IBM 3161 ASCII Display Station with cartridge (for
 international character support)
 ibm3162 IBM 3162 ASCII Display (for international character support)
 ibm8503 IBM 8503 Display
 ibm8507 IBM 8507 Display
 ibm8512 IBM 8512 Display
 ibm8513 IBM 8513 Display
 ibm8514 IBM 8514 Display
 ibm8604 IBM 8604 Display
 vt100 DEC VT100
 vt220 DEC VT220
 dumb Terminal types with no special features (such as reverse line
 motion) (implies -c)
 lp Line Printer (implies -c) (must pipe through lpr or some such
 filter)
 37 Teletype Model 37 KSR
 42 ADM 42 (implies -c)
 300 DASI (DTC, GSI) 300
 300s DASI 300s
 300-12 DASI 300 at 12-pitch
 300s-12 DASI 300s at 12-pitch
 tn300 TermiNet 300 (implies -c)
 382 DTC 382
 450 DASI 450 (same as Diablo 1620) DEFAULT
 450-12 DASI 450 (same as Diablo 1620) 12-pitch
 2631 HP 2631 series line printer (implies -c)
 2631-e HP 2631 series (expanded mode) (implies -c)
 2631-c HP 2631 series (compressed mode) (implies -c)
 4000a Trendata 4000a

 Up to eight characters chosen from [-a-z0-9] make up a basic terminal
 name. Terminal sub-models and operational modes are distinguished by
 suffixes beginning with a - (hyphen). Names should generally be based on
 original vendors, rather than local distributors. A terminal acquired
 from one vendor should not have more than one distinct basic name.

 Commands whose behavior depends on the type of terminal should accept
 parameters such as -Tterm where term is one of the names in the preceding
 list. If the parameter is not in the list, the commands should obtain the
 terminal type from the environment variable TERM, which in turn should
 contain term. Any unknown terminal is treated as a dumb terminal.

 This list does not include all supported terminals. See "terminfo" in

AIX Operating System Technical Reference
TERM

¦ Copyright IBM Corp. 1985, 1991
2.4.26 - 1

 topic 2.3.59 for additional TERM variables.

 File
 usr/lib/help/term

 Related Information
 In this book: "environment" in topic 2.4.6 and "terminfo" in
 topic 2.3.59.

 The mm, sh, stty, tabs, nroff, and environ commands in AIX Operating
 System Commands Reference.

AIX Operating System Technical Reference
TERM

¦ Copyright IBM Corp. 1985, 1991
2.4.26 - 2

 2.4.27 types.h

 Purpose
 Defines data types for the system.

 Synopsis
 #include <sys/types.h>

 Description
 The data types defined in this include file are used in the AIX system
 source code. Some data of these types are accessible to user code:

 typedef struct {int r[1];} * physadr;
 typedef long daddr_t;
 typedef char * caddr_t;
 typedef unsigned int uint;
 typedef unsigned short ushort;
 typedef unsigned long ulong;
 typedef ulong ino_t;
 typedef long time_t;
 typedef ulong dev_t;
 typedef long off_t;
 typedef long paddr_t;
 typedef long key_t;
 typedef long pid_t;
 typedef ulong uid_t;
 typedef ulong gid_t;
 typedef ulong mode_t;

 Notes:

 daddr_t This data type is used for disk addresses.

 time_t Times are encoded in seconds since 00:00:00 GMT, January 1, 1970.

 dev_t The major and minor parts of a device code specify kind of device
 and unit number of the device, and they depend on the system
 customization.

 off_t Offsets are measured in bytes from the beginning of a file.

 pid_t Process ID type.

 uid_t User ID type.

 gid_t Group ID type.

 mode_t File mode and permission bits.

 File

 /usr/include/sys/types.h

 Related Information
 In this book: "fs" in topic 2.3.20 and "values.h" in topic 2.4.28.

AIX Operating System Technical Reference
types.h

¦ Copyright IBM Corp. 1985, 1991
2.4.27 - 1

 2.4.28 values.h

 Purpose
 Defines machine-dependent values.

 Synopsis
 #include <values.h>

 Description
 This header file contains a set of manifest constants that are
 conditionally defined for particular processor architectures. The model
 for integers is assumed to be a ones- or twos-complement binary
 representation, in which the sign is represented by the value of the
 high-order bit.

 BITS(type) The number of bits in the specified data type

 HIBITS A short integer with only the high-order bit set (0x8000)

 HIBITL A long integer with only the high-order bit set (0x80000000)

 HIBITI A regular integer with only the high-order bit set (the same
 as HIBITL)

 MAXSHORT The maximum value of a signed short integer (0x7FFF ==
 32767)

 MAXLONG The maximum value of a signed long integer (0x7FFFFFFF ==
 2147483647)

 MAXINT The maximum value of a signed regular integer (the same as
 MAXLONG)

 MAXFLOAT The maximum value of a single-precision floating-point
 number

 MAXDOUBLE The maximum value of a double-precision floating-point
 number

 LN_MAXDOUBLE The natural logarithm of MAXDOUBLE

 MINFLOAT The minimum positive value of a single-precision
 floating-point number

 MINDOUBLE The minimum positive value of a double-precision
 floating-point number

 FSIGNIF The number of significant bits in the mantissa of a
 single-precision floating-point number

 DSIGNIF The number of significant bits in the mantissa of a
 double-precision floating-point number

 FMAXEXP The maximum exponent of a single-precision floating-point
 number

 DMAXEXP The maximum exponent of a double-precision floating-point
 number

 FMINEXP The minimum exponent of a single-precision floating-point

AIX Operating System Technical Reference
values.h

¦ Copyright IBM Corp. 1985, 1991
2.4.28 - 1

 number

 DMINEXP The minimum exponent of a double-precision floating-point
 number

 FMAXPOWTWO The largest power of two that can be exactly represented as
 a single-precision floating-point number

 DMAXPOWTWO The largest power of two that can be exactly represented as
 a double-precision floating-point number.

 File

 /usr/include/values.h

 Related Information
 In this book: "math.h" in topic 2.4.13 and "types.h" in topic 2.4.27.

AIX Operating System Technical Reference
values.h

¦ Copyright IBM Corp. 1985, 1991
2.4.28 - 2

 2.5 Chapter 5. Special Files

 Subtopics
 2.5.1 About This Chapter
 2.5.2 asy
 2.5.3 cdrom
 2.5.4 ceti
 2.5.5 ckd
 2.5.6 cpcmd
 2.5.7 error
 2.5.8 fba
 2.5.9 fd
 2.5.10 hd
 2.5.11 hft
 2.5.12 ilans
 2.5.13 keyboard
 2.5.14 lp
 2.5.15 lp
 2.5.16 mem, kmem
 2.5.17 mt
 2.5.18 nvram
 2.5.19 null
 2.5.20 osm
 2.5.21 pty
 2.5.22 punch
 2.5.23 reader
 2.5.24 RIC
 2.5.25 st
 2.5.26 swap
 2.5.27 tape
 2.5.28 termio
 2.5.29 trace
 2.5.30 tty

AIX Operating System Technical Reference
Chapter 5. Special Files

¦ Copyright IBM Corp. 1985, 1991
2.5 - 1

 2.5.1 About This Chapter

 This chapter describes various special files that refer to specific
 hardware peripherals and AIX system device drivers. The names of the
 entries are generally derived from names for the hardware as opposed to
 the names of the special files themselves. Characteristics of both the
 hardware device and the corresponding AIX system device driver are
 discussed where applicable.

 The special files in this chapter are categorized in the following manner:

 Special files found in all AIX systems. These are:

 error prf
 mem, kmem pty
 null termio
 osm trace
 tty

 Special files unique to AIX/370. These are:

 ceti ilans
 ckd lp
 cpcmd mt
 fba punch
 reader

 Special files unique to AIX PS/2. These are:

 asy keyboard
 fd lp
 hd nvram
 hft tape

AIX Operating System Technical Reference
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
2.5.1 - 1

 2.5.2 asy

 Purpose
 Supports asynchronous serial ports.

 Description
 The asy driver supports asynchronous serial ports. It is unique to AIX
 PS/2. If a port is not installed, an attempt to open it fails. Each port
 can be individually programmed for speed (50-19.2K baud), character
 length, and parity. Output speed is always the same as input speed. This
 driver supports the PS/2 system board serial port, the IBM PS/2 Dual Async
 Adapter/A, and the IBM PS/2 300/1200 Internal Modem/A.

 The asynchronous port is a character-at-a-time device for both input and
 output. This characteristic limits the bandwidth, which can be achieved
 over a line and increases the interrupt loading on the central processor.

 If the port was opened with the modem control bit present in the minor
 device (see the following text), modem control is enabled. If enabled,
 the driver waits in the open routine until data carrier detect is present.
 Once opened, if data carrier detect drops, the driver returns errors on
 any subsequent user read or write attempts of the asynchronous port. If
 the port was opened as a controlling teletype, a SIGHUP signal is
 generated to the process that performed the open.

 If the port was opened with the printer control bit present in the minor
 device number (see the following text), the port behaves as a serial
 printer port and the driver interface is described by lp. If the printer
 control bit is not present, the port behaves as a terminal port and the
 driver interface is described by termio.

 Subtopics
 2.5.2.1 Minor Device Numbers

AIX Operating System Technical Reference
asy

¦ Copyright IBM Corp. 1985, 1991
2.5.2 - 1

 2.5.2.1 Minor Device Numbers

 The values of the low-order bits of the minor device number correspond to
 the port addresses of the serial ports as configured by the IBM PS/2
 Reference Diskette. These values are in the range of 0 through 7 and
 indicate serial ports SERIAL_1 through SERIAL_8, respectively. Bit 6
 enables modem control on the selected port. Bit 7 indicates that the
 selected port is a serial printer port. Following are some examples of
 minor device numbers.

 Minor device Meaning
 0 port SERIAL_1, no modem control, tty
 7 port SERIAL_8, no modem control, tty
 64 port SERIAL_1, modem control, tty
 65 port SERIAL_2, modem control, tty
 129 port SERIAL_2, no modem control, lp
 193 port SERIAL_2, modem control, tty

 Files

 /dev/tty* for terminal devices.

 /dev/lp* for printer devices.

 Related Information
 In this book: "sigaction, sigvec, signal" in topic 1.2.263, "lp" in
 topic 2.5.14, and "termio" in topic 2.5.28.

 The devices command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
Minor Device Numbers

¦ Copyright IBM Corp. 1985, 1991
2.5.2.1 - 1

 2.5.3 cdrom

 Purpose

 Supports the cdrom device driver.

 Description
 The cdrom device driver provides block and character access to the cdrom
 disks. The cdrom special file is unique to AIX PS/2. The minor number of
 this system device is determined via the special files /dev/cdromn and
 /dev/rcdromn, where n specifies the minor number.

 In raw I/O, the buffer must begin on a 512 byte boundary and counts must
 be a multiple of 512 bytes. Likewise lseek system calls must specify a
 multiple of 512 bytes. However, for the most efficient raw I/O, the
 buffer should be on a 4096 byte boundary and counts should be a multiple
 of 4096 (the page size). Note that cdrom devices are read only; thus, any
 writes will return an error.

 Subtopics
 2.5.3.1 ioctl Operations

AIX Operating System Technical Reference
cdrom

¦ Copyright IBM Corp. 1985, 1991
2.5.3 - 1

 2.5.3.1 ioctl Operations

 The IOCTYPE type ioctl call returns the value DD_CDROM, defined in
 /sys/devinfo.

 The IOCTYPE type ioctl call returns the structure defined in
 /sys/devinfo.h.

 Files

 /dev/cdrom0, /dev/cdrom1, ...
 /dev/rcdrom0, /dev/rcdrom1, ...

 Related Information
 In this book: "fd" in topic 2.5.9 and "ioctlx, ioctl, gtty, stty" in
 topic 1.2.137.

AIX Operating System Technical Reference
ioctl Operations

¦ Copyright IBM Corp. 1985, 1991
2.5.3.1 - 1

 2.5.4 ceti

 Purpose
 Supports the CETI network device driver.

 Synopsis

 #include <sys/devinfo.h>
 #include <sys/b370/ceti.h>

 Description
 The ceti device driver is used to drive to the 9370 Integrated Ethernet
 Adapter, the Intel Fastpath Ethernet Adapter, and other ethernet adapters
 that conform to the CETI interface specification. This driver is unique
 to AIX/370.

 Since the supported device is a LAN network interface, normal network
 traffic is transmitted and received using the socket interface and not the
 device interface. The device interface is used only to monitor and
 control the operation of the device, via ioctl commands.

 The device used to perform this monitor and control is /dev/ceti#, where #
 is the device minor number.

 There is a small number of IOCTL operations available besides the standard
 IOCTYPE and IOCINFO commands. They are:

 DIOCONLINE
 Bring the device on-line.

 ioctl(fd, DIOCONLINE, arg)
 char *arg

 The argument is ignored.

 DIOCOFFLINE
 Take the device off-line.

 ioctl(fd, DIOCOFFLINE, arg)
 char *arg

 The argument is ignored.

 CIOGETSTATS
 Return device statistics.

 ioctl(fd, CIOGETSTATS, arg)
 struct ceti_lstat *arg;

 where struct ceti_lstat is declared as:

 struct ceti_lstat {
 ulong received; /* # of frames received */
 ulong transmitted; /* # of frames transmitted */
 ulong lost; /* # of frames lost */
 ulong runts; /* # of runt frames */
 ulong crcerrs; /* # of frames with crc errors */
 ulong collisions; /* # of frames in collision */
 ulong multicast; /* # of multicast frames */
 ulong broadcast; /* # of broadcast frames */

AIX Operating System Technical Reference
ceti

¦ Copyright IBM Corp. 1985, 1991
2.5.4 - 1

 ulong not_ours; /* # of frames not for us */
 ulong multi_not_ours; /* # of multicast frames not for us */
 ulong excess_collisions; /* # of excessive collisions */
 ulong out_of_window; /* # of out-of-window collisions */
 ulong alignment; /* # of alignment errors */
 ulong shorted; /* # of times a short was detected */
 ulong reflectometer; /* # of reflectometer packets */
 ulong too_long; /* # of frames that were too long */
 };

 CEREPCTL
 Control the VM EREP logging.

 ioctl(fd, CEREPCTL, arg)
 struct ceti_erep_ctl *arg;

 where struct ceti_erep_ctl is declared as:

 struct ceti_erep_ctl {
 unsigned char obr_thresh;
 unsigned char mdr_thresh;
 unsigned char obr_cnt;
 /* current log control count returned here */
 unsigned char mdr_cnt;
 /* current log control count returned here */
 };

 If a threshold is 0, no EREP logging is done. If set to 0xff, no
 change to the current state is made. Otherwise, logging set to
 occur every nth occurrence, where n is the number specified.

 Related Information
 In this book: "ioctlx, ioctl, gtty, stty" in topic 1.2.137 and "open,
 openx, creat" in topic 1.2.199.

AIX Operating System Technical Reference
ceti

¦ Copyright IBM Corp. 1985, 1991
2.5.4 - 2

 2.5.5 ckd

 Purpose
 Supports the Count Key Data Direct Access Storage Device driver.

 Synopsis

 # include <sys/devinfo.h>
 # include <sys/b370/dkckd.h>

 Description
 Fixed disk devices on an AIX/370 system provide block and character access
 to minidisks on physical disk devices. The ckd special file is unique to
 AIX/370.

 The particular device accessed is of the form /dev/chdnnn and
 /dev/rchdnnn, where nnn is the given device minor number. The driver
 supports up to 32 separate AIX minidisks (partitions) on a single physical
 disk. Thus, each physical disk has 32 minor numbers associated with it.
 The first of these refers to the entire disk and is normally used for disk
 maintenance only. The other 31 minors are available for user or system
 AIX minidisks.

 In raw I/O, the buffer must always be aligned on a 4096 byte boundary, and
 counts must be a multiple of 4096 bytes (an integral number of physical
 blocks). lseek system calls should also specify such an aligned address.

 A number of IOCTL operations are available. In addition to IOCTYPE and
 IOCINFO, the following calls are defined:

 IOCSTATS
 Returns device statistics.

 ioctl(fd, IOCSTATS, arg);
 struct fi_status *arg;

 where fi_stats is declared as:

 struct fi_stats {
 u_long Fi_nsio; /* number read + write sio's */
 u_long Fi_nblksrd; /* number blocks read */
 u_long Fi_nblkswr; /* number blocks written */
 u_long Fi_nretry; /* number of retries */

 u_long Fi_tsio; /* rmtime for last sio */
 double Fi_etsio; /* elapsed time for sio */
 double Fi_tottsio; /* microsecs from sio to intr */

 u_long Fi_nfree; /* number of ckdfree calls */
 u_long Fi_tfree; /* rmtime for last ckdfree */
 double Fi_etfree; /* elapsed time for ckdfree */

 u_long Fi_nrsort; /* number rotate_sort calls */
 u_long Fi_trsort; /* rmtime last rotate_sort */
 double Fi_etrsort; /* rotate_sort elapsed time */
 };

 DEVADDR
 Returns the device address.

AIX Operating System Technical Reference
ckd

¦ Copyright IBM Corp. 1985, 1991
2.5.5 - 1

 ioctl(fd, DEVADDR, arg);
 int *arg;

 HDIOPAR
 Returns driver internal structure.

 ioctl(fd, HDIOPAR, arg);
 struct ckd_info *arg;

 where struct ckd_info is declared as:

 struct ckd_info {
 struct buf fi_tab;
 /* Queue header, should be a bufhdr? */
 ioaddr_t fi_devno;
 /* Device number for this spindle */
 u_char fi_mask;
 /* Mask byte for set file mask ccw */
 char fi_unused;
 bool_t fi_alive;
 /* Is it really there ? */
 bool_t fi_ro;
 /* Disk is read-only (How do I know?) */
 bool_t fi_countkeyio;
 /* Open for count key I/O */
 short fi_ocount;
 /* Open count */
 short fi_rocount;
 /* Raw open count */
 short fi_recptrk;
 /* Records per track */
 short fi_trkpcyl;
 /* Tracks per cylinder */
 daddr_t fi_curblock;
 /* Current head position */
 daddr_t fi_maxsecno;
 /* Maximum number of sectors */
 short *fi_sectabp;
 /* Ptr to record->sector table*/
 ccw_t *fi_realccw;
 /* Real address of the ccw's */
 ccw_t *fi_ccws;
 /* Ptr to channel program */
 seeklist_t *fi_seek;
 /* Ptr to seek or search addresses */
 paddr_t **fi_idaws;
 /* Ptr to space for idaws */
 ccw_t *fi_insccwp;
 /* Ptr to sense channel program */
 u_char *fi_snsp;
 /* Ptr to buffer for sense data */
 int fi_nsns;
 /* Number of sense bytes retrieved */
 struct fi_stats fi_stats;
 /* Statistics can be used by sar */
 };

 HDIORST

AIX Operating System Technical Reference
ckd

¦ Copyright IBM Corp. 1985, 1991
2.5.5 - 2

 Reread the VTOC minidisk partition table.

 ioctl(fd, HDIORST, arg);
 caddr_t arg;

 The argument is not used. This command only works on the whole
 partition maintenance minidisk.

 Related Information
 In this book: "ioctlx, ioctl, gtty, stty" in topic 1.2.137, "open, openx,
 creat" in topic 1.2.199, "read, readv, readx" in topic 1.2.224, and
 "write, writex" in topic 1.2.330.

AIX Operating System Technical Reference
ckd

¦ Copyright IBM Corp. 1985, 1991
2.5.5 - 3

 2.5.6 cpcmd

 Purpose
 Supports the IBM VM CP system interface.

 # include <sys/devinfo.h>
 # include <sys/b370/cpcmd.h>

 Description
 The AIX/370 system runs as a guest under VM. At times, it is desirable
 for programs to communicate through this interface. The device used to
 obtain this interface to VM is /dev/cpcmd. The cpcmd special file is
 unique to AIX/370. There is only one such device per system.

 Only the superuser can open this device. This avoids giving
 non-privileged AIX users the full privileges of the AIX/370 virtual
 machine within the realm of VM. Most I/O through this device is performed
 via ioctl commands describe below. It is possible, however, to write to
 the device a specific CP command. This command should be in ASCII, but
 otherwise in the format required by VM (for instance, all uppercase
 letters).

 There is one IOCTL operation available besides the standard IOCTYPE and
 IOCINFO commands. This is the CPCMD ioctl command. The CPCMD ioctl is of
 the form:

 ioctl (fd, CPCMD, arg)
 struct cpcmds *arg;

 The cpcmd structure is declared as follows:

 struct cpcmds {
 int inlen;
 int maxoutlen;
 char *inbuf;
 char *outbuf;
 int *outlen;
 };

 The inbuf contains the command to be run, and the outbuf is to store the
 result returned by CP. This method allows the execution of each CP
 command to be atomic.

 Error Conditions
 In addition to the errors listed in "ioctlx, ioctl, gtty, stty" in
 topic 1.2.137, "open, openx, creat" in topic 1.2.199, and "write, writex"
 in topic 1.2.330, system calls to this device can fail in the following
 circumstances:

 EPERM Attempt to open the device by non-superuser.

 EINVAL The CP command is not valid.

 Related Information
 In this book: "ioctlx, ioctl, gtty, stty" in topic 1.2.137, "open, openx,
 creat" in topic 1.2.199, and "write, writex" in topic 1.2.330.

 The cpcmd command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
cpcmd

¦ Copyright IBM Corp. 1985, 1991
2.5.6 - 1

 2.5.7 error

 Purpose
 Logs system events.

 Synopsis

 #include <sys/erec.h>

 Description
 The error special file is found in all AIX systems.

 The format of an event record depends on the type of event encountered.
 Each record, however, has a header with the following format:

 struct errhdr {
 int e_len; /* word in record (with header) */
 time_t e_time; /* time of day */
 long e_timex; /* clock ticks */
 char e_nid[8]; /*same as nodename field returned by uname sys call*/
 char e_vmid[8]; /*same as sysname field returned by uname sys call */
 union {
 struct {
 char ex_class;
 char ex_subclass[2];
 char ex_type; /* record type */
 } ex;
 int csmt;
 } exx;
 };

 The error daemon searches the RAS configuration file /etc/rasconf for a
 stanza labeled /dev/error. Minor device 0 of the error driver is the
 interface between a process and the routines that collect error-records in
 the system. This driver can be opened only for reading by a process
 (usually the error daemon) with superuser permission. Each read retrieves
 an entire error record. A read request of less than the entire record
 causes the retrieved record to be truncated. Multiple processes can open
 the error file to write.

 File
 /dev/error

 Related Information
 In this book: "errunix" in topic 1.2.70, and "rasconf" in topic 2.3.50.

 The errdemon command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
error

¦ Copyright IBM Corp. 1985, 1991
2.5.7 - 1

 2.5.8 fba

 Purpose
 Supports the Fixed Block Architecture Direct Access Storage Device driver.

 Synopsis

 # include <sys/devinfo.h>
 # include <sys/b370/dkfba.h>

 Description
 Fixed disk devices on an AIX/370 system provide block and character access
 to minidisks on physical disk devices. The fba special file is unique to
 AIX/370.

 The particular device accessed is of the form /dev/fhdnnn and
 /dev/rfhdnnn, where nnn is the given device minor number. The driver
 supports up to 32 separate AIX minidisks (partitions) on a single physical
 disk. Thus, each physical disk has 32 minor numbers associated with it.
 The first of these refers to the entire disk and is normally used for disk
 maintenance only. The other 31 minors are available for user or system
 AIX minidisks.

 In raw I/O, the buffer must always be aligned on a 4096 byte boundary, and
 counts must be a multiple of 4096 bytes (an integral number of physical
 blocks). lseek system calls should also specify such an aligned address.

 A number of IOCTL operations are available. In addition to IOCTYPE and
 IOCINFO, the following calls are defined:

 DEVADDR Returns the device address

 ioctl(fd, DEVADDR, arg);
 int *arg;

 HDIOPAR Return driver internal structure

 ioctl(fd, DEVADDR, arg);
 struct fba_info *arg;

 where struct fba_info is declared as:

 struct fba_info {
 struct buf fi_tab;
 /* Queue header */
 bool_t fi_alive;
 /* Is it really there ? */
 bool_t fi_ro;
 /* Disk is read-only */
 short fi_ocount;
 /* Open count */
 short fi_rocount;
 /* Raw open count */
 ioaddr_t fi_daddr;
 /* I/O address for this device */

 int fi_physec;
 /* Physical sector size */
 int fi_maxsecno;
 /* Maximum number of sectors */

AIX Operating System Technical Reference
fba

¦ Copyright IBM Corp. 1985, 1991
2.5.8 - 1

 short fi_secptrk;
 /* Sectors per track (unused) */
 short fi_trkpcyl;
 /* Tracks per cylinder (unused) */
 int fi_secpcyl;
 /* Sectors per cylinder (unused) */
 int fi_ncyl;
 /* Number of cylinders (unused) */

 caddr_t fi_realccw;
 /* Real address of the ccw's */
 ccw_t fi_deccw;
 /* Define extent ccw */
 ccw_t fi_locccw;
 /* Locate ccw */
 ccw_t fi_rwccw;
 /* Read/write ccw */
 delist_t fi_delst;
 /* Define extent list */
 loclist_t fi_loclst;
 /* Locate list */
 caddr_t fi_idaws -MAX_FBA_COUNT / NBIDA +1 -;
 /* IDA words */

 unsigned int fi_nsiord;
 /* number of read sio */
 unsigned int fi_nsiowr;
 /* number of write sio */
 unsigned int fi_nblksrd;
 /* number of blocks read */
 unsigned int fi_nblkswr;
 /* number of blocks written */
 unsigned int fi_nretry;
 /* number of retries */
 unsigned int fi_tsio;
 /* rmtime for last sio */
 double fi_tottsio;
 /* microsecs from sio to intr */
 };

 HDIORST Reread the VTOC minidisk partition table.

 ioctl(fd, HDIORST, arg);
 caddr_t arg;

 The argument is not used. This command only works on the whole
 partition maintenance minidisk.

 Related Information
 In this book: "ioctlx, ioctl, gtty, stty" in topic 1.2.137, "open, openx,
 creat" in topic 1.2.199, "read, readv, readx" in topic 1.2.224, and
 "write, writex" in topic 1.2.330.

AIX Operating System Technical Reference
fba

¦ Copyright IBM Corp. 1985, 1991
2.5.8 - 2

 2.5.9 fd

 Purpose
 Supports the diskette device driver.

 Synopsis
 #include <sys/devinfo.h>

 Description
 The fd special file is unique to AIX PS/2. The diskette special file
 provides block and character (raw) access to diskettes in the diskette
 drives, allowing only one process to have a diskette drive open for
 writing at a time. Removing the diskette from the drive with diskette
 files still open may cause various I/O system calls to return errors.

 The minor device number specifies both the driver number and the format of
 the diskette to be read or written. Following are the special file names
 used to access the diskette drives containing the specified diskettes
 (formatted).

 Special File Drive Media
 /dev/fd0 A 3.5 inch 1.44 Megabyte
 /dev/fd1 B 3.5 inch 1.44 Megabyte
 /dev/fd0h A 3.5 inch 1.44 Megabyte
 /dev/fd1h B 3.5 inch 1.44 Megabyte
 /dev/fd0l A 3.5 inch 720 Kilobyte
 /dev/fd1l B 3.5 inch 720 Kilobyte
 /dev/fd1x External 5.25 inch 360 Kilobyte
 /dev/fd3 External 5.25 inch 1.2 Megabyte

 The special file names /dev/rfd0, /dev/rfd1, and so on, refer to the
 character (raw) interface to the diskette drives.

 Warning: Accessing a diskette drive with a special file name that does
 not correspond to the format of the inserted media may lead to loss of
 data.

 Subtopics
 2.5.9.1 ioctl Operations
 2.5.9.2 Error Messages

AIX Operating System Technical Reference
fd

¦ Copyright IBM Corp. 1985, 1991
2.5.9 - 1

 2.5.9.1 ioctl Operations

 The IOCTYPE type ioctl system call returns the device type DD_DISK,
 defined in the sys/devinfo.h header file.

 The IOCINFO type ioctl system call returns the following structure,
 defined in the sys/devinfo.h header file:

 struct devinfo {
 char devtype;
 char flags;
 union {
 struct { /* for disks */
 short bytpsec; /* bytes per sector */
 short secptrk; /* sectors per track */
 short trkpcyl; /* tracks per cylinder */
 long numblks; /* number of blocks on diskette */
 } dk;
 ... /* for other devices */
 } un;
 };

 /* flags */
 #define DF_FIXED 01 /* non-removable */
 #define DF_RAND 02 /* random access possible */
 #define DF_FAST 04 /* a relative term */

AIX Operating System Technical Reference
ioctl Operations

¦ Copyright IBM Corp. 1985, 1991
2.5.9.1 - 1

 2.5.9.2 Error Messages
 The error messages printed out by the fd driver are of the following form:

 fd_err_log: TTTT error on dev (MAJ/MIN), blkno=BBBBB
 fd_err_log: status: ST UN S0 S1 S2

 Where:

 TTTT Is either read or write

 MAJ Is the major device number

 MIN Is the minor device number

 BBBBB Is the disk block (sector) number.

 The status bits have the following definitions:

 ST (Internal state at time of error):

 3 => error occurred during a Recalibrate operation

 4 => error occurred during a Seek operation

 6 => error occurred during a Read or Write operation

 UN (The drive unit number. This number should be 0 for the first
 drive and 1 for the second drive).

 S0 has the following bit definitions:

 c0 Interrupt code mask

 00 Normal Termination

 40 Abnormal Termination

 80 Invalid Command

 c0 Ready signal changed

 20 Seek command complete

 10 Fault signal received from drive

 08 Not ready

 04 Current state of the head select line

 03 Unit select

 S1 has the following bit definitions:

 80 Attempt to access sector beyond end of cyl

 40 Not used

 20 CRC error in the ID or data field

AIX Operating System Technical Reference
Error Messages

¦ Copyright IBM Corp. 1985, 1991
2.5.9.2 - 1

 10 Host did not service FDC fast enough

 08 Not used

 04 Specified sector not found

 02 Attempt to write a write protected disk

 01 Missing address mark

 S2 has the following bit definitions:

 80 Not used

 40 Control mark

 20 CRC in the data field

 10 Wrong Cylinder

 08 Scan command: equal condition satisfied

 04 Scan command: sector not found

 02 Bad Cylinder

 01 Missing Data address mark

 Files

 /dev/fd0, /dev/fd1, ...
 /dev/rfd0, /dev/rfd1, ...

 Related Information
 In this book: "ioctlx, ioctl, gtty, stty" in topic 1.2.137 and "fs" in
 topic 2.3.20.

AIX Operating System Technical Reference
Error Messages

¦ Copyright IBM Corp. 1985, 1991
2.5.9.2 - 2

 2.5.10 hd

 Purpose
 Supports the fixed-disk device driver.

 Synopsis
 #include <sys/devinfo.h>

 Description
 The fixed-disk device driver provides block and character (raw) access to
 minidisks on the fixed-disk drives. The hd special file is unique to AIX
 PS/2. The system determines the association of the minor device number to
 the minidisk. Normally, the special files /dev/hdn and /dev/rhdn are
 given the minor device number n.

 In raw I/O, the buffer must always begin on a 512 byte boundary, and
 counts must be a multiple of 512 bytes (a physical disk block). Likewise,
 lseek system calls must specify a multiple of 512 bytes. However, for the
 most efficient raw I/O, the buffer should be on a 4096 byte boundary and
 counts should be a multiple of 4096 (the page size).

 Subtopics
 2.5.10.1 ioctl Operations

AIX Operating System Technical Reference
hd

¦ Copyright IBM Corp. 1985, 1991
2.5.10 - 1

 2.5.10.1 ioctl Operations

 The IOCTYPE type ioctl call returns the value DD_DISK, defined in
 sys/devinfo.h.

 The IOCINFO type ioctl call returns the following structure, defined in
 sys/devinfo.h:

 struct devinfo {
 char devtype;
 char flags;
 union {
 struct { /* for disks */
 short bytpsec; /* bytes per sector */
 short secptrk; /* sectors per track */
 short trkpcyl; /* tracks per cylinder */
 long numblks; /* blocks this mini-disk */
 } dk;
 ... /* for other devices */
 } un;
 };

 /*flags */
 #define DF_FIXED 01 /* non-removable */
 #define DF_RAND 02 /* random access possible */
 #define DF_FAST 04 /* a relative term */

 Files

 /dev/hd0, /dev/hd1,...
 /dev/rhd0, /dev/rhd1,...

 Related Information
 In this book: "ioctlx, ioctl, gtty, stty" in topic 1.2.137, "lseek" in
 topic 1.2.161, and "fs" in topic 2.3.20.

AIX Operating System Technical Reference
ioctl Operations

¦ Copyright IBM Corp. 1985, 1991
2.5.10.1 - 1

 2.5.11 hft

 Purpose
 Implements a high-function virtual terminal device.

 Synopsis

 #include <sys/hft.h>

 Introduction
 The hft device driver allows one or more virtual terminals to be opened
 and used by application processes. The hft device driver is unique to AIX
 PS/2. Only one of these virtual terminals can be active at any given
 time; any others are hidden from view. The operator uses keyboard "hot
 key" sequences to switch between the active and inactive ones. There is
 an AIX command called open to create new virtual terminals from the
 keyboard.

 Each of the virtual terminals can be set to specific terminal
 characteristics. There are AIX commands such as display, keyboard,
 locator, sound, and stty which can be used to adjust these
 characteristics.

 This section describes the programmer's interface to hft. This interface
 was used by IBM to program the AIX commands mentioned above, and is also
 available for you to use in your application programs.

 Getting Started
 The /usr/lib/samples directory contains several README files that describe
 more information of interest to the programmer. There is also a
 /usr/lib/samples/hft directory which contains many example programs which
 show how to program the various hft functions. These examples often serve
 as a good starting point for constructing your own programs. If you are
 not familiar with hft, then you should first read the Concepts below, then
 proceed by trying one or more of the example programs. You should also
 print out a copy of /usr/include/sys/hft.h which will help in
 understanding the structures described in this section.

 Concepts

 The virtual terminal concept supports the illusion that more devices exist
 than are physically present and that these virtual devices have
 characteristics and features not necessarily limited by the actual
 physical devices. In addition to displays and keyboards, virtual
 terminals support locators and sound generators. Virtual terminals are
 logically independent of each other but share physical resources over
 time. Each virtual terminal embodies the characteristics of a single
 keyboard send/receive terminal. That is, it recognizes and processes the
 data stream received from the process causing the requested actions to
 occur, for example, move the cursor, or draw characters onto the virtual
 display, or change the attributes of characters. In addition to these
 actions, the outbound data stream can cause the generation of sequences of
 continuous tone sounds or cause the virtual display to be rendered on any
 of the available physical displays.

 A virtual terminal receives input from a virtual keyboard and/or a virtual
 locator; it outputs to a virtual display. Thus the virtual terminal can
 always expect to get input from its virtual input devices and can always
 output to its virtual display. Since physical devices are shared between
 virtual terminals, there will be times when a process desires to read or

AIX Operating System Technical Reference
hft

¦ Copyright IBM Corp. 1985, 1991
2.5.11 - 1

 write and the physical device is allocated to another virtual terminal.
 In these cases the process is blocked until the device becomes allocated.
 The virtual terminal that can accept physical input or modify the physical
 screen at a given time is called the active virtual terminal. Processes
 are never blocked for write if they are sending a data stream in KSR mode.
 The inactive virtual terminal accepts the data stream and outputs it to a
 presentation space. This presentation space will be rendered on the
 physical display when the virtual terminal becomes active.

 There is a Screen Manager which performs the allocation of physical
 devices to virtual terminals over time. The Screen Manager implements a
 ring of virtual terminals in which one virtual terminal is active and the
 others are inactive. There are keyboard "hot key" sequences to control
 switching between the active and inactive virtual terminals. The Screen
 Manager allocates needed physical devices to the virtual devices of the
 active virtual terminal. The Screen Manager also allows the switching of
 virtual terminals to occur under program control.

 There is a Resource Manager that allows global changes to be made to the
 default characteristics of new virtual terminals. For instance, it is
 possible to redefine the default display so that subsequent opens of the
 hft device will have different characteristics.

 Each virtual terminal provides a model of a single terminal that can be in
 one of the following modes at a given time:

 � Keyboard Send-Receive Mode (KSR

 � Monitor Mode (MOM)

 The KSR mode emulates an ASCII terminal using a data stream, which is
 described in detail in "data stream" in topic 2.4.3. The monitor mode
 allows applications to have a direct output path to the display hardware
 and shortened path for keyboard and locator. The form of the data
 accepted in each mode is unique to that mode. This optimizes the movement
 of data between the virtual terminal and the application program and
 supports the different functions within each mode. The default mode is
 KSR, which supports existing applications expecting an ASCII terminal.

 Additional functions supported include:

 � Reporting data from input devices such as locators (mice
 � Switching between interactive and noninteractive state
 � Changing color palette setting
 � Controlling the sound hardwar
 � Switching between the monitor mode and KSR mode

 The virtual terminal supplies default values for keyboard-to-character
 mapping, character-to-display mapping, echo/break specification, tab rack,
 and protocol mode flags to be used until a definition is received from the
 application.

 This hft facility is the kernel-level support for virtual terminals.
 Since the association of virtual terminals to physical terminals is
 dynamic, this special file, which represents the physical terminal, is
 multiplexed across virtual terminals by expanding the open, close, read,
 write, and especially the ioctl system calls to the driver. This type of
 driver is specified by the M flag in the master file. Many extra ioctl
 system calls are provided to allow access to advanced features of the hft
 facility. The facilities described in "termio" in topic 2.5.28 also apply

AIX Operating System Technical Reference
hft

¦ Copyright IBM Corp. 1985, 1991
2.5.11 - 2

 to the virtual terminal.

 The first (or only) hft is minor device 0, and special file /dev/hft is
 associated with it. The special file /dev/console is minor device 1.

 Each time /dev/hft is opened, a new hft virtual terminal is created and
 opened. A maximum of 16 virtual terminals can be opened due to limits on
 system resources. Each hft virtual terminal is given both a channel
 number and an I/O device number (IODN). You use the channel number if you
 wish to reopen an already existing virtual terminal. You use the IODN as
 part of certain hft ioctl operations, such as controlling the screen
 manager. The IODN specifies upon which virtual terminal to operate.

 To reopen an existing virtual terminal, open the special file /dev/hft/i,
 where i is the number of an open driver channel. The channel number can
 be determined with the HFGCHAN ioctl operation. The /dev/console special
 file is channel number 1. The /dev/tty special file is often used by
 programs to direct output and input to the current controlling terminal.
 For AIX, this special file acts as a synonym for the current virtual
 terminal.

 A process can also communicate with the hft screen manager by opening the
 /dev/hft/mgr file. Only the screen manager HFQSMGR and HFCSMGR ioctl
 operations can be issued to this file. read and write system calls are
 not allowed.

 The /usr/lib/samples/hft directory contains sample programs that use the
 hft virtual terminal subsystem. See the file /usr/lib/samples/README.hft
 for more information about these sample programs. When you develop
 programs that access the hft device driver, you should use the header file
 hft.h to define the necessary structures and constant definitions.

 Subtopics
 2.5.11.1 Contents of hft Section
 2.5.11.2 Open/Close
 2.5.11.3 Input
 2.5.11.4 Output
 2.5.11.5 ioctl Operations
 2.5.11.6 Screen Manager ioctls
 2.5.11.7 Virtual Terminal Commands
 2.5.11.8 Configuring the Virtual Terminal
 2.5.11.9 termio Support
 2.5.11.10 select Support
 2.5.11.11 Considerations for hft Emulation
 2.5.11.12 AIX PS/2 HFT Compatibility with AIX RT

AIX Operating System Technical Reference
hft

¦ Copyright IBM Corp. 1985, 1991
2.5.11 - 3

 2.5.11.1 Contents of hft Section

 Open/Close 2.5.11.2
 Creating a New Virtual Terminal 2.5.11.2.1
 Determining the New Terminal's Channel Number 2.5.11.2.2
 Redirecting Input and Output 2.5.11.2.3
 Switching between Virtual Terminals 2.5.11.2.4

 Input 2.5.11.3
 Using the Mouse 2.5.11.3.1
 Enable/disable mouse 2.5.11.3.1
 Input Device Report 2.5.11.3.1
 Query Locator 2.5.11.3.1
 Change Locator Sample Rate 2.5.11.3.1
 Set Locator Thresholds 2.5.11.3.1

 Output 2.5.11.4
 Keyboard Send-Receive Mode (KSR) 2.5.11.4.1
 Monitor Mode (MOM) 2.5.11.4.2
 Entering Monitor Mode 2.5.11.4.2
 Screen Request and Input Ring Buffer Definition 2.5.11.4.2
 Reading Input Data from the Ring Buffer 2.5.11.4.2
 Next Window Function 2.5.11.4.2
 Exiting Monitor Mode 2.5.11.4.2
 Signals 2.5.11.4.2
 Controlling Sound through the Speaker 2.5.11.4.3
 Sound 2.5.11.4.3
 Enable Sound Signal (HFESOUND) 2.5.11.4.3
 Disable Sound Signal (HFDSOUND) 2.5.11.4.3
 Cancel Sound 2.5.11.4.3

 ioctl Operations 2.5.11.5
 Query I/O Error (HFQEIO) 2.5.11.5.1
 Enter Monitor Mode (HFSMON) 2.5.11.5.2
 Exit Monitor Mode (HFCMON) 2.5.11.5.3
 Get Virtual Terminal ID (HFGETID) 2.5.11.5.4
 Get Channel Number (HFGCHAN) 2.5.11.5.5
 Query (HFQUERY) 2.5.11.5.6
 Query Device IDs Command 2.5.11.5.6
 Query Physical Device Command 2.5.11.5.6
 Query Locator Command 2.5.11.5.6
 Query Presentation Space Command 2.5.11.5.6
 Query HFT Device Command 2.5.11.5.6

 Screen Manager ioctls 2.5.11.6
 Query Screen Manager (HFQSMGR) 2.5.11.6.1
 Control Screen Manager (HFCSMGR) 2.5.11.6.2

 Virtual Terminal Commands 2.5.11.7
 VTD Control Structure 2.5.11.7.1
 Set KSR Color Palette 2.5.11.7.2
 Change Fonts 2.5.11.7.3
 Possible graphic renditions of VGA adapter 2.5.11.7.3
 Set Cursor Representation 2.5.11.7.4
 Set Keyboard LEDs 2.5.11.7.5
 Set Protocol Modes 2.5.11.7.6

 Configuring the Virtual Terminal 2.5.11.8
 Initial State 2.5.11.8.1
 Reconfigure (HFRCONF) 2.5.11.8.2

AIX Operating System Technical Reference
Contents of hft Section

¦ Copyright IBM Corp. 1985, 1991
2.5.11.1 - 1

 Set User-Defined Character Set 2.5.11.8.3
 Set Echo and Break Maps (HFSECHO) 2.5.11.8.4
 Set Keyboard Map (HFSKBD) 2.5.11.8.5
 Mapping Multiple Strings 2.5.11.8.5

 termio Support 2.5.11.9

 select Support 2.5.11.10

 Considerations for hft Emulation 2.5.11.11

 AIX PS/2 HFT Compatibility with AIX RT 2.5.11.12
 Differences Due to Hardware 2.5.11.12
 Differences Due to VRM 2.5.11.12
 Compatibility Table 2.5.11.12.1
 Byte-Ordering Considerations 2.5.11.12.2
 Sample Programs from AIX RT hft 2.5.11.12.3

 DOS Merge 2.5.11.12.4

AIX Operating System Technical Reference
Contents of hft Section

¦ Copyright IBM Corp. 1985, 1991
2.5.11.1 - 2

 2.5.11.2 Open/Close
 Refer to the sample program hftopen.c for an example of the topics
 discussed in this section.

 Subtopics
 2.5.11.2.1 Creating a New Virtual Terminal
 2.5.11.2.2 Determining the New Terminal's Channel Number
 2.5.11.2.3 Redirecting Input and Output
 2.5.11.2.4 Switching between Virtual Terminals

AIX Operating System Technical Reference
Open/Close

¦ Copyright IBM Corp. 1985, 1991
2.5.11.2 - 1

 2.5.11.2.1 Creating a New Virtual Terminal

 The hft device driver is a multiplexed device where each virtual terminal
 has a specific hft channel number associated with it. Opening the file
 /dev/hft causes the Screen Manager to create a new virtual terminal using
 the first available hft channel.

 The hft channels available are:

 Channel Device
 Number Name Use

 0 Reserved Screen Manager
 1 /dev/hft/1 console (/dev/console)
 2 Reserved
 3 /dev/hft/3 Virtual Terminal
 4 /dev/hft/4 Virtual Terminal

 .
 .
 .
 17 /dev/hft/17 Virtual Terminal

 The function call:

 fildes = open("/dev/hft",O_RDWR)

 causes the Screen Manager to create a new virtual terminal and assign the
 first available channel to it. The monitor immediately switches to the
 new screen. The file descriptor returned can be used to read or write
 from that virtual terminal.

AIX Operating System Technical Reference
Creating a New Virtual Terminal

¦ Copyright IBM Corp. 1985, 1991
2.5.11.2.1 - 1

 2.5.11.2.2 Determining the New Terminal's Channel Number

 Some hft operations require the channel number of the terminal as a
 parameter. After opening a new terminal issue the function call:

 channel = ioctl(fildes,HFGCHAN,0)

 Note that this function actually returns the channel of whichever terminal
 is currently displayed. Since the Screen Manager switched you to the new
 terminal immediately after creating it, the channel number of the new
 virtual terminal is returned.

AIX Operating System Technical Reference
Determining the New Terminal's Channel Number

¦ Copyright IBM Corp. 1985, 1991
2.5.11.2.2 - 1

 2.5.11.2.3 Redirecting Input and Output

 After you open a new virtual terminal, the standard input is still from
 the original virtual terminal (usually /dev/console) and the output is
 also sent to the original virtual terminal, even when this virtual
 terminal is not displayed. To redirect input and output to the new
 virtual terminal:

 outdesc = freopen("/dev/hft/(channel number)","w",stdout)
 indesc = freopen("/dev/hft/(channel number)","r",stdin)

 Now you can use printf, getc, and other functions normally. When the
 original console screen is displayed, keyboard input is sent to the
 program running on the console and output is sent to the console screen.
 When the new virtual terminal screen is displayed, keyboard input is sent
 to the program running on the virtual terminal and output is sent from
 that program to the virtual terminal screen.

AIX Operating System Technical Reference
Redirecting Input and Output

¦ Copyright IBM Corp. 1985, 1991
2.5.11.2.3 - 1

 2.5.11.2.4 Switching between Virtual Terminals

 The operator uses Alt-Action or Shift-Action to switch between the virtual
 terminals available for display. Each time these key combinations are
 pressed, the next or previous virtual terminal is displayed.

 Your program can also control the switch between virtual terminals by
 issuing the HFQSMGR and HFCSMGR ioctls to the hft Screen Manager using
 pseudo device /dev/hft/mgr. Refer to the sample programs hftcsm.c and
 hftqsm.c.

AIX Operating System Technical Reference
Switching between Virtual Terminals

¦ Copyright IBM Corp. 1985, 1991
2.5.11.2.4 - 1

 2.5.11.3 Input

 Data read from an hft device with the read system call can contain not
 only character data entered from the keyboard, but also input from other
 devices, such as a locator or mouse.

 Mouse input arrives in the form of Mouse Reports. See the section called
 "Using the Mouse" in topic 2.5.11.3.1 for more information.

 Keyboard input normally arrives in the form of ASCII characters and
 control sequences as described in "data stream" in topic 2.4.3. Such
 characters are essentially the same as the datastream that an ASCII
 terminal would produce.

 If an application needs to know the exact state of the keyboard, such as
 when keys are pressed and released then Untranslated Key Control should be
 used. This is done by turning off the HFXLATKBD protocol. See "Set
 Protocol Modes" in topic 2.5.11.7.6. When keyboard input is untranslated
 the hfunxlate sequence is returned for each change in keyboard state. See
 "keyboard" in topic 2.5.13 for additional information.

 The key position identifies the logical key pressed. The key status bits
 indicate Alt, Alt-Gr, Ctrl, Shift, Caps Lock, and Num Lock key states.

 Note: This control sequence contains binary data. To prevent the binary
 data from being misinterpreted as ASCII control codes, set the
 terminal's canonical processing off.

 The structure of the untranslated key control is:

 struct hfunxlate
 {
 char hf_esc;
 char hf_lbr;
 char hf_ww;
 char hf_keypos;
 char hf_scancode;
 char hf_status[2];
 };

 The fields of the structure are:

 Field Description

 hf_esc ESC (0x1B)

 hf_lbr [(0x5B)

 hf_ww w (0x77)

 hf_keypos Key Position

 Field Description

 hf_scancode Scan Code (See PS/2 Hardware Interface Technical Reference.)
 The scancode returned is the "makecode" as defined in Set 3
 scancode tables.

 hf_status[0] Status:

AIX Operating System Technical Reference
Input

¦ Copyright IBM Corp. 1985, 1991
2.5.11.3 - 1

 HFUXSHIFT A shift key is pressed.
 HFUXCTRL Ctrl key is pressed.
 HFUXALT Alt key is pressed.
 HFUXCAPS Caps Lock mode is in effect.
 HFUXNUM Num Lock mode is in effect.
 HFUXMAKE If set, key has been pressed. If not set, key has
 been released.

 hf_status[1] Status:

 HFUXRPT Automatic repeat (typematic) state.
 HFUXLSH Left shift state.
 HFUXRSH Right shift state.
 HFUXLALT Left alternate shift state
 HFUXRALT Right alternate shift state. (Alt-Gr for 102-key
 keyboards)

 Subtopics
 2.5.11.3.1 Using the Mouse

AIX Operating System Technical Reference
Input

¦ Copyright IBM Corp. 1985, 1991
2.5.11.3 - 2

 2.5.11.3.1 Using the Mouse

 Refer to the hftmouse.c sample program for an example of the topics
 discussed in this section.

 AIX architecture allows many forms of non-keyboard input, including a
 class called locator. Locators can provide input in either relative or
 absolute coordinates. The PS/2 mouse produces Mouse Reports which contain
 relative coordinates.

 Enable/disable mouse:

 Use the HFLOCATOR bit in the hfprotocol structure. See "Set Protocol
 Modes" in topic 2.5.11.7.6. Note that the mouse is initially set to
 disabled.

 Input Device Report:

 Mouse data is reported in the hflocator structure, in response to the read
 system call.

 Mouse Report

 hf_esc ESC (0x1B)

 hf_lbr [(0x5B)

 hf_why y (0x79)

 hf_deltax The X delta, a signed integer that holds the relative X delta
 accumulations in counts of 0.25 millimeters of the locator
 movement in twos-complement form. This information is sent to
 the virtual terminal to indicate horizontal movement since the
 last locator movement.

 hf_deltay The Y delta, a signed integer that holds the relative Y delta
 accumulations in counts of 0.25 millimeters of the locator
 movement in twos-complement form. This information is sent to
 the virtual terminal to indicate vertical movement since the
 last locator movement.

 hf_seconds Time of the locator report in whole seconds since system
 startup.

 hf_sixtyths The fractional part, of locator report time stamp, in 1/60th
 seconds.

 hf_buttons The status of the locator buttons. This information is sent to
 the virtual terminal to indicate a change in the status of the
 buttons since the last locator movement in the following manner:

 HFBUTTON1 Button 1 has been pressed.
 HFBUTTON2 Button 2 has been pressed.

 hf_stype 0

 Note: This control sequence contains binary data. To prevent the binary
 data from being misrepresented as ASCII control codes, set the
 terminal's canonical processing off. See ICANON in topic 2.5.28 in
 "termio" for details.

AIX Operating System Technical Reference
Using the Mouse

¦ Copyright IBM Corp. 1985, 1991
2.5.11.3.1 - 1

 Query Locator:

 The resolution of the locator and the current threshold settings can be
 obtained by issuing the Query Locator command. This is described within
 the section on the Query ioctl.

 Change Locator Sample Rate:

 The sampling rate of the locator can be changed by the HFCHGLOCRATE option
 of the Reconfigure ioctl.

 Set Locator Thresholds:

 The locator device receives notice of horizontal and vertical movement.
 The delta of these movement events are monitored by the driver, until the
 accumulated events exceed either the horizontal or vertical thresholds, or
 both. The locator device accumulates measurements at consecutive
 samplings. When a threshold is exceeded, the driver queues the
 information to the virtual terminal. When the status of the locator
 buttons change, the accumulated measurements are returned to the virtual
 terminal, even if these measurements do not exceed a threshold. The
 virtual terminal provides neither echoing nor positional management
 functions for the locator.

 Each opened virtual terminal has its own threshold values. When a virtual
 terminal is opened, the threshold values default to 2.75 millimeters
 horizontal and 5.5 millimeters vertical. If the thresholds are 0, each
 event report is returned to the virtual terminal at the sampling rate
 supported by the locator device driver.

 Setting the HFLOCATOR bit to 0 in the protocol mode definition or setting
 both thresholds to the maximum values completely disables the locator
 input. Setting a -1 for either or both threshold values indicates not to
 change the current setting.

 The hfloth structure is used for the locator threshold command, and it
 contains the following fields:

 Field Value

 hf_intro.hf_typehi HFLOTHCH

 hf_intro.hf_typelo HFLOTHCL

 hf_sublen 2

 Field Value

 hf_subtype 1

 hf_hthresh Specifies the horizontal threshold in values from 0
 to 32767 in units of 0.25 millimeters.

 hf_vthresh Specifies the vertical threshold in values from 0 to
 32767 in units of 0.25 millimeters.

AIX Operating System Technical Reference
Using the Mouse

¦ Copyright IBM Corp. 1985, 1991
2.5.11.3.1 - 2

 2.5.11.4 Output

 The virtual terminal is initially set into KSR mode which emulates an
 ASCII display. If an application needs direct control of physical
 hardware, then it can enter monitor mode.

 Subtopics
 2.5.11.4.1 Keyboard Send-Receive Mode (KSR)
 2.5.11.4.2 Monitor Mode (MOM)
 2.5.11.4.3 Controlling Sound through the Speaker

AIX Operating System Technical Reference
Output

¦ Copyright IBM Corp. 1985, 1991
2.5.11.4 - 1

 2.5.11.4.1 Keyboard Send-Receive Mode (KSR)

 In KSR mode, each byte written to the virtual terminal is interpreted as
 an ASCII code, which can be a displayable character, a single-byte
 control, or part of an escape or control sequence. "data stream" in
 topic 2.4.3 explains the supported ASCII/ANSI data stream in detail. KSR
 mode also supports a number of special control sequences specific to the
 virtual terminal environment.

 A KSR virtual terminal has a presentation space (PS) of a fixed number of
 columns per line, and a fixed number of lines. A symbol can be placed at
 any column on any line in the presentation space. A pointer into the
 virtual terminal defines the cursor position with a column and a line
 number. Graphics from the KSR data stream are placed in the PS relative
 to the cursor position. Keyboard input also relates to the cursor
 position.

 Two common modes for displaying graphics are replace and insert. In
 replace mode, a graphic character sent to a KSR terminal is placed above
 the cursor, replacing the symbol already there. In insert mode, a graphic
 character sent to a KSR terminal is also placed above the cursor, but the
 symbol above the cursor and all symbols to the right on the same line are
 shifted right one column position on the line. Characters shifted from
 the last column on the line disappear.

 Another mode determines cursor movement after the last column position of
 a line. This mode, automatic new line (AUTONL), determines if the cursor
 wraps around to the first column position of the next line or stays at the
 last column on the current line.

 If AUTONL is set, the cursor moves to the first column position of the
 following line. If the cursor happens to be on the bottom line of the
 presentation space, the presentation space scrolls up one line. If AUTONL
 is reset, the cursor stays on the last column of the current line.

 Blank lines in the presentation space and erased character positions
 display in the active background color with normal attributes.

 To set the KSR protocol modes, write a protocol mode control, which is
 described under "Set Protocol Modes" in topic 2.5.11.7.6. Specify the
 type as HFKSRPROH, HFKSRPROL.

AIX Operating System Technical Reference
Keyboard Send-Receive Mode (KSR)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.4.1 - 1

 2.5.11.4.2 Monitor Mode (MOM)

 Refer to the hftmom.c sample program for an example of the topics
 discussed in this section.

 Programs that choose to interact more efficiently with a virtual terminal
 or that must operate the display in all-points-addressable mode should
 select the monitor mode of the virtual terminal. In this mode, the
 program performs output directly to the display adapter via a memory
 mapped I/O bus, thus avoiding write system calls. Such a program can
 optionally read data from a circular buffer, (known as the "Input Ring
 Buffer"), thus avoiding read system calls. Some execution speed is gained
 by operating in this mode, but portability is sacrificed because the
 program depends on specific display adapters.

 Notes:

 1. Do not leave terminal open in monitor mode.
 2. No more than 1 process should be open to a virtual terminal that is in
 monitor mode.

 In order for a user program to switch from normal KSR mode to monitor
 mode, it must perform several mode changes, which are accomplished using
 system calls. The display-sharing concept using virtual terminals causes
 the program in monitor mode to participate in the next window function by
 temporarily releasing the display. This is also accomplished using system
 calls. While the user program is active to the display, it performs
 output operations directly to the display hardware with memory mapped I/O
 ports.

 Entering Monitor Mode:

 The first mode change the user program should perform is to issue the
 HFSMON ioctl operation to enable monitor mode signals SIGGRANT and
 SIGRETRACT, and to specify the method by which processes are to receive
 the signals. (See "Enter Monitor Mode (HFSMON)" in topic 2.5.11.5.2.)

 Next, the program should write a protocol mode control, which is described
 under "Set Protocol Modes" in topic 2.5.11.7.6, specifying the type
 HFMOMPROH, HFMOMPROL. Only certain protocols are valid for monitor mode.

 The virtual terminal is now in monitor mode.

 Only certain controls are valid for the write system call while in monitor
 mode. All other ASCII codes and controls are ignored. The valid controls
 and VTDs are:

 � Disable Manual Input (DMI
 � Enable Manual Input (EMI
 � Set Keyboard LED
 � Set Locator Threshol
 � Soun
 � Cancel Soun
 � KSR Protocol (Enable/Disable Locator
 � MOM Protoco
 � Screen Request (Establish Ring Buffer
 � Screen Release

 Screen Request and Input Ring Buffer Definition:

AIX Operating System Technical Reference
Monitor Mode (MOM)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.4.2 - 1

 Although the virtual terminal is in monitor mode, the program can perform
 direct operations on the display hardware only when granted permission by
 the operating system. The program first writes a screen request Virtual
 Terminal Command.

 This request uses the hfmomscreq structure, which contains the following
 fields:

 Field Value

 hf_intro.hf_len The length of the request from the start of this len
 field up to and including the ring buffer.

 hf_intro.hf_typehi HFMOMREQH

 hf_intro.hf_typelo HFMOMREQL

 hf_sublen Subheader length

 hf_subtype Subheader type

 hf_ringlen[2] Shows the length of the hfmomring structure in
 bytes.

 hf_ringoffset[4] Shows the offset to the input buffer ring (offset
 from the hf_ringlen field).

 The hf_ringlen field specifies the size of the structure including the
 pointers and status fields. The program can directly access input key and
 locator data contained in the buffer without issuing read system calls. A
 minimum recommended ring buffer size would be 32 bytes.

 The ring buffer structure (hfmomring, defined following) can be at any
 location in memory aligned on a word boundary. hf_ringoffset is the
 difference between the ring buffer address and the address of hf_ringlen,
 and it must be a positive value. Usually, the hfmomring ring buffer
 structure is defined so that it immediately follows the hfmomscreq
 structure in memory. Note that the compiler may implicitly insert one or
 more filler bytes between the two structures to align them at a memory
 address boundary. The value of hf_ringoffset must reflect such filler
 bytes. See the /usr/lib/samples/hft/hftmom.c source file for an example
 of how to calculate hf_ringoffset.

 If you do not want to specify or use a ring buffer, then set the hf_len
 field of the hf_intro to the size of only the introducer. In this case,
 read input with the standard read system call. The hftmom2.c sample
 program shows how to develop a program without use of the ring.

 struct hfmomring
 {
 char hf_rsvd[2];
 char hf_intreq;
 char hf_ovflow;
 unsigned hf_source;
 unsigned hf_sink;
 int hf_unused[5];
 char hf_rdata[HFRDATA];
 };

AIX Operating System Technical Reference
Monitor Mode (MOM)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.4.2 - 2

 The fields in this structure are defined as:

 Field Value

 hf_rsvd Reserved.

 hf_intreq Interrupt request can be set to 0xFF by the application to
 cause the virtual terminal subsystem to send a SIGMSG signal
 each time an input event occurs. If this flag is set to 0
 (the default), then a signal is sent to the application only
 when the buffer goes from being empty to nonempty. This
 byte is automatically reset to 0 by the virtual terminal
 each time it stores input data into the ring buffer. See
 "Reading Input Data from the Ring Buffer" for further
 discussion.

 hf_ovflow Overflow determines whether the input buffer ring can
 accommodate more input information. A value of 0xFF
 indicates an overflow; 0x00 indicates normal operation.

 hf_source Ring offset for virtual terminal represents the offset into
 the input ring where the virtual terminal queues keyboard
 and locator input. This offset starts from the beginning of
 the ring, so the absolute minimum value for the virtual
 terminal offset is 32 bytes. Application programs must not
 alter this field. If a program attempts to alter it, then
 the virtual terminal is killed. See "Reading Input Data
 from the Ring Buffer" for further discussion.

 hf_sink Ring offset for application shows the offset into the input
 ring from which the application reads keyboard and locator
 information from the event queue. This offset also starts
 from the beginning of the input ring, so the minimum value
 for this offset is 32 bytes. See "Reading Input Data from
 the Ring Buffer" for further discussion.

 hf_unused Reserved.

 Reading Input Data from the Ring Buffer:

 The program should initialize the offsets hf_source and hf_sink to be
 equal. This indicates buffer empty condition. The program should then
 issue the pause system call, waiting for input. When the buffer goes from
 being empty to not empty, the program receives a SIGMSG signal. (Note
 that sending the hfmomscreq structure and defining the input ring buffer
 enables the sending of this signal.) The program should extract
 characters from the ring buffer while incrementing the hf_sink offset for
 each character extracted, making sure to wrap around after reaching the
 end of the buffer. Care should be taken to ensure the buffer empty
 condition is properly detected. The program should test the equality of
 the offsets after it has updated the hf_sink offset. Therefore, the order
 of operation is: extract a character, update the offset in its memory
 location, and test the equality of offsets; if the offsets are equal, then
 set hf_intreq to 0xFF.

 If hf_source == hf_sink - 1 (module ring size), then the ring buffer is
 full. If hf_ovflow == 0xff, then an overflow condition exists. The
 overflow condition indicates input data has been lost. The program
 resets the overflow condition by clearing hf_ovflow.

AIX Operating System Technical Reference
Monitor Mode (MOM)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.4.2 - 3

 Certain keys can be designated so they can be obtained using the read
 system call. This is particularly useful when such keys are the Intr and
 Quit keys (see "termio" in topic 2.5.28). These keys are designated using
 HFSECHO. Thus, by designating these keys in the break map, and by setting
 the ISIG mode of termio, it is possible to asynchronously interrupt a
 monitor mode program by pressing one of these keys.

 Next Window Function:

 If a virtual terminal in monitor mode is active, pressing the Next Window
 key causes a SIGRETRACT signal to be sent to the process or group of
 processes specified by the HFSMON type ioctl system call. Before
 activating the next virtual terminal, the operating system allows the
 program a chance to save the state of the display hardware, such as
 registers and refresh memory. After this is done, the program should
 write a screen release control to the terminal to inform the operating
 system the state of the display hardware can be changed.

 The screen release control is given by the hfmomscrel structure:

 Field Value

 hf_intro.hf_len The length of the entire structure, minus 3;
 typically 6 bytes.

 hf_intro.hf_typehi HFMOMRELH

 hf_intro.hf_typelo HFMOMRELL

 After the display is released, the next virtual terminal is activated. If
 this is not done within 30 seconds of the receipt of the SIGRETRACT
 signal, all processes in that terminal group receive a SIGKILL signal.
 This is a safeguard to prevent runaway monitor mode programs from
 disrupting the next window function.

 The program can issue a pause system call if there is no work to do while
 the display is not available. When the monitor mode virtual terminal is
 activated again with the Next Window key, the program receives a SIGGRANT
 signal. In other words, the program can resume direct output to the
 display. The display hardware state cannot be assumed to be the same as
 when the program released it. Therefore, the SIGGRANT signal handler must
 restore the state that the SIGRETRACT signal handler saved.

 Exiting Monitor Mode:

 When the program has no further use of the monitor mode, it should first
 write a screen release control, followed by a KSR protocol control. The
 screen release control causes addressability to video RAM and the I/O
 ports to be rescinded. This is especially important if the virtual
 terminal is open by another process, such as the parent process, which is
 often the command shell. Changing back to KSR protocol tells the hft
 device driver that it may resume having control over the hardware. Only
 in KSR mode will the hft driver draw characters on the screen. If the
 program is certain that no other processes have the terminal open, it can
 simply issue a close system call to remove that virtual terminal.

 Next, an HFCMON ioctl operation should be issued to turn off monitor mode
 signalling to this process or other process in the terminal group.

 Signals:

AIX Operating System Technical Reference
Monitor Mode (MOM)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.4.2 - 4

 In addition to the standard terminal signals (SIGINT and SIGQUIT), the
 virtual terminal generates other unique signals to inform the application
 program of asynchronous events. These signals include:

 SIGGRANT Informs the user program that the display hardware can be
 directly accessed. This signal is sent following a monitor mode
 screen request VTD sequence. It is also sent after a monitor mode
 terminal has been made active with the next window key.

 SIGRETRACT Informs the user program that the display hardware must be
 released for use by another program. This signal is sent after a
 monitor terminal being made inactive with the next window key.

 SIGKILL Sent to all processes in the terminal tty group to enforce the
 SIGRETRACT signal. If the user program does not respond with a
 screen release VTD sequence within 30 second after receiving a
 SIGRETRACT signal, the SIGKILL terminates all processes associated
 with that virtual terminal and the terminal is closed.

 SIGMSG Informs the user program that data has been placed into a
 previously empty input buffer.

AIX Operating System Technical Reference
Monitor Mode (MOM)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.4.2 - 5

 2.5.11.4.3 Controlling Sound through the Speaker

 Refer to the sample programs, hftsound.c, hftcansnd.c, hftdsnd.c, and
 hftesnd.c for examples of the topics discussed in this section.

 Sound:

 This command sends output to the speaker. The mode byte determines
 whether to execute sound commands for the active virtual terminal and
 whether to interrupt the application after the sound command executes. No
 range check is made for the frequency or duration values. The hfsound
 structure is used for this command:

 Field Value

 hf_intro.hf_typehi HFSOUNDCH

 hf_intro.hf_typelo HFSOUNDCL

 hf_sublen Subheader length

 hf_subtype Subheader type

 hf_mode Mode:

 HFSIGSOUND
 If set, causes the SIGSOUND signal to be sent to
 the process when this sound command is executed
 or discarded. If not set, then no signal is
 sent.

 HFEXECALWAYS
 If set, causes this sound command to be executed
 whether or not this virtual terminal is active.
 If not set, then the sound command is executed
 only if the terminal is active; if not active,
 the sound command is discarded.

 hf_dur Duration in 1/128 seconds.

 hf_freq Frequency in hertz.

 Enable Sound Signal (HFESOUND):

 This command informs the terminal driver of the intent to use sound,
 enabling the routing of the sound response signal. This is invoked by the
 following:

 int ioctl(fildes, HFESOUND, arg)
 int fildes;
 struct hfsmon *arg;

 struct hfsmon
 {
 int hf_momflags;
 };

 The hf_momflags field contains one of the following values:

 HFSINGLE Only the process issuing the ioctl system call is to receive a

AIX Operating System Technical Reference
Controlling Sound through the Speaker

¦ Copyright IBM Corp. 1985, 1991
2.5.11.4.3 - 1

 sound response signal.

 HFGROUP All members of the current process group are to receive a sound
 response signal.

 Disable Sound Signal (HFDSOUND):

 This informs the terminal driver of the intent to discontinue the use of
 sound. Sound response signals are not sent. This is invoked by the
 following:

 int ioctl (fildes, HFDSOUND, 0)
 int fildes;

 Cancel Sound:

 The cancel sound command removes all commands from the speaker device that
 do not want sound commands executed. Only the commands that have the
 HFEXECALWAYS flag are left in the active terminal queue. An inactive
 terminal ignores this command.

 Sending a cancel and/or enable sound command flushes the speaker driver
 queue when a virtual terminal transition occurs. Regardless of whether
 the sound request is executed or purged, the virtual terminal receives a
 response (SIGSOUND) if the response flag is set (bit 0 of sound command
 byte 0 is equal to 1).

 The hfcansnd structure is used for this command, and it contains the
 following fields:

 Field Value

 hf_intro.hf_typehi HFCANSNDCH

 hf_intro.hf_typelo HFCANSNDCL

AIX Operating System Technical Reference
Controlling Sound through the Speaker

¦ Copyright IBM Corp. 1985, 1991
2.5.11.4.3 - 2

 2.5.11.5 ioctl Operations

 The hft supports a number of operations issued by the ioctl system call to
 provide access to features of the hft. See "ioctlx, ioctl, gtty, stty" in
 topic 1.2.137 for details about the syntax of the system call itself. For
 information about issuing requests for these operations to an emulated hft
 device, see "Considerations for hft Emulation" in topic 2.5.11.11. There
 are also other operations which control the Virtual Terminal through use
 of writes. See "Virtual Terminal Commands" in topic 2.5.11.7.

 Subtopics
 2.5.11.5.1 Query I/O Error (HFQEIO)
 2.5.11.5.2 Enter Monitor Mode (HFSMON)
 2.5.11.5.3 Exit Monitor Mode (HFCMON)
 2.5.11.5.4 Get Virtual Terminal ID (HFGETID)
 2.5.11.5.5 Get Channel Number (HFGCHAN)
 2.5.11.5.6 Query (HFQUERY)

AIX Operating System Technical Reference
ioctl Operations

¦ Copyright IBM Corp. 1985, 1991
2.5.11.5 - 1

 2.5.11.5.1 Query I/O Error (HFQEIO)

 If an I/O operation or other system call to the hft fails due to a
 hardware error, the system call returns a nonzero value and sets the errno
 external variable to the value EIO. The calling program can get a more
 detailed device error code by using ioctl to issue an HFQEIO operation.
 This is invoked by the following:

 int ioctl(fildes, HFQEIO, 0)
 int fildes;

 The return value from the HFQEIO ioctl operation is either 0 (indicating
 that the last I/O operation was successful), -1 (indicating that the
 HFQEIO operation itself failed), or the error code for the last hft I/O
 operation.

 The possible terminal error codes are:

 6401 Invalid virtual terminal IODN

 6461 Maximum number of virtual terminals open

 6480 Invalid operation

 6516 Invalid virtual address

 6521 Unsuccessful, invalid length specified in VTD block

 6522 Unsuccessful, invalid major type

 6523 Unsuccessful, invalid minor data

 6524 Unsuccessful, invalid minor type

 6527 Unsuccessful, VTD block exceeds 128K bytes

 6528 Unsuccessful, VTD block is less than the minimum length

 6531 Unsuccessful, cannot remap a character set other than unique 1 or
 2

 6532 Invalid locator/mouse/tablet type request

 6533 Unsuccessful, invalid font ID

 6537 Invalid graphics asynchronous device driver request

 6538 Specified device not configured

 6539 Specified device not selected

 6544 Unsuccessful, data received for an inactive mode

 6545 Unsuccessful, specified virtual terminal not active.

 6546 Unsuccessful, invalid virtual terminal identifier

 6548 Unsuccessful, invalid coordinates specified in Query ASCII Codes
 command

AIX Operating System Technical Reference
Query I/O Error (HFQEIO)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.5.1 - 1

 6549 Unsuccessful, invalid parameter detected in a control sequence

 6550 Unsuccessful, unsupported control sequence or code received

 6555 Unsuccessful, sound error

 6562 Unsuccessful, invalid echo map length

 6564 Unsuccessful, cannot remap keys reserved for resource controller

 6565 Unsuccessful, invalid flags in the keyboard mapping structure

 6566 Unsuccessful, invalid key position

AIX Operating System Technical Reference
Query I/O Error (HFQEIO)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.5.1 - 2

 2.5.11.5.2 Enter Monitor Mode (HFSMON)

 This requests monitor mode. Monitor mode provides a program with direct
 control of the screen and keyboard. This is invoked by the following:

 int ioctl(fildes, HFSMON, arg)
 int fildes;
 struct hfsmon *arg;

 struct hfsmon
 {
 int hf_momflags;
 int hf_momscnt;
 caddr_t hf_momsaddrs[MAX_MON_ADDRS];
 };

 The hf_momflags field contains one of the following values:

 HFSINGLE Only the process issuing the ioctl system call is to receive
 monitor mode signals.

 HFGROUP All members of the current process group are to receive monitor
 mode signals.

 The hf_momscnt field must be set to MAX_MON_ADDRS to define the maximum
 number of entries in the hf_momsaddrs field.

 The hf_momsaddrs[0] field will return the virtual address of the start of
 the video I/O buffer. For the VGA adapter, this address will correspond
 to 0xA0000 in PC memory. (See the PS/2 Hardware Interface Technical
 Reference.)

 The other elements in hf_momsaddrs are reserved for adapters that work
 with more than one video address. See /usr/lib/samples/README.mom for
 information on other supported adapters.

AIX Operating System Technical Reference
Enter Monitor Mode (HFSMON)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.5.2 - 1

 2.5.11.5.3 Exit Monitor Mode (HFCMON)

 Releases monitor mode. This is invoked by the following:

 int ioctl(fildes, HFCMON, 0)
 int fildes;

AIX Operating System Technical Reference
Exit Monitor Mode (HFCMON)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.5.3 - 1

 2.5.11.5.4 Get Virtual Terminal ID (HFGETID)

 Gets identification information for the current hft virtual terminal.
 This is invoked by the following:

 int ioctl(fildes, HFGETID, arg)
 int fildes;
 struct hfgetid *arg;

 struct hfgetid {
 unsigned hf_iodn;
 unsigned hf_pgrp;
 unsigned hf_chan;
 };

 The hf_iodn field is the I/O device number (IODN) of the virtual terminal.
 The hf_pgrp field is the process group ID; that is, the process ID of the
 terminal group leader. The hf_chan field is the channel number that is
 also returned by the HFGCHAN ioctl operation.

 Each hft virtual terminal is given both a channel number and an IODN or
 I/O device number. You use the channel number if you wish to reopen an
 already existing virtual terminal. You use the IODN as part of certain
 hft ioctl operations, such as controlling the screen manager. The IODN
 specifies which virtual terminal is to be operated upon for certain hft
 ioctl operations such as controlling the screen manager. See the
 hftgetid.c sample program.

AIX Operating System Technical Reference
Get Virtual Terminal ID (HFGETID)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.5.4 - 1

 2.5.11.5.5 Get Channel Number (HFGCHAN)

 Returns the current driver channel number as the value of the ioctl system
 call. This number can be used to open a specific virtual terminal. The
 arg parameter is ignored. This is invoked by the following:

 int ioctl (fildes, HFGCHAN, 0)
 int fildes;

 See the hftgchan.c sample program.

AIX Operating System Technical Reference
Get Channel Number (HFGCHAN)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.5.5 - 1

 2.5.11.5.6 Query (HFQUERY)

 Refer to the hftqdid.c, hftqpd.c, hftqpres.c, and hftqhft.c sample
 programs for examples of the topics discussed in this section.

 HFQUERY gets information about the current virtual terminal. This is
 invoked by the following:

 int ioctl(fildes, HFQUERY, arg)
 int fildes;
 struct hfquery *arg;

 struct hfquery {
 char *hf_cmd;
 int hf_cmdlen;
 char *hf_resp;
 int hf_resplen;
 };

 The first two fields describe a buffer containing the command. The second
 two fields describe a buffer large enough to hold the largest possible
 response. Note that each command and response structure begins with a
 virtual terminal data (VTD) header. (See "Virtual Terminal Commands" in
 topic 2.5.11.7 for an explanation of the VTD header.) The following query
 commands use this ioctl operation.

 Query Device IDs Command:

 This command uses the hfqdevidc structure, which contains the following
 fields:

 Field Value

 hf_intro.hf_typehi HFQDEVIDCH

 hf_intro.hf_typelo HFQDEVIDCL

 This command fills the response buffer with the information about the
 display devices. The information is returned in an hfqdevidr structure,
 which has the following fields:

 Field Value

 hf_intro.hf_typehi HFQDEVIDRH

 hf_intro.hf_typelo HFQDEVIDRL

 hf_numdev The number of devices for which data is reported.

 The following fields are repeated for each physical device:

 hf_devid Physical device ID.

 The first device ID is the active display device
 ID, unless the change physical display command has
 changed the active display ID. The following
 values are possible:

 0x0411mmnn VGA adapter with 8503 Display

AIX Operating System Technical Reference
Query (HFQUERY)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.5.6 - 1

 0x0412mmnn VGA adapter with 8512 Display
 0x0413mmnn VGA adapter with 8513 Display
 0x0414mmnn VGA adapter with 8514 Display
 0x0415mmnn VGA adapter with 8507 display
 0x0416mmnn VGA adapter with 8604 display

 0x0418mmnn 8514/A adapter with 8503 display
 0x0419mmnn 8514/A adapter with 8512 display
 0x041Ammnn 8514/A adapter with 8513 display
 0x041Bmmnn 8514/A adapter with 8514 display
 0x041Cmmnn 8514/A adapter with 8507 display
 0x041Dmmnn 8514/A adapter with 8604 display

 0x0421mmnn reserved

 Note: The mm value indicates whether the adapter
 is totally functional. When this value is
 0x00, the adapter is totally functional.
 Any other value indicates the adapter is
 less than fully functional or not working at
 all, but is present on the machine. The nn
 value can be from 0x01 to 0x04 and
 differentiates between multiple instances of
 the same adapter type.

 hf_class Display class (0x44).

 Query Physical Device Command:

 This command returns information about display or locator devices. The
 hfqphdevc structure is used to issue this command:

 Field Value

 hf_intro.hf_typehi HFQPDEVCH

 hf_intro.hf_typelo HFQPDEVCL

 hf_phdevid Physical device ID. The value 0 specifies the
 active device that is currently attached to the
 virtual terminal.

 The response to this command gives the following information:

 struct hfqphdevr
 {
 char hf_intro[HFINTROSZ];
 char hf_sublen;
 char hf_subtype;
 /* locator device */
 char hf_scale[4];
 char hf_locattr[1];
 char hf_rsvd[3];
 /* display device */
 char hf_attrib[4];
 char hf_pwidth[4];
 char hf_pheight[4];
 char hf_mwidth[4];
 char hf_mheight[4];

AIX Operating System Technical Reference
Query (HFQUERY)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.5.6 - 2

 char hf_bperpel[4];
 char hf_phdevid[4];
 /* display font */
 char hf_numfont[4];
 /* remainder is of variable length */
 /* struct hffont hffont[N]; where N is value in hf_numfont */
 char hf_fontstart;
 /* following is one color response */
 /* struct hfcolor hfcolor; */
 };

 struct hfqfont
 {
 char hf_fontid[4];
 char hf_fontstyle[4];
 char hf_fontattr[4];
 char hf_fontwidth[4];
 char hf_fontheight[4];
 };

 struct hfcolor
 {
 char hf_numcolor[4];
 char hf_numactive[4];
 char hf_numfgrnd[4];
 char hf_numbgrnd[4];
 char hf_actcolor[4];
 };

 These structures are explained in the following sections that have
 headings beginning with the word Physical.

 Physical Device Information VTD Header

 Field Value

 hf_intro.hf_typehi HFQPDEVRH

 hf_intro.hf_typelo HFQPDEVRL

 Physical Locator Information

 Field Value

 hf_scale Scale factor (millimeters per 100 counts)

 hf_locattr[0] Locator attributes:

 HFLOCABS If set, then the locator device reports
 absolute coordinates (for example, a tablet
 device). If not set, then it reports relative
 coordinates (for example, a mouse).

 Physical Display Device Information

 Field Value

 hf_attrib[0] Display device attributes:

 HFISAPA All-points-addressable (APA) display.

AIX Operating System Technical Reference
Query (HFQUERY)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.5.6 - 3

 HFHASBLINK Blink function allowed.

 All other values are reserved.

 hf_attrib[2] Display device attributes:

 HFHASCOLOR Color allowed.

 All other values are reserved.

 hf_attrib[3] Display device attributes:

 HFCHGPALET Can change display adapter's color palette.

 All other values are reserved.

 hf_pwidth Displayable width of physical screen, expressed in pels or
 pixels for all displays.

 hf_pheight Displayable height of physical screen, expressed in pels for
 all displays.

 hf_mwidth Displayable width (in millimeters).

 hf_mheight Displayable height (in millimeters).

 hf_bperpel Bits per pel (1, 2, or 4).

 hf_phdevid Display device ID.

 Physical Display Font Information

 Field Value

 hf_numfont Number of fonts available to this display. The following
 fields appear for each available font.

 hf_fontid Physical font ID.

 hf_fontstyle Physical font style.

 HFFNTVAR This font results in a variable presentation space
 depending on the display type used.
 HFFNTKSR This font results in a 80x25 presentation space
 regardless of the display type used.

 Field Value

 hf_fontattr[3] Physical font attribute. This field may have the following
 values:

 HFFNTPLAIN Plain
 HFFNTBOLD Bold
 HFFNTITALIC Italic.

 hf_fontwidth Physical font width (the width of a character cell in pels).

 hf_fontheight Physical font height (the height of a character cell in
 pels).

AIX Operating System Technical Reference
Query (HFQUERY)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.5.6 - 4

 Physical Display Color Information

 Field Value

 hf_numcolor Total number of colors possible

 hf_numactive Number of colors that can be active at any one time

 hf_numfgrnd Number of foreground color options

 hf_numbgrnd Number of background color options

 hf_actcolor Active color value. The value of this field can be in the
 range 0 to the total number of colors possible (hf_numcolor)
 minus 1. This field is repeated for each of the currently
 active colors.

 Query Locator Command:

 To query the locator, use the hfqgraphdev structure with fields set as
 follows:

 Field Value

 hf_intro.hf_typehi HFQLOCCH

 hf_intro.hf_typelo HFQLOCCL

 This command returns a hfqlocr structure with the following fields:

 Field Value

 hf_intro.hf_typehi HFQLOCRH

 hf_intro.hf_typelo HFQLOCRL

 hf_resolution The resolution of the locator (a 4-byte value) in
 millimeters per 100 count.

 hf_devinfo[0] Locator attributes:

 HFLOCABS If set, absolute coordinates
 (tablet). If not set, relative
 coordinates (mouse).
 HFLOCUNKNOWN Unknown sensor type, or the locator
 is a mouse.
 HFLOCSTYLUS The tablet has a stylus sensor.
 HFLOCPUCK The tablet has a puck sensor.

 hf_horzmax_cnt Horizontal maximum count (a 2-byte value).

 hf_vertmax_cnt Vertical maximum count (a 2-byte value).

 hf_horzdead_zone Horizontal tablet dead zone or mouse threshold.

 hf_vertdead_zone Vertical tablet dead zone or mouse threshold.

 Query Presentation Space Command:

AIX Operating System Technical Reference
Query (HFQUERY)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.5.6 - 5

 This data determines how to define a block of characters in the
 presentation space to query. Attribute and character set information on
 the queried block are returned. This query is valid only in KSR mode.

 The hfqpresc structure is used for this command,

 Field Value

 hf_intro.hf_typehi HFQPRESCH

 hf_intro.hf_typelo HFQPRESCL

 hf_sublen 2

 hf_subtype 0

 hf_xuleft The upper-left X coordinate (first column of the
 block)

 hf_yuleft The upper-left Y coordinate (first row in the
 block)

 hf_xlright The lower-right X coordinate (last column in the
 block)

 hf_ylright The lower-right Y coordinate (last row in the
 block).

 The data returned from this command is an ASCII data stream that contains
 character codes from the queried block. Character set and attribute
 changes are indicated with SGR and SG0 control sequences. A line feed
 control is returned after the last character code in each line of the
 queried block. This command is useful when you want to save the
 attributes of a screen for restoring at some later time.

 Note: The returned attributes may be only a subset of the original
 attributes specified for query. The subset in this case is those
 attributes actually supported by the physical device.

 The response is returned in an hfqpresr structure, which contains the
 following fields:

 Field Value

 hf_intro.hf_typehi HFQPRESRH

 hf_intro.hf_typelo HFQPRESRL

 The response contains an ASCII data stream that includes all ASCII data
 currently associated with the input buffer.

 Query HFT Device Command:

 This command gets information about the hft device. To issue this
 command, use the hfqhftc structure with fields set as follows:

 Field Value

 hf_intro.hf_typehi HFQHFTCH

AIX Operating System Technical Reference
Query (HFQUERY)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.5.6 - 6

 hf_intro.hf_typelo HFQHFTCL

 The command returns an hfqhftr structure with the following fields:

 Field Value

 hf_intro.hf_typehi HFQHFTRH

 hf_intro.hf_typelo HFQHFTRL

 hf_phdevid Physical display device ID (the same as returned by
 "Query Device IDs Command")

 hf_phrow Number of character rows, based on the current font

 hf_phcol Number of character columns, based on the current
 font

 hf_phcolor Number of colors allowed on the display

 hf_phfont Number of fonts defined in the system

 hf_phkbdid Physical keyboard ID:

 0 101-key keyboard
 1 102-key keyboard

AIX Operating System Technical Reference
Query (HFQUERY)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.5.6 - 7

 2.5.11.6 Screen Manager ioctls

 Refer to the hftqsm.c and hftcsm.c programs for examples of the topics
 discussed in this section.

 Subtopics
 2.5.11.6.1 Query Screen Manager (HFQSMGR)
 2.5.11.6.2 Control Screen Manager (HFCSMGR)

AIX Operating System Technical Reference
Screen Manager ioctls

¦ Copyright IBM Corp. 1985, 1991
2.5.11.6 - 1

 2.5.11.6.1 Query Screen Manager (HFQSMGR)

 Queries the screen manager. The file descriptor must be associated with
 the screen manager, that is, /dev/hft/mgr. This is invoked by the
 following:

 int ioctl(fildes, HFQSMGR, arg)
 int fildes;
 struct hfbuf *arg;

 struct hfbuf
 {
 char *hf_bufp;
 int hf_buflen;
 };

 The contents of the following hfqstat structure are stored in the memory
 area pointed to by hf_bufp.

 struct hfqstat
 {
 short hf_numvts;
 struct hfvtinfo
 {
 unsigned short hf_vtiodn;
 unsigned short hf_vtstate;
 } hf_vtinfo[HFNUMVTS];
 };

 Field Description

 hf_numvts The number of virtual terminals.

 The following fields are repeated for each virtual terminal:

 hf_vtiodn The virtual terminal IODN.

 hf_vtstate Status:

 HFVTHIDDEN The virtual terminal is hidden.
 HFVTACTIVE The virtual terminal is active.
 HFVTCOMMAND The virtual terminal is the command terminal.

AIX Operating System Technical Reference
Query Screen Manager (HFQSMGR)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.6.1 - 1

 2.5.11.6.2 Control Screen Manager (HFCSMGR)

 This commands the screen manager which controls the status of virtual
 terminals. Virtual terminals are linked together in a group called the
 screen manager ring. The screen manager places an entry in the ring for
 each virtual terminal opened. The terminal that is currently active is
 called the head of the ring; the last terminal on the ring is called the
 tail. When a new terminal is added to the ring, that terminal becomes the
 head of the ring.

 Three key sequences switch between virtual terminals and control which
 terminal is currently active. The active terminal is the terminal that
 accepts keyboard or locator input and updates the physical display.
 Pressing the Alt + Action keys on the active terminal makes the next
 virtual terminal active. This relationship is indicated by a in
 Figure 5-1. Pressing the Shift + Action keys on the active terminal makes
 the last virtual terminal active. The b in Figure 5-1 indicates this
 relationship. Pressing the Ctrl and Action keys on the active virtual
 terminal make the command virtual terminal active.

 Figure 5-1. Screen Manager Ring Examples. In this figure, a indicates
 the path from the active virtual terminal to the next and b
 indicates the path from the active virtual terminal to the
 last.

 Note that with three entries in the ring, all the terminals can be
 accessed with a single key sequence. With four or more entries, terminals
 can be skipped in some cases to activate a particular terminal. For
 example, in the preceding figure with four terminal entries, terminal
 number 2 cannot be accessed from the active terminal number 4 without
 first skipping to terminal number 1 or terminal number 3.

 The hide option of this command logically removes terminals from the ring.
 Hiding a terminal causes it to be bypassed when its position in the ring
 would ordinarily make it the active terminal.

 The file descriptor must be associated with a screen manager, that is,
 /dev/hft/mgr. This is invoked by the following:

 int ioctl(fildes, HFCSMGR, arg)
 int fildes;
 struct hfsmgrcmd *arg;

 struct hfsmgrcmd {
 int hf_cmd;
 int hf_vtid;
 int hf_vsid;
 };

 The hf_vtid and hf_vsid fields are set as follows:

 hf_vtid The IODN of the virtual terminal

 hf_vsid 0.

 The hf_cmd field contains one of the following screen manager commands:

 SMACT Activates the virtual terminal. This command places the
 virtual terminal specified by the IODN at the head of the

AIX Operating System Technical Reference
Control Screen Manager (HFCSMGR)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.6.2 - 1

 screen manager ring, making it the active terminal. The
 terminal's hidden flag is also cleared. The screen manager
 cannot activate the virtual terminal if the currently active
 virtual terminal cannot be deactivated.

 SMHIDE Hides the virtual terminal. This command marks the terminal
 identified by the IODN so that the screen manager will not
 activate it. This does not affect the terminal's position in
 the ring. When the hidden flag is set, the screen manager
 ignores the terminal's presence in the ring until an SMUNHIDE
 command is issued. If the virtual terminal is active when the
 hide command is issued, then the screen manager makes the
 terminal inactive. Hiding the active virtual terminal has the
 same effect as the last window function. If all virtual
 terminals are hidden, then the physical display continues to
 show the contents of the last virtual terminal that was hidden.

 SMSCMD Sets the command virtual terminal. This command designates a
 terminal as the command virtual terminal. The command virtual
 terminal is the terminal that is activated by pressing both
 locator buttons at the same time, or by pressing the
 Ctrl-Action key sequence.

 SMUNHIDE Undoes the action performed by SMHIDE. The hf_vtid field
 contains the IODN of the virtual terminal where the command
 should be sent. The hf_vsid field is reserved.

 This command restores the presence of the terminal in the ring,
 but does not affect its ring position or make it active. If
 the virtual terminal happens to be at the head of the ring when
 this command is issued, then it becomes visible and active.

 SMCVTEN Causes the command virtual terminal to be activated when both
 locator buttons are pressed at the same time. This is the
 default setting. Since all virtual terminals are affected,
 programs that change this setting should restore it as soon as
 the locator is no longer needed.

 SMCVTDI Undoes the function done by SMCVTEN. Causes input data to be
 reported when both locator buttons are pressed at the same
 time. The data reported is similar to that reported when a
 single button is pressed.

AIX Operating System Technical Reference
Control Screen Manager (HFCSMGR)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.6.2 - 2

 2.5.11.7 Virtual Terminal Commands

 Application programs control the behavior of their virtual terminals
 either through ioctls or by writing VTD character sequences into the
 output stream.

 ASCII data can be sent to the virtual terminal using the write system call
 along with data of any length. In addition, virtual terminal control
 structures are sent to the virtual terminal using the write system call.

 Subtopics
 2.5.11.7.1 VTD Control Structure
 2.5.11.7.2 Set KSR Color Palette
 2.5.11.7.3 Change Fonts
 2.5.11.7.4 Set Cursor Representation
 2.5.11.7.5 Set Keyboard LEDs
 2.5.11.7.6 Set Protocol Modes

AIX Operating System Technical Reference
Virtual Terminal Commands

¦ Copyright IBM Corp. 1985, 1991
2.5.11.7 - 1

 2.5.11.7.1 VTD Control Structure

 Each control structure is introduced by a virtual terminal data (VTD)
 character sequence. The VTD prefix consists of the ASCII codes ESC, [,
 and x (0x1B5B78). This prefix is followed by a length and an operation
 type code. The data that follows this structure depends on the type of
 control.

 The hfintro structure looks like this:

 {
 char hf_esc;
 char hf_lbr;
 char hf_ex;
 char hf_len[4];
 char hf_typehi;
 char hf_typelo;
 };

 The significant fields in the hfintro structure are:

 hf_len The total number of bytes in the header and associated data,
 not including the three-character VTD control sequence. In
 other words, the length is the total number of characters in
 the control sequence minus 3.
 hf_typehi The high-order byte of the information type code.
 hf_typelo The low-order byte of the information type code.

 The values of hf_typehi and hf_typelo are documented with each command.

 Because the hfintro structure is an odd number of bytes in length, it is
 designated as the character array hf_intro[HFINTROSZ] in the structures
 that define the various operation requests. This prevents the C compiler
 from inserting bytes into the structure to align the following fields on
 word boundaries. The hf_typehi and hf_typelo fields are referred to
 hf_intro.hf_typehi and hf_intro.hf_typelo in this book, although these
 references are not precisely correct.

 All reserved and unused fields must be set to 0. You can set the entire
 structure to 0 and then fill in the appropriate fields.

AIX Operating System Technical Reference
VTD Control Structure

¦ Copyright IBM Corp. 1985, 1991
2.5.11.7.1 - 1

 2.5.11.7.2 Set KSR Color Palette

 This command specifies the color to associate with certain display
 adapters. The default color palettes are the ANSI 3.64 palette for
 character terminals and the PC color palette for all-points-addressable
 terminals. If the color specified is not supported by the adapter, the
 virtual display driver sets that color to the default for that mode.

 The structure for this command is hfcolorpal, and it contains the
 following fields:

 Field Value

 hf_intro.hf_typehi HFCOLORPALH

 hf_intro.hf_typelo HFCOLORPALL

 hf_sublen 2

 hf_subtype 1

 hf_numcolor Number of entries in the palette

 hf_palet Adapter-specific settings of the first entry in the
 color palette. These settings must be repeated for
 each entry of the color palette corresponding to
 the display adapter. See the appropriate hardware
 technical reference for information about the
 display adapter.

 The file /usr/lib/samples/hft/ksrpal.c contains a sample program that
 illustrates how to use this function with the VGA adapter.

AIX Operating System Technical Reference
Set KSR Color Palette

¦ Copyright IBM Corp. 1985, 1991
2.5.11.7.2 - 1

 2.5.11.7.3 Change Fonts

 When a virtual terminal is first opened, and whenever it is changed, the
 default font is used. AIX PS/2 allows the user to change between two
 built-in 80 column by 25 row fonts. The default font (1025) uses the
 hardware of the VGA to produce the symbols in code page P0 (see "data
 stream" in topic 2.4.3). The other font (1026) uses the APA mode of the
 VGA adapter to produce all the symbols in code pages P0, P1, and P2.

 Note that if the font is changed, the data currently in the presentation
 space is lost, and the cursor reverts to the double underscore and is
 placed at the home position (first column, first row). If it is desirable
 to control fonts, the fonts should be explicitly set when opening a
 terminal or changing a display.

 Field Value

 hf_intro.hf_typehi HFFONTH

 hf_intro.hf_typelo HFFONTL

 hf_sublen 2

 hf_subtype 1

 hf_primary Physical font ID of primary font attribute.

 hf_alt1 Reserved.

 hf_alt2 Reserved.

 hf_alt3 Reserved.

 hf_alt4 Reserved.

 hf_alt5 Reserved.

 Field Value

 hf_alt6 Reserved.

 hf_alt7 Reserved.

 Possible graphic renditions of VGA adapter:

 Hardware Font Software Font 1026
 1025
 Bold or Bright Yes Yes
 Underscore No Yes
 Slow Blink Yes No
 Reverse Image Yes Yes
 Alternate Fonts No No
 Code Page P0 Yes Yes
 Code Pages P1 and No Yes
 P2

AIX Operating System Technical Reference
Change Fonts

¦ Copyright IBM Corp. 1985, 1991
2.5.11.7.3 - 1

 2.5.11.7.4 Set Cursor Representation

 The cursor representation data format determines how the cursor is
 presented on the display screen. The hfcursor structure is used for this
 request:

 Field Value

 hf_intro.hf_typehi HFCURSORH

 hf_intro.hf_typelo HFCURSORL

 hf_sublen 2

 hf_subtype 0

 hf_rsvd Reserved.

 hf_shape Cursor shape:

 HFNONE No cursor.
 HFSINGLUS Single underscore.
 HFDBLUS Double underscore.
 HFHALFBLOB Lower half of illuminated character
 cell.
 HFMIDLINE Double mid-character line.
 HFFULLBLOB Full illuminated character cell.

AIX Operating System Technical Reference
Set Cursor Representation

¦ Copyright IBM Corp. 1985, 1991
2.5.11.7.4 - 1

 2.5.11.7.5 Set Keyboard LEDs

 The structure for this command is hfkled, and it contains the following
 fields:

 Field Value

 hf_intro.hf_typehi HFKLEDCH

 hf_intro.hf_typelo HFKLEDCL

 hf_sublen 2

 hf_subtype 1

 hf_ledselect Indicates which of three LEDs to change:

 HFNUMLOCK The Num Lock LED
 HFCAPSLOCK The Caps Lock LED
 HFSCROLLOCK The Scroll Lock LED.

 Field Value

 hf_ledvalue Indicates the value to which to set the LEDs
 specified in hf_ledselect. LEDs that are specified
 with a 1 bit are set:

 HFNUMLOCK The Num Lock LED
 HFCAPSLOCK The Caps Lock LED
 HFSCROLLOCK The Scroll Lock LED.

 The hftskleds.c sample program has an example of this command.

AIX Operating System Technical Reference
Set Keyboard LEDs

¦ Copyright IBM Corp. 1985, 1991
2.5.11.7.5 - 1

 2.5.11.7.6 Set Protocol Modes

 Refer to the hftinput.c sample program for an example of the topics
 discussed in this section.

 Protocol mode settings determine how the virtual terminal will interpret
 coded data, translate and return input data. Two bits control each mode.
 The first, in the hf_select field, indicates whether to use the current
 mode setting. If this bit is set, then the corresponding bit in hf_value
 indicates the new setting for the mode. The mode bits are set to the
 default value when the virtual terminal is opened.

 The hfprotocol structure gives the protocol definitions:

 Field Value

 hf_intro.hf_typehi HFKSRPROH or HFMOMPROH

 hf_intro.hf_typelo HFKSRPROL or HFMOMPROL

 hf_sublen 2

 hf_subtype 0

 hf_select Specifies which modes to change. A bit value of 1
 specifies the mode represented by that bit to
 change.

 hf_select[0] Mode selectors:

 HFHOSTS
 HFXLATKBD

 hf_select[1] Mode selectors:

 HFWRAP
 HFLOCATOR

 hf_value[0] New mode values:

 HFHOSTS
 HFXLATKBD

 hf_value[1] New mode values:

 HFWRAP
 HFLOCATOR

 When issuing this command, specify a type of either HFKSRPROH, HFKSRPROL
 or HFMOMPROH, HFMOMPROL depending on whether you are sending this command
 from within Keyboard Send-Receive mode (KSR) or Monitor mode (MOM). Only
 certain protocol modes are valid in each of these modes, as shown in the
 following table. An attempt to set an invalid protocol mode results in
 rejection of the entire request.

 Protocol When
 Mode Valid Meaning

 HFHOSTS KSR A 0 bit (default) means not to report shift key
 depressions. A 1 bit means report shift key

AIX Operating System Technical Reference
Set Protocol Modes

¦ Copyright IBM Corp. 1985, 1991
2.5.11.7.6 - 1

 depressions.

 HFHOSTS mode specifies whether to report
 keyboard status changes. If HFHOSTS mode is
 set, the keyboard status information is
 returned in the KSI ANSI control (see
 "Multi-Byte Controls" in topic 2.4.3.3.2).

 HFXLATKBD KSR, MOM A 1 bit (default) specifies that the keyboard
 input is translated. A 0 bit indicates send
 key data as untranslated key controls.

 HFWRAP KSR A 1 bit (default) causes the cursor to wrap
 when the presentation space boundary is
 exceeded. A 0 bit specifies do not wrap the
 cursor.

 HFLOCATOR KSR, MOM A 0 bit (default) disables the locator from
 sending data. A 1 bit enables the locator to
 send data.

AIX Operating System Technical Reference
Set Protocol Modes

¦ Copyright IBM Corp. 1985, 1991
2.5.11.7.6 - 2

 2.5.11.8 Configuring the Virtual Terminal

 Some applications may require that the virtual terminal be set to other
 than the IBM-defined initial characteristics. The hft driver provides
 methods of querying the settings and capabilities of the virtual terminal,
 and methods of setting these to new values if required.

 Earlier sections have described some of these methods:

 Query locator
 Set locator thresholds
 Query physical device (color, fonts, display attributes)
 Set KSR color palette
 Change fonts
 Set cursor representation
 Set keyboard LEDs
 Set protocol modes (keyboard translation, enable locator, etc.)
 Query and control Screen Manager

 This section describes the initial default settings of each virtual
 terminal and facilities for changing the ones that have not already been
 described in prior sections:

 Initial State
 Reconfigure ioctl
 Change keyboard typematic rate
 Change keyboard typematic delay
 Change locator sample rate
 Replace keyboard position map
 Replace Unique 1 and Unique 2 character set map
 Replace echo/break map

 If the physical display model is ever to be changed or if the physical
 keyboard (country keycap markings) are ever to be changed, then you should
 use the change parameters option of the AIX PS/2 boot to change them.

 Subtopics
 2.5.11.8.1 Initial State
 2.5.11.8.2 Reconfigure (HFRCONF)
 2.5.11.8.3 Set User-Defined Character Set
 2.5.11.8.4 Set Echo and Break Maps (HFSECHO)
 2.5.11.8.5 Set Keyboard Map (HFSKBD)

AIX Operating System Technical Reference
Configuring the Virtual Terminal

¦ Copyright IBM Corp. 1985, 1991
2.5.11.8 - 1

 2.5.11.8.1 Initial State

 When a new terminal is opened, it is initialized to a known default state.
 The initial terminal state is the following:

 � Mode: Keyboard Send-Receive (KSR)

 � Echo/Break Map: Echo all characters; break for none

 � Tab Rack: The first, every eighth, and the last position of ever
 line.

 � ASCII Controls

 LNM Set (line feed-new line mode)
 IRM Not set (insert mode)
 SRM Not set (send receive mode-set echo off)
 TSM Not set (tab stop mode)
 CLM Not set (carriage return-new line mode)
 AUTONL Set (wrap character to following line when end of correct
 line is reached)

 � Protocol

 WRAP Set (wrap cursor at boundary)
 LOCATOR Not set (do not return locator input)
 XLATKBD Set (translate keyboard input)
 HOSTS Not set (do not report keyboard status change)

 � Locator (Mouse) Threshold: 2.75 millimeters horizontal, 5.
 millimeters vertical.

 � Font: Provides a presentation space of 80 columns by 25 rows

 � Character mode color palette

 Foreground Background
 Entry Color Entry Color

 0 Black 0 Black
 1 Red 1 Red
 2 Green 2 Green
 3 Yellow 3 Yellow
 4 Blue 4 Blue
 5 Magenta 5 Magenta
 6 Cyan 6 Cyan
 7 White 7 White
 8 Gray
 9 Light red
 10 Light green
 11 Brown
 12 Light blue
 13 Light magenta
 14 Light cyan
 15 High intensity
 white

AIX Operating System Technical Reference
Initial State

¦ Copyright IBM Corp. 1985, 1991
2.5.11.8.1 - 1

 2.5.11.8.2 Reconfigure (HFRCONF)

 Refer to the notes in /usr/lib/samples/README.conf before using
 Reconfigure.

 A user program can reconfigure the virtual terminal to include different
 real devices. This operation is invoked by the following:

 int ioctl(fildes, HFRCONF, arg);
 int fildes;
 struct hfrconf *arg;

 struct hfrconf
 {
 unsigned hf_op;
 unsigned hf_obj;
 union
 {
 uint hf_infob;
 struct
 {
 ushort hf_iodn;
 ushort hf_iocn;
 } hf_info2;
 } hf_info;
 union
 {
 char *hf_cptr;
 struct hfbuf *hf_hfbufptr;
 } hf_mapinfo;
 };

 This command changes the configuration of the physical terminal or the
 virtual terminal defaults.

 The hf_op field contains the requested operation. The valid operations
 appear in the following list. These reconfigure operations, with the
 exception of those followed by an * (asterisk), take effect only for
 terminals opened after the reconfiguration. The operations followed by an
 asterisk take effect for the terminals that are currently open as well as
 those opened after the reconfiguration.

 HFCHGKBDRATE* Changes the keyboard typematic rate. Bits 24 - 31 of
 hf_obj indicate the keyboard typematic rate. For the
 standard PS/2 keyboard, valid values are between 2 and 30
 characters per second and can be incremented in 1
 character-per-second units. The default value for the PS/2
 keyboard is 11 characters per second.

 HFCHGKBDDEL* Changes the keyboard typematic delay. Bits 16 - 31 of
 hf_obj indicate the keyboard typematic delay. For the
 standard PS/2 keyboard, valid values are between 250 and
 1000 milliseconds and can be incremented in 250 millisecond
 units. The default value for the PS/2 keyboard is 500
 milliseconds.

 HFCHGLOCRATE* Change locator sample rate. Bits 24 - 31 of hf_obj
 indicate the locator sample rate. For the standard PS/2
 locator, valid values are 10, 20, 40, 60, 80, and 100
 samples per second. The default for the PS/2 locator is 60

AIX Operating System Technical Reference
Reconfigure (HFRCONF)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.8.2 - 1

 samples per second.

 HFKEYMAP Replaces the keyboard position code map. hf_mapinfo
 contains the new position code map address. See the
 /usr/lib/samples/hft/hftkbdmap.c file.

 HFDISPMAP Replaces the character code maps for the Unique 1 and
 Unique 2 character sets. hf_mapinfo contains the new
 unique character code map address. See the
 /usr/lib/samples/hft/hftchrmap.c file.

 HFECHOMAP Replaces the echo/break map. hf_mapinfo contains the new
 echo/break map address. See the
 /usr/lib/samples/hft/hftecbrmap.c file.

AIX Operating System Technical Reference
Reconfigure (HFRCONF)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.8.2 - 2

 2.5.11.8.3 Set User-Defined Character Set

 The ASCII character set-to-display code (font) mapping of a virtual
 terminal can be altered. For each virtual terminal, the virtual terminal
 maintains character set mapping tables for two unique user-definable
 character sets called Unique One and Unique Two. These sets contain 256
 ten-bit display symbol codes, and are activated by the SG0 or SG1 control
 (see "Multi-Byte Controls" in topic 2.4.3.3.2).

 Note: Data is kept in display symbol form in the virtual terminal, and
 translation back to ASCII codes is done using the standard
 character set definitions, not Unique One or Two.

 The hfcharset structure is used for character set definition, and it
 contains the following fields:

 Field Value

 hf_intro.hf_typehi HFCHARSETH

 hf_intro.hf_typelo HFCHARSETL

 hf_sublen 2

 hf_subtype 1

 hf_setnum User-defined character set

 HFUNIQ1 Unique One (user-definable set 1)
 HFUNIQ2 Unique Two (user-definable set 2)

 hf_rsvd Reserved

 hf_code 10-bit display symbol code. This field may be
 repeated up to 256 times. See "display symbols" in
 topic 2.4.4 for the values of the display symbols.

AIX Operating System Technical Reference
Set User-Defined Character Set

¦ Copyright IBM Corp. 1985, 1991
2.5.11.8.3 - 1

 2.5.11.8.4 Set Echo and Break Maps (HFSECHO)

 Refer to the hftsmap.c sample program for an example of the topics
 discussed in this section.

 HFSECHO sets the hft echo and break maps. Echoing displays the character
 associated with a keystroke on the screen or performs the function
 associated with a control. Breaking switches the input path from the
 monitor mode input ring buffer to the unsolicited ASCII datastream flow.
 Echoing applies only to KSR mode; breaking applies only to MOM mode.
 Echoing and breaking can be selectively enabled for each ASCII code point
 and multibyte control sequence. The default is to echo all characters and
 control sequences, but not to break on any of them.

 The HFSECHO operation is invoked by the following ioctl call:

 int ioctl(fildes, HFSECHO, arg)
 int fildes;
 struct hfbuf *arg;

 struct hfbuf
 {
 char *hf_bufp;
 int hf_buflen;
 };

 The hf_bufp field points to an array of 32 integers. The hf_buflen field
 contains the value 128 (0x80), which is the length of the array in bytes.
 The first sixteen integers constitute the echo map; the second sixteen
 integers are the break map.

 Each of the two maps is treated as a set of bits. Bit 0 is the most
 significant bit of the first integer. Bit 511 is the least significant
 bit of the sixteenth integer. Each bit corresponds to an ASCII code point
 or multibyte control. Bits 0 through 255 (0xFF) correspond to the
 single-byte codes. Bits 256 (0x100) and higher correspond to multibyte
 control sequences, as illustrated in Figure 5-2. Bit 511 (0x1FF)
 specifies whether to echo or break on invalid and unsupported multibyte
 control sequences. See "data stream" in topic 2.4.3 for a detailed
 explanation of each of the multibyte control sequences.

 Figure 5-2. Bit Positions of ASCII Controls in Echo Map

 For the echo map, a bit set to 1 means the character or control sequence
 is echoed when a key that is mapped to it is pressed. The echo map is
 active only in KSR mode and can be set only from KSR mode.

 For the break map, a bit set to 1 means that the character or control
 sequence is reported using the read system call instead of being placed in
 the input ring buffer. Also, the SIGMSG signal is sent to the process to
 indicate that input data is available. The break map is active only in
 monitor mode. (See "Monitor Mode (MOM)" in topic 2.5.11.4.2 for a
 description of the input ring buffer.)

 The echo and break maps are shared by all code pages. For P0 graphic code
 points (0x20 to 0xFF), bits 32 to 255 (0x20 to 0xFF) of each map are used.
 For other code pages, each half of the code page is associated with bits
 128 to 255 (0x80 to 0xFF). For example, bit 160 (0xA0) specifies the echo
 or break status of code points P0 0xA0, P1 0x20, P1 0xA0, P2 0x20, and P2

AIX Operating System Technical Reference
Set Echo and Break Maps (HFSECHO)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.8.4 - 1

 0xA0.

AIX Operating System Technical Reference
Set Echo and Break Maps (HFSECHO)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.8.4 - 2

 2.5.11.8.5 Set Keyboard Map (HFSKBD)

 Refer to the hftskch.c, hftskfn.c, and hftskst.c sample programs for
 examples of the topics discussed in this section.

 HFSKBD sets the keyboard map. Most keys on the keyboard can be remapped,
 changing the character or control sequence each key generates when
 pressed. See "keyboard" in topic 2.5.13 for additional details. This is
 invoked by the following:

 int ioctl(fildes, HFSKBD, arg)
 int fildes;
 struct hfbuf *arg;

 struct hfbuf
 {
 char *hf_bufp;
 int hf_buflen;
 };

 The hf_bufp field points to a hfkeymap structure, and hf_buflen contains
 its length.

 struct hfkeymap {
 char hf_rsvd1 ;
 char hf_nkeys;
 struct hfkey {
 char hf_kpos;
 char hf_kstate;
 struct hfkeyasgn
 {
 /* for single character */
 char hf_pagenum; /* Code page */
 char hf_character; /* Character to map */
 #define hf_page hf_pagenum
 #define hf_char hf_character
 /* for function id */
 #define hf_keyidh hf_pagenum /* high byte of id */
 #define hf_keyidl hf_character /* low byte of id */
 /* for character string */
 #define hf_kstrl hf_character /* length of string */
 }hf_keyasn;
 } hfkey[HFNKEYS];
 };

 The hfkeymap structure can remap one or more keys, the number of which is
 specified by the hf_nkeys field. This many hfkey structures follow.
 HFNKEYS, which is used as the dimension for the hfkey array, is by default
 defined to be 1, allowing one key to be remapped. To change HFNKEYS, set
 its value in a #define statement that comes before the #include <hft.h>
 statement.

 The hfkey structure contains information for each key being remapped, such
 as key position, shift states, and the type of remapping being done. The
 fields in the hfkey structure are:

 hf_kpos The key position number. See "keyboard" in topic 2.5.13.

 hf_kstate This field is subdivided into three groups of bits:

AIX Operating System Technical Reference
Set Keyboard Map (HFSKBD)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.8.5 - 1

 HFMAPMASK
 Defines the bits that specify the type of mapping to be
 performed:

 HFMAPCHAR Specifies mapping a single character to a
 key.
 HFMAPNONSP Specifies mapping a nonspacing character to
 a key. (See "Nonspacing Characters" in
 topic 2.4.3.2 for information about
 nonspacing characters.)
 HFMAPFUNC Specifies mapping a function ID to a key.
 HFMAPSTR Specifies mapping a string of more than one
 character to a key. Maximum string size is
 256 bytes.

 HFSHFMASK
 Defines the bits that specify the shift state that
 applies to the key being mapped:

 HFSHFNONE Specifies the base state (no shift state)
 HFSHFSHFT Specifies the shift state
 HFSHFCTRL Specifies the Ctrl state
 HFSHFALT Specifies the Alt state
 HFSHFALTGR Specifies the Alt Gr (Alternate Graphics)
 state.

 HFCAPSL
 Specifies whether the Caps Lock state affects the key.
 If set, then when Caps Lock mode is on, the base state of
 a key functions as the shift state, and the shift states
 functions as the base state.

 The hfkeyasgn structure specifies the key to be remapped and the character
 codes generated when the key is pressed or released. The fields of this
 structure differ depending on the value of the HFMAPMASK bits in
 hf_kstate:

 HFMAPCHAR, HFMAPNONSP:

 hf_page Specifies the code page
 < P0 Display symbols 32-255
 = P1 Display symbols 256-479
 > P2 Display symbols 480-703
 hf_char Specifies a character (also called a code point) in that
 code page.

 HFMAPSTR:

 hf_page Specifies the code page
 < P0 Display symbols 32-255
 = P1 Display symbols 256-479
 > P2 Display symbols 480-703
 hf_kstrl Specifies (the length of the string in bytes) minus 1.

 This is immediately followed by the string.

 Note: Due to limitations of the hfkeymap structure, only one key can
 be assigned a string value, and it must be the last key
 specified in the hfkey array. This is because the structure
 itself does not contain space for the variable-length string,

AIX Operating System Technical Reference
Set Keyboard Map (HFSKBD)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.8.5 - 2

 but the string must immediately follow the structure in memory.

 See "Mapping Multiple Strings" if you wish to set more than one string
 using HFSKBD. You can also make repeated HFSKBD ioctls with different
 assignments.

 HFMAPFUNC:
 hf_keyidh Specifies the high-order byte of the function
 ID.
 hf_keyidl Specifies the low-order byte of the function
 ID.

 The following list gives the function IDs for each of the functions that
 can be assigned to keys. See "Multi-Byte Controls" in topic 2.4.3.3.2 for
 more details about these functions.

 ID Name

 0x0000 -- 0x00FE
 (PFK) Issues the Programmable Function Key sequence for PF key
 1 (ID = 0x0000) through 255 (ID = 0x00FE).
 0x0101 (CUU) Moves the application cursor up one line.
 0x0102 (CUD) Moves the application cursor down one line.
 0x0103 (CUF) Moves the application cursor forward one character.
 0x0104 (CUB) Moves the application cursor backward one character.
 0x0105 (CBT) Moves the application cursor to the previous horizontal
 tab stop or beginning of field.
 0x0106 (CHT) Moves the application cursor to the next horizontal tab
 stop or beginning of field.
 0x0107 (CVT) Moves the application cursor down one vertical tab stop.
 0x0108 (HOME) Moves the application cursor to the first line, first
 character in the presentation space.
 0x0109 (LL) Moves the application cursor to the last line, first
 character in the presentation space.
 0x010A (END) Moves the application cursor to the last line, last
 character in the presentation space.
 0x010B (CPL) Moves the application cursor to the first character of
 the previous line.
 0x010C (CNL) Moves the application cursor to the first character of
 the next line.
 0x0151 (DCH) Deletes the character over the application cursor.
 0x0152 (IL) Inserts one line following the line of the application
 cursor.
 0x0153 (DL) Deletes the line of the application cursor.
 0x0154 (EEOL) Erases to the end of the line.
 0x0155 (EEOF) Erases to the next tab stop.
 0x0156 (CLEAR) Erases all characters from the presentation space.
 0x0157 (INIT) Restores the initial state of the virtual terminal.
 (See the description of RIS in "Multi-Byte Controls" in
 topic 2.4.3.3.2.)
 0x0162 (RI) Performs one line reverse index control.
 0x0163 (IND) Performs one line index control.
 0x01FF (IGNORE) Sends no information when the key is pressed.

 Note: On the U.S. 101-key keyboard, the left Alt key produces the Alt
 shift state, and the right Alt key produces the Alt Gr shift state.
 The default keyboard mapping for the Alt and Alt Gr states is
 identical for all keys.

 If a U.S. 101-key keyboard is attached, then mapping the Alt state of a

AIX Operating System Technical Reference
Set Keyboard Map (HFSKBD)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.8.5 - 3

 key automatically causes the same mapping to be assigned to the Alt Gr
 state. This allows the two Alt keys on the U.S. keyboard to function
 identically for most applications. If you want to remap both the Alt and
 Alt Gr states of a key, you must remap the Alt state first, then the Alt
 Gr state. Software written primarily for keyboards other than the U.S.
 keyboard should remap the states in this order to ensure compatibility.

 Mapping Multiple Strings:

 The hft device driver allows any number of keys to be assigned string
 values with HFSKBD. You do this by setting up your own key map buffer
 instead of using the hfskeymap structure.

 The following example shows a data structure which can be used to map two
 keys to strings:

 char map [] = {
 0x00, /* Reserved */
 0x02, /* Number of keys = 2 */
 /* Key pos, shift state, code page, string length, string */
 108, HFMAPSTR, '<', 3, '\033', 'O', 'M',
 105, HFMAPSTR, '<', 3, '\033', 'O', 'm'
 };

 This data structure can be used to assign key position 108 and 105 to
 string "Escape O M" and "Escape O m", respectively.

AIX Operating System Technical Reference
Set Keyboard Map (HFSKBD)

¦ Copyright IBM Corp. 1985, 1991
2.5.11.8.5 - 4

 2.5.11.9 termio Support

 Input modes described in "termio" in topic 2.5.28 supported are INLCR,
 IGNCR, ICRNL, IUCLC, IXON, and IXANY. Input modes IGNBRK and BRKINT are
 not supported because there is no Break key. Input modes IGNPAR, PARMRK,
 and INPCK are not supported because parity is not provided. Input mode
 ISTRIP is not supported either. ICRNL is supported by using the keyboard
 remap facility to change the code sent by the Enter (Return) and Ctrl-M
 keys. Also, the implementation of IXON is different. If the user presses
 Ctrl-S while output is being performed on the screen, the output does not
 stop until the end of the current write system call.

 Output modes supported are OPOST, ONLCR, and OCRNL. The delay insertion,
 parity, and stop bit modes are not supported.

 Line discipline modes supported are ISIG, ICANON, ECHO, ECHOE, ECHOK,
 ECHONL, NOFLSH, and Enhanced Edit Mode.

 Screen paging is also supported using the TCGLEN and TCSLEN ioctl
 operations. When paging is active, the contents of the buffer supplied by
 the write call are written out in page-size pieces.

 Other ioctl operations supported by hft include TCXONC and TCFLSH. The
 TCSBRK operation is not supported.

AIX Operating System Technical Reference
termio Support

¦ Copyright IBM Corp. 1985, 1991
2.5.11.9 - 1

 2.5.11.10 select Support

 The hft device driver supports the select system call in the following
 manner:

 � Read selects are satisfied when input data is available

 � Write selects are always satisfied immediately

 � Exception selects are never satisfied, or hang indefinitely if n
 timeout value is specified.

 See "select" in topic 1.2.242 for more information about this system call.

AIX Operating System Technical Reference
select Support

¦ Copyright IBM Corp. 1985, 1991
2.5.11.10 - 1

 2.5.11.11 Considerations for hft Emulation

 Refer to the sample program hftctl.c for examples of the topics discussed
 in this section.

 Communicating with an emulated or remote hft device presents a unique
 situation because the ioctl system call cannot be used. This is a result
 of the fact that ioctl passes data directly to the virtual terminal
 subsystem, bypassing the data stream. An hft emulator is usually
 connected through a pseudo-TTY device, which means that all communication
 with it must be done through the data stream. Pseudo-TTY devices are
 discussed under "pty" in topic 2.5.21.

 Therefore, two special multibyte control sequences can be used in place of
 invoking the ioctl system call, allowing applications to request an
 emulated hft to perform the ioctl operations. However, the hft device
 driver, which controls the local console, does not recognize these control
 sequences; you must still use ioctl to perform these operations on an hft
 device that is not emulated.

 Both of these multibyte control sequences begin with a virtual terminal
 data (VTD) header. VTDs are explained under "Virtual Terminal Commands"
 in topic 2.5.11.7.

 To perform an hft ioctl operation whether or not the hft is emulated, an
 application should do the following:

 1. Determine whether the hft device is being emulated. If the call ioctl
 (fildes, IOCTYPE, 0) returns the value DD_PSEU, then fildes is a
 pseudo-tty device, which means that fildes may be connected to an hft
 emulator. Otherwise, the hft device is not emulated.

 2. If the hft is not emulated, then issue a regular ioctl system call, as
 outlined in "ioctl Operations" in topic 2.5.11.5.

 3. If the hft is emulated, then do the following:

 a. Set the pseudo-tty for raw data. That is, disable all input and
 output processing. This is necessary because the control
 sequences can contain binary data that would be misinterpreted by
 the pseudo-tty device driver as ASCII control codes. See "termio"
 in topic 2.5.28 for details.

 b. Use the write system call to send an hfctlreq VTD structure,
 immediately followed by the request structure, if any, that would
 normally be pointed to by the ioctl arg parameter. The hfctlreq
 structure contains the following fields:

 Field Value

 hf_intro.hf_typehi HFCTLREQH

 hf_intro.hf_typelo HFCTLREQL

 Field Value

 hf_request The request type.

 hf_arg_len The length of the argument structure that
 follows the hfctlreq VTD, or 0 if none.

AIX Operating System Technical Reference
Considerations for hft Emulation

¦ Copyright IBM Corp. 1985, 1991
2.5.11.11 - 1

 hf_rsp_len The maximum length of the response data
 structure that is to be returned with the
 hfctlack VTD. This value is 0 if no
 response buffer is expected.

 c. Read (using the read system call) until an acknowledgement VTD is
 received. This acknowledgement takes the form of an hfctlack
 structure, which is sometimes followed by a returned data
 structure, depending on the operation requested. The hfctlack
 structure contains the following fields:

 Field Value

 hf_intro.hf_typehi HFCTLACKH

 hf_intro.hf_typelo HFCTLACKL

 hf_request The type of request that is being
 acknowledged.

 hf_ret_code The error code: 0 indicates successful
 completion; a nonzero value is the value
 that is normally found in errno.

 hf_arg_len The length of the response data structure
 that follows the hfctlack VTD, or 0 if
 none. The length must not exceed the
 value of hf_rsp_len that was specified in
 the hfctlreq structure.

AIX Operating System Technical Reference
Considerations for hft Emulation

¦ Copyright IBM Corp. 1985, 1991
2.5.11.11 - 2

 2.5.11.12 AIX PS/2 HFT Compatibility with AIX RT

 In general, hft for AIX PS/2 is compatible with hft for AIX RT. However,
 there are a few areas of difference which are due to differences in the
 hardware of these systems, or due to the absence of a VRM Operating System
 layer on the PS/2. Highlights of the differences are as follows:

 Differences Due to Hardware:

 � There is no support for Lighted Program Function Keys (LPFKs), dials
 or tablets.

 � The keyboard click is not settable

 � The sound volume is not settable

 � Only the VGA adapter of the PS/2 is supported. It has characteristic
 similar to the EGA adapter on the RT, however the PS/2 implementation
 allows a choice of two built-in fonts, one utilizing hardware
 character generation and the other using software character formation.
 The hardware font is faster and more efficient than the software font,
 but is limited to code page P0. The software font is slower and uses
 more CPU cycles, but is capable of generating all 616 symbols in code
 pages P0, P1, and P2.

 � There is no /dev/bus pseudo-device. Applications that use Monitor
 Mode will get the virtual address of the display adapter memory
 returned in the structure used to enter Monitor Mode (the HFSMON
 ioctl).

 Differences Due to VRM:

 There is limited reconfigurability of physical devices and drivers. It is
 not possible to replace individual virtual terminal subsystem components.
 Relationships and allocation of hft channels and IODNs are not the same.
 Applications should not make any assumptions about this or about the
 ordering of these numbers. For compatibility, applications should use
 open and accept the virtual terminal that is allocated.

 Subtopics
 2.5.11.12.1 Compatibility Table
 2.5.11.12.2 Byte-Ordering Considerations
 2.5.11.12.3 Sample Programs from AIX RT hft
 2.5.11.12.4 DOS Merge

AIX Operating System Technical Reference
AIX PS/2 HFT Compatibility with AIX RT

¦ Copyright IBM Corp. 1985, 1991
2.5.11.12 - 1

 2.5.11.12.1 Compatibility Table

 The following table shows the compatibility between AIX PS/2 and AIX RT
 for each hft operation. Refer to the list of explanatory "Notes" which
 follows the table.

 HFT Operation RT Notes
 Compatible?

 HFQEIO Query I/O Error Yes
 HFQDEV Query Device No 1,2
 HFRCONF Reconfigure
 HFADDLOC Not 1,4
 Implemented
 HFADDSOUND Not 1,4
 Implemented
 HFADDDISPLAY Not 1,4
 Implemented
 HFDELDISPLAY Not 1,4
 Implemented
 HFADDFONT Not 1,4
 Implemented
 HFCHGKBDRATE Yes
 HFCHGKBDDEL Yes
 HFCHGLOCRATE Yes
 HFCHGCLICK Yes 6
 HFCHGVOLUME Yes 6
 HFKEYMAP No 8
 HFDISPMAP No 8
 HFECHOMAP No 8
 HFDEFAULT Not 1,4
 Implemented
 HFSETDD Not 1,4
 Implemented
 HFADDDIALS Not 1,3
 Implemented
 HFADDLPFK Not 1,3
 Implemented
 HFCHNGDMA Not 1,3
 Implemented
 HFGCHAN Get Channel Number Yes
 HFSECHO Set Echo/Break Maps Yes
 HFSKBD Set Keyboard Map Yes
 HFGETID Get Virtual Term ID Yes
 HFQUERY Query Command
 HFQDEVID Yes
 HFQPDEV Yes
 HFQLOC Yes
 HFQLPFK Yes 9
 HFQDIALS Yes 9
 HFQPRES Yes
 HFQHFT Yes
 HFQDMA Not 1,3
 Implemented
 HFESOUND Yes
 HFDSOUND Yes
 HFSMON Yes 7
 HFCMON Yes
 HFQSMGR Yes

AIX Operating System Technical Reference
Compatibility Table

¦ Copyright IBM Corp. 1985, 1991
2.5.11.12.1 - 1

 HFCSMGR Yes
 HFMDMA Not 1,3
 Implemented
 HFKLED Set Keyboard LEDs Yes
 HFLOTH Set Loc Threshold Yes
 HFSOUND Sound Yes
 HFCANSND Cancel Sound Yes
 HFCHGDSP Change Phys Disp Yes 6
 HFKSRPRO KSR Protocol Modes Yes
 HFMOMPRO MOM Protocol Modes Yes
 HFTDZ Set Tablet Dead Yes 9
 Zones
 HFLPFKS Enab/Disab LPFK's Yes 9
 HFDIALS Set Dial Yes 9
 Granularity
 HFCHARSET Uniq1/Uniq 2 Yes
 HFCOLORPAL Set KSR Color Yes
 Palette
 HFFONT Change Fonts Yes
 HFCURSOR Cursor Yes
 Representation
 HFMOMREQ Scrn Req Input Yes
 Ring
 HFMOMREL Screen Release Yes

 Notes:

 1. Produces a compile time error if specified.

 2. Not implemented due to dependence on VRM.

 3. No PS/2 Hardware to support this function.

 4. Not implemented in Release 1 of AIX PS/2.

 5. Implemented in a different way due to dependence on VRM.

 6. Capability does not exist; a null success status is returned and no
 action is taken.

 7. Function now returns an address in the response structure.

 8. User programs will need to be modified to use an address instead of an
 IOCN due to dependence on the VRM.

 9. No PS/2 hardware for these functions, however the correct values will
 be returned to reflect lack of hardware.

AIX Operating System Technical Reference
Compatibility Table

¦ Copyright IBM Corp. 1985, 1991
2.5.11.12.1 - 2

 2.5.11.12.2 Byte-Ordering Considerations

 There are several instances in the hft driver where a binary integer is
 being passed in a string of characters. The integer will always be
 arranged such that the most significant byte comes first and the least
 significant byte comes last, regardless of the machine that is being used
 to execute the code.

 You should not use a union to align an integer with a byte field. This
 technique is machine-dependent and is not portable between RT and PS/2.

 Consider an integer containing the hex value 0x12345678 stored at memory
 location 8. The stored memory image of this integer differs between RT
 and PS/2:

 Figure 5-3. Stored memory differences between RT and PS/2

 This difference in byte-ordering can get you in trouble. Assume that the
 character field x is known to contain an integer.

 The following code should not be used:

 union
 {
 char c[4];
 int i;
 } u;
 char x[4];

 u.c[0] = x[0];
 u.c[1] = x[1];
 u.c[2] = x[2];
 u.c[3] = x[3];

 What does u.i contain? On the RT, it contains the integer x and can
 safely be used. On the PS/2 it does not contain the integer x in the
 proper order. Bytes 0 and 3 are swapped and bytes 1 and 2 are swapped.

 To get the correct results on both RT and PS/2, you should use code
 similar to the following:

 int i;
 char x[4];

 i = ((x[0] << 24) + (x[1] << 16) + (x[2] << 8) + (x[3]));

 This technique pulls the bytes from the character field in the proper
 order and uses the machine-independent shift instruction to position them
 in the integer. It will work properly for both types of machine. The
 same technique can be applied to retrieving char[2] and char[3] fields.

AIX Operating System Technical Reference
Byte-Ordering Considerations

¦ Copyright IBM Corp. 1985, 1991
2.5.11.12.2 - 1

 2.5.11.12.3 Sample Programs from AIX RT hft

 Some of these sample programs did contain unions of integers and byte
 fields. They will not execute properly on the PS/2 and have been modified
 to follow the guidelines in Byte-Ordering Considerations. User programs
 based on these samples should be checked to see if such unions are being
 employed.

AIX Operating System Technical Reference
Sample Programs from AIX RT hft

¦ Copyright IBM Corp. 1985, 1991
2.5.11.12.3 - 1

 2.5.11.12.4 DOS Merge

 Programs operating under control of DOS Merge participate in the HFT
 screen manager ring for hot-keying but otherwise cannot be controlled by
 HFT ioctls or VTD sequences.

 File
 /dev/hft/*

 Related Information
 In this book: "ioctlx, ioctl, gtty, stty" in topic 1.2.137, "fonts" in
 topic 2.3.19, "data stream" in topic 2.4.3, and "termio" in topic 2.5.28.

AIX Operating System Technical Reference
DOS Merge

¦ Copyright IBM Corp. 1985, 1991
2.5.11.12.4 - 1

 2.5.12 ilans

 Purpose
 Supports the ILANS network device driver.

 # include <sys/devinfo.h>
 # include <sys/b370/ilans.h>
 # include <sys/b370/ilansceti.h>

 Description
 The ilans device driver is used to drive to the 9370 Integrated Token Ring
 Adatper. It is unique to AIX/370.

 Since the supported device is a LAN network interface, normal network
 traffic is transmitted and received using the socket interface and not the
 device interface. The device interface is used only to monitor and
 control the operation of the device, via ioctl commands.

 The device used to perform this monitor and control is /dev/ilans#, where
 # is the device minor number.

 There is a small number of ioctl operations available besides the standard
 IOCTYPE and IOCINFO commands. They are:

 DIOCONLINE
 Bring the device on-line.

 ioctl(fd, DIOCONLINE, arg)
 char *arg

 The argument is ignored.

 DIOCOFFLINE
 Take the device off-line.

 ioctl(fd, DIOCOFFLINE, arg)
 char *arg

 The argument is ignored.

 CIOGETSTATS
 Return device statistics.

 ioctl(fd, CIOGETSTATS, arg)
 struct tkr_lstat *arg;

 where struct tkr_lstat is declared as:

 struct tkr_lstats {
 unsigned frames_tx; /* frames transmitted */
 unsigned frames_rx; /* frames received */
 unsigned mac_frames_tx; /* mac frams transmitted */
 unsigned mac_frames_rx; /* mac frams received */
 unsigned ri_frames_tx; /* ri frames transmitted */
 unsigned ri_frames_rx; /* ri frames received */
 unsigned line_error; /* line error count */
 unsigned internal_error; /* internal error count */
 unsigned burst_error; /* burst error count */
 unsigned ari_fci_error; /* ari fci count */
 unsigned abort_delimiter; /* abort delimiter count */

AIX Operating System Technical Reference
ilans

¦ Copyright IBM Corp. 1985, 1991
2.5.12 - 1

 unsigned lost_frame; /* count of lost frames */
 unsigned rx_congestion; /* receive congestion count */
 unsigned frame_copied_error; /* frame copy errors */
 unsigned frequency_error; /* count of frequency error */
 unsigned token_error; /* count of token errors */
 unsigned dma_bus_error; /* count of dma bus errors */
 unsigned dma_parity_error; /* count of dma parity errors */
 unsigned addr_unrecognized; /* count of unrecognized addr */
 unsigned frame_not_copied_error; /* count of not copied */
 unsigned tx_strip_error; /* count xmit strip errors */
 unsigned unauthorized_ap; /* count of unauthorized ap */
 unsigned unauthorized_mf; /* count of unauthorized mf */
 unsigned soft_error; /* count of software errors */
 unsigned transmit_beacon; /* count of transmit beacon */
 unsigned ioa_status_overrun; /* count ioa status overrun */
 unsigned frames_discarded; /* count of discarded frames */
 unsigned spurious_interrupts; /* count spurious interrupt */
 };

 IEREPCTL
 Control the VM EREP logging.

 ioctl(fd, IEREPCTL, arg)
 struct ilans_erep_ctl *arg;

 where struct ilans_erep_ctl is declared as:

 struct ilans_erep_ctl {
 unsigned char obr_thresh;
 unsigned char mdr_thresh;
 unsigned char obr_cnt;
 /* current log control count returned here */
 unsigned char mdr_cnt;
 /* current log control count returned here */
 };

 If a threshold is 0, no EREP logging is done. If set to 0xff, no
 change to the current state is made. Otherwise, logging set to
 occur every nth occurrence, where n is the number specified.

 Related Information
 In this book: "ioctlx, ioctl, gtty, stty" in topic 1.2.137 and "open,
 openx, creat" in topic 1.2.199.

AIX Operating System Technical Reference
ilans

¦ Copyright IBM Corp. 1985, 1991
2.5.12 - 2

 2.5.13 keyboard

 Purpose
 Maps the 101-Key PS/2 keyboard.

 Description
 A keyboard mapping table is maintained for each virtual terminal. This
 table relates a key indicated by its key position along with the shift,
 control, or alternate keys to a character, mode processor function or
 string of characters. Portions or all of this mapping table can be
 modified by data passed to the hfbuf structure in the HFSKBD type ioctl
 system call. See "hft" in topic 2.5.11 for information about this ioctl
 system call. See AIX PS/2 Keyboard Description and Character Reference
 for details about other PS/2 keyboards.

 Each key on the standard PS/2 keyboard has a numeric position code that is
 used for this field. Figure 5-4 matches the key to its position code.

 Figure 5-4. Position Codes for Remapping a Keyboard

 The following keys are not redefinable:

 Key
 Position Function States that cannot be remapped

 30 Caps Lock key All states
 44 Left Shift key All states
 57 Right Shift key All states
 58 Control key All states
 60 Left Alternate key All states
 62 Right Alternate key All states
 64 Action key Shift, Control, Alternate, and
 Alternate Graphics states
 90 Num Lock key Base and Shift states

 Subtopics
 2.5.13.1 US 101-Key Keyboard Translate Table
 2.5.13.2 Keystroke Control Sequences for System Functions

AIX Operating System Technical Reference
keyboard

¦ Copyright IBM Corp. 1985, 1991
2.5.13 - 1

 2.5.13.1 US 101-Key Keyboard Translate Table

 The following table gives this information about the default mapping for
 the U.S. 101-key keyboard:

 Key Posn - Keyboard key position.

 Shift - The shift state of the position: Base, Shift, Ctrl, or Alt.
 (Note that the Alt Gr shift state is always the same as the Alt
 state.)

 Assignment - The character or control assigned to that key.

 Keyboard Definition - Provides information as it would appear as part
 of a keyboard definition structure. (See "Set Keyboard Map (HFSKBD)"
 in topic 2.5.11.8.5 for details.) Within the table, interpret the
 fields as follows:

 nnn - One-byte key position number being defined.

 s - Shift state being defined:

 b (base) - No Shift key is pressed.

 s (shift) - Either left or right Shift key is pressed.

 c (control) - Ctrl key is pressed.

 a (alt) - Alt key is pressed.

 t - Type of definition:

 c - Regular character definition, followed by a 1-byte code
 page identifier and a 1-byte code point specification. The
 code page identifiers are:

 < for Code Page P0
 = for Code Page P1
 > for Code Page P2

 This identifier is followed by a 1-byte code point identifier,
 given in the table as a decimal number.

 f - Function specification, followed by a 2-byte function
 identifier, which is specified in the table as a hexadecimal
 value.

 s - String specification, followed by a 1-byte code page
 identifier, a 1-byte string length and the 1-byte code point
 identifiers within the specified code page. No string
 specifications are included in the default keyboard layouts.

 d - Nonspacing or dead character definition, followed by a
 1-byte code page identifier and a 1-byte code point
 specification. The code page identifiers are as described for
 character definition. This is followed by a 1-byte code point
 identifier, given in the table as a decimal number. There are
 no dead keys defined for the U.S. 101-key keyboard.

 Returned String - Specifies the data that is returned to the

AIX Operating System Technical Reference
US 101-Key Keyboard Translate Table

¦ Copyright IBM Corp. 1985, 1991
2.5.13.1 - 1

 program that is reading the keyboard.

 Notes - Specifies additional information. Entries in this column
 include:

 � CL - This key is affected by CAPS LOCK.

 � DK - This key is a dead character on this key state.

 � P1 - This key is a character from Code Page P1.

 � P2 - This key is a character from Code Page P2.

 The Alt key, followed by one or more numbered keys on the numeric pad,
 will return a single character which has the value entered on the numeric
 pad. The value accumulates while the Alt key is held down and returns
 when that key is released. Only spacing character codes and single-byte
 controls are produced by this method.

 Key Shift Assignment Keyboard Definition Returned String
 Posn State nnn s t

 1 Base ` Grave Accent 1 b c < 96 0x60
 1 Shift ~ Tilde Accent 1 s c < 126 0x7e
 1 Ctrl PFK 57 1 c f 0x39 ESC [0 5 7 q
 1 Alt PFK 115 1 a f 0x73 ESC [1 1 5 q

 2 Base 1 One 2 b c < 49 0x31
 2 Shift ! Exclamation Point 2 s c < 33 0x21
 2 Ctrl PFK 49 2 c f 0x31 ESC [0 4 9 q
 2 Alt PFK 58 2 a f 0x3a ESC [0 5 8 q

 3 Base 2 Two 3 b c < 50 0x32
 3 Shift @ At Sign 3 s c < 64 0x40
 3 Ctrl NUL Null 3 c c < 0 0x00
 3 Alt PFK 59 3 a f 0x3b ESC [0 5 9 q

 4 Base 3 Three 4 b c < 51 0x33
 4 Shift # Number Sign 4 s c < 35 0x23
 4 Ctrl PFK 50 4 c f 0x32 ESC [0 5 0 q
 4 Alt PFK 60 4 a f 0x3c ESC [0 6 0 q

 5 Base 4 Four 5 b c < 52 0x34
 5 Shift $ Dollar Sign 5 s c < 36 0x24
 5 Ctrl PFK 51 5 c f 0x33 ESC [0 5 1 q
 5 Alt PFK 61 5 a f 0x3d ESC [0 6 1 q

 6 Base 5 Five 6 b c < 53 0x35
 6 Shift % Percent Sign 6 s c < 37 0x25
 6 Ctrl PFK 52 6 c f 0x34 ESC [0 5 2 q
 6 Alt PFK 62 6 a f 0x3e ESC [0 6 2 q

 7 Base 6 Six 7 b c < 54 0x36
 7 Shift ^ Circumflex Accent 7 s c < 94 0x5e
 7 Ctrl SS2 Single Shift 2 7 c c < 30 0x1e
 7 Alt PFK 63 7 a f 0x3f ESC [0 6 3 q

 8 Base 7 Seven 8 b c < 55 0x37
 8 Shift & Ampersand 8 s c < 38 0x26
 8 Ctrl PFK 53 8 c f 0x35 ESC [0 5 3 q

AIX Operating System Technical Reference
US 101-Key Keyboard Translate Table

¦ Copyright IBM Corp. 1985, 1991
2.5.13.1 - 2

 8 Alt PFK 64 8 a f 0x40 ESC [0 6 4 q

 9 Base 8 Eight 9 b c < 56 0x38
 9 Shift * Asterisk 9 s c < 42 0x2a
 9 Ctrl PFK 54 9 c f 0x36 ESC [0 5 4 q
 9 Alt PFK 65 9 a f 0x41 ESC [0 6 5 q

 10 Base 9 Nine 10 b c < 57 0x39
 10 Shift (Left Parenthesis 10 s c < 40 0x28
 10 Ctrl PFK 55 10 c f 0x37 ESC [0 5 5 q
 10 Alt PFK 66 10 a f 0x42 ESC [0 6 6 q

 11 Base 0 Zero 11 b c < 48 0x30
 11 Shift) Right Parenthesis 11 s c < 41 0x29
 11 Ctrl PFK 56 11 c f 0x38 ESC [0 5 6 q
 11 Alt PFK 67 11 a f 0x43 ESC [0 6 7 q

 12 Base - Hyphen 12 b c < 45 0x2d
 12 Shift _ Underscore 12 s c < 95 0x5f
 12 Ctrl SS1 Single Shift 1 12 c c < 31 0x1f
 12 Alt PFK 68 12 a f 0x44 ESC [0 6 8 q

 13 Base = Equal Sign 13 b c < 61 0x3d
 13 Shift + Plus Sign 13 s c < 43 0x2b
 13 Ctrl PFK 69 13 c f 0x45 ESC [0 6 9 q
 13 Alt PFK 70 13 a f 0x46 ESC [0 7 0 q

 14 Not available on keyboard

 15 Base BS Back Space 15 b c < 8 0x08
 15 Shift BS Back Space 15 s c < 8 0x08
 15 Ctrl DEL Delete 15 c c < 127 0x7f
 15 Alt PFK 71 15 a f 0x47 ESC [0 7 1 q

 16 Base HT Horizontal Tab 16 b c < 9 0x09
 16 Shift CBT Cursor Back Tab 16 s f 0x105 ESC [Z
 16 Ctrl PFK 72 16 c f 0x48 ESC [0 7 2 q
 16 Alt PFK 73 16 a f 0x49 ESC [0 7 3 q

 17 Base q Lowercase q 17 b c < 113 0x71 CL
 17 Shift Q Uppercase q 17 s c < 81 0x51
 17 Ctrl DC1 Device Control 1 17 c c < 17 0x11
 17 Alt PFK 74 17 a f 0x4a ESC [0 7 4 q

 18 Base w Lowercase w 18 b c < 119 0x77 CL
 18 Shift W Uppercase w 18 s c < 87 0x57
 18 Ctrl ETB End Trans Block 18 c c < 23 0x17
 18 Alt PFK 75 18 a f 0x4b ESC [0 7 5 q

 19 Base e Lowercase e 19 b c < 101 0x65 CL
 19 Shift E Uppercase e 19 s c < 69 0x45
 19 Ctrl ENQ Enquiry 19 c c < 5 0x05
 19 Alt PFK 76 19 a f 0x4c ESC [0 7 6 q

 20 Base r Lowercase r 20 b c < 114 0x72 CL
 20 Shift R Uppercase r 20 s c < 82 0x52
 20 Ctrl DC2 Device Control 2 20 c c < 18 0x12
 20 Alt PFK 77 20 a f 0x4d ESC [0 7 7 q

 21 Base t Lowercase t 21 b c < 116 0x74 CL

AIX Operating System Technical Reference
US 101-Key Keyboard Translate Table

¦ Copyright IBM Corp. 1985, 1991
2.5.13.1 - 3

 21 Shift T Uppercase t 21 s c < 84 0x54
 21 Ctrl DC4 Device Control 4 21 c c < 20 0x14
 21 Alt PFK 78 21 a f 0x4e ESC [0 7 8 q

 22 Base y Lowercase y 22 b c < 121 0x79 CL
 22 Shift Y Uppercase y 22 s c < 89 0x59
 22 Ctrl EM End of Media 22 c c < 25 0x19
 22 Alt PFK 79 22 a f 0x4f ESC [0 7 9 q

 23 Base u Lowercase u 23 b c < 117 0x75 CL
 23 Shift U Uppercase u 23 s c < 85 0x55
 23 Ctrl NAK Not Acknowledge 23 c c < 21 0x15
 23 Alt PFK 80 23 a f 0x50 ESC [0 8 0 q

 24 Base i Lowercase i 24 b c < 105 0x69 CL
 24 Shift I Uppercase i 24 s c < 73 0x49
 24 Ctrl HT Horizontal Tab 24 c c < 9 0x09
 24 Alt PFK 81 24 a f 0x51 ESC [0 8 1 q

 25 Base o Lowercase o 25 b c < 111 0x6f CL
 25 Shift O Uppercase o 25 s c < 79 0x4f
 25 Ctrl SI Shift In 25 c c < 15 0x0f
 25 Alt PFK 82 25 a f 0x52 ESC [0 8 2 q

 26 Base p Lowercase p 26 b c < 112 0x70 CL
 26 Shift P Uppercase p 26 s c < 80 0x50
 26 Ctrl DLE Data Link Enabl 26 c c < 16 0x10
 26 Alt PFK 83 26 a f 0x53 ESC [0 8 3 q

 27 Base [Left Bracket 27 b c < 91 0x5b
 27 Shift { Left Brace 27 s c < 123 0x7b
 27 Ctrl ESC Escape 27 c c < 27 0x1b
 27 Alt PFK 84 27 a f 0x54 ESC [0 8 4 q

 28 Base] Right Bracket 28 b c < 93 0x5d
 28 Shift } Right Brace 28 s c < 125 0x7d
 28 Ctrl SS3 Single Shift 3 28 c c < 29 0x1d
 28 Alt PFK 85 28 a f 0x55 ESC [0 8 5 q

 29 Base \ Reverse Slash 29 b c < 92 0x5c
 29 Shift | Pipe Symbol 29 s c < 124 0x7c
 29 Ctrl SS4 Single Shift 4 29 c c < 28 0x1c
 29 Alt PFK 86 29 a f 0x56 ESC [0 8 6 q

 30 Base Caps Lock None Not Returned
 30 Shift Caps Lock None Not Returned
 30 Ctrl Caps Lock None Not Returned
 30 Alt Caps Lock None Not Returned

 31 Base a Lowercase a 31 b c < 97 0x61 CL
 31 Shift A Uppercase a 31 s c < 65 0x41
 31 Ctrl SOH Start of Header 31 c c < 1 0x01
 31 Alt PFK 87 31 a f 0x57 ESC [0 8 7 q

 32 Base s Lowercase s 32 b c < 115 0x73 CL
 32 Shift S Uppercase s 32 s c < 83 0x53
 32 Ctrl DC3 Device Control 3 32 c c < 19 0x13
 32 Alt PFK 88 32 a f 0x58 ESC [0 8 8 q

 33 Base d Lowercase d 33 b c < 100 0x64 CL

AIX Operating System Technical Reference
US 101-Key Keyboard Translate Table

¦ Copyright IBM Corp. 1985, 1991
2.5.13.1 - 4

 33 Shift D Uppercase d 33 s c < 68 0x44
 33 Ctrl EOT End of Transmission 33 c c < 4 0x04
 33 Alt PFK 89 33 a f 0x59 ESC [0 8 9 q

 34 Base f Lowercase f 34 b c < 102 0x66 CL
 34 Shift F Uppercase f 34 s c < 70 0x46
 34 Ctrl ACK Acknowledge 34 c c < 6 0x06
 34 Alt PFK 90 34 a f 0x5a ESC [0 9 0 q

 35 Base g Lowercase g 35 b c < 103 0x67 CL
 35 Shift G Uppercase g 35 s c < 71 0x47
 35 Ctrl BEL Bell 35 c c < 7 0x07
 35 Alt PFK 91 35 a f 0x5b ESC [0 9 1 q

 36 Base h Lowercase h 36 b c < 104 0x68 CL
 36 Shift H Uppercase h 36 s c < 72 0x48
 36 Ctrl BS Backspace 36 c c < 8 0x08
 36 Alt PFK 92 36 a f 0x5c ESC [0 9 2 q

 37 Base j Lowercase j 37 b c < 106 0x6a CL
 37 Shift J Uppercase j 37 s c < 74 0x4a
 37 Ctrl LF Line Feed 37 c c < 10 0x0a
 37 Alt PFK 93 37 a f 0x5d ESC [0 9 3 q

 38 Base k Lowercase k 38 b c < 107 0x6b CL
 38 Shift K Uppercase k 38 s c < 75 0x4b
 38 Ctrl VT Vertical Tab 38 c c < 11 0x0b
 38 Alt PFK 94 38 a f 0x5e ESC [0 9 4 q

 39 Base l Lowercase l 39 b c < 108 0x6c CL
 39 Shift L Uppercase l 39 s c < 76 0x4c
 39 Ctrl FF Form Feed 39 c c < 12 0x0c
 39 Alt PFK 95 39 a f 0x5f ESC [0 9 5 q

 40 Base ; Semicolon 40 b c < 59 0x3b
 40 Shift : Colon 40 s c < 58 0x3a
 40 Ctrl PFK 96 40 c f 0x60 ESC [0 9 6 q
 40 Alt PFK 97 40 a f 0x61 ESC [0 9 7 q

 41 Base ' Quote, Apostrophe 41 b c < 39 0x27
 41 Shift " Double Quote 41 s c < 34 0x22
 41 Ctrl PFK 98 41 c f 0x62 ESC [0 9 8 q
 41 Alt PFK 99 41 a f 0x63 ESC [0 9 9 q

 42 Not available on keyboard

 43 Base CR Carriage Return 43 b c < 13 0x0d
 43 Shift CR Carriage Return 43 s c < 13 0x0d
 43 Ctrl CR Carriage Return 43 c c < 13 0x0d
 43 Alt PFK 100 43 a f 0x64 ESC [1 0 0 q

 44 Base Shift (Left) None Not Returned
 44 Shift Shift (Left) None Not Returned
 44 Ctrl Shift (Left) None Not Returned
 44 Alt Shift (Left) None Reserved

 45 Not available on keyboard

 46 Base z Lowercase z 46 b c < 122 0x7a CL
 46 Shift Z Uppercase z 46 s c < 90 0x5a

AIX Operating System Technical Reference
US 101-Key Keyboard Translate Table

¦ Copyright IBM Corp. 1985, 1991
2.5.13.1 - 5

 46 Ctrl SUB Substitute Char. 46 c c < 26 0x1a
 46 Alt PFK 101 46 a f 0x65 ESC [1 0 1 q

 47 Base x Lowercase x 47 b c < 120 0x78 CL
 47 Shift X Uppercase x 47 s c < 88 0x58
 47 Ctrl CAN Cancel 47 c c < 24 0x18
 47 Alt PFK 102 47 a f 0x66 ESC [1 0 2 q

 48 Base c Lowercase c 48 b c < 99 0x63 CL
 48 Shift C Uppercase c 48 s c < 67 0x43
 48 Ctrl ETX End of Text 48 c c < 3 0x03
 48 Alt PFK 103 48 a f 0x67 ESC [1 0 3 q

 49 Base v Lowercase v 49 b c < 118 0x76 CL
 49 Shift V Uppercase v 49 s c < 86 0x56
 49 Ctrl SYN Synch Idle 49 c c < 22 0x16
 49 Alt PFK 104 49 a f 0x68 ESC [1 0 4 q

 50 Base b Lowercase b 50 b c < 98 0x62 CL
 50 Shift B Uppercase b 50 s c < 66 0x42
 50 Ctrl STX Start of Text 50 c c < 2 0x02
 50 Alt PFK 105 50 a f 0x69 ESC [1 0 5 q

 51 Base n Lowercase n 51 b c < 110 0x6e CL
 51 Shift N Uppercase n 51 s c < 78 0x4e
 51 Ctrl SO Shift Out 51 c c < 14 0x0e
 51 Alt PFK 106 51 a f 0x65 ESC [1 0 6 q

 52 Base m Lowercase m 52 b c < 109 0x6d CL
 52 Shift M Uppercase m 52 s c < 77 0x4d
 52 Ctrl CR Carriage Return 52 c c < 13 0x0d
 52 Alt PFK 107 52 a f 0x66 ESC [1 0 7 q

 53 Base , Comma 53 b c < 44 0x2c
 53 Shift < Less Than Sign 53 s c < 60 0x3c
 53 Ctrl PFK 108 53 c f 0x6c ESC [1 0 8 q
 53 Alt PFK 109 53 a f 0x6d ESC [1 0 9 q

 54 Base . Period 54 b c < 46 0x2e
 54 Shift > Greater Than Sign 54 s c < 62 0x3e
 54 Ctrl PFK 110 54 c f 0x6e ESC [1 1 0 q
 54 Alt PFK 111 54 a f 0x6f ESC [1 1 1 q

 55 Base / Slash 55 b c < 47 0x2f
 55 Shift ? Question Mark 55 s c < 63 0x3f
 55 Ctrl PFK 112 55 c f 0x70 ESC [1 1 2 q
 55 Alt PFK 113 55 a f 0x71 ESC [1 1 3 q

 56 Not available on keyboard

 57 Base Shift (Right) None Not Returned
 57 Shift Shift (Right) None Not Returned
 57 Ctrl Shift (Right) None Not Returned
 57 Alt Shift (Right) None Reserved

 58 Base Control None Not Returned
 58 Shift Control None Not Returned
 58 Ctrl Control None Not Returned
 58 Alt Control None Not Returned

AIX Operating System Technical Reference
US 101-Key Keyboard Translate Table

¦ Copyright IBM Corp. 1985, 1991
2.5.13.1 - 6

 59 Not available on keyboard

 60 Base Alternate Shift None Not Returned
 60 Shift Alternate Shift None Not Returned
 60 Ctrl Alternate Shift None Not Returned
 60 Alt Alternate Shift None Not Returned

 61 Base SP Space 61 b c < 32 0x20
 61 Shift SP Space 61 s c < 32 0x20
 61 Ctrl SP Space 61 c c < 32 0x20
 61 Alt SP Space 61 a c < 32 0x20

 62 Base Alternate Graphic Shift None Not Returned
 62 Shift Alternate Graphic Shift None Not Returned
 62 Ctrl Alternate Graphic Shift None Not Returned
 62 Alt Alternate Graphic Shift None Not Returned

 63 Not available on keyboard

 64 Base PFK 114 64 b f 0x72 ESC [1 1 4 q
 64 Shift Previous Window None Previous Window
 64 Ctrl Windows Window None Windows Window
 64 Alt Next Window None Next Window

 65 - Not available on keyboard

 75 Base PFK 139 INS Toggle 75 b f 0x8b ESC [1 3 9 q
 75 Shift PFK 139 INS Toggle 75 s f 0x8b ESC [1 3 9 q
 75 Ctrl PFK 140 75 c f 0x8c ESC [1 4 0 q
 75 Alt PFK 141 75 a f 0x8d ESC [1 4 1 q

 76 Base DCH Delete Character 76 b f 0x151 ESC [P
 76 Shift DCH Delete Character 76 s f 0x151 ESC [P
 76 Ctrl PFK 142 76 c f 0x8e ESC [1 4 2 q
 76 Alt DL Delete Line 76 a f 0x153 ESC [M

 77 Not available on keyboard

 78 Not available on keyboard

 79 Base CUB Cursor Back 79 b f 0x104 ESC [D
 79 Shift PFK 158 79 s f 0x9e ESC [1 5 8 q
 79 Ctrl PFK 159 79 c f 0x9f ESC [1 5 9 q
 79 Alt PFK 160 79 a f 0xa0 ESC [1 6 0 q

 80 Base HOME 80 b f 0x108 ESC [H
 80 Shift PFK 143 80 s f 0x8f ESC [1 4 3 q
 80 Ctrl PFK 144 80 c f 0x90 ESC [1 4 4 q
 80 Alt PFK 145 80 a f 0x91 ESC [1 4 5 q

 81 Base PFK 146 81 b f 0x92 ESC [1 4 6 q
 81 Shift PFK 147 81 s f 0x93 ESC [1 4 7 q
 81 Ctrl PFK 148 81 c f 0x94 ESC [1 4 8 q
 81 Alt PFK 149 81 a f 0x95 ESC [1 4 9 q

 82 Not available on keyboard

 83 Base CUU Cursor Up 83 b f 0x101 ESC [A
 83 Shift PFK 161 83 s f 0xa1 ESC [1 6 1 q
 83 Ctrl PFK 162 83 c f 0xa2 ESC [1 6 2 q

AIX Operating System Technical Reference
US 101-Key Keyboard Translate Table

¦ Copyright IBM Corp. 1985, 1991
2.5.13.1 - 7

 83 Alt PFK 163 83 a f 0xa3 ESC [1 6 3 q

 84 Base CUD Cursor Down 84 b f 0x102 ESC [B
 84 Shift PFK 164 84 s f 0xa4 ESC [1 6 4 q
 84 Ctrl PFK 165 84 c f 0xa5 ESC [1 6 5 q
 84 Alt PFK 166 84 a f 0xa6 ESC [1 6 6 q

 85 Base PFK 150 85 b f 0x96 ESC [1 5 0 q
 85 Shift PFK 151 85 s f 0x97 ESC [1 5 1 q
 85 Ctrl PFK 152 85 c f 0x98 ESC [1 5 2 q
 85 Alt PFK 153 85 a f 0x99 ESC [1 5 3 q

 86 Base PFK 154 86 b f 0x9a ESC [1 5 4 q
 86 Shift PFK 155 86 s f 0x9b ESC [1 5 5 q
 86 Ctrl PFK 156 86 c f 0x9c ESC [1 5 6 q
 86 Alt PFK 157 86 a f 0x9d ESC [1 5 7 q

 87 Not available on keyboard

 88 Not available on keyboard

 89 Base CUF Cursor Forward 89 b f 0x103 ESC [C
 89 Shift PFK 167 89 s f 0xa7 ESC [1 6 7 q
 89 Ctrl PFK 168 89 c f 0xa8 ESC [1 6 8 q
 89 Alt PFK 169 89 a f 0xa9 ESC [1 6 9 q

 90 Base NUM LOCK None Not Returned
 90 Shift NUM LOCK None Not Returned
 90 Ctrl DC3 Device Control 3 90 c c < 19 0x13
 90 Alt PFK 170 90 a f 0xaa ESC [1 7 0 q

 91 Base + Upper Left Corner 91 b c < 218 0xda
 91 Shift 7 Seven 91 s c < 55 0x37
 91 Ctrl PFK 172 91 c f 0xac ESC [1 7 2 q
 91 Alt Alt+Num Entry None Return at Alt Break

 92 Base + Left Edge Int. 92 b c < 195 0xc3
 92 Shift 4 Four 92 s c < 52 0x34
 92 Ctrl PFK 174 92 c f 0xae ESC [1 7 4 q
 92 Alt Alt+Num Entry None Return at Alt Break

 93 Base + Lower Left Corner 93 b c < 192 0xc0
 93 Shift 1 One 93 s c < 49 0x31
 93 Ctrl PFK 176 93 c f 0xb0 ESC [1 7 6 q
 93 Alt Alt+Num Entry None Return at Alt Break

 94 Not available on keyboard

 95 Base / Slash 95 b c < 47 0x2f
 95 Shift / Slash 95 s c < 47 0x2f
 95 Ctrl PFK 179 95 c f 0xb3 ESC [1 7 9 q
 95 Alt PFK 180 95 a f 0xb4 ESC [1 8 0 q

 96 Base - Top Intersection 96 b c < 194 0xc2
 96 Shift 8 Eight 96 s c < 56 0x38
 96 Ctrl PFK 182 96 c f 0xb6 ESC [1 8 2 q
 96 Alt Alt+Num Entry None Return at Alt Break

 97 Base + Center Intersection 97 b c < 197 0xc5
 97 Shift 5 Five 97 s c < 53 0x35

AIX Operating System Technical Reference
US 101-Key Keyboard Translate Table

¦ Copyright IBM Corp. 1985, 1991
2.5.13.1 - 8

 97 Ctrl PFK 184 97 c f 0xb8 ESC [1 8 4 q
 97 Alt Alt+Num Entry None Return at Alt Break

 98 Base - Bottom Junction 98 b c < 193 0xc1
 98 Shift 2 Two 98 s c < 50 0x32
 98 Ctrl PFK 186 98 c f 0xba ESC [1 8 6 q
 98 Alt Alt+Num Entry None Return at Alt Break

 99 Base ¦ Vertical Bar 99 b c < 179 0xb3
 99 Shift 0 Zero 99 s c < 48 0x30
 99 Ctrl PFK 178 99 c f 0xb2 ESC [1 7 8 q
 99 Alt Alt+Num Entry None Return at Alt Break

 100 Base * Asterisk 100 b c < 42 0x2a
 100 Shift * Asterisk 100 s c < 42 0x2a
 100 Ctrl PFK 187 100 c f 0xbb ESC [1 8 7 q
 100 Alt PFK 188 100 a f 0xbc ESC [1 8 8 q

 101 Base + Upper Right Corner 101 b c < 191 0xbf
 101 Shift 9 Nine 101 s c < 57 0x39
 101 Ctrl PFK 190 101 c f 0xbe ESC [1 9 0 q
 101 Alt Alt+Num Entry None Return at Alt Break

 102 Base ¦ Right Edge Int. 102 b c < 180 0xb4
 102 Shift 6 Six 102 s c < 54 0x36
 102 Ctrl PFK 192 102 c f 0xc0 ESC [1 9 2 q
 102 Alt Alt+Num Entry None Return at Alt Break

 103 Base + Lower Right Corner 103 b c < 217 0xd9
 103 Shift 3 Three 103 s c < 51 0x33
 103 Ctrl PFK 194 103 c f 0xc2 ESC [1 9 4 q
 103 Alt Alt+Num Entry None Return at Alt Break

 104 Base - Horizontal Line 104 b c < 196 0xc4
 104 Shift . Period 104 s c < 46 0x2e
 104 Ctrl PFK 196 104 c f 0xc4 ESC [1 9 6 q
 104 Alt PFK 197 104 a f 0xc5 ESC [1 9 7 q

 105 Base - Hyphen, Minus Sign 105 b c < 45 0x2d
 105 Shift - Hyphen, Minus Sign 105 s c < 45 0x2d
 105 Ctrl PFK 198 105 c f 0xc6 ESC [1 9 8 q
 105 Alt PFK 199 105 a f 0xc7 ESC [1 9 9 q

 106 Base + Plus Sign 106 b c < 43 0x2b
 106 Shift + Plus Sign 106 s c < 43 0x2b
 106 Ctrl PFK 200 106 c f 0xc8 ESC [2 0 0 q
 106 Alt PFK 201 106 a f 0xc9 ESC [2 0 1 q

 107 Not available on keyboard

 108 Base CR Carriage Return 108 b c < 13 0x0d
 108 Shift CR Carriage Return 108 s c < 13 0x0d
 108 Ctrl CR Carriage Return 108 c c < 13 0x0d
 108 Alt PFK 100 108 a f 0x64 ESC [1 0 0 q

 109 Not available on keyboard

 110 Base ESC Escape 110 b c < 27 0x1b
 110 Shift PFK 120 110 s f 0x78 ESC [1 2 0 q
 110 Ctrl PFK 121 110 c f 0x79 ESC [1 2 1 q

AIX Operating System Technical Reference
US 101-Key Keyboard Translate Table

¦ Copyright IBM Corp. 1985, 1991
2.5.13.1 - 9

 110 Alt PFK 122 110 a f 0x7a ESC [1 2 2 q

 111 Not available on keyboard

 112 Base PFK 1 112 b f 0x01 ESC [0 0 1 q
 112 Shift PFK 13 112 s f 0x0d ESC [0 1 3 q
 112 Ctrl PFK 25 112 c f 0x19 ESC [0 2 5 q
 112 Alt PFK 37 112 a f 0x25 ESC [0 3 7 q

 113 Base PFK 2 113 b f 0x02 ESC [0 0 2 q
 113 Shift PFK 14 113 s f 0x0e ESC [0 1 4 q
 113 Ctrl PFK 26 113 c f 0x1a ESC [0 2 6 q
 113 Alt PFK 38 113 a f 0x26 ESC [0 3 8 q

 114 Base PFK 3 114 b f 0x03 ESC [0 0 3 q
 114 Shift PFK 15 114 s f 0x0f ESC [0 1 5 q
 114 Ctrl PFK 27 114 c f 0x1b ESC [0 2 7 q
 114 Alt PFK 39 114 a f 0x27 ESC [0 3 9 q

 115 Base PFK 4 115 b f 0x04 ESC [0 0 4 q
 115 Shift PFK 16 115 s f 0x10 ESC [0 1 6 q
 115 Ctrl PFK 28 115 c f 0x1c ESC [0 2 8 q
 115 Alt PFK 40 115 a f 0x28 ESC [0 4 0 q

 116 Base PFK 5 116 b f 0x05 ESC [0 0 5 q
 116 Shift PFK 17 116 s f 0x11 ESC [0 1 7 q
 116 Ctrl PFK 29 116 c f 0x1d ESC [0 2 9 q
 116 Alt PFK 41 116 a f 0x29 ESC [0 4 1 q

 117 Base PFK 6 117 b f 0x06 ESC [0 0 6 q
 117 Shift PFK 18 117 s f 0x12 ESC [0 1 8 q
 117 Ctrl PFK 30 117 c f 0x1e ESC [0 3 0 q
 117 Alt PFK 42 117 a f 0x2a ESC [0 4 2 q

 118 Base PFK 7 118 b f 0x07 ESC [0 0 7 q
 118 Shift PFK 19 118 s f 0x13 ESC [0 1 9 q
 118 Ctrl PFK 31 118 c f 0x1f ESC [0 3 1 q
 118 Alt PFK 43 118 a f 0x2b ESC [0 4 3 q

 119 Base PFK 8 119 b f 0x08 ESC [0 0 8 q
 119 Shift PFK 20 119 s f 0x14 ESC [0 2 0 q
 119 Ctrl PFK 32 119 c f 0x20 ESC [0 3 2 q
 119 Alt PFK 44 119 a f 0x2c ESC [0 4 4 q

 120 Base PFK 9 120 b f 0x09 ESC [0 0 9 q
 120 Shift PFK 21 120 s f 0x15 ESC [0 2 1 q
 120 Ctrl PFK 33 120 c f 0x21 ESC [0 3 3 q
 120 Alt PFK 45 120 a f 0x2d ESC [0 4 5 q

 121 Base PFK 10 121 b f 0x0a ESC [0 1 0 q
 121 Shift PFK 22 121 s f 0x16 ESC [0 2 2 q
 121 Ctrl PFK 34 121 c f 0x22 ESC [0 3 4 q
 121 Alt PFK 46 121 a f 0x2e ESC [0 4 6 q

 122 Base PFK 11 122 b f 0x0b ESC [0 1 1 q
 122 Shift PFK 23 122 s f 0x17 ESC [0 2 3 q
 122 Ctrl PFK 35 122 c f 0x23 ESC [0 3 5 q
 122 Alt PFK 47 122 a f 0x2f ESC [0 4 7 q

 123 Base PFK 12 123 b f 0x0c ESC [0 1 2 q

AIX Operating System Technical Reference
US 101-Key Keyboard Translate Table

¦ Copyright IBM Corp. 1985, 1991
2.5.13.1 - 10

 123 Shift PFK 24 123 s f 0x18 ESC [0 2 4 q
 123 Ctrl PFK 36 123 c f 0x24 ESC [0 3 6 q
 123 Alt PFK 48 123 a f 0x30 ESC [0 4 8 q

 124 Base PFK 209 124 b f 0xd1 ESC [2 0 9 q
 124 Shift PFK 210 124 s f 0xd2 ESC [2 1 0 q
 124 Ctrl PFK 211 124 c f 0xd3 ESC [2 1 1 q
 124 Alt PFK 212 124 a f 0xd4 ESC [2 1 2 q

 125 Base PFK 213 125 b f 0xd5 ESC [2 1 3 q
 125 Shift PFK 214 125 s f 0xd6 ESC [2 1 4 q
 125 Ctrl PFK 215 125 c f 0xd7 ESC [2 1 5 q
 125 Alt PFK 216 125 a f 0xd8 ESC [2 1 6 q

 126 Base PFK 217 126 b f 0xd9 ESC [2 1 7 q
 126 Shift PFK 218 126 s f 0xda ESC [2 1 8 q
 126 Ctrl DEL 126 c c < 127 0x7f
 126 Alt DEL 126 a c < 127 0x7f

AIX Operating System Technical Reference
US 101-Key Keyboard Translate Table

¦ Copyright IBM Corp. 1985, 1991
2.5.13.1 - 11

 2.5.13.2 Keystroke Control Sequences for System Functions

 The following keystroke combinations cause the indicated system functions
 to be performed. The notation Padn, where n is a digit, indicates the n
 key on the numeric keypad to the right of the main keyboard area.

 Note: Unless otherwise noted, the functions initiated by a three-key
 Ctrl-Alt-key sequence require the Alt key on the left side of the
 standard PS/2 keyboard. Functions initiated with Alt-key (or
 Shift-key) can be selected with either the left or the right Alt
 key (or Shift key).

 AIX System Functions

 Alt-Pause Sends the interrupt signal, SIGINT, to all AIX processes
 associated with the terminal (or virtual terminal) from
 which this key sequence is entered. This causes most
 processes to terminate, although a process can arrange to
 ignore or take other action on this signal.

 Ctrl-V Sends the quit signal, SIGQUIT, to all AIX processes
 associated with the terminal (or virtual terminal) from
 which this key sequence is entered. This causes most
 processes to terminate and produce a process image file
 in the current directory named core. However, a process
 can arrange to ignore or take other action on this
 signal.

 See "termio" in topic 2.5.28 for additional AIX keystroke control
 sequences.

 Virtual Terminal Functions

 Alt-Action Changes the active display screen to the next virtual
 terminal (if any).

 Shift-Action Changes the active display screen to the previous virtual
 terminal (if any).

 Ctrl-Action Changes the active display screen to the command virtual
 terminal (if defined).

 IPL (System Restart) Functions

 Ctrl-Alt-Pause Performs a software reset and reboot of the system. This
 should only be done as a way to get out of hang
 conditions because the file system is not synced and data
 can be lost.

 System Dump Functions

 Ctrl-Alt-Pad7 Performs a dump of all real memory. The dump is placed
 into the user's dump minidisk which was set up by the
 installation procedure. The system is then restarted as
 if Ctrl-Alt-Pause had been pressed.

 Diagnostic Functions

AIX Operating System Technical Reference
Keystroke Control Sequences for System Functions

¦ Copyright IBM Corp. 1985, 1991
2.5.13.2 - 1

 Ctrl-Alt-Pad4 Invokes the AIX PS/2 kernel debugger.

 Related Information
 In this book: "data stream" in topic 2.4.3, "display symbols" in
 topic 2.4.4, "hft" in topic 2.5.11, "Set Keyboard Map (HFSKBD)" in
 topic 2.5.11.8.5, "termio" in topic 2.5.28, and the kernel debugger in
 Appendix C, "Writing Device Drivers" in topic C.0.

 AIX PS/2 Keyboard Description and Character Reference.

 "Using the Dump Facilities" in AIX Programming Tools and Interfaces.

 The crash command to examine system images in AIX Operating System
 Commands Manual.

AIX Operating System Technical Reference
Keystroke Control Sequences for System Functions

¦ Copyright IBM Corp. 1985, 1991
2.5.13.2 - 2

 2.5.14 lp

 Purpose
 Supports the line printer device driver.

 Synopsis
 #include <sys/lprio.h>

 Description
 The lp driver provides an interface to the port used by a printer. The
 driver is unique to AIX PS/2. If a port for a printer is not installed,
 an attempt to open fails. The close system call waits until all output
 completes before returning to the user. The lp driver allows only one
 process to write to a printer port at a time. If the printer port is
 busy, the open system call returns an error. However, the driver allows
 multiple open system calls to occur if they are read-only. Thus, the splp
 command can be run when the printer port is currently in use.

 The lp driver interprets carriage returns, backspaces, line feeds, tabs,
 and form feeds depending on the modes that are set in the driver (via
 splp). The number of lines per page, columns per line, and the indent at
 the beginning of each line can also be selected. The defaults are set at
 66 lines per page, and 80 columns per line with no indenting.

 Subtopics
 2.5.14.1 ioctl Operations

AIX Operating System Technical Reference
lp

¦ Copyright IBM Corp. 1985, 1991
2.5.14 - 1

 2.5.14.1 ioctl Operations

 Syntax for the enhanced control function is:

 #include <sys/lprio.h>
 ioctl (fildes,command,arg)
 int fildes; /* file descriptor */
 int command; /* command type */
 struct LPRUDE *arg; /* pointer to info structure */

 The possible command types and their descriptions are:

 IOCINFO Returns a structure defined in sys/devinfo.h, which describes the
 device.

 IOCTYPE Returns device LPR (line printer) defined in sys/devinfo.h.

 LPRGET Gets page length, width, and indent. This structure is defined
 in sys/lprio.h.

 LPRGETA Gets the RS232 parameters. These are the values for baud rate,
 character size, stop bits, and parity. Refer to the LPR232
 structure and to the termio.h structure.

 LPRGETV Gets optional line printer modes. See the following LPRMODE
 structure.

 LPRGMOD Gets the AIX optional printer modes. These optional printer
 modes support the synchronous versus asynchronous write
 interface, as well as the report all errors versus wait until
 error correction error reporting mode. Refer to the following
 OPRMODE structure.

 The FONTINIT flag is initially off. It is turned on by an
 application when a printer font has been initialized. It is
 turned off when an application wants fonts to be reinitialized
 and by the lp device driver when a FATAL printer error occurs.

 LPRSET Sets page length, width, and indent values. This structure is
 defined in sys/lprio.h.

 LPRSETA Sets the RS232 parameters. These are the values for baud rate,
 character size, stop bits, and parity. Refer to the LPR232
 structure that follows and to the termio.h structure.

 LPRSETV Sets optional line printer modes. See the following LPRMODE
 structure.

 LPRSMOD Sets the AIX optional printer modes. These optional printer
 modes support the synchronous versus asynchronous write
 interface, as well as the report all errors versus wait until
 error correction reporting mode. Refer to the following OPRMODE
 structure.

 The FONTINIT flag is initially off. It is turned on by an
 application when a printer font has been initialized. It is
 turned off when an application wants fonts to be reinitialized
 and by the lp device driver when a FATAL printer error occurs.

 LPRUFLS Flushes any data currently in progress and causes the printer to

AIX Operating System Technical Reference
ioctl Operations

¦ Copyright IBM Corp. 1985, 1991
2.5.14.1 - 1

 be initialized. This can be used during the course of normal
 print operations, or following an error indication.

 LPRUGES Gets the device driver error structure (LPRUDE). The arg
 parameter must be specified to point to the structure.

 LPRURES Resumes printing from the point of interruption following an
 error. If an error did not occur, then this control has no
 effect.

 LPRGTOV Gets the current timeout value and stores it in the lptimer
 structure pointed to by the arg parameter. The timeout value is
 measured in seconds.

 LPRSTOV Sets the timeout value. The arg parameter points to a lptimer
 structure. The timeout value must be given in seconds.

 Most of these ioctl operations require the arg parameter to point to one
 of the following structures:

 struct devinfo
 { char devtype; /* devtype for printer is '1' */
 char flags;
 };

 /* used with LPRGET, LPRSET */
 struct lprio {
 int ind; /* indent value */
 int col; /* maximum character count */
 int line; /* maximum line count */
 };

 /* used with LPRGETV, LPRSETV */
 struct lprmode {
 int modes; /* optional line printer modes */
 };
 /* bit definitions for the modes field in LPRMODE */
 #define PLOT 01 /* if on, no interpretation of any character */
 #define NOFF 0400 /* if on, simulate the form-feed function */
 #define NONL 01000 /* if on, substitute carriage returns for */
 /* any line-feeds */

 #define NOTB 02000 /* if on, don't expand tabs, else simulate */
 /* 8 position tabs with spaces */
 #define NOBS 04000 /* if on, no backspaces to the printer */
 #define NOCR 010000 /* if on, substitute line-feeds for any */
 /* carriage returns */
 #define CAPS 020000 /* if on, map lower-case alphabetics */
 /* to upper case */
 #define WRAP 040000 /* if on, print characters beyond the page */
 /* width on the next line, instead of */
 /* truncating */

 struct oprmode {
 int flags; /* optional line printer modes */
 };
 #define LPRSYNC 01 /* asynchronous is default. */
 /* synchronous if on */
 #define LPRALLERR 02 /* wait until error correction is default.*/

AIX Operating System Technical Reference
ioctl Operations

¦ Copyright IBM Corp. 1985, 1991
2.5.14.1 - 2

 /* report all errors if on */
 #define LPRFONTINIT 04 /* file initialization */
 struct LPRUDE /* device error-reporting structure */
 {
 int status; /* error reason code */
 int cresult; /* current operation result */
 int tadapt; /* adapter type */
 int npio; /* number of pending IO operations */
 };

 /* status values - error reason codes */

 struct lpr232 /* settings for RS232 */
 {
 unsigned c_cflag; /* error reason code */
 };

 /* used with LPRGTOV and LPRSTOV */
 struct lptimer
 {
 unsigned v_timeout; /* timeout value in seconds */
 }

 File
 /dev/lp*

 Related Information
 In this book: "ioctlx, ioctl, gtty, stty" in topic 1.2.137, "devinfo" in
 topic 2.3.15, and "asy" in topic 2.5.2.

 The splp command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
ioctl Operations

¦ Copyright IBM Corp. 1985, 1991
2.5.14.1 - 3

 2.5.15 lp

 Purpose
 Supports the IBM virtual line printer driver

 Synopsis

 #include<sys/devinfo.h>
 #include<sys/b370/lpdev.h>

 Description
 This command is unique to AIX System/370.

 The AIX/370 printer is based on the underlying VM spooled printer.
 Therefore, the driver is for the virtual 1403 or equivalent printer.

 The special files used to write from the card punch is of the form
 /dev/lp#, where # is the device unit number.

 The card printer can only be opened for writing. The record size of each
 card is determined by the buffer size specified to the write system call.
 When the device is closed, a corresponding close is issued to the VM punch
 device.

 A few IOCTL operations are available besides the standard. IOCTYPE and
 IOCINFO commands. They are of the form

 ioctl(fd, cmd, arg)
 char *arg:

 The commands are:

 #define PRTsettag 1 /* set tag text */
 #define PRTpurge 2 /* purge any previous records */
 #define PRTto 3 /* set "TO userid" option */
 #define PRTclass 4 /* set spool file class */
 #define PRTcopy 5 /* set number of copies */
 #define PRTform 6 /* set form identifier */
 #define PRTdist 7 /* set distcode */
 #define PRTfname 8 /* set file name text */
 #define PRTxlate 9 /* load translate table */

 Error Conditions
 In addition to the errors listed in the ioctl, open, and write manual
 pages, system calls to this device can fail in the following
 circumstances:

 ENXIO Attempt to read from the printer.

 EIO The I/O to the printer failed during the operation.

 Related Information
 In this book, "ioctlx, ioctl, gtty, stty" in topic 1.2.137, "open, openx,
 creat" in topic 1.2.199, and "write, writex" in topic 1.2.330.

AIX Operating System Technical Reference
lp

¦ Copyright IBM Corp. 1985, 1991
2.5.15 - 1

 2.5.16 mem, kmem

 Purpose
 Provides memory and kernel memory images.

 Description
 The mem and kmem files are pseudo-device driver files. They are found in
 all AIX systems. These device drivers provide access to system memory.
 These files can be used, for example, to examine or to patch the system.

 The mem file is a special file that provides an image of the system's real
 (that is, physical) memory. Locating particular items in real memory
 requires locating page tables that map virtual addresses into real
 addresses.

 The file kmem is similar to mem, except it provides an image of the
 kernel's and the calling program's virtual memory. The seek address is
 usually a kernel virtual address.

 An invalid address used with mem or kmem causes an error to be returned.

 Files

 /dev/mem
 /dev/kmem

AIX Operating System Technical Reference
mem, kmem

¦ Copyright IBM Corp. 1985, 1991
2.5.16 - 1

 2.5.17 mt

 Purpose
 Supports the IBM System/370 tape storage device driver.

 # include <sys/devinfo.h>
 # include <sys/b370/mt370.h>
 # include <sys/b370/3480.h>

 Description
 Magnetic tapes are used primarily for backups, file archives, and other
 off-line storage. System/370 tapes are accessed though the raw interface
 only.

 The particular magnetic tape interface used depends on the desired
 operating characteristics. The general form of the device name is
 /dev/rmt#xy, where:

 # is the device unit number

 x indicates rewind (r), no-rewind (n), or rewind-unload (u) after the
 last close of the device. (f) indicates FORWARD-SPACE-FILE on
 open/rewind of the device.

 y indicates the tape density, high (h) or medium (m).

 Hence, /dev/rmt0rh and /dev/rmt0rm refer to the same drive, but differ in
 the density written. The mt special file is unique to AIX/370.

 When opened for reading or writing, the tape is assumed to be positioned
 as desired. When the tape opens and writes to a tape file, a single tape
 mark is written if the file is no rewind on close, while a double tape
 mark is written if the tape is to be rewound. If the file is no rewind
 and opened read only, the tape is positioned after the end of file (EOF)
 following the data just read. Once opened, reading is restricted to
 between the position when opened and the next EOF. By specifically
 choosing rmt files, it is possible to read and write multiple-file tapes.

 Each read or write call reads or writes the next record on the tape. The
 record written by write is the same length as the buffer given. During a
 read, record size is returned as the number of bytes read, up to the
 buffer size specified. Seeks are ignored. An EOF is returned as a
 zero-length read, with the tape positioned before the EOF.

 A number of IOCTL operations are available. In addition to IOCTYPE and
 IOCINFO, the following calls are defined:

 The STIOCTOP command issues a tape command to the appropriate device a
 specific number of times. The communication uses the stop structure:

 struct stop {
 short st_op; /* tape operation */
 daddr_t st_count; /* times to perform */
 };

 The st_op operation is performed st_count times, except for commands where
 it is not logical to do so (rewind, for example).

 The operations available are:

AIX Operating System Technical Reference
mt

¦ Copyright IBM Corp. 1985, 1991
2.5.17 - 1

 #define STWEOF 0 /* write an end-of-file record */
 #define STFSF 1 /* forward space file */
 #define STBSF 2 /* backward space file */
 #define STFSB 3 /* Forward space block */
 #define STBSB 4 /* Back space block */
 #define STREW 5 /* Rewind */
 #define STOFFL 6 /* Rewind and unload */
 #define STNOP 7 /* NOP */

 The status of a tape drive can be determined by issuing the MTIOCGET type
 ioctl system call.

 /* structure for MTIOCGET - mag tape get status command */

 struct mtget {
 short mt_type; /* type of magtape device */
 short mt_dsreg; /* "drive status" register */
 short mt_erreg; /* "error" register */
 u_short mt_resid; /* residual count */
 daddr_t mt_fileno; /* file num current position */
 daddr_t mt_blkno; /* block number current position */
 };

 /*
 * Constants for mt_type byte
 */
 #define MT_ISTS 01
 #define MT_ISHT 02

 The MTIOCLD command issues a tape "Load Display" command (for use by IBM
 3480 tape drives). The structure passed to the MTIOCLD command is:

 struct ldcmd
 {
 char ld_func; /* Function code */
 char ld_msg1[LDMAXMSGLN]; /* Message 1 */
 char ld_msg2[LDMAXMSGLN]; /* Message 2 */
 };

 The message fields contain ASCII characters to be displayed as directed by
 the function code. Possible function codes are:

 LDMOTION (Default) Maintain the message in message fields 1 and 2
 until the tape drive is in motion, or the message is updated.

 LDREMOVE Maintain the message in message field 1 until the tape
 cartridge is physically removed from the tape drive, or until
 the next unload/load cycle.

 LDLOAD Maintain the message in message field 1 until the drive is
 next loaded.

 LDNOOP Physically access a drive without changing the message
 display. This option can be used to test whether a control
 unit can physically communicate with a drive.

 LDALL Display the message in message field 1 until a tape cartridge
 is physically removed from the tape drive or until the drive
 is next loaded. Display the message in message field 2 until
 the drive is next loaded.

AIX Operating System Technical Reference
mt

¦ Copyright IBM Corp. 1985, 1991
2.5.17 - 2

 LDSINGLE (Default) Only one of the two messages is displayed. The
 one which is displayed is determined by the LDHIGH and LDLOW
 flags.

 LDDOUBLE Both messages are displayed, alternating them on the message
 display.

 LDBLINK The single message blinks.

 LDNOBLINK (Default) The single message does not blink.

 LDLOW (Default) The message in only message field 1 is displayed.

 LDHIGH The message in only message field 2 is displayed (8, 9, 10,
 and 11 are used with LDSINGLE).

 LDAUTOLD An automatic load request is passed from the system to the
 automatic load controller.

 LDNOAUTOLD (Default) No automatic load request is passed.

 If an STIOCLD ioctl is to be issued and there is no tape ready in the
 drive, use the O_NDELAY flag in the OPEN call. This will cause the device
 driver to bypass checking for drive ready, and allow only IOCTLs through
 the file descriptor.

 Error Conditions
 In addition to the errors listed in the "ioctlx, ioctl, gtty, stty" in
 topic 1.2.137, "open, openx, creat" in topic 1.2.199, "read, readv, readx"
 in topic 1.2.224, and "write, writex" in topic 1.2.330, system calls to
 this device can fail in the following circumstances:

 ENXIO The tape device is not configured.

 ENXIO The tape is not attached to the virtual machine.

 ENXIO The tape is not loaded.

 ENXIO The tape is write-protected when trying to write.

 EINVAL The count is more than the architecture imposed maximum, or a
 read or write on a device open with O_NDELAY was attempted.

 EIO The I/O to the tape failed during the operation.

 Related Information
 In this book: "ioctlx, ioctl, gtty, stty" in topic 1.2.137, "open, openx,
 creat" in topic 1.2.199, "read, readv, readx" in topic 1.2.224, "write,
 writex" in topic 1.2.330, and "tape" in topic 2.5.27.

 See "Hardware Requirements" in AIX/370 Planning Guide.

AIX Operating System Technical Reference
mt

¦ Copyright IBM Corp. 1985, 1991
2.5.17 - 3

 2.5.18 nvram

 Purpose
 Provides non-volatile memory image.

 Description

 The nvram file is used to access the system non-volatile memory. It is
 unique to AIX PS/2. The non-volatile memory consists of two sections: 64
 bytes of real-time clock, configuration and system status information and
 a 2K non-volatile extension. Part of the extension area is used to log
 errors when the system cannot make a permanent copy of errors on the disk.
 Information written to this device is retained after power is removed from
 the system.

 The nvram file is not writable by user processes. The 2K extension is
 accessed via a readx system call with a nonzero extension parameter.

 An invalid virtual address used with nvram causes an error to be returned.

 File

 /dev/nvram

AIX Operating System Technical Reference
nvram

¦ Copyright IBM Corp. 1985, 1991
2.5.18 - 1

 2.5.19 null

 Purpose
 Provides a null device.

 Description
 The null file is a pseudo-device driver file with no associated hardware.
 It is found in all AIX systems. Data written to this file is discarded.
 Reads from this file always return 0 bytes. Use this file to read or
 write null data as required.

 File
 /dev/null

AIX Operating System Technical Reference
null

¦ Copyright IBM Corp. 1985, 1991
2.5.19 - 1

 2.5.20 osm

 Purpose
 Provides the interface to AIX messages.

 Description
 The osm driver collects system messages provided by the AIX kernel and
 application programs. It is found in all AIX systems. These system
 messages are available to a daemon reading this file. System messages
 have two sources:

 � The AIX kernel provides messages by calls to the kernel printf
 routine.

 � Application programs open and write to this file

 Operating system messages are stored in a circular buffer in the system
 and can be read or written using the osm* special files. A read from osm*
 files returns some portion of the data in the circular buffer. A write to
 the files adds user data to the current end of the circular buffer. Any
 number of users may use osm* files in the same instance of time.

 Read operations from the osm file start at the current end of the circular
 buffer and wait for new data to be added. Read operations from the file
 /dev/osm.curr start at the beginning of the circular buffer and return 0
 bytes when the current end of the buffer is reached. Read operations from
 the /dev/osm.all file start at the beginning of the circular buffer, go to
 the current end of the circular buffer, and wait for new data to be added.

 File
 /dev/osm*

 Related Information
 In this book: "rasconf" in topic 2.3.50.

AIX Operating System Technical Reference
osm

¦ Copyright IBM Corp. 1985, 1991
2.5.20 - 1

 2.5.21 pty

 Purpose
 Implements a pseudo-terminal device.

 Synopsis

 #include <sys/devinfo.h>
 #include <sys/pty.h>
 #include <sys/tty.h>

 Description
 A pty device is a pair of bi-directional character device drivers that
 implement a pseudo-terminal. It is found in all AIX systems. A
 pseudo-terminal can act as a keyboard and a display to existing software
 that uses the standard terminal device interface described in "termio" in
 topic 2.5.28. This is useful for a variety of applications such as a
 remote login facility or a windowing system.

 Each pseudo-terminal (or pty) consists of two device drivers called a
 controller and a server (master and slave). The server or server side of
 a pty has a standard terminal interface that can support a login shell or
 other software that normally communicates with terminals. The controller
 or controller side of a pty interfaces with software that generates and
 receives data as if it were a user at a terminal. Data written to the
 controller is passed directly to the server, which is then read and
 processed as if entered from a keyboard. Data written to the server (as
 if to be displayed on a terminal screen) is passed directly to the
 controller.

 The corresponding special files are named /dev/ptyxy for the controller
 and /dev/ttyxy for the server, where x is taken from the set p-z,A-Z and y
 is taken from the set 0-9,a-f. A 1-to-1 correspondence exists between
 each controller-server pair with names that end in the same two
 characters. For example, /dev/ptyp0 and /dev/ttyp0 together form a pty.

 The ptyunits keyword can be set in the sysparms stanza in /etc/system to
 change the number of ptys in the system from the default (defined by the
 ptyunits stanza in /etc/master).

 Use the devices command to add a pty to the system. For applications that
 require a login shell on the server side of the pty, configure the pty so
 the init program creates a login shell. For IBM remote applications such
 as Telnet, do not configure the pty to start a login shell. To determine
 whether a particular application requires a login shell on the server
 side, see the appropriate application documentation.

 When using a pty for applications other than remote login, a program must
 take into account the fact that a logger process may have already issued
 an open to the server side of the pty. When a logger opens the server
 side, the open system call suspends the process to wait for another
 process to open the controller side. Use the following strategy to detect
 this situation:

 1. Open /dev/ptyxy.

 2. Issue an ioctl system call to perform the PTYSTATUS operation.

 3. If the status indicates that the server side has already been opened,
 then close the pty controller and try a /dev/ptyxy device with a

AIX Operating System Technical Reference
pty

¦ Copyright IBM Corp. 1985, 1991
2.5.21 - 1

 different value for xy.

 4. If the status indicates that the server side has not been opened, then
 open the corresponding /dev/ttyxy device.

 Note: The server side of a pty can be opened multiple times, but the
 controller can be opened only once. Attempting to open the
 controller side more than once causes an error.

 Subtopics
 2.5.21.1 select Support
 2.5.21.2 ioctl Operations

AIX Operating System Technical Reference
pty

¦ Copyright IBM Corp. 1985, 1991
2.5.21 - 2

 2.5.21.1 select Support

 The pty device driver supports the select system call in the following
 manner:

 � Read selects are satisfied when input data is available

 � Write selects are satisfied when data can be accepted

 � Exception selects are never satisfied, or hang indefinitely if n
 timeout value is specified.

 See "select" in topic 1.2.242 for more information about this system call.

AIX Operating System Technical Reference
select Support

¦ Copyright IBM Corp. 1985, 1991
2.5.21.1 - 1

 2.5.21.2 ioctl Operations

 The interface to the server side of the pty device is identical to the
 standard interface for terminals, which is described in "termio" in
 topic 2.5.28.

 The controller side of the pty device driver supports the following ioctl
 operations. (See "ioctlx, ioctl, gtty, stty" in topic 1.2.137 for
 detailed information about the ioctl system call.)

 IOCTYPE Returns the device type DD_PSEU to indicate that this is a
 pseudo-terminal device. This operation ignores the arg
 parameter.

 IOCINFO Copies the devinfo structure for the device into the buffer
 pointed to by the arg parameter passed to ioctl. See
 "devinfo" in topic 2.3.15 for details about this structure.

 PTYSTATUS Returns the state of the pty, which is composed of two
 halfwords. The upper half contains the number of opens
 currently outstanding against the controller, and the lower
 half contains the number of opens currently outstanding
 against the server. This operation ignores the arg
 parameter.

 PTYIOR Reports the number of characters available to be read. The
 arg parameter is a pointer to an integer, into which this
 value is stored.

 PTYIOW Reports the number of eight bit bytes on the raw and
 canonical queues. The arg parameter is a pointer to an
 integer, into which this value is stored.

 PTYGETM Gets the current mode of the pty. The arg parameter is a
 pointer to an integer, into which the mode is stored. See
 the description PTYSETM for an explanation of the possible
 mode values.

 PTYSETM Sets the current mode of the pty. The arg parameter is a
 pointer to an integer that contains the mode to be set. The
 mode is zero or more of the following values logically ORed
 together:

 RAWQINT Sends the SIGIO signal to the process when enough
 buffer space is available for writing to the pty.
 OUTQINT Sends the SIGIO signal to the process when data is
 available to be read.
 REMOTE Controls the flow of input to the pty, but does not
 edit the input. In other words, START and STOP
 (Ctrl-S and Ctrl-Q) controls are processed, but no
 editing is done on the data stream (such as ERASE,
 KILL, or ICRNL).

 PTYADDM Adds to the current pty mode by logically ORing the specified
 value with the existing mode. The arg parameter is a pointer
 to an integer that contains the mode bits to be set. See the
 description PTYSETM for an explanation of the possible mode
 values.

 PTYDELM Deletes from the current pty mode. The arg parameter is a

AIX Operating System Technical Reference
ioctl Operations

¦ Copyright IBM Corp. 1985, 1991
2.5.21.2 - 1

 pointer to an integer. The bits that are set in this integer
 specify the mode bits to be turned off. See the description
 PTYSETM for an explanation of the possible mode values.

 TIOCREMOTE A mode for the controller half of a pseudo-terminal,
 independent of TIOCPKT. This mode causes input to the
 pseudo-terminal to be flow-controlled and not input edited
 (regardless of the terminal mode). Each write to the control
 terminal produces a record boundary for the process reading
 the terminal. In normal usage, a write of data is like the
 data typed as a line on the terminal. A write of 0 bytes is
 like typing an end-of-file character. TIOCREMOTE can be used
 when doing remote line editing in a window manager, or
 whenever flow-controlled input is required.

 TIOCPKT Enables or disables packet mode. The arg parameter is a
 pointer to an integer that contains the packet mode to be
 enabled or disabled. The mode is zero or more of the
 following values logically ORed together:

 TIOCPKT_STOP
 Indicates output to the terminal is stopped with
 STOP (Ctrl-S) control.
 TIOCPKT_START
 Indicates output to the terminal has restarted.
 TIOCPKT_DOSTOP
 Indicates packet mode is stopped when START and STOP
 (Ctrl-S and Ctrl-Q) controls are processed.
 TIOCPKT_NOSTOP
 Indicates packet mode is stopped if the START and
 STOP controls are not Ctrl-S and Ctrl-Q.

 TIOCUCNTL Enable/disable a mode that allows a small number of simple
 user ioctl commands to be passed through the pseudo-terminal,
 using a protocol similar to that of TIOCPKT. The TIOCUCNTL
 and TIOCPKT modes are mutually exclusive. This mode is
 enabled from the controller side of a pseudo-terminal by
 specifying (by reference) a nonzero parameter and disabled by
 specifying (by reference) a zero parameter. Each subsequent
 read from the controller side returns data written on the
 server part of the pseudo-terminal preceded by a zero byte,
 or a single byte reflecting a user control operation on the
 server side. A user control command consists of a special
 ioctl operation with no data. The command is given as
 UIOCCMD(n), where n is a number in the range of 1-255. The
 operation value n will be received as a single byte on the
 next read from the controller side. The ioctl UIOCCMD(0) is
 a no-op that may be used to probe for the existence of this
 facility. As with TIOCPKT mode, command operations may be
 detected with a select for exceptional conditions.

 Error Conditions
 System calls to a pty device fail and set errno to indicate the error if
 one or more of the following are true:

 EINVAL An invalid parameter was encountered, such as a negative number
 of bytes to be written.

 ENXIO The pty cannot be opened because the pty number is out of range.

AIX Operating System Technical Reference
ioctl Operations

¦ Copyright IBM Corp. 1985, 1991
2.5.21.2 - 2

 EIO A read, write, or ioctl operation was attempted that requires
 both sides of the pty to be open, making a complete connection.

 EACCES An attempt was made to open the controller side of a pty more
 than once.

 Files

 Controller Devices /dev/ptyp0, /dev/ptyp1,..., /dev/ptypf, /dev/ptyq1,...,
 /dev/ptyzf, /dev/ptyA0,..., /dev/ptyZf

 Server Devices /dev/ttyp0, /dev/ttyp1,..., /dev/ttypf, /dev/ttyq1,...,
 /dev/ttyzf, /dev/ttyA0,..., /dev/ttyZf

 Related Information
 In this book: "ioctlx, ioctl, gtty, stty" in topic 1.2.137, "open, openx,
 creat" in topic 1.2.199, "master" in topic 2.3.32, "ports" in
 topic 2.3.46, "system" in topic 2.3.56, and "fcntl.h" in topic 2.4.8.

 The tn and telnetd commands in AIX TCP/IP User's Guide.

 The devices and init commands in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
ioctl Operations

¦ Copyright IBM Corp. 1985, 1991
2.5.21.2 - 3

 2.5.22 punch

 Purpose
 Supports the IBM virtual card punch driver.

 Synopsis

 # include <sys/devinfo.h>
 # include <sys/b370/crp.h>

 Description
 While punch cards are obsolete in a UNIX environment, some VM software
 provides extensive file transfer and communication facilities using the
 concept of "virtual cards". To interface to this mechanism, AIX/370
 provides a driver for a virtual card punch device.

 The special files used to write from the card punch are of the form
 /dev/pun#, where # is the device unit number. They are unique to AIX/370.

 The card punch can only be opened for writing. The record size of each
 card is determined by the buffer size specified to the write system call.
 When the device is closed, a corresponding close is issued to the VM punch
 device.

 A few IOCTL operations are available besides the standard IOCTYPE and
 IOCINFO commands. They are of the form:

 ioctl(fd, cmd, arg)
 char *arg;

 The commands are:

 #define SPsettag 1 /* set tag text */
 #define SPpurge 2 /* purge any previous records */
 #define SPto 3 /* set "TO userid" option */
 #define SPclass 4 /* set spool file class */
 #define SPcopy 5 /* set number of copies */
 #define SPform 6 /* set form identifier */
 #define SPdist 7 /* set distcode */
 #define SPfname 8 /* set file name text */

 Error Conditions
 In addition to the errors listed in "ioctlx, ioctl, gtty, stty" in
 topic 1.2.137, "open, openx, creat" in topic 1.2.199, and "write, writex"
 in topic 1.2.330, system calls to this device can fail in the following
 circumstances:

 ENXIO Attempt to read from the punch.

 ENXIO The punch is not currently closed.

 EIO The I/O to the punch failed during the operation.

 Related Information
 In this book: "ioctlx, ioctl, gtty, stty" in topic 1.2.137, "open, openx,
 creat" in topic 1.2.199, and "write, writex" in topic 1.2.330.

AIX Operating System Technical Reference
punch

¦ Copyright IBM Corp. 1985, 1991
2.5.22 - 1

 2.5.23 reader

 Purpose
 Supports the IBM virtual card reader driver.

 Synopsis

 # include <sys/devinfo.h>
 # include <sys/b370/crp.h>

 Description
 While punch cards are obsolete in a UNIX environment, some VM software
 provides extensive file transfer and communication facilities using the
 concept of "virtual cards". To interface to this mechanism, AIX/370
 provides a driver for a virtual card reader device.

 The special files used to read from the card reader are of the form
 /dev/rdr#, where # is the device unit number. They are unique to AIX/370.

 The card reader can only be opened for reading. When read, the virtual
 deck in the reader is read, one record per read, up to the maximum size of
 the buffer specified. If the device is closed before all of the cards
 have been read, the remaining cards are flushed.

 No IOCTL operations are available besides the standard IOCTYPE and IOCINFO
 commands.

 Error Conditions
 In addition to the errors listed in "ioctlx, ioctl, gtty, stty" in
 topic 1.2.137, "open, openx, creat" in topic 1.2.199, and "read, readv,
 readx" in topic 1.2.224, system calls to this device can fail in the
 following circumstances:

 ENXIO Attempt to write to the reader.

 ENXIO The reader is not currently closed.

 EIO The I/O from the reader failed during the operation.

 Related Information
 In this book: "ioctlx, ioctl, gtty, stty" in topic 1.2.137, "open, openx,
 creat" in topic 1.2.199, and "read, readv, readx" in topic 1.2.224.

AIX Operating System Technical Reference
reader

¦ Copyright IBM Corp. 1985, 1991
2.5.23 - 1

 2.5.24 RIC

 Purpose
 Supports the Realtime Interface Co-processor (RIC) Multiport 2.

 Description
 The /dev/ric are special files that provide an image of RIC memory. Ric0
 refers to the first RIC card, ric1 to the second, ric2 to the third, and
 ric3 to the fourth RIC card.

 Byte address in /dev/ric refer to locations in memory on the appropriate
 RIC card. References to non-existent locations cause errors to be
 returned.

 In addition to memory image, /dev/ric has several ioctl commands which are
 defined in sys/1386/ric.h.

 ICACMD Issues a command to a task on the RIC. The argument of
 this ioctl is a pointer to a riccmd structure. This ioctl
 will not return until the RIC task has returned an
 interrupt. The content of the input buffer is copied into
 the arg element of the riccmd structure when the interrupt
 is received from the RIC task. A command 3 is sent to the
 RIC task 0 after copying the input buffer. This ioctl is
 primarily intended for sending commands to RCM.

 ICARESET Issues a hardware reset to the RIC card. This command may
 take up to 30 seconds to complete, as the RIC card will run
 its diagnostic tests. This command also initializes the
 RCM's maximum number of tasks, priorities, queues, and
 timeouts.

 ICACMDNOWAIT Performs the same function as ICACMS, but does not wait for
 an interrupt from the RIC task, does not copy the input
 buffer, and does not send a command 3 to the RIC task upon
 completion.

 ANOUNCETASK Identifies a task so that other device drivers that depend
 on the RIC tasks can find the appropriate task on the RIC
 card.

 ICA_STAT1 Retrieves the primary status byte of a specified task on an
 ARTIC card. This value is returned in the user provided
 argument (the first byte of the arg field of the riccmd
 structure; see the header file ric.h)

 ICA_STAT2 Retrieves secondary status bytes (the length of the buffer
 is task dependent) of a specified task on an ARTIC card.
 It is issued in the main module of the application process.
 Data is returned via the arg field of the riccmd structure.

 ICA_ASYNC Allows an application process (caller) to handle
 asynchronous interrupts from a particular task on an ARTIC
 card. It is issued by the main module of the application
 process.

 ICA_NOASYNC Undoes the effect of ICA_ASYNC.

 ICA_CHKSIG Allows an application process to find out which task on an
 ARTIC card has caused an asynchronous interrupt. This

AIX Operating System Technical Reference
RIC

¦ Copyright IBM Corp. 1985, 1991
2.5.24 - 1

 command is normally issued by the signal handler of the
 application process.

 ICA_QURIC Reports the number of ARTIC cards installed on a machine.
 Returned values include slot number, card number, and card
 type respectively (see the header file ric.h), via the arg
 field of the riccmd structure.

 Note: If a card is bad, its type will be UNKNOWNCARD.

 Subtopics
 2.5.24.1 Supporting Commands
 2.5.24.2 The ARTIC Card Memory Dump
 2.5.24.3 The New ioctl System Calls
 2.5.24.4 Special Considerations
 2.5.24.5 Dealing With Interrupts (ARTIC card --> Application Program)
 2.5.24.6 Synchronous Interrupts
 2.5.24.7 Asynchronous Interrupts
 2.5.24.8 Processing the Interrupts
 2.5.24.9 Special Considerations

AIX Operating System Technical Reference
RIC

¦ Copyright IBM Corp. 1985, 1991
2.5.24 - 2

 2.5.24.1 Supporting Commands

 There are two commands which enable users to reset an ARTIC card and then
 download tasks onto it.

 To reset a card, enter at the command line:

 icareset <icareset <card_number>

 where card_number is some integer n which is 0 for the ARTIC card in the
 lowest slot number, 1 for the ARTIC card in the slot next to the lowest
 one, etc.

 To load a task on an ARTIC card, enter at the command line:

 icaload [-v] <card_number> <task_name> <task_number> [load_option]

 where task_name is the file name of a task and task_number is an integer
 between 1 and MAXTASK inclusively (the default value for MAXTASK is 16;
 though, it can be changed in /etc/system). To load a task only, enter 1
 for the load_option; by default, the loaded task is started once it is
 loaded.

AIX Operating System Technical Reference
Supporting Commands

¦ Copyright IBM Corp. 1985, 1991
2.5.24.1 - 1

 2.5.24.2 The ARTIC Card Memory Dump

 To dump the memory content of an ARTIC card, use the dd command, using as
 the input file name dev/ric0, /dev/ric1, etc. The recommended way of
 viewing the content of the output file is with the od command, as
 illustrated by the example below:

 dd of=/dev/ric0 of=/tmp/ric0.out
 od -x /tmp/ric0.out | pg

 Alternatively, you can open one of these files with a C program and read
 the memory content of the card, and then use the printf subroutine to
 format the output in octal or hexadecimal.

AIX Operating System Technical Reference
The ARTIC Card Memory Dump

¦ Copyright IBM Corp. 1985, 1991
2.5.24.2 - 1

 2.5.24.3 The New ioctl System Calls

 The syntax for the new ioctl calls is:

 ioctl(fd,op,&info)

 Before an ioctl call, the following declarations and instructions are
 written:

 int fd;
 struct riccmd {
 unsigned char task;
 unsigned char cmd; /* this structure is actually
 unsigned short arglen; defined in ric.h */
 unsigned char arg|30|;
 } ;
 struct riccmd info;

 fd = open("/dev/ric00,...);

 /* Here the riccmd structure is filled
 with the needed information before
 the ioctl call is issued */

 The ioctl call is issued with the correct file descriptor, the correct
 ioctl call, and all the information needed through the riccmd structure.
 This file descriptor is used by the driver to get the board number. All
 the following ioctl calls are issued to tasks running on the board
 corresponding to the file descriptor created with the open call.

 The return value of the call is -1 if an error occurs, and 0 if the call
 is successful. If the call requests information to be returned from the
 driver, this information is stored in the arg array of the riccmd
 structure used in the call.

 The new ioctl operations are:

 ICA_STAT1 This ioctl operation enables a process to read the primary
 status byte of a task. The user passes the task number in
 info.task and the primary status of that task is returned in
 the first byte of info.arg at the end of the ioctl call.

 ICA_STAT2 This ioctl operation enables a process to read the secondary
 status buffer of a task. The user passes the task number in
 info.task and the length of the arg field in info.arglen (the
 ARTIC driver uses this value to determine how many bytes to
 return without overflowing arg field). The secondary status
 bytes are returned in info.arg at the end of the system call.
 Application processes should check info.arglen to determine
 the number of bytes of data being returned.

 ICA_ASYNC This ioctl operation is issued with the task number in
 info.task. This call informs the driver of the following:

 � The application program wants to be signaled when
 asynchronous interrupts come from the task and card
 specified. The user does not need to provide the card
 number because the ARTIC driver acquires the information
 through the file descriptor.

AIX Operating System Technical Reference
The New ioctl System Calls

¦ Copyright IBM Corp. 1985, 1991
2.5.24.3 - 1

 � The process issuing the ioctl call handles the signals
 sent by the driver when receiving asynchronous
 interrupt(s) from the task.

 ICA_QURIC This ioctl operation allows callers to determine the number
 of ARTIC cards installed on a machine and what their types
 are. Data is returned in info.arg and info.arglen specifies
 the number of installed ARTIC cards. To determine the length
 in bytes of info.arg, multiply info.arglen by three.

 ICA_NOASYNC This ioctl operation cancels the effect of the ICA_ASYNC
 ioctl operation that was previously issued to the same task
 on the same card. The asynchronous interrupts caused by that
 task are ignored until another process issues ICA_ASYNC.

 ICA_CHKSIG This ioctl operation enables the user to determine the card
 and task numbers responsible for generating asynchronous
 interrupts after receiving a signal. One or more signals may
 need to be processed. The task and card numbers are in the
 first two bytes of info.arg respectively at the end of the
 call.

 The program sample below shows how the ioctl operations ICACMD, ICA_STAT1,
 and ICA_STAT2 are used:

 #include <fcntl.h>
 #include <sys/ioctl.h>
 #include <ric.h>
 #include <stdio.h>
 main()
 {
 int fd, i, rval, nbcopy;
 unsigned char b0, b1, b2, b3;
 struct riccmd buf; /*defines a structure to be used in
 ioctls */
 fd = open ("/dev/ric00", 0_RDWR);

 /* issue a command to task 3 and check for */
 /* error if there is any

 buf.cmd = 0xa0; /* command to task 3 */
 buf.task=3;
 buf.arglen = 0; /* this command has no argument */

 if (ioctl (fd,ICACMD, &buf) == -1)
 {
 printf ("ioctl - ICACMD failed");
 goto end;
 }

 /* look at primary status to check for error */
 buf.task=3;
 rval = ioctl (fd, ICA_STAT1, &buf);
 if (rval == -1)
 {
 printf ("ioctl (ICA_STAT1) failed");
 goto end;
 }
 /* if there is an error, look at secondary status bytes for */

AIX Operating System Technical Reference
The New ioctl System Calls

¦ Copyright IBM Corp. 1985, 1991
2.5.24.3 - 2

 /* more details */

 if (buf.arg [0] == ERROR)
 {

 /* get the secondary status bytes */
 buf.task = 3;
 buf.arglen = 6; /* want only 6 bytes */
 if (ioctl (fd, ICA_STAT2, &buf) == -1)
 {
 printf ("ioctl - ICA_STAT2 failed");
 goto end;
 }

 nbcopy = buf.arglen; /* number of bytes ioctl-ICA_STAT2 returned */
 printf ("number of bytes returned by ioctl-ICA_STAT2 = %d", nbcopy);
 printf ("secondary status byte of task is: ");
 b0 = buf.arg [0] ; b1 = buf.arg [1];
 b2 = buf.arg[2] ; b3 = buf.arg [3];
 printf ("byte" = %x byte1 = %x byte2 = %x byte3 = %x", b0, b1, b2, b3);
 }
 end: ;
 }

 A special character file is associated with each ARTIC card. For the first
 ARTIC card, there is a corresponding /dev/ric00. For the second card,
 there is a corresponding /dev/ric01. Each file has the file protection
 mode of 0x666, allowing all users to open these files for reading or
 writing on ARTIC card tasks.

 Any process can read or write to any task on any board after the correct
 open system call has been issued.

 To read data from the task input buffer of a task on a particular card,
 the user must open the special file associated with the card and issue the
 readx command. For example, to read data from the input buffer of a task
 on card one, the following sequence of system calls must be issued:

 fd = open("/dev/ric01", ...)
 readx(fd, buffer, buffer_length, task_number)

 An ioctl or writex call must be issued by appl.level to inform the task
 that the application level has read the data. The task input buffer can
 then be reused by the task. This information is user-defined to establish
 handshaking between the application and the tasks.

 The readx system call works in the following manner:

 Note: The input buffer is a buffer created by a task. The task leaves
 data in this buffer for a system unit process to read.

 � The device driver gets the input buffer page, its offset and it
 length from the interface block on the ARTIC card for the task. If
 the buffer provided by the user is shorter than the task input buffer,
 readx fills the buffer and updates the file offset pointer
 accordingly. The next readx, which is issued to read the input buffer
 of the same task, copies the data at the point where the last readx
 stopped, as long as the file offset pointer is smaller than the task
 input buffer length. When the file offset pointer is equal or greater

AIX Operating System Technical Reference
The New ioctl System Calls

¦ Copyright IBM Corp. 1985, 1991
2.5.24.3 - 3

 than the input buffer length, EOF is reached and -1 is returned. If
 the buffer provided by the user is longer than the task input buffer,
 the buffer is filled with the data from the task input buffer. File
 offset pointer is also updated accordingly. The readx call returns
 the number of bytes successfully read and a value of -1 in case of
 error.

 � Although this is a character special file, the lseek system call can
 be issued at the application level to change the file offset pointer.
 This is done when the application process has exhausted the data in
 the task input buffer and it is ready to read another buffer.

AIX Operating System Technical Reference
The New ioctl System Calls

¦ Copyright IBM Corp. 1985, 1991
2.5.24.3 - 4

 2.5.24.4 Special Considerations

 The C compiler on AIX PS/2 1.2 and the C compiler used to compile ARTIC
 tasks have different word alignments, as illustrated in the following
 example:

 struct example {
 short int s;
 int i;
 }

 The size of the structure example is 6 bytes for the ARTIC compiler and 8
 bytes for the AIX compiler. In AIX PS/2, the alignment for the integer is
 doubleword, which is 4 bytes. The variable s is a short int (2 bytes),
 which leaves 2 bytes of unused space between s and i.

 In the case of the readx system call, the data is copied byte-by-byte from
 the input buffer of the ARTIC card task into the user buffer of type
 structure struct example. The first 6 bytes of the user buffer contain
 the data. At the application level, when the i field of structure struct
 example is referenced, only the first two bytes have valid data. The
 other two bytes of valid data are in the gap between the variables s and
 i.

 The following diagram illustrates the above:

 /* the driver stored the data as followed */
 |---------|-----------------------------|
 | x | x | x | x | x | x | | |
 |---------|---------|-------------------|

 /* at the application level, references the data is the following */
 |---------|-----------------------------|
 | x | x | x | x | x | x | | |
 |---------|---------|-------------------|
 |short | |int |
 |example.s| gap |----example.i------|

 To avoid errors caused by alignment problems, all buffers used for the
 readx and writex system calls should only be of type char or unsigned
 char.

AIX Operating System Technical Reference
Special Considerations

¦ Copyright IBM Corp. 1985, 1991
2.5.24.4 - 1

 2.5.24.5 Dealing With Interrupts (ARTIC card --> Application Program)

AIX Operating System Technical Reference
Dealing With Interrupts (ARTIC card --> Application Program)

¦ Copyright IBM Corp. 1985, 1991
2.5.24.5 - 1

 2.5.24.6 Synchronous Interrupts

 Each time a command is sent to a task with the ICACMD ioctl system call,
 the process sleeps and the ioctl does not return until the ARTIC task
 interrupts the process. This interrupt is called a synchronous interrupt.

AIX Operating System Technical Reference
Synchronous Interrupts

¦ Copyright IBM Corp. 1985, 1991
2.5.24.6 - 1

 2.5.24.7 Asynchronous Interrupts

 All other interrupts coming from ARTIC tasks are called asynchronous
 interrupts. They can be interrupts coming from ARTIC tasks upon
 completion of an ICACMDNOWAIT ioctl call (from the task side, these
 interrupts are synchronous), or interrupts coming from the ARTIC card that
 request the attention of the application program.

AIX Operating System Technical Reference
Asynchronous Interrupts

¦ Copyright IBM Corp. 1985, 1991
2.5.24.7 - 1

 2.5.24.8 Processing the Interrupts

 The device driver processes the interrupts with its second level interrupt
 handler ricintr() in the following way:

 � In the case of synchronous interrupts, ricintr() wakes up the process
 sleeping in the ICACMD ioctl call.

 � In the case of asynchronous interrupts, there are two possibilities

 1. Interrupts handled in the kernel by device drivers. For example,
 rictty is the device driver in the kernel that drives tty's
 (terminals for instance), using the ARTIC task com232.exe to
 control the transfer of data through the card.

 The kernel subroutine icaintratch arranges a kernel function to be
 called when the indicated task on the indicated on the ARTIC card
 (both parameters of icaintratch posts an interrupt to the system
 unit. The address of this function is put in a structure called
 taskvec. This address is checked by the ARTIC card device driver
 in order to know which function handles an interrupt coming from
 an ARTIC task.

 struct ricintrvec {
 int (*inthandler)();
 int intarg;
 int taskid;
 }

 struct ricintrvec taskvec[MAXCYCLONE][MAXTASK+1]
 /* max of cards and tasks */

 In the rictty thefollowing is an icaintratch function:

 icaintratch(0,board,ttytask[unit],rtyintr,0)

 /* ttytask[unit] is the task on the board that posts the async. int. */
 /* rtyintr is the function called and it is in the taskvec structure */

 2. Interrupts handled by the user. If the user decides that he wants
 to handle asynchronous interrupts coming from certain tasks, the
 driver will then send a signal sigurg to the process that has
 issued an ICA_ASYNC ioctl call for the given tasks.

 For each ARTIC card, the driver maintains a free list and a queue list.
 The free list is a linked list of nodes, twice as long as the number of
 tasks allowed to run on the card. Each time a task posts an asynchronous
 interrupt and there is a process which has requested to handle the
 interrupt coming from this task, the ARTIC card device driver, before
 sending the SIGURG signal to the application process, saves the card
 number unit on which the task is running, the task number, and the process
 id number of the process to which the driver will send the signal. The
 driver gets a node from the free list, stores that information in it, and
 attaches this node to the queue list. Each time a process issues the
 ICA_CHKSG ioctl call to find out about the nature of the interrupt, the
 driver returns the task number and the card number of the task that caused
 the interrupt to the calling process. The unnecessary node is freed from
 the queue list and returns to the free list. If more asynchronous
 interrupts occur before processes issue ICA_CHKSIG ioctl calls to retrieve
 information from the queue list, the free list may be exhausted. In this

AIX Operating System Technical Reference
Processing the Interrupts

¦ Copyright IBM Corp. 1985, 1991
2.5.24.8 - 1

 situation, the driver reuses the node at the head of the queue. A new
 node is attached to the end of the queue.

 The following is the structure of the linked list:

 struct jobs_queue {
 int pid;
 unsigned char task_no ;
 unsigned char board_no;
 struct jobs_queue * next;
 }

 An opened file is either closed by the last process using it (by issuing a
 close system call) or it is closed automatically by the kernel at the end
 of the execution of the last process opening the file. This rule also
 applies to opened special files. In each case the ricclose function is
 called by the kernel. In this module, the driver reinitializes the
 sig_pend_tb table and removes the queue to return the space to the free
 list. These two steps are performed only for the ARTIC card being closed;
 other tables remain intact.

AIX Operating System Technical Reference
Processing the Interrupts

¦ Copyright IBM Corp. 1985, 1991
2.5.24.8 - 2

 2.5.24.9 Special Considerations

 In the following situation, the user decides to acknowledge asynchronous
 interrupts coming from certain tasks. These asynchronous interrupts are
 sent when this process is sleeping in a ICACMD ioctl call to a different
 task waiting for a synchronous interrupt from this task to wake it up.
 The situation is handled in the following manner:

 1. Asynchronous interrupts that trigger signals are only processed when
 the process is awakened by the synchronous interrupt and returns to
 the user mode. Since the tsleep system call is issued with the PCATCH
 argument, if sleep is killed by a signal, it returns with the TS_SIG
 value. The following loop keeps the process asleep until either the
 synchronous interrupt wakes it, or the elapsed time exceeds 6 seconds:

 while (tsleep(pid,...|PCATCH,6) = = TS_SIG)

 2. If more than one signal is sent to the process while it is sleeping,
 the device driver provides information so the user can handle all the
 processes. The kernel does not queue the signals when the process is
 sleeping but the device driver uses the two lists to keep track of
 signals sent during sleep.

 The information in the different buffers and primary status of a task
 sending multiple asynchronous interrupts during the sleep of the
 process is not saved by the kernel. It is up to the user to make his
 ARTIC tasks in a way that this transfer of information can be done in
 correct delays. When the process is awakened, it returns to user mode
 and the first signal is automatically handled in the user defined
 signal handler. The user then issues the CHK_SIG ioctl call to find
 out if other signals were sent to the process while sleeping. The
 following provides an example:

 handler ()
 {
 ...
 while (ioctl (fd,CHECK_SIGNAL,&buf) != -1)
 {
 deal_with () /* user defined func. processes the signal */
 }
 }

 3. When the CHK_SIG ioctl command is issued at the application level to
 determine if it has any pending signals the driver searches the linked
 list for the first occurrence of a node with a process id that is the
 same as the process id of the process issuing the system call. If the
 search succeeds, the task number and the card number stored in this
 node are copied to the user buffer and this node is removed from the
 linked list. If the search fails, the ioctl call will return -1.

 Related Information
 The icaload command in the AIX Operating System Commands Reference.

AIX Operating System Technical Reference
Special Considerations

¦ Copyright IBM Corp. 1985, 1991
2.5.24.9 - 1

 2.5.25 st

 Purpose
 Supports the IBM PS/2 Internal Tape Backup Unit device driver.

 Description
 Magnetic tapes are used primarily for backups, file archives, and other
 off-line storage. The special files rst0, rst4, rst8, and rst12 refer to
 the PS/2 Internal Tape Backup Units connected to the floppy disk
 controller; these files differ in the following ways:

 retension rewind
 file at open at close
 rst0 no yes

 rst4 no no

 rst8 yes yes

 rst12 yes no

 Only one Internal Tape Backup Unit will be recognized in a system.

 The device driver maintains internal state which describes the tape
 position but will rewind the tape on the first open after a tape has been
 removed and reinserted or when a new tape is inserted. Similarly, if AIX
 is rebooted the tape will be rewound.

 If a device is being closed and the last operation on the device was a
 read, the tape is not to be rewound (files rts4 and rst12), and the last
 read did not read a filemark, then the head is effectively positioned
 beyond the filemark. (If the read operation was in the direction of EOT
 then the head is positioned on the EOT side of the filemark and vice
 versa.)

 A number of ioctl operations are available, all use the following basic
 ioctl call:

 int ioctl (fildes, command, arg)
 int fildes, command;
 char *arg;

 IOCTYPE Returns DD_TAPE left shifted 8 bits, see <sys/devinfo.h>;
 the arg parameter is unused.

 IOCINFO Stores device information for the file specified by fildes
 into the buffer pointed to by the arg parameter. See
 <sys/devinfo.h> for a description of the devinfo
 structure.

 MTIOCTOP This is the ioctl call which is used to control tape
 motion and other miscellaneous tape operations. The call
 is slightly different:

 #include <sys/mtio.h>
 int ioctl (fildes, MTIOCTOP, arg)
 int fildes, command;
 struct mtop {
 short mt_op; /* operations defined below */

AIX Operating System Technical Reference
st

¦ Copyright IBM Corp. 1985, 1991
2.5.25 - 1

 daddr_t mt_count; /* how many of them */
 } *arg;

 The following are valid operations (values of mt_op):

 MTWEOF writes mt_count filemarks at the current
 position. The device must be opened for
 write or the process must have an
 effective user ID of that of the
 superuser to issue this ioctl.

 MTFSF forward positions the tape mt_count
 filemarks. (negative numbers are
 allowed to backspace filemarks.)

 MTBSF backward positions the tape mt_count
 filemarks.

 MTFSR forward skips mt_count records.

 MTBSR backward skips mt_count records.

 MTREW rewinds tape (the value of mt_count is
 ignored).

 MTOFFL rewinds tape and positions the head on
 track 0 (the value of mt_count is
 ignored).

 MTNOP no operation, sets status only (the
 value of mt_count is ignored).

 MTRETEN skips the tape forward to EOT, rewinds
 the tape, and positions the head on
 track 0

 (the value of mt_count is ignored).

 MTERASE erases the filemark map and the first
 block of user date on the tape;
 invalidates the in-memory copy of the
 filemark map (the value of mt_count is
 ignored).

 STIOCTOP This is the command value specified when the ioctls
 defined in <sys/tape.h> are used. The call is:

 #include <sys/tape.h>
 int ioctl (fildes, STIOCTOP, arg)
 int fildes, commands;
 struct stop {
 short st_op; /* operations defined below */
 daddr_t st_count; /* how many of them */
 } *arg;

 The various value of st_op are mapped directly to MTIOCTOP
 operations as follows:

 STRESET MTOFFL

AIX Operating System Technical Reference
st

¦ Copyright IBM Corp. 1985, 1991
2.5.25 - 2

 STREW MTREW

 STERASE MTERASE

 STRETEN MTRETEN

 STWEOF MTWEOF

 STFSF MTFSF

 STFSR MTFSR
 STRAS1 MTNOP

 STRAS2 MTNOP

 STRAS3 MTNOP

 MTIOCGET Stores device information for the file specified by fildes
 into the buffer pointed to by the arg parameter. See
 <sys/mtio.h> for a description of the mtget structure.

 Note: All fields of mtget are set to zero on return from
 this ioctl.

 STIOCGET Stores device information for the file specified by fildes
 into the buffer pointed to by the arg parameter. See
 <sys/tape.h> for a description of the stget structure.

 Note: All fields of stget are set to zero on return from
 this ioctl.

 ITGETTYPE Stores drive type / tape type for the file specified by
 fildes into the buffer pointed to by the arg parameter.
 The call is:

 #include <sys/mtio.h>
 int ioctl (fildes, ITGETTYPE, arg)
 int fildes, command;
 int *arg;

 ITGETHEADER Reads the tape header for the file specified by fildes and
 stores it into the buffer pointed to by the arg parameter.
 The call is:

 #include <sys/mtio.h>
 int ioctl (fildes, ITGETHEADER, arg)
 int fildes, command;
 struct ctpb *arg;

 ITPUTHEADER Stores tape header data from the buffer pointed to by the
 arg parameter into an internal buffer. This data is
 subsequently written to the tape for the file specified by
 fildes when the device is closed. The device must be
 opened for write or the process must have an effective
 user ID of that of the superuser to issue this ioctl. The
 call is:

 #include <sys/mtio.h>
 int ioctl (fildes, ITPUTHEADER, arg)

AIX Operating System Technical Reference
st

¦ Copyright IBM Corp. 1985, 1991
2.5.25 - 3

 int fildes, command;
 struct ctpb *arg;

 ITGETFMK Reads the tape filemark map for the file specified by
 fildes and stores it into the buffer pointed to by the arg
 parameter. The call is:

 #include <sys/mtio.h>
 int ioctl (fildes, ITGETFMK, arg)
 int fildes, command;
 struct fmmap *arg;

 ITPUTHEADER Stores tape filemark map from the buffer pointed to by the
 arg parameter into an internal buffer. This data is
 subsequently written to the tape for the file specified by
 fildes when the device is closed. The device must be
 opened for write or the process must have an effective
 user ID of that of the superuser to issue this ioctl. The
 call is:

 #include <sys/mtio.h>
 int ioctl (fildes, ITPUTFMK, arg)
 int fildes, command;
 struct fmmap *arg;

 Each read or write call reads or writes an integral number of 512 bytes on
 the tape. A zero byte count is returned when a filemark is read, but
 another read will fetch the first record of the next tape file (if it
 exists).

 Filemarks have a BOT (beginning-of-tape) and an EOT (end-of-tape) side.
 Forward positioning to a filemark will leave the head on the EOT side of
 the filemark, while reverse positioning will leave the head on the BOT
 side. Reading one record, skipping forward one filemark (or block) from
 the BOT side of a filemark will leave the head on the EOT side of the same
 filemark (and skipping back one filemark, or block, from the EOT side of a
 filemark will leave the head on the BOT side of the same filemark).

 The files st0, st4, st8, and st12 are block devices that behave similarly
 to the raw devices but use kernel buffering. They are not normally used
 for backup or archival purposes.

 Subtopics
 2.5.25.1 Using BACKUP, CPIO, TAR and TCTL
 2.5.25.2 Internals
 2.5.25.3 Error Conditions

AIX Operating System Technical Reference
st

¦ Copyright IBM Corp. 1985, 1991
2.5.25 - 4

 2.5.25.1 Using BACKUP, CPIO, TAR and TCTL

 When using the backup command the -C option, -s option and the -1 option
 are not supported.

 When using the tar command the -u and -r options are not supported.

 The tctl command may be used with the Internal Tape Backup Unit (ITBU).
 New tapes or tapes that have not been used recently should be retensioned
 before using the tctl command.

 The ras1 and ras2 options are not supported. The erase option erases only
 the first block of user data and the filemark map.

AIX Operating System Technical Reference
Using BACKUP, CPIO, TAR and TCTL

¦ Copyright IBM Corp. 1985, 1991
2.5.25.1 - 1

 2.5.25.2 Internals

 Tapes must both be servo written and formatted prior to use. Preformatted
 tapes are available. There is no facility for formatting tapes using the
 AIX PS/2 Internal Tape Backup Unit Device Driver.

 The PS/2 Internal Tape Backup Unit is unique in that it has a fixed number
 of 32K blocks. The first block on the tape holds data about the tape
 format and the bad block map. A filemark map is held on the second block
 of the tape. Issuing an STERASE ioctl or issuing a tctl erase command
 will erase the filemark map. If an attempt is made to write too many
 filemarks to the tape, the driver will return ENOSPC. Data starts on
 fourth block of the tape. The third block is presently not used. It is
 not possible to directly read or write the first three information blocks
 on the tape. All reads and writes start on the fourth block.

 The device driver generates ECC (Error Correction Code) which is used to
 regenerate lost data due to undetected errors in writing or damage to the
 tape. The drive does not do read after write for performance reasons and
 because, with the ECC, good error rates can be achieved without it.

 Because of the need to generate ECC data, user data must be buffered
 within the driver. This is also done for performance reasons and makes it
 possible to keep the tape streaming.

AIX Operating System Technical Reference
Internals

¦ Copyright IBM Corp. 1985, 1991
2.5.25.2 - 1

 2.5.25.3 Error Conditions

 Error messages are sent on almost all failed commands to /dev/osm. All
 error messages from the AIX PS/2 Internal Tape Backup Unit Device Driver
 are prefixed by "Internal Tape:". Many non-fatal error messages are
 logged, including all blocks on which ECC decoding was necessary because
 of a CRC error in the data. Fatal errors cause system calls to return -1
 and the type of error is available to the application program in errno.
 Less serious errors, such as no tape in the drive, are written only to the
 user's terminal. They are not logged to /dev/osm.

 In addition to those errors listed in ioctl, open, read, and write, system
 calls against this device fail in the following circumstances:

 ENXIO Invalid minor device number, or Internal Tape Backup Unit
 not present.

 EBUSY Internal Tape Backup Unit is currently in use.

 EIO No tape is installed in Internal Tape Backup Unit, or the
 Internal Tape Backup Unit is not responding to commands,
 or an unformatted tape is in the drive, or the tape has
 too many data errors.

 EWRPROTECT A write protected cartridge is installed, or a tape with
 a format which cannot be written is installed.

 EFAULT An invalid address was passed as an argument to a system
 call, or an invalid read or write length (a non-multiple
 of 512 bytes) was given.

 EINVAL An invalid ioctl request was given.

 ENOMEM Not enough memory could be allocated to perform the
 requested action.

 ENOSPC A read or write write attempted to read/write beyond the
 end of tape, or an attempt to write a filemark failed
 because the filemark map was full.

 EACCES An attempt was made to issue an ioctl to erase, write the
 header, or write the filemark map when the device was not
 opened for write or the process did not have an effective
 user ID of that of the superuser.

 Files

 /dev/st*
 /dev/rst*

 Related Information
 In this book: "ioctlx, ioctl, gtty, stty" in topic 1.2.137, "open, openx,
 creat" in topic 1.2.199, "close, closex" in topic 1.2.48, "read, readv,
 readx" in topic 1.2.224, and : hdref refid=write..

 The backup, cpio, devices, restore, tar, and tctl commands in the AIX
 Operating System Commands Reference.

AIX Operating System Technical Reference
Error Conditions

¦ Copyright IBM Corp. 1985, 1991
2.5.25.3 - 1

 2.5.26 swap

 Purpose
 Provides interface to kernel swap space.

 Description
 The swap driver provides access to all configured swap partitions.

 The swap driver uses the extended argument of the readx system call to
 select a partition, since more than one may be configured.

 Files
 /dev/swap

 Related Information
 In this book: "read, readv, readx" in topic 1.2.224 and "swapctl" in
 topic 1.2.293.

AIX Operating System Technical Reference
swap

¦ Copyright IBM Corp. 1985, 1991
2.5.26 - 1

 2.5.27 tape

 Purpose
 Supports the AIX PS/2 sequential access bulk storage medium device driver.

 Description
 Magnetic tapes are used primarily for backups, file archives, and other
 off-line storage. Tapes are accessed through the special files mt0 and
 rmt0, which are unique to AIX PS/2. The r indicates "raw" which means
 access through the character special interface. Although streaming tape
 does not lend itself well to the category of a block device, a block
 device interface is provided to buffer I/O through the system buffer
 cache. This provides improved throughput when doing only sequential
 writes or only sequential reads, as in backup/restore. The number
 following the mt or rmt is the minor device number. The two low-order
 bits of the minor device number select the transport. If the third bit
 (04 octal or 0x04) is set, the driver does not rewind the tape after it is
 closed. If the fourth bit (010 octal or 0x08) is set, the tape is
 retensioned (wound completely forward and then rewound) after it is opened
 and before any other operations.

 On a system with a single tape drive, /dev/rmt0 does not retension the
 tape, but does rewind it on close. /dev/rmt4 (bits = 0100) does not
 perform any special actions on open or close. /dev/rmt8 (bits = 1000)
 retensions the tape and rewinds it on close; and /dev/rmt12 (bits = 1100)
 retensions the tape on open, but does not rewind.

 When opened for reading or writing, the tape is assumed to be positioned
 as desired. When the tape opens and writes to a file, a single tape mark
 is written if the file is no rewind on close, while a double tape mark is
 written if the tape is to be rewound. If the file is no rewind and opened
 read only, the tape is positioned after the end of file (EOF) following
 the data just read. Once opened, reading is restricted to between the
 position when opened and the next EOF. By specifically choosing rmt
 files, it is possible to read and write multiple-file tapes.

 Each read or write call reads or writes the next record on the tape. The
 record written by write is the same length as the buffer given. During a
 read, the record size is returned as the number of bytes read, up to the
 buffer size specified. Seeks are ignored. An EOF is returned as a
 zero-length read, with the tape positioned before the EOF.

 A number of ioctl operations are available. In addition to IOCTYPE and
 IOCINFO types, the following ioctl calls are defined.

 The parameter to the ioctl system call using the STIOCTOP command is the
 address of a stop structure, which contains the following members:

 short st_op; /* Streaming tape operation */
 daddr_t st_count; /* Number of times to perform */

 The st_op operation is performed st_count times, except where it is not
 logical to do so, rewind, as an example. The operations available are:

 #define STRESET 5 /* reset device */
 #define STREW 6 /* rewind */
 #define STERASE 7 /* erase tape, retension, leave at load point */
 #define STRETEN 8 /* erase tape, retension, leave at load point */
 #define STWEOF 10 /* write an end-of-file record */

AIX Operating System Technical Reference
tape

¦ Copyright IBM Corp. 1985, 1991
2.5.27 - 1

 #define STFSF 11 /* forward space file */
 #define STFSR 13 /* forward space record */
 #define STRAS1 15 /* drive self test 1 */
 #define STRAS2 16 /* drive self test 2 */
 #define STRAS3 17 /* drive self test 3 */
 /* this test needs an */
 /* erased write-protected tape */

 The status of a tape drive can be determined by issuing the following
 STIOCGET type ioctl system call:

 /* structure for STIOCGET - streaming tape get status command */
 struct stget {
 short st_type; /* type of device */
 struct dsreg {
 unsigned short ds_dstat: /* drive status */
 unsigned short ds_soft; /* soft error count */
 unsigned short ds_under; /* underrun count */
 unsigned char ds_rcom; /* command received by adapter */
 unsigned char ds_blk; /* adapter block count */
 unsigned char ds_rstat; /* status register */
 unsigned char ds_code; /* adapter completion code */
 unsigned char ds_lcom; /* last command given to adapter */
 unsigned char ds_lstcom; /* last streaming tape device */
 /* drive command */
 unsigned char ds_res[4] /* reserved */
 } st_dsreg;
 };

 /*
 * Constants for st_type byte - ST_SST streaming tape
 */

 In addition to those errors listed in ioctl; open, read, and write, system
 calls against this device fail in the following circumstances:

 EINVAL O_APPEND is supplied as a mode in which to open.

 EINVAL A write attempt while the tape is in read mode, or a read
 attempt while the tape is in write mode.

 EINVAL A count parameter to read or write is not 0, module 512.

 EIO A parameter to ioctl is not allowed in the current streaming
 mode.

 ENXIO The tape is write-protected or there is no tape in the drive.

 Note: The streaming tape device driver has a concept of current
 "streaming mode". Therefore, many operations are invalid most of
 the time. In particular, no reads are allowed after an initial
 write or writes allowed after an initial read. You must wait until
 the device is reset either by closing a rewind-on-close special
 file, or by the tctl command.

 File
 /dev/rmt*

 Related Information
 In this book: "ioctlx, ioctl, gtty, stty" in topic 1.2.137, "open, openx,

AIX Operating System Technical Reference
tape

¦ Copyright IBM Corp. 1985, 1991
2.5.27 - 2

 creat" in topic 1.2.199, "read, readv, readx" in topic 1.2.224, "write,
 writex" in topic 1.2.330, and "mt" in topic 2.5.17.

 The tctl command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
tape

¦ Copyright IBM Corp. 1985, 1991
2.5.27 - 3

 2.5.28 termio

 Purpose
 Provides the general terminal interface.

 Synopsis

 #include <sys/hft.h>
 #include <sys/termio.h>
 #include <sys/tty.h>

 Description
 All of the asynchronous communications ports use the same general
 interface, regardless of the hardware used. This section discusses the
 common features of this interface, which is found in all AIX systems.

 When a terminal file is opened, it normally causes the process to wait
 until a connection is established. In practice, user programs seldom open
 these files. They are opened by getty and become standard input, output,
 and error files for a user. The first terminal file not already
 associated with a process group that is opened by the process group leader
 becomes the control terminal for that process group. The control terminal
 plays a special role in handling quit, interrupt, and suspend signals as
 discussed later. During a fork system call, the child process inherits
 the control terminal. A process can break the association to the group
 using the setpgid system call. The terminal may also be switched to
 control a different process group by using the TIOCSPGRP ioctl. See "BSD
 Compatibility" in topic 2.5.28.4.

 A terminal associated with one of these files ordinarily operates in
 full-duplex mode. Characters can be typed at any time, even while output
 is occurring. These characters can be lost, however, when the input
 buffers become completely full or when the user accumulates the maximum
 number of input characters allowed that were not read by a program.
 Currently, this limit is 256 characters. When the input limit is reached,
 all the saved characters are erased from the input buffer without notice.
 When using the new line discipline (see "BSD Compatibility") the driver
 simply refuses to accept any further input and rings the terminal bell.

 Normally, terminal input is processed in units of lines. A line is
 delimited by a new-line (ASCII LF) character, an end-of-file (ASCII EOT)
 character, or an end-of-line character. This means that a program
 attempting to read is suspended until an entire line is typed. Also, no
 matter how many characters are requested in the read call, at most one
 line is returned. It is not, however, necessary to read a whole line at
 once. Any number of characters can be requested in a read without losing
 information.

 During input, erase and kill processing is performed normally. By
 default, the Ctrl-H character erases the last character typed, but does
 not erase beyond the beginning of the line. By default, the Ctrl-U
 character kills (deletes) the entire input line, and optionally outputs a
 new-line character. Both these characters operate on a keystroke basis
 independently of any backspacing or tabbing that was done. Both the erase
 and kill characters can be entered literally by preceding them with the \
 (backslash) escape character. In this case, the escape character is not
 read. The erase and kill characters can be changed.

 Certain characters have special functions on input. These functions and
 their default character values are summarized as follows:

AIX Operating System Technical Reference
termio

¦ Copyright IBM Corp. 1985, 1991
2.5.28 - 1

 EOF Ctrl-D or ASCII EOT is used to generate an end-of-file from a
 terminal. When received, all the characters waiting to be read are
 immediately passed to the program, without waiting for a new-line
 character, and the EOF is discarded. Thus, if there are not any
 characters waiting (indicating the EOF occurred at the beginning of
 a line), zero characters are passed back, which is the standard
 end-of-file indication.

 EOL ASCII NUL is an additional line delimiter, like NL. It is not
 normally used.

 ERASE Ctrl-H erases the preceding character. It does not erase beyond
 the start of a line, as delimited by an NL, EOF, or EOL character.

 INTR Rubout or ASCII DEL (Ctrl-Backspace on the PS/2 console keyboard)
 generates a SIGINT (interrupt) signal, which is sent to all
 processes with the associated control terminal. Normally, each
 such process is forced to terminate, but arrangements can be made
 either to ignore the signal or to receive a trap to an agreed-upon
 location. See "sigaction, sigvec, signal" in topic 1.2.263.

 KILL Ctrl-U deletes the entire line, as delimited by an NL, EOF, or EOL
 character.

 NL ASCII LF is the normal line delimiter. It cannot be changed or
 escaped.

 QUIT Ctrl-V or ACSII SYN generates a quit signal. Its treatment is
 identical to the interrupt signal except that, unless a receiving
 process made other arrangements, it is not only terminated but a
 memory file (called core) is created in the current working
 directory.

 START Ctrl-Q or ASCII DC1 is used to resume output that was suspended by
 a STOP character. While output is not suspended, START characters
 are ignored and not read. The START/STOP characters cannot be
 changed or escaped.

 STOP Ctrl-S or ASCII DC3 is used to temporarily suspend output. It is
 useful with terminals that have displays to prevent output from
 disappearing before it can be read. While output is suspended,
 STOP characters are ignored and not read.

 SUSP Ctrl-Z or ASCII SUB generates the signal SIGTSTP. If the processes
 in the terminal's process group do not specifically handle this
 signal, they are suspended. The parent process(es) are notified
 with a SIGCHLD signal and can find out about the stopped process
 using wait3. This is used for job control in shells such as csh.
 Unlike the other special characters listed here, SUSP is set using
 the TIOCSLTC ioctl. The SUSP character can only be used with the
 new line discipline. See "BSD Compatibility." SUSP characters
 cannot be escaped with a \.

 The character values for INTR, QUIT, ERASE, KILL, EOF, and EOL can be
 changed to suit individual preferences. The ERASE, KILL, and EOF
 characters can be escaped by a preceding \ (backslash) character, in which
 case the special function is not done.

 When the carrier signal from the dataset drops, a hangup signal (SIGHUP)

AIX Operating System Technical Reference
termio

¦ Copyright IBM Corp. 1985, 1991
2.5.28 - 2

 is sent to all processes that have this terminal as the control terminal.
 Unless other arrangements were made, this signal causes the process to
 terminate. If the hangup signal is ignored, any subsequent read returns
 with an end-of-file indication. Thus, programs that read a terminal and
 test for end-of-file can terminate appropriately.

 When one or more characters are written, they are transmitted to the
 terminal as soon as previously written characters finish typing. Input
 characters are usually echoed by putting them in the output queue as they
 arrive. If a process produces characters more rapidly than they can be
 typed, it is suspended when its output queue exceeds some limit. When the
 output decreases to a determined threshold, the program is resumed.

 Several ioctl system calls apply to terminal files. The primary calls use
 the following structures defined in the termio.h header file:

 #define NCC 8
 struct termio {
 unsigned short c_iflag; /* input modes */
 unsigned short c_oflag; /* output modes */
 unsigned short c_cflag; /* control modes */
 unsigned short c_lflag; /* local modes */
 char c_line; /* line discipline */
 unsigned char c_cc[NCC]; /* control chars */
 };

 struct tty_page {
 char tp_flags;
 unsigned char tp_slen;
 };

 The special control characters are defined by the c_cc array. The
 relative positions and initial values for each function are as follows:

 +-------------------------------------+
 ¦ c_cc[VIN¦RINTR ¦ Ctrl-Backspace ¦
 ¦ ¦ ¦ (DEL) ¦
 +---------+---------+-----------------¦
 ¦ c_cc[VQU¦TQUIT ¦ Ctrl-V (SYN) ¦
 +---------+---------+-----------------¦
 ¦ c_cc[VER¦SERASE ¦ Backspace (BS) ¦
 +---------+---------+-----------------¦
 ¦ c_cc[VKI¦LKILL ¦ Ctrl-U (NAK) ¦
 +---------+---------+-----------------¦
 ¦ c_cc[VEO¦]EOF ¦ Ctrl-D (EOT) ¦
 +---------+---------+-----------------¦
 ¦ c_cc[VEO¦]EOL ¦ Ctrl-@ (NUL) ¦
 +-------------------------------------+

 The c_iflag field describes the basic terminal input control. The initial
 input control value is all bits clear. The possible values are:

 +--+
 ¦ IGNBRK ¦ 0000001 ¦ Ignore break condition. ¦
 +--------+----------+--¦
 ¦ BRKINT ¦ 0000002 ¦ Signal interrupt on break. ¦
 +--------+----------+--¦
 ¦ IGNPAR ¦ 0000004 ¦ Ignore characters with parity errors. ¦
 +--------+----------+--¦
 ¦ PARMRK ¦ 0000010 ¦ Mark parity errors. ¦

AIX Operating System Technical Reference
termio

¦ Copyright IBM Corp. 1985, 1991
2.5.28 - 3

 +--------+----------+--¦
 ¦ INPCK ¦ 0000020 ¦ Enable input parity check. ¦
 +--------+----------+--¦
 ¦ ISTRIP ¦ 0000040 ¦ Strip character. ¦
 +--------+----------+--¦
 ¦ INLCR ¦ 0000100 ¦ Map new-line character (NL) to carriage return ¦
 ¦ ¦ ¦ character (CR) on input. ¦
 +--------+----------+--¦
 ¦ IGNCR ¦ 0000200 ¦ Ignore carriage return character. ¦
 +--------+----------+--¦
 ¦ ICRNL ¦ 0000400 ¦ Map carriage return character to new-line ¦
 ¦ ¦ ¦ character on input. ¦
 +--------+----------+--¦
 ¦ IUCLC ¦ 0001000 ¦ Maps uppercase to lowercase on input. ¦
 +--------+----------+--¦
 ¦ IXON ¦ 0002000 ¦ Enables start/stop output control. ¦
 +--------+----------+--¦
 ¦ IXANY ¦ 0004000 ¦ Enables any character to restart output. ¦
 +--------+----------+--¦
 ¦ IXOFF ¦ 0010000 ¦ Enables start/stop input control. ¦
 +--------+----------+--¦
 ¦ ASCEDIT¦ 0020000 ¦ Enables enhanced editing on ASCII terminals. ¦
 +--+

 The values in this field are described as follows:

 IGNBRK If set, the break condition (a character framing error with data
 all zeros) is ignored. It is not put on the input queue and
 therefore not read by any process. Otherwise, if BRKINT is set,
 the break condition generates an interrupt signal and flushes both
 the input and output queues. If IGNPAR is set, characters with
 other framing and parity errors are ignored.

 PARMRK If set, a character with a framing or parity error that is not
 ignored is read as the 3-character sequence: 0377, 0, x, where x
 is the data of the character received in error. If ISTRIP is not
 set, then a valid character of 0377 is read as 0377, 0377 to avoid
 ambiguity. If PARMRK is not set, a framing or parity error that
 is not ignored is read as the character NULL (0).

 INPCK If set, input parity checking is enabled. If not set, input
 parity checking is disabled. This allows output parity generation
 without input parity errors.

 ISTRIP If set, valid input characters are first stripped to 7 bits;
 otherwise all 8 bits are processed.

 INLCR If set, a received new-line character is translated into a
 carriage-return character. If IGNCR is set, a received
 carriage-return character is ignored (not read). If ICRNL is set,
 a received carriage-return character is translated into a new-line
 character.

 IUCLC If set, a received uppercase alphabetic character is translated
 into the corresponding lowercase character.

 IXON If set, START/STOP output control is enabled. A received STOP
 character suspends output and a received START character restarts
 output. All START/STOP characters are ignored and not read. If

AIX Operating System Technical Reference
termio

¦ Copyright IBM Corp. 1985, 1991
2.5.28 - 4

 IXANY is set, any input character restarts output that was
 suspended.

 IXOFF If set, the system transmits START/STOP characters when the input
 queue is nearly empty or full.

 ASCEDIT If set, ASCII keyboards can be used to enter enhanced edit line
 discipline commands.

 The c_oflag field specifies how the system treats output. The initial
 output control value is all bits clear.

 +--+
 ¦ OPOST ¦ 0000001 ¦ Postprocess output. ¦
 +--------+----------+--¦
 ¦ OLCUC ¦ 0000002 ¦ Map lowercase to uppercase on output. ¦
 +--------+----------+--¦
 ¦ ONLCR ¦ 0000004 ¦ Map new-line character to CR-NL on output. ¦
 +--------+----------+--¦
 ¦ OCRNL ¦ 0000010 ¦ Map carriage-return to new-line on output. ¦
 +--------+----------+--¦
 ¦ ONOCR ¦ 0000020 ¦ No carriage-return character output at column 0. ¦
 +--------+----------+--¦
 ¦ ONLRET ¦ 0000040 ¦ Perform carriage return function using new-line ¦
 ¦ ¦ ¦ character. ¦
 +--------+----------+--¦
 ¦ OFILL ¦ 0000100 ¦ Use fill characters for delay. ¦
 +--------+----------+--¦
 ¦ OFDEL ¦ 0000200 ¦ Fill is DEL or NUL. ¦
 +--------+----------+--¦
 ¦ NLDLY ¦ 0000400 ¦ Select new-line character delays: ¦
 +--------+----------+--¦
 ¦ NL0 ¦ 0 ¦ ¦
 +--------+----------+--¦
 ¦ NL1 ¦ 0000400 ¦ ¦
 +--------+----------+--¦
 ¦ CRDLY ¦ 0003000 ¦ Select carriage-return delays: ¦
 +--------+----------+--¦
 ¦ CR0 ¦ 0 ¦ ¦
 +--------+----------+--¦
 ¦ CR1 ¦ 0001000 ¦ ¦
 +--------+----------+--¦
 ¦ CR2 ¦ 0002000 ¦ ¦
 +--------+----------+--¦
 ¦ CR3 ¦ 0003000 ¦ ¦
 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦
 +--------+----------+--¦
 ¦ TABDLY ¦ 0014000 ¦ Select horizontal-tab delays: ¦
 +--------+----------+--¦
 ¦ TAB0 ¦ 0 ¦ ¦
 +--------+----------+--¦
 ¦ TAB1 ¦ 0004000 ¦ ¦
 +--------+----------+--¦
 ¦ TAB2 ¦ 0010000 ¦ ¦
 +--------+----------+--¦
 ¦ TAB3 ¦ 0014000 ¦ Expand tabs to spaces. ¦
 +--------+----------+--¦
 ¦ BSDLY ¦ 0020000 ¦ Select backspace delays: ¦
 +--------+----------+--¦

AIX Operating System Technical Reference
termio

¦ Copyright IBM Corp. 1985, 1991
2.5.28 - 5

 ¦ BS0 ¦ 0 ¦ ¦
 +--------+----------+--¦
 ¦ BS1 ¦ 0020000 ¦ ¦
 +--------+----------+--¦
 ¦ VTDLY ¦ 0040000 ¦ Select vertical-tab delays: ¦
 +--------+----------+--¦
 ¦ VT0 ¦ 0 ¦ ¦
 +--------+----------+--¦
 ¦ VT1 ¦ 0040000 ¦ ¦
 +--------+----------+--¦
 ¦ FFDLY ¦ 0100000 ¦ Select form-feed delays: ¦
 +--------+----------+--¦
 ¦ FF0 ¦ 0 ¦ ¦
 +--------+----------+--¦
 ¦ FF1 ¦ 0100000 ¦ ¦
 +--+

 OPOST If set, output characters are post-processed as indicated by the
 remaining flags; otherwise characters are transmitted without
 change.

 OLCUC If set, a lowercase alphabetic character is transmitted as the
 corresponding uppercase character. This function is often used in
 conjunction with IUCLC.

 ONLCR If set, the new-line character is transmitted as the
 carriage-return new-line character pair.

 OCRNL If set, the carriage-return character is transmitted as the
 new-line character.

 ONOCR If set, no carriage-return character is transmitted when at column
 0 (first position).

 ONLRET If set, the new-line character is assumed to do the carriage return
 function. The column pointer is set to 0 and the delay specified
 for carriage return is used. Otherwise the new-line character is
 assumed to do just the line feed function; the column pointer
 remains unchanged. The column pointer is also set to 0 if the
 carriage-return character is actually transmitted.

 OFILL If set, fill characters are transmitted for delay instead of a
 timed delay. This is useful for high baud rate terminals that need
 only a minimal delay.

 OFDEL If set, the fill character is DEL, otherwise NUL.

 NLDLY, CRDLY, TABDLY, BSDLY, VTDLY, FFDLY
 The delay bits specify how long transmission stops to allow for
 mechanical or other movement when certain characters are sent to
 the terminal. In all cases, a value of 0 indicates no delay. If
 ONLRET is set, the carriage return delays are used instead of the
 new-line delays.

 TAB3 If set, specifies that tabs are to be expanded into spaces.

 The c_cflag field describes the hardware control of the terminal:

 +--+

AIX Operating System Technical Reference
termio

¦ Copyright IBM Corp. 1985, 1991
2.5.28 - 6

 ¦ CBAUD ¦ 0000017 ¦ Baud rate ¦
 +--------+----------+--¦
 ¦ B0 ¦ 0 ¦ Hang up ¦
 +--------+----------+--¦
 ¦ B50 ¦ 0000001 ¦ 50 baud ¦
 +--------+----------+--¦
 ¦ B75 ¦ 0000002 ¦ 75 baud ¦
 +--------+----------+--¦
 ¦ B110 ¦ 0000003 ¦ 110 baud ¦
 +--------+----------+--¦
 ¦ B134 ¦ 0000004 ¦ 134.5 baud ¦
 +--------+----------+--¦
 ¦ B150 ¦ 0000005 ¦ 150 baud ¦
 +--------+----------+--¦
 ¦ B200 ¦ 0000006 ¦ 200 baud ¦
 +--------+----------+--¦
 ¦ B300 ¦ 0000007 ¦ 300 baud ¦
 +--------+----------+--¦
 ¦ B600 ¦ 0000010 ¦ 600 baud ¦
 +--------+----------+--¦
 ¦ B1200 ¦ 0000011 ¦ 1200 baud ¦
 +--------+----------+--¦
 ¦ B1800 ¦ 0000012 ¦ 1800 baud ¦
 +--------+----------+--¦
 ¦ B2400 ¦ 0000013 ¦ 2400 baud ¦
 +--------+----------+--¦
 ¦ B4800 ¦ 0000014 ¦ 4800 baud ¦
 +--------+----------+--¦
 ¦ B9600 ¦ 0000015 ¦ 9600 baud ¦
 +--------+----------+--¦
 ¦ B19200 ¦ 0000016 ¦ 19200 baud ¦
 +--------+----------+--¦
 ¦ EXTA ¦ 0000016 ¦ External A ¦
 +--------+----------+--¦
 ¦ EXTB ¦ 0000017 ¦ External B ¦
 +--------+----------+--¦
 ¦ CSIZE ¦ 0000060 ¦ Character size: ¦
 +--------+----------+--¦
 ¦ CS5 ¦ 0 ¦ 5 bits ¦
 +--------+----------+--¦
 ¦ CS6 ¦ 0000020 ¦ 6 bits ¦
 +--------+----------+--¦
 ¦ CS7 ¦ 0000040 ¦ 7 bits ¦
 +--------+----------+--¦
 ¦ CS8 ¦ 0000060 ¦ 8 bits ¦
 +--------+----------+--¦
 ¦ CSTOPB ¦ 0000100 ¦ Send 2 stop bits, else one. ¦
 +--------+----------+--¦
 ¦ CREAD ¦ 0000200 ¦ Enable receiver. ¦
 +--------+----------+--¦
 ¦ PARENB ¦ 0000400 ¦ Parity enable. ¦
 +--------+----------+--¦
 ¦ PARODD ¦ 0001000 ¦ Odd parity, else even. ¦
 +--------+----------+--¦
 ¦ HUPCL ¦ 0002000 ¦ Hang up on last close. ¦
 +--------+----------+--¦
 ¦ CLOCAL ¦ 0004000 ¦ Local line, else dial-up. ¦
 +--+

 CBAUD These bits specify the baud rate. The zero baud rate, B0, is used

AIX Operating System Technical Reference
termio

¦ Copyright IBM Corp. 1985, 1991
2.5.28 - 7

 to hang up the connection. If B0 is specified, the
 data-terminal-ready signal is dropped. Normally, this disconnects
 the line. For any particular hardware, impossible speed changes
 are ignored.

 CSIZE These bits specify the character size in bits for both transmit
 and receive. This size does not include the parity bit, if any.
 If CSTOPB is set, 2 stop bits are used; otherwise one stop bit is
 used. For example, at 110 baud, 2 stop bits are required.

 CREAD If set, the receiver is enabled. Otherwise characters are not
 received.

 PARENB If set, parity generation and detection is enabled and a parity
 bit is added to each character. If parity is enabled, the PARODD
 flag specifies odd parity if set; otherwise even parity is used.

 The initial hardware control value after open is B300, CS8, CREAD,
 HUPCL.

 HUPCL If set, the line is disconnected when the last process that has
 the line open, either closes it or the process terminates. That
 is, the data-terminal-ready signal drops.

 CLOCAL If set, the line is assumed to be local, direct connection with no
 modem control. Otherwise modem control is assumed.

 The c_lflag field of the parameter structure is used by the line
 discipline to control terminal functions. The basic line discipline (0)
 provides the following:

 +--+
 ¦ ISIG ¦ 0000001 ¦ Enable signals. ¦
 +--------+----------+--¦
 ¦ ICANON ¦ 0000002 ¦ Canonical input (erase and kill processing). ¦
 +--------+----------+--¦
 ¦ XCASE ¦ 0000004 ¦ Canonical upper/lower presentation. ¦
 +--------+----------+--¦
 ¦ ECHO ¦ 0000010 ¦ Enable echo. ¦
 +--------+----------+--¦
 ¦ ECHOE ¦ 0000020 ¦ Echo erase character as BS-SP-BS. ¦
 +--------+----------+--¦
 ¦ ECHOK ¦ 0000040 ¦ Echo new-line character after kill character. ¦
 +--------+----------+--¦
 ¦ ECHONL ¦ 0000100 ¦ Echo new-line character. ¦
 +--------+----------+--¦
 ¦ NOFLSH ¦ 0000200 ¦ Disable flushing the queue after interrupt or ¦
 ¦ ¦ ¦ quit. ¦
 +--------+----------+--¦
 ¦ XSCAN ¦ 0000400 ¦ Use Scan Code Terminal Processing. ¦
 +--+

 ISIG If set, each input character is checked against the special
 control characters INTR and QUIT. If a character matches one of
 these control characters, the function associated with that
 character is performed. If ISIG is not set, checking is not done.
 Thus, these special input functions are possible only if ISIG is
 set. These functions may be disabled individually by changing the
 value of the control character to an unlikely or impossible value
 (for example, 0377 octal or 0xFF).

AIX Operating System Technical Reference
termio

¦ Copyright IBM Corp. 1985, 1991
2.5.28 - 8

 ICANON If set, canonical processing is enabled. Canonical processing
 enables the erase and kill edit functions, and the assembly of
 input characters into lines delimited by NL, EOF, and EOL. If
 ICANON is not set, then read requests are satisfied directly from
 the input queue. In this case, a read request is not satisfied
 until either at least MIN characters have been received, or the
 timeout value TIME has expired since the last character was
 received. This allows bursts of input to be read, while still
 allowing single-character input. The MIN and TIME values are
 stored in the positions for the EOF and EOL characters,
 respectively. The time value represents tenths of seconds.

 XCASE If set along with ICANON, an uppercase letter (or the uppercase
 letter translated to lowercase by IUCLC) is accepted on input by
 preceding it with a \ (backslash) character, and is output
 preceded by a \ (backslash) character. In this mode, the output
 generates and the input accepts the following escape sequences:

 For: Use:

 ` \'
 | \!
 ¬ \^
 { \(
 } \)
 \ \\

 For example, A is input as \a, \n as \\n, and \N as \\\n.

 ECHO If set, characters are echoed as received. When ICANON is set,
 the following echo functions are possible. If ECHO and ECHOE are
 set, the erase character is echoed as ASCII BS SP BS, which clears
 the last character from a cathode-ray-tube screen. If ECHOE is
 set and ECHO is not set, the erase character is echoed as ASCII SP
 BS. If ECHOK is set, the new-line character is echoed after the
 kill character to emphasize that the line is deleted. Note that
 an escape character preceding the erase or kill character removes
 any special function. If ECHONL is set, the new-line character
 will be echoed even if ECHO is not set. This is useful for
 terminals set to local echo (sometimes called half duplex).
 Unless escaped, the EOF character is not echoed. Because EOT is
 the default EOF character, this prevents terminals that respond to
 EOT from hanging up.

 NOFLSH If set, the normal flushing of the input and output queues
 associated with the quit and interrupt characters is not done.

 XSCAN If set, Scan Code Terminal processing is performed instead of
 conventional processing.

 Subtopics
 2.5.28.1 select Support
 2.5.28.2 Getting and Setting Terminal Attributes
 2.5.28.3 ioctl Operations
 2.5.28.4 BSD Compatibility
 2.5.28.5 Interaction of AIX and BSD Interfaces

AIX Operating System Technical Reference
termio

¦ Copyright IBM Corp. 1985, 1991
2.5.28 - 9

 2.5.28.1 select Support

 The asynchronous terminal device driver supports the select system call in
 the following manner:

 � Read selects are satisfied when input data is available

 � Write selects are always satisfied immediately

 � Exception selects are never satisfied, or hang indefinitely if n
 timeout value is specified.

 See "select" in topic 1.2.242 for more information about this system call.

AIX Operating System Technical Reference
select Support

¦ Copyright IBM Corp. 1985, 1991
2.5.28.1 - 1

 2.5.28.2 Getting and Setting Terminal Attributes

 Programs can get and set terminal attributes using the following routines:

 #include <termios.h>

 int tegetattr(fildes, termios_p)
 int fildes;
 struct termios * termios_p)

 int tesetattr(fildes, optional_actions, termios_p)
 int fildes, optional_actions;
 struct termios *termios_p;
 int length;

 These routines get and set all of the supported AIX terminal attributes.
 AIX also provides the TCGETA, TCSETA, TIOCGETP and TIOCSETP ioctl options
 (described below) as alternative ways of getting and setting terminal
 attributes; but no one of these ioctl options supports all of the terminal
 attributes, and thus tcgetattr and tcsetattr are the preferred terminal
 interface routines.

AIX Operating System Technical Reference
Getting and Setting Terminal Attributes

¦ Copyright IBM Corp. 1985, 1991
2.5.28.2 - 1

 2.5.28.3 ioctl Operations

 The primary ioctl system calls have the format:

 ioctl (fildes, command, arg)
 int fildes; /* file descriptor */
 int command; /* command type */
 struct termio *arg;

 The commands using this format are:

 TCGETA Gets the parameters associated with the terminal and stores
 them in the termio structure referenced by arg.

 TCSETA Sets the parameters associated with the terminal from the
 structure referenced by arg. The change is immediate.

 Note: TCGETA and TCSETA do not get and set a complete record of the state
 of an HFT device. See "hft" in topic 2.5.11 for information about
 high-function terminal devices.

 TCSETAF Waits for the output to empty, then flushes the input queue
 and sets the new parameters.

 TCSETAW Waits for the output to empty before setting the new
 parameters. This form should be used when changing
 parameters that affect output.

 The terminal paging ioctl calls have the format:

 ioctl (fildes, command, arg)
 int fildes; /* file descriptor */
 int command; /* command type */
 struct tty_page *arg;

 The commands using this format are:

 TCGLEN Gets the current status of the tty_page structure for the terminal
 specified as fildes. If paging is enabled, a value 0x1 is set in
 tp_flags. The tp_slen value indicates the screen length in lines.

 TCSLEN Sets the status of the tty_page structure for this terminal.
 tp_slen means the same here as it does in TCGLEN. The tp_flags
 are:

 +--+
 ¦ PAGE_SETL ¦ 0x4 ¦ Set page length using the value in tp_slen. ¦
 +-----------+-----+--¦
 ¦ PAGE_MSK ¦ 0x3 ¦ Command mask. ¦
 +-----------+-----+--¦
 ¦ PAGE_ON ¦ 0x1 ¦ Enable paging. ¦
 +-----------+-----+--¦
 ¦ PAGE_OFF ¦ 0x2 ¦ Disable paging. ¦
 +--+

 Note that the PAGE_MSK field is interpreted as an encoding, not as
 separate flags.

AIX Operating System Technical Reference
ioctl Operations

¦ Copyright IBM Corp. 1985, 1991
2.5.28.3 - 1

 One terminal logging ioctl system call has the following format:

 ioctl (fildes, command, (char *)arg)
 struct tlog *arg;

 The tlog structure is defined in the sys/termio.h header file and contains
 the following members:

 int tl_flags
 int tl_msgqid

 The command using this format is:

 TCLOG Requests the terminal logging control functions to execute as
 indicated by the tlog structure. The tl_flags are:

 TCLOG_ON Determines whether terminal logging is turned on or off.
 TCLOG_QID Establishes message queue ID.

 If TCLOG_QID is set, tl_msgqid contains the message queue ID to be used
 for logging from the terminal. The tl_msgqid value must be a message
 queue identifier returned from a msgget call.

 Additional ioctl system calls formats are:

 ioctl (fildes, command, arg)
 int fildes; /* file descriptor */
 int command; /* command type */
 int arg;

 The commands using this format are:

 TCFLSH If arg is 0, flush the input queue. A value of 1 indicates flush
 the output queue. A value of 2 indicates flush both the input and
 output queues.

 TCSBRK Waits for the output to empty. If arg is 0, then sends a break
 (zero bits for 0.25 seconds).

 TCXONC Starts or stops control. Suspends output if arg is 0. Restarts
 suspended output if arg is a value of 1.

 Two query ioctl system calls have the following format:

 ioctl (fildes, command, &arg)
 int arg; /* returned value */

 The commands using this format are:

 TIOCNOTTY Causes the tty controlling this process to disassociate from
 the process and causes the group ID to clear. Used by
 background processes to free them from a controlling tty and
 process group. This ioctl should only be used with a file
 descriptor obtained from opening /dev/tty.

 TIONREAD Gets the summation of the number of characters in the raw and
 canonical queues that are immediately available for reading.

 Two ioctl system calls specific to the enhanced edit line discipline have
 the format:

AIX Operating System Technical Reference
ioctl Operations

¦ Copyright IBM Corp. 1985, 1991
2.5.28.3 - 2

 ioctl (fildes, command, arg)
 struct dostmplt *arg;

 The dostmplt structure is defined in the sys/termio.h header file, and it
 contains the following members:

 char *dt_tbuf
 int dt_tlen

 The commands using this format are:

 LDSETDT Sets the template buffer to contain the first dt_tlen characters
 of dt_tbuf, if the enhanced edit line discipline has been entered
 (if c_line equals 1, for example). At most, DTBISIZE characters
 are used. If dt_tlen is -1, the template buffer is not
 initialized.

 LDGETDT Gets the current contents of the template buffer. The characters
 in the buffer are written starting at dt_tbuf, and dt_tlen is set
 to the number of characters written. At most, DTBSIZE characters
 will be returned. The characters will not be null-terminated.

AIX Operating System Technical Reference
ioctl Operations

¦ Copyright IBM Corp. 1985, 1991
2.5.28.3 - 3

 2.5.28.4 BSD Compatibility
 Several enhancements to the terminal interface described above are
 provided for compatibility with the BSD UNIX System. These enhancements
 ensure that most applications using the BSD TTY driver will run on the AIX
 PS/2 Operating System without any changes.

 Subtopics
 2.5.28.4.1 Line Disciplines
 2.5.28.4.2 The Control Terminal
 2.5.28.4.3 Process groups
 2.5.28.4.4 Modes
 2.5.28.4.5 Input Editing
 2.5.28.4.6 Input Echoing and Redisplay
 2.5.28.4.7 Output Processing
 2.5.28.4.8 Uppercase Terminals and Hazeltines
 2.5.28.4.9 Flow Control
 2.5.28.4.10 Line Control and Breaks
 2.5.28.4.11 Interrupt Characters
 2.5.28.4.12 Job Access Control
 2.5.28.4.13 Summary of Modes

AIX Operating System Technical Reference
BSD Compatibility

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4 - 1

 2.5.28.4.1 Line Disciplines

 The system provides different line disciplines for controlling
 communications lines. There are two such disciplines available:

 old The old (Version 7) terminal driver. This is sometimes used when
 using the standard shell sh.

 new The standard Berkeley terminal driver, with features for job control;
 this must be used when using csh.

 Line discipline switching is accomplished with the TIOCSETD ioctl:

 int ldisc = LDISC;
 ioctl(f, TIOCSETD, &ldisc);

 where LDISC is OTTYDISC for the standard TTY driver and NTTYDISC for the
 "new" driver. The standard (currently old) TTY driver is discipline 0 by
 convention. Other disciplines may exist for special purposes, such as use
 of communications lines for network connections. The current line
 discipline can be obtained with the TIOCGETD ioctl. Pending input is
 discarded when the line discipline is changed.

 All of the low-speed asynchronous communications ports can use any of the
 available line disciplines, no matter what hardware is involved. The
 remainder of this section discusses the "old" and "new" disciplines.

AIX Operating System Technical Reference
Line Disciplines

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4.1 - 1

 2.5.28.4.2 The Control Terminal
 When a terminal file is opened, it causes the process to wait until a
 connection is established. In practice, user programs seldom open these
 files; they are opened by getty or rlogind and become a user's standard
 input and output file.

 If a process which has no control terminal opens a terminal file, then
 that terminal file becomes the control terminal for that process. The
 control terminal is thereafter inherited by a child process during a fork,
 even if the control terminal is closed.

 The file /dev/tty is, in each process, a synonym for a control terminal
 associated with that process. It is useful for programs that wish to be
 sure of writing messages on the terminal no matter how output has been
 redirected. It can also be used for programs that demand a file name for
 output, when typed output is desired and it is tiresome to find out which
 terminal is currently in use.

 A process can remove the association it has with its controlling terminal
 by opening the file /dev/tty and issuing an

 ioctl(f, TIOCNOTTY, 0);

 This is often desirable in server processes.

AIX Operating System Technical Reference
The Control Terminal

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4.2 - 1

 2.5.28.4.3 Process groups

 Command processors such as csh can arbitrate the terminal between
 different jobs by placing related jobs in a single process group and
 associating this process group with the terminal. A terminal's associated
 process group may be set using the TIOCSPGRP ioctl:

 ioctl(fildes, TIOCSPGRP, &pgrp);

 or examined using TIOCGPGRP, which returns the current process group in
 pgrp. The new terminal driver aids in this arbitration by restricting
 access to the terminal by processes which are not in the current process
 group; see "Job Access Control" in topic 2.5.28.4.12.

AIX Operating System Technical Reference
Process groups

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4.3 - 1

 2.5.28.4.4 Modes

 The terminal drivers have three major modes, characterized by the amount
 of processing on the input and output characters:

 cooked The normal mode. In this mode, lines of input are collected and
 input editing is done. The edited line is made available when it
 is completed by a new-line, or when the t_brkc character (normally
 undefined) or t_eofc character (normally an EOT, Ctrl-D) is
 entered. A carriage return is usually made synonymous with
 new-line in this mode, and replaced with a new-line whenever it is
 typed. All driver functions (input editing, interrupt generation,
 output processing such as delay generation and tab expansion, and
 so on) are available in this mode.

 CBREAK This mode eliminates the character, word, and line editing input
 facilities, making the input character available to the user
 program as it is typed. Flow control, literal-next and interrupt
 processing are still done in this mode. Output processing is done.

 RAW This mode eliminates all input processing and makes all input
 characters available as they are typed; no output processing is
 done either.

 The style of input processing can also be very different when the terminal
 is put in non-blocking I/O mode; see the description of the O_NONBLOCK
 flag in "open, openx, creat" in topic 1.2.199 and "fcntl, flock, lockf" in
 topic 1.2.78. In this case, a read from the control terminal will never
 block, but rather return an error indication (EAGAIN) if there is no input
 available.

 A process may also request that a SIGIO signal be sent to it whenever
 input is present and also whenever output queues fall below the low-water
 mark. To enable this mode, the O_ASYNC flag should be set using fcntl.

AIX Operating System Technical Reference
Modes

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4.4 - 1

 2.5.28.4.5 Input Editing

 An AIX terminal ordinarily operates in full-duplex mode. Characters may
 be typed at any time, even while output is occurring, and are only lost
 when the system's character input buffers become completely choked, which
 is rare, or when the user has accumulated the maximum allowed number of
 input characters that have not yet been read by some program. Currently,
 this limit is 256 characters. In RAW mode, the terminal driver throws
 away all input and output without notice when the limit is reached. In
 CBREAK or cooked mode, it refuses to accept any further input and, if in
 the new-line discipline, rings the terminal bell.

 Input characters are normally accepted in either even or odd parity with
 the parity bit being stripped off before the character is given to the
 program. By clearing either the EVEN or ODD bit in the flags word, it is
 possible to have input characters with that parity discarded (see the
 "Summary of Modes" in topic 2.5.28.4.13).

 In all of the line disciplines, it is possible to simulate terminal input
 using the TIOCSTI ioctl, which takes, as its third argument, the address
 of a character. The system pretends that this character was typed on the
 argument terminal, which must be the control terminal except for the
 superuser.

 Input characters are normally echoed by putting them in an output queue as
 they arrive. This may be disabled by clearing the ECHO bit in the flags
 word using the stty call or the TIOCSETN or TIOCSETP ioctls (see the
 "Summary of Modes" in topic 2.5.28.4.13).

 In cooked mode, terminal input is processed in units of lines. A program
 attempting to read will normally be suspended until an entire line has
 been received (but see the description of SIGTTIN in "Job Access Control"
 in topic 2.5.28.4.12 and of FIONREAD in "Summary of Modes" in
 topic 2.5.28.4.13). No matter how many characters are requested in the
 read call, at most, one line will be returned. It is not, however,
 necessary to read a whole line at once; any number of characters may be
 requested in a read, even one, without losing information.

 During input, line editing is normally done, with the erase character
 sg_erase (by default, DELETE) logically erasing the last character typed
 and the sg_kill character (default, Ctrl-U) logically erasing the entire
 current input line. These characters never erase beyond the beginning of
 the current input line or an EOF. These characters may be entered
 literally by preceding them with '\'; the '\' will normally be erased when
 the character is typed.

 The drivers normally treat either a carriage return or a new-line
 character as terminating an input line, replacing the return with a
 new-line and echoing a return and a line feed. If the CRMOD bit is
 cleared in the local mode word, then the processing for carriage return is
 disabled, and it is simply echoed as a return, and does not terminate
 cooked mode input.

 In the new driver there is a literal-next character (normally undefined)
 which can be typed in both cooked and CBREAK mode preceding any character
 to prevent its special meaning to the terminal handler. This is to be
 preferred to the use of '\' escaping erase and kill characters, but '\' is
 retained with its old function in the new-line discipline.

 The new terminal driver also provides two other editing characters in

AIX Operating System Technical Reference
Input Editing

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4.5 - 1

 normal mode. The word-erase character, normally Ctrl-W, erases the
 preceding word, but not any spaces before it. For the purposes of Ctrl-W,
 a word is defined as a sequence of non-blank characters, with tabs counted
 as blanks. Finally, the reprint character, normally Ctrl-R, retypes the
 pending input beginning on a new line. Retyping occurs automatically in
 cooked mode if characters which would normally be erased from the screen
 are fouled by program output.

AIX Operating System Technical Reference
Input Editing

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4.5 - 2

 2.5.28.4.6 Input Echoing and Redisplay

 The new terminal driver has several modes for handling the echoing of
 terminal input, controlled by bits in a local mode word.

 Hardcopy terminals: When a hardcopy terminal is in use, the LPRTERA bit
 is normally set in the local mode word. Characters which are logically
 erased are then printed out backwards preceded by '\' and followed by '/'
 in this mode.

 Crt terminals: When a CRT terminal is in use, the LCRTBS bit is normally
 set in the local mode word. The terminal driver then echoes the proper
 number of erase characters when input is erased; in the normal case where
 the erase character is a Ctrl-H, this causes the cursor of the terminal to
 back up to where it was before the logically erased character was typed.
 If the input has become fouled due to interspersed asynchronous output,
 the input is automatically retyped.

 Erasing characters from a crt: When a CRT terminal is in use, the LCRTERA
 bit may be set to cause input to be erased from the screen with a
 "backspace-space-backspace" sequence when character or word deleting
 sequences are used. A LCRTKIL bit may be set, causing the input to be
 erased in this manner on line kill sequences as well.

 Echoing of control characters: If the LCTLECH bit is set in the local
 state word, then non-printing (control) characters are normally echoed as
 ^X (for some X) rather than being echoed unmodified; delete is echoed as
 ^?.

 The normal modes for use on CRT terminals are speed-dependent. At speeds
 less than 1200 baud, the LCRTERA and LCRTKILL processing is painfully
 slow, so stty normally just sets LCRTBS and LCTLECH; at speeds of 1200
 baud or greater, all of these bits are normally set. stty summarizes
 these option settings and the use of the new terminal driver as "newcrt."

AIX Operating System Technical Reference
Input Echoing and Redisplay

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4.6 - 1

 2.5.28.4.7 Output Processing

 When one or more characters are written, they are actually transmitted to
 the terminal as soon as previously-written characters have finished
 typing. (As noted above, input characters are normally echoed by putting
 them in the output queue as they arrive.) When a process produces
 characters more rapidly than they can be typed, it will be suspended when
 its output queue exceeds some limit. When the queue has drained down to
 some threshold, the program is resumed. Even parity is normally generated
 on output. The EOT character is not transmitted in cooked mode to prevent
 terminals that respond to it from hanging up; programs using RAW or CBREAK
 mode should be careful.

 The terminal drivers provide necessary processing for cooked and CBREAK
 mode output including delay generation for certain special characters and
 parity generation. Delays are available after backspaces Ctrl-H, form
 feeds Ctrl-L, carriage returns Ctrl-M, tabs Ctrl-I, and new-lines Ctrl-J.
 The driver will also optionally expand tabs into spaces, where the tab
 stops are assumed to be set every eight columns, and optionally convert
 new-lines to carriage returns followed by new-line. These functions are
 controlled by bits in the tty flags word; see "Summary of Modes" in
 topic 2.5.28.4.13.

 The terminal driver provides for mapping between upper and lowercase on
 terminals lacking lowercase, and for other special processing on deficient
 terminals.

 Finally, in the new terminal driver, there is an output flush character,
 normally Ctrl-O, which sets the LFLUSHO bit in the local mode word,
 causing subsequent output to be flushed until it is cleared by a program
 or more input is typed. This character has effect in both cooked and
 CBREAK modes and causes pending input to be retyped if there is any
 pending input. An ioctl to flush the characters in the input and output
 queues, TIOCFLUSH, is also available.

AIX Operating System Technical Reference
Output Processing

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4.7 - 1

 2.5.28.4.8 Uppercase Terminals and Hazeltines

 If the LCASE bit is set in the tty flags, then all uppercase letters are
 mapped into the corresponding lowercase letter. The uppercase letter may
 be generated by preceding it by '\'. Uppercase letters are preceded by a
 '\' when output. In addition, the following escape sequences can be
 generated on output and accepted on input:

 for ' | ~ { }
 use \' \! \^ \(\)

 To deal with Hazeltine terminals, which do not understand that ~ has been
 made into an ASCII character, the LTILDE bit may be set in the local mode
 word; in this case, the character ~ will be replaced with the character `
 on output.

AIX Operating System Technical Reference
Uppercase Terminals and Hazeltines

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4.8 - 1

 2.5.28.4.9 Flow Control

 There are two characters (the stop character, normally Ctrl-S, and the
 start character, normally Ctrl-Q) which cause output to be suspended and
 resumed respectively. Extra stop characters typed when output is already
 stopped have no effect, unless the start and stop characters are made the
 same, in which case output resumes.

 A bit in the flags word may be set to put the terminal into TANDEM mode.
 In this mode, the system produces a stop character (default Ctrl-S) when
 the input queue is in danger of overflowing, and a start character
 (default Ctrl-Q) when the input has drained sufficiently. This mode is
 useful when the terminal is actually another machine that obeys those
 conventions.

AIX Operating System Technical Reference
Flow Control

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4.9 - 1

 2.5.28.4.10 Line Control and Breaks

 There are several ioctl calls available to control the state of the
 terminal line. The TIOCSBRK ioctl will set the break bit in the hardware
 interface causing a break condition to exist; this can be cleared (usually
 after a delay with sleep) by TIOCCBRK. Break conditions in the input are
 reflected as a null character in RAW mode or as the interrupt character in
 cooked or CBREAK mode. The TIOCCDTR ioctl will clear the data terminal
 ready condition; it can be set again by TIOCSDTR.

 When the carrier signal from the dataset drops (usually because the user
 has hung up his terminal) a SIGHUP hangup signal is sent to the processes
 in the distinguished process group of the terminal; this usually causes
 them to terminate. The SIGHUP can be suppressed by setting the LNOHANG
 bit in the local state word of the driver. Access to the terminal by
 other processes is then normally revoked, so any further reads will fail,
 and programs that read a terminal and test for end-of-file on their input
 will terminate appropriately.

 It is possible to ask that the phone line be hung up on the last close
 with the TIOCHPCL ioctl; this is normally done on the outgoing lines and
 dialups.

AIX Operating System Technical Reference
Line Control and Breaks

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4.10 - 1

 2.5.28.4.11 Interrupt Characters

 There are several characters that generate interrupts in cooked and CBREAK
 mode; all are sent to the processes in the control group of the terminal,
 as if a TIOCGPGRP ioctl were done to get the process group and then a
 killpg system call were done, except that these characters also flush
 pending input and output when typed at a terminal (for example,
 TIOCFLUSH). The characters shown here are the defaults; the field names
 in the structures (given below) are also shown. The characters may be
 changed.

 Ctrl-Backspace
 t_intrc (ASCII DEL) generates a SIGINT signal. This is the
 normal way to stop a process which is no longer interesting, or
 to regain control in an interactive program.

 Ctrl-V t_quitc (ASCII SYN) generates a SIGQUIT signal. This is used to
 cause a program to terminate and produce a core image, if
 possible, in the file core in the current directory.

 Ctrl-Z t_suspc (ASCII SUB) generates a SIGTSTP signal, which is used to
 suspend the current process group.

 Ctrl-Y t_dsuspc (ASCII EM) generates a SIGSTSTP signal as Ctrl-Z does,
 but the signal is sent when a program attempts to read the
 Ctrl-Y, rather than when it is typed.

AIX Operating System Technical Reference
Interrupt Characters

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4.11 - 1

 2.5.28.4.12 Job Access Control

 When using the new terminal driver, if a process which is not in the
 distinguished process group of its control terminal attempts to read from
 that terminal, its process group is sent a SIGTTIN signal. This signal
 normally causes the members of that process group to stop. If, however,
 the process is ignoring SIGTTIN or has SIGTTIN blocked, the read will
 return -1 and set errno to EIO.

 When using the new terminal driver with the LTOSTOP bit set in the local
 modes, a process is prohibited from writing on its control terminal if it
 is not in the distinguished process group for that terminal. Processes
 which are blocking or ignoring SIGTTOU signals are excepted and allowed to
 produce output.

 Terminal/window sizes: In order to accommodate terminals and workstations
 with variable-sized windows, the terminal driver provides a mechanism for
 obtaining and setting the current terminal size. The driver does not use
 this information internally, but only stores it and provides a uniform
 access mechanism. When the size is changed, a SIGWINCH signal is sent to
 the terminal's process group so that knowledgeable programs may detect
 size changes. This facility was added in 4.3BSD and is not available in
 earlier versions of the system.

AIX Operating System Technical Reference
Job Access Control

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4.12 - 1

 2.5.28.4.13 Summary of Modes

 Unfortunately, due to the evolution of the terminal driver, there are four
 different structures which contain various portions of the driver data.
 The first of these (sgttyb) contains that part of the information largely
 common between version 6 and version 7 UNIX systems. The second contains
 additional control characters added in version 7. The third is a word of
 local state added in 4BSD, and the fourth is another structure of special
 characters added for the new driver. In the future, a single structure
 may be made available to programs which need to access all this
 information; most programs need not concern themselves with all this
 state.

 Basic modes: sgtty:

 The basic ioctls use the structure defined in <sgtty.h>:

 struct sgttyb {
 char sg_ispeed;
 char sg_ospeed;
 char sg_erase;
 char sg_kill;
 short sg_flags;
 };

 The sg_ispeed and sg_ospeed fields describe the input and output speeds of
 the device according to the following table. Impossible speed changes are
 ignored. Symbolic values in the table are as defined in <sgtty.h>.

 B0 0 (hang up dataphone)
 B50 1 50 baud
 B75 2 75 baud
 B110 3 110 baud
 B134 4 134.5 baud
 B150 5 150 baud
 B200 6 200 baud
 B300 7 300 baud
 B600 8 600 baud
 B1200 9 1200 baud
 B1800 10 1800 baud
 B2400 11 2400 baud
 B4800 12 4800 baud
 B9600 13 9600 baud
 EXTA 14 External A
 EXTB 15 External B

 Code conversion and line control required for IBM 2741's (134.5 baud) must
 be implemented by the user's program. The half-duplex line discipline
 required for the 202 dataset (1200 baud) is not supplied; full-duplex 212
 datasets work fine.

 The sg_erase and sg_kill fields of the argument structure specify the
 erase and kill characters respectively. (Defaults are Ctrl-H and Ctrl-U.)

 The sg_flags field of the argument structure contains several bits that
 determine the system's treatment of the terminal:

 ALLDELAY 0177400 Delay algorithm selection

AIX Operating System Technical Reference
Summary of Modes

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4.13 - 1

 BSDELAY 0100000 Select backspace delays (not implemented):
 BS0 0
 BS1 0100000
 VTDELAY 0040000 Select form-feed and vertical-tab delays:
 FF0 0
 FF1 0040000
 CRDELAY 0030000 Select carriage-return delays:
 CR0 0
 CR1 0010000
 CR2 0020000
 CR3 0030000
 TBDELAY 0006000 Select tab delays:
 TAB0 0
 TAB1 0002000
 TAB2 0004000
 XTABS 0006000
 NLDELAY 0001400 Select new-line delays:
 NL0 0
 NL1 0000400
 NL2 0001000
 NL3 0001400
 EVENP 0000200 Even parity allowed on input
 ODDP 0000100 Odd parity allowed on input
 RAW 0000040 RAW mode: wake up on all character, 8-bit
 interface
 CRMOD 0000020 Map CR into LF; output LF as CR-LF
 ECHO 0000010 Echo (full duplex)
 LCASE 0000004 Map uppercase to lower on input and lower to upper
 on output
 CBREAK 0000002 Return each character as soon as typed
 TANDEM 0000001 Automatic flow control

 The delay bits specify how long transmission stops to allow for mechanical
 or other movement when certain characters are sent to the terminal. In
 all cases, a value of 0 indicates no delay.

 Backspace delays are currently ignored but might be used for Terminet
 300's.

 If a form-feed/vertical tab delay is specified, it lasts for about two
 seconds.

 Carriage-return delay type 1 lasts about .08 seconds and is suitable for
 the Terminet 300. Delay type 2 lasts about .16 seconds and is suitable
 for the VT05 and the TI 700. Delay type 3 is suitable for the concept-100
 and pads lines to be at least nine characters at 9600 baud.

 New-line delay type 1 is dependent on the current column and is tuned for
 Teletype model 37's. Type 2 is useful for the VT05 and is about .10
 seconds. Type 3 is unimplemented and is 0.

 Tab delay type 1 is dependent on the amount of movement and is tuned to
 the Teletype model 37. Type 3, called XTABS, is not a delay at all but
 causes tabs to be replaced by the appropriate number of spaces on output.

 The flags for even and odd parity control parity checking on input and
 generation on output in cooked and CBREAK mode (unless LPASS8 is enabled,
 see below). Even parity is generated on output unless ODDP is set and
 EVENP is clear, in which case odd parity is generated. Input characters
 with the wrong parity, as determined by EVENP and ODDP, are ignored in

AIX Operating System Technical Reference
Summary of Modes

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4.13 - 2

 cooked and CBREAK mode.

 RAW disables all processing save output flushing with LFLUSHO; full 8 bits
 of input are given as soon as it is available; all 8 bits are passed on
 output. A break condition in the input is reported as a null character.
 If the input queue overflows in raw mode, all data in the input and output
 queues are discarded; this applies to both new and old drivers.

 CRMOD causes input carriage returns to be turned into new-lines, and
 output and echoed new-lines to be output as a carriage return followed by
 a line feed.

 CBREAK is a sort of half-cooked (rare?) mode. Programs can read each
 character as soon as typed, instead of waiting for a full line; all
 processing is done except the input editing: character and word erase and
 line kill, input reprint, and the special treatment of \ and EOT are
 disabled.

 TANDEM mode causes the system to produce a stop character (default Ctrl-S)
 whenever the input queue is in danger of overflowing, and a start
 character (default Ctrl-Q) when the input queue has drained sufficiently.
 It is useful for flow control when the "terminal" is really another
 computer which understands the conventions.

 Note: The same "stop" and "start" characters are used for both directions
 of flow control; the t_stopc character is accepted on input as the
 character that stops output and is produced on output as the
 character to stop input, and the t_startc character is accepted on
 input as the character that restarts output and is produced on
 output as the character to restart input.

 Basic ioctls:

 A large number of ioctl calls apply to terminals. Some have the general
 form:

 #include <sgtty.h>

 ioctl(fildes, code, arg)
 struct sgttyb *arg;

 The applicable codes are:

 TIOCGETP Fetch the basic parameters associated with the terminal, and
 store in the pointed-to sgttyb structure.

 TIOCSETP Set the parameters according to the pointed-to sgttyb structure.
 The interface delays until output is quiescent, then throws away
 any unread characters, before changing the modes.

 TIOCSETN Set the parameters like TIOCSETP but do not delay or flush
 input. Input is not preserved, however, when changing to or
 from RAW.

 With the following codes arg is ignored.

 TIOCEXCL Set "exclusive-use" mode: no further opens are permitted until
 the file has been closed.

AIX Operating System Technical Reference
Summary of Modes

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4.13 - 3

 TIOCNXCL Turn off "exclusive-use" mode.

 TIOCHPCL When the file is closed for the last time, hang up the terminal.
 This is useful when the line is associated with an ACU used to
 place outgoing calls.

 With the following codes, arg is a pointer to an int.

 TIOCGETD arg is a pointer to an int into which is placed the current line
 discipline number.

 TIOCSETD arg is a pointer to an int whose value becomes the current line
 discipline number.

 TIOCFLUSH If the int pointed to by arg has a 0 value, all characters
 waiting in input or output queues are flushed. Otherwise, the
 value of the int is for the FREAD and FWRITE bits defined in
 <sys/file.h>; if the FREAD bit is set, all characters waiting in
 input queues are flushed, and if the FWRITE bit is set, all
 characters waiting in output queues are flushed.

 The remaining calls are not available in standard version 7 UNIX. In
 cases where arguments are required, they are described; arg should
 otherwise be given as 0.

 TIOCSTI The argument points to a character which the system pretends had
 been typed on the terminal.

 TIOCSBRK The break bit is set in the terminal.

 TIOCCBRK The break bit is cleared.

 TIOCSDTR Data terminal ready is set.

 TIOCCDTR Data terminal ready is cleared.

 TIOCSTOP Output is stopped as if the stop character had been typed.

 TIOCSTART Output is restarted as if the start character had been typed.

 TIOCGPGRP arg is a pointer to an int into which is placed the process
 group ID of the process group for which this terminal is the
 control terminal.

 TIOCSPGRP arg is a pointer to an int which is the value to which the
 process group ID for this terminal will be set.

 TIOCOUTQ Returns in the int pointed to by arg the number of characters
 queued for output to the terminal.

 FIONREAD Returns in the int pointed to by arg the number of characters
 immediately readable from the argument descriptor. This works
 for files, pipes, and terminals.

 FIONBIO Sets the terminal to be in nonblocking mode. This is equivalent
 to setting the O_NONBLOCK file flag using the fcntl or open
 system call.

 Tchars:

AIX Operating System Technical Reference
Summary of Modes

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4.13 - 4

 The second structure associated with each terminal specifies characters
 that are special in both the old and new terminal interfaces.

 The following structure is defined in <sys/ioctl.h>, which is
 automatically included in <sgtty.h>:

 struct tchars {
 char t_intrc; /* interrupt */
 char t_quitc; /* quit */
 char t_startc; /* start output */
 char t_stopc; /* stop output */
 char t_eofc; /* end-of-file */
 char t_brkc; /* input delimiter (like nl) */
 };

 The default values for these characters are Ctrl-Backspace (DEL), Ctrl-V,
 Ctrl-Q, Ctrl-S, Ctrl-D, and 0xff. A character value of 0xff eliminates
 the effect of that character. The t_brkc character, by default 0xff, acts
 like a new-line in that it terminates a 'line,' is echoed, and is passed
 to the program. The 'stop' and 'start' characters may be the same, to
 produce a toggle effect. It is probably counterproductive to make other
 special characters (including erase and kill) identical.

 The applicable ioctl calls are:

 TIOCGETC Get the special characters and put them in the specified
 structure.

 TIOCSETC Set the special characters to those given in the structure.

 Local mode:

 The third structure associated with each terminal is a local mode word.
 Except for the LNOHANG bit, this word is interpreted only when the new
 driver is in use. The bits of the local mode word are:

 LCRTBS 000001 Backspace on erase rather than echoing erase
 LPRTERA 000002 Printing terminal erase mode
 LCRTERA 000004 Erase character echoes as
 backspace-space-backspace
 LTILDE 000010 Convert ~ to ` on output (for Hazeltine terminals)
 LMDMBUF 000020 Stop/start output when carrier drops.
 LLITOUT 000040 Suppress output translations
 LTOSTOP 000100 Send SIGTTOU for background output
 LFLUSHO 000200 Output is being flushed
 LNOHANG 000400 Don't send hangup when carrier drops
 LETXACK 001000 Diablo style buffer hacking (unimplemented)
 LCRTKIL 002000 BS-space-BS erase entire line on line kill
 LPASS8 004000 Pass all 8 bits through on input, in any mode
 LCTLECH 010000 Echo input control chars as ^X, delete as ^?
 LPENDIN 020000 Retype pending input at next read or input
 character
 LDECCTQ 040000 Only Ctrl-Q restarts output after Ctrl-S
 LNOFLSH 100000 Inhibit flushing of pending I/O when an interrupt
 character is typed.

 The applicable ioctl functions are:

AIX Operating System Technical Reference
Summary of Modes

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4.13 - 5

 TIOCLBIS arg is a pointer to an int whose value is a mask containing the
 bits to be set in the local mode word.

 TIOCLBIC arg is a pointer to an int whose value is a mask containing the
 bits to be cleared in the local mode word.

 TIOCLSET arg is a pointer to an int whose value is stored in the local
 mode word.

 TIOCLGET arg is a pointer to an int into which the current local mode
 word is placed.

 Local special chars:

 The final control structure associated with each terminal is the ltchars
 structure which defines control characters for the new terminal driver.
 Its structure is:

 struct ltchars {
 char t_suspc; /* stop process signal */
 char t_dsuspc; /* delayed stop process signal */
 char t_rprntc; /* reprint line */
 char t_flushc; /* flush output (toggles) */
 char t_werasc; /* word erase */
 char t_lnextc; /* literal next character */
 };

 The default values for these characters are Ctrl-Z, Ctrl-Y, Ctrl-R,
 Ctrl-O, Ctrl-W, and undefined. A value of 0xff disables the character.

 The applicable ioctl functions are:

 TIOCSLTC args is a pointer to an ltchars structure which defines the new
 local special characters.

 TIOCGLTC args is a pointer to an ltchars structure into which is placed
 the current set of local special characters.

 Window/terminal sizes: Each terminal has provision for storage of the
 current terminal or window size in a winsize structure, with this format:

 struct winsize {
 unsigned short ws_row; /* rows, in characters */
 unsigned short ws_col; /* columns, in characters */
 unsigned short ws_xpixel; /* horizontal size, pixels */
 unsigned short ws_ypixel; /* vertical size, pixels */
 };

 A value of 0 in any field is interpreted as "undefined"; the entire
 structure is zeroed on final close.

 The applicable ioctl functions are:

 TIOCGWINSZ
 arg is a pointer to a struct winsize into which is placed the
 current terminal or window size information.

 TIOCSWINSZ
 arg is a pointer to a struct winsize which is used to set the
 current terminal or window size information. If the new

AIX Operating System Technical Reference
Summary of Modes

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4.13 - 6

 information is different than the old information, a SIGWINCH
 signal is sent to the terminal's process group.

AIX Operating System Technical Reference
Summary of Modes

¦ Copyright IBM Corp. 1985, 1991
2.5.28.4.13 - 7

 2.5.28.5 Interaction of AIX and BSD Interfaces
 The information which describes the state and controls the behavior of the
 AIX PS/2 TTY driver is based upon the standard termio structure used in
 AIX, supplemented with structures from the 4.3BSD version of UNIX. A
 collection of ioctl functions are used to fetch and store these
 structures. Although the internal implementation of the TTY driver uses
 one structure to hold the current state of control information for each
 TTY port, this full state cannot be captured or modified all at once.

 However, the termio interface (ioctl commands TCGETA, TCSETA, and so
 forth) gives access to most of the TTY driver state. For most
 applications, this interface is more than sufficient and using it always
 produces the expected results. If a TCGETA is used to save a copy of the
 control state before changes are made, a subsequent TCSETA of that saved
 copy restores the interface to its original condition for all elements of
 the state which are accessible through the termio structure. By contrast,
 the BSD TIOCGETP and TIOCSETP ioctls work with sgtty structures that are
 only mapped onto the termio structure. Since there is less information in
 a sgtty structure than in a termio structure, the interface cannot be
 completely saved and restored with these ioctls. Even if you save a copy
 of the structure returned by TIOCGETP before you make changes to the TTY
 control state, you may not be able to restore the original state with a
 TIOCSETP using the saved information. This limitation is a consequence of
 the fact that the AIX termio interface contains more function than the BSD
 sgtty interface.

 For source code compatibility the implementation of BSD ioctl support is
 usually adequate; problems due to the differences in the termio and sgtty
 interfaces are rare. In fact, problems mostly arise when a user has put
 the TTY driver in an unusual state, such as when OPOST is off but ICANON
 is on. This is because certain sgtty operations, such as setting RAW
 mode, affect many termio flags (for example, ICANON, ISIG, MIN, TIME,
 OPOST). Since little history is kept in the TTY driver (only enough to
 ensure that the serial communication parameters of asynchronous
 communication ports are maintained) turning on and off certain sgtty
 modes, such as RAW mode, effectively resets the affected termio modes to
 the default values. This is not a problem if the termio modes were set to
 the default values to begin with, but if they were in an unusual state
 unexpected results may occur.

 The basic input editing control characters accessed with the BSD TIOCGETC
 and TIOCSETC ioctls are mapped onto the corresponding termio (c_cc[])
 characters.

 In addition to the basic ioctls and structures, there are ioctls and
 structures used to control certain advanced features of the TTY driver.
 These include advanced input editing (from BSD), job control
 signal-generating characters (also from BSD), and TTY paging (from earlier
 versions of AIX). Even though these features cannot be controlled with
 the termio (TCGETA and TCSETA) ioctls, there are still some interactions
 between the BSD advanced editing features and certain termio modes, as
 described below.

 The BSD local special characters (struct ltchars) can only be accessed
 (and can be completely saved and restored with) the TIOCGLTC and TIOCSLTC
 ioctls.

 The BSD local mode word accessed with the TIOCLGET and TIOCLSET ioctls is
 a collection of bits. Setting or resetting some of these bits changes
 related termio bits (for example, LCRTERA and ECHOE are related). Some of

AIX Operating System Technical Reference
Interaction of AIX and BSD Interfaces

¦ Copyright IBM Corp. 1985, 1991
2.5.28.5 - 1

 these bits control modes which are effected by the state of certain termio
 modes (for example, the actions implied by LCRTKIL happen only when ICANON
 is true), but the state of these bits cannot be changed by changing termio
 modes (just as turning ICANON on and off does not effect the setting of
 ECHOK). If you intend to change any bits in the local mode word other
 than LTILDE, LTOSTOP, LCRTKIL and LCTLECH, you should use TCGETA and
 TCSETA to save the termio modes beforehand and restore them afterwards, as
 well as saving and restoring the original value of the local mode word, to
 ensure consistency. The effect of setting LPASS8 is to set (in the termio
 interface) CSIZE to CS8, PARENB to false, and ISTRIP to false. When
 LPASS8 is disabled, CSIZE is set to CS7 and ISTRIP is turned on, PARENB is
 turned on and PARODD is turned off. The High Function Terminal is
 normally in LPASS8 mode.

 In order to ensure the consistency of the user's TTY interface, the
 various portions of the TTY driver state should be saved and restored in
 the order shown below. You are not required to save and restore higher
 numbered structures which you do not intend to change, but if you wish to
 change a higher numbered structure you must save and restore the lower
 numbered structure for complete integrity. Structures and ioctls numbered
 identically can be saved and restored independently, in any order.
 However, if you don't change TTY paging you need not save and restore it.

 1 termio structure, TCGETA
 1 TTY paging, TCGLEN
 1 local special characters, TIOCGLTC
 2 sgtty structure, TIOCGETP (see note below)
 2 BSD editing chars, TIOCGETC
 3 local mode word, TIOCLGET/TIOCLSET
 2 BSD editing chars, TIOCSETC
 2 sgtty structure, TIOCSETP
 1 local special characters, TIOCSLTC
 1 TTY paging, TCSLEN
 1 termio structure, TCSETA

 Note: Changes to the local mode word may affect the sgtty structure, but
 if you do not use the sgtty structure, it is sufficient to save and
 restore the local mode word and the termio structure. In general,
 the sgtty structure is a subset of the termio structure and they
 are used in similar ways by programs that only use one or the
 other. A program should not use both. However, if a program is
 being ported to AIX from a system which uses sgtty, and the program
 cannot be modified to use termio instead of sgtty, a TCGETA to save
 the termio values before any sgtty operations are done and a TCSETA
 to restore those values before the program exits should be added to
 the program. If the program is intended to leave the tty in a
 different state when it exits then it should be recoded to use the
 termio ioctls.

 There are several redundant ioctls and/or bits in various control
 structures. In general, these can be used interchangeably. For example,
 TIOCFLUSH is equivalent to TCFLSH; HUPCL and LNOHANG are inverses. But
 the rules for priority of state manipulation given above must be followed
 for information in control structures.

 Files
 /dev/tty*
 /usr/include/sys/ttmap.h

 Related Information

AIX Operating System Technical Reference
Interaction of AIX and BSD Interfaces

¦ Copyright IBM Corp. 1985, 1991
2.5.28.5 - 2

 In this book: "ioctlx, ioctl, gtty, stty" in topic 1.2.137 and "hft" in
 topic 2.5.11.

 The csh, getty, and stty commands in AIX Operating System Commands
 Reference.

AIX Operating System Technical Reference
Interaction of AIX and BSD Interfaces

¦ Copyright IBM Corp. 1985, 1991
2.5.28.5 - 3

 2.5.29 trace

 Purpose
 Supports the event-tracing device driver.

 Synopsis
 #include <sys/trace.h>

 Description
 The /dev/unixtrace and /dev/appltrace files are special files that allow
 event records generated within the kernel or application programs to be
 passed to a user program so that the activity of a driver or other system
 routines can be monitored for debugging purposes. They are found in all
 AIX systems.

 The trace driver supports open, close, read, and ioctl system calls. The
 ioctl system call is invoked as follows:

 #include <sys/trace.h>
 ioctl(fildes, cmd, &arg);
 int fildes, cmd;

 struct tr_struct {
 unsigned operation; /* TRCSET or TRCRSET */
 unsigned channels; /* enabled channels */
 ushort entsize; /* reserved */
 struct trace_event * bufaddr; /* reserved */
 ulong bufsize; /* buffer size to use */
 union { /* reserved */
 ushort vm_quit;
 struct {
 char vmid;
 unsigned intr_on_quit : 1;
 unsigned mpx_no : 7;
 } xvf;
 } vf;
 } arg;

 Valid values of the cmd parameter are:

 TRCSETC Sets trace parameters. If operation is TRCSET, then this command
 instructs the driver to use the parameters provided in structure
 arg to enable tracing. bufsize indicates the size of the buffer
 to allocate (in number of 1K blocks) and cannot be changed once
 it is set. The channels field is a bit map indicating active and
 inactive channels. As an example, bit 0 corresponds to channel
 31, bit 1 corresponds to channel 30, and bit 31 corresponds to
 channel 0. If operation is TRCRSET, then this command instructs
 the driver to disable all tracing.

 TRCGETC Returns the current status of the trace in the structure
 indicated by arg.

 The records returned from the trace device are structures with the
 following format:

 struct trace_event {
 time_t stamp; /* time stamp */
 short timeext; /* time stamp extension */

AIX Operating System Technical Reference
trace

¦ Copyright IBM Corp. 1985, 1991
2.5.29 - 1

 short seqno[2]; /* two 16-bit sequence number digits */
 short hookid; /* channel no. and trace event code */
 unsigned pid; /* process id */
 short iodn; /* always -1 */
 short iocn; /* always -1 */
 union {
 char xcdata[20]; /* more data, depending on code */
 int xidata[5];
 } xdata;
 };

 The following subchannels are assigned:

 Channel
 Number Assignment

 22 Process system calls (acct, alarm, brk, exec, fork, fstat,
 getgid, getgroups, getpid, getuid, kill, lockf, nice, pause,
 pipe, plock, profil, ptrace, reboot, setgid, setgroups,
 setpgrp, setuid, times, ulimit, usrinfo, wait)

 23 Directory handling system calls (chdir, chroot, link, mknod,
 unlink)

 24 I/O system calls (access, chmod, chown, close, creat, dup,
 fclear, fcntl, fsync, ftrunc, ioctl, lseek, open, read,
 umask, uname, utime, write)

 25 File system system calls (mount, stat, sync, ustat, umount)

 26 Time system calls (stime, time)

 27 Signal system calls (signal, sigblock, sigpause, sigsetmask,
 sigstack, sigvec)

 28 Semaphore system calls (semctl, semget, semop)

 29 Message system calls (msgctl, msgget, msgop)

 30 Shared memory system calls (shmctl, shmget, shmop)

 31 User-defined events

 Files

 /dev/unixtrace
 /dev/appltrace

 Related Information
 In this book: "trace_on" in topic 1.2.307, "trcunix" in topic 1.2.308,
 and "rasconf" in topic 2.3.50.

 The trace command in AIX Operating System Commands Reference.

 The discussion of trace in AIX Programming Tools and Interfaces.

AIX Operating System Technical Reference
trace

¦ Copyright IBM Corp. 1985, 1991
2.5.29 - 2

 2.5.30 tty

 Purpose
 Supports the controlling terminal interface.

 Synopsis

 #include<sys/hft.h>
 #include<sys/termio.h>
 #include<sys/tty.h>

 Description
 For each process, the /dev/tty special file is a synonym for the
 associated control terminal. It is found in all AIX systems. This file
 is useful to programs or shell sequences that wish to ensure writing
 messages on the terminal regardless of how output is redirected. It can
 also be used for programs that demand the name of a file for output when
 typed output is desired, and to find out what terminal is currently in
 use.

 Files

 /dev/tty
 /dev/tty*

 Related Information
 In this book: "hft" in topic 2.5.11.

AIX Operating System Technical Reference
tty

¦ Copyright IBM Corp. 1985, 1991
2.5.30 - 1

 2.6 Chapter 6. Advanced Display Graphics Support Library

 Subtopics
 2.6.1 About This Chapter
 2.6.2 Overview
 2.6.3 Functional Categories of Subroutines
 2.6.4 Writing GSL Application Programs
 2.6.5 gsbply
 2.6.6 gscarc
 2.6.7 gscatt
 2.6.8 gsccnv
 2.6.9 gscir
 2.6.10 gsclrs
 2.6.11 gscmap
 2.6.12 gscrca
 2.6.13 gsdjply
 2.6.14 gseara
 2.6.15 gsearc
 2.6.16 gsecnv
 2.6.17 gsecur
 2.6.18 gsell
 2.6.19 gseply
 2.6.20 gsevds
 2.6.21 gseven
 2.6.22 gsevwt
 2.6.23 gsfatt
 2.6.24 gsfci
 2.6.25 gsfell
 2.6.26 gsfply
 2.6.27 gsfrec
 2.6.28 gsgtat
 2.6.29 gsgtxt
 2.6.30 gsinit
 2.6.31 gslatt
 2.6.32 gslcat
 2.6.33 gsline
 2.6.34 gslock
 2.6.35 gslop
 2.6.36 gsmask
 2.6.37 gsmatt
 2.6.38 gsmcat
 2.6.39 gsmcur
 2.6.40 gsmult
 2.6.41 gspcls
 2.6.42 gsplym
 2.6.43 gspoly
 2.6.44 gspp
 2.6.45 gsqdsp
 2.6.46 gsqfnt
 2.6.47 gsqgtx
 2.6.48 gsqlext
 2.6.49 gsqloc
 2.6.50 gsrrst
 2.6.51 gsrsav
 2.6.52 gstatt
 2.6.53 gsterm
 2.6.54 gstext
 2.6.55 gsulns
 2.6.56 gsunlk
 2.6.57 gsxblt

AIX Operating System Technical Reference
Chapter 6. Advanced Display Graphics Support Library

¦ Copyright IBM Corp. 1985, 1991
2.6 - 1

 2.6.58 gsxcnv
 2.6.59 gsxptr
 2.6.60 gsxtat
 2.6.61 gsxtxt

AIX Operating System Technical Reference
Chapter 6. Advanced Display Graphics Support Library

¦ Copyright IBM Corp. 1985, 1991
2.6 - 2

 2.6.1 About This Chapter
 This chapter describes the Advanced Display Graphics Support Library
 (GSL), which is unique to AIX PS/2. This application program interfaces
 to various output devices.

 Subroutines, located in the libgsl.a library, are provided by the GSL.
 The gslerrno.h header file must be included with a #include statement to
 provide return values for the GSL subroutines.

 Notes:

 1. All GSL parameters are passed by reference, making the subroutines
 compatible with FORTRAN, in which parameters are always passed by
 reference. All parameters are therefore passed as pointers in C and
 are declared as VAR parameters in Pascal. The name of a GSL
 subroutine should be followed by an _ (underscore) in C and Pascal,
 but not in FORTRAN for compatibility with the RT. The _ (underscore)
 is optional on AIX PS/2 for all three languages.

 2. Applications can be linked to either a shared or an unshared version
 of the GSL library. Before writing an application program that uses
 the GSL, see "Using the GSL Libraries" in topic 2.6.4.3.

AIX Operating System Technical Reference
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
2.6.1 - 1

 2.6.2 Overview
 This overview section contains information to help you become acquainted
 with the terms, major concepts, and functionality of the Graphics Support
 Library. The first section defines special GSL terms. The next section
 contains descriptions of the functionality provided by the GSL and an
 explanation of some of the important concepts needed to use the GSL.
 Later sections describe the attributes, cursor operations, and coordinate
 clipping and transformation capabilities of the GSL. Refer to the
 following list of contents for the first page of each of these
 discussions.

 Subtopics
 2.6.2.1 Definitions
 2.6.2.2 Concepts
 2.6.2.3 Attributes
 2.6.2.4 Cursor Operations
 2.6.2.5 Coordinate Clipping and Transformation

AIX Operating System Technical Reference
Overview

¦ Copyright IBM Corp. 1985, 1991
2.6.2 - 1

 2.6.2.1 Definitions

 The following terms are defined for this chapter:

 Frame buffer A display adapter frame buffer is memory storage
 containing a representation of a display image.

 Geometric text The two types of text supported by the GSL are annotated
 or standard text, and geometric text, which is also
 referred to as a programmable character set (PCS) or
 stroke text. For more information on annotated text, see
 "fonts" in topic 2.3.19.

 KSR Mode KSR (keyboard send-receive) Mode causes a virtual terminal
 to act like a standard ASCII terminal, with some
 extensions, for both input and output. See "hft" in
 topic 2.5.11 for more information about KSR Mode.

 Monitor Mode In Monitor Mode, a virtual terminal lets an application
 directly access the display adapter without conflict with
 the standard virtual terminal output mechanism. Further
 information about Monitor Mode is found under "hft" in
 topic 2.5.11.

 Pixel A pixel, or picture element, is one point in the frame
 buffer or on the display.

 Pixel map Also known as a pixmap, this is an object that defines the
 characteristics of a rectangle. See "gsxblt" in
 topic 2.6.57 for a list of the elements defined by a pixel
 map.

 Ring Buffer A virtual terminal in Monitor Mode can share a ring buffer
 with an application and place data from input devices in
 the buffer. The ring buffer mechanism dramatically
 shortens the input data path from the virtual terminal to
 the application.

AIX Operating System Technical Reference
Definitions

¦ Copyright IBM Corp. 1985, 1991
2.6.2.1 - 1

 2.6.2.2 Concepts

 The GSL allows applications to perform graphics operations without the
 need to directly manipulate the underlying hardware. The GSL also
 supports the display of fixed-spaced characters in text.

 The GSL assumes that an application using it runs in its own virtual
 terminal. A virtual terminal can operate in either KSR Mode (the default)
 or in Monitor Mode. An application may use Monitor Mode and the ring
 buffer to derive its own graphics interface. The GSL provides an
 interface that lets a user generate graphics interactively without
 detailed knowledge of the display adapter and input data formats. The GSL
 works only with the application virtual terminal in Monitor Mode. Part of
 the GSL initialization is to place the virtual terminal in Monitor Mode.
 This forces some restrictions on the use of the display adapter. The
 application virtual terminal can be one of several virtual terminals
 opened by a user, but only one virtual terminal can be active for input at
 any time. Several virtual terminals can be active for output at any time
 if multiple displays are attached, with one virtual terminal active for
 output on each display. All virtual terminals but one, however, are
 inactive for input at a given time. The active virtual terminal for input
 can write to the display adapter and receive input from devices.

 Applications must respond to user requests to become active or to release
 control of the display (become inactive). The transfer of control of the
 display occurs with two signals (a release request, SIGRETRACT, and a
 grant notification, SIGGRANT) and a write to the HFT device driver to
 acknowledge the release signal. After initialization, the GSL processes
 these two signals and writes to the device driver so that it can determine
 when it can and cannot write to the adapter. Routines that an application
 supplies that get called by the GSL signal handlers can be identified by
 the application during GSL initialization. The application can therefore
 respond appropriately to requests to be active or inactive.

 The GSL provides a set of graphics output functions. Applications can
 supply additional functions that access the display adapter directly.
 Such an application routine can function only when the virtual terminal is
 active, and the virtual terminal must not become inactive while the
 routine is operating. The GSL provides a function that indicates to the
 application whether its virtual terminal is active or inactive, and if
 active, postpones GSL processing of the SIGRETRACT signal until the
 application has finished modifying the display. Another function causes
 the GSL to resume processing of the signal.

 One of the GSL output functions or an application-supplied output function
 may be operating at the time of the SIGRETRACT signal. If this is the
 case, the function only has 30 seconds (real time) to complete the adapter
 operation and acknowledge the SIGGRANT after receiving that signal. After
 the 30 seconds, the HFT device driver sends a SIGKILL signal that
 terminates the virtual terminal. The application should be designed with
 this consideration in mind, or the user should be made aware of the time
 limit for applications that involve switching virtual terminals and have
 lengthy drawing operations.

 The virtual terminal subsystem dictates that when a Monitor Mode virtual
 terminal becomes inactive and then active, the application must restore
 the display adapter state. At initialization the application can direct
 the GSL to use either of two mechanisms for restoration.

 GSL Control

AIX Operating System Technical Reference
Concepts

¦ Copyright IBM Corp. 1985, 1991
2.6.2.2 - 1

 The GSL saves the frame buffer and the adapter state, such as the color
 map, at the time of the SIGRETRACT and restores both at the time of the
 SIGGRANT. Unfortunately, saving and restoring large frame buffers can
 be relatively expensive in terms of time and virtual storage space.
 Under this mechanism, an output operation initiated while the
 application virtual terminal is inactive suspends the application until
 its virtual terminal becomes active. If the virtual terminal is
 inactive when the application requests postponement of SIGRETRACT
 signal handling, the GSL suspends the application until the virtual
 terminal becomes active.

 Application Control
 The GSL saves the adapter state, but not the frame buffer, at the time
 of the SIGRETRACT request and calls an application routine (if
 provided) at the time of the SIGGRANT. This routine could process the
 applications data structure(s) to reconstruct the frame buffer. Under
 this mechanism, an output operation initiated while the application
 virtual terminal is inactive causes the output routine to return
 without writing to the display adapter. The routine returns a code
 indicating an invalid status in this circumstance. If the virtual
 terminal is inactive when the application requests postponement of
 SIGRETRACT signal handling, the GSL sends a code indicating that the
 application cannot access the display.

 Regardless of the mechanism chosen, the GSL calls an application routine
 (if provided) at the time of the SIGRETRACT request and calls an
 application routine (if provided) at the time of the SIGGRANT
 notification. One or both restoration routines can be chosen for an
 application as appropriate.

 An application cannot write to standard output (using system write) on a
 virtual terminal that is in Monitor Mode. However, at initialization, the
 GSL accepts a specified file descriptor as the Monitor Mode virtual
 terminal from the application, and directs output to this file descriptor.
 An application can use more than one virtual terminal, and the virtual
 terminals can be mapped to different displays simultaneously. This
 reserves standard output for other uses such as dbx and sdb, symbolic
 debuggers on the PS/2 and RT, respectively.

 When the ring buffer mechanism is used for processing input, the virtual
 terminal places input from the keyboard, locator, LPFK, valuator, or pick
 device in a ring buffer shared between the application and the virtual
 terminal. The virtual terminal causes the generation of the SIGMSG signal
 when it places the data for an input event in an empty ring buffer. At
 initialization, an application can select either method. However, the GSL
 supports only the ring buffer mechanism to optimize performance. If used,
 a ring buffer must be allocated by the application and made available to
 the GSL at initialization. The GSL sets up the virtual terminal linkage
 to the buffer and sets up a signal handler to catch the SIGMSG signal that
 it uses to satisfy application requests for input.

 The application must then let the GSL process the ring buffer input
 pointer and parse the input events by invoking the appropriate input
 function. Whenever the application has selected the ring buffer
 mechanism, the application can use GSL input to enable and disable input
 events.

 The application can provide a signal handler to catch the SIGMSG signal if
 all of the following conditions are met:

AIX Operating System Technical Reference
Concepts

¦ Copyright IBM Corp. 1985, 1991
2.6.2.2 - 2

 1. The signal handler is set up after the GSL is initialized.

 2. The signal handler is set up using the SIGVEC enhanced signal
 function. SIGVEC returns the address of the GSL signal handler.

 3. The signal handler must indirectly call the GSL signal handler before
 doing anything else. The indirect call uses the address returned by
 the SIGVEC signal.

 Enhanced signals are used to block further reporting of the signal being
 processed until the signal handler returns. When the signal handler
 returns, the signal is automatically reset and unblocked.

 When keyboard events are enabled, the virtual terminal puts all keystrokes
 in the ring buffer, including those that may normally have special meaning
 to the operating system (such as break). The application can let the
 system continue processing certain keystrokes by setting the virtual
 terminal break map.

 For further information on Monitor Mode operation, see "Monitor Mode
 (MOM)" in topic 2.5.11.4.2.

AIX Operating System Technical Reference
Concepts

¦ Copyright IBM Corp. 1985, 1991
2.6.2.2 - 3

 2.6.2.3 Attributes

 A set of attributes that determine how a function works, or determine
 appearance characteristics on a display, govern all GSL operations
 affecting the frame buffer. Attributes are characteristics that do not
 change often and therefore do not need to be parameters for the output
 functions. Some common attributes govern all output operations while
 others are unique to a particular category of output.

 Subtopics
 2.6.2.3.1 Common Attributes
 2.6.2.3.2 Unique Attributes

AIX Operating System Technical Reference
Attributes

¦ Copyright IBM Corp. 1985, 1991
2.6.2.3 - 1

 2.6.2.3.1 Common Attributes

 Color display adapters may be considered to have multiple storage planes
 or layers forming the frame buffer, with each plane acting like the single
 frame buffer for a bilevel monochrome display. When writing a pixel into
 a multiplane frame buffer, one may write to all the planes or to a subset.
 The GSL plane mask attribute identifies which planes of the frame buffer
 the GSL functions modify.

 The color of a pixel on the display is ultimately determined by the color
 value of the pixel stored in the frame buffer. There are VLT-based
 adapters, in which the pixel color value serves as an index into a video
 lookup table (VLT). The entry in the VLT for an index contains a value
 for each of the red, green, and blue digital-to-analog converters (DACs)
 on the adapter, which drive the color guns in the display tube. The
 actual color resulting from a particular pixel color value (VLT index)
 depends on the values loaded into the VLT, which may be any values. There
 are also true color adapters in which the pixel color value actually
 drives the DACs, without the level of indirection forced by the VLT.

 An application can determine the mapping from the color used in operations
 on the frame buffer to the actual color shown on a display by using the
 GSL color map attribute. For VLT-based adapters, the GSL actually loads
 the adapter VLT, using color values provided by the application; the color
 used by the application is really an index into the VLT. For true color
 adapters, the color map serves strictly as an internal mapping from the
 color value specified to the actual color value loaded into the frame
 buffer, and the color used by the application is an index into the mapping
 table.

 The application may set the color map by providing an array of color
 specifications. The maximum number of specifications is dependent on the
 display adapter and is determined by the number of VLT entries, or by the
 number of bit planes for true color adapters. The color specification for
 each color index comprises three intensity values, one each for the red,
 green, and blue DACs. Each intensity value must range from 0 - 0x3FFF.
 For a VLT-based display adapter, the GSL maps the color specification to
 the nearest available color produced by the adapter; the GSL truncates the
 intensity value for a color to produce a value equal in resolution to the
 DAC for that color.

 The logical operation attribute determines how the GSL combines the pixels
 it generates with the current contents of the frame buffer. Sixteen
 Boolean combinations exist between a source (the GSL-produced pixels) and
 a destination frame buffer, but can only be used with certain display
 adapters. The GSL does, however, ensure support for the most recognizable
 and useful Boolean combinations (REPLACE, AND, OR, and Exclusive-or)
 regardless of hardware support.

 The following table shows the categories of functions to which the common
 attributes apply.

 +---+
 ¦ Figure 6-1. Categories of Functions to Which Common ¦
 ¦ Attributes Apply ¦
 +---¦
 ¦ Area ¦ Output ¦ Pixel Block ¦ Cursor ¦
 +------------------+--------------+--------------+--------------¦
 ¦ Plane mask ¦ yes ¦ yes ¦ yes ¦
 +------------------+--------------+--------------+--------------¦

AIX Operating System Technical Reference
Common Attributes

¦ Copyright IBM Corp. 1985, 1991
2.6.2.3.1 - 1

 ¦ Color map ¦ yes ¦ yes ¦ yes ¦
 +------------------+--------------+--------------+--------------¦
 ¦ Logical ¦ yes ¦ no ¦ no ¦
 ¦ operation ¦ ¦ ¦ ¦
 +---+

AIX Operating System Technical Reference
Common Attributes

¦ Copyright IBM Corp. 1985, 1991
2.6.2.3.1 - 2

 2.6.2.3.2 Unique Attributes

 Some unique attributes, along with the plane mask, color map, and logical
 operation attributes, govern the GSL functions that affect the frame
 buffer.

 Lines
 The GSL draws all lines a single pixel thick. The following unique
 attributes that govern line drawing can be changed:

 Line style Determines the pattern appearance of the line.
 The line style attribute provides for solid,
 dashed, dotted, dashed-dotted, and
 dashed-dotted-dotted lines, and for line patterns
 defined by the application.

 Line color Is an index into the color map table (or VLT).

 Markers
 The marker attributes determine characteristics of symbols used to
 mark points. The GSL provides a set of predefined markers for the
 application to select. A marker can be custom defined by the
 application.

 The application may change the following unique attributes that
 govern marker operations:

 Marker color Sets the color of a marker, and is an index into
 the color map table (or VLT).

 Marker origin Sets the point in the marker pattern that is
 placed at the position indicated by the
 application for the polymarker subroutine.

 Marker style Selects predefined or custom markers.

 Marker width Defines the width of the pattern for a custom
 marker.

 Marker height Defines the height of the pattern for a custom
 marker.

 Marker pattern Sets the form of the custom marker, and is a bit
 array defined by the application.

 Text
 The GSL places characters with a transparent background. That is,
 only the strokes in a character change data in the frame buffer.
 These unique attributes govern text operations and can be set by an
 application:

 Text font Sets which of the available fonts is used for the
 characters.

 Text color Sets the color of the text and is an index into
 the color map table or VLT.

 Code page Sets the page from which graphic symbols are
 drawn.

AIX Operating System Technical Reference
Unique Attributes

¦ Copyright IBM Corp. 1985, 1991
2.6.2.3.2 - 1

 Baseline direction Sets the direction in which characters are
 written to the baseline for the text. The
 baseline for the string is placed at the location
 given in the command to write text.

 Xtext
 The GSL provides a high-performance text drawing routine. This
 routine draws both the foreground and background for each character.
 In addition, clipping and logical operations are provided. Note
 that, unlike the standard GSL annotated text, xtext does not provide
 the baseline direction attribute. Xtext is always drawn from left to
 right.

 xtext foreground color
 Sets the color of the foreground of the text and
 is an index into the color map table or VLT.

 xtext background color
 Sets the color of the background of the text and
 is an index in the color map table or VLT.

 xtext logical operation
 Determines how the GSL combines the pixels of the
 text with the current contents of the frame
 buffer.

 xtext clip box Specifies a rectangular area of pixels in the
 frame. The gsxtxt subroutine will not place full
 or partial characters outside this rectangular
 area.

 Filled Areas
 The edges of an area are treated as part of the area and only define
 the area to be filled. The GSL does not treat the edges of an area
 as lines. The application may change the following unique attributes
 that govern fill operations:

 Fill color Provides an index into the color map table (or
 VLT).

 Fill pattern Specifies the identifier for the pattern used to
 fill the area.

 Cursor
 The GSL provides a single cursor for the application at any given
 time. The application can use either a single-color cursor or a
 multicolor, masked cursor. The single-color cursor provides higher
 performance and allows a larger cursor pattern. The multicolor
 cursor provides foreground and background colors, clipping, logical
 operations, and masking.

 The application may change the unique attributes that govern cursor
 operations. For the single-color cursor, these attributes are:

 Cursor pattern Sets the cursor shape and consists of a bit array
 defined by the application. The minimum and
 maximum sizes for the cursor pattern are
 device-dependent and available to the
 application.

AIX Operating System Technical Reference
Unique Attributes

¦ Copyright IBM Corp. 1985, 1991
2.6.2.3.2 - 2

 Cursor color Sets the cursor color and provides an index into
 the color map table or VLT.

 Cursor origin Sets the point in the cursor pattern that is
 placed at the position indicated by the
 application during cursor movement.

 For the multicolor cursor, these attributes are:

 Multicolor cursor pattern
 Sets the cursor shape and consists of a bit array
 defined by the application. The minimum size is
 1 and the maximum size is 32 for both width and
 height.

 Multicolor cursor foreground color
 Sets the cursor foreground color and provides an
 index into the VLT.

 Multicolor cursor background color
 Sets the cursor background color and provides an
 index into the VLT.

 Multicolor cursor origin
 Sets the point in the cursor pattern that is
 placed at the position indicated by the
 application during cursor movement.

 Multicolor cursor mask
 Sets the mask to be applied to the multicolor
 cursor pattern, using a bit array defined by the
 application. The mask size must match the size
 of the multicolor cursor pattern.

 Multicolor cursor logical operation
 Defines how the GSL combines the pixels of the
 multicolor cursor with the current contents of
 the frame buffer.

 At GSL initialization, some of the attributes receive default values. The
 attributes and their default values are listed in the following table:

 +--+
 ¦ Figure 6-2. Default Attribute Values ¦
 +--¦
 ¦ Attribute ¦ Default Value ¦
 +---------------------------------------+----------------------¦
 ¦ Color map ¦ Device dependent ¦
 +---------------------------------------+----------------------¦
 ¦ Plane mask ¦ All planes enabled ¦
 +---------------------------------------+----------------------¦
 ¦ Logical operation ¦ 3 (replace) ¦
 +---------------------------------------+----------------------¦
 ¦ Line style ¦ Solid ¦
 +---------------------------------------+----------------------¦
 ¦ Line color (index) ¦ 7 (white) ¦
 +---------------------------------------+----------------------¦
 ¦ Font ¦ Device dependent ¦

AIX Operating System Technical Reference
Unique Attributes

¦ Copyright IBM Corp. 1985, 1991
2.6.2.3.2 - 3

 +---------------------------------------+----------------------¦
 ¦ Code page ¦ P0 ¦
 +---------------------------------------+----------------------¦
 ¦ Baseline direction ¦ 0 (left to right) ¦
 +---------------------------------------+----------------------¦
 ¦ Text color (index) ¦ 7 (white) ¦
 +---------------------------------------+----------------------¦
 ¦ Fill color (index) ¦ 7 (white) ¦
 +---------------------------------------+----------------------¦
 ¦ Fill pattern ¦ 0 (solid) ¦
 +---------------------------------------+----------------------¦
 ¦ Cursor pattern ¦ Undefined ¦
 +---------------------------------------+----------------------¦
 ¦ Cursor color ¦ Undefined ¦
 +---------------------------------------+----------------------¦
 ¦ Cursor origin ¦ Undefined ¦
 +---------------------------------------+----------------------¦
 ¦ Multicolor cursor pattern ¦ Undefined ¦
 +---------------------------------------+----------------------¦
 ¦ Multicolor cursor foreground color ¦ Undefined ¦
 +---------------------------------------+----------------------¦
 ¦ Multicolor cursor background color ¦ Undefined ¦
 +---------------------------------------+----------------------¦
 ¦ Multicolor cursor origin ¦ Undefined ¦
 +---------------------------------------+----------------------¦
 ¦ Multicolor cursor mask ¦ Undefined ¦
 +---------------------------------------+----------------------¦
 ¦ Multicolor cursor logical operation ¦ Undefined ¦
 +---------------------------------------+----------------------¦
 ¦ Xtext foreground color ¦ Undefined ¦
 +---------------------------------------+----------------------¦
 ¦ Xtext background color ¦ Undefined ¦
 +---------------------------------------+----------------------¦
 ¦ Xtext logical operation ¦ Undefined ¦
 +---------------------------------------+----------------------¦
 ¦ Xtext clip box ¦ Undefined ¦
 +--+

AIX Operating System Technical Reference
Unique Attributes

¦ Copyright IBM Corp. 1985, 1991
2.6.2.3.2 - 4

 2.6.2.4 Cursor Operations

 The GSL provides one cursor for applications. The GSL cursor is
 non-destructive; the contents of the display adapter frame buffer remain
 intact when the cursor is already visible and subsequently moved or made
 invisible. This is achieved in a device-dependent manner. The GSL uses
 any hardware cursor support available.

 The application totally controls the placement and visibility of the
 cursor. The GSL input functions do not provide cursor movement, and the
 GSL output routines do not check whether they are drawing over the cursor
 and do not automatically erase and restore the cursor or check for
 interference. It is therefore possible for the output routines to
 overwrite the cursor. When the cursor is moved on a display without
 hardware cursor support, any primitives that overwrite the cursor will
 themselves be overwritten when the area at the previous cursor position is
 restored. The application should erase and redraw the cursor as
 appropriate to avoid conflict.

AIX Operating System Technical Reference
Cursor Operations

¦ Copyright IBM Corp. 1985, 1991
2.6.2.4 - 1

 2.6.2.5 Coordinate Clipping and Transformation

 For simplicity and optimized performance, the base GSL does not perform
 general clipping or transformation on coordinates. Most of the output
 functions accept coordinates in the first quadrant (0,0 is the lower left
 corner) and convert them as necessary to the target quadrant required for
 the frame buffer of the specific device.

 The coordinate system is device dependent, and any point outside the frame
 buffer range can result in a write to any address on the I/O bus. For
 this reason, the GSL checks coordinates sent as parameters and also
 coordinates generated internally against the frame buffer boundaries.

 Note: Except for the gsxtat and gsxtxt routines, any coordinate outside
 the frame buffer is invalid and produces an invalid status return.
 (See the following explanation of xtext.)

 The display results depend on the function invoked. Coordinates outside
 the frame buffer are handled as follows:

 Lines The GSL checks the input coordinates as it draws the
 lines. Thus, for polylines, multilines, arcs, and
 ellipses, the part of the sequence up to the invalid
 coordinate results in lines on the display. The
 functions return an error code upon encountering an
 invalid coordinate, drawing no further lines.

 Text If the start point of the text string is invalid,
 the GSL returns immediately with an error code.
 Invalid internal coordinates may be generated if the
 start point is valid but part of the text string
 overflows the frame buffer. If the application
 places the baseline such that the characters must be
 clipped vertically (for example, the top half of the
 string is out of the frame buffer), the GSL writes
 none of the characters in the string. If the
 application places the baseline such that a
 character in the string overflows the frame buffer,
 that entire character and the rest of the string is
 truncated.

 Xtext The GSL provides clipping of this text style through
 the xtext clip box attribute. Coordinates outside
 the frame buffer are valid and will be clipped.

 Filled Areas The GSL checks the coordinates of filled areas
 before it writes to the frame buffer. It returns an
 invalid return code for any invalid coordinate found
 before writing to the frame buffer.

 Cursor The application may place the cursor origin anywhere
 within the cursor pattern. If the single-color
 cursor origin is placed so that any part of the
 cursor falls outside of the frame buffer, an error
 code is returned and the cursor is not moved. For
 the multicolor cursor, the application can place the
 origin anywhere within the cursor pattern. If the
 multicolor cursor origin is placed so that any part
 of the cursor falls outside the frame buffer, then

AIX Operating System Technical Reference
Coordinate Clipping and Transformation

¦ Copyright IBM Corp. 1985, 1991
2.6.2.5 - 1

 the part outside the frame buffer is clipped. If
 the origin of the multicolor cursor is placed
 outside the frame buffer, then an error code is
 returned and the cursor is not moved.

 Pixel Block Transfer If any portion of the source or destination
 rectangle lies outside its pixmap, the GSL returns
 immediately with an error code.

AIX Operating System Technical Reference
Coordinate Clipping and Transformation

¦ Copyright IBM Corp. 1985, 1991
2.6.2.5 - 2

 2.6.3 Functional Categories of Subroutines
 The base GSL is device dependent in that it provides some functions for
 some displays that it does not provide for other displays. It also does
 not scale, clip, or transform coordinates for any display. Coordinates
 passed to the base GSL functions are therefore device dependent, and
 limited to the device boundaries. The GSL does make device specific
 information available through query commands, letting an application
 perform appropriate clipping and transformation. It also indicates the
 logical operations supported by the hardware.

 The base GSL is organized into several major function areas:

 � Contro
 � Outpu
 � Servic
 � Pixel Block Transfe
 � Curso
 � Attribut
 � Inpu
 � Query

 The following sections provide an overview of the functions in each area.

 Subtopics
 2.6.3.1 Control
 2.6.3.2 Output
 2.6.3.3 Service
 2.6.3.4 Pixel Block Transfer
 2.6.3.5 Cursor
 2.6.3.6 Attribute
 2.6.3.7 Input
 2.6.3.8 Query

AIX Operating System Technical Reference
Functional Categories of Subroutines

¦ Copyright IBM Corp. 1985, 1991
2.6.3 - 1

 2.6.3.1 Control

 The base GSL provides functions to initialize and terminate the GSL and to
 coordinate direct application access to the display device. At
 initialization, the GSL sets up its required environment and establishes
 Monitor Mode on the application virtual terminal. Monitor Mode provides
 the GSL with direct access to the display adapter without interference
 from the virtual terminal subsystem. Monitor Mode operation also gives
 faster access to input event information. At termination, the GSL cleans
 up after itself and returns the application virtual terminal to KSR Mode.

 These subroutines perform overall control operations of the GSL
 environment.

 gsinit Initializes the GSL subroutines, establishes Monitor Mode on the
 application virtual terminal, and allows specification of
 application-supplied signal processing routines.
 gslock Locks the virtual terminal so that the application can access
 the display adapter directly.
 gsterm Terminates the GSL, returns the application virtual terminal to
 KSR Mode.
 gsunlk Unlocks the virtual terminal, returning control to the GSL.

AIX Operating System Technical Reference
Control

¦ Copyright IBM Corp. 1985, 1991
2.6.3.1 - 1

 2.6.3.2 Output

 The GSL output functions provide an application with capabilities to
 perform graphics operations on output devices. The output functions can
 be divided into these categories:

 Drawing lines
 The GSL provides functions to draw:

 A line between two points
 A series of lines connecting a sequence of points
 A series of lines connecting alternate pairs in a sequence
 of points.

 GSL lines are a single pixel thick. Specific attributes allow
 lines of different colors and patterns.

 Drawing polymarkers
 The polymarker subroutine in the GSL lets a defined marker be
 drawn for a sequence of points. The definition of the marker
 includes specific attributes such as color, style, width,
 height, pattern, and origin. The pattern attribute is a raster
 image to be used as a marker. The origin attribute controls the
 placement of the polymarker pattern at the points specified by
 the polymarker subroutine.

 Writing annotated text
 The GSL provides a function to write a text string to the
 display adapter at a given starting position. Character
 placement is with a transparent background so that the GSL
 changes only the character shape (foreground), not the entire
 character box. Specific attributes allow text in different
 fonts, colors, code pages, and directions.

 In addition, the GSL provides a text drawing facility that
 changes both the foreground and background of the frame buffer
 where the character box is placed. This facility, called xtext,
 allows text in different fonts, foreground and background
 colors, and logical operations.

 Writing geometric text
 The GSL provides functions to write geometric text strings.

 Drawing curves
 The GSL provides functions to draw circles, arcs, and ellipses.
 These functions are used to achieve the best performance and
 quality possible so that your programs can realize the full
 capability of your display.

 Filling areas
 The GSL provides functions to draw filled rectangles and general
 polygons, circles, and ellipses. In addition, the GSL allows
 curves to be combined with polylines to fill complex shapes.
 See "gsbply" in topic 2.6.5, "gseply" in topic 2.6.19, and
 "gspcls" in topic 2.6.41. These functions allow applications to
 use the higher performance possible with rectangles. The GSL
 also provides a color zero function to clear the display to the
 background color. Specific attributes allow different colors
 and patterns. See "Attributes" in topic 2.6.2.3.

AIX Operating System Technical Reference
Output

¦ Copyright IBM Corp. 1985, 1991
2.6.3.2 - 1

 Each category of the output functions is governed by a set of attributes.
 Some attributes determine characteristics that are specific to the
 category, such as color or pattern. These attributes are common to all
 categories:

 color table
 Maps color names or values to the actual color on the display (see
 "Common Attributes" in topic 2.6.2.3.1).

 plane mask
 Determines which of the display adapter storage planes are
 modified by the output functions.

 logical operation
 Determines how the GSL combines the foreground or background color
 for each pixel that is produced by a primitive with the current
 color of the destination pixel in the frame refresh buffer.

 These output subroutines write to the display adapter frame buffer,
 generally producing output on a display screen:

 gsbply Begins a polygon.
 gscarc Draws a circular arc of a specified radius between two points.
 gscir Draws a circle.
 gsclrs Clears the display screen, filling it with the background color.
 gscrca Draws a circular arc between two angles.
 gsdjply Draws a disjoint polyline, or a path of straight lines that are
 not connected.
 gseara Draws an elliptical arc between two angles.
 gsearc Draws an elliptical arc of specified axes and angle between two
 points.
 gsell Draws an ellipse.
 gseply Ends a polygon.
 gsfci Fills a circle.
 gsfell Fills an ellipse.
 gsfrec Draws a filled rectangle.
 gsfply Draws a filled polygon.
 gsgtxt Displays a geometric text string, with NDC transformations
 supported.
 gsline Draws a line between two points.
 gsmult Draws a multiline, or a set of straight lines that connect
 alternate pairs of points in a sequence.
 gspcls Closes a polygon.
 gsplym Draws a polymarker, a marker (such as a dot or plus sign) at
 each of a specified set of points.
 gspoly Draws a polyline, or a path of straight lines that connect a
 sequence of points.
 gstext Displays a text string.
 gsxtxt Displays a text string in the rtfont format.

AIX Operating System Technical Reference
Output

¦ Copyright IBM Corp. 1985, 1991
2.6.3.2 - 2

 2.6.3.3 Service

 The GSL provides functions for defining a circular or elliptical arc.
 These functions convert circular or elliptical arc definitions into sets
 of vertices. The resulting set of vertices can be drawn, using the gsline
 subroutine, or combined with other polylines to draw or fill more complex
 shapes.

 The attributes that can be used for drawing lines or filling areas apply
 here, including style, color, logical operation, pattern, and others.

 Arcs are specified by beginning and ending points or beginning and ending
 angles, and follow the counterclockwise direction. If the beginning and
 ending points are identical, then the list of vertices corresponding to a
 full circle or ellipse is returned. This allows circles or ellipses to be
 treated as a special case of closed arcs. If off-axis, ellipsis angle is
 specified in degrees. There are four levels of precision for the
 conversion of an arc into a set of line segments.

 These subroutines facilitate the drawing of circular and elliptical arcs.

 gsccnv Converts a circle to a set of vertices (polyline).
 gsecnv Converts an ellipse to a set of vertices (polyline).

AIX Operating System Technical Reference
Service

¦ Copyright IBM Corp. 1985, 1991
2.6.3.3 - 1

 2.6.3.4 Pixel Block Transfer

 The GSL provides functions to move a rectangular block of pixels from
 either the display adapter frame buffer or storage to either the display
 adapter or storage. If the source rectangle or destination rectangle
 reside in a color display adapter frame buffer, this operation is affected
 by the plane mask attribute. If the destination rectangle resides in a
 color display adapter frame buffer, this operation is affected by the
 color map attribute.

 These subroutines allow a program to:

 � Save a block of pixels from the frame buffer
 � Restore a block of pixels from the frame buffer
 � Move a rectangular shape from system memory to adapter memory
 � Move a rectangular shape from adapter memory to system memory
 � Move a rectangular shape from one area in system memory to another
 � Move a rectangular shape from one area of adapter memory to another
 � Move a tile rectangle to any area of visible pixel memory

 gsrrst Restores a rectangular block.
 gsrsav Saves a rectangular block.
 gsxblt Moves a rectangular block from one location in memory or display
 adapter frame buffer to another location in memory or display
 adapter frame buffer.
 gsxcnv Converts pixel format data to and from plane format data.
 gsxptr Handles FORTRAN addressing of pixel map data.

AIX Operating System Technical Reference
Pixel Block Transfer

¦ Copyright IBM Corp. 1985, 1991
2.6.3.4 - 1

 2.6.3.5 Cursor

 The GSL provides functions to draw and undraw a non-destructive cursor.
 The application is responsible for the placement and visibility of the
 cursor. The input functions do not provide for cursor movement, nor do
 output or pixel block transfer functions check whether they interfere with
 the cursor. Anything unintentionally placed over the cursor is modified
 when the cursor moves. The color map and plane mask attributes govern the
 cursor functions. Cursor pattern and color can be defined by attributes.

 These are the cursor subroutines:

 gsecur Erases the cursor and makes it invisible.
 gsmcur Moves the cursor and makes it visible.

AIX Operating System Technical Reference
Cursor

¦ Copyright IBM Corp. 1985, 1991
2.6.3.5 - 1

 2.6.3.6 Attribute

 The GSL provides functions to set the global attributes and all of the
 output category specific attributes. The GSL also provides functions to
 set attributes of some of the input devices.

 These subroutines set attributes for both input and output operations:

 gscatt Sets the single-color cursor attributes.
 gscmap Sets the color map.
 gsfatt Sets the fill attributes.
 gsgtat Sets the attributes for the geometric text drawing operation,
 gsgtxt.
 gslatt Sets the line attributes.
 gslcat Sets the locator attributes.
 gslpat Sets the LPFK indicators.
 gslop Sets the logical operation used for drawing lines.
 gsmask Sets the plane mask.
 gsmatt Sets the attributes for the polymarker operation, gsplym.
 gsmcat Sets the multicolor cursor attributes.
 gspp Sets plotter pen speed as a percentage of the plotter maximum
 speed.
 gstatt Sets the attributes for the text output operation, gstext.
 gsulns Sets the user line pattern.
 gsvgrn Sets the valuator granularity.
 gsxtat Sets the attributes for drawing annotated text in the rtfont
 format, using the gsxtxt routine.

AIX Operating System Technical Reference
Attribute

¦ Copyright IBM Corp. 1985, 1991
2.6.3.6 - 1

 2.6.3.7 Input

 An application using the GSL can receive input with the standard read
 system call or through a faster mechanism available through the virtual
 terminal. While the GSL allows an application to use the standard
 mechanism, it provides no input support for it.

 The GSL accepts input from the following sources:

 � The keyboar
 � The locato

 Input from these devices is viewed as discrete events, with input data
 associated with each event.

 The GSL provides subroutines to enable or disable input from any device,
 and a subroutine that lets a program suspend execution until one of the
 enabled events occurs. The latter subroutine also parses the raw data
 generated by the virtual terminal and makes the parsed information
 available to the application.

 The state established (enabled or disabled) remains in effect when the GSL
 terminates. Note that for these subroutines to work properly, a valid
 input ring buffer must have been specified to the gsinit subroutine.

 gsdpik Disables picking.
 gsepik Enables picking.
 gsevds Disables the reporting of input events.
 gseven Enables the reporting of input events from the keyboard or the
 locator.
 Enables the reporting of input events from the keyboard,
 locator, LPFK, or valuator.
 gsevwt Waits for an input event and parses the raw data.

AIX Operating System Technical Reference
Input

¦ Copyright IBM Corp. 1985, 1991
2.6.3.7 - 1

 2.6.3.8 Query

 The GSL provides functions for applications to query the active display
 adapter characteristics, the currently active annotated or geometric text
 font, and some input device characteristics. Through query functions, an
 application can derive the information necessary to deal with any device
 dependencies. Note that gsinit must be invoked before calling any of the
 query subroutines.

 These are subroutines that provide query functions:

 gsqdsp Returns device-specific information about the display adapter
 and display monitor.
 gsqfnt Returns information about the current annotated text font.
 gsqgtx Returns information about the current geometric text font.
 gsqloc Returns device-specific information about the locator.

AIX Operating System Technical Reference
Query

¦ Copyright IBM Corp. 1985, 1991
2.6.3.8 - 1

 2.6.4 Writing GSL Application Programs

 The following sections contain information that will help you take
 advantage of the capabilities of the GSL when writing application
 programs. "Displays" describes the display support provided by the GSL;
 "Printers and Plotters" explains available printer and plotter support;
 and "Using the GSL Libraries" contains instructions on using libraries and
 setting up the installation of your application program.

 Subtopics
 2.6.4.1 Displays
 2.6.4.2 Printers and Plotters
 2.6.4.3 Using the GSL Libraries

AIX Operating System Technical Reference
Writing GSL Application Programs

¦ Copyright IBM Corp. 1985, 1991
2.6.4 - 1

 2.6.4.1 Displays
 The AIX PS/2 Graphic Support Library provides support for VGA graphics
 with 640 x 480 resolution displaying 16 of 256,000 colors or 16 of 64
 possible levels of gray. The following monitors are supported on the VGA:

 8503 12 inch monochrome
 8507 15 inch monochrome
 8604 19 inch monochrome
 8512 14 inch color
 8513 12 inch color
 8514 16 inch color

 The AIX PS/2 Graphic Support Library provides support for the 8514A
 graphics adapter with 1024 x 768 resolution displaying 256 of 256,000
 colors or 64 of 64 possible levels of gray. The following displays are
 supported on the 8514A adapter:

 8507 15 inch monochrome
 8604 19 inch monochrome
 8514 16 inch color

 The following displays connected to the 8514A adapter are supported in the
 VGA 640 x 480 resolution passthru mode with 16 of 256,000 colors or 16 of
 64 levels of gray:

 8503 12 inch monochrome
 8512 14 inch color
 8513 12 inch color

 The AIX PS/2 Graphic Support Library provides support in a mode according
 to display and display adapter information passed to the AIX Operating
 System by the system administrator at boot time. If a display is
 connected to the 8514A and is capable of running in either 1024 x 768 or
 640 x 480 resolution, then the VGA passthru mode with 640 x 480 picture
 element resolution may be selected by setting and exporting the following
 environmental variable:

 GSL_RESOLUTION Set to 640x480. This is an AIX PS/2 Release 1 specific
 option. It may not be supported in future releases.

 The GSL supports one or more of the following input devices in an
 application:

 � Keyboar
 � Mous

 At least one input device is always available; the virtual terminal
 subsystem determines that, at minimum, keyboard input is accepted.

AIX Operating System Technical Reference
Displays

¦ Copyright IBM Corp. 1985, 1991
2.6.4.1 - 1

 2.6.4.2 Printers and Plotters

 Certain information about the device must be defined using AIX environment
 variables. If you enter the definitions at the shell command line, then
 they remain in effect only for the current login session. If you want
 these definitions to remain in effect for future login sessions, add them
 to the .profile file in your home directory. To define this information
 permanently for all users, add it to the /etc/profile file. See the sh
 command in AIX Operating System Commands Reference for more information
 about AIX environment variables, which are also called shell variables.

 1. Define the path to the AIX PS/2 hardcopy device drivers:

 VDIPATH=/usr/lpp/vdi/drivers
 export VDIPATH

 2. Define a logical identifier for the device as an environment variable,
 and set its value to indicate the type of printer or plotter device:

 devname=cgixxxx
 export devname

 The name you use in place of devname can be any sequence of up to 11
 alphanumeric characters. This is the name that you specify in the
 fildes parameter of the gsinit subroutine.

 The value of the environment variable, cgixxxx, must be one of the
 following:

 cgipro IBM 4201, 4202 Proprinters
 cgiplot IBM 7371, 7372, 7374, 7375-1, 7375-2, 6180, 6182, 6184,
 6186-1, or 6186-2 Plotter

 3. You can specify a printer or plotter as cgixxxx in step 2; cgixxxx
 must be associated with an AIX special file:

 cgixxxx=/dev/yyyy
 export cgixxxx

 If you do not need output from a specific printer device, you can pipe
 the output to a printer queue:

 cgixxxx="| print -plot [queue]"
 export cgixxxx

 Note: You can only pipe output to a queue for printer devices, not
 for plotters.

 Another alternative is to assign cgixxxx to a regular file for later
 use.

 4. If you are using an IBM 420X Proprinter, you may set and export the
 following environment variables:

 ORIENTATION Set to either LANDSCAPE or PORTRAIT, indicating
 horizontal or vertical page orientation, respectively.
 Landscape orientation rotates the image 90 degrees so
 that the horizontal axis of the image goes down the

AIX Operating System Technical Reference
Printers and Plotters

¦ Copyright IBM Corp. 1985, 1991
2.6.4.2 - 1

 length of the page. If not defined, and PAPER is set to
 WIDE, the default is LANDSCAPE mode. For PAPER set to
 NARROW, the default orientation is PORTRAIT mode.

 PAPER Set to either WIDE or NARROW, indicating the width of the
 paper loaded in the printer. The default setting for
 PAPER is NARROW.

 PRINTERTYPE Set to I, II, or XL, indicating the type of Proprinter.
 The default setting is II.

 5. If you are using an IBM plotter, you may set and export the following
 environment variables:

 ORIENTATION As for the printers, set to either LANDSCAPE or PORTRAIT.
 For plotters, the default setting is LANDSCAPE.

 MESSAGEPORT Set to the desired destination for plotter prompts. The
 default is the current controlling terminal. For
 example:

 MESSAGEPORT=/dev/lp1
 export MESSAGEPORT

 would send all plotter messages to lp1. Unless the
 message port is set to /dev/lp, the GSL hardcopy drivers
 will set up a lock file in the directory /usr/spool/uucp
 for the specified lp or virtual terminal.

 6. Plotters should be set up using the following configuration:

 BAUD 9600

 STOP BITS 1

 PARITY None

 7. Plotter Notes

 IBM 6184
 The 6184 plotter's default coordinate system is rotated 180
 degrees. This means that all plots are plotted upside down.

 IBM 6186
 If pen sort is ON, unexpected results may occur because the
 order in which vectors are drawn is not necessarily the
 order in which the plotter received them. The unknown pen
 position may affect subsequent output instructions.

 Examples

 � The following example defines GRAPHDEV as the logical name of an
 IBM 6182 plotter that is configured as /dev/lp1. This
 configuration specifies portrait orientation (output frame
 vertical dimensions are greater than horizontal). Plotter prompts
 are directed to /dev/lp1.

AIX Operating System Technical Reference
Printers and Plotters

¦ Copyright IBM Corp. 1985, 1991
2.6.4.2 - 2

 VDIPATH=/usr/lpp/vdi/drivers
 ODEVICE=cgiplot
 cgiplot=/dev/lp1
 MESSAGEPORT=/dev/lp1
 ORIENTATION=PORTRAIT
 export VDIPATH ODEVICE cgiplot ORIENTATION MESSAGEPORT

 � The next example defines ODEVICE as the logical name of an IBM
 4202 printer that is already configured as the device that serves
 printer queue lp2. This configuration specifies landscape
 orientation (output frame horizontal dimensions are greater than
 vertical) and wide paper.

 VDIPATH=/usr/lpp/vdi/drivers
 ODEVICE=cgipro
 cgipro="| print -plot lp2"
 PAPER=WIDE
 ORIENTATION=LANDSCAPE
 export VDIPATH ODEVICE cgipro ORIENTATION PAPER

 Note: The GSL is available for printer and plotter devices except for
 "Pixel Block Transfer", "Cursor", and "Xtext" subroutines.

AIX Operating System Technical Reference
Printers and Plotters

¦ Copyright IBM Corp. 1985, 1991
2.6.4.2 - 3

 2.6.4.3 Using the GSL Libraries

 Two versions of the GSL subroutine library are provided in /usr/lib:

 � An unshared library, named libgsl.a

 � A shared library, named libogsl.a, and its corresponding text image
 file, ogsl.txt.

 IBM strongly recommends that you use the shared GSL library, since doing
 so can save virtual memory and disk storage space. For more information
 about shared libraries, see "Shared Libraries" in AIX PS/2 Programming
 Tools and Interfaces and the shlibrpt and shlib2 commands for the RT and
 PS/2, respectively, in AIX Operating System Commands Reference.

 A GSL application should be relinked any time that the GSL libraries are
 updated. If, for example, support for a new type of display is added to
 the libraries and the application is not relinked, then the application
 cannot access the new display and may produce unpredictable results.

 You can relink GSL applications yourself, but the libraries can be updated
 without your knowledge. Therefore, IBM recommends a facility that
 automatically relinks all GSL applications when the libraries are changed.
 To use this facility, your application should follow these conventions:

 � Be provided as object files, not as prelinked executables.

 � Provide an sh shell script named lpp.linkgsl that links the object
 files into the final executable form.

 The lpp.linkgsl shell script must be located in a directory named
 /usr/lpp/pgm_name, where pgm_name is a name that uniquely identifies your
 application program. Whenever the GSL libraries are changed, such as for
 the addition of new display support, each of the /usr/lpp/pgm_name
 directories is searched for an lpp.linkgsl file. Each lpp.linkgsl is
 executed, relinking the GSL applications with the updated subroutine
 library.

 Subtopics
 2.6.4.3.1 Notes on the lpp.linkgsl Shell Script
 2.6.4.3.2 Example lpp.linkgsl Shell Script
 2.6.4.3.3 GSL Hardcopy Error Codes

AIX Operating System Technical Reference
Using the GSL Libraries

¦ Copyright IBM Corp. 1985, 1991
2.6.4.3 - 1

 2.6.4.3.1 Notes on the lpp.linkgsl Shell Script

 1. If you are writing an application program to be installed on more than
 one system, IBM strongly recommends that you package your application
 to be installed from diskette with the standard AIX conventions of the
 installp command. Your instal procedure should run lpp.linkgsl to
 link the application with the GSL initially. You can find
 instructions for creating a diskette in the proper format under
 "Installing and Updating a Program" in AIX PS/2 Programming Tools and
 Interfaces.

 2. IBM recommends that you process the object files of your application
 with ld -r to link them into one final object file that can still be
 linked with libraries. You can do this before creating the installp
 diskette. The following example combines all of the my*.o object
 files into a final object file named mypgm.o, which can be shipped on
 an installp diskette:

 ld -r -o mypgm.o my*.o

 3. IBM recommends that you store the object files for your application in
 a directory named /usr/lpp/pgm_name/bin. This prevents the installp
 command from deleting them after installation.

 4. Your lpp.linkgsl script should use libgsl.a if libogsl.a is not
 available.

AIX Operating System Technical Reference
Notes on the lpp.linkgsl Shell Script

¦ Copyright IBM Corp. 1985, 1991
2.6.4.3.1 - 1

 2.6.4.3.2 Example lpp.linkgsl Shell Script

 A typical lpp.linkgsl script might look like this:

 # The current directory has already been set to /usr/lpp/mypgm

 if [-r /usr/lib/libogsl.a]
 then
 GSLLIB=ogsl
 else
 # May be running on an older version of AIX that doesn't
 # have the shared library. Use the unshared version.
 GSLLIB=gsl
 fi

 # bin/mypgm.o was previously linked with:
 # ld -r -o mypgm.o my*.o

 cc -o mypgm bin/mypgm.o -l$GSLLIB
 rc = $?
 if [$rc -ne 0]
 then
 echo "Failed trying to relink mypgm." >&2
 else
 # Move executable to /usr/bin, where users can run it
 cp mypgm /usr/bin/mypgm
 rm -f mypgm
 fi

AIX Operating System Technical Reference
Example lpp.linkgsl Shell Script

¦ Copyright IBM Corp. 1985, 1991
2.6.4.3.2 - 1

 2.6.4.3.3 GSL Hardcopy Error Codes
 The following is a list of the errors that can be generated and a brief
 description of the error:

 -2000 Illegal handle

 Cause: An incorrect device handle was specified.

 -2001 Unknown driver file

 Cause: The device driver file does not exist.

 -2002 No driver file

 Cause: The name of the logical device was not found.

 -2003 Cannot start device driver

 Cause: The fork command failed to start the graphics device driver as a
 new process.

 -2004 No more device drivers can be opened

 Cause: The device driver cannot start because the maximum number of
 device drivers are already opened.

 Each application is limited to having no more than eight graphics devices
 open simultaneously.

 -2005 Cannot create semaphore

 Cause: The device driver cannot start because a system semaphore cannot
 be acquired.

 -2006 Cannot create shared memory area

 Cause: The device driver cannot start because a system-shared memory area
 cannot be acquired.

 -2007 Cannot attach memory area

 Cause: The device driver cannot start because a system-shared memory area
 cannot be attached to the device driver process.

 -2019 Device busy error

 Cause: The requested channel's physical device is in use and, therefore,
 not available.

 This error is generated when a lock file has been created for the device
 you are attempting to use. A lock file is created each time you perform
 graphics to a device that is not assigned to the logical device /dev/tty.
 The naming of the lock file has the form:

 LCK..ttynn

 where nn is the identification of the logical device being requested.

 -2020 Open device error

AIX Operating System Technical Reference
GSL Hardcopy Error Codes

¦ Copyright IBM Corp. 1985, 1991
2.6.4.3.3 - 1

 Cause: The physical device associated with the requested channel could
 not be opened.

 -2021 Create lockfile error

 Cause: Unable to create the lock file for the requested logical device.

 -2022 Unable to create process

 Cause: The attempt to create a process to associate with the requested
 channel failed.

 -2023 File creation error

 Cause: Attempt to create a file to be used for I/O redirection failed.

 -2024 Invalid device assignment

 Cause: The requested channel has an invalid device assignment.

 -2025 Could not open font file

 Cause: The Font Manager could not open the requested font file.

 -2026 Font does not exist

 Cause: The requested font index is out of range or the font does not
 exist.

 -2027 Font file missing

 Cause: The Font Manager could not find the requested font file. This can
 indicate that the font database file is out of date.

 -2028 Missing font manager database file

 Cause: The Font Manager could not find the database file fontlist.dat.

 -2029 Read font file error

 Cause: The Font Manager encountered an error while reading the font file.

 -2977 CGI already loaded

 Cause: This error is returned from Load CGI and should be ignored. It is
 there for compatibility with DOS applications.

 -3000 Device driver error

 Cause: An error occurred when calling the device driver.

 -3001 Device driver invalid range error

 Cause: A parameter that was passed from the application was out of the
 valid range for the operation.

 -3002 Handle in use error

 Cause: The bitmap handle is in use and cannot be deleted.

AIX Operating System Technical Reference
GSL Hardcopy Error Codes

¦ Copyright IBM Corp. 1985, 1991
2.6.4.3.3 - 2

 -3004 Incompatibility error

 Cause: The device driver and the CGI controller are incompatible.

 -3005 Too big bitmap error

 Cause: The requested bitmap is too large.

 -3008 Device driver could not malloc

 Cause: There is insufficient memory to create the intended bitmap.

 -3090 Invalid page error

 Cause: The physical page is invalid.

 -3095 Device not in cursor mode

 Cause: The device is not in cursor text mode.

 -5000 Device driver not capable error

 Cause: The specified device is not capable of performing the requested
 function.

AIX Operating System Technical Reference
GSL Hardcopy Error Codes

¦ Copyright IBM Corp. 1985, 1991
2.6.4.3.3 - 3

 2.6.5 gsbply

 Purpose
 Defines the beginning of an area to fill.

 C Syntax

 int gsbply_ ()

 FORTRAN Syntax

 INTEGER function gsbply

 Pascal Syntax

 FUNCTION gsbply_ : INTEGER [PUBLIC];

 Description

 The gsbply subroutine defines the beginning of a two-dimensional shape or
 set of shapes to be filled.

 The following output routines are valid between a gsbply call and a gseply
 call:

 � Draw polyline gspoly)
 � Draw circle gscir)
 � Draw ellipse gsell)
 � Draw circular arc gscarc or gscrca)
 � Draw elliptical arc gseara or gsearc)

 Note: Any other subroutines used before the gseply subroutine is called
 do not become part of the shape or set of shapes to be filled, and
 can produce unpredictable results.

 Before the fill occurs, the shapes drawn by each routine called between
 gsbply and gseply are connected. The first point of each shape is linked
 to the last point of the previous shape, and the last point of the last
 shape is linked to the first point of the first shape. The shapes may
 overlap to any degree but must share at least one common point between
 adjacent shapes.

 Processing of the SIGRETRACT signal is postponed until the gseply
 subroutine, end of area to fill, is called.

 The relevant attributes are:

 � Color ma
 � Plane mas
 � Fill color inde
 � Fill styl
 � Logical operation

 Return Value

 GS_SUCC Successful.
 GS_USUC Unsuccessful.

 Related Information
 In this book: "gseply" in topic 2.6.19 and "gspcls" in topic 2.6.41.

AIX Operating System Technical Reference
gsbply

¦ Copyright IBM Corp. 1985, 1991
2.6.5 - 1

 2.6.6 gscarc

 Purpose
 Draws a circular arc between two points.

 C Syntax

 int gscarc_ (cx, cy, cr, bx, by, ex, ey)

 int *cx, *cy, *cr, *bx, *by, *ex, *ey;

 FORTRAN Syntax

 INTEGER function gscarc (cx, cy, cr, bx, by, ex, ey)

 INTEGER cx, cy, cr, bx, by, ex, ey

 Pascal Syntax

 FUNCTION gscarc_ (

 VAR cx, cy, cr, bx, by, ex, ey : INTEGER
): INTEGER [PUBLIC];

 Description

 The gscarc subroutine draws a counterclockwise circular arc of the
 specified radius from the beginning point to the ending point. The radius
 is expressed in number of pixels.

 The relevant attributes are:

 � Color ma
 � Plane mas
 � Line color inde
 � Line styl
 � Logical operation

 Subtopics
 2.6.6.1 Parameters

AIX Operating System Technical Reference
gscarc

¦ Copyright IBM Corp. 1985, 1991
2.6.6 - 1

 2.6.6.1 Parameters

 cx, cy Define the coordinates of the center of the circle.

 For displays, the center is restricted to -2048 to 2048.

 For printers and plotters, the center is restricted to screen
 coordinates.

 cr Defines the radius of the circle.

 bx, by Define the coordinates of the beginning point on the circle.

 ex, ey Define the coordinates of the ending point on the circle.

 If the beginning and ending points are identical, a full circle is drawn.

 Note that the application must control the accuracy of the end points (bx,
 by and ex, ey) when drawing circular arcs. If the start point of the arc
 and end point of the arc lie within one pixel of the true circle, the arc
 will be drawn successfully. Other values can cause the subroutine to
 fail. If the gscarc subroutine fails because of an inaccurate starting
 point, GS_ASTR is returned, while for an inaccurate ending point, GS_AEND
 is returned.

 Return Value

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_RDUS Invalid radius for circles.
 GS_INAC Virtual terminal inactive.
 GS_AEND Invalid end point.
 GS_ASTR Invalid start point.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.6.1 - 1

 2.6.7 gscatt

 Purpose
 Sets the attributes of the single-color cursor.

 C Syntax

 int gscatt_ (color, width, height, pattern, 0x, 0y)

 int *color, *width, *height, *pattern, *0x, *0y;

 FORTRAN Syntax

 INTEGER function gscatt (color, width, height, pattern, 0x, 0y)

 INTEGER color, width, height, pattern, 0x, 0y

 Pascal Syntax

 FUNCTION gscatt_ (

 VAR color, width, height: INTEGER;
 pattern: ARRAY [1..k] of INTEGER;
 0x, 0y: INTEGER
): INTEGER [PUBLIC];

 Description
 The gscatt subroutine defines the single-color cursor for the GSL. The
 gscmap subroutine must initialize the color map before gscatt can be
 called.

 Only one cursor, either the single-color cursor or the multicolor cursor,
 can be active in the GSL at any one time. The gscatt subroutine forces
 all subsequent calls to the gsmcur and gsecur subroutines to operate on
 the single-color version of the cursor. To change from the multicolor
 cursor to the single-color cursor, erase the cursor with gsecur, then call
 the gscatt subroutine.

 Subtopics
 2.6.7.1 Parameters

AIX Operating System Technical Reference
gscatt

¦ Copyright IBM Corp. 1985, 1991
2.6.7 - 1

 2.6.7.1 Parameters

 color Refers to an entry in the color map. If the index value is -1,
 the attribute is unchanged.

 width, height Define, in pixels, the width and height of the bit pattern
 to be used as the cursor. If width or height equals -1, then the
 pattern remains unchanged.

 pattern Defines the image used as a cursor. The ceiling (width/32)
 indicates the number of words per row and height indicates the
 number of rows. The cursor data must be supplied in row (scan
 line) major order. If width implies partial use of a word, the
 rest of the word is unused. To fully define the cursor pattern,
 pattern should be (ceiling¦height) words in length.

 0x, 0y Indicate the origin of the cursor relative to the lower leftmost
 corner (0, 0) of the cursor pattern. The origin must be placed
 within the cursor pattern: 0x < width and 0y < height. The
 origin of the cursor is placed at the position indicated, when
 the application moves the cursor using the gsmcur subroutine. If
 x equals -1, then the origin remains unchanged.

 The maximum size of the cursor is device dependent and can be determined
 by using the gsqdsp subroutine.

 You cannot change the cursor attributes while the cursor is visible.

 There is no default cursor defined, so all cursor parameters must be set
 before the cursor is displayed.

 For Pascal, the application must declare the array passed as being fixed
 length and declare the routine as accepting arrays of that length. The k
 in the routine declaration must be a constant.

 Return Value

 GS_SUCC Successful.
 GS_COLI Invalid color index.
 GS_CURS Cursor size invalid.
 GS_CURO Cursor origin invalid.
 GS_CURV Cursor visible.

 Related Information
 In this book: "gsecur" in topic 2.6.17, "gsmcat" in topic 2.6.38, and
 "gsmcur" in topic 2.6.39.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.7.1 - 1

 2.6.8 gsccnv

 Purpose
 Converts a circular arc or full circle into a polyline.

 C Syntax

 int gsccnv_ (cx, cy, cr, bx, by, ex, ey, len, x, y, pre)

 int *cx, *cy, *cr, *bx, *by, *ex, *ey, *len, *x, *y, *pre;

 FORTRAN Syntax

 INTEGER function gsccnv (cx, cy, cr, bx, by, ex, ey, len, x, y, pre)

 INTEGER cx, cy, cr, bx, by, ex, ey, len, x(*), y(*), pre

 Pascal Syntax

 FUNCTION gsccnv_ (

 VAR cx, cy, cr, bx, by, ex, ey, len: INTEGER;
 VAR x, y: ARRAY [1..k] of INTEGER;
 VAR pre: INTEGER
): INTEGER [PUBLIC];

 Description
 The gsccnv subroutine converts a counterclockwise circular arc definition
 into an array of vertices. The list of vertices can then be used to draw
 a circular arc with the gspoly subroutine or to fill a circular arc with
 the gsfply subroutine. In general, it can be concatenated with other
 list(s) of vertices to draw or fill more complex shapes, such as chord
 arcs, pie arcs, and rectangles with rounded corners.

 When beginning and ending points are identical, the list of vertices
 contains the full circle, which can then be drawn or filled.

 Subtopics
 2.6.8.1 Parameters

AIX Operating System Technical Reference
gsccnv

¦ Copyright IBM Corp. 1985, 1991
2.6.8 - 1

 2.6.8.1 Parameters

 cx, cy Define the coordinates of the center of the circle.

 cr Defines the radius of the circle, which must not be equal to 0.

 If cr is negative, it is automatically converted to a positive
 value for use by the subroutine.

 bx, by Define the coordinates of the beginning point of the arc.

 ex, ey Define the coordinates of the ending point of the arc.

 len Defines the number of points in the coordinate x and y arrays.
 It must be numerically at least one greater than the value
 contained in the precision parameter, but not less than 65.

 x, y Define, as coordinate arrays, the vertices that represent the
 circular shape when drawn or filled.

 pre Defines precision level, which specifies the maximum number of
 line segments that can be generated for a full circle. The
 number of line segments actually generated depends on the size of
 the circle.

 There are four levels of precision that can be requested:

 � 64 (65 vertices)

 � 128 (129 vertices)

 � 256 (257 vertices)

 � 512 (513 vertices).

 Therefore, len = pre + 1.

 All other precision values are reserved and must not be used, as
 their results are unpredictable. The default value for pre is
 64.

 The subroutine allows ample leniency toward the accuracy of the
 specification of the beginning and ending points. The arc of the
 specified radius will always start and end exactly at the specified
 points.

 If the beginning and ending points are identical, a full circle of the
 specified radius is generated.

 When the subroutine is invoked, the length parameter must contain the
 maximum number of entries in the x and y arrays. If erroneous conditions
 arise, len is set to 0. Under normal conditions, len specifies the number
 of vertices returned by the subroutine in the x and y arrays.

 For Pascal, the application must declare the arrays passed as being fixed
 length and declare the routine as accepting arrays of that length; the k
 in the routine declaration must be a constant.

 Return Value

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.8.1 - 1

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_NCOR Invalid number of coordinates.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.8.1 - 2

 2.6.9 gscir

 Purpose
 Draws a circle.

 C Syntax

 int gscir_ (cx, cy, cr)

 int *cx, *cy, *cr;

 FORTRAN Syntax

 INTEGER function gscir (cx, cy, cr)

 INTEGER cx, cy, cr

 Pascal Syntax

 FUNCTION gscir_ (

 VAR cx, cy, cr: INTEGER
): INTEGER [PUBLIC];

 Description

 The gscir subroutine draws a circle of the specified radius. The radius
 is expressed in number of pixels.

 The relevant attributes are:

 � Color ma
 � Plane mas
 � Line color inde
 � Line styl
 � Logical operation

 Subtopics
 2.6.9.1 Parameters

AIX Operating System Technical Reference
gscir

¦ Copyright IBM Corp. 1985, 1991
2.6.9 - 1

 2.6.9.1 Parameters

 cx, cy Define the coordinates of the center of the circle.

 cr Defines the radius of the circle.

 If the radius is 0, a single point is drawn at the center.

 Return Value

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_RDUS Invalid radius specification.
 GS_INAC Virtual terminal inactive.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.9.1 - 1

 2.6.10 gsclrs

 Purpose
 Clears the screen, filling it with the background color.

 C Syntax

 int gsclrs_ ()

 FORTRAN Syntax

 INTEGER function gsclrs

 Pascal Syntax

 FUNCTION gsclrs_: INTEGER [PUBLIC];

 Description
 The gsclrs subroutine fills the frame buffer with the background color
 (color index zero).

 The relevant attributes are:

 � Color map
 � Plane mask

 For printers, the gsclrs subroutine forces pending graphics to be printed,
 advances the paper to a new page, and purges the print buffer.

 For plotters, the gsclrs subroutine forces pending graphics to be
 displayed, and issues a prompt to the active screen (console) requesting
 that the paper be changed.

 Return Value

 GS_SUCC Successful.
 GS_INAC Virtual terminal inactive.

AIX Operating System Technical Reference
gsclrs

¦ Copyright IBM Corp. 1985, 1991
2.6.10 - 1

 2.6.11 gscmap

 Purpose
 Specifies the color mapping.

 C Syntax

 int gscmap_ (number, red, green, blue)

 int *number, *red, *green, *blue;

 FORTRAN Syntax

 INTEGER function gscmap (number, red, green, blue)

 INTEGER number, red (*), green (*), blue (*)

 Pascal Syntax

 FUNCTION gscmap_ (

 VAR number INTEGER;
 VAR red, green, blue: ARRAY [0..k] of INTEGER
): INTEGER [PUBLIC];

 Description
 The gscmap subroutine specifies the mapping between the color index
 attribute and the color it produces on the display.

 The default color table mapping for the first 16 colors is the same as the
 default color map attributes in KSR mode. The remaining color values are
 initialized in a hardware dependent manner.

 Subtopics
 2.6.11.1 Parameters

AIX Operating System Technical Reference
gscmap

¦ Copyright IBM Corp. 1985, 1991
2.6.11 - 1

 2.6.11.1 Parameters

 number Indicates how many colors the input intensity arrays contain.

 red, green, blue
 Define arrays that contain the intensity levels of the
 corresponding color. Each entry in an array specifies the
 intensity value for the corresponding color index.

 The value in each entry for the red, green, and blue intensity
 arrays is between 0x0000, representing zero intensity, and
 0x3FFF, representing full intensity. The following additional
 increments of intensity are possible, depending on the adapter
 hardware in use:

 0x2000 1/2 intensity
 0x1000 1/4 intensity
 0x0800 1/8 intensity
 0x0400 1/16 intensity
 0x0200 1/32 intensity
 0x0100 1/64 intensity.

 Combinations of these values can be used to create intermediate
 levels of intensity. For example, 0x0C00 gives 3/16 intensity,
 while 0x3000 gives 3/4 intensity.

 The actual number of bits from bit 13 to bit 0 that affect the
 color on the display is dependent on the number of bits in the
 digital-to-analog converter of the adapter hardware in use. This
 size information is available by using the gsqdsp subroutine.

 An application cannot change a single arbitrary color entry in the color
 map (or the VLT). It must change all the entries for all the colors up to
 and including the desired entry.

 For Pascal, the application must declare the arrays passed as being fixed
 length and declare the routine as accepting arrays of that length; the k
 in the routine declaration must be a constant.

 Return Value

 GS_SUCC Successful.
 GS_TABL Invalid table length.
 GS_INAC Virtual terminal inactive.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.11.1 - 1

 2.6.12 gscrca

 Purpose
 Draws a circular arc between two angles.

 C Syntax

 int gscrca_ (cx, cy, cr, ba, ea)

 int *cx, *cy, *cr, *ba, *ea;

 FORTRAN Syntax

 INTEGER function gscrca (cx, cy, cr, ba, ea)

 INTEGER cx, cy, cr, ba, ea

 Pascal Syntax

 FUNCTION gscrca_ (

 VAR cx, cy, cr, ba, ea : INTEGER
): INTEGER [PUBLIC];

 Description

 The gscrca subroutine draws a counterclockwise circular arc of the
 specified radius from the beginning point as defined by an angle
 specification to the ending point as defined by an angle specification.

 The angle specifications are given in tenths of degrees, from 0 to 3600.
 Values outside this range cause the gscrca subroutine to fail.

 The relevant attributes are:

 � Color ma
 � Plane mas
 � Line color inde
 � Line styl
 � Logical operation

 Subtopics
 2.6.12.1 Parameters

AIX Operating System Technical Reference
gscrca

¦ Copyright IBM Corp. 1985, 1991
2.6.12 - 1

 2.6.12.1 Parameters

 cx, cy Define the coordinates of the center of the circle.

 For displays, the center is restricted to -2048 to 2048.

 For printers and plotters, the center is restricted to screen
 coordinates.

 cr Defines the radius of the circle in device coordinates.

 ba Defines the start point of the circular arc as an angle in tenths
 of degrees, from 0 to 3600.

 ea Defines the end point of the circular arc as an angle in tenths
 of degrees, from 0 to 3600.

 If the beginning and ending angles are identical, a full circle is drawn.

 Return Value

 GS_SUCC Successful.
 GS_ANGL Invalid angle.
 GS_RDUS Invalid radius specification.
 GS_CORD Invalid coordinate.
 GS_INAC Virtual terminal inactive.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.12.1 - 1

 2.6.13 gsdjply

 Purpose
 Draws a polyline, a set of lines that connects a sequence of points.

 C Syntax

 int gsdjply_ (polylines, points, x, y)

 int *polylines, *points, *x, *y;

 FORTRAN Syntax

 INTEGER function gsdjply (polylines, points, x, y)

 INTEGER polylines, points (*), x (*), y (*)

 Pascal Syntax

 FUNCTION gsdjply_ (

 VAR polylines: INTEGER;
 VAR points: ARRAY [1..k] of INTEGER;
 VAR x, y: ARRAY [1..l] of INTEGER
): INTEGER [PUBLIC];

 Description
 The gsdjply subroutine draws a series of polylines as a set of lines, as
 defined by the current relevant attributes.

 The relevant attributes are:

 � Color ma
 � Plane mas
 � Line color inde
 � Line styl
 � Logical operation

 Subtopics
 2.6.13.1 Parameters

AIX Operating System Technical Reference
gsdjply

¦ Copyright IBM Corp. 1985, 1991
2.6.13 - 1

 2.6.13.1 Parameters

 polylines Defines the number of polylines to draw. This value must be =
 1.

 points Defines, as an array, the number of points in each polyline. These
 values must be = 2.

 x, y Define, as an array, the points for line drawing.

 For Pascal, the application must declare the arrays passed as being fixed
 length and declare the routine as accepting arrays of that length. The k
 and l in the routine declaration must be constants.

 Return Value

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_NCOR Invalid number of coordinates.
 GS_INAC Virtual terminal inactive.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.13.1 - 1

 2.6.14 gseara

 Purpose
 Draws an elliptical arc between two angles.

 C Syntax

 int gseara_ (cx, cy, ma, mi, ang, sa, ea)

 int *cx, *cy, *ma, *mi, *ang, *sa, *ea;

 FORTRAN Syntax

 INTEGER function gseara (cx, cy, ma, mi, ang, sa, ea)

 INTEGER cx, cy, ma, mi, ang, sa, ea

 Pascal Syntax

 FUNCTION gseara_ (

 VAR cx, cy, ma, mi, ang, sa, ea : INTEGER
): INTEGER [PUBLIC];

 Description

 The gseara subroutine draws a counterclockwise elliptical arc of the
 specified axes and angle from the beginning point defined by an angle
 specification to the ending point defined by an angle specification. The
 axes are expressed in number of pixels.

 The angle specifications are given in tenths of degrees, from 0 to 3600.
 Values outside this range cause the gseara subroutine to fail.

 The relevant attributes are:

 � Color ma
 � Plane mas
 � Line color inde
 � Line styl
 � Logical operation

 Subtopics
 2.6.14.1 Parameters

AIX Operating System Technical Reference
gseara

¦ Copyright IBM Corp. 1985, 1991
2.6.14 - 1

 2.6.14.1 Parameters

 cx, cy Define the coordinates of the center of the ellipse.

 For displays, the center is restricted to -2048 to 2048.

 For printers and plotters, the center is restricted to screen
 coordinates.

 ma, mi Define half of the nonzero major and minor axes of the ellipse.

 ang Defines the angle between the major axis and the x-axis. If ang
 is 0, the major axis is on the x-axis and the minor axis is on
 the y-axis. The angle is expressed in tenths of degrees, from 0
 to 3600.

 sa Defines the angle of the starting point of the elliptical arc,
 measured counterclockwise from the major axis. The angle is
 expressed in tenths of degrees, from 0 to 3600.

 ea Defines the angle of the ending point of the elliptical arc,
 measured counterclockwise from the major axis. The angle is
 expressed in tenths of degrees, from 0 to 3600.

 If the beginning and ending points are identical, a full ellipse is drawn.

 Return Value

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_ELMM Invalid major or minor axis.
 GS_INAC Virtual terminal inactive.
 GS_ANGL Invalid angle.
 GS_NMEM No memory available.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.14.1 - 1

 2.6.15 gsearc

 Purpose
 Draws an elliptical arc between two points.

 C Syntax

 int gsearc_ (cx, cy, ma, mi, ang, bx, by, ex, ey, rot)

 int *cx, *cy, *ma, *mi, *ang, *bx, *by, *ex, *ey, *rot;

 FORTRAN Syntax

 INTEGER function gsearc (cx, cy, ma, mi, ang, bx, by, ex, ey, rot)

 INTEGER cx, cy, ma, mi, ang, bx, by, ex, ey, rot

 Pascal Syntax

 FUNCTION gsearc_ (

 VAR cx, cy, ma, mi, ang, bx, by, ex, ey, rot : INTEGER
): INTEGER [PUBLIC];

 Description

 The gsearc subroutine draws a counterclockwise elliptical arc of the
 specified axes and angle from the beginning point to the ending point.
 The axes are expressed in number of pixels.

 The angle specifications are given in tenths of degrees, from 0 to 3600.
 Values outside this range cause the gsearc subroutine to fail.

 The relevant attributes are:

 � Color ma
 � Plane mas
 � Line color inde
 � Line styl
 � Logical operation

 Subtopics
 2.6.15.1 Parameters

AIX Operating System Technical Reference
gsearc

¦ Copyright IBM Corp. 1985, 1991
2.6.15 - 1

 2.6.15.1 Parameters

 cx, cy Define the coordinates of the center of the ellipse.

 For displays, the center is restricted to -2048 to 2048.

 For printers and plotters, the center is restricted to device
 coordinates.

 ma, mi Define half of the nonzero major and minor axes of the ellipse.

 ang Defines the angle between the major axis and the x-axis. If ang
 is 0, the major axis is on the x-axis and the minor axis is on
 the y-axis. The angle is expressed in tenths of degrees, from 0
 to 3600.

 bx, by Define the coordinates of the beginning point on the ellipse.

 ex, ey Define the coordinates of the ending point on the ellipse.

 rot Specifies whether the application must perform rotational
 transformation. Possible setting are:

 0 The coordinates of the beginning and ending points passed by
 the application correspond to an arc of an orthogonal
 ellipse. No rotational transformation is performed, thus
 improving performance.

 1 The beginning and ending points are transformed by the
 application and lie on the off-axis ellipse.

 All other values are reserved and must not be used, as they may
 produce unpredictable results.

 If the beginning and ending points are identical, regardless of whether or
 not they are on the ellipse, a full ellipse is drawn.

 Return Value

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_ELMM Invalid major or minor axis.
 GS_INAC Virtual terminal inactive.
 GS_ANGL Invalid angle.
 GS_NMEM Insufficient resources.
 GS_AEND Invalid end point.
 GS_ASTR Invalid start point.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.15.1 - 1

 2.6.16 gsecnv

 Purpose
 Converts an ellipse to a polyline.

 C Syntax

 int gsecnv_ (cx, cy, ma, mi, ang, bx, by, ex, ey, rot, len, x, y, pre)

 int *cx, *cy, *ma, *mi, *ang, *bx, *by, *ex, *ey, *rot, *len, *x, *y, *pre;

 FORTRAN Syntax

 INTEGER function gsecnv (cx, cy, ma, mi, ang, bx, by, ex, ey, rot, len, x, y, pre)

 INTEGER cx, cy, ma, mi, ang, bx, by, ex, ey, rot, len, x(*), y(*), pre

 Pascal Syntax

 FUNCTION gsecnv_ (

 VAR cx, cy, ma, mi, ang, bx, by, ex, ey, rot, len: INTEGER;
 VAR x, y: ARRAY [1..k] of INTEGER;
 VAR pre: INTEGER
): INTEGER [PUBLIC];

 Description
 The gsecnv subroutine converts a counterclockwise elliptical arc
 definition into an array of vertices. The list of vertices can then be
 used to draw an elliptical arc with the gspoly subroutine or to fill an
 elliptical arc with the gsfply subroutine. In general, it can be
 concatenated with other list(s) of vertices to draw or fill more complex
 shapes, such as chord arcs, pie arcs, or rectangles with round corners.

 When the beginning and ending points are identical, the list of vertices
 contains the full ellipse, which can then be drawn or filled.

 Subtopics
 2.6.16.1 Parameters

AIX Operating System Technical Reference
gsecnv

¦ Copyright IBM Corp. 1985, 1991
2.6.16 - 1

 2.6.16.1 Parameters

 cx, cy Define the coordinates of the center of the ellipse.

 ma, mi Define half of the nonzero major and minor axes of the ellipse.

 ang Defines the off-axis angle of the ellipse. If ang is 0, the
 major axis is the x-axis and the minor axis is the y-axis. A
 positive value rotates the ellipse counterclockwise; a negative
 value rotates it clockwise. All values are in degrees and modulo
 360.

 bx, by Define the coordinates of the beginning point of the arc.

 ex, ey Define the coordinates of the ending point of the arc.

 rot Specifies whether the application must perform rotational
 transformation. Possible settings are:

 0 The coordinates of the beginning and ending points passed by
 the application correspond to an arc of an orthogonal
 ellipse. No rotational transformation is performed, thus
 improving performance.

 1 The beginning and ending points are transformed by the
 application and lie on the off-axis ellipse.

 All other values are reserved and must not be used, as they may
 produce unpredictable results.

 len Defines the number of points in the coordinate x and y arrays.
 It must be numerically at least one greater than the value
 contained in the precision parameter and greater than or equal to
 65.

 x, y Define, as coordinate arrays, the vertices that represent the
 elliptical shape when drawn or filled.

 pre Defines precision level, which specifies the maximum number of
 line segments that can be generated for a full ellipse. The
 number of line segments actually generated depends on the size of
 the ellipse.

 There are four levels of precision that can be requested:

 � 64 (65 vertices)

 � 128 (129 vertices)

 � 256 (257 vertices)

 � 512 (513 vertices).

 Therefore, len = pre + 1.

 All other precision values are reserved and must not be used, as
 their results are unpredictable. The default value for pre is
 64.

 The subroutine allows ample leniency toward the accuracy of the

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.16.1 - 1

 specification of the beginning and ending points. The arc of the
 specified angle always starts and ends exactly at the specified points.
 If the beginning and ending points are identical, a full ellipse of the
 specified angle is generated.

 When the subroutine is invoked, the length parameter must contain the
 maximum number of entries in the x and y arrays. If erroneous conditions
 arise, len is set to 0. Under normal conditions, len specifies the number
 of vertices returned by the subroutine in the x and y arrays.

 For Pascal, the application must declare the arrays passed as being fixed
 length and declare the routine as accepting arrays of that length; the k
 in the routine declaration must be a constant.

 Return Value

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_NCOR Invalid number of coordinates.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.16.1 - 2

 2.6.17 gsecur

 Purpose
 Erases the cursor, making it invisible.

 C Syntax

 int gsecur_ ()

 FORTRAN Syntax

 INTEGER function gsecur

 Pascal Syntax

 FUNCTION gsecur_: INTEGER [PUBLIC];

 Description
 The gsecur subroutine makes the cursor invisible.

 For adapters with hardware cursor support, gsecur simply turns off the
 cursor. Otherwise, gsecur reverses the actions taken to place the cursor
 in the frame buffer.

 Return Value

 GS_SUCC Successful.
 GS_INAC Virtual terminal inactive.

AIX Operating System Technical Reference
gsecur

¦ Copyright IBM Corp. 1985, 1991
2.6.17 - 1

 2.6.18 gsell

 Purpose
 Draws an ellipse.

 C Syntax

 int gsell_ (cx, cy, ma, mi, ang)

 int *cx, *cy, *ma, *mi, *ang;

 FORTRAN Syntax

 INTEGER function gsell (cx, cy, ma, mi, ang)

 INTEGER cx, cy, ma, mi, ang

 Pascal Syntax

 FUNCTION gsell_ (

 VAR cx, cy, ma, mi, ang : INTEGER
): INTEGER [PUBLIC];

 Description

 The gsell subroutine draws an ellipse of the specified axes and angle.
 The axes are expressed in number of pixels.

 The angle specifications are given in tenths of degrees, from 0 to 3600.
 Values outside this range cause the gsell subroutine to fail.

 The relevant attributes are:

 � Color ma
 � Plane mas
 � Line color inde
 � Line styl
 � Logical operation

 Subtopics
 2.6.18.1 Parameters

AIX Operating System Technical Reference
gsell

¦ Copyright IBM Corp. 1985, 1991
2.6.18 - 1

 2.6.18.1 Parameters

 cx, cy Define the coordinates of the center of the ellipse.

 ma, mi Define half of the nonzero major and minor axes of the ellipse.

 ang Defines the angle between the major axis and the x-axis. If it
 is 0, the major axis is on the x-axis and the minor axis is on
 the y-axis. The angle is expressed in tenths of degrees, from 0
 to 3600.

 Return Value

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_ELMM Invalid major or minor axis.
 GS_INAC Virtual terminal inactive.
 GS_ANGL Invalid angle.
 GS_NMEM Insufficient resources.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.18.1 - 1

 2.6.19 gseply

 Purpose
 Defines the end of an area to fill.

 C Syntax

 int gseply_ ()

 FORTRAN Syntax

 INTEGER function gseply

 Pascal Syntax

 FUNCTION gseply_ : INTEGER [PUBLIC];

 Description

 The gseply subroutine defines the end of a two-dimensional shape or set of
 shapes to be filled, then fills each of the valid primitives drawn since
 the last gspcls or gsbply subroutine was called.

 The relevant attributes are:

 � Color ma
 � Plane mas
 � Fill color inde
 � Fill styl
 � Logical operation

 Return Value

 GS_SUCC Successful.
 GS_USUC Unsuccessful.

 Related Information
 In this book: "gsbply" in topic 2.6.5 and "gspcls" in topic 2.6.41.

AIX Operating System Technical Reference
gseply

¦ Copyright IBM Corp. 1985, 1991
2.6.19 - 1

 2.6.20 gsevds

 Purpose
 Disables the reporting of events.

 C Syntax

 int gsevds_ (event)

 int *event;

 FORTRAN Syntax

 INTEGER function gsevds (event)

 INTEGER event

 Pascal Syntax

 FUNCTION gsevds_ (

 VAR event: INTEGER
): INTEGER [PUBLIC];

 Description
 The gsevds subroutine disables the reporting of events of a given type.
 When the keyboard event is disabled, the keyboard is locked and no
 keystroke input is placed in the input ring buffer. Similarly, for all
 other devices, if an event is disabled, the device producing the event is
 inhibited from placing input into the ring.

 A valid input ring must be defined during the GSL initialization.

 Subtopics
 2.6.20.1 Parameters

AIX Operating System Technical Reference
gsevds

¦ Copyright IBM Corp. 1985, 1991
2.6.20 - 1

 2.6.20.1 Parameters

 event The recognized events on the PS/2 are as follows:

 1 Keystroke
 3 Locator movement or button

 The user can enable the keyboard by sending the ESC b key sequence from
 within a program to the output device.

 Note: When the keyboard is disabled, this sequence cannot be entered.

 Return Value

 GS_SUCC Successful.
 GS_EVNT Invalid event type.
 GS_UNSC Unsuccessful.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.20.1 - 1

 2.6.21 gseven

 Purpose
 Enables the reporting of events.

 C Syntax

 int gseven_ (event)

 int *event;

 FORTRAN Syntax

 INTEGER function gseven (event)

 INTEGER event

 Pascal Syntax

 FUNCTION gseven_ (

 VAR event: INTEGER
): INTEGER [PUBLIC];

 Description
 The gseven subroutine enables the reporting of events of a given type. If
 the device producing the event is enabled, then gseven lets it put data
 into the ring buffer. If the event type is not recognized, no action is
 taken.

 A valid input ring must be defined during the GSL initialization.

 Subtopics
 2.6.21.1 Parameters

AIX Operating System Technical Reference
gseven

¦ Copyright IBM Corp. 1985, 1991
2.6.21 - 1

 2.6.21.1 Parameters

 event The recognized events on the PS/2 are as follows:

 1 Keystroke
 3 Locator movement or button

 After GSL initialization, only the keyboard is enabled. If the
 application wishes the other input devices enabled, it must explicitly
 enable them with this command.

 Return Value

 GS_SUCC Successful.
 GS_EVNT Invalid event type.
 GS_UNSC Unsuccessful.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.21.1 - 1

 2.6.22 gsevwt

 Purpose
 Waits for an input event.

 C Syntax

 int gsevwt_ (wait, data)

 int *wait, data[13];

 FORTRAN Syntax

 INTEGER function gsevwt (wait, data)

 INTEGER wait, data (13)

 Pascal Syntax

 FUNCTION gsevwt_ (

 VAR wait: INTEGER;
 VAR data: ARRAY [0..12] of INTEGER
): INTEGER [PUBLIC];

 Description
 The gsevwt subroutine returns the relevant information for the oldest
 input event in the ring buffer.

 The function works as follows:

 � If an event is in the ring, then gsevwt parses the oldest event in the
 ring. It returns the event type and its data in the buffer provided
 by the application.

 � If no event is in the ring and the application requested no wait
 gsevwt returns immediately. If the application requested a wait, the
 process execution is suspended until an enabled input event occurs;
 then gsevwt returns the event type and its data in the buffer
 provided.

 Warning: gsevwt uses the application buffer passed to it for
 temporary storage. If the user has explicitly keyed part of an ANSI
 control sequence when the application calls gsevwt with no wait
 request, then gsevwt finds a partial event in the ring and leaves part
 of the parsed data for the event in the application buffer; however,
 gsevwt returns a timeout event class. Unless the application returns
 the same unmodified buffer, or a different buffer containing identical
 information, the results of the next call to gsevwt will be incorrect.

 A valid input ring must be defined during the GSL initialization.

 Subtopics
 2.6.22.1 Parameters

AIX Operating System Technical Reference
gsevwt

¦ Copyright IBM Corp. 1985, 1991
2.6.22 - 1

 2.6.22.1 Parameters

 wait Determines whether or not to wait for an event. If wait is 0,
 then gsevwt does not wait for an event if no event is available.

 data Specifies the location where GSL is to store the input data (up
 to 13 words). The data must be word aligned:

 The possible events are:

 1 Keystroke(s)

 This event type occurs when the user types a single graphic
 character or a single-byte control character. For these two
 events, gsevwt returns a null-terminated byte string
 representing the graphic or control character that was typed.
 This event may also occur if the user has explicitly keyed an
 ANSI escape sequence; gsevwt returns two bytes, the ESC and
 the next character in the sequence.

 The data consists of a null-terminated ASCII string and is
 structured as follows:

 2 Control sequence

 This event type indicates an ANSI control sequence, which is
 of the form:

 ESC [p ; p ;...p f]

 where ESC is the ASCII escape character, p represents a
 parameter (one or more ASCII digits), the ellipsis represents
 additional parameters separated by semicolons, and f
 represents the final character that terminates the sequence
 (ASCII a-z or A-Z).

 The ANSI control sequence occurs when the user presses a
 program function key on the keyboard or if the user enters an
 explicit control sequence.

 The data consists of the parsed control sequence information.
 The Final Character is the valid or invalid final character.
 The Count indicates the number of parameters in the control
 sequence, with a maximum count of 10. These fields are
 followed by the Parameters. The data is structured as follows:

 3 Locator

 This event indicates the user has moved the locator or pressed
 a button on the locator.

 The data consists of locator position and status information.
 The X value and the Y value field contain a relative movement
 (delta x, delta y) for a mouse and an absolute position (x, y)
 for a tablet. The Timestamp, which is elapsed time since
 system startup (IPL), is in sixtieths of a second.

 The Buttons field contains the locator button status. For a
 mouse, each bit corresponds to a button, the most significant
 bit representing Button 1. A bit set to 1 indicates that the

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.22.1 - 1

 corresponding button is pressed. For a tablet, the most
 significant five bits represent the button pressed, according
 to the following scheme:

 Status Button
 0 None pressed
 1 Cursor upper left, stylus tip
 2 Cursor upper right
 3 Cursor lower left
 4 Cursor lower right

 For a tablet, the sixth most significant bit of the Buttons
 field indicates that the sensor is on (bit set) or off (bit
 not set).

 The Type field contains a 0 if the locator is a mouse and a 1
 if the locator is a tablet. The data is structured as
 follows:

 4 LPFK

 This event type occurs when the user presses a key on the
 LPFK.

 The data consists of the LPFK information. The LPFK field
 contains the decimal number 0 through 31 of the LPFK pressed
 by the user. The Timestamp (time since system startup) is in
 sixtieths of a second. The data is structured as follows:

 5 Valuator

 This event type occurs when the user turns a valuator dial.

 The data consists of the valuator information. The Valuator
 field contains the decimal number 0 through 7 of the valuator
 turned by the user. The Valuator Delta field contains the
 difference between the current valuator value and the last
 valuator value. The delta for a full turn is 256 for the IBM
 Valuator. The delta is positive for clockwise rotation and
 negative for counterclockwise rotation. The Timestamp (time
 since system startup) is in sixtieths of a second. The data
 is structured as follows:

 6 Key Code

 This event type occurs when the virtual terminal is in
 non-translated mode and a keyboard key is pressed, held down,
 or released. The data is structured as follows:

 Key position codes are found under "keyboard" in topic 2.5.13.

 7 Pick Event

 This event type occurs while the pick operation is enabled and
 graphics primitives are being sent to the adapter. The data
 is structured as follows:

 A pick event code is generated when a structure traversal
 occurs. The pick occurs when pixels intersect the pick window

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.22.1 - 2

 (defined by the pick enable window size). The detection mode
 is always immediate, so that an event is generated as soon as
 an event occurs.

 The pick event type is provided only for use with the IBM 5081
 Display Adapter, and not for use with other displays.

 10 Timeout

 No data is returned.

 It is important to note that gsevwt does not detect ANSI escape sequences.
 However, with the default virtual terminal keyboard mapping, it is not
 possible to generate an escape sequence by pressing a single key. Because
 gsevwt does parse ANSI control sequences, the routine cannot consider the
 press of the escape key an event, so the routine waits for the next
 character to decide if the escape implies the start of a control sequence.
 Only if the next character is not the left bracket does gsevwt return the
 escape and the next character.

 If the return code indicates overflow, the most recent input events from
 enabled devices are lost.

 Return Value

 GS_SUCC Successful.
 GS_ROVR Ring buffer overflow.
 GS_UDRG Ring undefined.
 GS_PARM Invalid number of escape parameters.
 GS_ICTL Invalid final character.

 Related Information
 In this book: "keyboard" in topic 2.5.13.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.22.1 - 3

 2.6.23 gsfatt

 Purpose
 Sets the fill attributes.

 C Syntax

 int gsfatt_ (color, pattern, reserved)

 int *color, *pattern, *reserved;

 FORTRAN Syntax

 INTEGER function gsfatt (color, pattern, reserved)

 INTEGER color, pattern, reserved

 Pascal Syntax

 FUNCTION gsfatt_ (

 VAR color, pattern, reserved: INTEGER
): INTEGER [PUBLIC];

 Description
 The gsfatt subroutine defines the attributes for the class of fill
 functions, which includes gsfci, gsfell, gsfrec, and gsfply.

 Subtopics
 2.6.23.1 Parameters

AIX Operating System Technical Reference
gsfatt

¦ Copyright IBM Corp. 1985, 1991
2.6.23 - 1

 2.6.23.1 Parameters

 color Refers to an entry in the color map. If color is -1, the
 attribute is unchanged. The default color after initialization
 is 7, white.

 pattern Contains a value from the following list:

 Value Display Printer or Plotter

 -1 No change No change
 0 Solid Solid
 1 Horizontal lines Narrow right diagonal lines
 2 Vertical lines Medium right diagonal lines
 3 135-degree lines Wide right diagonal lines
 4 45-degree lines Narrow diagonal
 cross-hatched
 5 Cross-hatched (horizontal Medium diagonal
 and vertical lines) cross-hatched
 6 Cross-hatched (45- and Wide diagonal cross-hatched
 135-degree lines)

 The default pattern is solid (0).

 Some printers and plotters support additional fill patterns that
 can be selected with a pattern index greater than 6. If the
 device you are using does not support additional fill patterns
 and you specify a pattern index greater than 6, then the gsfatt
 subroutine returns the value GS_SYLI.

 reserved Represents a parameter that gsfatt ignores.

 Return Value

 GS_SUCC Successful.
 GS_COLI Invalid color index.
 GS_SYLI Invalid style index.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.23.1 - 1

 2.6.24 gsfci

 Purpose
 Fills a circle.

 C Syntax

 int gsfci_ (cx, cy, cr)

 int *cx, *cy, *cr;

 FORTRAN Syntax

 INTEGER function gsfci (cx, cy, cr)

 INTEGER cx, cy, cr

 Pascal Syntax

 FUNCTION gsfci_ (

 VAR cx, cy, cr : INTEGER
): INTEGER [PUBLIC];

 Description

 The gsfci subroutine fills a circle of the specified radius. The radius
 is expressed in number of pixels.

 The relevant attributes are:

 � Color ma
 � Plane mas
 � Fill color inde
 � Fill pattern inde
 � Logical operation

 Subtopics
 2.6.24.1 Parameters

AIX Operating System Technical Reference
gsfci

¦ Copyright IBM Corp. 1985, 1991
2.6.24 - 1

 2.6.24.1 Parameters

 cx, cy Define the coordinates of the center of the circle.

 cr Defines the radius of the circle.

 If the radius is 0, a single point is filled at the center.

 If the radius is 0, a single point is filled at the center.

 Return Value

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_RDUS Invalid radius specification.
 GS_INAC Virtual terminal inactive.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.24.1 - 1

 2.6.25 gsfell

 Purpose
 Fills an ellipse.

 C Syntax

 int gsfell_ (cx, cy, ma, mi, ang)

 int *cx, *cy, *ma, *mi, *ang;

 FORTRAN Syntax

 INTEGER function gsfell (cx, cy, ma, mi, ang)

 INTEGER cx, cy, ma, mi, ang

 Pascal Syntax

 FUNCTION gsfell_ (

 VAR cx, cy, ma, mi, ang : INTEGER
): INTEGER [PUBLIC];

 Description

 The gsfell subroutine fills an ellipse of the specified axes and angle.
 The axes are expressed in number of pixels.

 The angle specifications are given in tenths of degrees, from 0 to 3600.
 Values outside this range cause the gsfell subroutine to fail.

 The relevant attributes are:

 � Color ma
 � Plane mas
 � Fill color inde
 � Fill pattern inde
 � Logical operation

 Subtopics
 2.6.25.1 Parameters

AIX Operating System Technical Reference
gsfell

¦ Copyright IBM Corp. 1985, 1991
2.6.25 - 1

 2.6.25.1 Parameters

 cx, cy Define the coordinates of the center of the ellipse.

 ma, mi Define half of the nonzero major and minor axes of the ellipse.

 ang Defines the angle between the major axis and the x-axis. If it
 is 0, the major axis is on the x-axis and the minor axis is on
 the y-axis. The angle is defined in tenths of degrees, from 0 to
 3600, specified in a counterclockwise direction.

 Return Value

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_ELMM Invalid major or minor axis.
 GS_INAC Virtual terminal inactive.
 GS_ANGL Invalid angle.
 GS_NMEM Insufficient resources.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.25.1 - 1

 2.6.26 gsfply

 Purpose
 Draws a filled polygon.

 C Syntax

 int gsfply_ (number, x, y)

 int *number, *x, *y;

 FORTRAN Syntax

 INTEGER function gsfply (number, x, y)

 INTEGER number
 INTEGER x (*)
 INTEGER y (*)

 Pascal Syntax

 FUNCTION gsfply_ (

 VAR number: INTEGER;
 VAR x, y: ARRAY [1..k] of INTEGER
): INTEGER [PUBLIC];

 Description
 The gsfply subroutine fills an area that is described by the points
 defined in the number and x, y parameters, with the color determined by
 the last call to the gsfatt subroutine.

 The relevant attributes are:

 � Color ma
 � Plane mas
 � Fill color inde
 � Fill pattern inde
 � Logical operation

 Subtopics
 2.6.26.1 Parameters

AIX Operating System Technical Reference
gsfply

¦ Copyright IBM Corp. 1985, 1991
2.6.26 - 1

 2.6.26.1 Parameters

 number Defines the number of points in the coordinate arrays. This
 value must be 3 or more.

 x, y Define, as coordinate arrays, the points surrounding the polygon
 to fill.

 The edges are treated as part of the area to be filled.

 The gsfply subroutine fills a closed polygon with a pattern, generated by
 creating an edge between the first and the last points. The first and the
 last points described by the parameters may be equal, but it is not
 required and is actually less efficient.

 For Pascal, the application must declare the arrays passed as being fixed
 length and declare the routine as accepting arrays of that length; that
 is, the k in the routine declaration must be a constant.

 Return Value

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_NCOR Invalid number of coordinates.
 GS_NMEM Insufficient resources.
 GS_INAC Virtual terminal inactive.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.26.1 - 1

 2.6.27 gsfrec

 Purpose
 Draws a filled rectangle.

 C Syntax

 int gsfrec_ (x1, y1, x2, y2)

 int *x1, *y1, *x2, *y2;

 FORTRAN Syntax

 INTEGER function gsfrec (x1, y1, x2, y2)

 INTEGER x1, y1, x2, y2

 Pascal Syntax

 FUNCTION gsfrec_ (

 VAR x1, y1, x2, y2: INTEGER
): INTEGER [PUBLIC];

 Description
 The gsfrec subroutine fills the rectangular area defined by the lower
 leftmost and upper rightmost coordinate parameters, with the color
 determined by the last call to the gsfatt subroutine.

 The relevant attributes are:

 � Color ma
 � Plane mas
 � Fill color inde
 � Fill pattern inde
 � Logical operation

 Subtopics
 2.6.27.1 Parameters

AIX Operating System Technical Reference
gsfrec

¦ Copyright IBM Corp. 1985, 1991
2.6.27 - 1

 2.6.27.1 Parameters

 x1, y1 Define the lower left corner of the rectangular area to fill.

 x2, y2 Define the upper right corner of the rectangular area to fill.

 The edges of the rectangle are treated as part of the area to be filled.

 Return Value

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_INAC Virtual terminal inactive.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.27.1 - 1

 2.6.28 gsgtat

 Purpose
 Sets the attributes for the geometric text drawing functions.

 C Syntax

 int gsgtat_ (color, baseline, pre, expan, spac, height,
 upvectx, upvecty, alignhz, alignvt, font_ID, font)

 int *color, *baseline, *pre, *expan, *spac, *height,
 int *upvectx, *upvecty, *alignhz, *alignvt, *font_ID;
 char *font;

 FORTRAN Syntax

 INTEGER function gsgtat (color, baseline, pre, expan, spac, height,
 upvectx, upvecty, alignhz, alignvt, font_ID, font)

 INTEGER color, baseline, pre, expan, spac, height
 INTEGER upvectx, upvecty, alignhz, alignvt, font_ID
 CHARACTER*n font

 Pascal Syntax

 FUNCTION gsgtat_ (

 VAR color, baseline, pre, expan, spac, height: INTEGER;
 VAR upvectx, upvecty, alignhz, alignvt, font_ID: INTEGER;
 VAR font: ARRAY [0..k] of CHAR
): INTEGER [PUBLIC];

 Description
 The gsgtat subroutine defines the attributes and fonts for the geometric
 text drawing functions.

 Note: The attributes defined by this command are applicable only to
 geometric text.

 Subtopics
 2.6.28.1 Parameters

AIX Operating System Technical Reference
gsgtat

¦ Copyright IBM Corp. 1985, 1991
2.6.28 - 1

 2.6.28.1 Parameters

 color Specifies an entry in the color map for text color. If
 it is -1, the attribute is unchanged.

 baseline Determines the direction of the geometric text drawing.
 The valid values are:

 -1 Attribute remains unchanged.

 0 Specifies 0 degrees, or left to right in the
 viewer's terms.

 1 Specifies 90 degrees, or up in the viewer's terms.

 2 Specifies 180 degrees, or right to left in the
 viewer's terms.

 Note: The characters appear upside down.

 3 Specifies 270 degrees, or down in the viewer's
 terms.

 Note: The baseline parameter does not change character
 rotation. Use the upvectx and upvecty parameters
 to rotate text.

 pre Specifies the desired text precision used in drawing
 text primitives. The valid values are:

 -1 Attribute remains unchanged.

 1 Character precision.

 2 Stroke precision.

 expan Defines as a 32-bit fractional integer the deviation of
 the width/height ratio of the character from the ratio
 defined in the font. The expansion factor only changes
 the width of the character.

 In the above figure, the first 16 bits contain zeros, S
 represents the sign bit, INTEGER represents the integer
 portion of the width/height ratio, and FRACTION
 represents the fractional portion of the ratio. A
 32-bit integer value of 0x80000000 indicates that this
 attribute is unchanged.

 spac Specifies the character spacing, or additional number of
 pixels to be inserted between characters. The value is
 a 16-bit signed integer. The preferred value for this
 parameter varies, based on the display in use. The
 maximum value that is allowed is equal to the display
 width in pixels. A value of 0x80000000 for this
 parameter indicates that the attribute is unchanged.

 height Specifies the current character height for geometric
 text in pixels. This value is defined as a 16-bit
 signed integer, with the maximum value equal to the
 height of the display in pixels. A value of 0x80000000

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.28.1 - 1

 for this parameter indicates that the attribute is
 unchanged.

 upvectx, upvecty Specify the x and y coordinates for the up direction of
 a character or text string. The valid range for these
 values is ± the display dimensions in pixels. A value
 of 0x80000000 for this parameter indicates that the
 attribute is unchanged.

 The up vector is a two-dimensional vector on the text
 plane, specified by the current text draw. (The origin
 of the vector is defined by the geometric text command,
 gsgtxt.) Only the direction, not the length, of the
 vector is relevant.

 alignhz Specifies the horizontal alignment of the text for
 subsequent text drawing. Values are as follows:

 -1 Attribute is unchanged
 1 Normal
 2 Left
 3 Center
 4 Right

 alignvt Specifies the vertical alignment of the text for
 subsequent text drawing. Values are as follows:

 -1 Attribute is unchanged
 1 Normal
 2 Top
 3 Cap
 4 Half
 5 Base
 6 Bottom

 font_ID Specifies the ID of the font as a 32-bit integer, which
 defines the type of font to use. This ID is determined
 by the user while defining each geometric font.
 Possible values are:

 -1 A font_ID has been defined in a
 previous call to the gsgtat
 subroutine, and this attribute is
 unchanged.

 1025 to 32767 These values are used to specify
 1-byte geometric fonts, and refer to a
 value defined in each geometric font
 file.

 32768 to 65535 These values are used to specify
 2-byte geometric fonts, and refer to a
 value defined in each geometric font
 file.

 Only 1 font_ID is active at any time. To change the
 font_ID, gsgtat must be called again with new font_ID
 and font parameters. When a new font_ID is specified,
 the previous font_ID is purged from the font table.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.28.1 - 2

 For 2-byte geometric text, up to 128 segment IDs can be
 used per font_ID.

 When used with the font parameter, the font_ID is
 associated with the font used for font selection.

 font Contains the null-terminated full path name of the file
 used when the font attribute is specified as user. If a
 font_ID is defined, this parameter must also be defined.
 A value of -1 for this parameter indicates that the
 attribute is unchanged. For information on the format
 of font files for geometric text, see "Geometric Text
 Font Format" in topic 2.3.19.2.

 Attributes are only valid for the currently active font.

 This subroutine must be called before the gsgtxt subroutine or an error
 results.

 For Pascal, the application must declare the arrays passed as being fixed
 length and declare the routine as accepting arrays of that length. The k
 in the routine declaration must be a constant.

 Return Value

 GS_SUCC Successful.
 GS_COLI Invalid color index.
 GS_PREC Invalid text precision value.
 GS_EXPN Invalid character expansion factor.
 GS_FNTN Invalid file name.
 GS_INSV Invalid spacing value.
 GS_BASL Invalid baseline direction.
 GS_HIGH Invalid height value.
 GS_UPVT Invalid up vector value.
 GS_ALGN Invalid alignment value.

 Related Information
 In this book: "fonts" in topic 2.3.19, "Geometric Text Font Format" in
 topic 2.3.19.2, and "gsgtxt" in topic 2.6.29.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.28.1 - 3

 2.6.29 gsgtxt

 Purpose
 Writes geometric text.

 C Syntax

 int gsgtxt_ (x, y, number, text)

 int *x, *y, *number;
 char *text;

 FORTRAN Syntax

 INTEGER function gsgtxt (x, y, number, text)

 INTEGER x, y, number
 CHARACTER*n text

 Pascal Syntax

 FUNCTION gsgtxt_ (

 VAR x, y, number: INTEGER;
 VAR text: ARRAY [1..k] of CHAR
): INTEGER [PUBLIC];

 Description
 The gsgtxt subroutine writes geometric characters starting at the baseline
 position defined by the parameters and writes the number of characters
 indicated by the parameters according to the relevant attributes.

 The relevant attributes are:

 � Color ma
 � Plane mas
 � Fon
 � Text color inde
 � Character expansion facto
 � Character spacin
 � Character heigh
 � Character up vecto
 � Character alignmen
 � Baseline direction

 Subtopics
 2.6.29.1 Parameters

AIX Operating System Technical Reference
gsgtxt

¦ Copyright IBM Corp. 1985, 1991
2.6.29 - 1

 2.6.29.1 Parameters

 x, y Define the coordinates of the baseline position for
 writing geometric text.

 number Indicates the number of bytes to write from the text
 string. The maximum number of characters allowed is
 1024 for single byte fonts and 512 for two-byte fonts,
 which is determined by the display and font in use.

 text Contains the N-bit ASCII codes for the characters to
 write, as an array.

 Return Value

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_FBUF Frame buffer overflow.
 GS_INAC Virtual terminal inactive.
 GS_NOFT Font not loaded.
 GS_NOAT Text attribute not set.

 Related Information
 In this book: "fonts" in topic 2.3.19, "Geometric Text Font Format" in
 topic 2.3.19.2, "gsgtat" in topic 2.6.28, and "gsqgtx" in topic 2.6.47.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.29.1 - 1

 2.6.30 gsinit

 Purpose
 Initializes the GSL subroutines.

 C Syntax

 int gsinit_ (buffer, size, save_restore, f_grant, f_retract, fildes)

 int *buffer, *size, *save_restore;
 int (*f_grant) (), (*f_retract) ();
 int *fildes;

 FORTRAN Syntax

 INTEGER function gsinit (buffer, size, save_restore, f_grant, f_retract, fildes)

 INTEGER buffer (*), size, save_restore, fildes
 EXTERNAL f_grant, f_retract

 Pascal Syntax

 FUNCTION gsinit_ (

 VAR buffer: ARRAY [0..k] of INTEGER;
 VAR size, save_restore, f_grant, f_retract, fildes: INTEGER
): INTEGER [PUBLIC];

 Description
 The gsinit subroutine initializes the GSL. It allocates any private
 storage required, and sets attributes to the default values where
 necessary. It also forces the virtual terminal of the application to
 Monitor Mode and sets up the signal processing routines for the SIGRETRACT
 and SIGGRANT signals, and optionally, the SIGMSG signal.

 Subtopics
 2.6.30.1 Parameters

AIX Operating System Technical Reference
gsinit

¦ Copyright IBM Corp. 1985, 1991
2.6.30 - 1

 2.6.30.1 Parameters

 buffer Defines the Monitor Mode input ring buffer to be used by
 the GSL input functions. buffer must be word aligned
 and at least 128 bytes long. For output to a printer or
 plotter device, set the buffer parameter to -1. (In C,
 buffer is a pointer to an integer containing the value
 -1. In Pascal, it is a variable containing the value
 -1.)

 size Defines the length of buffer in bytes. Depending on the
 value of size, gsinit performs the following actions:

 size=0 The GSL ignores the buffer parameter and does not
 provide input support. The application must
 provide a means for receiving input events and
 can use the read system call or set up its own
 ring buffer mechanism.

 size<128 The gsinit subroutine does not initialize the
 GSL.

 size=128 The GSL establishes the virtual terminal
 linkage to the input ring buffer provided by the
 application and provides input support and sets
 up a SIGMSG signal catcher.

 save_restore Determines whether to save the display frame buffer and
 adapter states.

 If save_restore is nonzero, the GSL saves the current
 contents of the display frame buffer as well as the
 current adapter state when the virtual terminal must
 become inactive and restores both the frame buffer
 contents and adapter state when it becomes active.

 If save_restore is 0, the GSL saves only the adapter
 state and assumes that the application either saves the
 frame buffer or reconstructs it in some fashion.

 f_grant Sets up processing of the SIGGRANT signal. If f_grant
 is nonzero, it is assumed to be the address of an
 application supplied function, and the GSL calls the
 function as part of the SIGGRANT signal handling. If
 save_restore is nonzero, the application function is
 called before the frame buffer is restored.

 f_retract Sets up processing of the SIGRETRACT signal. If
 f_retract is nonzero, it is assumed to be the address of
 an application supplied function, and the GSL calls the
 function as part of the SIGRETRACT signal handling.

 fildes Determines where output is directed. The output device
 is specified by one of the following:

 � The value -1, which specifies standard output.

 � A file descriptor returned by a creat, open, dup, or
 fcntl system call.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.30.1 - 1

 � A null-terminated character string up to 11
 characters long, which names an environment variable
 defining a printer or plotter device. In this case,
 the value of the buffer parameter must be -1. (See
 "Printers and Plotters" in topic 2.6.4.2.)

 (In C, fildes is a pointer to a file descriptor, an
 integer, or a character string. In Pascal, it is a
 variable containing one of these values.)

 If the initialization process is unsuccessful, the virtual terminal is not
 placed in Monitor Mode and invocation of any other GSL routines will cause
 unpredictable results.

 For printers or plotters, if initialization is unsuccessful, the
 application can either terminate or re-drive the initialize function with
 a valid character string as a means of correcting the problem.

 For Pascal, the application must declare the arrays passed as being fixed
 length and declare the routine as accepting arrays of that length; that
 is, the k in the routine declaration must be a constant.

 Pascal cannot directly provide the address of a routine. An assembler
 function may be used to derive the address of a routine passed to the GSL.

 The f_grant and f_retract routines supplied by the application are called
 on the signal level and must return. These application routines must not
 use either setjmp or longjmp subroutines.

 The GSL supports use of the sdb symbolic debugger on the RT PC and the dbx
 symbolic debugger on the PS/2 by redirection to a supplied file
 descriptor. If two virtual terminals are open and the GSL application
 runs on one, the application may get the file descriptor for the second
 and supply that descriptor at GSL initialization. The GSL directs its
 output to the second virtual terminal while sdb on the RT PC and dbx on
 the PS/2 directs its output to the first; either is activated in the
 standard manner.

 The user routine called at SIGGRANT can be called before gsinit returns to
 the application.

 Return Value

 GS_SUCC Successful.
 GS_HBUS Cannot access hardware bus.
 GS_ADPT Invalid display type.
 GS_FONT Cannot access default font.
 GS_RING Buffer too small.
 GS_HDCP Invalid file descriptor for hard copy output.
 GS_HDLK Unable to create lock file.
 GS_HDIM Insufficient memory.
 GS_HDDB Device is busy.
 GS_HDNA Physical device not attached.
 GS_HDMG Maximum number of graphics devices open.
 GS_HDIF No system interprocess communication buffers left.
 GS_HDSF The fork system call failed.
 GS_HDGO Specified graphics device already open.
 GS_HDGN Specified graphics device does not exist.
 GS_HDGU Specified graphics device driver is unknown.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.30.1 - 2

 Related Information
 In this book: "Printers and Plotters" in topic 2.6.4.2.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.30.1 - 3

 2.6.31 gslatt

 Purpose
 Sets the line attributes.

 C Syntax

 int gslatt_ (color, style)

 int *color, *style;

 FORTRAN Syntax

 INTEGER function gslatt (color, style)

 INTEGER color, style

 Pascal Syntax

 FUNCTION gslatt_ (

 VAR color, style: INTEGER
): INTEGER [PUBLIC];

 Description
 The gslatt subroutine defines the attributes for the class of line drawing
 functions.

 Subtopics
 2.6.31.1 Parameters

AIX Operating System Technical Reference
gslatt

¦ Copyright IBM Corp. 1985, 1991
2.6.31 - 1

 2.6.31.1 Parameters

 color Refers to a line color entry in the color map. If it is
 -1, the attribute is unchanged. The default color is 7,
 white.

 style Sets or resets the line attributes. The line value of
 style can be one of the following:

 Value Display Printer or Plotter

 -1 No change No change
 0 Solid Solid
 1 Dash Dash
 2 Dot Dot
 3 Dash-dot Dash-dot
 4 Dash-dot-dot Dash-dot-dot
 50 User-supplied Not available
 100 Continuous solid Solid
 101 Continuous dash Dash
 102 Continuous dot Dot
 103 Continuous dash-dot Dash-dot
 104 Continuous Dash-dot-dot
 dash-dot-dot
 150 Continuous Not available
 user-supplied

 The default attribute is solid (0).

 The GSL supplied line style patterns are implemented in a device-dependent
 fashion. All line style indices not described above are reserved.

 For line styles 1-4 and line style 50 the GSL line drawing functions
 ensure that a line or line segment starts and ends with a run of the line
 color. For these line styles, the GSL does not continue the pattern from
 one polyline segment to another.

 For line styles 101-104 and line style 150, the GSL continues the pattern
 across multiple lines or line segments until the application makes another
 call to gslatt to reset the line pattern. In this case, unlike styles 1-4
 and 50, the GSL continues the pattern from one polyline segment to
 another. Continuous line styles are not available on printers and
 plotters.

 Return Value

 GS_SUCC Successful.
 GS_COLI Invalid color index.
 GS_SYLI Invalid style index.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.31.1 - 1

 2.6.32 gslcat

 Purpose
 Sets the locator attributes.

 C Syntax

 int gslcat_ (hg, vg)

 int *hg, *vg;

 FORTRAN Syntax

 INTEGER function gslcat (hg, vg)

 INTEGER hg, vg

 Pascal Syntax

 FUNCTION gslcat_ (

 VAR hg, vg: INTEGER
): INTEGER [PUBLIC];

 Description
 The gslcat subroutine sets the locator attributes. Its effect depends on
 the type of locator attached. For a mouse, gslcat sets the thresholds.
 For a tablet, it sets the dead zone.

 Subtopics
 2.6.32.1 Parameters

AIX Operating System Technical Reference
gslcat

¦ Copyright IBM Corp. 1985, 1991
2.6.32 - 1

 2.6.32.1 Parameters

 hg, vg Define the horizontal and vertical values for the locator
 threshold or dead zone, in units of 0.25 millimeter.

 The mouse thresholds determine the granularity of input events reported,
 or the amount of horizontal or vertical mouse movement required before an
 event occurs.

 The tablet dead zone is an area of the tablet in which no event reports
 occur, even if the tablet sensor is present. This dead zone allows the
 application to make the tablet aspect ratio compatible with the display
 and allows tablets of different sizes to appear the same size to an
 application. The dead zone acts as a border around the tablet. The
 device driver reports movement only when the x value is greater than or
 equal to hg or less than or equal to (maximum tablet value - hg), and the
 y value is greater than or equal to vg or less than or equal to (maximum
 tablet value - vg).

 An attempt to set the locator attributes may fail for a variety of
 reasons, the most likely of which is that the device is not attached. The
 nature of the problem can be determined with a specific ioctl to the
 virtual terminal. (See "hft" in topic 2.5.11 for more information.)

 Note that the gslcat subroutine allows an application to set the mouse
 thresholds or the tablet dead zone such that no events occur even if the
 device is enabled.

 Return Value

 GS_SUCC Successful.
 GS_USUC Unsuccessful.

 Related Information
 In this book: "hft" in topic 2.5.11.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.32.1 - 1

 2.6.33 gsline

 Purpose
 Draws a line between two points.

 C Syntax

 int gsline_ (x1, y1, x2, y2)

 int *x1, *y1, *x2, *y2;

 FORTRAN Syntax

 INTEGER function gsline (x1, y1, x2, y2)

 INTEGER x1, y1, x2, y2

 Pascal Syntax

 FUNCTION gsline_ (

 VAR x1, y1, x2, y2: INTEGER
): INTEGER [PUBLIC];

 Description
 The gsline subroutine draws a line, as defined by the current relevant
 attributes, from the first point to the second point defined by the
 parameters.

 The relevant attributes are:

 � Color ma
 � Plane mas
 � Line color inde
 � Line styl
 � Logical operation

 Subtopics
 2.6.33.1 Parameters

AIX Operating System Technical Reference
gsline

¦ Copyright IBM Corp. 1985, 1991
2.6.33 - 1

 2.6.33.1 Parameters

 x1, y1 Defines the coordinates of one end point of the line
 drawn by gsline.

 x2, y2 Defines the coordinates of the second point of the line
 drawn by gsline.

 Return Value

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_INAC Virtual terminal inactive.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.33.1 - 1

 2.6.34 gslock

 Purpose
 Postpones signal processing.

 C Syntax

 int gslock_ ()

 FORTRAN Syntax

 INTEGER function gslock ()

 Pascal Syntax

 FUNCTION gslock_ (): INTEGER [PUBLIC];

 Description
 The gslock subroutine causes the GSL not to acknowledge the SIGRETRACT
 signal, if it occurs, until the application requests resumption of the
 signal handling with the gsunlk subroutine. This permits the application
 to access the display frame buffer directly.

 If the virtual terminal is inactive when the application calls gslock and
 the GSL has been instructed to save the frame buffer when the virtual
 terminal becomes inactive, gslock suspends the application until the
 virtual terminal becomes active and then returns a successful return code.
 If the GSL has been instructed not to save the frame buffer, gslock
 returns the GS_INAC return code immediately. The application must not
 access the display frame when GS_INAC is returned.

 Note: If SIGRETRACT signal processing is suspended for more than 30
 seconds, it is possible that a generated SIGRETRACT signal may be
 suspended long enough for the SIGKILL signal to occur, terminating
 the application process.

 Return Value

 GS_SUCC Virtual terminal active, safe to write to frame buffer.
 GS_INAC Virtual terminal inactive.

AIX Operating System Technical Reference
gslock

¦ Copyright IBM Corp. 1985, 1991
2.6.34 - 1

 2.6.35 gslop

 Purpose
 Specifies the logical operation used when drawing lines.

 C Syntax

 int gslop_ (operation)

 int *operation;

 FORTRAN Syntax

 INTEGER function gslop (operation)

 INTEGER operation

 Pascal Syntax

 FUNCTION gslop_ (

 VAR operation INTEGER;
): INTEGER [PUBLIC];

 Description
 The gslop subroutine specifies the logical operation used for drawing the
 GSL line-oriented, fill, save/restore, and polymarker primitives. It does
 not apply to the text primitives.

 Subtopics
 2.6.35.1 Parameters

AIX Operating System Technical Reference
gslop

¦ Copyright IBM Corp. 1985, 1991
2.6.35 - 1

 2.6.35.1 Parameters

 operation Indicates the logical operation to perform between the
 primitive being drawn and the current contents of the
 frame buffer.

 In the following table, please note:

 � The source pixels represent bits of data to be
 merged in some way with the corresponding bits of
 data in the destination rectangle.

 � The first three columns of the table specify the
 operations you can perform, and the Code column
 contains the corresponding value you should specify
 for the operation parameter.

 � A ~ (tilde) represents the logical INVERSE.

 Type of Logical Type of Code
 Source Operation Destination

 Destination clear 0
 Set Destination 15
 No operation Destination 5
 ~Destination 10
 Source REPLACE Destination 3
 Source AND Destination 1
 Source AND ~Destination 2
 Source Exclusive-or Destination 6
 Source OR Destination 7
 Source OR ~Destination 11
 ~Source REPLACE Destination 12
 ~Source AND Destination 4
 ~Source AND ~Destination 8
 ~Source Exclusive-or Destination 9
 ~Source OR Destination 13
 ~Source OR ~Destination 14

 Replace (3) is the default logical operation.

 Only REPLACE, AND, OR, and Exclusive-or (codes 3, 1, 7, and 6,
 respectively), are supported for VGA displays.

 For printers, the operations performed are the same as those for displays,
 except that a value of 0 turns the color off, and a value of 15 changes
 the color to white.

 For plotters, the default and only valid logical operation is logical OR.
 The plotters interpret this as an overstrike. The GSL performs each of
 the boolean operations for each bit of the source and destination color
 values enabled by the plane mask. The destination receives the color value
 that results from the operation.

 The logical operations are performed on the color index rather than the
 color itself. This can cause some operations on color displays to produce
 results that are not expected.

 Return Value

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.35.1 - 1

 GS_SUCC Successful.
 GS_LONS Logical operation not supported.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.35.1 - 2

 2.6.36 gsmask

 Purpose
 Defines planes to be modified.

 C Syntax

 int gsmask_ (mask)

 int *mask;

 FORTRAN Syntax

 INTEGER function gsmask (mask)

 INTEGER mask

 Pascal Syntax

 FUNCTION gsmask_ (

 VAR mask: INTEGER
): INTEGER [PUBLIC];

 Description
 The gsmask subroutine defines the planes actually modified by the line,
 text, and fill functions.

 Subtopics
 2.6.36.1 Parameters

AIX Operating System Technical Reference
gsmask

¦ Copyright IBM Corp. 1985, 1991
2.6.36 - 1

 2.6.36.1 Parameters

 mask Indicates which planes of the display adapter frame
 buffer can be modified by the output functions. The
 most significant bits of the input are used to set the
 plane mask.

 Return Value

 GS_SUCC Successful.
 GS_INAC Virtual terminal inactive.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.36.1 - 1

 2.6.37 gsmatt

 Purpose
 Sets the polymarker attribute.

 C Syntax

 int gsmatt_ (color, style, width, height, pattern, 0x, 0y)

 int *color, *style, *width, *height, *pattern, *0x, *0y;

 FORTRAN Syntax

 INTEGER function gsmatt (color, style, width, height, pattern, 0x, 0y)

 INTEGER color, style, width, height, pattern, 0x, 0y

 Pascal Syntax

 FUNCTION gsmatt_ (

 VAR color, style, width, height: INTEGER;
 pattern: ARRAY [1..k] of INTEGER;
 0x, 0y: INTEGER
): INTEGER [PUBLIC];

 Description
 The gsmatt subroutine defines the marker for the GSL.

 Subtopics
 2.6.37.1 Parameters

AIX Operating System Technical Reference
gsmatt

¦ Copyright IBM Corp. 1985, 1991
2.6.37 - 1

 2.6.37.1 Parameters

 color Refers to a marker color entry in the color map. If it
 is -1, the attribute is unchanged. The default value
 for color is 7, white.

 style Defines the polymarker style as one of the following:

 Value Display Printer or Plotter

 -1 No change No Change
 0 User-defined (by Not available
 width,
 height, pattern,
 0x, 0y)
 1 Dot (filled circle) Point
 2 Plus (+) Plus (+)
 3 Asterisk (*) Asterisk (*)
 4 Circular shape Square shape
 5 Cross (¦) Cross (¦)
 6 Unfilled box Diamond

 width, height Define in pixels the width and the height of the bit
 pattern to be used as the marker. If width or height
 equals -1, then the pattern remains unchanged.

 pattern Defines the image used as a marker. The ceiling of
 (width / 32) indicates the number of words per row and
 height indicates the number of rows. The marker data
 must be supplied in row (scan line) major order. If
 width implies partial use of a word, the rest of the
 word is unused. To fully define the marker pattern,
 pattern should be (ceiling ¦ height) words in length.

 0x, 0y Indicate the coordinates of the origin of the marker
 relative to the lower leftmost corner (0, 0) of the
 marker pattern. The origin must be placed inside the
 marker pattern, so that 0x < width and 0y < height. The
 origin of the marker is placed at the position indicated
 when the application places a marker with the gsplym
 subroutine. (See "gsplym" in topic 2.6.42.) If 0x
 equals -1, then the origin remains unchanged.

 The maximum size of the marker is device dependent. It equals the height
 and width of the display, which may be determined by calling the gsqdsp
 subroutine.

 Note: The GSL subroutines do not make a copy of a user-defined
 polymarker. Changes or reuse of the storage where a user-defined
 shape is in use can cause unpredictable results.

 For Pascal, the application must declare the arrays passed as being fixed
 length and declare the routine as accepting arrays of that length. The k
 in the routine declaration must be a constant.

 Return Value

 GS_SUCC Successful.
 GS_COLI Invalid color index.
 GS_PMSZ Marker size invalid.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.37.1 - 1

 GS_PMOR Marker origin invalid.
 GS_PMSY Marker style invalid.

 Related Information
 In this book: "gsplym" in topic 2.6.42.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.37.1 - 2

 2.6.38 gsmcat

 Purpose
 Sets the cursor attributes.

 C Syntax

 int gsmcat_ (foreground, background, width, height, pattern, mask, 0x, 0y, logop)

 int *foreground, *background, *width, *height, *pattern, *mask, *0x, *0y, *logop)

 FORTRAN Syntax

 INTEGER function gsmcat_ (foreground, background, width, height,
 pattern, mask, 0x, 0y, logop)

 INTEGER foreground, background, width, height, pattern, mask, 0x, 0y, logop)

 Pascal Syntax

 FUNCTION gsmcat_ (

 VAR foreground, background, width, height: INTEGER;
 VAR pattern: ARRAY [1..k] of INTEGER;
 VAR mask: ARRAY [1..k] of INTEGER;
 VAR 0x, 0y, logop: INTEGER
): INTEGER [PUBLIC];

 Description
 The gsmcat subroutine defines the multicolor cursor for the GSL. The
 gscmap subroutine must initialize the color map before gsmcat can be
 called.

 Only one cursor, either the multicolor cursor or the single-color cursor,
 can be active in the GSL at any one time. The gsmcat subroutine forces
 all subsequent calls to the gsmcur and gsecur subroutines to operate on
 the multicolor version of the cursor. To change from the single-color
 cursor to the multicolor cursor, erase the cursor with gsecur, then call
 the gsmcat subroutine.

 The multicolor cursor is a two-color, clipped cursor with logical
 operations. Its size is limited to 32 bits in width and 32 bits in
 height. Although the cursor origin cannot be moved outside the frame
 buffer boundaries, any portion beyond the origin that falls outside the
 frame buffer is clipped. In addition, a mask is provided that can be used
 to allow portions of the frame buffer to show through the cursor. Any
 bits set to 0 in the mask indicate that the matching bits in the cursor
 pattern do not affect the underlying frame buffer.

 Subtopics
 2.6.38.1 Parameters

AIX Operating System Technical Reference
gsmcat

¦ Copyright IBM Corp. 1985, 1991
2.6.38 - 1

 2.6.38.1 Parameters

 foreground Defines a color entry in the color map. This color is
 used for the foreground color (bits set to 1) in the
 multicolor cursor raster. A value of -1 indicates no
 change to this attribute.

 background Defines a color entry in the color map. This color is
 used for the background color (bits set to 0) in the
 multicolor cursor raster. A value of -1 indicates no
 change to this attribute.

 width, height Define, in pixels, the width and height of the bit
 pattern and mask to be used as the cursor. The maximum
 value for width and height of the cursor is 32 bits. If
 width or height equals -1, then the pattern and the mask
 remain unchanged.

 pattern Defines the raster image used as a cursor. It must be
 specified in 32-bit integers, and there must be height
 number of rows. The GSL will only use width number of
 bits in each integer.

 mask Defines the mask pattern of the cursor. Each bit in the
 mask corresponds with a bit in the multicolor cursor
 pattern. If a bit is set (has a value of 1), the
 matching bit in the pattern is applied to the underlying
 display raster. If a bit is not set (has a value of 0),
 the matching bit in the pattern is masked and does not
 affect the underlying display raster. The size of the
 mask must match the size of the pattern exactly.

 0x, 0y Indicate the origin of the cursor relative to the lower
 leftmost corner (0, 0) of the cursor pattern. The
 origin must be placed within the cursor pattern:
 0x < width and 0y < height. The origin of the cursor is
 placed at the position indicated, when the application
 moves the cursor using the gsmcur subroutine. If x
 equals -1, then the origin remains unchanged.

 logop Defines the logical operation to perform between the
 cursor pattern being drawn and the contents of the frame
 buffer. The following logical operations are supported
 on the PS/2:

 1 AND
 3 REPLACE
 6 Exclusive-or
 7 OR

 You cannot change the cursor attributes while the cursor is visible.

 There is no default cursor defined, so all cursor parameters must be set
 before the cursor is displayed.

 For Pascal, the application must declare the array passed as being fixed
 length and declare the routine as accepting arrays of that length. The k
 in the routine declaration must be a constant.

 Return Value

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.38.1 - 1

 GS_SUCC Successful.
 GS_COLI Invalid color index.
 GS_CURS Cursor size invalid.
 GS_CURO Cursor origin invalid.
 GS_CURV Cursor visible.
 GS_LONS Invalid logical operation.

 Related Information
 In this book: "gscatt" in topic 2.6.7, "gsecur" in topic 2.6.17, and
 "gsmcur" in topic 2.6.39.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.38.1 - 2

 2.6.39 gsmcur

 Purpose
 Moves the cursor and makes it visible.

 C Syntax

 int gsmcur_ (x, y)

 int *x, *y;

 FORTRAN Syntax

 INTEGER function gsmcur (x, y)

 INTEGER x, y

 Pascal Syntax

 FUNCTION gsmcur_ (

 VAR x, y: INTEGER
): INTEGER [PUBLIC];

 Description
 The gsmcur subroutine makes the cursor visible (if not already visible)
 and positions the cursor origin at the point indicated by the parameters.
 This subroutine operates on either the single-color cursor or on the
 multicolor cursor. The relevant attributes are different, depending on
 which cursor style is currently defined.

 For the single-color cursor, the relevant attributes are:

 � Color ma
 � Plane mas
 � Cursor patter
 � Cursor color inde
 � Cursor origin

 For the multicolor cursor, the relevant attributes are:

 � Color ma
 � Plane mas
 � Multicolor cursor patter
 � Multicolor cursor mas
 � Multicolor cursor foreground colo
 � Multicolor cursor background colo
 � Multicolor cursor origi
 � Multicolor cursor logical operation

 Subtopics
 2.6.39.1 Parameters

AIX Operating System Technical Reference
gsmcur

¦ Copyright IBM Corp. 1985, 1991
2.6.39 - 1

 2.6.39.1 Parameters

 x, y Indicate the coordinates of the desired position of the
 cursor origin.

 The cursor attributes must be set with the gscatt or gsmcat subroutine
 before calling gsmcur.

 The cursor is non-destructive. This is achieved in a device-dependent
 manner.

 Return Value

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_UCUR Undefined cursor.
 GS_INAC Virtual terminal inactive.

 Related Information
 In this book: "gscatt" in topic 2.6.7, "gsecur" in topic 2.6.17, and
 "gsmcat" in topic 2.6.38.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.39.1 - 1

 2.6.40 gsmult

 Purpose
 Draws a multiline, a set of lines that connect alternate pairs of points
 in a sequence.

 C Syntax

 int gsmult_ (number, x, y)

 int *number, *x, *y;

 FORTRAN Syntax

 INTEGER function gsmult (number, x, y)

 INTEGER number, x (*), y (*)

 Pascal Syntax

 FUNCTION gsmult_ (

 VAR number: INTEGER;
 VAR x, y: ARRAY [1..k] of INTEGER
): INTEGER [PUBLIC];

 Description
 The gsmult subroutine draws lines, as defined by the current relevant
 attributes, between alternate pair of points defined by the parameters.

 The relevant attributes are:

 � Color ma
 � Plane mas
 � Line color inde
 � Line styl
 � Logical operation

 Subtopics
 2.6.40.1 Parameters

AIX Operating System Technical Reference
gsmult

¦ Copyright IBM Corp. 1985, 1991
2.6.40 - 1

 2.6.40.1 Parameters

 number Defines the number of points in the coordinate arrays.
 It must be a multiple of 2, with 2 as the minimum value.

 x, y Define the points for line drawing.

 For Pascal, the application must declare the arrays passed as being fixed
 length and declare the routine as accepting arrays of that length. The k
 in the routine declaration must be a constant.

 Return Value

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_NCOR Invalid number of coordinates.
 GS_INAC Virtual terminal inactive.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.40.1 - 1

 2.6.41 gspcls

 Purpose
 Defines the end of a shape to fill.

 C Syntax

 int gspcls_ ()

 FORTRAN Syntax

 INTEGER function gspcls

 Pascal Syntax

 FUNCTION gspcls_ : INTEGER [PUBLIC];

 Description

 The gspcls subroutine defines the end of a particular two dimensional
 shape to be filled, then fills the shape.

 The relevant attributes are:

 � Color ma
 � Plane mas
 � Fill color inde
 � Fill styl
 � Logical operation

 Return Value

 GS_SUCC Successful.
 GS_USUC Unsuccessful.

 Related Information
 In this book: "gsbply" in topic 2.6.5 and "gseply" in topic 2.6.19.

AIX Operating System Technical Reference
gspcls

¦ Copyright IBM Corp. 1985, 1991
2.6.41 - 1

 2.6.42 gsplym

 Purpose
 Draws a polymarker, a marker at each of a set of specified points.

 C Syntax

 int gsplym_ (number, x, y)

 int *number, *x, *y;

 FORTRAN Syntax

 INTEGER function gsplym (number, x, y)

 INTEGER number, x (*), y (*)

 Pascal Syntax

 FUNCTION gsplym_ (

 VAR number: INTEGER;
 VAR x, y: ARRAY [1..k] of INTEGER
): INTEGER [PUBLIC];

 Description
 The gsplym subroutine places a marker, defined by the current relevant
 attributes, at each point defined by the parameters.

 The relevant attributes are:

 � Color ma
 � Plane mas
 � Logical operatio
 � Polymarker color inde
 � Polymarker style index

 Subtopics
 2.6.42.1 Parameters

AIX Operating System Technical Reference
gsplym

¦ Copyright IBM Corp. 1985, 1991
2.6.42 - 1

 2.6.42.1 Parameters

 number Defines the number of points in the coordinate arrays.
 It must be = 1.

 x, y Defines, as coordinate arrays, the location where the
 origin of each polymarker is placed.

 For Pascal, the application must declare the arrays passed as being fixed
 length and declare the routine as accepting arrays of that length. The k
 in the routine declaration must be a constant.

 Return Value

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_NCOR Invalid number of coordinates.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.42.1 - 1

 2.6.43 gspoly

 Purpose
 Draws a polyline, a set of lines that connects a sequence of points.

 C Syntax

 int gspoly_ (number, x, y)

 int *number, *x, *y;

 FORTRAN Syntax

 INTEGER function gspoly (number, x, y)

 INTEGER number, x (*), y (*)

 Pascal Syntax

 FUNCTION gspoly_ (

 VAR number: INTEGER;
 VAR x, y: ARRAY [1..k] of INTEGER
): INTEGER [PUBLIC];

 Description
 The gspoly subroutine draws lines, as defined by the current relevant
 attributes, between each pair of points defined by the parameters.

 The relevant attributes are:

 � Color ma
 � Plane mas
 � Line color inde
 � Line styl
 � Logical operation

 Subtopics
 2.6.43.1 Parameters

AIX Operating System Technical Reference
gspoly

¦ Copyright IBM Corp. 1985, 1991
2.6.43 - 1

 2.6.43.1 Parameters

 number Defines the number of points in the coordinate arrays.
 It must be = 2.

 x, y Defines the points for line drawing.

 For Pascal, the application must declare the arrays passed as being fixed
 length and declare the routine as accepting arrays of that length. The k
 in the routine declaration must be a constant.

 Return Value

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_NCOR Invalid number of coordinates.
 GS_INAC Virtual terminal inactive.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.43.1 - 1

 2.6.44 gspp

 Purpose
 Sets plotter pen speed.

 C Syntax

 int gspp_ (penspd)

 int *penspd;

 FORTRAN Syntax

 INTEGER function gspp (penspd)

 INTEGER penspd

 Pascal Syntax

 FUNCTION gspp_ (

 VAR penspd: INTEGER;
): INTEGER [PUBLIC];

 Description
 The gspp subroutine sets the plotter pen speed.

 Subtopics
 2.6.44.1 Parameter

AIX Operating System Technical Reference
gspp

¦ Copyright IBM Corp. 1985, 1991
2.6.44 - 1

 2.6.44.1 Parameter

 penspd Specifies the pen speed as a value from 0 to 100, giving
 a percentage of the maximum speed of the plotter. The
 initial pen speed is 100 percent.

 Return Value

 GS_SUCC Successful.
 GS_USUC Invalid parameter value.

AIX Operating System Technical Reference
Parameter

¦ Copyright IBM Corp. 1985, 1991
2.6.44.1 - 1

 2.6.45 gsqdsp

 Purpose
 Returns characteristics of the display monitor and adapter.

 C Syntax

 void gsqdsp_ (display)

 int *display;

 FORTRAN Syntax

 subroutine gsqdsp (display)

 INTEGER display (32)

 Pascal Syntax

 PROCEDURE gsqdsp_ (

 VAR display: ARRAY [1..32] of INTEGER) [PUBLIC];

 Description
 The gsqdsp subroutine returns an array containing the display adapter and
 monitor characteristics.

 Subtopics
 2.6.45.1 Parameter

AIX Operating System Technical Reference
gsqdsp

¦ Copyright IBM Corp. 1985, 1991
2.6.45 - 1

 2.6.45.1 Parameter

 display Contains, on return, the relevant display/monitor
 characteristics. The following table describes the
 information in the array. Each entry is a word.

 Entry Description (measure)

 1 Display/monitor ID. For a printer or plotter, this value is "
 HC", right-justified in the word.
 2 Displayed width of the frame buffer in pixels.
 3 Displayed height of the frame buffer in pixels.
 4 Physical width of display in millimeters.
 5 Physical height of display in millimeters.
 6 Number of bit planes or number of bits/pixel.
 7 Adapter characteristic flags. (Bit 0 is the most significant
 bit.) Bits set these characteristics:

 0 Color or monochrome; 0 = color, 1 = monochrome
 1 By plane or by pixel; 0 = by plane, 1= by pixel (always 1
 for printers and plotters).
 2 Software or hardware cursor; 0 = software, 1 = hardware
 (always 0 for printers and plotters).
 3-31 Reserved bits.
 8 Number of bits for Red digital-to-analog converter (always 2 for
 printers and plotters).
 9 Number of bits for Green digital-to-analog converter (always 2
 for printers and plotters).
 10 Number of bits for Blue digital-to-analog converter (always 2
 for printers and plotters).
 11 Minimum cursor width (pixels) (always 0 for printers and
 plotters).
 12 Minimum cursor height (pixels) (always 0 for printers and
 plotters).
 13 Maximum cursor width (pixels) (always 0 for printers and
 plotters).
 14 Maximum cursor height (pixels) (always 0 for printers and
 plotters).
 15 Color table size. For printers and plotters, this specifies the
 number of colors.
 16 Font class:

 1 Compressed (always 1 for printers and plotters).
 2 Uncompressed.
 17 Logical operation capability.

 If the value is 0, the adapter supports all 16 two-operand
 logical operations and all 256 three-operand logical operations.
 If nonzero, the most significant bits represent the two-operand
 logical operations supported; bit 0 corresponds to logical
 operation 0, bit 1 to logical operation 1, and so on (see
 "gslop" in topic 2.6.35).
 18-32 Reserved.

 Information from this query can be used to scale application coordinates
 to those of the frame buffer.

 Even if the adapter supports no logical operations, the results of the
 query indicate that the adapter supports REPLACE and Exclusive-or (logical
 operations 3 and 6, respectively). The GSL emulates the latter, if

AIX Operating System Technical Reference
Parameter

¦ Copyright IBM Corp. 1985, 1991
2.6.45.1 - 1

 necessary.

 Related Information
 In this book: "hft" in topic 2.5.11 and "gslop" in topic 2.6.35.

AIX Operating System Technical Reference
Parameter

¦ Copyright IBM Corp. 1985, 1991
2.6.45.1 - 2

 2.6.46 gsqfnt

 Purpose
 Returns information about the current font.

 C Syntax

 void gsqfnt_ (font)

 int *font;

 FORTRAN Syntax

 subroutine gsqfnt (font)

 INTEGER font (32)

 Pascal Syntax

 PROCEDURE gsqfnt_ (

 VAR font: ARRAY [1..32] of INTEGER
) [PUBLIC];

 Description
 The gsqfnt subroutine returns information about the active font.

 Subtopics
 2.6.46.1 Parameter

AIX Operating System Technical Reference
gsqfnt

¦ Copyright IBM Corp. 1985, 1991
2.6.46 - 1

 2.6.46.1 Parameter

 font Contains, on return, the characteristics of the current
 font. The following table describes the information in
 the array. Each entry is a word. Dimensions are in
 pixels and the origin is at the lower left corner of the
 character box.

 Entry Description

 1 Class: 1 = compressed; 2 = uncompressed format (always 1 for
 printers and plotters).

 2 Font ID.

 3 Style.

 4 Attribute flags:

 bit 31 bold
 bit 30 italic
 bit 00 proportionally spaced.

 (This entry always has all bits set to 0 for printers and
 plotters.)

 5 Number of characters. For printers and plotters, this is the
 number of fonts ¦ 128.

 6 Character baseline. For printers and plotters, no text
 alignment is allowed and this value is always -1.

 7 Character capsline. For printers and plotters, no text
 alignment is allowed and this value is always -1.

 8 Character width. For printers and plotters, the character width
 is given in pixels. For a proportionally spaced font, the width
 value represents the maximum width allowed.

 9 Character height. For printers and plotters, the character
 height is given in pixels.

 10 Underscore top line. For printers and plotters, underscoring is
 not available and this value is always -1.

 11 Underscore bottom line. For printers and plotters, underscoring
 is not available and this value is always -1.

 12-32 Reserved.

AIX Operating System Technical Reference
Parameter

¦ Copyright IBM Corp. 1985, 1991
2.6.46.1 - 1

 2.6.47 gsqgtx

 Purpose
 Returns information about the current geometric font.

 C Syntax

 void gsqgtx_ (font, select)

 int *font, *select;

 FORTRAN Syntax

 subroutine gsqgtx (font, select)

 INTEGER font (32), select

 Pascal Syntax

 PROCEDURE gsqgtx_ (

 VAR font: ARRAY [1..32] of INTEGER;
 select: INTEGER
) [PUBLIC];

 Description
 The gsqgtx subroutine returns information about the active geometric font.

 Subtopics
 2.6.47.1 Parameters

AIX Operating System Technical Reference
gsqgtx

¦ Copyright IBM Corp. 1985, 1991
2.6.47 - 1

 2.6.47.1 Parameters

 font Contains, on return, the characteristics of the selected
 PCS descriptor header. The following table describes
 the information in the array. Each entry is a word.
 Dimensions are in pixels and the origin is at the lower
 left corner of the character box.

 Entry Description

 1 Font ID.

 2 Segment ID.

 3 0 = EBCDIC; 1 = ASCII.

 4 Range of x (P).

 5 Range of y (Q).

 6 Starting character code. Range is 0x21 to
 0xFE.

 7 Last character code. Range is 0x21 to 0xFE.

 8 Font baseline. Value in pixels in the y
 direction.

 9 Font capline. Value in pixels in the x
 direction.

 10 Default error code point.

 11-32 Reserved.

 select Determines the type of query.

 A value of -1 returns the following information in the
 font parameter buffer:

 Word 1 Current active font_ID

 Word 2 Number of PCS descriptor headers (segments
 for 2-byte text) loaded at the time of the
 query.

 A value other than -1 returns the PCS descriptor header
 associated with that number in the table. The first
 entry is 0, with a range of 0 to n.

 Related Information
 In this book: "fonts" in topic 2.3.19, "Geometric Text Font Format" in
 topic 2.3.19.2, "gsgtat" in topic 2.6.28, and "gsgtxt" in topic 2.6.29.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.47.1 - 1

 2.6.48 gsqlext

 Purpose
 Returns expanded information about the locator.

 C Syntax

 int gsqlext_ (results)

 int results[16];

 FORTRAN Syntax

 INTEGER function gsqlext (results)

 INTEGER results (16)

 Pascal Syntax

 FUNCTION gsqlext_ (

 VAR results: ARRAY[1..16] of INTEGER;
): INTEGER [PUBLIC];

 Description
 The gsqlext subroutine returns an array containing expanded information
 about the locator device.

 Subtopics
 2.6.48.1 Parameter

AIX Operating System Technical Reference
gsqlext

¦ Copyright IBM Corp. 1985, 1991
2.6.48 - 1

 2.6.48.1 Parameter

 results Contains, on return, information about the type of
 locator, the resolution of the locator device, the
 maximum horizontal and vertical counts, and the current
 setting of the relative device thresholds or the
 absolute device dead zone values. The following table
 describes the information in the array.

 Entry Description

 0 Locator resolution in millimeters per 100 counts.

 1 Indicates the locator device type. If the most significant bit
 is:

 0 The locator type is a mouse. When the locator is a mouse,
 the setting of the following bits is ignored.
 1 The locator type is a tablet. For a tablet, the next most
 significant 2 bits are:

 00 Sensor type is undefined or no sensor is attached.
 01 A stylus is attached.
 10 A four-button puck is attached.

 2 Maximum horizontal count.

 3 Maximum vertical count.

 4 The horizontal locator threshold or dead zone in units of 0.25
 millimeter.

 5 The vertical locator threshold or dead zone in units of 0.25
 millimeter.

 6-15 Reserved.

 An attempt to get the locator attributes can fail for a variety of
 reasons, the most likely of which is that the device is not attached. The
 nature of the problem can be found via a specific ioctl to the virtual
 terminal. (See "hft" in topic 2.5.11 for more information.)

 For Pascal, the application must declare the array passed as being fixed
 length and declare the routine as accepting an array of that length. The
 k in the routine declaration must be a constant.

 Return Value

 GS_SUCC Successful.
 GS_USUC Unsuccessful.

 Related Information
 In this book: "hft" in topic 2.5.11 and "gsqloc" in topic 2.6.49.

AIX Operating System Technical Reference
Parameter

¦ Copyright IBM Corp. 1985, 1991
2.6.48.1 - 1

 2.6.49 gsqloc

 Purpose
 Returns information about the locator.

 C Syntax

 void gsqloc_ (loc_type, x_res, y_res, hg, vg)

 int *loc_type, *x_res, *y_res, *hg, *vg;

 FORTRAN Syntax

 subroutine gsqloc (loc_type, x_res, y_res, hg, vg)

 INTEGER loc_type, x_res, y_res, hg, vg

 Pascal Syntax

 PROCEDURE gsqloc_ (

 VAR loc_type, x_res, y_res, hg, vg: INTEGER
): INTEGER [PUBLIC];

 Description
 The gsqloc subroutine returns the type of the locator, the resolution of
 the device, and the current setting of the relative device thresholds or
 the absolute device dead zone values.

 Subtopics
 2.6.49.1 Parameters

AIX Operating System Technical Reference
gsqloc

¦ Copyright IBM Corp. 1985, 1991
2.6.49 - 1

 2.6.49.1 Parameters

 loc_type Indicates the type of locator. If the most significant
 bit of loc_type is 0, the locator is a mouse. When the
 locator is a mouse, the setting of the following bits is
 ignored. When the most significant bit is 1, the
 locator type is a tablet. For a tablet, the next most
 significant 2 bits are:

 00 Sensor type is undefined or no sensor is attached.
 01 A stylus is attached.
 10 A four-button puck is attached.

 x_res, y_res Indicate the horizontal and vertical resolution of the
 device in millimeters per 100 counts.

 hg, vg Define the horizontal and vertical values for the
 locator threshold or dead zone in units of 0.25
 millimeters.

 An attempt to get the locator attributes can fail for a variety of
 reasons, the most likely of which is that the device is not attached. The
 nature of the problem can be found via a specific ioctl to the virtual
 terminal. (See "hft" in topic 2.5.11 for more information.)

 Return Value

 GS_SUCC Successful.
 GS_USUS Unsuccessful.

 Related Information
 In this book: "hft" in topic 2.5.11 and "gslcat" in topic 2.6.32.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.49.1 - 1

 2.6.50 gsrrst

 Purpose
 Restores a rectangular block.

 C Syntax

 int gsrrst_ (buffer, x1,
 y1, x2, y2)

 int *buffer, *x1, *y1, *x2, *y2;

 FORTRAN Syntax

 INTEGER function gsrrst (buffer, x1, y1, x2, y2)

 INTEGER buffer (*), x1, y1, x2, y2

 Pascal Syntax

 FUNCTION gsrrst_ (

 VAR buffer: ARRAY [1..k] of INTEGER;
 VAR x1, y1, x2, y2: INTEGER
): INTEGER [PUBLIC];

 Description
 The gsrrst subroutine restores a block of pixels saved to the frame buffer
 by the gsrsav subroutine.

 The relevant attributes are:

 � Plane mas
 � Logical operation

 Subtopics
 2.6.50.1 Parameters

AIX Operating System Technical Reference
gsrrst

¦ Copyright IBM Corp. 1985, 1991
2.6.50 - 1

 2.6.50.1 Parameters

 buffer Indicates where gsrrst should restore the block of
 pixels from. This stored block of pixels is typically a
 buffer saved in the gsrsav subroutine.

 x1, y1 Define the coordinates of the lower left corner of the
 rectangular area to restore.

 x2, y2 Define the coordinates of the upper-right corner of the
 rectangular area to restore.

 The intended purpose of the gsrsav and gsrrst subroutines is efficient
 saving and restoring of pixel blocks displayed temporarily at a fixed
 location in the frame buffer. Because the GSL saves the frame buffer
 contents in a device-dependent fashion, it is generally not possible to
 use gsrsav and gsrrst to correctly move blocks of pixels from one position
 to another in a plane oriented adapter, nor is it possible for the
 application to manipulate the buffer without careful consideration of
 adapter characteristics, block size, and position of the block in the
 frame buffer.

 For further information on moving and storing blocks of pixels, see
 "gsxblt" in topic 2.6.57.

 For Pascal, the application must declare the array passed as being fixed
 length and declare the routine as accepting an array of that length. The
 k in the routine declaration must be a constant.

 Return Value

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_INAC Virtual terminal inactive.

 Related Information
 In this book: "gsrsav" in topic 2.6.51 and "gsxblt" in topic 2.6.57.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.50.1 - 1

 2.6.51 gsrsav

 Purpose
 Saves a rectangular block.

 C Syntax

 int gsrsav_ (buffer, x1, y1, x2, y2)

 int *buffer, *x1, *y1, *x2, *y2;

 FORTRAN Syntax

 INTEGER function gsrsav (buffer, x1, y1, x2, y2)

 INTEGER buffer (*), x1, y1, x2, y2

 Pascal Syntax

 FUNCTION gsrsav_ (

 VAR buffer: ARRAY [1..k] of INTEGER;
 VAR x1, y1, x2, y2: INTEGER
): INTEGER [PUBLIC];

 Description
 The gsrsav subroutine saves a block of pixels, defined by the input
 rectangle, in storage starting at the address indicated. This stored
 block can be restored with the gsrrst subroutine.

 The relevant attributes are:

 � Plane mas
 � Logical operation

 Subtopics
 2.6.51.1 Parameters

AIX Operating System Technical Reference
gsrsav

¦ Copyright IBM Corp. 1985, 1991
2.6.51 - 1

 2.6.51.1 Parameters

 buffer Indicates where gsrsav should save the block of pixels.

 The size of the buffer depends on the size of the
 rectangle and on the device organization. For devices
 organized by plane, the plane mask attribute determines
 the number of planes saved for each pixel. For devices
 organized by pixel, the entire pixel is always saved.
 For both organizations, the unit of access to the frame
 buffer also plays a role in calculating the size of the
 buffer. See "gscmap" in topic 2.6.11 for details.

 Note that the gsrsav subroutine does not check whether
 the buffer is too small to contain the pixel block.
 Serious consequences can result if the buffer is too
 small. However, a buffer size equal to

 ((y2-y1+1) * ((x2-x1+1) / 32+2))

 integers per plane will hold all save images on planar
 devices. For pixel devices, a buffer of

 (y2-y1+1) * (x2-x1+1)/4 +1

 integers is sufficient.

 x1, y1 Define the lower left corner of the rectangular area to
 save. That is, x1 is the greatest lower bound of the
 pixels saved in x.

 x2, y2 Define the upper-right corner of the rectangular area to
 save. That is, x2 is the least upper bound of the
 pixels saved in x.

 The intended purpose of the gsrsav and gsrrst subroutines is efficient
 saving and restoring of pixel blocks displayed temporarily at a fixed
 location in the frame buffer. Because the GSL saves the frame buffer
 contents in a device-dependent fashion, it is generally not possible to
 correctly move blocks of pixels from one position to another in a
 plane-oriented adapter using gsrsav and gsrrst, nor is it possible to
 manipulate the buffer without careful consideration of adapter
 characteristics, block size, and position of the block in the frame
 buffer.

 For further information on moving and storing blocks of pixels, see
 "gsxblt" in topic 2.6.57.

 For Pascal, the application must declare the array passed as being fixed
 length and declare the routine as accepting an array of that length. The
 k in the routine declaration must be a constant.

 Return Value

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_INAC Virtual terminal inactive.

 Related Information
 In this book: "gscmap" in topic 2.6.11, "gsrrst" in topic 2.6.50, and

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.51.1 - 1

 "gsxblt" in topic 2.6.57.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.51.1 - 2

 2.6.52 gstatt

 Purpose
 Sets the text attributes for annotated text.

 C Syntax

 int gstatt_ (color, page, baseline, font, name)

 int *color, *page, *baseline, *font;
 char *name;

 FORTRAN Syntax

 INTEGER function gstatt (color, page, baseline, font, name)

 INTEGER color, page, baseline, font
 CHARACTER*n name

 Pascal Syntax

 FUNCTION gstatt_ (

 VAR color, page, baseline, font: INTEGER;
 VAR name: ARRAY [0..k] of CHAR
): INTEGER [PUBLIC];

 Description
 The gstatt subroutine defines the attributes for the class of text drawing
 functions.

 Subtopics
 2.6.52.1 Parameters

AIX Operating System Technical Reference
gstatt

¦ Copyright IBM Corp. 1985, 1991
2.6.52 - 1

 2.6.52.1 Parameters

 color Specifies a text color entry in the color map. If it is
 -1, the attribute is unchanged.

 page Specifies the code page of a font for the display to
 use. The valid values for IBM supplied fonts are 0, 1,
 and 2 for code pages P0, P1, and P2, respectively. The
 value -1 indicates no change.

 For printers and plotters, the page parameter is a font
 value specification. Again, the value -1 indicates no
 change.

 baseline Determines the direction of the text drawing. The valid
 values are:

 -1 Attribute remains unchanged.

 0 Specifies 0 degrees, or left to right in the
 viewer's terms.

 1 Specifies 90 degrees, or up in the viewer's terms.

 2 Specifies 180 degrees, or right to left in the
 viewer's terms.

 Note: The characters appear upside down.

 3 For 270 degrees, or down in the viewer's terms.

 If the baseline is other than 0 degrees and the font
 index is 0, then the font named by the name parameter
 must be a pre-rotated font. When a baseline change is
 made, another font path name is required.

 font Specifies, for displays, the font to use for text output
 operations. For printers and plotters, the font
 parameter specifies the vertical height of the font in
 pixels.

 If the font index is -1, no change is made. If the font
 index is 0, then gstatt uses the font specified by the
 name parameter. If the font index is a value from 1 to
 14, the GSL uses one of the following predefined fonts:

 +--+
 ¦ ¦ Font Index ¦ Width x Height ¦ Style ¦ Filename ¦
 ¦ ¦ ¦ (in pixels) ¦ ¦ ¦
 +---+------------+----------------+-----------+------------¦
 ¦ ¦ ¦ ¦ ¦ ¦
 +---+------------+----------------+-----------+------------¦
 ¦ ¦ 1 ¦ 9 x 20 ¦ Normal ¦ nrm1.9x20 ¦
 +---+------------+----------------+-----------+------------¦
 ¦ ¦ 2 ¦ 9 x 20 ¦ Italic ¦ itl1.9x20 ¦
 +---+------------+----------------+-----------+------------¦
 ¦ ¦ 3 ¦ 9 x 20 ¦ Bold ¦ bld1.9x20 ¦
 +---+------------+----------------+-----------+------------¦
 ¦ ¦ 4 ¦ 8 x 14 ¦ Normal ¦ nrm1.8x14 ¦
 +---+------------+----------------+-----------+------------¦

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.52.1 - 1

 ¦ ¦ 5 ¦ 4 x 8 ¦ Normal ¦ nrm1.4x8 ¦
 +---+------------+----------------+-----------+------------¦
 ¦ ¦ 6 ¦ 18 x 40 ¦ Normal ¦ nrm1.18x40 ¦
 +---+------------+----------------+-----------+------------¦
 ¦ ¦ 7 ¦ 12 x 30 ¦ Normal ¦ nrm1.12x30 ¦
 +---+------------+----------------+-----------+------------¦
 ¦ ¦ 8 ¦ 9 x 20 ¦ Ergonomic ¦ erg1.9x20 ¦
 +---+------------+----------------+-----------+------------¦
 ¦ ¦ 9 ¦ 6 x 9 ¦ Normal ¦ nrm1.6x9 ¦
 +---+------------+----------------+-----------+------------¦
 ¦ ¦ 10 ¦ 6 x 11 ¦ Normal ¦ nrm1.6x11 ¦
 +---+------------+----------------+-----------+------------¦
 ¦ ¦ 11 ¦ 7 x 15 ¦ Normal ¦ nrm1.7x15 ¦
 +---+------------+----------------+-----------+------------¦
 ¦ ¦ 12 ¦ 7 x 22 ¦ Normal ¦ nrm1.7x22 ¦
 +---+------------+----------------+-----------+------------¦
 ¦ ¦ 13 ¦ 11 x 23 ¦ Normal ¦ nrm1.11x23 ¦
 +---+------------+----------------+-----------+------------¦
 ¦ ¦ 14 ¦ 11 x 23 ¦ Bold ¦ bld1.11x23 ¦
 +--+

 All annotated text fonts are stored in the
 /usr/lpp/gsl/fonts directory. Many of the fonts are
 supplied with rotated versions.

 name Contains the null-terminated full path name of the file
 used when the font attribute is specified as user. See
 "fonts" in topic 2.3.19 for the format of this file.

 If a single-shift control is outstanding and gstatt is called to change
 the code page or the font, then the single-shift control is ignored.

 For Pascal, the application must declare the arrays passed as being fixed
 length and declare the routine as accepting arrays of that length. The k
 in the routine declaration must be a constant.

 Return Value

 GS_SUCC Successful.
 GS_COLI Invalid color index.
 GS_CPID Invalid code page identifier.
 GS_BASL Invalid baseline direction.
 GS_FNTI Invalid font index.
 GS_FNTN Invalid file name.

 Related Information
 In this book: "fonts" in topic 2.3.19.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.52.1 - 2

 2.6.53 gsterm

 Purpose
 Terminates use of the GSL.

 C Syntax

 void gsterm_ ()

 FORTRAN Syntax

 subroutine gsterm ()

 Pascal Syntax

 PROCEDURE gsterm_ () [PUBLIC];

 Description
 The gsterm subroutine terminates the GSL. It deallocates any private
 storage required, returns the virtual terminal to KSR Mode, and causes the
 Monitor Mode signals to be ignored.

AIX Operating System Technical Reference
gsterm

¦ Copyright IBM Corp. 1985, 1991
2.6.53 - 1

 2.6.54 gstext

 Purpose
 Writes annotated text.

 C Syntax

 int gstext_ (x, y, number, text)

 int *x, *y, *number;
 char *text;

 FORTRAN Syntax

 INTEGER function gstext (x, y, number, text)

 INTEGER x, y, number
 CHARACTER*n text

 Pascal Syntax

 FUNCTION gstext_ (

 VAR x, y, number: INTEGER;
 VAR text: ARRAY [1..k] of CHAR
): INTEGER [PUBLIC];

 Description
 The gstext subroutine writes the number of characters indicated by the
 parameters, starting at the specified baseline position and according to
 the relevant attributes. This subroutine is to be used only with
 annotated text.

 The relevant attributes are:

 � Color ma
 � Plane mas
 � Fon
 � Code pag
 � Baseline directio
 � Text color index

 Subtopics
 2.6.54.1 Parameters

AIX Operating System Technical Reference
gstext

¦ Copyright IBM Corp. 1985, 1991
2.6.54 - 1

 2.6.54.1 Parameters

 x, y Define the baseline position for writing the text.

 number Indicates the number of bytes to write from the text
 string.

 text Contains the ASCII codes for the characters to write, as
 an array.

 The graphics written to the frame buffer are determined by the 8-bit ASCII
 codes in the input data and the code page attribute. The ASCII control
 codes in between are ignored except the following: 1F, 1E, 1D, and 1C
 (hexadecimal). These control codes cause a shift to a predefined code
 page for the next ASCII character only.

 The code page definitions are:

 1F Bottom half of code page 1
 1E Top half of code page 1
 1D Bottom half of code page 2
 1C Top half of code page 2.

 For any ASCII value between 0 and 31 (decimal), no graphic is written.
 For any other ASCII value and code page combination that does not result
 in a valid graphic, a dash is written.

 For Pascal, the application must declare the array passed as being fixed
 length and declare the routine as accepting an array of that length; the k
 in the routine declaration must be a constant.

 Return Value

 GS_SUCC Successful.
 GS_CORD Invalid coordinate.
 GS_FBUF Frame buffer overflow.
 GS_INAC Virtual terminal inactive.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.54.1 - 1

 2.6.55 gsulns

 Purpose
 Sets the user line pattern.

 C Syntax

 int gsulns_ (pattern, length, begin)

 int *pattern, *length, *begin;

 FORTRAN Syntax

 INTEGER function gsulns (pattern, length, begin)

 INTEGER pattern, length, begin

 Pascal Syntax

 FUNCTION gsulns_ (

 VAR pattern, length, begin: INTEGER
): INTEGER [PUBLIC];

 Description
 The gsulns subroutine establishes the user line style.

 Subtopics
 2.6.55.1 Parameters

AIX Operating System Technical Reference
gsulns

¦ Copyright IBM Corp. 1985, 1991
2.6.55 - 1

 2.6.55.1 Parameters

 pattern Defines the pixel pattern used for the line style. A 1
 bit indicates that the GSL draws a pixel; a 0 bit means
 that it does not.

 length Defines the number of bits (starting with the most
 significant) of pattern used for line drawing. The bits
 are repeated for the length of the line.

 The length parameter is a value not less than 2 or
 greater than 32.

 begin Indicates the length of the starting run of bits set to
 1 in the pattern. It is used to adjust the beginning
 and ending runs of the non-continuous line styles.

 For proper appearance, the application-supplied line pattern should begin
 with a run of bits set to 1 and end with a run of bits set to 0.

 Return Value

 GS_SUCC Successful.
 GS_ULNS Invalid user line style.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.55.1 - 1

 2.6.56 gsunlk

 Purpose
 Resumes signal processing.

 C Syntax

 void gsunlk_ ()

 FORTRAN Syntax

 subroutine gsunlk ()

 Pascal Syntax

 PROCEDURE gsunlk_ () [PUBLIC];

 Description
 The gsunlk subroutine indicates to the GSL that the application is
 finished with the display adapter and it can now read the SIGRETRACT
 signal.

 The application supplied routine called at SIGRETRACT can be entered as a
 result of gsunlk.

AIX Operating System Technical Reference
gsunlk

¦ Copyright IBM Corp. 1985, 1991
2.6.56 - 1

 2.6.57 gsxblt

 Purpose
 Moves a rectangular block in system or display adapter memory from one
 location to another.

 C Syntax

 int gsxblt_ (srcpix, dstpix, mskpix, W, H, logop)

 int *srcpix, *dstpix, *mskpix, *W, *H, *logop;

 FORTRAN Syntax

 INTEGER function gsxblt (srcpix, dstpix, mskpix, W, H, logop)

 INTEGER srcpix(*), dstpix(*), mskpix(*), W, H, logop

 Pascal Syntax

 FUNCTION gsxblt_ (

 VAR srcpix, dstpix, mskpix: ARRAY [32] of INTEGER;
 VAR W, H, logop : INTEGER
): INTEGER [PUBLIC];

 Description

 The gsxblt subroutine moves a rectangular block of pixels from one memory
 location to another, either in system memory or in the display adapter
 frame buffer.

 The gsxblt subroutine is used to support windowing operations, such as
 overlays and movement around the screen. The source rectangle and the
 destination rectangle can be in either system or adapter pixel memory.
 The gsxblt subroutine is also used for user defined cursors and the save
 and restore of a pixel map for applications like pop-up menus.

 The mask operation provided by the gsxblt subroutine controls which pixels
 in the destination rectangle can be modified.

 The relevant attributes are:

 � Plane mas
 � Color map

 Subtopics
 2.6.57.1 Parameters

AIX Operating System Technical Reference
gsxblt

¦ Copyright IBM Corp. 1985, 1991
2.6.57 - 1

 2.6.57.1 Parameters

 srcpix Contains the address of the source pixel map.

 dstpix Contains the address of the destination pixel map.

 mskpix Contains the address of the mask operation pixel map.
 This parameter should equal 0 if there is no bit mask
 operator to apply. For Fortran applications, a valid
 mskpix array must always be defined. If no masking is
 required, the address field of the array, mskpix[9],
 must be initialized to 0.

 The mskpix pixel map must always consist of only 1 bit
 per pixel, and the mask rectangle must always be the
 same size as the source and destination rectangles. In
 the mask rectangle, a 1 bit means that the corresponding
 pixel in the destination rectangle can be modified,
 while a 0 bit means the destination pixel will not be
 modified.

 W Defines the width of the rectangular area to be
 transferred.

 H Defines the height of the rectangular area to be
 transferred.

 logop Indicates the logical operation to perform between the
 source pixel map and the destination pixel map.

 In the following table, please note:

 � The source or tile (a special type of source) pixels
 represent bits of data to be merged in some way with
 the corresponding bits of data in the destination
 rectangle.

 � The first three columns of the table specify the
 operations you can perform, and the Code column
 contains the corresponding value you should specify
 for the logop parameter.

 � There are two unique codes for each logical
 operation, to be used depending on whether the
 tiling bit in the source pixel map is set. Codes
 0-15 must be used when the tiling bit is not set,
 while codes 16-31 must be used when the tiling bit
 is set.

 � A ~ (tilde) represents the logical INVERSE.

 Type of Logical Type of
 Source Operation Destination Code

 Destination clear 0
 Set Destination 15
 No operation Destination 5
 ~Destination 10
 Source REPLACE Destination 3

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.57.1 - 1

 Source AND Destination 1
 Source AND ~Destination 2
 Source Exclusive-or Destination 6
 Source OR Destination 7
 Source OR ~Destination 11
 ~Source REPLACE Destination 12
 ~Source AND Destination 4
 ~Source AND ~Destination 8
 ~Source Exclusive-or Destination 9
 ~Source OR Destination 13
 ~Source OR ~Destination 14
 Destination clear 16
 Set Destination 31
 No operation Destination 21
 ~Destination 26
 Tile REPLACE Destination 19
 Tile AND Destination 17
 Tile AND ~Destination 18
 Tile Exclusive-or Destination 22
 Tile OR Destination 23
 Tile OR ~Destination 27
 ~Tile REPLACE Destination 28
 ~Tile AND Destination 20
 ~Tile AND ~Destination 24
 ~Tile Exclusive-or Destination 25
 ~Tile OR Destination 29
 ~Tile OR ~Destination 30

 A pixel map is a 32-bit array of integers that contains the following
 fields:

 0 Device ID (0 for memory) (from gsqdsp)

 1 Flags

 In the following explanations, bit 0 is the low-order bit.

 � Plane (XY) format is selected when bit 0 is set and bits 1 and
 2 are not set. Pixel (Z) format is selected when bits 0, 1,
 and 2 are not set.

 � A repetitive tile is specified when bit 3 is set, while no
 tile is specified when bit 3 is not set.

 If the repetitive tile bit is set in the srcpix, pixel map,
 then the Device ID field in that pixel map must equal 0. The
 tile data must be in memory.

 � Bit 4 selects the lower-left coordinate system when it is set,
 and the upper-left coordinate system when it is not set.

 2 Height (in pixels)

 3 Width (in pixels)

 This value must be an even multiple of 16 pixels for all pixel
 maps, which means that all pixel maps must be at least 16 pixels
 wide.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.57.1 - 2

 4 Number of bits per pixel

 5 Pixels per byte, right justified

 6 Bytes per pixel

 7 x offset

 8 y offset

 9 Address of upper-left corner of data

 10 Foreground color index

 11 Background color index

 12 - 31 Reserved.

 Definitions of pixel map terms include:

 Device ID
 This is a required parameter for all pixel map definitions. If
 the pixel map being defined is a display adapter, this field
 must contain the Device ID of that display adapter. If the
 pixel map resides in system memory, then this field must equal
 0.

 Pixel format
 Data stored in this format has all bits for a pixel stored
 together. The data starts with the origin and increases first
 in the x direction, then in the y direction.

 As an example using the upper-left coordinate system, a pixel
 map with 4 bits per pixel and 1 pixel per byte stores the 4 bits
 for the pixel at location (0,0) in the first byte of the data
 area, right justified in the byte. The 4 bits for the pixel at
 location (1,0) are stored in the second byte, followed by the
 rest of the pixel values in that row. When the end of the row
 is reached, the next byte contains the 4 bits for the pixel at
 location (0,1), followed by the rest of the pixel values in that
 row, and so on for the entire image.

 Plane format
 Plane format indicates that each of the bits that make up a
 pixel is stored in a separate, consecutive plane in memory. The
 most significant bit is first, followed by the next significant,
 and so on to the least significant bit, which is last. The bits
 within a plane are packed together 8 bits per byte. Therefore,
 using the upper-left coordinate system as an example, a pixel
 map with 4 bits per pixel would consist of four separate planes
 of data with the first bit value being the one for location
 (0,0) and increasing first in the x direction, then in the y
 direction.

 Repetitive tiling operation
 This operation consists of repeatedly copying a 16-pixel wide by
 16-pixel high tile rectangle pointed to by the tile pixel map
 data address to fill a rectangular area of a size specified by
 the H and W parameters of this call. The format of the tile
 data is determined by the format defined in the flags field of

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.57.1 - 3

 the tile pixel map structure.

 Upper-left coordinate system
 This indicates that the upper-left corner of the pixel map is
 used as the origin of the coordinate system, with increasing
 values of x moving to the right and increasing values of y
 moving down. The x offset and y offset are to set the
 upper-left corner of the rectangle when using this coordinate
 system.

 Lower-left coordinate system
 This indicates that the lower-left corner of the pixel map is
 used as the origin of the coordinate system, with increasing
 values of x moving to the right and increasing values of y
 moving up. The x offset and the y offset are set to the
 lower-left corner of the rectangle when using this coordinate
 system. Note, however, that the data address specified in the
 pixel map structure must always point to the upper-left corner
 of the data area no matter which coordinate system is defined.

 Number of bits per pixel
 This field identifies the number of bits of data required to
 define a pixel value. For example, a simple monochrome display
 requires only 1 bit per pixel, while a color display may require
 4 bits of information to define a pixel.

 Number of pixels per byte
 If the number of bits per pixel is less than 8, this field
 defines how many pixels are stored in each byte of pixel map
 data. A pixel map with only 1 bit per pixel must always store 8
 pixels per byte. It is strongly recommended that for between 2
 and 7 bits per pixel, you store data with only 1 pixel per byte.

 Bytes per pixel
 If the number of bits per pixel is greater than 8, this field
 defines how many bytes are used to store each pixel. It is
 strongly recommended that for between 9 and 16 bits per pixel,
 you store data 2 bytes per pixel. For between 17 and 32 bits
 per pixel, data should be stored 4 bytes per pixel.

 Foreground color index
 This specifies the color index value to use for a value of 1 in
 the source pixel map during a color expansion operation.

 Background color index
 This specifies the color index value to use for a value of 0 in
 the source pixel map during a color expansion operation.

 A color expansion operation takes place automatically when the source
 pixel map data area contains only 1 bit per pixel and the destination
 pixel map data area is a color display adapter frame buffer defined to
 have more than 1 bit per pixel. In this case, when a 1 is specified in
 the source pixel map data area, the foreground color index value specified
 in the destination pixel map (dstpix) is written to the destination data
 area. When a 0 is specified in the source pixel map data area, the
 background color index value specified in the destination pixel map
 (dstpix) is written to the destination data area.

 The foreground color index and the background color index must be
 initialized in the dstpix pixel map before calling this operation, but do

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.57.1 - 4

 not need to be initialized in the srcpix or mskpix pixel maps.

 For VGA, not all logical operations are supported for a color expansion
 operation. The following table shows which operations are supported. In
 this table, a ~ (tilde) represents the logical INVERSE. Note that the
 operations in the left column of the table are for source pixel maps,
 while the operations in the right column are for tile pixel maps.

 Type of Operation Code Type of Operation Code

 Destination clear 0 Destination clear 16
 Set destination 15 Set destination 31
 Destination 5 Destination 21
 ~ Destination 10 ~ Destination 26
 Source 3 Tile 19
 ~ Source 12 ~ Tile 28

 If a source or destination pixel map structure defines the active display
 adapter, you do not need to initialize all the fields of that pixel map
 structure. Device-dependent information, such as height, width, pixels
 per byte, bytes per pixel, and address of data, is supplied automatically.
 You must initialize the fields for device ID, bits per pixel, flags
 (except for the data format bits), x offset, and y offset. Also, the
 foreground color index and the background color index must be initialized
 if appropriate for this adapter.

 When initializing a pixel map structure to use as the mskpix parameter:

 1. The flags field should equal a value of 0x01 if the upper-left
 coordinate system will be used or 0x11 if the lower left coordinate
 system will be used.
 2. The number of bits per pixel must equal 1.
 3. The number of pixels per byte must equal 8.

 The GSL plane mask attribute applies to all gsxblt operations that use the
 display adapter as the source or destination pixel map.

 The GSL color map attribute applies to all gsxblt operations that use the
 display adapter as the destination pixel map.

 Return Value

 GS_SUCC Successful.
 GS_IWID Invalid width specification. The x_offset plus the W parameter
 of one of the pixel maps exceeds the total width of that pixel
 map.
 GS_IHEI Invalid height specification. The y_offset plus the H parameter
 of one of the pixel maps exceeds the total height of that pixel
 map.
 GS_NPLF Source and destination data formats do not match.
 GS_INAC Virtual terminal inactive.
 GS_CORD Invalid coordinate specified that placed the origin of the
 source, destination, or mask rectangle outside its pixel map.
 GS_IBPP Invalid value for bits per pixel in the source pixel map.
 GS_CEXP Color expansion operation attempted, but the destination pixel
 map was not a display adapter.
 GS_PWID The width of one of the pixel maps is not an even multiple of 16
 pixels.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.57.1 - 5

 Related Information
 In this book: "gsxptr" in topic 2.6.59.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.57.1 - 6

 2.6.58 gsxcnv

 Purpose
 Converts pixel map data organization.

 C Syntax

 int gsxcnv_ (inppix, outpix)

 int *inppix, *outpix;

 FORTRAN Syntax

 INTEGER function gsxcnv (inppix, outpix)

 INTEGER inppix(*), outpix(*)

 Pascal Syntax

 FUNCTION gsxcnv_ (

 VAR inppix, outpix: INTEGER
): INTEGER [PUBLIC];

 Description

 The gsxcnv subroutine converts pixel map data to and from planes. That
 is, gsxcnv converts XY form to and from pixels, or Z form.

 Subtopics
 2.6.58.1 Parameters

AIX Operating System Technical Reference
gsxcnv

¦ Copyright IBM Corp. 1985, 1991
2.6.58 - 1

 2.6.58.1 Parameters

 inppix Points to the address of the pixel map that contains the
 address of the data area to be converted.

 outpix Points to the address of the pixel map that contains the
 address of where to put the converted data.

 Both the inppix and outpix parameters contain the address of a pixel map.
 The fields of each pixel map must be completely initialized before calling
 this subroutine. Both pixel maps must point to data areas that reside in
 system memory, not in a display adapter frame buffer.

 The inppix and outpix pixel maps do not have to specify the same number of
 bits per pixel. If there are more input bits per pixel, the least
 significant bits are truncated. If there are less input bits per pixel
 than required to fill out the destination, the most significant bits are
 filled with zeros.

 The gsxcnv subroutine only supports pixel maps defined to have 8 bits per
 pixel or less. If a pixel format pixel map is defined with less than 8
 bits per pixel, the data must be arranged 1 byte per pixel, right
 justified in that byte.

 The widths and heights of the two data areas must be identical.

 Warning: The calling process must allocate enough storage in the area
 pointed to by the outpix pixel map to contain all of the converted data.
 For pixel-oriented data, a buffer of

 height * width/4

 integers is sufficient. For plane-oriented data, a buffer of

 ((height * width)/32+1) * bits_per_pix

 integers is sufficient.

 Return Value

 GS_SUCC Successful.
 GS_INPF Invalid data format specified in inppix pixel map structure.
 GS_OUTF Invalid data format specified in outpix pixel map structure.
 GS_BMAX Pixel map defines data of more than 8 bits per pixel.

 Related Information
 In this book: "gsxblt" in topic 2.6.57.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.58.1 - 1

 2.6.59 gsxptr

 Purpose
 Handles FORTRAN addressing of data.

 C Syntax

 None

 FORTRAN Syntax

 INTEGER function gsxptr (intptr, datptr)

 INTEGER intptr(*), datptr(*)

 Pascal Syntax

 None

 Description

 The gsxptr subroutine places a data address in a variable so that the data
 address field of a pixel map structure can be initialized.

 In a FORTRAN application, you must first call the gsxptr subroutine, then
 the gsxblt subroutine.

 Subtopics
 2.6.59.1 Parameters

AIX Operating System Technical Reference
gsxptr

¦ Copyright IBM Corp. 1985, 1991
2.6.59 - 1

 2.6.59.1 Parameters

 intptr Contains the address of the variable containing the data
 area.

 datptr Will be initialized to the address of the data area.

 Return Value

 GS_SUCC Successful.

 Related Information
 In this book: "gsxblt" in topic 2.6.57.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.59.1 - 1

 2.6.60 gsxtat

 Purpose
 Sets the text attributes for annotated text using the rtfont format.

 C Syntax

 int gsxtat_ (foreground, background, logop, font, clipbox)

 int *foreground, *background, *logop, *font, *clipbox;

 FORTRAN Syntax

 INTEGER function gsxtat (foreground, background, logop, font, clipbox)

 INTEGER foreground, background, logop, font, clipbox

 Pascal Syntax

 FUNCTION gsxtat_ (

 VAR foreground, background, logop, : INTEGER;
 VAR font: ARRAY [1..k] of INTEGER;
 VAR clipbox: ARRAY [1..l] of INTEGER;
): INTEGER [PUBLIC];

 Description
 The gsxtat subroutine defines the attributes to be used when drawing text
 with a font in the rtfont format.

 Subtopics
 2.6.60.1 Parameters

AIX Operating System Technical Reference
gsxtat

¦ Copyright IBM Corp. 1985, 1991
2.6.60 - 1

 2.6.60.1 Parameters

 foreground Defines an entry in the color map to use for the
 foreground color (bits set to 1) in the font raster for
 each character. A value of -1 indicates no change for
 this attribute.

 background Defines an entry in the color map to use for the
 background color (bits set to 0) in the font raster for
 each character. A value of -1 indicates no change for
 this attribute.

 logop Indicates the logical operation to perform between the
 font raster and the display destination.

 In the following table, please note:

 � The source pixels represent bits of data from the
 font raster to be merged in some way with the
 corresponding bits of data in the destination
 rectangle.

 � The first three columns of the table specify the
 operations you can perform, and the Code column
 contains the corresponding value you should specify
 for the logop parameter.

 � A ~ (tilde) represents the logical INVERSE.

 Type of Logical Type of
 Source Operation Destination Code

 Destination clear 0
 Set Destination 15
 No operation Destination 5
 ~Destination 10
 Source REPLACE Destination 3
 Source AND Destination 1
 Source AND ~Destination 2
 Source Exclusive-or Destination 6
 Source OR Destination 7
 Source OR ~Destination 11
 ~Source REPLACE Destination 12
 ~Source AND Destination 4
 ~Source AND ~Destination 8
 ~Source Exclusive-or Destination 9
 ~Source OR Destination 13
 ~Source OR ~Destination 14

 A value of -1 for this parameter indicates no change in
 the current logical operation.

 font Points to a data area that contains the font header and
 raster definitions for all characters defined in the
 font. The calling process is responsible for either
 mapping the font file or copying it into a memory area
 in order to obtain a pointer to the data area.

 Setting the value of this pointer to 0 indicates no

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.60.1 - 1

 change to the current font file.

 The GSL supports only a subset of the different forms
 that the rtfont format allows. Specifically, the GSL
 supports any combination of the following font formats:

 � fixed width and height

 � variable width and/or height

 � halfword alignment or fullword alignment

 � glyphs in raster format only

 � index character array width of 4 bytes

 � all individual glyph character bounds for variable
 width and height fonts, except negative left or
 right bearings.

 For more information on valid formats for rtfont files,
 see "fonts" in topic 2.3.19 and the rtfont.h header
 file.

 The GSL does not support any formats for rtfont files
 other than those listed above. If the font file
 specified is not in a supported format, then the GSL
 returns the GS_FFMT return code.

 clipbox Specifies an array of integers that correspond to a
 rectangular area on the display screen. When the gsxtxt
 subroutine is used to draw text, any full or partial
 characters that fall outside this area are clipped. The
 elements of the area to clip are as follows:

 first element Reserved. This value should
 always be 1.

 second element Specifies the x coordinate of
 the lower left corner of the
 clip box, in pixels.

 third element Specifies the y coordinate of
 the lower left corner of the
 clip box, in pixels.

 fourth element Specifies the height of the
 clip box, in pixels.

 fifth element Specifies the width of the clip
 box, in pixels.

 The bottom and left edges of the clip box are inclusive,
 while the top and right edges are exclusive.

 This parameter is a pointer to the clip box array, which
 is not copied into any GSL data structure, allowing the
 calling process to modify the elements of the array
 without calling the gsxtat subroutine. If the values
 for the clip box are changed between calls to the gsxtxt

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.60.1 - 2

 subroutine, the new clip box is used for all text
 drawing until another change is made.

 Setting the value of this pointer to 0 indicates no
 change.

 Warning: Since the GSL subroutines that use the rtfont format are
 designed for high-performance text drawing, no verification is made of the
 validity of the clip box. It is the responsibility of the calling process
 to ensure that the entire clip box resides inside the physical size of the
 display. Using a clip box that is not entirely within the screen will
 produce unpredictable results.

 When the GSL is installed from diskette, an attempt is made to convert the
 14 supplied VRM format fonts into rtfont format. The vrm2rtfont command
 (described in the AIX Operating System Commands Reference) is used on the
 14 VRM fonts in the /usr/lpp/gsl/fonts directory, and the resulting
 rtfonts are stored in the /usr/lpp/fonts directory. The following list
 shows the rtfont format files stored in /usr/lpp/fonts:

 +---------------------------------------+
 ¦ Width x Height¦ ¦ ¦
 ¦ (in ¦ Style ¦ Filename ¦
 ¦ pixels) ¦ ¦ ¦
 +---------------+----------+------------¦
 ¦ 4 x 8 ¦ Normal ¦ Rom6.500 ¦
 +---------------+----------+------------¦
 ¦ 6 x 9 ¦ Normal ¦ Rom7.500 ¦
 +---------------+----------+------------¦
 ¦ 6 x 11 ¦ Normal ¦ Rom8.500 ¦
 +---------------+----------+------------¦
 ¦ 7 x 15 ¦ Normal ¦ Rom11.500 ¦
 +---------------+----------+------------¦
 ¦ 7 x 22 ¦ Normal ¦ Rom16.500 ¦
 +---------------+----------+------------¦
 ¦ 8 x 14 ¦ Normal ¦ Rom10.500 ¦
 +---------------+----------+------------¦
 ¦ 9 x 20 ¦ Normal ¦ Rom14.500 ¦
 +---------------+----------+------------¦
 ¦ 9 x 20 ¦ Italic ¦ Itl14.500 ¦
 +---------------+----------+------------¦
 ¦ 9 x 20 ¦ Bold ¦ Bld14.500 ¦
 +---------------+----------+------------¦
 ¦ 9 x 20 ¦ Ergonomic¦ Erg14.500 ¦
 +---------------+----------+------------¦
 ¦ 11 x 23 ¦ Normal ¦ Rom17.500 ¦
 +---------------+----------+------------¦
 ¦ 11 x 23 ¦ Bold ¦ Bld17.500 ¦
 +---------------+----------+------------¦
 ¦ 12 x 30 ¦ Normal ¦ Rom22.500 ¦
 +---------------+----------+------------¦
 ¦ 18 x 40 ¦ Normal ¦ Rom29.500 ¦
 +---------------------------------------+

 All of these fonts have fixed width and height and are halfword aligned.

 For Pascal, the application must declare the arrays passed as being fixed
 length and declare the routine as accepting arrays of that length. The k
 and l in the routine declaration must be constants.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.60.1 - 3

 Return Value

 GS_SUCC Successful.
 GS_FFMT Invalid font format.
 GS_LONS Invalid logical operation.

 File
 /usr/include/rtfont.h

 Related Information
 In this book: "fonts" in topic 2.3.19 and "gsxtxt" in topic 2.6.61.

 The vrm2rtfont command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.60.1 - 4

 2.6.61 gsxtxt

 Purpose
 Writes annotated text using the rtfont format.

 C Syntax

 int gsxtxt_ (x, y, number, text)

 int *x, *y, *number;
 char *text;

 FORTRAN Syntax

 INTEGER function gsxtxt (x, y, number, text)

 INTEGER x, y, number
 CHARACTER*n text

 Pascal Syntax

 FUNCTION gsxtxt_ (

 VAR x, y, number: INTEGER;
 VAR text: ARRAY [1..k] of CHAR
): INTEGER [PUBLIC];

 Description
 The gsxtxt subroutine displays the specified text string using the rtfont
 format. Only those full or partial characters that fall within the clip
 box specified by the gsxtat subroutine are displayed. In addition, since
 there is no default rtfont defined for use by the GSL, the gsxtat
 subroutine must be called to set all relevant attributes before the first
 call to this subroutine.

 The relevant attributes are:

 � xtext foreground colo
 � xtext background colo
 � xtext logical operatio
 � xtext clip bo
 � xtext current rtfont file
 � plane mas
 � color map

 Subtopics
 2.6.61.1 Parameters

AIX Operating System Technical Reference
gsxtxt

¦ Copyright IBM Corp. 1985, 1991
2.6.61 - 1

 2.6.61.1 Parameters

 x, y Define the baseline position for writing the text.

 number Indicates the number of bytes to write from the text
 string.

 text Contains the ASCII codes for the characters to write, as
 an array.

 For Pascal, the application must declare the array passed as being fixed
 length and declare the routine as accepting an array of that length; the k
 in the routine declaration must be a constant.

 Return Value

 GS_SUCC Successful.

 Since the text is either displayed or clipped in any case, the gsxtxt
 subroutine always completes with a successful return code.

 File
 /usr/include/rtfont.h

 Related Information
 In this book: "fonts" in topic 2.3.19 and "gsxtat" in topic 2.6.60.

AIX Operating System Technical Reference
Parameters

¦ Copyright IBM Corp. 1985, 1991
2.6.61.1 - 1

 A.0 Appendix A. Error Codes

 This section describes the error conditions that can occur when using the
 system calls described in this book. Some subroutines also use these
 codes to indicate errors.

 System calls indicate the fact that an error has occurred by returning a
 special value. This value is almost always -1, but check the description
 of the individual system call to be sure. Also, a number that identifies
 the error is stored in an external variable named errno. The errno
 variable is not cleared when a system call finishes successfully, so its
 value is meaningful only after an error has occurred.

 If you are going to check the value of errno in a program, include the
 following line at the top of the source file:

 #include <errno.h>

 The errno.h header file declares the errno variable and defines the name
 of each error condition.

 For each error code, the following list shows the symbolic name defined in
 the /usr/include/errno.h header file, the corresponding numeric value, and
 a brief description of the error:

 EPERM (1) Operation not permitted

 Cause: You attempted to modify a file in some way forbidden except to the
 owner of the file or to superuser. Or, a user other than superuser
 attempted to do something that only superuser is allowed to do.

 ENOENT (2) No such file or directory

 Cause: The file specified does not exist, or one of the directories in a
 path name does not exist.

 ESRCH (3) No such process

 Cause: A process corresponding to that specified in the pid parameter of
 the kill or ptrace system calls cannot be found.

 EINTR (4) Interrupted system call

 Cause: An asynchronous signal (such as interrupt or quit), which you have
 elected to catch, occurred during a system call. If the signal handler
 performs a normal return, the interrupted system call may return this
 error condition.

 EIO (5) Input/Output error

 Cause: A physical I/O error occurred. In some cases, this error occurs
 on a system call following the one to which it actually applies.

 ENXIO (6) No such device or address

 Cause: I/O on a special file referred to a device or subdevice that does
 not exist or referred to an address that is beyond the limits of the
 device.

AIX Operating System Technical Reference
Appendix A. Error Codes

¦ Copyright IBM Corp. 1985, 1991
A.0 - 1

 E2BIG (7) Arg list too long

 Cause: The combined length of the argument list and the environment list
 passed to one of the exec system calls totaled more than 10,240 bytes.

 ENOEXEC (8) Exec format error

 Cause: A request was made to execute a file that has the appropriate
 permissions, but does not start with a valid text header. (For
 information about text headers, see "a.out" in topic 2.3.2.)

 EBADF (9) Bad file descriptor

 Cause: A file descriptor was specified that does not refer to an open
 file, or a read request was made to a file that is open only for writing,
 or a write request was made to a file that is open only for reading.

 ECHILD (10) No child processes

 Cause: A process that invoked the wait system call has no existing child
 processes that have not already been waited for.

 EAGAIN (11) Resource temporarily unavailable

 Cause: The fork system call failed because the system's process table is
 full or the user is not allowed to create any more processes. Or, an
 attempt was made to access a region of a file that has an outstanding
 enforcement-mode lock. (See "fcntl, flock, lockf" in topic 1.2.78 about
 file locking.)

 ENOMEM (12) Not enough space

 Cause: During a brk, sbrk, or exec system call, a program asked for more
 space than the system is able to supply. This is not a temporary
 condition. The maximum space size is a system parameter.

 EACCES (13) Permission denied

 Cause: An attempt was made to access a file in a way that is forbidden by
 the protection system.

 EFAULT (14) Bad address

 Cause: An address passed to a system call that points to a location
 outside of the process's allocated address space.

 ENOTBLK (15) Block device required

 Cause: A nonblock file was specified when a block device is required,
 such as in the mount system call.

 EBUSY (16) Resource busy

 Cause: An attempt was made to mount a device that is already mounted, or
 an attempt was made to dismount a device on which there is an active file.
 This error also occurs when an attempt is made to enable accounting when
 it has already been enabled.

 EEXIST (17) File exists

AIX Operating System Technical Reference
Appendix A. Error Codes

¦ Copyright IBM Corp. 1985, 1991
A.0 - 2

 Cause: A previously existing file was specified to a system call or
 subroutine that would replace that file, such as the link system call.

 EXDEV (18) Improper link

 Cause: An attempt was made to link to a file on another device. (See
 "link" in topic 1.2.156.)

 ENODEV (19) No such device

 Cause: An attempt was made to use an inappropriate system call to a
 device, for example, to write to a read-only device.

 ENOTDIR (20) Not a directory

 Cause: A nondirectory parameter was specified where a directory is
 required, for example in a path prefix or as a parameter to the chdir
 system call.

 EISDIR (21) Is a directory

 Cause: An attempt was made to write on a directory.

 EINVAL (22) Invalid argument

 Cause: An invalid argument or action was specified to a system call, such
 as dismounting a device that is not mounted, specifying an undefined
 signal, or writing to a file for which lseek has generated a negative file
 pointer.

 ENFILE (23) Too many open files in system

 Cause: An attempt was made to open a file, and the system's table of open
 files is full. The maximum number of open files is a system parameter in
 /etc/system.

 EMFILE (24) Too many open files

 Cause: A process attempted to open more than two hundred (200) file
 descriptors at one time.

 ENOTTY (25) Inappropriate I/O control operation

 Cause: An ioctl system call was issued to a special file that does not
 support ioctl.

 ETXTBSY (26) Text file busy

 Cause: This error occurs when an attempt is made to execute a
 pure-procedure program that is currently open for writing or reading. It
 also occurs when an attempt is made to open for writing or to remove a
 pure-procedure program or shared library while that program or library is
 being executed.

 EFBIG (27) File too large

 Cause: The size of a file exceeded the maximum file size (2,147,483,648
 bytes), or the maximum size set by the ulimit system call.

 ENOSPC (28) No space left on device

AIX Operating System Technical Reference
Appendix A. Error Codes

¦ Copyright IBM Corp. 1985, 1991
A.0 - 3

 Cause: During a write to an ordinary file, the device ran out of free
 space on the file system where the file resides.

 ESPIPE (29) Invalid seek

 Cause: An lseek system call was issued to an unseekable file or device,
 such as a pipe.

 EROFS (30) Read-only file system

 Cause: An attempt was made to modify a file or directory on a device that
 is mounted as read-only.

 EMLINK (31) Too many links

 Cause: An attempt was made to make more than the maximum number of links
 (1000) to a file.

 EPIPE (32) Broken pipe

 Cause: An attempt was made to write to a pipe for which there is not a
 process to read the data. This condition normally generates a signal; the
 error is returned if the signal is ignored.

 EDOM (33) Domain error

 Cause: A parameter to a Math Library (libm.a) subroutine was out of the
 domain of the function.

 ERANGE (34) Result too large

 Cause: The return value of a Math Library (libm.a) subroutine is not
 representable within machine precision.

 ENOMSG (35) No message of desired type

 Cause: An attempt was made to receive a message of a type that does not
 exist on the specified message queue.

 EIDRM (36) Identifier removed

 Cause: The specified identifier has been removed from the file system's
 name space. (See "msgctl" in topic 1.2.173, "semctl" in topic 1.2.243,
 and "shmctl" in topic 1.2.259.)

 Note: The values ECHRNG (37) through EL2HLT (44) are supplied in the
 errno.h header file for compatibility with UNIX System V. These
 values are not set by any AIX software.

 ECHRNG (37) Channel number out of range
 EL2NSYNC (38) Level 2 not synchronized
 EL3HLT (39) Level 3 halted
 EL3RST (40) Level 3 reset
 ELNRNG (41) Link number out of range
 EUNATCH (42) Protocol driver not attached

AIX Operating System Technical Reference
Appendix A. Error Codes

¦ Copyright IBM Corp. 1985, 1991
A.0 - 4

 ENOCSI (43) No CSI structure available
 EL2HLT (44) Level 2 halted

 EDEADLK (45) Resource deadlock avoided

 Cause: A potential deadlock was detected while attempting to lock a
 region of a file with the lockf system call.

 ENOTREADY (46) Device not ready

 Cause: The device is not ready for operation. For example, a diskette
 drive does not contain a diskette, or the device is not powered on.

 EWRPROTECT (47) Write-protected media

 Cause: There was an attempt to write to a device whose I/O media is
 write-protected.

 EFORMAT (48) Unformatted or incompatible media

 Cause: There was an attempted I/O operation on a device with media which
 has not been formatted or the format is not compatible with the I/O
 device.

 ENOLCK (49) No locks available

 Cause: There are no more file locks available. Too many segments are
 already locked.

 ENOCONNECT (50) Cannot Establish Connection

 EBADCONNECT (51) Connection Down

 ESTALE (52) Missing file or file system

 Cause: Either the file system of a remote (NFS) file has been unmounted,
 or the file descriptor of a remote (NFS) file has become obsolete.

 EDIST (53) Requests blocked by Administrator

 EWOULDBLOCK (54) Operation would block

 EINPROGRESS (55) Operation now in progress

 Cause: The socket was marked O_NDELAY by an fcntl system call, then a
 connect operation was attempted that has not completed yet.

 EALREADY (56) Operation already in progress

 Cause: The requested socket connection or disconnection is already in
 progress.

 ENOTSOCK (57) Socket operation on non-socket

 Cause: The command cannot complete because the file descriptor specified
 is not a socket.

 EDESTADDRREQ (58) Destination address required

AIX Operating System Technical Reference
Appendix A. Error Codes

¦ Copyright IBM Corp. 1985, 1991
A.0 - 5

 Cause: The attempted socket operation failed because a destination
 address was required, but not provided.

 EMSGSIZE (59) Message too long

 Cause: The socket data transfer failed because the message exceeded the
 size limits.

 EPROTOTYPE (60) Protocol wrong type for socket

 Cause: Either the two sockets to be connected are not of the same type,
 or the protocol used does not support this type of socket.

 ENOPROTOOPT (61) Protocol not available

 Cause: The protocol specified either does not support this particular
 option or does not support any options.

 EPROTONOSUPPORT (62) Protocol not supported

 Cause: No protocol of the specified type and domain exists.

 ESOCKTNOSUPPORT (63) Socket type not supported

 Cause: The type of socket specified is not supported. Do not use this
 type of socket in your program.

 EOPNOTSUPP (64) Operation not supported on socket

 Cause: This socket, with its particular type, domain, and protocol, does
 not allow the requested operation.

 EPFNOSUPPORT (65) Protocol family not supported

 Cause: The socket protocol specified is not supported. Do not use this
 protocol in your program.

 EAFNOSUPPORT (66) Address family not supported by protocol

 Cause: The socket name is of a type that is not valid in this socket or
 for the domain.

 EADDRINUSE (67) Address already in use

 Cause: A bind or connect operation was attempted using a socket name that
 is already in use.

 EADDRNOTAVAIL (68) Cannot assign requested address

 Cause: The requested socket name is not available to this machine.
 Either an incorrect socket name was used, or there is a problem at the
 remote node where the socket name should be.

 ENETDOWN (69) Network is down

 Cause: A socket operation failed because the network is down.

 ENETUNREACH (70) Network is unreachable

 Cause: A socket operation failed because the destination is at a remote

AIX Operating System Technical Reference
Appendix A. Error Codes

¦ Copyright IBM Corp. 1985, 1991
A.0 - 6

 node that cannot be reached over the network.

 ENETRESET (71) Network dropped connection on reset

 Cause: The host the socket was connected to went down. The connection
 can be reestablished after the remote node is restarted.

 ECONNABORTED (72) Software caused connection abort

 Cause: The connection between a socket and a remote node was terminated
 at the local node, the remote node, or the network level.

 ECONNRESET (73) Connection reset by peer

 Cause: The connection with another socket was reset by that socket. This
 errno can be set due to an error, or just due to a connection that was
 closed.

 ENOBUFS (74) No buffer space available

 Cause: Not enough buffer space is available for the requested socket
 operation.

 EISCONN (75) Socket is already connected

 Cause: A connect operation was attempted on a socket that is already
 connected.

 ENOTCONN (76) Socket is not connected

 Cause: A socket operation other than a connect was attempted on a socket
 that is not currently connected, or a send operation that does not require
 a connection was attempted without a destination address.

 ESHUTDOWN (77) Cannot send after socket shutdown

 Cause: An attempt was made to send data after a shutdown operation was
 done on the socket.

 ETIMEDOUT (78) Connection timed out

 Cause: A remote socket did not respond within the timeout period set by
 the protocol of the socket on this node.

 ECONNREFUSED (79) Connection refused

 Cause: A remote node refused to allow the attempted connect operation.

 EHOSTDOWN (80) Host is down

 Cause: A socket operation failed because the remote node specified is
 down.

 EHOSTUNREACH (81) No route to host

 Cause: A socket operation failed because no route to the remote node was
 available due to an incorrect address, an incorrect routing table, or
 network hardware problems.

 EDUPLOOP (82) Reserved

AIX Operating System Technical Reference
Appendix A. Error Codes

¦ Copyright IBM Corp. 1985, 1991
A.0 - 7

 ENOLOOP (83) Reserved

 ENOTINLOOP (84) Reserved

 ELOOP (85) Symbolic link loop

 Cause: A path name lookup involved more than eight symbolic links.

 ENAMETOOLONG (86) File name too long

 Cause: A component of a path name exceeded 255 (MAXNAMELEN) characters or
 an entire path name exceeded 1023 (MAXPATHLEN-1).

 ENOTEMPTY (87) Directory not empty

 Cause: A directory with entries other than "." and ".." was supplied to a
 remove directory or rename call.

 EDQUOT (88) Disk quota exceeded

 Cause: One of the following errors occurred:

 A write to an ordinary file, the creation of a directory or symbolic link,
 or the creation of a directory entry failed because the user's quota of
 disk blocks is exhausted.

 The allocation of an inode for a newly created file failed because the
 user's quota of inodes is exhausted.

 ELIBACC (89) Shared library cannot be accessed

 Cause: A shared library referenced by an executable file cannot be found.

 ELIBBAD (90) Shared library format is bad

 Cause: A shared library referenced by an executable file cannot be linked
 because it is not in the correct format.

 ELIBSCN (91) .lib section in executable is corrupted

 Cause: The .lib section in an executable file cannot be processed.

 ELIBMAX (92) Too many shared libraries

 Cause: An executable file attempts to link to more than 10 shared
 libraries.

 ELIBEXE (93) Reserved

 ESITEDN1 (94) Required site is not available

 Cause: A site requested or required for an operation is not available.

 ESITEDN2 (95) Operation terminated because of site failure

 Cause: During the processing of the system call a required site became
 unavailable. It may be that there is a network hardware failure and that
 processing on the remote site is continuing. The operation may or may not
 have completed.

AIX Operating System Technical Reference
Appendix A. Error Codes

¦ Copyright IBM Corp. 1985, 1991
A.0 - 8

 ENOSTORE (96) File or working directory is unavailable

 Cause: An attempt is made to access a replicated file, including a
 component of the path prefix or the current working directory, that is not
 available within the current partition. This can occur when the directory
 entry for the file is more widely replicated than the file itself. Under
 these conditions the directory entry can be found when the file is not
 present. This error is also returned when the current working directory
 becomes unavailable because of a site failure or unmount.

 ENLDEV (97) Not a local device

 Cause: A remote device is specified in a mount or umount system call or
 an attempt is made to open a remote character device that is not a TTY.

 EBADST (98) Bad site specification

 Cause: A system call required the specification of a site and the value
 provided is invalid or the site specified is not available.

 ELDWRG (99) Load module not for this machine type

 Cause: An attempt is made to execute a load module on a site that is a
 different machine type.

 ELOCALONLY (100) Operation restricted to local site

 Cause: A process is attempting to change execution sites while it is
 using facilities that are not network transparent.

 ELOCK (101) Lock conflict

 ETABLE (102) Miscellaneous system table full

 Cause: The system has run out of space in some internal table.

 EXGFS (103) Improper mount operation.

 Cause: An attempt was made to mount a file system in a way that is
 inconsistent with previous mounts. This error could be caused by two file
 systems (which are not marked as replicated copies of one another) having
 the same global file system (gfs) number or by other inconsistencies such
 as replicated copies of a file system being mounted on different
 directories.

 EPBUSY (106) Pack is busy

 Cause: In the mount system call, a pack is specified that is already
 mounted.

 ENSPEC (107) Not a specific site

 Cause: A storage site operation was attempted at a site that is not the
 specific site required for the operation.

 EDLOCK (108) Directory in conflicting mode

 Cause: An operation was attempted on a directory that is locked in a
 manner that is not compatible with the desired operation.

AIX Operating System Technical Reference
Appendix A. Error Codes

¦ Copyright IBM Corp. 1985, 1991
A.0 - 9

 ENOSYS (109) Function not implemented

 Cause: An attempt was made to use a function that is not available in
 this implementation.

AIX Operating System Technical Reference
Appendix A. Error Codes

¦ Copyright IBM Corp. 1985, 1991
A.0 - 10

 B.0 Appendix B. Writing a Queuing System Backend

 This section provides information for writing a queuing system backend.
 It assumes you have a basic understanding of queue backends, friendly
 backends, and unfriendly backends. Only friendly backends are discussed;
 the term "backend" in the following discussion refers specifically to
 friendly backends, not backends in general. See Managing the AIX
 Operating System for more information about backends.

 Subtopics
 B.1 Introduction

AIX Operating System Technical Reference
Appendix B. Writing a Queuing System Backend

¦ Copyright IBM Corp. 1985, 1991
B.0 - 1

 B.1 Introduction

 The principal purpose of a backend is to send characters to a device,
 typically a printer. There are several ways the backend can do this.
 First, it can open a particular device and write to it. This has the
 advantage of simplicity, but it means that the backend cannot be used for
 any other device. Second, it can accept a parameter supplied by the user
 to tell it which device to use. This is more flexible, but involves a
 little extra work. Third, it can simply write to its standard output, and
 the qdaemon command will automatically open the device onto the correct
 file descriptor. This is the recommended method. It works only if the
 file field in the qconfig file has been set up appropriately.

 The backend is invoked once for every file or group of files to be
 printed. The name of each file to be printed is passed to the backend as
 a parameter. The backend must open the file, read its contents, and send
 them to the device in one of the ways previously described.

 Since the backend must open files, read them, and write to devices, you
 (the writer of a backend) should understand the domain where the backend
 operates. When a backend is invoked, its current directory is the one
 where the print request was made. The name of the file or files to be
 printed can either be a direct or relative path name. The user ID and
 group ID of the backend are those of the process that invoked the print
 command.

 If the backend writes to its standard output and allows the qdaemon
 process to open the device, permissions are handled by the qdaemon
 automatically. Otherwise, the backend will need to have write permission
 on the special file corresponding to the device. This may require
 changing the protections on the device or installing the backend
 set-user-ID or set-group-ID.

 By default, stdin, stdout, and stderr are all open to the null device
 (/dev/null), though it is possible to override the setting of stdout (and
 possibly stdin) with the file and access lines in the qconfig file.

 Subtopics
 B.1.1 Interaction Between Qdaemon and Backend
 B.1.2 The -statusfile Parameter
 B.1.3 Burst Pages
 B.1.4 Extra Copies
 B.1.5 Job Status Information
 B.1.6 Charge for the Job
 B.1.7 Exit Codes
 B.1.8 Return Error Messages
 B.1.9 Set State to WAITING
 B.1.10 Terminate on Receipt of SIGTERM
 B.1.11 Backend Routines in libqb

AIX Operating System Technical Reference
Introduction

¦ Copyright IBM Corp. 1985, 1991
B.1 - 1

 B.1.1 Interaction Between Qdaemon and Backend

 Besides reading files and writing to devices, a friendly backend must
 cooperate with the qdaemon in several ways. The requirements can be
 summarized as follows:

 � Recognize a -statusfile parameter and call a library routine that does
 some initialization.

 � Print burst pages as requested

 � Print extra copies as requested

 � Update status information (pages printed, percentage done
 periodically.

 � Supply charges (accounting data) for the completed job

 � Exit with some agreed on codes

 � Pass error messages through a special routine

 � Set state to WAITING, if appropriate

 � Terminate cleanly on receipt of SIGTERM

 Each requirement is discussed more fully in the following.

 There is a set of library routines that the backend should use to fulfill
 these requirements. The routines were designed to make the task of
 writing a backend as easy as possible. These routines are in the
 /usr/lib/libqb.a library and accessible with the -lqb flag. The
 individual routines are discussed in the body of the text that follows,
 and a summary table is given at the end of this chapter.

AIX Operating System Technical Reference
Interaction Between Qdaemon and Backend

¦ Copyright IBM Corp. 1985, 1991
B.1.1 - 1

 B.1.2 The -statusfile Parameter

 When the qdaemon process invokes a backend, it passes the following
 parameters, in order:

 1. The parameters appearing in the qconfig file
 2. The -statusfile parameter, if running as a friendly backend
 3. The flags that the print command did not recognize, in the order they
 were given
 4. The names of one or more files to be printed.

 The presence of the -statusfile parameter indicates that the status file
 is open on file descriptor 3 of the backend.

 The status file provides a means for the qdaemon process and the backend
 to communicate. The daemon passes such information as the date of the
 file, which burst pages are to be printed, the number of copies to be
 printed, and so on. The backend passes back the charge for the job it has
 just finished running. In addition, the backend periodically writes into
 the file the number of pages it has printed and what percent of the job is
 finished. This information is read by the print -q command.

 Backends should never explicitly write into their status file. Instead,
 they should call the library routines that do so. The reason for calling
 the routines is twofold: (1) backends are spared the trouble of accessing
 the status file directly, and (2) the format of the status file can be
 changed without requiring backends to be rewritten. In this case, the
 backends only need to be re-linked.

 To initialize certain data common to the library routines, the backend
 must call the routine log_init. The call is:

 log_init();

 This routine should be called when the -statusfile parameter is
 recognized. The log_init routine, like all the routines in library whose
 names begin log_, returns a value of -1 if it fails.

AIX Operating System Technical Reference
The -statusfile Parameter

¦ Copyright IBM Corp. 1985, 1991
B.1.2 - 1

 B.1.3 Burst Pages

 There are four types of burst pages:

 header A page preceding a file that shows its title, date, recipient,
 and other information.

 trailer A page following a file that gives the name of the user of the
 output.

 feed Blank pages printed only when the printer has become idle. Feed
 pages make it easier for users to tear off paper from the
 printer.

 align A form-feed printed only when the printer has been idle and is
 about to print a new job. The form-feed aligns the paper to
 top-of-form and is helpful if someone has moved the paper while
 the printer was idle.

 If the backend will never print any burst pages, the following information
 can be skipped.

 The printing of burst pages is done automatically by the burst_page
 routine. The routine takes two parameters: the address of a function and
 the width of the header and/or trailer desired. The function is called to
 put each character of the burst pages to the device. The parameter to
 this function is the single character to send. If the function address is
 NULL (#include <stdio.h>), the routine uses the supplied function.

 By passing the address of a special function for output, a backend can
 maintain strict control of what goes to the device and when it goes to the
 device. For example, the burst_pages routine uses line-feeds to separate
 lines, and form-feeds to separate pages. If the device requires a
 carriage return to precede every line-feed, the special function can make
 such a translation.

 The basic algorithm for synchronizing calls to the burst_page routine with
 file printing looks like this:

 (1) burst_page(fnaddr, width);
 while (files are to be printed)
 {
 (2) burst_page(fnaddr, width);
 print the next file;:
 (3) burst_page(fnaddr, width);
 }

 Every backend should follow this structure. The line numbers are used for
 reference in the following explanation.

 The burst_page routine uses the information in the status file to decide
 whether (and how) to print a header, a trailer, some feed pages, or an
 aligning form-feed. The status file is set up by the qdaemon, using the
 information provide in the qconfig file. For example, if the qconfig file
 contains the line header=group, the call on line (2) results in a header
 page only if this file is used by a different user than the user who
 printed the previous file on this device. The burst_page routine when
 invoked on line (2) makes that test and either prints the header or
 returns. Similarly, line (3) either prints a trailer or does nothing.

AIX Operating System Technical Reference
Burst Pages

¦ Copyright IBM Corp. 1985, 1991
B.1.3 - 1

 With the exception of line (1), which may appear to be extraneous, the
 algorithm is simple. This first call is necessary because qdaemon does
 not ask the backend to print a group trailer until it knows positively
 that there are no more files for a particular user. It cannot know this
 fact until either the first file for the next user is ready to be printed
 or there are no more files for this device. In the first case, qdaemon
 appends the trailer request for the previous user to the file request for
 the current one. Line (1) prints the trailer for the previous user if the
 trailer=group option has been selected; otherwise, it does nothing. In
 the second case, the backend is invoked with no file parameter at all. In
 this case, line (1) prints both a trailer and feed pages (assuming qconfig
 requests them), the while test fails, and the backend exits.

 The burst_page routine assumes that the printer is at the top of the page,
 and it prints a form-feed at the end of its header or trailer to leave the
 printer in the same state. Backends are responsible for maintaining the
 position of the paper. The align option is useful only for device like
 continuous-form daisy-wheel printers, where it is possible for the printer
 paper to be out of alignment after a job is removed.

 The burst_page routine should be enough for most friendly backends. If it
 is not, the library provides a set of routines at a lower level that
 should prove helpful for generating burst pages. There is a group of
 routines that return information from the status file, and two other
 routines that print headers and trailers, respectively.

 Functions in the first group take no parameters; the following describes
 their actions:

 get_align Returns TRUE or FALSE, telling whether an alignment form-feed is
 to be printed, assuming get_newuser() is TRUE and get_endgroup()
 is FALSE.

 get_endgroup
 Returns TRUE or FALSE, telling whether this is the end of a
 group of files for the same user.

 get_feed Returns the number of feed pages to be printed, assuming
 get_endgroup() is TRUE and get_newuser() is FALSE.

 get_from Returns the name of the person that made the print request.

 get_header
 Returns NEVER, ALWAYS, or GROUP (#include <IN/backend.h>),
 depending on the configuration.

 get_lastuser
 Returns the name of the previous user, assuming get_endgroup()
 is TRUE.

 get_moddate
 Returns a string showing the modification date of the file.

 get_newuser
 Returns TRUE or FALSE, telling whether this is the beginning of
 a group of files for a new user.

 get_nodeid
 Returns the node ID.

AIX Operating System Technical Reference
Burst Pages

¦ Copyright IBM Corp. 1985, 1991
B.1.3 - 2

 get_qdate Returns a string showing the date that the request was queued.

 get_title Returns the title of the job being printed.

 get_to Returns the name of the person for whom the job is intended.

 get_trailer
 Returns NEVER, ALWAYS, or GROUP, depending on the configuration.

 In addition, there is a routine put_header(fnaddr, width), that prints a
 header with no following form-feed, returning the number of lines printed,
 and a routine, put_trailer(user,fnaddr,width), that prints a trailer for
 user, again with no following form-feed, and returns the number of lines
 printed. The fnaddr and width parameters work like the same parameters in
 the burst_page function previously stated.

 It should be emphasized that the auxiliary functions should not be
 necessary for most backends. The burst_page() routine handles all tasks
 required when it is called as described in the previous algorithm.

AIX Operating System Technical Reference
Burst Pages

¦ Copyright IBM Corp. 1985, 1991
B.1.3 - 3

 B.1.4 Extra Copies

 The user can request that extra copies of a file be printed with the print
 -nc command. The print -nc = 5 filename command prints 5 copies of a
 file.

 The print program passes the -nc information to the qdaemon process, which
 puts it into the status file. Backends should get the information by
 calling the get_copies() routine, which returns the total number of copies
 desired.

AIX Operating System Technical Reference
Extra Copies

¦ Copyright IBM Corp. 1985, 1991
B.1.4 - 1

 B.1.5 Job Status Information

 The print -q command displays information about each currently running
 job, including its originator, its title, the number of pages to be
 printed, and the percentage completed. All this information comes from
 the status file. Most of the information is set up by the qdaemon process
 when the backend is first invoked, except the pages printed and percent
 done fields, which must be filled in by the backend itself.

 To provide this information, the backend should periodically call
 log_progress(pages, percent), which writes the two numbers in the
 appropriate place in the file. The backend is free to call this routine
 as frequently or infrequently as desired; once at the end of each page is
 recommended.

AIX Operating System Technical Reference
Job Status Information

¦ Copyright IBM Corp. 1985, 1991
B.1.5 - 1

 B.1.6 Charge for the Job

 Whenever a backend completes a job, the qdaemon process reads the status
 file for a charge. If the qconfig file has been set up appropriately, the
 charge is written to a file that is eventually processed by the accounting
 programs, resulting in a bill (real or imaginary) for the user issuing the
 print request.

 The backend passes the charge back to the qdaemon process with the routine
 log_charge(charge), where charge is a long integer. The backend should
 certainly call this routine on exit. It should also call the routine
 along with log_progress while printing the job. Otherwise, if the job is
 canceled, no charge will be made for the pages printed up to that point.

 The charge is interpreted by all current accounting programs as the number
 of pages printed. However, a backend might decide that one page on its
 device is worth two or three normal pages (or some fraction) and set the
 charge accordingly.

AIX Operating System Technical Reference
Charge for the Job

¦ Copyright IBM Corp. 1985, 1991
B.1.6 - 1

 B.1.7 Exit Codes

 When a backend exists, the qdaemon process looks at its exit code for
 information about whether the job was completed successfully, whether the
 device is still usable, and so on. Therefore, it is important that
 backends use the same convention for their exit codes. The backend should
 use #include <IN/standard.h> for the values of the codes mentioned here.

 The permissible exit codes are:

 EXITOK No problems were encountered.

 EXITBAD The parameters were bad in some way. That is, a flag was
 unrecognizable or illegal, a file could not be opened, and so
 on. The qdaemon process notifies the user, throws out the job
 request, and continues sending jobs to the device.

 EXITERROR The backend could not finish printing the job and that it wants
 another chance. The qdaemon process restarts the same job (from
 the beginning) on the same device. The qdaemon process enforces
 a limit on the number of times that the job will be restarted.

 EXITFATAL The job could not be finished because of a problem in the device
 that requires manual intervention. The qdaemon process sets the
 state of the device (displayed by print -q) to OFF, sends a
 message to the console, and does not run any further jobs on
 that device until someone has explicitly set its state to ON
 again (with a print -du).

 EXITSIGNAL
 The backend was interrupted by a SIGTERM signal (#include
 <signal.h>).

AIX Operating System Technical Reference
Exit Codes

¦ Copyright IBM Corp. 1985, 1991
B.1.7 - 1

 B.1.8 Return Error Messages

 If the backend cannot run a job (that is if it exits EXITBAD or
 EXITFATAL), it should send a message to the qdaemon process explaining the
 problem. The qdaemon process passes the message to the user, and, for
 EXITFATAL prints it on the console.

 The message should be sent with the log_message routine, which takes
 parameters in the style of printf:

 log_message("cannot open file %s; error return %d\n",
 filename, erret);

 The message cannot be longer than MAXMESG (#include <IN/backend.h>) bytes.

AIX Operating System Technical Reference
Return Error Messages

¦ Copyright IBM Corp. 1985, 1991
B.1.8 - 1

 B.1.9 Set State to WAITING

 The print -q command displays the status of a particular device. One of
 the entries in the table that is displayed shows whether the device is
 READY, RUNNING, WAITING, or OFF. This information is taken from the
 status file.

 Normally, the qdaemon process keeps the status file updated, and a backend
 need never worry about it. However, some backends may want to explicitly
 set the state to WAITING (#include <IN/backend.h>) if they can no longer
 send output to the device, and set it back to RUNNING when output resumes.
 For example, a backend that paused at the end of each page, waiting for
 the user to load the next page and type a RETURN, might want to set the
 status to WAITING during this time.

 The log_status(status) routine can be used to change the status of the job
 from RUNNING to WAITING and back again. The parameter is the new status.

AIX Operating System Technical Reference
Set State to WAITING

¦ Copyright IBM Corp. 1985, 1991
B.1.9 - 1

 B.1.10 Terminate on Receipt of SIGTERM

 When a user cancels a running job with print -ca, the print command passes
 the request to the qdaemon process. Therefore, in order for cancellation
 to work, the backend must terminate soon after receipt of the signal.
 There are two ways to comply with this requirement.

 First, the backend can do nothing special about SIGTERM, in which case the
 signal kills the backend process immediately. This option is the
 simplest, but does not allow the backend to do any cleanup (reset line
 speeds, put paper at top-of-form, hang up the phone) before it terminates.

 Second, the backend can catch SIGTERM, carry out whatever cleanup tasks
 are required, and exit EXITSIGNAL (#include <IN/standard.h>). The special
 exit code tells the qdaemon process that the job was canceled.

 Backends that decide to catch SIGTERM should exit very soon after receipt
 of the signal. If the cleanup code is too long, or if it can wait
 indefinitely (for terminal to open, for a device to respond, and so on),
 the backend is not friendly.

AIX Operating System Technical Reference
Terminate on Receipt of SIGTERM

¦ Copyright IBM Corp. 1985, 1991
B.1.10 - 1

 B.1.11 Backend Routines in libqb

 The following is a list of backend routines available using the ld or cc
 command-line option -lqb.

 burst_page(fnaddr,width)
 int (*fnaddr)();

 get_align()

 get_copies()

 get_endgroup()

 get_feed()

 char *
 get_from()

 get_header()

 char *
 get_lastuser()

 char *
 get_moddate()

 get_newuser()

 char *
 get_nodeid()

 char *
 get_qdate()

 char *
 get_title()

 char *
 get_to()

 get_trailer

 log_charge(charge)
 long charge;

 log_init()

 log_message(...)

 log_progress(pages,percent)

 log_status(status)

 put_header(fnaddr, width)
 int(*fnaddr)();

 put_trailer(user, fnaddr, width)
 char *user;

AIX Operating System Technical Reference
Backend Routines in libqb

¦ Copyright IBM Corp. 1985, 1991
B.1.11 - 1

 int (*fnaddr)();

AIX Operating System Technical Reference
Backend Routines in libqb

¦ Copyright IBM Corp. 1985, 1991
B.1.11 - 2

 C.0 Appendix C. Writing Device Drivers

 Subtopics
 C.1 Introduction
 C.2 Device Driver Concepts
 C.3 AIX/370 I/O Concepts
 C.4 Types of Device Drivers
 C.5 ARTIC General Driver Support Routines
 C.6 Kernel Subroutines and Macros
 C.7 AIX Kernel Debugger (AIX PS/2)
 C.8 Driver Configuration and Initialization

AIX Operating System Technical Reference
Appendix C. Writing Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.0 - 1

 C.1 Introduction

 Device drivers are programs that exist inside the AIX kernel. They
 connect physical devices, such as printers, displays and disk drives, to
 an AIX application and control an application's use of those devices. AIX
 applications send and receive data from device drivers via system calls
 and sockets. Although the interface to the physical device can be
 complicated, your interface to the device driver is simple and flexible,
 and can insulate your application from hardware dependencies.

 When an application performs an I/O to a physical device, the following
 sequence of actions occurs:

 1. The application opens a special file associated with the physical
 device.

 2. The device driver prepares the device for the I/O. The application
 may optionally configure the device driver and device through ioctl
 routines

 3. The application reads and writes data to or from the device driver

 4. For AIX/370, the device driver sends or receives the data to or from
 the hardware by initiating channel programs.

 5. For each I/O operation that the device driver performs, the device
 driver usually receives one or more interrupts in return. This is
 device dependent.

 6. When the application finishes performing the I/O, it closes the
 special file so that other applications may use the same device if it
 cannot be shared.

 Figure C-1 and Figure C-2 illustrate this process for the AIX/370 and AIX
 PS/2 systems.

 --

 +---------------------+
 USER ¦ Application Program ¦
 +---------------------+
 system ¦ �
 calls ¦ ¦
 --+--------------------------
 +------------------------+ ¦ system
 ¦ socket ¦ generic ¦ ¦ call returns
 ¦ interface ¦ filesystem +-- ¦
 ¦ ¦ calls ¦ ¦
 KERNEL +-----------+------------+ ¦
 driver +---+ ¦ wakeup
 entry points � ¦ signals
 +-------------------+
 ¦ Device Driver ¦
 +-------------------+
 ¦ � � I/O
 +---+ ¦ Interrupts
 I/O Instructions ¦
 --+--------------------------
 Channel Programs ¦
 ¦ ¦ ¦

AIX Operating System Technical Reference
Introduction

¦ Copyright IBM Corp. 1985, 1991
C.1 - 1

 HARDWARE � � ¦
 +-----------------------+
 ¦ Channel ¦
 ¦ Subsystem ¦
 +-----------------------+
 ¦ ... ¦ ¦ ... ¦
 +---------+ +---------+
 ¦ Control ¦ ¦ Control ¦
 ¦ Units ¦ ¦ Units ¦
 +---------+ +---------+
 ¦ ... ¦ ¦ ... ¦
 +---------+ +---------+
 ¦ Devices ¦ ¦ Devices ¦
 +---------+ +---------+

 --
 Figure C-1. AIX/370 Device Driver Model

 The AIX kernel provides a general framework for writing device drivers.
 This appendix describes that framework in terms of device driver concepts,
 device driver types and their data structures. It also provides
 information on kernel subroutines, macros, and the kernel debugger as well
 as material on driver configuration and initialization.

 --

 +---------------------+
 USER ¦ Application Program ¦
 +---------------------+
 system ¦ �
 calls ¦ ¦
 --+--------------------------
 +------------------------+ ¦ system
 ¦ socket ¦ generic ¦ ¦ call returns
 ¦ interface ¦ filesystem +-- ¦
 ¦ ¦ calls ¦ ¦
 KERNEL +-----------+------------+ ¦
 driver +---+ ¦ wakeup
 entry points � ¦ signals
 +-------------------+
 ¦ Device Driver ¦
 +-------------------+
 � �
 ---------------------------+------------+--------------------------
 Read/Write ¦ ¦ I/O
 Memory � ¦ Interrupts
 HARDWARE +-------------------+
 ¦ I/O Adapter ¦
 +-------------------+

 --
 Figure C-2. AIX PS/2 Device Driver Model

AIX Operating System Technical Reference
Introduction

¦ Copyright IBM Corp. 1985, 1991
C.1 - 2

 C.2 Device Driver Concepts

 This section presents a few basic concepts that underlie the AIX framework
 for device drivers. The following driver concepts are presented:

 � General considerations in AIX device driver

 � Entry point

 � Major/minor device numbers and special file

 � Multiplexed device

 � Autoconfigured and non-autoconfigured device driver

 � Header files used in device drivers

 Subtopics
 C.2.1 General Considerations in AIX Device Drivers
 C.2.2 Entry Points
 C.2.3 Major/Minor Device Numbers and Special Files
 C.2.4 Multiplexed Devices
 C.2.5 Autoconfigured and Non-autoconfigured Device Drivers
 C.2.6 Header Files Used in AIX Device Drivers

AIX Operating System Technical Reference
Device Driver Concepts

¦ Copyright IBM Corp. 1985, 1991
C.2 - 1

 C.2.1 General Considerations in AIX Device Drivers

 Some general considerations in AIX devices drivers involve non-preemption,
 context, buffering data, transferring data to a device, deadlocks, and
 races.

 Subtopics
 C.2.1.1 Non-preemption
 C.2.1.2 Context
 C.2.1.3 Buffering Data
 C.2.1.4 Transferring Data to a Device
 C.2.1.5 Deadlocks and Races

AIX Operating System Technical Reference
General Considerations in AIX Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.2.1 - 1

 C.2.1.1 Non-preemption

 A process executing in the kernel cannot be pre-empted by another process.
 A process in a device driver is pre-empted when one of two events occurs:

 � A user-page fault occurs - the process attempts to access a page o
 memory that is currently swapped out of memory

 � The process puts itself to sleep

 A process can be suspended, but not pre-empted, at any time by interrupts
 above the level that has been masked.

 Interrupt handlers can set the runrun external variable to a nonzero value
 to cause the scheduler to dispatch the next procedure with the highest
 priority. This technique is used when you think that some process, other
 than the caller, is more deserving of a time slice.

AIX Operating System Technical Reference
Non-preemption

¦ Copyright IBM Corp. 1985, 1991
C.2.1.1 - 1

 C.2.1.2 Context

 There are two contexts of an AIX device driver:

 Synchronous process The device driver can reference user address
 space and process-specific parameters, such as
 those stored in the u and proc structures. In
 process context, the device driver may
 temporarily suspend execution on an event. An
 interrupt can occur while any process is running.

 Asynchronous interrupt Also referred to as real-time context. In
 interrupt context, the device driver cannot
 reference user address space or process-specific
 parameters. During real time, the device driver
 can keep track of which process or user owns the
 request by referring to static or global data
 areas. During interrupt context, the driver
 cannot sleep (be suspended) since only a process
 can sleep.

 Design your device driver to do the bulk of its work in process and not
 interrupt context. During real time the device driver must be very
 efficient.

 Consider carefully what type of interrupts need to be disabled and for how
 long. Interrupts should be masked over small intervals where code
 re-entrance can occur and global data structures are updated.

 Disabling interrupts over extended periods of time is not advisable. Loss
 of data, in other device drivers as well as yours, can occur if you mask
 interrupts for too long or the code path of your interrupt handler is
 excessive.

AIX Operating System Technical Reference
Context

¦ Copyright IBM Corp. 1985, 1991
C.2.1.2 - 1

 C.2.1.3 Buffering Data

 The two places where data is stored for a device driver are user space and
 kernel space. User space is the data area of AIX processes. Device
 drivers use user space to store large chunks of data for direct memory
 access (DMA) and to store data that is not needed during interrupt
 handling.

 Manipulate user data only in the context of the requesting process. Do
 not use user space in interrupt context to store real time transactions
 because AIX does not guarantee that the device driver will be notified
 when the process dies. More importantly, the user space will not be there
 when the process is not running.

 Kernel space is generally reserved for data that is manipulated during
 interrupt context or outside of the calling process. Kernel space is also
 used to store data that is frequently used by the device driver.

 Note: Never use dynamically allocated storage (such as variables
 allocated within a procedure and stored on the stack) to buffer
 transfers that can be pre-empted. The virtual address space
 allocated to the stack is shared by the currently running process.

AIX Operating System Technical Reference
Buffering Data

¦ Copyright IBM Corp. 1985, 1991
C.2.1.3 - 1

 C.2.1.4 Transferring Data to a Device

 Transferring data to a device can take three forms:

 � Large DMA transfers to and from kernel address spac
 � Small transfer
 � Large DMA transfers to and from user space

 When performing large transfers of data in kernel address space, the
 device driver sets up the DMA controller and then initiates the transfer.
 Assuming that the device will generate an interrupt at the end of the
 transfer, the interrupt handler then checks for and handles any errors
 from the previous I/O, initiates retry or posts completion, pulls the next
 request from the queue and initiates the required I/O operations.

 Small data transfers should be rebuffered through kernel space in process
 context. Once copied into kernel space, the device driver can then handle
 the I/O in interrupt context.

 During large DMA transfers from user space, synchronous code must pin
 (prevent the physical pages form being disassociated from the requesting
 process's virtual address space) the buffers in memory. Once pinned, the
 buffers can be treated as kernel space, provided the process remains in
 the device driver during the transfer.

 There are some deadlock and performance risks while using DMA from user
 space. These are:

 � Locking down too much memory slows system performance

 � Too many lockdowns can cause memory deadlock

 For these reasons, DMA requests from user space should be broken down into
 smaller chunks which should be no larger than the size of a page (4096
 bytes). In addition, you should limit the number of queued DMA requests
 in your device driver and the total amount of pinned memory.

AIX Operating System Technical Reference
Transferring Data to a Device

¦ Copyright IBM Corp. 1985, 1991
C.2.1.4 - 1

 C.2.1.5 Deadlocks and Races

 A deadlock is a situation in which two processes are competing for the
 same two resources. For example, if process A has resource X and needs
 resource Y while process B has resource Y and needs resource X, then a
 deadlock occurs. Resources for which processes compete include:

 � System buffer
 � Inode
 � Memory pages and swap spac
 � clist
 � mbuf
 � Net-messages

 Deadlocks can be avoided in the following ways:

 Tentative allocations The requesting process performs a non-blocking
 allocation on resource X and, if successful,
 performs a non-blocking allocation on resource Y.
 If the process does not get resource Y, it gives
 resource X back and tries again later. A deadlock
 is avoided because a process does not stubbornly
 hold onto a resource while trying to get another.

 Advance reservations A process performs advanced reservations on
 resource A and then resource B. If the process
 gets both A and B, it locks them. If the process
 does not get either, it cancels its reservation.
 If a process can do a non-blocking lock (make a
 reservation), a deadlock can be avoided.

 Request ordering Only applicable to distinguishable resources like
 ports on a communications adapter. In such cases,
 the device driver must define the order in which
 the resources must be allocated and always adhere
 to that order.

 A race is an event involving two processes that may be executing the same
 or related algorithms, and the outcome of the computation is different
 depending on the process and when it executes. There are three types of
 races:

 Fair If the code is properly serialized, the race will not
 compromise the correct execution of the algorithms. The
 race occurs between two processes and the code works
 regardless of the process.

 Wasteful System resources are wasted when many processes are
 summoned and forced to compete for such things as a free
 buffer in the buffer cache. If a long line is unlikely,
 summoning every process that is waiting for the resource
 might be easy to do with a low expected cost. If, on the
 other hand, delays are expected, you should devise some
 auxiliary serialization mechanism to avoid scheduling
 multiple processes when only one process can continue
 execution. One possible mechanism is to use the
 wakeup_one() subroutine which schedules only a single
 process. The select system call has this feature: when
 only one process is first in line and when the requested
 I/O becomes available, only that one process is executed,

AIX Operating System Technical Reference
Deadlocks and Races

¦ Copyright IBM Corp. 1985, 1991
C.2.1.5 - 1

 no matter how many other processes are in line.

 Unintentional Unintentional races (bug race conditions) are bugs in
 parallel algorithms that result in incorrect execution
 depending on the sequencing of the parallel executions.
 The classic unintentional race is as follows:

 +---+
 ¦ Process 1 ¦ Process 2 ¦
 +----------------------+--------------------------------¦
 ¦ 1a) Obtain resource, ¦ 2a) As a result of interrupt, ¦
 ¦ if available ¦ mark resource as available ¦
 +----------------------+--------------------------------¦
 ¦ 1b) Set resource ¦ 2b) If resource WANTED has ¦
 ¦ WANTED flag ¦ been marked, reschedule the ¦
 ¦ ¦ requesting process ¦
 +----------------------+--------------------------------¦
 ¦ 1c) Process ¦ ¦
 ¦ relinquishes CPU ¦ ¦
 ¦ while waiting for ¦ ¦
 ¦ resource ¦ ¦
 +---+

 If steps 2a and 2b happen between steps 1a and 1c, Process
 1 will never be rescheduled for execution. The code
 contains an unintentional race condition. The easiest fix
 is to disable interrupts between steps 1a and 1c.

AIX Operating System Technical Reference
Deadlocks and Races

¦ Copyright IBM Corp. 1985, 1991
C.2.1.5 - 2

 C.2.2 Entry Points

 When an AIX application issues an I/O or a socket system call, the AIX
 kernel calls a device driver to perform the requested operation. Each
 device driver is invoked by the AIX kernel using standard entry points:
 ddinit, ddreset, ddopen, ddclose, ddioctl, ddread, ddwrite, ddstrategy,
 dddump and ddselect where dd is a prefix that uniquely identifies a device
 driver.

 Your program does not directly enter the device driver's entry points.
 There is kernel code between the system call and the device driver that
 may perform one or more of the following operations:

 � Buffer dat

 � Interpret network protoco

 � Hold or maintain buffers of character

 � Ensure that the system call parameters are valid

 A device driver is actually linked into the AIX kernel load module and is
 therefore part of the kernel. The procedure for rebuilding the kernel
 involves constructing a table that contains pointers to the entry points
 for each of the device drivers in the system. This table is called the
 device switch table, and it is an array of type struct devsw, which is
 defined in the /usr/include/sys/conf.h header file. The device switch
 table is constructed using information from the /etc/master and
 /etc/system files. A stanza in the /etc/master file for each device
 specifies the unique dd prefix and lists the entry points that are defined
 for the device.

 A device driver can also include a routine to service interrupts that an
 I/O device generates when an operation is finished. Such an entry point
 is called the interrupt handler. It is named ddintr by convention. The
 ddintr entry point is not included in the device switch table; instead, it
 is identified to the kernel with the intrattach kernel subroutine, which
 is usually called from within the ddinit entry point.

 A device driver does not have to have all of the previously-mentioned
 entry points. If an entry point is not included in a device driver, then
 either the nulldev or nodev subroutine is substituted into the appropriate
 position in the switch table.

AIX Operating System Technical Reference
Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.2.2 - 1

 C.2.3 Major/Minor Device Numbers and Special Files

 Each driver is identified by an unique index in the device switch table
 called a major number. A minor number selects a particular sub-unit or
 options in a given device driver.

 An application can access a device's major/minor number combination
 through a special file. Special files are inodes with major and minor
 numbers. A special file is categorized as either block or character by
 the mknod command.

 Access to a device driver is controlled by the permissions assigned to its
 special file. For example, if a special file's permissions are -rw-r--r--
 and it is owned by user root, only root applications have write
 permissions to the driver while every application can read.

 A special file may be multiplexed, where the minor number is further
 broken down into channels. A channel may designate a smaller sub-unit or
 option than a minor number. For more information on major and minor
 numbers, see "Requests for Device I/O" in topic 1.1.6.10.

AIX Operating System Technical Reference
Major/Minor Device Numbers and Special Files

¦ Copyright IBM Corp. 1985, 1991
C.2.3 - 1

 C.2.4 Multiplexed Devices

 A multiplexed device is one whose device driver allows the path name of
 its special file to be followed by a character string that specifies
 additional information. This path name extension is frequently used to
 identify a logical or virtual sub-device, called a channel, or to select
 device options. Only character devices can be multiplexed.

 For example, the special file for the console virtual terminal device
 driver is named /dev/hft. Each time a new virtual terminal is opened, it
 is assigned the name /dev/hft/n, where n is an ID number assigned to that
 virtual terminal. Multiplexing provides a means of accessing individual
 driver sub-units, without having to create additional special files in
 /dev. In addition, multiplexing allows the device driver to allocate
 tables and arrays on a per-need basis. For more information on
 implementing multiplexed device drivers, see page C.4.1.1.

 Multiplexed channel numbers are available to all character device entry
 points except the interrupt handler ddintr.

AIX Operating System Technical Reference
Multiplexed Devices

¦ Copyright IBM Corp. 1985, 1991
C.2.4 - 1

 C.2.5 Autoconfigured and Non-autoconfigured Device Drivers

 With very few exceptions, all device drivers in AIX are autoconfigured.
 Autoconfigured device drivers are capable of determining which hardware
 units are present and the associated addresses of those units.

 A device driver is autoconfigured for three reasons:

 � All device drivers autoconfigure based on the programmable optio
 select (POS) registers located on each adapter. Via POS, the driver
 can determine:

 - Available hardware units

 - Port interrupt levels and direct memory access (DMA) arbitration
 levels

 - Other configured options, such as on-board memory address, amount
 of memory, port addresses, and so forth.

 Thus, autoconfigured device drivers can determine hardware
 characteristics independent of configuration programs like config,
 devices, and minidisks. This simplifies system configuration above
 the AIX kernel.

 � The size of the AIX kernel is limited by physical memory
 Autoconfigured device drivers reduce the amount of statically
 allocated data structures in the kernel because these device drivers
 can allocate their tables and data structures based on the number of
 hardware units available.

 Dynamic allocation is preferable to static allocation because it suits
 actual needs, rather than worse case. Of course, the number of tables
 can be tuned without regenerating the system. The allocation of large
 tables should be deferred until open time.

 � A C compiler is not supplied with the base AIX Operating System
 Therefore, conf.c, the file containing kernel configuration
 information such as the device switch table and variables containing
 static table sizes, could not be recompiled.

 A device driver that can not be completely autoconfigured is referred as a
 non-autoconfigured device driver. This class of device drivers includes
 drivers that:

 � Cannot determine the number of units attache
 � Must allocate static storage for the maximum possible number of unit
 � Cannot determine the existence of their devices at auto-configure tim
 � Must always be present in the system

 Non-autoconfigured device drivers statically allocate their data
 structures and require users to provide their configuration information.
 Non-autoconfigured device drivers also always have their entry points in
 the device switch table.

AIX Operating System Technical Reference
Autoconfigured and Non-autoconfigured Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.2.5 - 1

 C.2.6 Header Files Used in AIX Device Drivers

 The following header files, which are located in the /usr/include
 directory, contain definitions of structures, constants, and data types
 that are used in device drivers. The header files common to both AIX PS/2
 and AIX/370 systems are indicated as such.

 Common File Pertinent Contents

 sys/param.h Fundamental implementation parameters of AIX

 sys/types.h The typedefs defining data types used in kernel
 programming

 sys/user.h The definition of the user block structure

 sys/tty.h The structure definitions for character lists

 sys/devinfo.h The structure returned by the IOCINFO operation of the
 ddioctl entry point

 sys/errno.h Standard error codes used by AIX system calls

 sys/conf.h Device switch table structure definitions and device
 flag definitions used by autoconfigured device drivers

 sys/proc.h The definition of the process structure

 sys/buf.h Header for buffers in the buffer pool and otherwise
 used to describe block I/O buffers

 sys/file.h Definitions for flags passed to the ddopen entry point
 and definition for the file structure

 sys/dir.h The dirent structure which is used for looking at
 directories

 sys/iobuf.h The structure for the I/O buffer used by block device
 drivers

 sys/ioctl.h Structure definitions for ioctl arguments

 sys/ioctlcmd.h Macros for defining well-behaved ioctl routines

 sys/systm.h Important variable definitions contained in the AIX
 kernel

 sys/machinfo.h Structures used to determine machine type and
 configuration

 sys/erec.h Error record structure and definitions

 sys/callout.h The definition of the callout structure

 sys/if_ieee802.h Definitions related to sockets: types, address
 families, and options

 sys/mdisk.h Contains definitions for VTOC and provides minidisk
 support.

AIX Operating System Technical Reference
Header Files Used in AIX Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.2.6 - 1

 sys/netisr.h Definitions for the schednetisr kernel subroutine

 sys/if.h Interface structure for network device drivers

 sys/mbuf.h The mbuf structure and macros

 sys/socket.h Definitions for socket address structure, protocol
 families

 sys/space.h Included by the conf.c file to allocate storage and
 initialize variables.

 AIX PS/2 File Pertinent Contents

 sys/i386/pos.h The devdata structure, contains power-on setup (POS)
 information for each adapter. It also declares
 definitions useful for interpreting the data in
 non-volatile memory

 sys/i386/cmos.h Contains definitions for accessing and interpreting
 the data in non-volatile memory

 sys/i386/dmaralloc.h Structures and definitions used to allocate DMA
 resources

 sys/386/intr86.h The intrattach routine request level masks

 sys/i386/mmu386.h Memory mapping macros

 sys/i386/sufcfg386.h Included by the conf.c file to define the number of
 pseudo terminals and machine-dependent routines.

 AIX/370 File Pertinent Contents

 sys/b370/ccw.h Contains the definitions for the command control words
 used to form channel programs.

 sys/b370/csw.h Contains the definitions of the fields composing the
 channel status word.

 sys/b370/iohdlrs.h

 sys/b370/schib.h Contains the definitions for the structure of the
 channel identification block

 sys/b370/obr.h Contains definitions for the Error Reporting

 sys/b370/inccfgb370.h Driver configuration headers

 sys/b370/mdr.h Definitions for EREP header

 sys/b370/dump.h Contains definitions of structures for support of
 System/370 kernel core dumps.

AIX Operating System Technical Reference
Header Files Used in AIX Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.2.6 - 2

 C.3 AIX/370 I/O Concepts

 The System/370 I/O system was designed to off-load the CPU from I/O
 processing.

 The I/O subsystem consists of the following components:

 � Channel

 � Subchannel

 � Channel pat

 � Control unit

 � Devices

 A channel provides a means for connecting I/O devices to the CPU and
 memory. The channel executes a channel program and drives the control
 unit and devices. The channel manages data transfer, interrupts and
 control operations for the device.

 A subchannel is the combined channel facilities for sustaining a single
 I/O operation. These facilities consist of internal storage for
 maintaining addresses, count, state, status and control information
 associated with the I/O operation.

 A channel path is the physical data path capable of supporting subchannel
 to control-unit communication.

 A channel containing multiple subchannels is capable of performing some
 degree of multiplexing.

 A control unit provides the logic to operate and control an I/O device and
 to interface with a generic channel. The control unit decodes the
 commands received from the channel, interprets them and provides the
 signal sequences required for execution of the operation. It may provide
 any necessary buffering.

 A device is any peripheral typically capable of interfacing with other
 machines, storage mediums, and input/output mediums. Printers, disks,
 tapes, and terminals are examples of peripherals. A programmer usually
 need not be aware of the control-unit/device boundaries.

 The CPU accomplishes I/O by starting channel programs on specific channels
 connected to the requested device. Each subchannel is associated with a
 single channel path.

 A channel program consists of one or more command control words (CCWs)
 outlining the operation to be performed by the device. Each CCW contains
 the following fields:

 � Command-code
 Data address
 Flags
 Count.

 The command-code field contains generic channel operations combined with
 device-specific commands. Listed below are examples of generic channel

AIX Operating System Technical Reference
AIX/370 I/O Concepts

¦ Copyright IBM Corp. 1985, 1991
C.3 - 1

 commands:

 read Causes data to be transferred from the device to main
 memory.

 read-backwards May only have meaning for specific devices (such as
 tape).

 write Involves a transfer of data from main memory to the
 device.

 sense Transfers up to 24 bytes of device information from
 the device to the channel.

 control Does not involve any data transfer other than the
 command itself.

 transfer-in-channel Causes a branch in execution within a channel program.

 Certain operations (search commands) cause the channel to fetch the n+1th
 command rather than the next sequential command. By using the
 transfer-in-channel command, looping and branching are implemented. For
 example, the following channel program segment would cause the search
 operation to occur successively until the key is matched:

 Search Key Equal
 Transfer-in-channel (to previous command)
 Read Data

 The data-address field specifies the destination or source in memory, or
 an indirect address word (IDAW) used for specifying virtual addressing.

 The flags field contains numerous options such as:

 � Data chainin
 � Command chainin
 � Suppress incorrect length indicatio
 � Skip (don't perform data transfer
 � Program-controlled-interrup
 � Indirect-data-addressing (use of virtual memory)

 The most common are command chaining and data chaining. Command chaining
 allows the channel program to consist of multiple CCWs, by chaining them
 together. Data chaining allows a channel operation to be described by
 multiple data vectors (scatter-gather). The count field is the number of
 bytes involved with the transfer (32k maximum).

 I/O operations are initiated using the I/O instruction set and various
 dedicated low-memory locations. For example, the Start-I/O operation
 requires that the channel address word (CAW) gets filled with the address
 of the channel program; the operand to the instruction is a word
 containing the number of the channel, subchannel and I/O device.

 All I/O operations are essentially asynchronous; once the CPU initiates a
 channel program, the channel begins execution of the channel program
 without CPU intervention. However, certain commands reach completion as
 soon as they are initiated and could be considered synchronous.

 The completion of a successful I/O operation is signified by the channel
 generating one or more I/O interrupts and posting its completion status in

AIX Operating System Technical Reference
AIX/370 I/O Concepts

¦ Copyright IBM Corp. 1985, 1991
C.3 - 2

 a set of memory locations in low memory called the channel status word
 (CSW). Alternatively, the CPU can poll the channel by executing an
 instruction to test the status of the channel which also causes a CSW to
 be stored (for example, when interrupts are disabled).

 A channel may cause an interrupt after any of the following conditions:

 Channel end Indicates that the device has completed its use of
 channel resources as is known, as the
 primary-interruption status.

 Device end Indicates that all device activity is finished.

 Control unit end Indicates that the control unit has completed its
 interaction as is known, as the secondary-interruption
 status.

 Attention

 A device causing interrupt may contain combinations of the above
 conditions. Interpretation of the conditions is somewhat device
 dependent.

 Typically, all indications are simultaneous with the exception of devices
 such as a tape unit, which may free the channel long before the device
 finishes (as in rewinding the tape).

 There is a single CSW used by all channels to report I/O completion. The
 interrupt handler for an I/O interrupt is responsible for saving the CSW
 before re-enabling interrupts.

 The CSW contains the following fields:

 CCW address Last CCW successfully executed + 8

 Unit status Device status

 Channel status Channel status

 Count Residual transfer count

 Deferred condition code

 The CPU directs channel activity using a set of I/O instructions. These
 I/O instructions provide the ability to:

 � Initiate an I/O operatio

 � Halt an I/O operation or devic

 � Clear the channel or I/O operatio

 � Test the status of a channel or I/O operatio

 � Query channel identification

 Each I/O instruction sets a command completion code in the processor
 status word (PSW). The completion code (or CC) represents the success of
 the I/O instruction. There are four CCs roughly equivalent to:

AIX Operating System Technical Reference
AIX/370 I/O Concepts

¦ Copyright IBM Corp. 1985, 1991
C.3 - 3

 0 Operation started or completed successfully
 1 CSW stored
 2 Busy (operation not started)
 3 Not operational.

 The meaning of each condition code for each instruction is documented and
 is instruction-specific.

 Subtopics
 C.3.1 370-XA I/O
 C.3.2 AIX/370 Device Drivers

AIX Operating System Technical Reference
AIX/370 I/O Concepts

¦ Copyright IBM Corp. 1985, 1991
C.3 - 4

 C.3.1 370-XA I/O

 In the extended-architecture system, a number of major enhancements were
 made to the I/O facilities. These include:

 � Path-independent addressin

 � Path managemen

 � Dynamic path reconnectio

 � Interrupt subclasse

 � 31-bit addresse

 � Address-limit checkin

 � New more powerful I/O instruction

 � Suspend/Resume capabilit

 � Monitoring

 Standard AIX/370 channels programs run unmodified on the 370-XA system;
 however, AIX/370 I/O instructions are not supported.

 In the AIX/370 system, each subchannel is associated with only one channel
 path, whereas in the 370-XA mode, each subchannel is uniquely associated
 with a single I/O device. This is illustrated in Figure C-3 and
 Figure C-4.

 --

 AIX/370

 Channel-1 Channel Set Channel-M Channel Set

 +------------+ +------------+ +------------+ +------------+ +------------+ +------------+
 ¦Subchannel 1¦ ¦Subchannel 2¦ ¦Subchannel N¦ ... ¦Subchannel 1¦ ¦Subchannel 2¦ ¦Subchannel N¦ ...
 +------------+ +------------+ +------------+ +------------+ +------------+ +------------+
 ¦ ¦ ¦ ¦ ¦ ¦
 � � � � � �
 +------+ +------+ +------+ +------+ +------+ +------+
 ¦Path 1¦ ¦Path 2¦ ¦Path N¦ ¦Path 1¦ ¦Path 2¦ ¦Path N¦
 +------+ +------+ +------+ +------+ +------+ +------+
 � � � � � �

 ¦
 ¦
 +--------------------------+--------------------------+
 ¦ ¦ ¦
 � � �

 +--------+ +--------+ +--------+
 ¦Device 1¦ ¦Device 2¦ ¦Device N¦ ...
 +--------+ +--------+ +--------+

 In the AIX/370 system, each subchannel is associated with a
 specific channel path. It may use any available device.

AIX Operating System Technical Reference
370-XA I/O

¦ Copyright IBM Corp. 1985, 1991
C.3.1 - 1

 --
 Figure C-3. AIX/370 Path Management

 --

 370-XA

 Channel Subsystem

 +------------+ +------------+ +------------+
 ¦Subchannel 1¦ ¦Subchannel 2¦ ¦Subchannel N¦ ...
 +------------+ +------------+ +------------+
 ¦ ¦ ¦
 � � �
 +---+
 ¦ ¦ ¦ ¦ ¦
 ¦ +------+ +------+ +------+ +------+ ¦
 ¦ ¦Path 1¦ ¦ ¦Path 2¦ ¦ ¦Path 3¦ ¦ ¦Path N¦ ... ¦
 ¦ +------+ +------+ +------+ +------+ ¦
 ¦ ¦ ¦ ¦ ¦
 +---+
 ¦ ¦ ¦
 ¦ ¦ ¦
 � � �
 +--------+ +--------+ +--------+
 ¦Device 1¦ ¦Device 2¦ ¦Device N¦ ...
 +--------+ +--------+ +--------+

 In the 370-XA system, each subchannel is associated with
 a specific device. It may use any available path.

 --
 Figure C-4. 370-XA Path Management

 The ability of a 370-XA system to use multiple paths and to share paths
 among devices is part of the path management facilities. Dynamic path
 reconnection is the ability of an operation to begin on a path and to
 disconnect, and reconnect to any available path at a later time.

 In 370-XA mode, a device can be connected to multiple control units, and
 each control unit can be connected to a subchannel by multiple channel
 paths.

 Note: The device is addressed by a single logical address (even though
 multiple paths through separate control units actually exist).

 In AIX/370 mode, the device in the above configuration would have two
 separate channels and be in two separate channel sets. It could be
 accessed by two separate (channel/path) addresses.

 Each subchannel has an associated subchannel number, from 0 to 64k-1. All
 of the 370-XA I/O instructions reference the subchannel number as an
 instruction argument.

 Each channel path is assigned a number from 0 to 255. Each device is
 assigned a device number from 0 to 64k-1. The device number is used by
 most CP commands.

AIX Operating System Technical Reference
370-XA I/O

¦ Copyright IBM Corp. 1985, 1991
C.3.1 - 2

 The new 370-XA I/O instructions are:

 (*) - Similiar in function to AIX/370 counterparts.

 � Clear Subchannel (*)
 � Halt Subchannel (*)
 � Modify Subchannel
 � Reset Channel Path (*)
 � Resume Subchannel
 � Set Address Limit
 � Set Channel Monitor
 � Start Subchannel (*)
 � Store Channel Path Status
 � Store Channel Report Word
 � Store Subchannel (*)
 � Test Pending Interruption
 � Test Subchannel (*)

 I/O is initiated using the Start Subchannel instruction, whose arguments
 are the address of an operation request block (ORB) and a subchannel
 number. The ORB structure contains:

 � CAW - address of the channel progra
 � Interruption parameter
 � Flags.

 The interruption parameter is a word which may be used by the upper layers
 of software to identify the operation and is presented as part of the
 channel interrupt.

 The flags set/reset various features of 370-XA mode I/O such as:

 � Subchannel ke
 � Suspend contro
 � Format control - 24/31 bit CCW forma
 � Prefetch contro
 � Initial status interrup
 � Address limit checkin
 � Suppress suspended interruptio
 � Logical-path mas
 � Incorrect length suppression mode

 I/O completion is typically signified by the primary-interruption
 condition which causes a subchannel status word (SCSW) to be stored in the
 subchannel. Alternatively, the Test Pending Interruption instruction can
 be used to detect completion when interrupts are disabled.

 The SCSW is part of the interrupt response block (IRB) which is retrieved
 from the subchannel using the Test Subchannel instruction. The IRB
 contains the following fields:

 � Subchannel Status Word (SCSW)
 � Extended-status Word
 � Extended-control Word.

 For each subchannel, there exists an entity known as the subchannel
 information block (SCHIB). The SCHIB contains the following:

 � Path Management Word
 � Subchannel Status Word

AIX Operating System Technical Reference
370-XA I/O

¦ Copyright IBM Corp. 1985, 1991
C.3.1 - 3

 � Model-dependent Area.

 The SCHIB is read using the Store Subchannel instruction and can be
 modified and re-programmed using the Modify Subchannel instructions. Each
 subchannel can be assigned a specific I/O interrupt level which can be
 selectively masked using control register 6.

 The Set Address Limit instruction is a method of protecting main memory
 from I/O access. This instruction allows a physical address range to be
 protected against I/O write access and is system-wide.

 370-XA mode supports suspend-resume operations of CCWs within a channel
 program and also supports a sophisticated measurement facility for
 monitoring I/O.

 When a change occurs to the device configuration at the CP level, the
 virtual machine receives a special interrupt signifying that a channel
 report word (CRW) is available. The Store Channel Report Word instruction
 is used to obtain this report.

 For complete information consult the following documents:

 � IBM System/370 Principles of Operation
 � IBM System/370 Extended Architecture Principles of Operation
 � Device specific literature

AIX Operating System Technical Reference
370-XA I/O

¦ Copyright IBM Corp. 1985, 1991
C.3.1 - 4

 C.3.2 AIX/370 Device Drivers

 The device driver typically prepares one or more channel program segments
 in static memory during driver initialization.

 Some channel programs are skeletal and should be customized in accordance
 with each I/O request. For example, a disk driver tailors each read/write
 channel program by specifying the track/sector combination. Other
 devices, such as an Ethernet driver may use static channel programs.

 Subtopics
 C.3.2.1 AIX/370 I/O Subroutines

AIX Operating System Technical Reference
AIX/370 Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.3.2 - 1

 C.3.2.1 AIX/370 I/O Subroutines

 The kernel routines to support the S/370 channel subsystem are described
 in the following sections. Some of the routines are in S/370 assembler
 and are really accessed through routine, machdep. The names used in this
 document are the ones from the sample driver, not the real function. The
 typedefs are shown in the section on AIX/370 I/O Subroutines as well as in
 the usr/include/sys/b370 or usr/include/sys /XA370 directories.

 mkccw
 Routine mkccw will fill in a structure of type ccs_t with the
 parameters supplied.

 mkccw(cp, cmdcode, lastflag, nbyte, buffp)
 register ccw_t *cp /* pointer to ccw structure */
 char cmdcode; /* CCW command code */
 char lastflag; /* CCW flags (CC, CD, SLI etc) */
 int nbyte; /* io byte count */
 register paddr_t buffp; /* pointer to buffer */

 build_ccw
 Routine build_ccw builds ccw lists and an IDAW for data buffers that
 cross 2k page boundaries or if not will invoke mkccw.

 build_ccw (cp, cmdcode, lastflag, nbyte, buffp, addr)
 register ccw_t *cp; /* pointer to ccw structure */
 char cmdcode; /* CCW command code */
 char lastflag; /* CCW flags (CC, CD, SLI etc) */
 int **addr; /* io byte count */
 register paddr_t buffp; /* pointer to buffer */
 register int addr; /* build area for IDAL */

 redrive_dev(dev)
 redrive_cu(dev)
 redrive_sio(dev)
 These routines will redrive the device, control unit, or channel for
 XA370 type of channel protocol. See 370 Principles of Operation.

 physiolock
 This routine will Lock a piece of physical storage for I/O given the
 starting page boundary address and the number of pages.

 physiolock(base, count)
 caddr_t base; /* starting page address */
 int count; /* number of pages */

 physiounlock
 This routine will Unlock a piece of physical storage for I/O given the
 starting page boundary address and the number of pages. If rw is
 B_READ then the page must be written before unlocking.

 physiounlock(base, count, rw)
 caddr_t base; /* starting page address */
 int count, rw; /* number of pages, use flage */

 sio
 This routine will issue the S/370 SIO instruction and will return the
 condition code and the CSW if stored.

 sio(dev, ccw, csw)

AIX Operating System Technical Reference
AIX/370 I/O Subroutines

¦ Copyright IBM Corp. 1985, 1991
C.3.2.1 - 1

 int dev; /* hex CUU address of the device */
 ccw_t *ccw; /* address of the CCW list */
 csw_t *csw; /* address of CSW data for caller */

 tsio
 This routine will do a test I/O to clear the path and then do sio. It
 will then return the condition code and the CSW if stored.

 tsio(dev, ccw, csw)
 int dev; /* hex CCU address of the device */
 ccw_t *ccw; /* address of the CCW list */
 csw_t *csw; /* address of CSW data for caller */

 syncio
 This routine will issue the SIO and then spin on a TIO until ending
 status is received. The caller should NOT do a sleep because the
 devices' xxxintr routine will NOT be called. When complete, will
 return the condition code and the CSW. It is possible to get
 interrupts.

 syncio(dev, ccw, csw)
 int dev; /* hex CUU address of the device */
 ccw_t *ccw; /* address of the ccw list */
 csw_t *csw; /* address of CSW data for caller */

 hdv
 This routine will issue a HIO to terminate a pending SIO and will
 return the condition code and the CSW.

 hdv(dev, csw).
 int dev; /* hex CUU address of the device */
 csw_t *csw; /* address of CSW data for caller */

 tio
 This routine will issue a TIO to obtain device status and will return
 the condition code and the CSW.

 tio(dev,csw)
 int dev; /* hex CUU address of the device */
 csw_t *csw; /* address of CSW data for caller */

 svc76
 This routine passes the record to VM for EREP logging.

 svc76(size, obr] mdr)
 int size; /* length of the record */
 *obr] *mdr /* address of the data */

 useracc
 This routine access the S/370 protect keys to determine if the address
 is valid for this user. If not, OK return 0.

 useracc(iobase, count, type)
 caddr_t iobase; /* start addr of user buffer */
 unsigned count; /* number of bytes to check */
 int type; /* read or write access flag */

 A unique requirement to AIX/370 device drivers is that, because AIX/370
 runs as a virtual machine, other virtual machines may be sharing the
 physical devices; thus, although a device driver knows when it has no

AIX Operating System Technical Reference
AIX/370 I/O Subroutines

¦ Copyright IBM Corp. 1985, 1991
C.3.2.1 - 2

 outstanding requests, the device or a path to the device may be busy. A
 certain amount of retry is built into the sio and syncio routines to
 account for the possibility of device-in-use status.

 A driver receives interrupts from its controlled device, by registering
 the device address and an interrupt handling routine. Interrupts
 generated by the specified device cause the driver's interrupt routine to
 be called.

 The status passed to the driver's interrupt routine contains the CSW,
 which the driver uses to obtain completion status, residual count and
 other device status.

 Devices can only perform a single operation at a time; it is the
 responsibility of the device driver to supply the device with activities
 with the goal of keeping the device busy. The driver typically achieves
 high device utilization by starting a device operation as soon as the
 device completes an operation. The interrupt handler is a natural place
 for this intelligence, since the interrupt routine is called for device
 operation completion.

 A device driver accepts requests from the kernel and initiates device
 activity if the device is idle, or it queues the request until the device
 becomes inactive.

 Some device types need to bring attention to the kernel that an activity
 was performed; the following are examples of such activities: a keystroke
 is generated at a terminal, a device goes on-line, a packet is received
 over a communications medium. The device generates an attention interrupt
 in order to communicate this change of status to the driver.

AIX Operating System Technical Reference
AIX/370 I/O Subroutines

¦ Copyright IBM Corp. 1985, 1991
C.3.2.1 - 3

 C.4 Types of Device Drivers

 In the AIX kernel framework, the two general types of device drivers are
 character and block. In addition, the two special types of device drivers
 are TTY and network. A character device driver sends and receives raw
 input from and to AIX applications that have issued system calls, meaning
 that the data is not manipulated by the kernel before it arrives at the
 character device driver. A block device driver uses the kernel buffer
 cache so that I/O appears asynchronous to the state of the hardware. A
 TTY device driver is a type of character device driver that is designed to
 interface with teletype terminals, usually connected through an RS-232
 interface. A TTY driver uses line discipline routines inside the kernel
 to buffer terminal I/O. A network device driver is accessed by user
 programs through sockets. The AIX kernel provides protocol functions so
 that network device drivers can interface to Ethernet, Token-Ring, X.25,
 and other physical layer protocols. Figure C-5 presents an overview of
 device driver types.

 --

 --
 Figure C-5. Overview of Device Driver Types

 There is no one-to-one correspondence between system call parameters and
 the parameters passed to device driver entry points. In character and TTY
 device drivers as well as for raw interface to network and block device
 drivers, most system call parameters are passed to the device driver in
 the user structure. The extended parameter, used in openx, readx, writex,
 and ioctlx system calls, is passed as a parameter to the device driver's
 entry point. Block and network device drivers are passed information
 about the calling application in the buffer cache and the mbuf chain
 respectively.

 Subtopics
 C.4.1 Basic Device Driver Template

AIX Operating System Technical Reference
Types of Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.4 - 1

 C.4.2 Character Device Drivers
 C.4.3 Block Device Drivers
 C.4.4 TTY Device Drivers
 C.4.5 Network Device Drivers
 C.4.6 Network Device Driver Data Structures
 C.4.7 Network Device Driver Procedure Handles
 C.4.8 Kernel Subroutines for Network Device Drivers
 C.4.9 ARP Routines for Network Device Drivers

AIX Operating System Technical Reference
Types of Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.4 - 2

 C.4.1 Basic Device Driver Template

 Every type of device driver has a basic template of entry points: ddinit,
 ddreset, ddopen, ddclose, and ddintr. This section details these entry
 points in terms of their interface to the kernel and their device-specific
 attributes. If the entry point is specific to AIX PS/2 or AIX/370, it is
 so indicated; otherwise, the entry point is common to both systems.

 Subtopics
 C.4.1.1 Entry Points
 C.4.1.2 Basic Template Kernel Subroutines and Data Structures
 C.4.1.3 devdata Data Structure

AIX Operating System Technical Reference
Basic Device Driver Template

¦ Copyright IBM Corp. 1985, 1991
C.4.1 - 1

 C.4.1.1 Entry Points
 --

 ddinit (PS/2)

 ddinit (devno)
 dev_t devno;

 The ddinit entry point is used to configure the device driver. This entry
 point is called after the virtual space and malloc arena are established
 and before any processes have been spawned by the main routine of the AIX
 kernel. Interrupts are disabled at this point and may not be enabled.
 Each device driver's ddinit is called once.

 Parameter:

 devno Contains the device major number. Use the major macro defined
 in "Determining Major and Minor Numbers" in topic C.6.6 to
 obtain the major number from the device type.

 For autoconfigured devices, ddinit is the driver entry point where
 autoconfiguration takes place. Therefore, the ddinit entry point of
 autoconfigured device drivers should perform the following functions:

 � Check for the presence of the associated hardware by calling th
 devexist kernel subroutine

 � Obtain the device's POS information from the devdata structure

 � Perform the necessary hardware initialization, before the device ca
 be used

 � Call the DEV_INSTALL, CDEV_INSTALL, and BDEV_INSTALL routines to
 install the device driver entry points into the kernel's devsw table

 � Call the intrattach routine to install the device driver interrupt
 handler so that the first level interrupt handler will call it

 � Perform data structure allocation and initialization

 A sample ddinit routine for a block device that has raw device entry
 points follows:

 extern struct devdata devdata;
 struct iobuf sampbuf;

 sampinit (dev)
 dev_t dev;
 {
 int maj;
 int slot;
 int samp_levl; /* interrupt level */

 maj = major (dev);

 if ((slot = devexist(cardid, maj, 1, 0)) != -1)
 {

AIX Operating System Technical Reference
Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.1.1 - 1

 DEV_INSTALL (maj, sampinit, nulldev,
 sampopen, sampclose, sampintr,
 ISNOTATTY);
 BDEV_INSTALL (maj, sampstrat, nulldev,
 &sampbuf);
 CDEV_INSTALL (maj, sampread, sampwrite,
 sampioctl, nulldev, notty);

 /* get the interrupt level from POS data - position
 in POS varies by adapter. Some adapters may
 not have the interrupt level recorded in the POS */
 samp_levl = devdata[slot].pd_pos3;

 intrattach (sampintr, samp_levl, SPLBLKIO);
 }
 }

 --

 ddinit (AIX/370)

 The ddinit routine is called for each device in the gensw table with the
 following arguments:

 ddinit(devs, units)
 struct dev_unit *devs;
 int units;

 Parameters:

 devs Points to a table of units device structures.

 units Number of configured units.

 The dev_unit structure, which is the device information table, is defined
 in /usr/include/sys/conf.h as follows:

 struct dev_unit{

 char dvu_name[9]; /*configured name of this particular device*/
 char dvu_type[9]; /*configured type of this particular device*/
 int dvu_units; /*number of sub-units associated with device*/
 char *dvu_feat; /*configured features/options for device*/
 long dvu_info[N_DVU_INF]; /*address information for this device*/
 };

 When the AIX/370 is rebooted (IPL'ed), one of the first operations
 performed is the auto-configuration process. Autoconfiguration consists
 of calling each device's ddinit routine once. During the generation of
 the AIX kernel, a table of configured devices, gensw, is composed. The
 configuration is built by the config program as it parses /etc/master and
 /etc/system files. The resultant table becomes part of conf.c, which is
 compiled and linked with the AIX kernel.
 An example table is shown below.

 /*
 * System configuration summary

AIX Operating System Technical Reference
Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.1.1 - 2

 */
 struct gen_sw gensw[] = {
 /* type blk chr units table */
 {"sysdevs", -1, 23, 1, 0 },
 {"mt", -1, 1, 1, mtdevs },
 {"console", -1, 7, 1, cndevs },
 {"net", 9, -1, 1, 0 },
 {"nfs", 39, -1, 1, 0 },
 {"memory", 8, 8, 1, 0 },
 {"dkfba", 0, 0, 17, fbadevs },
 {"dkckd", 4, 4, 12, ckddevs },
 {"lp", -1, 13, 2, lpdevs },
 {"lcs", -1, 15, 2, lcsdevs },
 {"osm", -1, 16, 1, 0 },
 {"tty", -1, 17, 1, 0 },
 {"pts", -1, 2, 1, 0 },
 {"ptc", -1, 18, 1, 0 },
 {"mon", -1, 19, 1, mondevs },
 {"ldsf", -1, 20, 1, ldsfdevs },
 {"pun", -1, 21, 4, pundevs },
 {"rdr", -1, 22, 3, rdrdevs },
 {"nty", -1, 25, 1, 0 },
 {"vctc", -1, 26, 3, vctcdevs }
 };

 The config program will generate a devs table prefixed by the name of the
 driver for each entry in the system file. For example, for the fba
 driver, the following has been extracted from conf.c:

 /*
 * Configuration for fba driver
 */
 struct dev_unit fbadevs[] = {
 /* name type units parms address */
 { "IX370S", "3370", 1, "o", { 0x340, } },
 { "IXVOL0", "3370", 1, "o", { 0x341, } },
 { "IXVOL1", "3372", 1, "o", { 0x348, } },
 { "IXVOL2", "3372", 1, "o", { 0x349, } },
 { "IXVOL3", "3372", 1, "o", { 0x34a, } },
 { "IXVOL4", "3372", 1, "o", { 0x34b, } },
 { "IXVOL5", "3372", 1, "o", { 0x342, } },
 { "IXVOL6", "3372", 1, "o", { 0x34c, } },
 { "IXVOL7", "3372", 1, "o", { 0x34d, } },
 { "IXVOL8", "3372", 1, "o", { 0x370, } },
 { "IXVOL9", "3372", 1, "o", { 0x350, } },
 { "IXVOLA", "3372", 1, "o", { 0x351, } },
 { "IXVOLB", "3372", 1, "o", { 0x352, } },
 { "IXVOLC", "3372", 1, "o", { 0x353, } },
 { "IXVOLD", "3372", 1, "o", { 0x354, } },
 { "IXVOLE", "3370", 1, "o", { 0x343, } },
 { "IXVOLF", "3370", 1, "o", { 0x344, } },
 };
 int fba_cnt = 17;

 Each line in the fbadevs structure was built from a stanza in the system
 file such as:

 IXCKD0:
 driver = 3370

AIX Operating System Technical Reference
Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.1.1 - 3

 address = 340
 features = o

 The ddinit entry point should perform the following functions:

 � Insert the address of the drivers mbstrategy routine into the mbdevsw
 if this is a block driver supporting a multi-block strategy interface.
 � Initialize prototype channel programs by allocating storage for th
 actual CCWs comprising the required channel programs, noting required
 alignment (IDAWs - fullword, CCWs doubleword). Build a list of linked
 CCWs with appropriate field initializations.
 � Perform driver specific static data structure initialization o
 allocation of dynamic memory requirements.
 � Perform driver attach operation (optional) which performs any actua
 additional initialization activity as required by a specific driver.

 Note: The use of a separate attach routine is optional.

 For both the PS/2 and the AIX/370 network device drivers, the ddinit entry
 point additionally initializes an ifnet structure, as seen in "Network
 Device Drivers" in topic C.4.5, and then attaches it to the kernel using
 the if_attach kernel subroutine. Each network port associated with the
 device driver must be attached with the if_attach routine. The following
 is an example of how to initialize the ifnet structure:

 struct ifnet eth.ifs[MAXETHUNITS];

 ethattach(unit)
 int unit;
 {

 struct ifnet *ifp = eth_ifs[unit];
 ifp -> if_units = unit;
 ifp -> if_name = "eth";
 ifp -> if_mtu = ETHERMTU;
 ifp -> if_ioctl = eth_ipc_ioctl;
 ifp -> if_output = eth_ipc_output;
 ifp -> if_flags = IFF_BROADCAST|IFF.NOTRAILERS
 IFF_ETHERNET|IFF_IEEE;
 if_attach(ifp);
 }

 --

 ddreset (AIX PS/2)

 ddreset ()

 The ddreset entry point of an AIX device driver is called by the kernel
 when it is shutting the system down. This is an optional entry point and
 may be used to perform device-specific shutdown procedures such as parking
 disk heads.

 The ddreset entry point has no parameters.

 The following ddreset routine is taken from the diskette device driver:

 fdpark()

AIX Operating System Technical Reference
Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.1.1 - 4

 {
 int i;
 if(fdtab.ib_active & 0xff) {
 printf("fdpark: motor(s) not killed, i/o still pending\n);
 return;
 }
 /*Reset both the controllers*/
 fd.dor [0]=0;
 iooutb (SYSTEM_BASE + DOR, 0);
 fd.dor [1]=0;
 iooutb (ADAPTER_BASE + DOR, 0);

 fd.nsec=0;
 fd.state=RSET;

 --

 ddopen

 ddopen (dev, flag, ext)
 dev_t dev;
 int flag;
 caddr_t ext;

 The ddopen entry point of an AIX device driver is called by the kernel
 when a program issues an open or create system call.

 Parameters:

 dev Contains the device's major and minor number. Use the major
 and minor macros to obtain major and minor numbers from a
 device type.

 flag This is the value of the oflag argument passed to the open
 system call. It is one of the following values, as defined in
 the /usr/include/sys/file.h or /usr/include/sys/fcntl.h header
 files:

 O_RDONLY Device is being opened for reading only by
 ensuring that it is mounted and/or powered on.
 O_WRONLY Device is opened for writing only.
 O_RDWR Device is opened for reading and writing.
 O_NDELAY Request a non-blocking open, that is, allow the
 process to exit the open routine before waiting
 for the device to become ready. This is
 typically used by tty drivers only.
 FDEVHANDLE Indicates an open for a multiplexed device to
 map the multiplexed name of a subchannel.
 FAUTOCONF Indicates a kernel-initiated open at system
 startup for autoconfiguration of the root, pipe,
 swap, and dump devices. Support for FAUTOCONF
 is usually only needed in disk drivers. A
 driver declares its ability to support FAUTOCONF
 with the DEV_AUTOCONF flag of the DEV_INSTALL
 routine.

 ext The value of the ext parameter which is passed to the openx
 (extended open) system call.

AIX Operating System Technical Reference
Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.1.1 - 5

 The main purpose of the ddopen entry point is to validate the minor
 number, initialize data structures, and condition the device for use.

 The ddopen entry point can indicate an error condition to the application
 program by storing a nonzero error code in the u.u_error field of the user
 block, causing the open system call to fail. In this case, the system
 call returns a value of -1 and the error code is available to the
 application in the errno external variable. The error code used should be
 one of the values defined in the /usr/include/sys/errno.h header file.

 After the user process opens any special file, the kernel converts the
 special file name into an inode pointer by lexing through the full path
 name of the special file. When the kernel determines that the process is
 attempting to open a special file, it determines the special file's inode
 and then calls the open routine of the device driver. If the special file
 is multiplexed, the kernel stops lexing after the multiplexed inode is
 encountered and calls the open routine of the device driver twice - once
 to determine the multiplexed subchannel and again to actually open the
 subchannel.

 During the first open, the flag parameter is set to FDEVHANDLE. The open
 routine inquires u.u_dirp, a pointer to the path name extension following
 the special file name used in the open system call. For example, if you
 open the /dev/hft file, u.u_dirp is a pointer to an empty (NULL) string.
 If you open the /dev/hft/01 file, u.u_dirp points to the ASCII string: 01.
 If u.u_dirp is a pointer to an empty string, the driver places a unique
 channel number in the u.u_mpxchan field. If the u.u_dirp field is
 non-NULL, the driver places the requested channel number, converted from
 an ASCII string to binary, in the u.u_mpxchan field. The open routine
 returns immediately once the device driver places a value into the
 u.u_mpxchan field.

 Note: It is the responsibility of the device driver writer to maintain a
 list of used and unused multiplexed channel numbers.

 The AIX kernel immediately calls the open routine again, this time with
 the flag set to the value of oflag from the open system call. It also
 accesses the process's channel number in the u.u_mpxchan field and
 performs the regular open functions.

 The ddread, ddwrite, ddioctl and ddselect entry points of the driver can
 also access the channel number in the u.u_mpxchan field.

 If a character device uses line discipline routines, then ddopen should
 initialize the tty structure and then call the l_open line discipline
 routine. The t_line field of the tty structure is used to index into the
 line discipline table. Currently, 0 is for tty and 1 is for printer.

 Many character devices, such as printers and plotters, should be opened by
 only one process at a time. The ddopen entry point can enforce this by
 maintaining a static flag variable, which is set to 1 if the device is
 open and 0 if not. A device driver that requires special software
 downloading or initialization, such as an intelligent controller, should
 return ENXIO if the device has not yet been initialized. Each time it is
 called, ddopen checks the value of the flag and, if it is other than 0,
 sets u.u_error to EBUSY; otherwise, the ddopen entry point sets the flag
 and returns normally. The ddclose entry point later clears the flag when
 the device is closed. For more information on the standard errors
 returned by open, see "open, openx, creat" in topic 1.2.199.

AIX Operating System Technical Reference
Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.1.1 - 6

 Most block devices can be used by several processes at once, and the
 device driver should not usually enforce a single-user restriction.

 Security measures are usually performed in ddopen. Some devices should
 allow only one user to access at a time. This can be performed by
 comparing either the effective or the real user ID of the request to open
 to that of the process that already has the device opened.
 --

 ddclose

 ddclose (dev, flag, ext)
 dev_t dev;
 int flag;
 caddr_t ext;

 The ddclose entry point resets the device to a known state, resets the
 device controller to prevent it from generating any more interrupts until
 it is opened again, flushes any outstanding I/O requests, and on the last
 close of the device, unmounts the device.

 Parameters:

 dev Contains the device's major and minor number. Use the major
 and minor macros to determine the major and minor number of
 the device type.

 flag The oflag argument passed to the last open system call. See
 the /usr/include/sys/file.h header file for a complete
 definition of the bits in the flag parameter word.

 ext The value of the ext parameter passed to the closex (extended
 close) system call.

 The ddclose entry point is only entered on the final close of a minor
 number.

 This entry point should always succeed, that is, the u.u_error field
 should never be set to a nonzero value in ddclose.
 --

 ddintr (AIX PS/2)

 ddintr (vec_num)
 int vec_num;

 The ddintr entry point is called by the kernel when a device issues an
 interrupt.

 Parameter:

 vec_num Is an integer that specifies the interrupt vector number.

 An interrupt typically signals completion of a data transfer. The ddintr
 routine must determine the appropriate action, for example by taking the
 received character and placing it in the input buffer, or by removing the

AIX Operating System Technical Reference
Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.1.1 - 7

 next character from the buffer and starting the transmission. The ddintr
 entry point also checks error state and initiates the next I/O operation.

 Interrupts on the PS/2 are vectored through two 8259 Programmable
 Interrupt Controllers (PICs). Each PIC has eight individually maskable
 interrupt request levels. Because the second PIC is cascaded off one of
 the interrupt request levels associated with the first PIC, there are only
 15 interrupt request levels available. The interrupt request level
 associated with a given PS/2 device is either predetermined by the
 hardware or user-configured via the PS/2 reference disk. Multiple devices
 can share an interrupt request level. Hence, device drivers must be
 prepared to field spurious interrupts. All PS/2 devices have an
 interrupt-asserted status bit that the device driver can query to
 determine if it owns the interrupt. Device drivers must clear the
 interrupt from the device prior to returning from the ddintr entry point
 when required by the hardware.

 Block device interrupt handlers are responsible for freeing each block
 after it has been successfully transferred to the storage devices. Use
 the iodone kernel subroutine to free disk buffers.
 --

 ddintr (AIX/370)

 ddintr (da, csw, unit)
 ioaddr_t da;
 csw_t csw;
 int unit;

 Parameters:

 da Contains the device address

 csw Is the completion channel status word

 unit Indicates the driver unit number associated with this device

 On the AIX/370 all devices generate an I/O interrupt on level 4. When a
 device generates an interrupt, the CPU stores the current processor status
 word (PSW) in the level 4 old PSW indicator and loads a new PSW from the
 level 4 new PSW location. This causes the CPU to begin executing the
 kernels generic interrupt handler. During the processing of an I/O
 interrupt the CPU will not take another interrupt.

 For the purpose of the generic interrupt handler (the primary interrupt
 handler) the CPU must save the context of the currently running process
 and then construct a trap block to pass to the trap handling code. This
 trap block will contain all of the volatile information which accrues when
 an interrupt occurs. This includes the CSW stored in page zero, the
 device address, as well as the programmable interrupt word.

 The code in trap will invoke the secondary interrupt handler which is the
 driver specific handler previously setup via the addiohdlr routine based
 on the device address. The kernel will dispose of any interrupt for which
 a second-level interrupt handler (SLIH) has not been established.

AIX Operating System Technical Reference
Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.1.1 - 8

 C.4.1.2 Basic Template Kernel Subroutines and Data Structures

 The following kernel subroutines define the virtual interrupt handler to
 AIX.
 --

 intrattach (AIX PS/2)

 #include <i386/intr86.h>

 intrattach (func, level, splmask)
 int (*func)();
 int level, splmask;

 The intrattach kernel subroutine binds an interrupt request level with an
 interrupt priority.

 Parameters:

 func Specifies interrupt handler

 level Specifies interrupt request level

 splmask Defines an interrupt's priority.

 Interrupts are masked by splmask in the following manner:

 1. When a process explicitly masks an interrupt in a device driver, any
 interrupt request levels bound to splmask, including the interrupt
 request level specified by level, do not cause the process to be
 interrupted.

 2. While in the interrupt handler, all interrupt request levels bound to
 splmask do not cause the interrupt handler to be pre-empted.

 Callers of intrattach must ensure that an appropriate mask is assigned to
 an interrupt request level. For example, devices that are not time
 critical, such as tape drives, should not be bound to the splmask value
 SPL_HIGH. In addition, note that low priority devices can share interrupt
 request levels with high priority devices. Therefore, low priority
 devices mask interrupts for high priority devices. When configuring a
 PS/2 with the reference disk, either assign unique interrupt request
 levels to configured devices or attempt to group devices of the same type,
 such as fixed disks or serial communication devices, on the same interrupt
 request level. PS/2 microchannel supports sharing interrupt levels.

 The appropriate values of splmask are as follows:

 SPL_HIGH No interupts at this level

 SPL_CLKONLY Mask out all but the clock

 SPL_IMP Mask out network devices

 SPL_BLKIO Mask out devices which use the buffer pool tape or disk

 SPL_CLIST Mask out devices which deal with clist structures

 SPL_KEYBRD Mask out the console keyboard

AIX Operating System Technical Reference
Basic Template Kernel Subroutines and Data Structures

¦ Copyright IBM Corp. 1985, 1991
C.4.1.2 - 1

 SPL_MISC Mask out miscellaneous devices

 SPL_SWINTR Mask out VAX-simulated software interrupts

 --

 intrdetach (AIX PS/2)

 intrdetach (func, level)
 int (*func)();
 int level;

 The intrdetach kernel subroutine detaches a currently active interrupt
 handler from the operating system list. Valid interrupts are from 0-15.

 Parameters:

 func Specifies interrupt handler

 level Specifies interrupt request level

 --

 devexist (AIX PS/2)

 int devexist (cardid, d_major, flags, start_slot)
 unsigned short cardid, d_major, flags;
 int start_slot;

 The devexist kernel subroutine checks to see if the adapter used by a
 device driver exists in the PS/2. Returns either the slot number
 (start_slot to NIOSLOTS()) or -1.

 Parameters:

 cardid 16-bit adapter ID which is contained in the first two bytes of
 POS data.

 d_major The major number of the device.

 flags Device flags that you would like placed into
 devdata[slot].pd_flags. This parameter could be used to
 identify logical adapter numbers in device drivers that
 support multiple adapters of the same cardid.

 start_slot The slot number used to start searching for the adapter
 (0-NIOSLOTS()).

 An autoconfigured device driver does not install itself into the device
 switch table unless it determines that the hardware it needs to run has
 been placed into the system.

 Note: The devexist routine may have to be called multiple times for
 drivers that support many adapters of the same adapter ID or
 alternate adapter IDs.

AIX Operating System Technical Reference
Basic Template Kernel Subroutines and Data Structures

¦ Copyright IBM Corp. 1985, 1991
C.4.1.2 - 2

 C.4.1.3 devdata Data Structure

 The AIX kernel contains a POS structure that contains all the POS
 information for a given hardware device. The name of the kernel structure
 is called devdata. The devdata structure contains the adapter ID, 4 bytes
 of option select data, the device major number and flags.

 Autoconfigured device drivers use devdata during the ddinit routine to
 determine whether or not they should install their entry points into the
 device switch table.

 The devdata structure is defined as follows:

 struct devdata {
 unsigned char pd_pos0; /* card ID */
 unsigned char pd_pos1; /* card ID */
 unsigned char pd_pos2; /* pos reg 1 */
 unsigned char pd_pos3; /* pos reg 2 */
 unsigned char pd_pos4; /* pos reg 3 */
 unsigned char pd_pos5; /* pos reg 4 */
 unsigned char pd_pos6; /* pos reg 5 */
 unsigned char pd_pos7; /* pos reg 6 */
 unsigned char pd_major; /* major number */
 unsigned char pd_flags; /* device flags */
 };

 --

 DEV_INSTALL

 DEV_INSTALL (maj, init, reset, open, close, intr, flags)
 int maj;
 int init;
 int reset;
 int open;
 int close;
 int intr;
 unsigned int flags;

 The DEV_INSTALL kernel subroutine installs the common entry points of a
 device driver so that the driver can be called.

 Parameters:

 maj The major number of the device.

 init Pointer to ddinit or nulldev.

 reset Pointer to ddreset or nulldev. Routine that is called on
 system shutdown.

 open Pointer to ddopen or nulldev. Routine that is called for the
 open system call.

 close Pointer to ddclose or nulldev. Routine that is called for the
 close system call.

AIX Operating System Technical Reference
devdata Data Structure

¦ Copyright IBM Corp. 1985, 1991
C.4.1.3 - 1

 intr Pointer to ddintr or nulldev. Not used by the system.

 flags One or more of the following (ORed together as necessary):

 ISNOTATTY Default for most device drivers.

 ISATTY Device driver is a tty type device.

 ISMPX Device driver supports a multiplex file.

 DV_ATDMA Device may use AT-style DMA transfers (for
 AT-compatible drivers). Not generally
 used.

 DV_AUTOCONF Device will attempt auto-configuration.

 DV_TAPE Device driver is for tapes. A tape device
 that does not support read ahead or
 delayed writes.

 DV_MINBLK Minimal block device; no seeks or mounts
 allowed. Minimal block devices have the
 benefits of buffer caching and
 asynchronous I/O but no file systems may
 be placed on the device.

 --

 CDEV_INSTALL

 CDEV_INSTALL (maj, read, write, ioctl, select, tty)

 The CDEV_INSTALL kernel subroutine installs character device entry points.

 Parameters:

 maj The major number of the device.

 read Pointer to ddread or nodev. Routine that is called to handle
 the read system call.

 write Pointer to ddwrite or nodev. Routine that is called to handle
 the write system call.

 ioctl Pointer to ddioctl or nodev. Routine that is called to handle
 the ioctl system call.

 select Pointer to ddselect or seltrue. Routine that is called to
 handle the select system call.

 tty Pointer to a routine that returns the address of the tty
 structure associated with a particular minor number or notty.

 --

 BDEV_INSTALL

AIX Operating System Technical Reference
devdata Data Structure

¦ Copyright IBM Corp. 1985, 1991
C.4.1.3 - 2

 BDEV_INSTALL (maj, strat, dump, tab)

 The BDEV_INSTALL kernel subroutine installs block device entry points.

 Parameters:

 maj The major number of the device.

 strat Pointer to ddstrategy or nostrat. Called by the kernel to
 schedule I/O.

 dump Pointer to dddump or nulldev. Called by the kernel for dump
 I/O.

 tab Pointer to the block device table (struct iobuf). Not
 currently used.

 --

 if_attach

 if_attach (ifp)
 struct ifnet *ifp;

 Parameter:

 ifp A pointer to a device-specific ifnet structure.

 The if_attach kernel subroutine attaches a network interface to the list
 of active interfaces. For network device drivers only.

AIX Operating System Technical Reference
devdata Data Structure

¦ Copyright IBM Corp. 1985, 1991
C.4.1.3 - 3

 C.4.2 Character Device Drivers

 Character device drivers offer a direct path between the user and the
 hardware device. The interface to character device drivers is less
 structured, and thus more flexible, than the interface to block devices.
 Character devices include the keyboard, displays, printers, special
 purpose hardware (such as a mouse), and software pseudo-devices.

 Character device drivers can be designed to provide controlled access to
 low-level facilities of the system that are not necessarily associated
 with true I/O devices. AIX provides several special-purpose device
 drivers:

 /dev/null Discards output written to it and indicates an end-of-file
 condition when read.

 /dev/trace Records and returns data when tracing programs.

 /dev/error Records and returns system errors.

 /dev/mem Provides access to physical memory.

 /dev/kmem Provides access to kernel memory.

 /dev/osm Records kernel message logged to the console.

 --

 ddattach

 The ddattach operation can be invoked from the init routine or from the
 open routine and it is performed only once. The function of the ddattach
 routine varies from driver to driver but typically includes one of the
 following:

 � Initialize network interface and call if_attach (network drivers)
 � Determine device characteristics and initialize driver privat
 information
 � Read the VTOC informatio
 � Print some console information about the device (address
 � Install the interrupt handler addiohdlr).

 An interrupt handler must be setup for each unit. The actual call would be
 performed as follows:

 addiohdlr (ioaddr, inthdlr, unit);

 Parameters:

 ioaddr The physical device address

 inthdlr The interrupt service routine

 unit The device unit number or other argument to receive with the
 interrupt from this device

 Note: Typically, there is only one interrupt service routine for all
 devices serviced by a single device driver.

AIX Operating System Technical Reference
Character Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.4.2 - 1

 Subtopics
 C.4.2.1 Character Device Driver Data Structures
 C.4.2.2 Character Device Driver Entry Points

AIX Operating System Technical Reference
Character Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.4.2 - 2

 C.4.2.1 Character Device Driver Data Structures

 Character device drivers, as well as TTY device drivers and the raw
 interfaces to block and network device drivers, access user data through
 the user block. The user block contains some of the information that the
 kernel keeps about the user process. The entry points that can access the
 user block are ddopen, ddclose, ddioctl, ddread, ddwrite, and ddselect.

 The user block can be accessed with the construct u.field, where field is
 a valid field name of struct user as defined in the
 /usr/include/sys/user.h header file. The name of each of the fields in
 this structure begins with u_ so user block references take the form
 u.u_name.

 Warning: Do not modify any user block fields or any other kernel
 structure fields that are not explicitly mentioned in this appendix.
 Otherwise, unpredictable results may occur.

 Some of the frequently used fields of the user block are:

 u.u_error If the device driver stores a nonzero error code in this
 field, then it is passed to the application program in errno
 and a -1 is returned by the system call. The valid error
 codes are defined in the /usr/include/sys/errno.h header file.
 See Appendix A, "Error Codes" in topic A.0 for a description
 of these error codes.

 u.u_fmode This is the open flag or file parameter word for the open file
 descriptor associated with the device. It is the same value
 that is passed to the ddopen and ddioctl entry points as the
 flag parameter.

 u.u_qsav If a signal is received while a process is in kernel mode, a
 longjmp is normally performed, passing control to the address
 saved in this field. By default, u.u_qsav points to a routine
 that sets u.u_error (errno) to EINTR and returns the value -1
 to the user process, indicating that the system call was
 interrupted by a signal. This action can be overridden under
 certain circumstances. See "Process Suspension and Timing" in
 topic C.6.2 for more information.

 Fields used by the ddread and ddwrite entry points are:

 u.u_base The address of the beginning of the data buffer from and to
 which data is transferred. The value of u.u_base is
 incremented after each character is transferred to or from
 it.

 u.u_count The byte count given to the read or write system call. The
 value of u.u_count is decremented after each character is
 transferred to or from u.u_base.

 u.u_icount The initial byte count given to the read or write system
 call; otherwise, the count should be -1.

 u.u_offset The file offset established by a previous lseek system call.
 Most character devices ignore this variable; but some, such
 as the /dev/mem pseudo device, use and maintain it. The
 value of u.u_offset is incremented after each character is
 transferred to or from u.u_base.

AIX Operating System Technical Reference
Character Device Driver Data Structures

¦ Copyright IBM Corp. 1985, 1991
C.4.2.1 - 1

 u.u_seg Determines the source and destination of the address space.
 Specifies what is in u.u_base as follows:

 0 user instructions

 1 user data

 2 system data.

 Field used by the ddselect entry point is:

 u.u_procp A pointer to the process structure of a process that is
 waiting on a select system call.

 Fields used by the multiplexed device drivers are:

 u.u_dirp A pointer to the path name extension of a multiplexed
 device. For example, if an AIX process opens the
 multiplexed special device /dev/hft, the value of u.u_dirp
 is a NULL pointer. If an AIX process opens the multiplexed
 special device /dev/hft/01, the u.u_dirp field points to the
 string 01. This is available to ddopen, and only when the
 FDEVHANDLE flag is set.

 u.u_mpxchan A unique channel number associated with a multiplexed
 device. This field is updated by the driver's open entry
 point. Passed as a parameter to ddread, ddwrite, ddioctl,
 and ddselect.

AIX Operating System Technical Reference
Character Device Driver Data Structures

¦ Copyright IBM Corp. 1985, 1991
C.4.2.1 - 2

 C.4.2.2 Character Device Driver Entry Points

 The following is a list of entry points from the kernel into a character
 device driver. Character device drivers have entry points that correspond
 with the read, write, ioctl, and select system calls.
 --

 ddread, ddwrite

 ddread (dev, ext)
 dev_t dev;
 caddr_t;

 ddwrite (dev, ext)
 dev_t dev;
 caddr_t;

 The ddread entry point is called by the kernel when a program issues a
 read system call on a file descriptor associated with a character device.
 The ddwrite entry point is called by the kernel when a program issues a
 write system call on a file descriptor associated with a character device.
 The ddread and ddwrite entry points allow the device driver direct access
 to the user's address space.

 Parameters:

 dev Contains the device's major and minor number. Use the major
 and minor kernel subroutines.

 ext The value of the ext parameter passed to the readx (extended
 read) or writex (extended write) system calls.

 For most devices, the ddread and ddwrite entry points are synchronous.
 The waiting is accomplished by calling the sleep kernel subroutine and
 suspending the process in the device driver while it waits for the I/O to
 complete. Putting the process to sleep permits other processes to run.

 Asynchronous ddread and ddwrite calls should be performed when the user
 opens the device with the FNDELAY flag. The device driver should consult
 the u_fmode field of the calling process to determine whether to perform
 asynchronous I/O for a device that can be opened for both asynchronous and
 synchronous I/O. Asynchronous ddwrite calls can also be made by buffering
 the output data in kernel space and processing the buffers at interrupt
 time instead of process time. The type of device determines how the
 end-of-record and end-of-file is handled in ddread.

 When ddread and ddwrite entry points are provided for raw I/O to a block
 device, these entry points usually translate requests into block I/O
 requests. Some devices, such as block and block-oriented devices, require
 the user's buffer to be page-aligned.

 The ddread and ddwrite entry points can indicate an error condition to the
 application program by storing a nonzero error code in the u.u_error field
 of the user block. If an error condition exists, the system call returns
 a value of -1 and the error code is available to the application in the
 errno external variable. The error code used should be one of the values
 defined in the /usr/include/sys/errno.h header file.

 The ddread and ddwrite entry points can return partial completions by

AIX Operating System Technical Reference
Character Device Driver Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.2.2 - 1

 updating u.u_count by the actual amount transferred.
 --

 ddioctl

 ddioctl (dev, cmd, arg, flag, ext)
 dev_t dev;
 int cmd;
 caddr_t arg;
 int flag;
 caddr_t ext;

 The ddioctl entry point of the specified device driver is called by the
 kernel when a program issues an ioctl system call. This entry point is a
 catch-all for special device-specific operations that do not fit into the
 read/write framework.

 Parameters:

 dev Contains the device's major and minor number. Use the major
 and minor kernel subroutines.

 cmd The parameter from the system call that specifies the
 operation to be performed.

 arg The parameter from the system call that specifies the address
 of a parameter block.

 flag Specifies the flags passed on the open system call. See the
 /usr/include/sys/file.h header file for a complete definition
 of the bits in the flag parameter word. The flag parameter
 always returns ZERO.

 ext The value of the ext parameter passed to the ioctlx (extended
 ioctl) system call.

 Most ioctl operations depend on the specific device involved. However,
 all ioctl routines must respond to the following commands:

 IOCTYPE Returns a character that indicates the device type.

 IOCINFO Returns a structure that describes the device. This structure
 is defined as devinfo in the /usr/include/sys/devinfo.h header
 file. Only the first two fields of the data structure,
 devtype and flags, need to be set if the remaining fields do
 not apply to the device. For more information about this
 structure, see "devinfo" in topic 2.3.15.

 All ioctl routines should be well-behaved. Well-behaved ioctl routines
 have their commands defined by the following macros:

 _IOV(x,y) Uses the literal arg value; that is, the arg value is not
 used for copying data to and from the kernel.

 _ION(x,y) There are no parameters for the ioctl.

 _IOR(x,y,t) Copies data from kernel space to user space.

AIX Operating System Technical Reference
Character Device Driver Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.2.2 - 2

 _IOW(x,y,t) Copies data from user space to kernel space.

 _IOWR(x,y,t) Copies data from user space to kernel space and kernel
 space to user space.

 In the above list,

 x is the ioctl mask which is up to 8 bits long

 y is the ioctl command which is up to 8 bits long

 t is the length of the data area to be transferred to or from kernel
 space.

 The following definitions for well-behaved ioctl routines are defined in
 the /usr/include/sys/ioctl.h file:

 #define TIOCGETD _IOW(t,0,int) /* get line discipline */
 #define TIOCSETD _IOR(t,0,int) /* set line discipline */
 #define TIOCHPCL _ION(t,2) /* hang up on last close */
 .
 .

 #define TIOCSETP _IOW(t,9, struct sgtty b) /* set parms - gtty */
 .
 .

 #define SIOCGIFADDR _IOWR(i,13, struct ifreq) /* get ifnet address */

 In well-behaved ioctl routines, the kernel instead of the device driver
 performs the copying of data from and to user space. Therefore,
 well-behaved ioctl routines use the bcopy subroutine instead of the copyin
 and copyout routines when copying multiple bytes of information to and
 from user space. These routines use simple assignment statements, rather
 than the fubyte, fushort, and fuword routines when copying single bytes,
 words, or long words of information to and from the kernel space.

 The ioctl routines can also be ill-behaved. Ill-behaved ioctl routines
 have their commands defined as follows:

 #define SAMP_MASK ('x'<<8)
 #define IOCTL1 (SAMP_MASK | 1)
 .
 .
 .
 #define IOCTLn (SAMP_MASK | n)

 Ill-behaved ioctl routines copy data directly to and from user space using
 the copyin, copyout, fubyte, fuword and fushort kernel subroutines.

 The ioctl routines should be well-behaved, not ill-behaved, in order for
 the device driver to remain compatible with future releases of AIX.

 The ddioctl entry point can indicate an error condition to the application
 program by storing a nonzero error code in the u.u_error field of the user
 block. When an error occurs, the system call returns a value of -1 and
 the error code is available to the application in the errno external
 variable. The error code used should be one of the values defined in the

AIX Operating System Technical Reference
Character Device Driver Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.2.2 - 3

 /usr/include/sys/errno.h header file.
 --

 ddselect

 #include <sys/select.h>
 int ddselect (dev, seltype)
 dev_t dev;
 int seltype;

 The ddselect entry point is used as an alternative to using signals for
 event notification. This entry point is called when the user program
 issues a select system call in order to determine whether or not an
 interesting event has occurred on the device.

 Parameters:

 dev Contains the device's major and minor number. Use the major
 and minor kernel subroutines.

 seltype Specifies the type of selection operation with one of the
 following values:

 FREAD Read selection
 FWRITE Write selection
 0 Exception selection.

 The return values from ddselect are

 0 Device is not ready. Collision occurred (that is, this is not
 the first process waiting on the event).

 1 The selection criterion specified by seltype is true.

 2 Device is not ready. This is the first process waiting on the
 event.

 The ddread and ddwrite entry points and the exception-handling routines
 also require logic to support the select operation. Depending on how you
 write your device driver, your ddintr entry point may need to include this
 logic as well. At each point where one of the selection criteria is true,
 the device driver checks for a process waiting for that selection and, if
 one exists, calls the selwakeup kernel subroutine to restart it. The
 collision flag and waiting process pointer that were saved are passed as
 parameters to selwakeup, and then they are reset.

 The following example of a ddselect subroutine is adapted from the 3270
 device driver:

 int
 tcaselect (dev, flag)
 int dev;
 int flag;
 {
 register int selectDone; /* select satisfied indicator */
 register int laNum;
 register linkAddr *laP;
 spl_t s;

AIX Operating System Technical Reference
Character Device Driver Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.2.2 - 4

 dev = minor(dev);

 laP = tca_data[dev].mlnk_ptrs[laNum];

 selectDone = 0;

 s=spl4(); /* mask intr. while checking read
 and write device status */

 switch(flag){
 case FREAD:
 /* check to see if write to device
 driver could be performed */
 if ((laP->io_flags & WDI_DAVAIL)){
 selectDone = 1;
 } else {
 /* check to see if another process is already sleeping
 on read select of this device */
 if(laP->dev_selr && selcoll(laP->dev_selr)){
 /* set device select read collision flag */
 laP->dev_flags |= RCOL;
 } else {
 /* save ptr to proc which MAY sleep on read */
 laP->dev_selr = u.u_procp;
 selectDone = 2;
 }
 }
 break;

 case FWRITE:
 /* a write is always legal */
 selectDone = 1;
 break;
 case 0:
 /* check to see if exception occurred on interrupt */
 if(laP->io_flags & WDI_ALL_CHECK){
 selectDone = 1;
 } else {
 /* check to see if another process is already sleeping
 on an exception select of this device */
 if(laP->dev_sele && selcoll(laP->dev_selc)){
 /* set device select exception collision flag */
 laP->dev_flags |= ECOL;
 } else {
 /* save ptr to proc which MAY sleep on except */
 laP->dev_sele = u.u_procp;
 selectDone = 2;
 }
 }
 break;
 }
 splx(s); /* change mask back to what it was on entry */
 return(selectDone);
 }

 Note in the above example that separate bits are turned on in dev_flags,

AIX Operating System Technical Reference
Character Device Driver Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.2.2 - 5

 RCOL and ECOL when a collision occurs, enabling the routine issuing the
 selwakeup subroutine to know the type of collision that occurred. Also
 note that the selcoll() support routine is used to determine a collision.
 For more information, see "selwakeup" in topic C.6.2.2.

AIX Operating System Technical Reference
Character Device Driver Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.2.2 - 6

 C.4.3 Block Device Drivers

 Block device drivers provide an interface tailored for file system access
 in a random or pseudo random-access fashion. Examples of block devices
 include diskette, fixed disk, and magnetic tape.

 When data is sent to or received from block devices, arbitrary user record
 lengths are mapped into fixed blocks. User data is buffered through
 kernel caching, thereby allowing for performance gains via asynchronous
 I/O. Because of the kernel's buffer cache, I/O for AIX applications is
 simpler for block rather than for character devices.

 Subtopics
 C.4.3.1 Block Device Data Structures
 C.4.3.2 Block Device Driver Entry Points
 C.4.3.3 Block Device Driver Data Flow
 C.4.3.4 Block Device Kernel Subroutines

AIX Operating System Technical Reference
Block Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.4.3 - 1

 C.4.3.1 Block Device Data Structures

 An area of memory is set aside within the kernel memory space for
 buffering data transfers between a program and the peripheral device. The
 kernel buffers are allocated in blocks of 4096 bytes. Each block becomes
 a member of one of two hashed chains that the device driver and the kernel
 maintain: the I/O chain or the free chain. The I/O chain contains those
 buffers for which I/O activity is in progress. The free chain contains
 the remaining buffers.

 buf Structure: Each system buffer in the queue has a buf header structure
 that contains, among other information about the block, two sets of
 pointers to the next (forw) and previous (back) members in the list. The
 device driver maintains the available chain with the av_forw and av_back
 pointers. The kernel maintains the busy chain with the b_forw and b_back
 pointers.

 The buf structure, which is defined in the /usr/include/sys/buf.h header
 file, includes the following fields:

 Important
 Fields Types Description

 b_flags long Flag bits.

 b_forw struct Forward busy block pointer.
 buf*

 b_back struct Backward busy block pointer.
 buf*

 av_forw struct Forward pointer for a request queue.
 buf*

 av_back struct Backward pointer for a request queue.
 buf*

 b_dev dev_t Major and minor device number.

 b_bcount bcount_t Byte count for the data transfer.

 b_un.b_addr caddr_t Virtual memory address of the data buffer.

 b_blkno daddr_t Block number on the device in units of DEV_BSIZE.

 b_resid bcount_t Amount of data not transferred after error.

 b_physaddr paddr_t Physical address, given to dmasetup.

 b_error short Error number to give to user if B_ERROR is set.

 In the buffer header, the b_flags, b_forw, b_back, b_dev, b_count and b_un
 fields are used by the system and may not be modified by the device
 driver. The av_forw and av_back fields are available for keeping a chain
 of such buffers by the kernel or by the device driver.

 Note: The use of disk buffers by character device drivers is strongly
 discouraged. Instead, use the malloc, kmemalloc, or palloc

AIX Operating System Technical Reference
Block Device Data Structures

¦ Copyright IBM Corp. 1985, 1991
C.4.3.1 - 1

 routines to allocate memory space.

 iobuf Structure: Each block device driver has an iobuf structure which is
 used to maintain the I/O chain that is associated with the device driver.
 This structure contains two list heads: the ib_forw/ib_back list, which
 is a doubly-linked list pointing to all the buffers associated with that
 device driver; and the ib_actf/ib_actl list, which is used for the head
 and tail of the I/O chain. The driver only manipulates the
 ib_actf/ib_actl list and not the ib_forw/ib_back list.

 The ib_active flag can be used to determine whether or not the device
 driver is currently processing a buffer or not. Typically, the ddstart
 routine increments this flag when it initiates an I/O chain and then
 cancels it out when it processes the last of the buffers.

 The device driver's iobuf structure also contains the following
 information:

 � The owner's major and minor numbe

 � An error record

 Figure C-6 illustrates a block data structure. In the figure, the I/O
 chain is comprised of the buf1 and buf2 system buffers. The head and tail
 of the chain are ib_actf/ib_actl.

 --

 Buffer Headers
 iobuf +---------------------------------------+
 +-----------+ +---------+ +---------+ +---------+
 ¦ ib_actf +--- ¦ av_forw +--- ¦ +--- ¦ ¦
 ¦ ib_actb ¦�---¦ av_back ¦�---¦ ¦�---¦ ¦
 ¦ ¦ +---------+ +---------+ +---------+
 ¦ ib_active ¦ ¦ ¦ ¦
 ¦ ¦ � � �
 ¦ ¦ +---------+ +---------+ +---------+
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
 ¦ ¦ +---------+ +---------+ +---------+
 +-----------+ +---------------------------------------+
 System Buffers
 or Other Memory

 --
 Figure C-6. Overview of Block Device Data Structures

AIX Operating System Technical Reference
Block Device Data Structures

¦ Copyright IBM Corp. 1985, 1991
C.4.3.1 - 2

 C.4.3.2 Block Device Driver Entry Points

 Besides the following entry points, block device drivers can have ddwrite
 and ddread routines that are used when the AIX application reads or writes
 to the raw block device, such as rfd0 instead of fd0. When ddread or
 ddwrite are entered, the buffer cache is bypassed so that the driver can
 access the user's data just as it does for a character device driver.
 Most raw block devices are implemented by a call to the kernel subroutine
 physio, which formats a block request using the user's buffer, and invokes
 the driver's ddstrategy routine.
 --

 ddstrategy

 ddstrategy (bufp)
 struct buf *bufp;

 The ddstrategy entry point is called internally by the AIX kernel to
 schedule I/O for swapping, file system I/O, and so forth.

 Parameter:

 bufp Points to a buf structure. The following information is
 important to ddstrategy:

 � The type of transfer (read or write)
 � Major and minor numbers
 � The device block number (address on the device)
 � The memory address to be used
 � The byte count (number of bytes to be transferred)
 � Flags describing completion (B_ASYNC).

 A ddstrategy routine performs the following functions:

 � Checks the validity of the request (that is, whether the b_blkno value
 is in range). Bad requests are handled by setting an error code
 (usually E10) in the b_error field, setting B_ERROR in the b_flags
 field and calling the iodone routine.

 � Sets up the transfer of a multiple or single block sequenc

 � Orders buffers according to their physical position or location on th
 hardware device.

 � Schedules device I/O immediately by calling the ddstart routine

 � Block strategy routines are responsible for queueing buffers up fo
 I/O. The queue involves pointers and fields in which those pointers
 are put. The strategy routines are allowed to use the avail list
 pointers since a buffer that has pending I/O is not free to be
 re-allocated. In other words, the avail pointer fields are used to
 chain the buffer onto the free buffer list or the device I/O queue
 depending on the state of the buffer.

 --

 ddmbstrategy

AIX Operating System Technical Reference
Block Device Driver Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.3.2 - 1

 ddmbstrategy (flist)
 struct buf *flist;

 Parameter:

 flist A chain of buffers for submission to the strategy routine

 The algorithm of this routine is to take each buffer on the list, validate
 its parameters and insert in onto the request queue. The request will be
 sorted onto the request queue, using an "elevator" algorithm, to minimize
 disk seek operations. The first request is then started if the device is
 idle.

 unit = -1;
 k = 0;
 /* if MBintr starts work on the queue while we are adding
 * items then it is inefficient but not an error
 * the critical section in enque is protected by an spl
 */
 while (flist) {
 bp = flist;
 dev = bp->b_dev;
 nu = drive(dev);
 flist = bp->av_forw;
 bp->av_forw = NULL;

 if ((unit < 0) || (nu == unit)) {
 if ((nu = MBenque(bp)) >= 0) {
 unit = nu;
 k++;
 }
 }

 else {
 printf("MBstrategy: unit=%d and unit=%d on queue ,

 unit,nu);
 bp->b_flags |= B_ERROR;
 iodone(bp);
 }
 }
 if (unit >= 0) {
 s = spl6();

 fi = & MB_info ¦unit¦;
 dp = & fi->fi_tab;
 /* typically MBstart starts the I/O and b_active != 0
 * so we exit. The alternative is that the sio fails
 * and b_active == 0 so we try next block
 */
 debug(FBADBG,("MBstrat: unit=%d active=%d actf=0x%x ,
 unit, dp->b_active, dp->b_actf));
 while ((dp->b_active == 0) && (dp->b_actf != NULL))
 MBstart(fi);
 splx (s);
 }

AIX Operating System Technical Reference
Block Device Driver Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.3.2 - 2

 --

 dddump (AIX PS/2)

 dddump (dev, code, addr, count, offset)
 dev_t dev;
 int code;
 paddr_t addr;
 u_int count;
 off_t offset;

 For both the AIX PS/2 and the AIX/370 device drivers, the dddump entry
 point is called for kernel coredumps to write out a region of memory.
 When dumps are performed, no interrupts are delivered to the system. Dump
 routines must be able to operate by polling for I/O complete rather than
 relying on an interrupt.

 Parameters:

 dev Contains the device's major and minor number. Use the major and
 minor kernel subroutines.

 code has one of the following values:

 DUMP_INIT Initializes the dump (no data) and prepares the device
 to perform the dump. The offset parameter gives the
 total size.

 DUMP_DATA Performs a dump of data pointed to by addr.

 DUMP_END Specifies end of dump (no data). Handled like an
 end-of-file.

 addr Specifies physical address of memory to dump.

 count Specifies amount of memory (in bytes) to dump.

 offset Specifies current byte offset into dumpdev.

 --

 dddump (AIX/370)

 dddump(dumpdev, op, pageaddr, mp, len)
 int op;
 dev_t dumpdev;
 int pageaddr;
 register PTETYPE *mp;
 int len;

 Parameters:

 dumpdev Contains the device's major and minor number.

 op Specifies operation to be performed (B_READ or B_WRITE)

 pageaddr Specifies the relative starting address of memory.

AIX Operating System Technical Reference
Block Device Driver Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.3.2 - 3

 mp Specifies the pointer to a list of sequential page table
 entries.

 len Specifies the length of transfer.

 The dddump routine uses the syncio routine to perform I/O operations
 without accepting interrupts. The blocks of a dump device consist of a
 dump header describing each dump and a dump space map, and a large dump
 area. Each entry in the dump header describes a corresponding dump
 including time, size, the number of entries in the dumpmap, and the
 dumpmap. The dumpmap contains an entry describing each region in the
 dump. An entry is made for this dumps header, the blocks of the user
 structure and all of physical memory.

 For both the AIX PS/2 and the AIX/370 device drivers, the default dump
 device is a dump minidisk set up by the maint utility during system
 installation. The user can override the default by inserting the
 following line into the sysparms stanza of the /etc/system file:

 dumpdev = special_file

 where special_file is the special file of the new dump device.
 --

 ddstart (AIX PS/2)

 ddstart()

 The ddstart entry point is called when the device is idle to determine if
 there is more work to do. The ddstrategy and ddintr routines typically
 invoke ddstart to transfer data from system buffers to the hardware
 device.

 If the task-time portion of the driver detects that the device idle, this
 routine may be called to start it. The ddstart entry point is also called
 by the interrupt handler to start the next request. Then ddstart checks
 whether the device driver is ready to accept another transfer request, and
 if so, it starts the request, usually by sending it a control word.

 The ddstart entry point is not one that is placed in the device switch
 table. It is internal to block device drivers. Most block device drivers
 have ddstart routines, but this is not required.
 --

 ddstart (AIX/370)

 ddstart (deviceinfo);
 devinfo device info

 Parameter:

 deviceinfo Typically a pointer to the unit specific information
 structure.

AIX Operating System Technical Reference
Block Device Driver Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.3.2 - 4

 The activity of the ddstart routine depends on the type of driver. A disk
 driver for example, must customize the CCWs for the validated request
 described by buffer header. This means translating the cylinder and other
 information into request appropriate for a typical disk driver. This
 routine is also responsible for building the IDAW list corresponding to
 the transfer.

 A driver which performs I/O synchronous to the process (that is, the
 process sleeps, or relinquishes its ability to run in the driver until the
 I/O operation completes), might issue the request and set a flag stating
 that a process needed to be awakened (rescheduled for execution) when the
 operation completes.

 A driver performing an operation to or from user virtual space must lock
 the pages involved in the transfer for the duration of the operation. The
 routines physiolock and physiounlock are provided for this purpose. An
 alternate interface is the physio interface which is typically used by
 block device drivers in supporting raw device interfaces. The driver may
 also take a timestamp before initiating the operation.

 The ddstart routine for an AIX/370 driver must be able to handle instances
 when VM or another virtual machine may be using the physical device even
 though the AIX driver has not initiated any work.

 Starting an operation on a busy device can fail if the channel cannot
 support multiple requests, or the channel, control unit or device are
 busy. The driver can detect this type of failure by noting the failure
 occurring when attempting to start the channel program. This is handled
 by performing a sense operation to clear the status and retrying the I/O
 operation up to a fixed number of tries.

 AIX/370 I/O is started using the sio or syncio utility routines. The
 syncio routine acts as a synchronous operation and is only used during
 startup and for getting device status (sense)-- that is, during operations
 which complete in a fixed period of time).

AIX Operating System Technical Reference
Block Device Driver Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.3.2 - 5

 C.4.3.3 Block Device Driver Data Flow

 The following is a description of the data flow for buffers inside a tape
 device driver.

 1. The ddstrategy routine places the buffer on the back of the I/O queue.

 2. If an I/O queue is currently not being processed then call the ddstart
 routine.

 3. The ddstart routine turn on ib_active indicating that it is currently
 processing an I/O queue.

 4. The ddstart routine sends the data in the buffer to the device.

 5. The device interrupts the driver when the buffer has been transferred.

 6. The ddintr routine determines what buffer was processed, removes the
 buffer from the I/O queue, and frees the buffer by calling the iodone
 kernel subroutine.

 7. The ddintr routine calls the ddstart routine.

 The following is an example of how to handle buffers in a tape driver:

 struct iobuf tapetab; /* iobuf for dd */
 .
 .
 .

 /* the strategy routine */
 tapestrategy (new_buf)
 struct buf *new_buf;
 {
 int x;

 .
 .
 .
 /* place the buffer on the back of the I/O queue */
 x = splblkio();
 if (tapetab.ib_actf == NULL)
 tapetab.ib_actf = new_buf;
 else
 tapetab.ib_actl->av_forw = new_buf;

 tapetab.ib_actl = new_buf;

 if (tapetab.ib_active == 0)
 tapestart ();

 splx (x);
 .
 .
 .
 }

AIX Operating System Technical Reference
Block Device Driver Data Flow

¦ Copyright IBM Corp. 1985, 1991
C.4.3.3 - 1

 /* the start routine */
 tapestart ()
 {

 /* check to see if there is work to do */
 if (tapetab.ib_actf == NULL)
 {
 tapetab.ib_active = 0;
 return;
 }

 /* tell everyone that we are busy */
 tapetab.ib_active++;
 .
 .
 .
 /* Do controller specific commands to start I/O
 * on the buffer tapetab.ib_actf */
 }

 /* the interrupt handler */
 tapeintr (vec_num)
 int vec_num;
 {
 struct buf *curbp;

 curbp = tapetab.ib_actf;
 if (error)
 curbp->b_flags| = B_ERROR
 else
 curbp->b_resid = bytesnotxfered;
 .
 .
 .
 iodone (curbp);

 /* remove the spent buffer from the I/O queue
 and initiate the next transfer */
 if (tapetab.ib_actf = spent_buf->av_forw)
 {
 tapestart ();
 }

 }

 The handling of buffers for disks and diskette drives is identical to that
 for tape devices, except that buffers are placed on the I/O queue as based
 on b_cylin in order to minimize disk head searching. Therefore, the
 disksort kernel subroutine is used in ddstrategy as follows:

 struct iobuf disktab;
 .
 .
 .
 diskstrategy (new_buf)

AIX Operating System Technical Reference
Block Device Driver Data Flow

¦ Copyright IBM Corp. 1985, 1991
C.4.3.3 - 2

 struct buf *new_buf;
 {
 int x;

 .
 .
 .

 new_buf-> b_cylin = new_buf->b_blkno /
 Num Sec Per Cyl;
 x = splblkio();
 disksort (&disktab, new_buf);
 splx (x);

 if (tapetab.ib_active == 0)
 tapestart ();
 .
 .
 .

 }

 --

 ddenqueue

 ddenqueue (bp)
 struct buf *bp;

 Parameter:

 bp a buffer pointer representing an operation to be queued for
 asynchronous operations

 The ddenqueue routine is used to queue an operation onto an execution
 queue for a block driver. This routine is typically called from the
 strategy routine, the multi-block strategy routine, or may be a part of
 the strategy routine itself.

 Its responsibility is to verify the request parameters with respect to the
 partition boundaries, requests reading off the end of a partition, verify
 transfer requests, and unit numbers.

 This routine also calls the disksort routine to order the request amongst
 other driver requests to obtain the maximal throughput, by minimizing seek
 distance. The disksort routine uses an elevator algorithm in determining
 optimum ordering.

AIX Operating System Technical Reference
Block Device Driver Data Flow

¦ Copyright IBM Corp. 1985, 1991
C.4.3.3 - 3

 C.4.3.4 Block Device Kernel Subroutines

 The following section details the routines necessary for disk buffer
 handling in terms of:

 � Block I/O buffer allocatio

 � Block I/O completio

 � Buffer cache management

 AIX device drivers (even character device drivers) can get buffers from
 the system supply of available block I/O (disk) buffers.

 Two kernel subroutines allow you to get and release buffers for use by
 your device driver. When disk buffers are used in AIX device drivers, the
 ddopen entry point typically calls geteblk to get the buffers, and ddclose
 calls brelse to return them.

 The Block I/O Completion routines, iowait and iodone, are built on top of
 sleep and wakeup and are used to wait/post otherwise asynchronous block
 I/O.

 The buffer cache management routines included disksort and physio. For
 more information, see "Virtual Address Space Management for DMA Devices"
 in topic C.6.1.6.
 --

 geteblk

 struct buf *geteblk()

 The geteblk kernel subroutine returns the address of a buffer header that
 is not in use. This routine always returns the address of a buffer header
 with an associated data area that is BSIZE bytes long and is page aligned.
 Note that geteblk does not allocate disk data buffers. If no free buffer
 headers are available, geteblk waits for one to become available.
 Therefore, you can call this routine only from the process level, not from
 interrupt context (ddintr).
 --

 brelse

 void brelse (bp)
 struct buf *bp;

 The brelse kernel subroutine frees a specific buffer. This kernel
 subroutine can be called from either interrupt context or process context.

 Parameter:

 bp Is a pointer to the buffer.

 --

 iowait

AIX Operating System Technical Reference
Block Device Kernel Subroutines

¦ Copyright IBM Corp. 1985, 1991
C.4.3.4 - 1

 void iowait (bp)
 struct buf *bp;

 Parameters:

 bp Is a struct buf* which addresses the buffer involved in the
 I/O operation.

 The iowait kernel subroutine is called by the higher levels of the kernel
 I/O system in order to wait for the completion of an I/O operation
 specified by the buffer addressed by the parameter bp. This routine may
 call the sleep routine and therefore must not be called from an interrupt
 handler. The buffer status is stored in u.u_error.
 --

 iodone

 void iodone (bp)
 struct buf *bp;

 The iodone kernel subroutine is called by the device driver when the block
 I/O transfer is complete. The iodone kernel subroutine marks the buffer
 pointed to by the bp parameter to indicate that the I/O has been
 completed. If the B_ASYNC bit of the buffer's b_flags field is set,
 indicating asynchronous I/O, the buffer is unlocked and returned to the
 free list. Otherwise, iodone wakes up any processes that are waiting for
 the buffer. This subroutine handles freeing of buffers and can be called
 from interrupt handlers. A driver should set the b_resid field
 appropriately if an error occurred (B_ERROR) in the b_flags field held
 before calling iodone(). If setting B_ERROR, a specific error code may be
 loaded into b_error. If b_error is left 0, EIO is assumed.
 --

 disksort

 int disksort (disktab, bp)
 struct iobuf *disktab;
 struct buf *bp;

 Parameters:

 disktab Is the address of a struct iobuf which is declared within the
 driver to form the head of the I/O request queue.

 bp Is a pointer to a buffer to add to the block I/O queue.

 The disksort subroutine is called to add a block device I/O request to the
 queue of such requests for a particular device. It is normally called by
 the ddstrategy entry point. The disktab parameter is the head of the
 request queue, and the bp parameter addresses the buf structure containing
 the request. The queue of requests is sorted in ascending order by the
 disksort() routine, in a attempt to reduce disk head movement. The driver
 must initialize the b_cylin field of the buf header bp before calling

AIX Operating System Technical Reference
Block Device Kernel Subroutines

¦ Copyright IBM Corp. 1985, 1991
C.4.3.4 - 2

 disksort since this is the field that disksort uses to order the queue.
 --

 physio

 physio (strategy, bp, dev, flag, checkcnt)

 Parameters:

 strategy Is a pointer to the disk strategy routine for the block
 device.

 bp Is a pointer to the buffer header describing the request to be
 filled.

 dev Is an integer specifying the minor device number.

 flag Specifies the I/O operation to be performed.

 checkcnt Is a pointer to a routine used to enforce restrictions on
 transfer counts.

 The physio kernel subroutine provides the raw I/O interface for block
 device drivers. It validates the request, builds a buffer header, locks
 the process in core, and calls the ddstrategy routine to place buffers on
 the I/O queue.

AIX Operating System Technical Reference
Block Device Kernel Subroutines

¦ Copyright IBM Corp. 1985, 1991
C.4.3.4 - 3

 C.4.4 TTY Device Drivers

 TTY device drivers are special character device drivers that interface to
 slow serial devices like terminals and printers. TTY device drivers use
 line discipline routines to erase a character or line, echo characters,
 and buffer input. The line discipline routines implement the terminfo
 interface for the hardware device.

 Subtopics
 C.4.4.1 TTY Device Driver Data Structures
 C.4.4.2 tty Structures
 C.4.4.3 clist
 C.4.4.4 cblock
 C.4.4.5 ccblocks
 C.4.4.6 ttychars
 C.4.4.7 ttymaps
 C.4.4.8 TTY Device Driver Entry Points
 C.4.4.9 TTY Device Driver Data Flow
 C.4.4.10 Line Discipline Routines
 C.4.4.11 Installing Line Discipline Routines:
 C.4.4.12 TTY Device Driver Kernel Subroutines

AIX Operating System Technical Reference
TTY Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.4.4 - 1

 C.4.4.1 TTY Device Driver Data Structures

 There are several kernel structures that are used by TTY device drivers.
 These structures are:

 � tty structures
 � clists
 � cblocks
 � ccblocks
 � ttychars
 � tty maps.

AIX Operating System Technical Reference
TTY Device Driver Data Structures

¦ Copyright IBM Corp. 1985, 1991
C.4.4.1 - 1

 C.4.4.2 tty Structures

 A tty structure contains all the state information necessary to use an AIX
 TTY device for normal terminal I/O. Each TTY, or terminal device, has a
 tty structure associated with it. This tty structure contains the
 following:

 � Pointers to raw input and canonical queue

 � An output queue that holds all outbound character

 � Character control blocks for the input and output of character

 � Input and output state

 � The current column and ro

 � Link statistic

 � A pointer to the ddproc routine

 � A structure of settable control character

 � Pointers to the process structure that are waiting to read or writ

 � A pointer to device-dependent information

 The number of tty structures potentially allocated in the kernel at any
 one time is governed by the number of serial and parallel ports on the
 PS/2 as well as the ntyunits, ptyunits, and x29units system parameters, as
 set in the /etc/master or /etc/system file.

AIX Operating System Technical Reference
tty Structures

¦ Copyright IBM Corp. 1985, 1991
C.4.4.2 - 1

 C.4.4.3 clist

 A clist (character list) is a specialized data structure used to maintain
 a queue of characters. The clist structure is efficient and cheap
 storage, optimized for character-at-a-time applications, and most
 appropriately used for relatively slow devices such as terminals and
 printers.

 For each clist that you use, you must define a queue header, which is a
 variable of type struct clist. This clist structure is defined in the
 /usr/include/sys/tty.h header file, and it contains the following members:

 struct clist {
 int c_cc; /* Character count */
 struct cblock *c_cf; /* Pointer to first block */
 struct cblock *c_cl; /* Pointer to last block */
 };

 You do not need to be concerned with maintaining the fields in the clist
 header; the character list kernel subroutines do that for you.

AIX Operating System Technical Reference
clist

¦ Copyright IBM Corp. 1985, 1991
C.4.4.3 - 1

 C.4.4.4 cblock

 A cblock (character block) is a small buffer for contiguous characters.
 As defined by the clist structure, clists are ordered lists of cblocks.
 The cblock structure is defined in the /usr/include/sys/tty.h file as
 follows:

 struct cblock {
 struct cblock *c_next; /* Pointer to the next block */
 char c_first; /* Offset to first character */
 char c_list; /* Offset to last character */
 char c_data[CLSIZE]; /* Data */
 };

 A cblock does not need to be completely filled with characters. The
 fields c_first and c_last are zero-based offsets within the c_data array,
 which actually contains the data.

AIX Operating System Technical Reference
cblock

¦ Copyright IBM Corp. 1985, 1991
C.4.4.4 - 1

 C.4.4.5 ccblocks

 A ccblock (character control block) is a small buffer used between the
 interrupt handler and the user's application. A ccblock buffer is used
 during interrupt context to output and input a cblock of data. A ccblock
 has the following elements:

 struct ccblock {
 caddr_t c_ptr; /* Buffer address */
 ushort c_count; /* Character count */
 short c_size; /* Buffer size */
 };

AIX Operating System Technical Reference
ccblocks

¦ Copyright IBM Corp. 1985, 1991
C.4.4.5 - 1

 C.4.4.6 ttychars

 A ttychars structure (user settable control characters) contains control
 characters for a given TTY (terminal device). The elements of ttychars
 are used to cook inbound character streams from the raw queue to the
 canonical queue. Examples of control characters kept in this structure
 are:

 � Interrup

 � Qui

 � Erase last characte

 � Kill entire line

 Some elements of ttychars are also used to control the hardware device.
 For example, ttychars contains the tc_start and tc_stop characters. The
 tc_start character is sent to inform the serial device to continue sending
 data. The tc_stop character is sent over the serial line when the line
 discipline routines determine that the internal buffers have reached a
 certain full threshold.

 The ttychars structure is used primarily by the line discipline routines.

AIX Operating System Technical Reference
ttychars

¦ Copyright IBM Corp. 1985, 1991
C.4.4.6 - 1

 C.4.4.7 ttymaps

 A ttymap structure is used in conjunction with TCSMAP and TCGMAP I/O
 control commands to set and obtain specific keyboard mapping
 characteristics.

AIX Operating System Technical Reference
ttymaps

¦ Copyright IBM Corp. 1985, 1991
C.4.4.7 - 1

 C.4.4.8 TTY Device Driver Entry Points

 TTY device drivers have the same entry points as character device drivers
 plus a ddproc routine and a ddtty entry point.
 --

 ddproc

 ddproc (ptp, cmd)
 struct tty *ptp;
 int cmd

 The ddproc routine in the TTY device driver calls, and is called by, the
 line discipline routines. The line discipline routines can call ddproc
 for any of the following reasons as specified by the cmd parameter:

 T_OUTPUT Start output

 T_TIME End of device timeout (restart output)

 T_SUSPEND Suspend output (after receiving t_stop)

 T_RESUME Resume output (after receiving t_start)

 T_BLOCK Send a t_stop to throttle sender

 T_UNBLOCK Send a t_start to resume sender

 T_RFLUSH Flush t_rbuf

 T_WFLUSH Flush t_tbuf

 T_BREAK Set break condition on the line */

 T_INPUT Start input (usually a no-op).

 The ddproc is not an entry point in the device switch table. It is
 internal to TTY device drivers and the address of ddproc is stored in the
 device's tty structure during initialization of the tty structure.

 The following is a sample ddproc routine adapted from the serial device
 driver in the AIX kernel:

 ddproc(tp, cmd)
 register struct tty *tp;
 {
 register int addr;
 switch (cmd) {

 case T_TIME:
 tp->t_state &= ~TIMEOUT;
 /* tell the transmitter to begin timeout */
 goto start;

 case T_WFLUSH:
 tp->t_tbuf.c_size -= tp->t_tbuf.c_count;
 tp->t_tbuf.c_count = 0;

AIX Operating System Technical Reference
TTY Device Driver Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.4.8 - 1

 /* falls through */
 case T_RESUME:
 tp->t_state &= ~TTSTOP;
 goto start;

 case T_OUTPUT:
 start:
 if (tp->t_state&(TIMEOUT|TTSTOP|BUSY))
 break;
 {
 register struct ccblock *tbuf;

 tbuf = &tp->t_tbuf;
 if (tbuf->c_ptr == NULL || tbuf->c_count == 0) {
 if (tbuf->c_ptr)
 tbuf->c_ptr -= tbuf->c_size
 - tbuf->c_count;
 if (! (CPRES &
 (*linesw[tp->t_line]l_output)(tp)))
 break;
 }
 tp->t_state |= BUSY;
 /* output the character, pointer to by
 *tbuf->c_ptr++, over the line */
 tbuf->c_count--;
 }
 break;

 case T_SUSPEND:
 tp->t_state |= TTSTOP;
 break;

 case T_BLOCK:
 tp->t_state &= ~TTXON;
 tp->t_state |= TBLOCK;
 if (tp->t_state&BUSY)
 tp->t_state |= TTXOFF;

 else
 /* send tp->t_stop over the line */
 break;

 case T_RFLUSH:
 if (!(tp->t_state&TBLOCK))
 break;
 case T_UNBLOCK:
 tp->t_state &= ~(TTXOFF|TBLOCK);
 if (tp->t_state&BUSY)
 tp->t_state |= TTXON;
 else
 /* send tp->t_start over the line */
 break;

 case T_BREAK:
 /* send the break over the line */

 tp->t_state |= TIMEOUT;

AIX Operating System Technical Reference
TTY Device Driver Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.4.8 - 2

 /* start a timeout by calling the timeout routine */
 break;
 }
 }

 --

 ddtty

 ddtty (dev)
 dev_t dev;

 The ddtty entry point returns the address of the tty structure associated
 with a particular tty device or 0.

AIX Operating System Technical Reference
TTY Device Driver Entry Points

¦ Copyright IBM Corp. 1985, 1991
C.4.4.8 - 3

 C.4.4.9 TTY Device Driver Data Flow

 When a TTY device driver receives an inbound character, ddintr places the
 character into the read character control block and calls the input line
 discipline routine.
 Note the following code:

 ddintr (vec_num)
 int vec_num;
 {
 struct tty *tp;

 .
 .
 .

 /* data is lost if there is no room in the ccblock */
 if (tp->t_rbut.c_ptr == NULL)
 return;

 *tp->t_rbuf.c_ptr = c;

 tp->t_rbuf.c_count--;
 (*linesw[tp->t_line].l_input)(tp, L_BUF);

 .
 .
 .

 }

 The line discipline routines maintain the raw input queue clist and
 increment c_ptr.

 The driver's input routine is responsible for handling the translation of
 the break character. The following is an example of break handling:

 if ((c&0377) == 0) {
 if (flg&IGNBRK)
 return;
 if (flg&BRKINT) {
 (*linesw[tp->t_line].l_input)
 (tp, L_BREAK);
 return;
 }
 }

 When an AIX application enters the ddread entry point, the TTY device
 driver calls the l_read line discipline routine. This routine either
 reads the data from the raw input queue or from the canonical queue,
 depending upon the input mode to which the user has set the terminal.

 An outbound data stream enters ddwrite and the TTY device driver calls the
 l_write line discipline routine to place characters on an outbound clist.
 The l_write routine calls the ddproc routine to initiate outputting of the
 outbound data stream. After receiving an interrupt indicating I/O
 completion, ddintr invokes ddproc again to

AIX Operating System Technical Reference
TTY Device Driver Data Flow

¦ Copyright IBM Corp. 1985, 1991
C.4.4.9 - 1

 continue with the next character in the data stream. Note the following
 example:

 ddintr (vec_num)
 int vec_num;
 {
 struct tty *tp;

 .
 .
 .

 if (tp->t_state & BUSY)
 {
 tp->t_state &= ~BUSY;

 ddproc (tp, T_OUTPUT);
 }

 .
 .
 .

 }

AIX Operating System Technical Reference
TTY Device Driver Data Flow

¦ Copyright IBM Corp. 1985, 1991
C.4.4.9 - 2

 C.4.4.10 Line Discipline Routines

 Two standard sets of line discipline routines are provided in the AIX
 kernel: one for terminals and one for line printers. Each of the routines
 is called through the line discipline switch table, linesw. The program
 segment which follows is a method of calling the functions which are
 defined in the /usr/include/sys/conf.h file:

 (*linesw[tp->t_line].l_open)(dev,tp);
 (*linesw[tp->t_line].l_close)(tp);
 (*linesw[tp->t_line].l_input)(tp,code);
 (*linesw[tp->t_line].l_read)(tp);
 (*linesw[tp->t_line].l_write)(tp);
 (*linesw[tp->t_line].l_output)(tp);
 (*linesw[tp->t_line].l_ioctl)(tp,cmd,arg,mode);

 If you are using the printer line disciplines, set the t_line parameter of
 the tty structure to 1 and the t_dev parameter to DD_LP. If you are using
 the tty line disciplines, set t_line to 0 and t_dev to DD_TTY.

 The interface to either the tty or printer line disciplines is transparent
 to the TTY device driver.
 --

 l_open

 l_open (dev, tp)
 dev_t dev;
 struct tty *tp;

 The l_open line discipline routine is called on the first open of a a
 device by the ddopen entry point to perform the following functions:

 � Establish a process group for distribution of units and interrupt fro
 the TTY device

 � Initialize the tty structure

 � Prepare the device for I/O

 Parameters:

 dev Contains the device's major and minor number. Use the major
 and minor kernel subroutines.

 tp Is the pointer to the device's tty structure.

 --

 l_close

 l_close (tp)
 struct tty *tp;

 The l_close line discipline routine clears tty state information on final
 close of the device. This routine is called from the ddclose entry point.

AIX Operating System Technical Reference
Line Discipline Routines

¦ Copyright IBM Corp. 1985, 1991
C.4.4.10 - 1

 Parameter:

 tp Pointer to the device's tty structure.

 --

 l_input

 l_input (tp, code)
 struct tty *tp;

 The l_input line discipline routine performs input character processing
 when called from the ddintr entry point.

 Parameter:

 tp Pointer to the device's tty structure.

 code l_buf to indicate chars received (in the rbuf) or l_break to
 indicate the receipt of a line break.

 This routine places characters on the raw tty input queue, putting in
 delimiters and waking up any process waiting on input from this terminal.
 This routine also echoes characters, if required.
 --

 l_read

 l_read (tp)
 struct tty *tp;

 The l_read line discipline routine performs specific input processing or
 waiting as called by the ddread entry point. This routine transfers
 character from the raw queue, t_rawq, to the canonical queue, t_canq,
 counting delimiters as it goes.

 Parameter:

 tp Pointer to the device's tty structure.

 --

 l_write

 l_write (tp)
 struct tty *tp;

 The l_write line discipline routine performs specific output processing as
 called from ddwrite. This routine copies raw data into the output queue,
 t_outq, and calls the ddproc entry point to initiate the transfer.

 Parameter:

AIX Operating System Technical Reference
Line Discipline Routines

¦ Copyright IBM Corp. 1985, 1991
C.4.4.10 - 2

 tp Pointer to the device's tty structure.

 --

 l_output

 l_output (tp)
 struct tty *tp;

 The l_output line discipline routine places characters on the output
 character control block, t_tbuf and delays or expands tabs. This routine
 is called by the ddproc entry point in the T_OUTPUT case when there are no
 characters left in t_tbuf.

 The l_output routine returns a 0 if there are no more characters to output
 or CPRES.

 Parameter:

 tp Pointer to the device's tty structure.

 --

 l_ioctl

 l_ioctl (tp, cmd, arg, flag)
 struct tty *tp;
 int cmd;
 caddr_t arg;
 int flag;

 The l_ioctl line discipline routine performs specific ioctl handling such
 as initialization and cleanup. This routine is called in the ttiocom
 kernel subroutine and is generally not called from TTY device drivers.

 Parameters:

 tp Pointer to the device's tty structure.

 cmd The parameter from the system call that specifies the
 operation to be performed.

 arg The parameter from the system call that specifies the address
 of a parameter block.

 flag Specifies the flags passed on the open system call. See the
 /usr/include/sys/file.h header file for a complete definition
 of the bits in the flag parameter word.

 --

 ttiocom

 ttiocom (tp, cmd, arg, flag)
 struct tty *tp;
 int cmd;
 caddr_t arg;
 int flag;

AIX Operating System Technical Reference
Line Discipline Routines

¦ Copyright IBM Corp. 1985, 1991
C.4.4.10 - 3

 The l_ioctl line discipline routine performs specific ioctl handling such
 as initialization and cleanup. The ddioctl entry point calls the ttiocom
 routine.

 Parameters:

 tp Pointer to the device's tty structure.

 cmd The parameter from the system call that specifies the
 operation to be performed.

 arg The parameter from the system call that specifies the address
 of a parameter block.

 flag Specifies the flags passed on the open system call. See the
 /usr/include/sys/file.h header file for a complete definition
 of the bits in the flag parameter word.

 Note: The following table shows a list of line discipline commands that
 are currently supported by ttiocom. Those commands followed by one
 asterisk (*) are for terminals only and those commands followed by
 two asterisks (**) are for printers only.

 +--+
 ¦ Figure C-7. Line discipline commands ¦
 +--¦
 ¦ IOCTYPE ¦ IOCINFO ¦ TIOCGETD ¦ TIOCSETD ¦
 +----------------+----------------+-----------------+--------------------¦
 ¦ TIOCHPCL ¦ TIOCGETP ¦ TIOCSETP ¦ TIOCSETN ¦
 +----------------+----------------+-----------------+--------------------¦
 ¦ TIOCOSM ¦ TIOCNOSM ¦ TIOCEXCL ¦ TIOCNXCL ¦
 +----------------+----------------+-----------------+--------------------¦
 ¦ TIOCFLUSH ¦ TIOCSETC ¦ TIOCGETC ¦ TIOCLBIS ¦
 +----------------+----------------+-----------------+--------------------¦
 ¦ TIOCLBIC ¦ TIOCLSET ¦ TIOCLGET ¦ TIOCSLTC ¦
 +----------------+----------------+-----------------+--------------------¦
 ¦ TIOCGLTC ¦ TIOCOUTQ ¦ TIOCSTI ¦ TIOCSTOP ¦
 +----------------+----------------+-----------------+--------------------¦
 ¦ TIOCSTART ¦ TIOCGPAGE ¦ TIOCSPAGE ¦ TCGETA * ¦
 +----------------+----------------+-----------------+--------------------¦
 ¦ TCSETA * ¦ TCSETAW * ¦ TCSETAF * ¦ TCSBRK * ¦
 +----------------+----------------+-----------------+--------------------¦
 ¦ TCXONC * ¦ TCFLSH * ¦ TCGLEN * ¦ TCSLEN * ¦
 +----------------+----------------+-----------------+--------------------¦
 ¦ TCSMAP * ¦ TCGMAP * ¦ LPRGET ** ¦ LPRSET ** ¦
 +----------------+----------------+-----------------+--------------------¦
 ¦ LPRGETV ** ¦ LPRSETV ** ¦ LPRVRMG ** ¦ LPRVRMS ** ¦
 +----------------+----------------+-----------------+--------------------¦
 ¦ LPRUGES ** ¦ LPRUFLS ** ¦ LPRURES ** ¦ LPRGMOD ** ¦
 +----------------+----------------+-----------------+--------------------¦
 ¦ LPRSMOD ** ¦ LPRGETA ** ¦ LPRSETA ** ¦ LPRGTOV ** ¦
 +----------------+----------------+-----------------+--------------------¦
 ¦ LPRSTOV ** ¦ TIONREAD ¦ TCKEP ¦ LDIOC ¦
 +----------------+----------------+-----------------+--------------------¦
 ¦ LDOPEN ¦ LDCLOSE ¦ LDCHG ¦ LDGETT ¦
 +----------------+----------------+-----------------+--------------------¦
 ¦ LDSETT ¦ LDGETDT ¦ ¦ ¦
 +--+

AIX Operating System Technical Reference
Line Discipline Routines

¦ Copyright IBM Corp. 1985, 1991
C.4.4.10 - 4

 Note: I/O control commands for TTY devices are described in "termio" in
 topic 2.5.28.

 --

 ttinit

 void ttinit (tp)
 struct tty *tp;

 Parameter:

 tp points to the device's tty structure.

 The ttinit kernel subroutine initializes a tty structure on the first open
 device. Generally called during the ddopen entry point.
 --

 ttyflush

 void ttyflush (tp, cmd)
 struct tty *tp;
 int cmd;

 Parameter:

 tp points to the device's tty structure.

 The ttyflush kernel subroutine flushes input and/or output queues and
 awakens any processing sleeping on input and/or output.

 You can flush the input queue by setting the FREAD bit in cmd and you can
 flush the output queue by setting FWRITE. You can flush both queues by
 setting cmd equal to FWRITE/FREAD.

AIX Operating System Technical Reference
Line Discipline Routines

¦ Copyright IBM Corp. 1985, 1991
C.4.4.10 - 5

 C.4.4.11 Installing Line Discipline Routines:

 To install a set of line discipline routines into the AIX kernel, perform
 the following setp:

 1. Create a stanza in /etc/master, like the following, that describes the
 line discipline:

 lined:
 type = linedisc
 routines = open, close, read, write, ioctl, init, in, out
 softcft = true
 line = xx
 prefix = lined

 Note: xx in the above example MUST be a unique line discipline
 number.

 2. Cause the line discipline to be linked into the AIX kernel, the next
 time newkernel executes, by placing a stanza similar to the following
 into /etc/system:

 tline:
 driver = lined
 noshow = true
 noipl = true
 nospecial = true

 3. Insert an initialization routine into the line discipline. The
 initialization routine will be called at boot time to install the rest
 of the entry points into the AIX kernel. Note the following sample
 initialization routine for a line discipline:

 linedinit (line)
 int line;

 /* install the line discipline routine into the
 switch table */
 LDISC_INSTALL (line, linedinit, linedopen, linedclose,
 linedread, linedwrite, linedioctl,
 linedin, linedout, nulldev, "lined");

 4. Compile the line discipline using the following command:

 cc -c -DKERNEL -D1386 lined.c

 5. Archive the resulting .o file into the 386lib kernel archive by typing
 the following:

 ar -rv /usr/sys/386/386lib.a lined.o

 6. Rebuild the AIX kernel and Re-IPL

 After the kernel has been rebuilt, with the new line discipline
 routine added, AIX applications can access the line discipline by
 issuing the TCSETA ioctl command to the TTY device driver and setting
 the c_line parameter to the desired line discipline number.

AIX Operating System Technical Reference
Installing Line Discipline Routines:

¦ Copyright IBM Corp. 1985, 1991
C.4.4.11 - 1

 C.4.4.12 TTY Device Driver Kernel Subroutines

 The following kernel subroutines are provided for allocating and handling
 character lists. All of the routines mask the interrupts as needed so you
 can call them from either the process or interrupt level.

 You can mix calls to the getc, putc, getcb and putcb routines. In this
 manner, you can insert characters in the buffer one by one, and remove
 them as a group. You can also insert characters as a group and remove
 them one by one.

 The amount of system memory available for character queues is limited.
 The number of cblocks available to the system is defined by the clists
 keyword of the sysparms stanza in the /etc/master or /etc/system
 directory. All character device drivers must share this pool of memory.
 Therefore, you must limit the number of characters in your queue space to
 a few hundred. When the device is closed, the device driver should make
 certain that all of its character queues are flushed so that the character
 blocks are returned to the system.
 --

 getcf

 struct cblock *getcf()

 The getcf kernel subroutine gets a block from the free list and returns a
 pointer to it. If no blocks are available, getcf returns a NULL pointer.
 If you get buffer space with this routine, you must ensure that you free
 the space when you are through using it.
 --

 putcf

 void putcf (p)
 struct cblock *p;

 The putcf kernel subroutine returns the block specified by the p parameter
 to the free block list.
 --

 getc

 int getc (header)
 struct clist *header;

 The getc kernel subroutine returns the next character from the queue whose
 header is pointed to by the header parameter. If this character is the
 last in the buffer, the buffer is freed. If the buffer is empty, then
 getc returns -1.
 --

 putc

AIX Operating System Technical Reference
TTY Device Driver Kernel Subroutines

¦ Copyright IBM Corp. 1985, 1991
C.4.4.12 - 1

 int putc (c, header)
 char c;
 struct clist *header;

 The putc kernel subroutine puts the character c at the end of the queue
 whose header is pointed to by the header parameter. If the operation is
 successful, a value of 0 is returned. If the queue is full, putc
 automatically allocates new cblocks as needed. When no more blocks are
 available, putc returns -1.
 --

 getcb

 struct cblock *getcb (header)
 struct clist *header;

 The getcb kernel subroutine returns the address of the buffer at the head
 the queue specified by the header parameter, or a NULL pointer if the
 queue is empty. The buffer is removed from the queue as well. If you get
 a buffer with this routine, you must ensure that you free the space when
 you are finished using it.
 --

 putcb

 void putcb (p, header)
 struct cblock *p;
 struct clist *header;

 The putcb kernel subroutine puts the buffer pointed to by p on the tail of
 the queue specified by header. Before calling this routine, you must load
 this buffer with characters and set c_first and c_last. The p parameter
 is the pointer returned by either the getcf or getcb routine.
 --

 getcbp

 getcbp (p, cp, n)
 struct clist *p;
 char *cp;
 int n;

 The getcbp kernel subroutine copies n characters from the clist p to the
 buffer addressed by the cp. This routine frees a cblock from the queue if
 n is greater than the number of characters remaining in the cblock.
 --

 putcbp

 int putcbp (p, cp, n)
 struct clist *p;

AIX Operating System Technical Reference
TTY Device Driver Kernel Subroutines

¦ Copyright IBM Corp. 1985, 1991
C.4.4.12 - 2

 char *cp;
 int n;

 The putcbp kernel subroutine copies characters from a buffer to the clist
 given as an argument. This routine returns the total number of bytes
 transferred to the clist and adds additional cblocks to the clist as
 needed.
 --

 puts

 int puts (buffer, count, clist)
 char *buffer;
 int count;
 struct clist *p;

 The puts kernel subroutine efficiently appends a buffer full of characters
 to a clist.

AIX Operating System Technical Reference
TTY Device Driver Kernel Subroutines

¦ Copyright IBM Corp. 1985, 1991
C.4.4.12 - 3

 C.4.5 Network Device Drivers

 Sockets provide an interface to network device drivers without the use of
 special files. Network device drivers are neither character nor block
 device drivers, although they can support a raw interface, similar to the
 way in which block device drivers can support a raw interface.

 Provided the socket uses the internetwork address family, sockets call the
 kernel socket code which either uses the Transmission Control Protocol
 (TCP) or the User Datagram Protocol (UDP). TCP and UPD both call the
 Internet Protocol (IP) routines in the kernel. IP calls the if_output
 procedure handle of network device drivers to send outbound messages over
 the network or the if_ioctl procedure handle for special processing
 requests. If the network device driver needs to resolve the IP address
 into a physical address, the if_output procedure handle uses the Address
 Resolution Protocol (ARP) routines. The AIX kernel supports ARP routines
 for resolving IP addresses into Ethernet (802.3) and Token-Ring (802.5)
 physical addresses.

 When the network device driver receives an inbound message, it checks to
 see if it is an IP or an ARP message. If the message has an IP address,
 the network device driver places the message onto ipintrq, an input queue
 between all network device drivers and the IP routines, to send the data
 to the IP kernel routines. The IP routines route the data to either the
 TCP, UDP or the Internet Control Message Protocol (ICMP) routines. If the
 inbound message is an ARP message, the network device driver calls the ARP
 routines so that they may update their tables accordingly.

 --

 +-------------------+
 ¦ AIX Applications ¦
 +-------------------+
 +--------------------+
 +-------------------+ +-------------+
 ¦ sockets ¦ ¦system calls ¦
 +-------------------+ +-------------+
 ¦ ¦ USER
 -------------------+--------------------+-------------------
 ¦ ¦
 +-------------------+ ¦ KERNEL
 ¦kernel socket code ¦ ¦
 +-------------------+ ¦
 ¦ ¦ raw
 +-----------+ ¦ interface
 +----+ +----+ +----+ ¦
 ¦tcp ¦ ¦udp ¦ ¦icmp¦ ¦
 +----+ +----+ +----+ ¦
 +-----------+----------+ ¦
 ¦ ¦
 +----+ +----+ ¦
 ¦arp ¦ ¦ ip ¦ ¦
 +----+ +----+ ¦ KERNEL
 ¦ ¦ � ¦
 --------+--------------+-+--------------+-------------------
 ¦ ¦ ¦ ¦
 ¦ if_output¦ ¦ipintrq ¦ DEVICE
 ¦ if_ioctl¦ ¦ ¦ DRIVERS
 ¦ � ¦ +------------+

AIX Operating System Technical Reference
Network Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.4.5 - 1

 +-------------------------+
 ¦ network device drivers ¦ DEVICE
 +-------------------------+ DRIVERS
 ¦
 -------------------+--
 ¦
 +-------------------+ HARDWARE
 ¦ network hardware ¦
 +-------------------+

 --
 Figure C-8. Overview of AIX Network Device Drivers

 Refer to Figure C-8 for an overview of the kernel components that send and
 receive data from network device drivers.

AIX Operating System Technical Reference
Network Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.4.5 - 2

 C.4.6 Network Device Driver Data Structures

 Subtopics
 C.4.6.1 mbufs
 C.4.6.2 Network Interface Structure (ifnet)
 C.4.6.3 IP Address Structures
 C.4.6.4 ARP Structures

AIX Operating System Technical Reference
Network Device Driver Data Structures

¦ Copyright IBM Corp. 1985, 1991
C.4.6 - 1

 C.4.6.1 mbufs

 When an AIX application sends a message to a foreign host, the message
 enters the network device driver formatted in an mbuf chain. The device
 driver formats inbound messages into mbuf chains and sends them to the
 kernel on the ipintrq input queue. Each mbuf in an mbuf chain contains a
 header with the following information:

 � A pointer to the next mbuf element in the chain (m_next)

 � A pointer to the next mbuf chain (m_act)

 � An offset to data m_off)

 � The type of mbuf m_type)

 � The amount of data in the mbuf chain, < MLEN (m_len)

 � A flag determining the type of externally associated buffer mun_type)

 � The free function to call if non mbuf cluster is attached (mun_clfun)

 � The argument passed to the free function if a non mbuf cluster is
 attached (mun_clarg).

 Each mbuf chain designates one inbound or outbound message. Multiple mbuf
 chains may be linked together as shown in Figure C-9.

 --

 mbuf chain 1
 mbuf 1.1 mbuf 1.n
 +--------------+ +--------------+
 ¦ +--- ... --- ¦ +- ¦
 ¦ header ¦ ¦ header ¦
 ¦ ¦ ¦ +-- ¦
 +--------------¦ +--------------¦
 ¦ MLEN bytes ¦ ¦ MLEN bytes ¦ ¦
 +--------------+ +--------------+ ¦
 �
 mbuf chain 2 ¦
 +--+
 ¦
 � mbuf 2.1 mbuf 2.m
 +--------------+ +--------------+
 ¦- ¦ +--- ... --- ¦ ¦
 ¦ header ¦ ¦ header ¦
 ¦ ¦ ¦ ¦
 +--------------¦ +--------------¦
 ¦ MLEN bytes ¦ ¦ MLEN bytes ¦
 +--------------+ +--------------+

 --
 Figure C-9. Overview of mbuf Chains

 When the kernel determines that an outbound message is greater than
 mincluster bytes in length, or when the network device driver determines
 that an inbound message is greater than mincluster bytes in length, the
 mbuf chain is made up of mbuf page clusters or a non-mbuf pool buffer.

AIX Operating System Technical Reference
mbufs

¦ Copyright IBM Corp. 1985, 1991
C.4.6.1 - 1

 When an element in an mbuf chain is an mbuf page cluster, the entire mbuf
 structure, including the data area, is considered the header to the mbuf
 cluster. The kernel uses a flag to the header field to determine whether
 this buffer contains an attached mbuf cluster or a non-mbuf pool buffer.
 Figure C-10 illustrates mbuf page clusters.

 --

 mbuf 1 mbuf 1
 +--------------+ +--------------+
 ¦�-¦ +--- ... --- ¦ +- ¦
 ¦ ¦ header ¦ ¦ header ¦
 ¦ ¦ ¦ ¦ +
 ¦ +--------------¦ +--------------¦
 ¦ ¦ MLEN bytes ¦ ¦ MLEN bytes ¦
 ¦ +--------------+ +--------------+
 ¦
 ¦
 ¦ +--------------+ +--------------+
 ¦ ¦ mbuf cluster¦ ¦ associated ¦
 ¦- ¦ CLBYTES in ¦ or ¦ kernel ¦
 ¦ length ¦ ¦ buffer ¦
 +--------------+ +--------------+

 --
 Figure C-10. Overview of mbuf Page Clusters

AIX Operating System Technical Reference
mbufs

¦ Copyright IBM Corp. 1985, 1991
C.4.6.1 - 2

 C.4.6.2 Network Interface Structure (ifnet)

 Each port of each network adapter has a network interface structure
 (ifnet) associated with it. An ifnet structure contains general network
 interface information, output mbuf pointers, procedure handles, and link
 statistics. The ddinit routine supplies the general information
 concerning the network interface to ifnet and then attaches it to the AIX
 kernel via the if_attach kernel subroutine. The ifnet structure is
 defined in the /usr/include/sys/if.h file.

 The following fields in the ifnet structure are of interest to network
 device drivers:

 � Interface name if_name). All ports supported by a device driver have
 the same interface name.

 � Sub unit. For each network adapter of a given interface name, this i
 a unique number (if_unit). For example, the AIX Token-Ring device
 driver supports up to two Token-Ring adapters. The adapter in the
 lowest slot number is assigned an if_unit of 0 and the next Token-Ring
 adapter is assigned an if_unit equal to 1.

 � Maximum transmission unit if_mtu)

 � Link status flags if_flags)

 � Address of the following procedure handles

 if_init The initialization entry point (same as the ddinit
 routine)

 if_output The routine called by the AIX kernel to handle all
 outbound messages

 if_ioctl The routine called by the AIX kernel to handle special
 requests

 if_reset A routine not supported by AIX

 if_watchdog A watchdog timer

 � The number of seconds before the if_watchdog routine is called
 (if_timer).

 The if_addrlist field points to a linked list of structures that describe
 the addresses of all foreign hosts with which the interface structure is
 currently communicating.

 The network device driver maintains a queue of outbound mbuf chains in the
 ifnet structure. The following information on outbound mbuf chains is
 stored in the ifnet structure:

 � List header if_snd.ifq_head)

 � List trailer if_snd.ifq_tail)

 � Number of chains if_snd.ifq_maxlen)

 � Maximum length if_snd.ifq_len)

AIX Operating System Technical Reference
Network Interface Structure (ifnet)

¦ Copyright IBM Corp. 1985, 1991
C.4.6.2 - 1

 The ifnet structure also holds several link statistics which network
 drivers should maintain. They include:

 if_ipackets Increment for every input packet received on a given network
 device.

 if_ierrors Increment every time an input error occurs on a given
 network device.

 if_opackets Increment for every output packet transmitted on a given
 network device.

 if_oerrors Increment every time an output error occurs on a given
 network device.

 if_collisions Increment every time a collision occurs on output (only
 relevant for CSMA interfaces such as Ethernet).

AIX Operating System Technical Reference
Network Interface Structure (ifnet)

¦ Copyright IBM Corp. 1985, 1991
C.4.6.2 - 2

 C.4.6.3 IP Address Structures

 The sockaddr and sockaddr_in structures contain information that describes
 the address of the foreign host. The address of the destination is passed
 to if_output in the sockaddr structure, which is a generalized version of
 an address structure. The sockaddr structure is defined in the
 /usr/include/sys/socket.h file as follows:

 struct sockaddr {
 u_short sa_family; /* address family */
 char sa_data[14]; /* up to 14 bytes of direct address */
 }

 Since AIX currently only supports outbound messages that have the internet
 address AF_INET, sockaddr can be cast to sockaddr_in, the format of an
 internet address. The sockaddr_in structure is defined in the
 /usr/include/sys/in.h file as follows:

 struct sockaddr_in {
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr; /* the actual internet address of
 foreign host */
 char sin_zero[8];
 };

 Two additional IP address structures are ifaddr and in_ifaddr When the
 PS/2 first attempts to establish a connection to a foreign host, the AIX
 kernel calls if_ioctl with the SIOCSIFADDR command. An ifaddr structure
 is sent to the if_ioctl procedure handle. This structure contains the
 sockaddr structure of the foreign host address.
 The ifaddr structure is defined in the /usr/include/sys/if.h file as
 follows:

 struct ifaddr {
 struct sockaddr ifa_addr; /* address of interface */
 union {
 struct sockaddr ifu_broadaddr;
 struct sockaddr ifu_dstaddr;
 } ifa_ifu;
 #define ifa_broadaddr ifa_ifu.ifu_broadaddr /* broadcast address */
 #define ifa_dstaddr ifa_ifu.ifu_dstaddr /* other end
 of p-to-p link */
 struct ifnet *ifa_ifp; /* back-pointer to interface */
 struct ifaddr *ifa_next; /* next address for interface */
 };

 The if_addrlist field in the ifnet structure contains a pointer to a
 linked list of ifaddr structures.

AIX Operating System Technical Reference
IP Address Structures

¦ Copyright IBM Corp. 1985, 1991
C.4.6.3 - 1

 C.4.6.4 ARP Structures

 Network device drivers and ARP routines share a structure called arpcom.
 This structure is defined in the if_ieee802.h file as follows:

 struct arpcom {
 struct ifnet ac_if; /* network-visible interface */
 u_char ac_lanaddr[LAN_ADDR_SIZE]; /* LAN hardware address */
 struct in_addr ac_ipaddr; /* copy of ip address */
 };

 ac_if points to the ifnet structure for the particular adapter while
 ac_lanaddr and ac_ipaddr respectively contain the physical and IP address
 of a given network interface unit.

 The relationship among arpcom, ifnet, and ifaddr is illustrated in
 Figure C-11.

 --

 arpcom ifnet
 +-------------+ +-------------+
 ¦ ac_if +-- ¦ if_addrlist +-- ¦
 ¦ ac_lanaddr ¦ ¦ . ¦
 ¦ ac_ipaddr ¦ ¦ . ¦
 +-------------+ +-------------+

 ifaddr ifaddr
 +-------------+ +-------------+
 ¦--- ¦ ifa_next +-- ... --- ¦ ifa_next ¦
 ¦ . ¦ ¦ . ¦
 ¦ . ¦ ¦ . ¦
 +-------------+ +-------------+

 --
 Figure C-11. Relationship among the arpcom, ifnet and ifaddr Structures

 Two additional ARP structures are arptab and ie5_arptab. The arptab
 structure contains the internet to the physical address resolution table
 for Ethernet. The ie5_arptab structure contains the resolution table for
 Token-Ring. Both tables are defined in the /usr/include/sys/if_ieee802.h
 file. The format of the two resolution tables is as follows:

 struct arptab {
 struct in_addr at_iaddr; /* internet address */
 u_char at_lanaddr[LAN_ADDR_SIZE]; /* LAN address */
 u_char at_timer; /* minutes since last reference */
 u_char at_flags; /* flags */
 struct mbuf *at_hold; /* last packet until resolved/timeout */
 };

 struct ie5_arptab {
 struct in_addr at_iaddr; /* internet address */
 u_char at_traddr[6]; /* token ring address */
 u_char at_timer; /* minutes since last reference */

AIX Operating System Technical Reference
ARP Structures

¦ Copyright IBM Corp. 1985, 1991
C.4.6.4 - 1

 u_char at_flags; /* flags */
 u_short at_rcf; /* route control field */
 u_short at_seg[8]; /* routing info */
 struct mbuf *at_hold; /* last packet until resolved/timeout */
 };

 For each foreign host from which AIX is sending and receiving packets,
 there is an arptab table entry. When IP sends the SIOCSIFADDR command to
 the if_ioctl procedure handle, the network device driver calls the
 arpwhohas kernel subroutine. This routine sends an ARP message to all
 nodes in the network to determine the physical address of the internet
 address. When the node of interest responds, the ARP routines delete the
 old entry, if one exists, for the foreign host and create a new table
 entry.

 When the IP output routine calls the if_output routine with a message
 having an IP header, if_output calls the arpresolve kernel subroutine.
 This subroutine searches the arptab table for the physical address
 corresponding with the internet address of the foreign host. If
 arpresolve does not find an entry in the arptab table for the foreign
 host, it saves the outbound message and then calls the arpwhohas routine.

 If the host-to-host communication has been inactive for the number of
 minutes specified by at_timer minutes, the ARP routines delete the entry
 from the arptab table.

 The values of at_flags are defined in the /usr/include/sys/if_arp.h file
 as follows:

 ATF_INUSE Entry in use.

 ATF_COM Completed entry (enaddr valid). This tells the ARP routines
 if the arptab table entry has a local interface, that is,
 whether an ifaddr structure associated with the foreign host
 has been placed into the linked list pointed to by
 if_addrlist.

 ATF_PERM Permanent entry.

 ATF_PUBL Publish entry (respond for other host).

 ATF_USETRAILERS
 Has requested trailers.

 Another ARP structure is lan_arp. This structure specifies the broadcast
 frame that is used by the Ethernet device driver to resolve the physical
 address, and is defined in the /usr/include/sys/if_ieee802.h file.

AIX Operating System Technical Reference
ARP Structures

¦ Copyright IBM Corp. 1985, 1991
C.4.6.4 - 2

 C.4.7 Network Device Driver Procedure Handles

 This section describes the network device driver procedure handles.
 --

 dd_output

 dd_output (ifp, m0, dst)
 struct ifnet *ifp;
 struct mbuf *m0;
 struct sockaddr *dst;

 The dd_output routine takes work from the ifnet output queue and initiates
 the transmission of data over the network. The address of the dd_output
 routine is placed into the if_output field of the ifnet structure before
 the initial if_attach routine. The dd_output routine is then called
 indirectly through the ifnet structure by the kernel IP routines.

 Parameters:

 ifp Pointer to the request's network interface structure.

 m0 Pointer to the mbuf chain containing the data to be sent over
 the network.

 dst Pointer to the address structure of the destination.

 Only three address families, as specified by dst->sa_family, are currently
 supported: AF_INET, AF_UNSPEC, and AF_ARP. The AF_INET messages come from
 the IP routines and the AF_UNSPEC and the AF_ARP messages are generated by
 the ARP routines.

 AF_INET messages for Token-Ring and Ethernet must have their internet
 addresses translated by the arpresolve kernel subroutine. The dd_output
 routine creates a real header, usually containing the physical address of
 the host and destination and the packet type. This routine then allocates
 an mbuf, copies the real header into the mbuf and then places the mbuf on
 the front of m0.

 The arpresolve routine also informs the network device driver whether or
 not to generate a trailer along with the outbound message. If a trailer
 is to be generated, then dd_output allocates an mbuf chain, inserts the
 trailer in the chain and then places the mbuf at the back of m0.

 The AF_UNSPEC and AF_ARP messages are used by ARP to resolve internet
 addresses. These types of messages have their physical addresses already
 translated, and they contain the appropriate header and trailer. The
 AF_UNSPEC and AF_ARP messages are thus not manipulated by dd_output.

 After the outbound message has been fully constructed, the dd_output
 routine places the message on the outbound queue pointed to by
 ifp->if_snd. Provided the message is queued successfully, this routine
 then calls the start routine to send the message over the link.

 If an error occurs, the if_output routine can return one of the error
 codes for IPC/network devices as listed in the /usr/include/sys/errno.h
 file.

AIX Operating System Technical Reference
Network Device Driver Procedure Handles

¦ Copyright IBM Corp. 1985, 1991
C.4.7 - 1

 The following is the dd_output routine for the Token-Ring device driver:

 tk_output(ifp, m0, dst)
 struct ifnet *ifp;
 struct mbuf *m0;
 struct sockaddr *dst;
 {
 register struct lan_llc_header *lh;
 register off;
 int type;
 struct lan_arp *ah;
 struct mbuf *m = m0;
 struct sockaddr_802_5 sa_tr;
 struct sockaddr_802_5 *sap = &sa_tr;
 struct in_addr idst;
 struct tk_softc *tk_softc;
 int error, usetrailers;
 short snap_type;
 int hdr_len, mac_len, llc_len;
 struct ie2_llc_hdr *llcp;
 struct ie5_mac_hdr *macp;
 spl_t s;

 /* Make sure that the net is up and running */
 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) {
 error = ENETDOWN;
 goto bad;
 }

 /* Figure out the MAC destination address */
 switch (dst->sa_family) {
 case AF_INET:
 idst = ((struct sockaddr_in *) dst)->sin_addr;
 if (!ie5_arpresolve(&tk_softc->es_ac,m,&idst,sap,&usetrailers))
 return 0;
 off = ntohs((u_short)mtod(m, struct ip *)->ip_len) - m->m_len;
 if (usetrailers && off > 0 && (off & 0x1ff) == 0 &&
 m->m_off >= MMINOFF + 2 * sizeof (u_short)) {
 type = ETHERTYPE_TRAIL + (off>>9);
 m->m_off -= 2 * sizeof (u_short);
 m->m_len += 2 * sizeof (u_short);
 *mtod(m, u_short *) = htons((u_short)LANTYPE_IP);
 *(mtod(m, u_short *) + 1) = htons((u_short)m->m_len);
 goto gottrailertype;
 }
 off = 0;
 goto gottype;

 case AF_UNSPEC:
 debug(TOKENDBG, ("tk_ipc_output: AF_UNSPEC\n"));

 sap = (struct sockaddr *) dst;
 goto gottype;
 default:
 error = EAFNOSUPPORT;
 return
 }

AIX Operating System Technical Reference
Network Device Driver Procedure Handles

¦ Copyright IBM Corp. 1985, 1991
C.4.7 - 2

 gottrailertype:

 /*
 * Packet to be sent as trailer: move first packet
 * (control information) to end of chain.
 */
 while (m->m_next)
 m = m->m_next;
 m->m_next = m0;
 m = m0->m_next;
 m0->m_next = 0;
 m0 = m;

 gottype:
 /*
 * Add local net header.
 *
 * Calculate the hdr length, ie5_mac_hdr + ie2_llc_hdr.
 */
 macp = &sap->sa_mac ;
 mac_len = mac_size(macp) ;
 llc_len = sizeof(struct ie2_llc_hdr) ;
 hdr_len = mac_len + llc_len ;

 /*
 * Find enough room for the headers.
 */
 if ((m0->m_off > MMAXOFF) || (MMINOFF + hdr_len > m0->m_off)) {
 m = m_get(M_DONTWAIT, MT_HEADER);
 if (m == 0) {
 error = ENOBUFS;
 goto bad ;
 }
 m->m_next = m0;
 m0 = m ;
 m0->m_off = MMINOFF;
 m0->m_len = hdr_len ;
 } else {
 m0->m_off -= hdr_len ;
 m0->m_len += hdr_len ;
 }

 /*
 * Fill in the mac header.
 */
 macp = mtod(m, struct ie5_mac_hdr *);
 bcopy((caddr_t)&sap->sa_mac, (caddr_t)macp, mac_len) ;

 /*
 * Fill in the llc header.
 */
 llcp = mac_to_llc(macp) ;
 bcopy((caddr_t)&sap->sa_llc, (caddr_t)llcp, llc_len) ;

 s = splimp();
 if (IF_QFULL(&ifp->if_snd)) {
 IF_DROP(&ifp->if_snd);
 error = ENOBUFS;

AIX Operating System Technical Reference
Network Device Driver Procedure Handles

¦ Copyright IBM Corp. 1985, 1991
C.4.7 - 3

 splx(s);
 goto qfull;
 }
 IF_ENQUEUE(&ifp->if_snd, m);
 tk_ipc_ostart(ifp);
 splx(s);
 return 0;
 qfull:
 m0 = m;
 bad:
 m_freem(m0);
 return error;
 }

 --

 dd_ostart

 dd_ostart (ifp)
 zstruct ifnet *ifp;

 The dd_ostart routine is called when the device driver is idle to
 determine if there is more work to be done. The dd_output and ddintr
 routines typically call dd_ostart to transfer the next mbuf chain for a
 particular interface.

 The dd_ostart routine checks to see that the device is ready, that is
 there is no transfer currently going on, and that there is an mbuf chain
 waiting to be sent in ifp->if_snd. If all of these conditions are true,
 dd_ostart removes the mbuf chain from the output queue, copies it to
 adapter memory, initiates the transfer over the network, frees the chain,
 and then increments ifp->if_opackets.

 dd_ostart is not a procedure handle. It is internal to the network device
 driver.

 Note the following example:

 dd_ostart(ifp)
 struct ifnet *ifp;
 {
 spl_t s;
 struct mbuf *m;

 /* check to make sure that we have a token ring board */

 /* set a global flag indicating that the board is busy */

 /* dequeue the mbuf chain */
 s = splimp();
 IF_DEQUEUE(&ifp->if_snd, m);
 splx(s);

 /* make sure that there is work to do */
 if (m == NULL) {
 /* set a global flag indicating that the board is not currently

AIX Operating System Technical Reference
Network Device Driver Procedure Handles

¦ Copyright IBM Corp. 1985, 1991
C.4.7 - 4

 processing a buffer */
 return;
 }

 /* copy the mbuf chain to the adapter */

 m_freem(m);

 ++ifp->if_opackets;
 }

 Subtopics
 C.4.7.1 Input Processing

AIX Operating System Technical Reference
Network Device Driver Procedure Handles

¦ Copyright IBM Corp. 1985, 1991
C.4.7 - 5

 C.4.7.1 Input Processing

 There is no input processing procedure handle. This is because inbound
 messages are handled by the ddintr routine. This routine merely queues
 inbound messages to the IP routines or hands them to the ARP routines for
 processing.

 The interrupt handler should get the packet header and determine if the
 packet is either a LANTYPE_IP or a LANTYPE_ARP. If the message is a
 LANTYPE_IP, then the interrupt handler should perform actions similar to
 the following:

 1. Increment if_ipackets

 2. Copy the data frame into an mbuf chain

 3. Call the IF_ENQUEUE routine to place the mbuf chain on the input queue

 4. Notify the kernel that there is data to read by calling the
 schnednetisr kernel subroutine.

 If the input is ARP protocol, simply call the arpinput routine to place
 the data onto the input queue.

 The following input handler is based on the Token-Ring device driver:

 dd_input()
 lbrc.
 struct ifnet *if;
 struct arpcom *arper;
 struct mbuf *m = NULL;
 int packet_type;
 spl_t s;
 char *all_data;
 char *addr_of_data,
 int data_len;
 extern struct mbuf *tkget();

 /* clear the interrupt */

 /*
 * determine the length of the received packet.
 */

 /* let the adapter know that these receive buffers are free */
 tk_qasb(tk_board, RECEIVED_DATA, recv_buffer_addr);

 /* store the packet header. Store the packet type in
 packet_type, the address of the data beyond
 the header in addr_of_data, the length
 of the data in data_len, set the interface
 pointer to if, and the arpcom struct to arper. */

 switch (packet_type){
 case LANTYPE_IP:

 m = tkget(addr_of_data, data_len, if);
 if (m == NULL)

AIX Operating System Technical Reference
Input Processing

¦ Copyright IBM Corp. 1985, 1991
C.4.7.1 - 1

 break;
 if (IF_QFULL(&ipintrq)) {
 IF_DROP(&ipintrq);
 m_freem(m);
 break;
 }
 IF_ENQUEUE(&ipintrq, m);
 schednetisr(NETISR_IP);
 break;
 case LANTYPE_ARP:

 ie5_arpinput(arper, all_data);
 break;
 }
 }

 struct mbuf *
 tkget(addr, totlen, ifp)
 register u_char *addr;
 register int totlen;
 struct ifnet *ifp;
 {
 register int len;
 register struct mbuf *m;
 struct mbuf *top = NULL, **mp = ⊤
 u_char *mcp;

 ++ifp->if_ipackets;

 while (totlen > 0) {
 MGET(m, M_DONTWAIT, MT_DATA);
 if (m == NULL)
 goto bad;
 len = totlen;
 if (ifp != NULL)
 len += sizeof(ifp);
 if (len >= mincluster) {
 MCLGET(m);
 if (m->m_len == CLBYTES)
 m->m_len = len = MIN(CLBYTES, len);
 else
 m->m_len = len = MIN(MLEN, len);
 }
 else {
 m->m_len = len = MIN(MLEN, len);
 m->m_off = MMINOFF;
 }

 mcp = mtod(m, u_char *);
 if (ifp != NULL) {
 * (mtod(m, struct ifnet **)) = ifp;
 mcp += sizeof(ifp);
 len -= sizeof(ifp);
 ifp = NULL;
 }
 bcopy(addr, mcp, len);
 addr += len;
 *mp = m;
 mp = &m->m_next;
 totlen -= len;

AIX Operating System Technical Reference
Input Processing

¦ Copyright IBM Corp. 1985, 1991
C.4.7.1 - 2

 }
 return top;
 bad:
 m_freem(top);
 return NULL;
 }

 --

 dd_ifioctl

 dd_ifioctl (ifp, cmd, data)
 struct ifnet *ifp;
 int cmd;
 caddr_t data;

 The dd_ifioctl routine processes ioctl requests to the network device
 driver.

 Parameters:

 ifp Pointer to the request's network interface structure.

 cmd Command to perform. Valid commands are:

 SIOCSIFADDR
 Set the ifnet address. For those protocols requiring ARP, the
 SIOCSIFADDR command determines the physical address of the
 foreign host by calling the arpwhohas kernel subroutine. This
 routine broadcasts a LANTYPE_ARP message to every node in the
 network to determine if the foreign host exists. If it does,
 the foreign host responds with an ARP message containing its
 physical address.

 SIOCSIFFLAGS
 Set the ifnet flags. As specified in the
 /usr/include/sys/if.h file, the values for flags can be as
 follows:

 IFF_UP
 Interface is up.

 IFF_BROADCAST
 Broadcast address valid.

 IFF_DEBUG
 Turn on debugging.

 IFF_LOOPBACK
 Is a loopback net. Not used by
 user-generated network device drivers.

 IFF_POINTOPOINT
 Interface is point-to-point link.

 IFF_NOTRAILERS
 Avoid use of trailers.

AIX Operating System Technical Reference
Input Processing

¦ Copyright IBM Corp. 1985, 1991
C.4.7.1 - 3

 IFF_RUNNING
 Resources allocated.

 IFF_NOARP
 No address resolution protocol.

 IFF_PROMISC
 Receive all packets.

 IFF_ALLMULTI
 Receive all multicast packets.

 IFF_ETHERNET
 Is an Ethernet device.

 IFF_IEEE
 IEEE 802 style Ethernet.

 IFF_ALLCAST
 Global broadcast for Token-Ring.

 IFF_NOTCF
 Not capable of forming a TCF network
 connection.

 data Cast to ifaddr structure if issuing the SIOCSIFADDR command; not used
 by the SIOCSIFFLAGS command.

 The following is a sample dd_ifioctl routine that is based on the
 Token-Ring device driver:

 tk_ifioctl(ifp, cmd, data)
 struct ifnet *ifp;
 int cmd;
 caddr_t data;
 {
 register struct ifaddr *ifa = (struct ifaddr *) data;
 int error = 0;
 struct tk_softc softc; /* IPC interface structure */

 switch (cmd) {
 case SIOCSIFADDR:
 ifp->if_flags |= IFF_UP;

 switch (ifa->ifa_addr.sa_family) {
 case AF_INET:
 ((struct arpcom *)ifp)->ac_ipaddr=IA_SIN(ifa)->sin_addr;
 arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr);
 break;
 }

 /* FALLS THROUGH */
 case SIOCSIFFLAGS:
 if (ifp->if_flags & IFF_UP) {
 if (ifp->if_flags & IFF_RUNNING)
 break;
 else {
 /* bring up the link */
 }ifp->if_flags |= IFF_RUNNING;

AIX Operating System Technical Reference
Input Processing

¦ Copyright IBM Corp. 1985, 1991
C.4.7.1 - 4

 } else {
 if (softc.es_if.if_flags & IFF_RUNNING) {
 /* close down the link */
 } ifp-> if_flags & = ~IFF_RUNNING;
 }
 break;

 default:
 error = EINVAL;
 break;
 }
 return error;
 }

 --

 dd_watchdog

 dd_watchdog (if_unit)
 int if_unit;

 The dd_watchdog routine can be used to periodically check status and
 states of the link. This routine is called after the time (in seconds)
 specified by if_timer has expired. The dd_watchdog routine does not
 affect performance. It is called internally, not as a result of socket
 calls from the user.

 When you enter dd_watchdog, the value of if_timer is set to 0. You can
 reset the timer by setting if_timer to a nonzero value. After the value
 of if_timer expires, dd_watchdog is called again. The address of the
 dd_watchdog routine should be placed into the if_watchdog field of the
 ifnet structure before the if_attach is called in ddinit.

AIX Operating System Technical Reference
Input Processing

¦ Copyright IBM Corp. 1985, 1991
C.4.7.1 - 5

 C.4.8 Kernel Subroutines for Network Device Drivers

 Subtopics
 C.4.8.1 mbuf Handling

AIX Operating System Technical Reference
Kernel Subroutines for Network Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.4.8 - 1

 C.4.8.1 mbuf Handling

 There are two ways to manipulate mbuf chains: macros and routines. Macros
 are used for high performance and routines have more general purposes with
 slightly more overhead.

 During any mbuf operation mask network interrupts by using the splimp
 routine.
 --

 MGET

 MGET (m, canwait, type)
 struct mbuf *m;
 int canwait;
 int type;

 The MGET kernel subroutine gets a free mbuf.

 Parameters:

 canwait One of the following values:

 M_DONTWAIT Return immediately if there is no buffer available.

 M_WAIT Wait for a buffer to become available.

 type One of the following values:

 MT_FREE Should be on free list

 MT_DATA Dynamic (data) allocation

 MT_HEADER Packet header

 MT_SOCKET Socket structure

 MT_PCB Protocol control block

 MT_RTABLE Routing tables

 MT_HTABLE IMP host tables

 MT_ATABLE Address resolution tables

 MT_SONAME Socket name

 MT_ZOMBIE Zombie process status

 MT_SOOPTS Socket options

 MT_FTABLE Fragment reassembly header

 MT_RIGHTS Access rights

 MT_IFADDR Interface address

 On return, m is set a pointer to an mbuf; otherwise to 0 indicating an

AIX Operating System Technical Reference
mbuf Handling

¦ Copyright IBM Corp. 1985, 1991
C.4.8.1 - 1

 error.
 --

 m_get

 struct mbuf *
 m_get (canwait, type)
 int canwait, type;

 The m_get kernel subroutine performs the same function as MGET except that
 it returns m. The canwait and type parameters are the same as in MGET.
 --

 m_getclr

 struct mbuf *
 m_getclr (canwait, type)
 int canwait, type;

 The m_getclr kernel subroutine performs the same function as m_get except
 that it also clears the buffer area after the mbuf is allocated. The
 canwait and type parameters are the same as in MGET.
 --

 MFREE

 MFREE (m, n)
 struct mbuf *m, *n;

 The MFREE kernel subroutine frees an mbuf from the top of an mbuf chain.

 Parameters:

 m Pointer to the top of the mbuf chain.

 n Pointer to the top of the mbuf chain after the mbuf has been
 freed.

 --

 m_free

 struct mbuf *
 m_free (m)
 struct mbuf *m;

 The m_free kernel subroutine performs the same function as MFREE, except
 that it returns n.
 --

 m_freem

AIX Operating System Technical Reference
mbuf Handling

¦ Copyright IBM Corp. 1985, 1991
C.4.8.1 - 2

 void m_freem (m)
 struct mbuf *m;

 The m_freem kernel subroutine frees all mbufs in an mbuf chain.
 --

 MCLALLOC

 MCLALLOC (m, canwait)
 struct mbuf *m;
 int canwait;

 The MCALLOC kernel subroutine allocates an mbuf page cluster, containing
 CLBYTES of data space. Currently, the number of page clusters for AIX
 must be 1. Refer to "MGET" for the values of the canwait parameter.

 Returns the pointer in m.
 --

 MCLFREE

 MCLFREE (m)
 struct mbuf *m;

 The MCLFREE kernel subroutine frees mbuf page clusters allocated by
 MCLALLOC.
 --

 MCLGET

 MCLGET (m)
 struct mbuf *m;

 The MCLGET kernel subroutine allocates an mbuf page cluster and then
 attaches the cluster onto the mbuf chain pointed to by m. Note that the
 mlen is set to CLBYTES on success and to 0 on failure (that is, if no mbuf
 page clusters are available).
 --

 mclgetx

 mclgetx (fun, arg, addr, len, wait)
 int (*fun)(), arg, len, wait;
 caddr_t addr;

 The mclgetx kernel subroutine allocates an mbuf header and then attaches
 the associated buffer to it. Saves the de-allocation function and
 argument to the mbuf header.
 --

AIX Operating System Technical Reference
mbuf Handling

¦ Copyright IBM Corp. 1985, 1991
C.4.8.1 - 3

 IF_ENQUEUE

 IF_ENQUEUE (ifq, m)
 struct ifnet *ifq;
 struct mbuf *m;

 The IF_ENQUEUE kernel subroutine places an mbuf chain onto the back of an
 ifnet queue. Refer to the schednetisr kernel subroutine for processing of
 inbound messages.
 --

 schnednetisr

 #include <netisr.h>
 schnednetisr (pup_level)
 int pup_level;

 The schnednetisr kernel subroutine generates a software interrupt to the
 4.3BSD protocol handling routines inside the kernel to process an inbound
 network message that has been placed into an mbuf chain.

 Parameter:

 pup_level Indicates the protocol of the incoming message and may be one
 of the following values:

 NETISR_RAW unspecified protocol

 NETISR_IP internetwork: UDP, TCP

 NETISR_IMP arpanet imp (Internet Message Protocol)
 addresses

 NETISR_NS XEROX NS protocols.

 --

 IF_DEQUEUE

 IF_DEQUEUE (ifq, m)
 struct ifnet *ifq;
 struct mbuf *m;

 The IF_DEQUEUE kernel subroutine removes an mbuf chain from an ifnet
 queue. This subroutine must be used before MFREE or m_freem.
 --

 IF_PREPEND

 IF_PREPEND (ifq, m)
 struct ifnet *ifq;
 struct mbuf *m;

AIX Operating System Technical Reference
mbuf Handling

¦ Copyright IBM Corp. 1985, 1991
C.4.8.1 - 4

 The IF_PREPEND kernel subroutine adds an mbuf chain to the beginning of an
 ifnet queue.
 --

 IF_EMPTYQUEUE

 IF_EMPTYQUEUE (ifq)
 struct ifnet *ifq;

 The IF_EMPTYQUEUE kernel subroutine returns TRUE if the ifnet queue is
 empty; otherwise, returns FALSE.
 --

 mtod

 mtod (x, t)
 struct mbuf *x;
 t

 The mtod kernel subroutine returns the pointer to the data area in an mbuf
 and casts the resulting pointer as t.

 Parameters:

 x Data address of an mbuf

 t Cast of the returned address. For example, char *, or struct ifnet **

 --

 dtom

 dtom (x)
 struct mbuf *x;

 The dtom kernel subroutine returns the address of the mbuf header.

 Parameter:

 x Data address of an mbuf.

 --

 H_HASCL

 int H_HASCL (m)
 struct mbuf *m;

 The H_HASCL kernel subroutine returns a TRUE if m is an mbuf page cluster;
 otherwise, it returns a value of FALSE.

AIX Operating System Technical Reference
mbuf Handling

¦ Copyright IBM Corp. 1985, 1991
C.4.8.1 - 5

 --

 IF_QFULL

 IF_QFULL (ifp)
 struct ifnet *ifp;

 The IF_QFULL kernel subroutine returns TRUE if the queue parameter ifq_len
 (the actual number of bytes in all the mbuf chains associated with a ifnet
 structure) is greater than ifq_maxlen; otherwise, it returns a value of
 FALSE.
 --

 IF_DROP

 IF_DROP (ifp)
 struct ifnet *ifp;

 The IF_DROP kernel subroutine increments a counter of the number of
 packets dropped for a given ifnet structure.
 --

 m_copy

 struct mbuf* m_copy (m, off, len)
 struct mbuf *m;
 int off;
 long len;

 The m_copy kernel subroutine makes a copy of an mbuf chain starting off
 bytes from the beginning, continuing for len bytes. If the value of len
 is M_COPYALL, copy to end of mbuf chain.
 --

 m_cat

 m_cat (m, n)
 struct mbuf *m, *n;

 The m_cat kernel subroutine concatenates one mbuf chain, n, on the back of
 another, m.
 --

 m_pullup

 struct mbuf *
 m_pullup (n, len)
 register struct mbuf *n;
 int len;

AIX Operating System Technical Reference
mbuf Handling

¦ Copyright IBM Corp. 1985, 1991
C.4.8.1 - 6

 The m_pullup kernel subroutine rearranges an mbuf chain so that len bytes
 are contiguous and in the data area of an mbuf (so that the mtod and dtom
 routines work for a structure of size len). Returns the resulting mbuf
 chain on success, frees it and returns NULL on failure. If there is room,
 the m_pullup routine adds up to MPULL_EXTRA bytes to the contiguous region
 in an attempt to avoid being called next time.

AIX Operating System Technical Reference
mbuf Handling

¦ Copyright IBM Corp. 1985, 1991
C.4.8.1 - 7

 C.4.9 ARP Routines for Network Device Drivers

 The following routines detail the interface to the AIX ARP routines for
 Ethernet and Token-Ring. If you want to support a different physical
 protocol that requires ARP, you would write routines that roughly
 correspond with those that follow:
 --

 arptimer

 Ethernet:
 arptimer ()

 Token-Ring:
 ie5_arptimer()

 The arptimer kernel subroutine ages arp_tab and ie5_arp_tab entries once a
 minute. and checks to see if an entry in the arptab table has been
 accessed within a predefined threshold. at_timer counts the minutes since
 the last access.

 This routine is invoked internally by the ARP routines and is not called
 by the network device driver.
 --

 arpwhohas

 Ethernet:
 arpwhohas (ac, addr)
 register struct arpcom *ac;
 struct in_addr *addr;

 Token-Ring:
 ie5_arpwhohas (ac, addr)
 struct arpcom *ac;
 struct in_addr *addr;

 The arpwhohas kernel subroutine broadcasts an ARP packet, asking who has
 addr on interface ac. This routine calls dd_output to output the ARP
 message.
 --

 arpresolve

 Ethernet:
 arpresolve (ac, m, destip, desten, usetrailers)
 register struct arpcom *ac;
 struct mbuf *m;
 register struct in_addr *destip;
 register u_char *desten;
 int *usetrailers;

 Token-Ring:
 ie5_arpresolve (ac, m, destip,
 daddr, usetrailers)
 struct arpcom *ac;
 struct mbuf *m;
 struct in_addr *destip;

AIX Operating System Technical Reference
ARP Routines for Network Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.4.9 - 1

 struct sockaddr_802_5 *daddr;
 int *usetrailers;

 The arpresolve kernel subroutine is called by the dd_output routine to
 resolve the internet address. The arpresolve routine returns a 1 if it is
 OK to send the packet because the ARP table already contains the physical
 address specified by the internet address; otherwise, a 0 is returned. If
 0 is returned, then arpresolve stores the outbound mbuf pointer in the
 at_hold field of the arptab table entry so that the ARP routines can
 resend the buffer when the internet address is resolved.

 If the arpresolve routine is successful for Token-Ring, daddr will contain
 the MAC and LLC headers required to send the packet. (The output routine
 must still deal with the variable size of the MAC.)

 A return value of 1 for Ethernet indicates that the desten parameter has
 been filled in and the packet should be sent normally.
 --

 arpinput

 Ethernet:
 arpinput (ac, m)
 struct arpcom *ac;
 struct mbuf *m;

 Token-Ring:
 ie5_arpinput (ac, mac)
 struct arpcom *ac;
 struct ie5_mac_hdr *mac;

 The arpinput kernel subroutine is called by the network interrupt handler
 when a network packet type LANTYPE_ARP is received. Common length and
 type checks are done and the protocol-specific routine, as defined in the
 ARP packet, is called. The arpinput routine calls the in_arpinput routine
 to process LANTYPE_IP or IP_TRAILER messages and takes care of formatting
 the inbound data stream into mbufs.
 --

 in_arpinput

 Ethernet:
 in_arpinput (ac, m)
 register struct arpcom *ac;
 struct mbuf *m;

 Token-Ring:
 in_ie5_arpinput (ac, mac, llc)
 register struct arpcom *ac;
 struct ie5_mac_hdr *mac;
 struct ie2_llc_hdr *llc;

 The in_arpinput kernel subroutine handles negotiations for use of trailer
 protocol. ARP replies for protocol type ETHERTYPE_TRAIL are sent along
 with IP replies. Trailers are also sent in response to IP replies. This
 allows either end to announce the desire to receive trailer packets. The
 in_arpinput routine also replies to requests for ETHERTYPE_TRAIL protocol

AIX Operating System Technical Reference
ARP Routines for Network Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.4.9 - 2

 as well, but does not normally send requests. ARP for Internet protocols
 on Token-Ring or Ethernet. The algorithm used is that given in RFC 826.
 In addition, a sanity check is performed on the sender protocol address to
 catch impersonators.

 This routine is internal to the ARP routines and is not called by the
 network device driver.
 --

 arptfree

 Ethernet:
 arptfree (at)
 struct arptab *at;

 Token-Ring:
 ie5_arptfree (at)
 struct ie5_arptab *at;

 The arptfree kernel subroutine frees an arptab entry. Typically called by
 arp_timer, this routine is internal to the ARP routines and is not called
 by the network device driver.
 --

 arptnew

 Ethernet:
 struct arptab *
 arptnew (addr)
 struct in_addr *addr;

 Token-Ring:
 struct ie5_arptab *
 ie5_arptnew (addr)
 struct in_addr *addr;

 The arptnew kernel subroutine enters a new address in the arptab table,
 eliminating the oldest entry from the bucket if there is no room. When
 required, the oldest entry is removed since no bucket can be completely
 filled with permanent entries (except from the arpioctl routine which
 tests whether another permanent entry will fit).

 This routine is internal to the ARP routines and is not called by the
 network device driver.

AIX Operating System Technical Reference
ARP Routines for Network Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.4.9 - 3

 C.5 ARTIC General Driver Support Routines

 The following general comments apply to all of the ARTIC driver support
 routines described below.

 The unit parameter refers to the index of the board as found by the POS
 registers; that is, board 0 is the ARTIC card in the lowest numbered slot
 in the AIX/PS2, board 1 is the next ARTIC found, and so on.

 Addresses that refer to locations on the ARTIC card are linear addresses
 counting from 0 unless stated otherwise. The page number used to view the
 ARTIC memory is not preserved.

 Task ID is the ID passed into the kernel by the ANOUNCETASK ioctl to the
 driver. By convention, the ID given to the ANOUNCETASK ioctl is the task
 ID in the task header. This is done by the icaload utility.

 The default values for RCM maxtask, maxpri (maximum priority), maxqueue,
 and maxtimer are 16, 32, 16, 16 respectively. You can, however, change
 their default values in /etc/system by assigning each variable a new value
 which does not exceed 253. For example, to change the default values of
 maxtask and maxqueue, add the following lines in /etc/system:

 maxtask = 30
 maxqueue = 60

 Next rebuild the kernel and reboot the machine for the changes to take
 effect.

 Initially, all task interrupt handlers are set to an internal handler
 which will wake up a process that issued a command to the task with the
 ICACMD ioctl. If the task is not task 0, a diagnostic message gets logged
 to /dev/osm indicating that the interrupt occurred. If icainteratch has
 been called to install an interrupt handler for interrupts from a task,
 the wakeup and diagnostic messages do not happen. Also, icainteratch does
 not chain interrupts: it replaces the interrupt handler with the new one.

 Refer to /usr/include/sys/i386/ric.h for using the ARTIC card under
 AIX/PS2; this file contains many useful definitions.
 --

 icastat

 unsigned char icastat(unit, task)
 int unit,
 int unit,

 Parameters:

 unit ARTIC card to be queried

 task Task to be queried

 Return the primary status byte for the specified task on the specified
 board. Callable during task or interrupt time. This command saves and
 restores the value of the memory page register.
 --

 icacmd

AIX Operating System Technical Reference
ARTIC General Driver Support Routines

¦ Copyright IBM Corp. 1985, 1991
C.5 - 1

 int icacmd(flag, unit, task, cmd, arglen, arg)
 unsigned flag, arglen;
 int unit, task, cmd;
 register caddr_t arg;

 Send a command to the specified task and board.

 This routine will spool the command if the output buffer or the task is
 busy. If the spooling flag is not set, this routine will return an error
 when the task is busy or the output buffer is needed and busy.

 The spooling feature is not currently implemented, and the value of the
 flag argument is currently not looked at. The icacmd routine returns -1
 if the task is not loaded and initialized, -2 if the task is busy, -3 if
 the command has an argument and the output buffer is busy, and -4 if the
 command argument is longer than the task's output buffer. The icacmd
 routine returns 0 upon success.
 --

 icarstr

 void icarstr(unit, srcaddr, destptr, count)
 int unit, count;
 unsigned long srcaddr;
 caddr-t destptr;

 Transfer count bytes from address srcaddr on the RIC card indicated by
 unit to the destptr location in kernel memory in the system unit. The
 destptr parameter is not checked for validity and will panic the kernel if
 it does not point to valid memory.
 --

 icawstr

 void icawstr(unit, srcptr, destaddr, count)
 int unit, count;
 unsigned long destaddr;
 caddr-t srcptr;

 Transfer count bytes from kernel memory in system unit to destaddr on the
 RIC card indicated by the unit argument. The srcptr parameter is not
 checked for validity and will panic the system if a bad pointer is passed
 in srcptr.
 --

 icaintratch

 void icaintratch(flag, unit, task, funcp, arg)
 int (*funcp) ();

 Arrange for function pointed to by funcp to be called when the indicated
 task on the RIC card indicated by board posts an interrupt to the system
 unit with the INTPC svc. It will call the interrupt handler with the
 board, task, and arg (from the arg passed to this function) as arguments.
 All arguments of *funcp are type int; that is, the calling sequence is
 (*funcp) (unit, task, arg).
 --

 icafindtask

AIX Operating System Technical Reference
ARTIC General Driver Support Routines

¦ Copyright IBM Corp. 1985, 1991
C.5 - 2

 void icafindtask(unit, id)
 int unit, id;

 The icafindtask routine returns the task number of the first task found
 with a task ID matching ID on the RIC indicated by unit. If no task
 matching ID is found, -1 is returned.
 --

 The icawaittask routine

 void icawaittask(unit, id)
 int unit, id;

 The icawaittask routine performs the same function as icafindtask, except
 that it sleeps until the desired task is loaded. Note that the caller
 sleeps indefinitely if the task is never loaded. If the task is loaded
 but not initialized it will wait 5 seconds for the task to initialize. If
 after 5 seconds the task is not initialized, icawaittask returns with the
 task number even though the task is not initialized. Since this call
 might call sleep, it cannot be used in an interrupt handler.
 --

 icagetbcb

 void icagetbcb(unit, task, bcbaddrs)
 int unit, task;
 struct bcbptrs *bcbaddrs;

 struct bcbptrs {
 long statbuf;
 long inbuf;
 long outbuf;
 };

 The icagetbcb routine fills in the bcbptrs structure with values for the
 task and RIC card specified. The structure is filled with the linear
 value of the buffers computed from the page - offset values found in the
 task's BCB.
 --

 icarshort

 short icarshort(unit, addr)
 int unit;
 long addr;

 Return the short from address addr on the RIC indicated by unit.
 --

 icawshort

 void icawshort(unit, addr, val)
 int unit;
 long addr;
 short val;

 Write the value val of type short at address addr on RIC indicated by
 unit.
 --

AIX Operating System Technical Reference
ARTIC General Driver Support Routines

¦ Copyright IBM Corp. 1985, 1991
C.5 - 3

 icawchar

 void icawchar(unit, addr, val)
 int unit;
 long addr;
 char val;

 Write the value val of type char at address addr on RIC indicated by unit.

AIX Operating System Technical Reference
ARTIC General Driver Support Routines

¦ Copyright IBM Corp. 1985, 1991
C.5 - 4

 C.6 Kernel Subroutines and Macros

 This section details AIX kernel subroutines and macros in terms of:

 � Data transfer kernel routine

 � Process suspension and timin

 � Memory allocation and de-allocatio

 � Error handling and tracin

 � Masking interrupt

 � Determining the major and minor numbe

 � Determining the superuser

 Subtopics
 C.6.1 Data Transfer Kernel Routines
 C.6.2 Process Suspension and Timing
 C.6.3 Memory Allocation and Deallocation
 C.6.4 Error Handling and Tracing
 C.6.5 Masking Interrupts
 C.6.6 Determining Major and Minor Numbers
 C.6.7 Determining Superuser

AIX Operating System Technical Reference
Kernel Subroutines and Macros

¦ Copyright IBM Corp. 1985, 1991
C.6 - 1

 C.6.1 Data Transfer Kernel Routines

 The following routines can be used for moving data for character I/O and
 between user and kernel space, moving user instructions between user and
 kernel space, manipulating kernel bulk data, transferring data to and from
 adapters, and virtual address space management for DMA devices.

 Subtopics
 C.6.1.1 Moving Data for Character I/O
 C.6.1.2 Moving Data between User and Kernel Space
 C.6.1.3 Moving User Instructions between User and Kernel Space
 C.6.1.4 Manipulating Kernel Bulk Data
 C.6.1.5 Transferring Data to and from an Adapter
 C.6.1.6 Virtual Address Space Management for DMA Devices

AIX Operating System Technical Reference
Data Transfer Kernel Routines

¦ Copyright IBM Corp. 1985, 1991
C.6.1 - 1

 C.6.1.1 Moving Data for Character I/O

 Character device drivers can use the following kernel subroutines to
 transfer data into and out of the user space during read and write calls.
 These kernel subroutines use u.u_base as the address of the buffer in user
 space and u.u_seg to determine the type of data (kernel or user). These
 routines also automatically increment u.u_base and u.u_offset and
 decrement u.u_count by the number of bytes transferred.

 The following kernel subroutines set the value of u.u_error to EFAULT if
 an invalid user space address is specified.
 --

 cpass

 int cpass ()

 The cpass kernel subroutine gets a character from the user buffer that is
 specified in a write system call. Upon successful completion, cpass
 returns the character. If the buffer is empty or if the user base address
 (u.u_base) points to a location outside user space, cpass returns a value
 of -1. The value of u.u_error is also set to EFAULT.
 --

 passc

 int passc (c)
 char c;

 The passc kernel subroutine stores the character c in the user buffer that
 is specified in a read system call. Upon successful completion, passc
 returns a value of 0. If the buffer is full or if the user base address
 (u.u_base) points to a location outside user space, cpass returns a value
 of -1. If the address is invalid, u.u_error is also set to EFAULT.
 --

 iomove

 void iomove (addr, count, flag)
 char *addr;
 int count, flag;

 Moves a block of data between kernel space and user space.

 Parameters:

 addr Points to a buffer in kernel space

 count Specifies the number of bytes to move.

 flag Indicates the direction of the move:

 B_READ Copies data from kernel space to user space
 B_WRITE Copies from user space to kernel space.

AIX Operating System Technical Reference
Moving Data for Character I/O

¦ Copyright IBM Corp. 1985, 1991
C.6.1.1 - 1

 If all or part of the user buffer is outside user space, cpass sets the
 value of u.u_error to EFAULT.

AIX Operating System Technical Reference
Moving Data for Character I/O

¦ Copyright IBM Corp. 1985, 1991
C.6.1.1 - 2

 C.6.1.2 Moving Data between User and Kernel Space

 The following kernel subroutines are at a lower level than the cpass,
 passc, and iomove routines and do not update the values in u.u_error,
 u.u_count, u.u_offset, or u.u_base. Use them to copy data between user
 and kernel space. If an error occurs during the transfer, the caller
 should set u.u_error to EFAULT.
 --

 subyte

 int subyte (uaddr, c)
 char *uaddr;
 char c;

 The subyte kernel subroutine stores the byte c at user data address uaddr.
 This routine returns a value of 0 upon successful completion, or a -1 if
 uaddr points outside user space.
 --

 suword

 suword (uaddr, w)
 int *addr;
 int w;

 The suword kernel subroutine stores the word w at user data address uaddr.
 This routine returns a value of 0 upon successful completion, or a -1 if
 uaddr points outside user space.
 --

 fubyte

 int fubyte(uaddr)
 int *uaddr;

 Fetches the byte from user data address uaddr. fubyte returns the byte
 upon successful completion, or -1 if uaddr points outside user space.
 --

 fuword

 int fuword (uaddr)
 int *uaddr;

 The fuword kernel subroutine fetches the word from the user data address
 uaddr and returns the word upon successful completion, or a -1 if uaddr
 points outside user space. Note that a legitimate value of -1 and the
 error indication are indistinguishable.
 --

 copyin

AIX Operating System Technical Reference
Moving Data between User and Kernel Space

¦ Copyright IBM Corp. 1985, 1991
C.6.1.2 - 1

 int copyin (uaddr, kaddr, count)
 char *uaddr, *kaddr;
 int count;

 The copyin kernel subroutine copies count bytes from user data address
 uaddr to kernel data address kaddr. This routine returns a value of 0
 upon successful completion, or a -1 if any or all of the uaddr buffer is
 outside user space.
 --

 copyout

 int copyout (kaddr, uaddr, count)
 char *kaddr, *uaddr;
 int count;

 The copyout kernel subroutine copies count bytes from kernel data address
 kaddr to user data address uaddr. This routine returns a value of 0 upon
 successful completion, or a -1 if any or all of the uaddr buffer is
 outside of user space.
 --

 fuscopy

 int fuscopy (kaddr, uaddr, maxlen)
 char *kaddr, *uaddr;
 int maxlen;

 The fuscopy kernel subroutine fetches a string from a user address uaddr
 and places it in kaddr. This routine copies data out of uaddr until it
 hits a NULL character or until maxlen bytes of data have been transferred;
 it then returns the total number of bytes transferred or a -1 if any or
 all of the uaddr buffer is outside of user space.

AIX Operating System Technical Reference
Moving Data between User and Kernel Space

¦ Copyright IBM Corp. 1985, 1991
C.6.1.2 - 2

 C.6.1.3 Moving User Instructions between User and Kernel Space

 The following routines allow device drivers to access user instruction
 space. They are rarely used by an AIX device driver. User instruction
 kernel subroutines have identical parameters and meanings to their
 counterparts beginning on page C.6.1.2. For example, information on the
 suibyte routine appears under the subyte routine. Therefore, the kernel
 routine names are merely listed below:

 � suibyte
 � suiword
 � fuibyte
 � fuiword
 � copyiin
 � copyiout.

AIX Operating System Technical Reference
Moving User Instructions between User and Kernel Space

¦ Copyright IBM Corp. 1985, 1991
C.6.1.3 - 1

 C.6.1.4 Manipulating Kernel Bulk Data
 --

 bcopy

 bcopy (from, to, count)
 caddr_t from;
 caddr_t to;
 int count;

 The bcopy kernel subroutine causes a kernel FAST buffer move. This
 routine is only suited for intra-kernel movement. No address checking is
 performed on the buffers noted in from and to.
 --

 bzero

 bzero (buf, count)
 caddr_t buf;
 int count;

 The bzero kernel subroutine causes a kernel FAST buffer clear. This
 routine can only be used in kernel buffers. No address checking is
 performed on buf.

AIX Operating System Technical Reference
Manipulating Kernel Bulk Data

¦ Copyright IBM Corp. 1985, 1991
C.6.1.4 - 1

 C.6.1.5 Transferring Data to and from an Adapter

 Adapters can provide any of the four interfaces for transferring data to
 and from main memory:

 � Port I/

 � Memory-mapped I/

 � Direct memory access as a DMA slav

 � Direct memory access as a DMA master

 Port I/O and memory-mappped I/O require the PS/2 processor to move the
 data. Either of the DMA mechanisms offloads the data movement from the
 PS/2 processor onto either the PS/2 system DMA controller (slave DMA) or a
 DMA controller on the adapter itself (master DMA).

 Port I/O: Use the routines in this section to query hardware registers,
 set up DMA operations, clear interrupts, and move data to and from a
 device that does not support DMA.
 --

 ioin

 ioin (port)
 int port;

 The ioin kernel subroutine returns a 16-bit word from the specified I/O
 port. The addresses of the I/O ports for a given adapter can be found in
 the documentation for that adapter. Note that they may be configured and
 that it may be necessary to examine the POS register data for the adapter
 to determine the exact addresses of the adapter's ports.
 --

 ioinb

 ioinb (port)
 int port;

 The ioinb kernel subroutine returns an 8-bit byte from the specified I/O
 port.
 --

 ioout

 ioout (port, val)
 int port;
 unsigned short val;

 The ioout kernel subroutine outputs a (16-bit) word to the specified I/O
 port.
 --

AIX Operating System Technical Reference
Transferring Data to and from an Adapter

¦ Copyright IBM Corp. 1985, 1991
C.6.1.5 - 1

 iooutb

 iooutb (port, val)
 int port;
 unsigned char val;

 The iooutb kernel subroutine outputs an 8-bit byte to the specified I/O
 port.

 Memory-mapped I/O: Many PS/2 adapters provide memory-mapped I/O. This is
 a region of memory which is shared between the PS/2 processor and the
 adapter. It is accessed through normal memory-access instructions so that
 the kernel routines bcopy(), bzero(), and regular C assignments such as
 the following can be used to manipulate the data stored on the adapter:

 *(vaddr+i) = 0x50;

 Before assignments seen in the previous example can be made, the device
 driver must obtain a kernel virtual address which maps or gives access to
 the device's shared memory region. However, in order to obtain a kernel
 virtual address of the memory region, you must first know this address of
 the device memory. As with port address, the physical memory addresses
 for a given adapter can be found in the documentation for that adapter.
 Note that they too may be configured, and that it may be necessary to
 examine the POS register data for the adapter to determine the exact
 address of the adapter's memory. Once you know the physical address, the
 following macros can be used to provide the necessary kernel virtual
 addresses. Refer to the /usr/include/sys/i386/mmu386.h file for their
 definitions.
 --

 MAPIN

 MAPIN (vaddr, paddr, bcnt)
 caddr_t vaddr;
 paddr_t paddr;
 int bcnt;

 The MAPIN macro contrives a (kernel) virtual address at which a physical
 address can be referenced. After the macro call, vaddr contains the
 virtual address.

 Note: Set vaddr to NULL before calling MAPIN.

 --

 MAPIN_RO

 MAPIN_RO (vaddr, paddr, bcnt)
 caddr_t vaddr;
 paddr_t paddr;
 int bcnt;

AIX Operating System Technical Reference
Transferring Data to and from an Adapter

¦ Copyright IBM Corp. 1985, 1991
C.6.1.5 - 2

 The MAPIN_RO macro performs the same function as the MAPIN macro except
 that the AIX device driver is expected only to read the memory on the
 adapter (as opposed to both read and write).

 Note: Set vaddr to NULL before calling MAPIN_RO.

 Direct Memory Access as a DMA Slave: The PS/2 system provides a DMA
 controller which can be used to transfer data to and from device adapters
 that support system mode (slave) operations. The PS/2 micro-channel
 architecture allows for 16 different bus arbitration levels. Because
 multiple hardware devices may use the same arbitration level and since
 there are only 8 DMA channels to support the 16 arbitration levels, it is
 necessary for a device driver to allocate or reserve its arbitration level
 and a DMA channel before a DMA operation can be initiated.

 Note the following rules when using DMA:

 � Always free the DMA channel after you perform your I/O functio

 � Do not unnecessarily tie up the DMA channel

 DMA Resource Allocation Structure (dmaralloc): In order to perform DMA
 operations, a driver-supplied DMA resource allocation structure
 (dmaralloc) must be initialized by the AIX device driver and used as an
 argument to the DMA kernel subroutines. The dmaralloc structure contains
 the following fields:

 dma_devicename Device name An ASCII string naming the device so that in
 the case of an error, the DMA routines can print out the
 name of the device affected.

 dma_availfunc Function to call when DMA arbitration level and a suitable
 channel become available

 dma_priority Device priority

 dma_arblevel Device DMA arbitration level, usually from POS data.

 The dmaralloc structure is defined in the
 /usr/include/sys/i386/dmaralloc.h file.
 --

 dmachanalloc

 #include <i386/dmaralloc.h>
 int dmachanalloc (ptr)
 struct dmaralloc *ptr;

 The dmachanalloc kernel subroutine allocates a DMA arbitration level and a
 suitable channel, locking out other devices from using the same
 arbitration level.

 Returns the following values:

 TRUE If the arbitration level specified by ptr->dma_arb was free
 and now has been assigned. The dmachanalloc routine also sets
 ptr->dma_channel to the channel that has been allocated and

AIX Operating System Technical Reference
Transferring Data to and from an Adapter

¦ Copyright IBM Corp. 1985, 1991
C.6.1.5 - 3

 sets the (DMA_HAVECHAN) flag in the dma_flags field.

 FALSE If the arbitration level specified by ptr->dma_arb is busy.
 If a channel is not currently available and ptr->dma_availfunc
 is non-null, the arbitration structure is placed in a queue so
 that ptr->dma_availfunc is called when the arbitration level
 and a suitable channel become available. If
 ptr->dma_availfunc is null, no queueing takes place; it is
 assumed that the driver has made other arrangements for
 retrying the channel allocation.

 Note: If the dmachanalloc routine returns FALSE and ptr->dma_availfunc is
 non-null, the DMA channel must still be allocated by a call to
 dmachanalloc. when the function pointed to by ptr->dma_availfunc
 is called. This, in fact, facilitates driver coding by allowing
 what is typically the driver start routine to serve as the
 dma_availfunc.

 --

 dmasetup

 #include <i386/dmaralloc.h>

 dmasetup (physaddr, func, count, dmarp, ioaddr, xfersize)
 paddr_t physaddr;
 long func;
 unsigned short count;
 struct dmaralloc *dmarp;
 int ioaddr;
 int xfersize;

 Parameters:

 physaddr The physical address of the data area. See the virtual
 address space management section for information on getting
 the physical address of a data area.

 func One of the following values (from <sys/buf.h>):

 B_READ Read data from the adapter into physaddr.

 B_WRITE Write data to the adapter from physaddr.

 count The number of bytes to transfer. If xfersize equals 2, count
 must be even.

 dmarp Pointer to the DMA resource allocation structure that was used
 in the dmachanalloc routine.

 ioaddr An I/O address to program into the DMA controller. This
 argument should be 0 for most devices, since it is the
 arbitration level which "connects" a DMA channel with a
 device.

 xfersize Size of the DMA transfer cycle in bytes: 1 or 2 to indicate
 8-bit or 16-bit transfers, respectively.

AIX Operating System Technical Reference
Transferring Data to and from an Adapter

¦ Copyright IBM Corp. 1985, 1991
C.6.1.5 - 4

 The dmasetup routine initiates the DMA transfer after the DMA channel has
 been allocated via the dmachanalloc routine. After the operation is
 complete, the hardware device typically interrupts the PS/2.
 --

 dmaresid

 #include <i386/dmaralloc.h>
 unsigned short dmaresid (ptr)
 struct dmaralloc *ptr;

 The dmaresid kernel subroutine returns the number of bytes that have not
 been transferred after a DMA transfer. If this function is invoked, it
 must be called before the channel is freed by the dmachanfree routine.
 The dmaresid routine is often used to set the bp->b_resid field of the buf
 header structure for block and raw block devices.

 This routine is usually called by the ddintr entry point.
 --

 dmachanfree

 #include <i386/dmaralloc.h>
 dmachanfree (ptr)
 struct dmaralloc *ptr;

 The dmachanfree kernel subroutine de-allocates the DMA channel allocated
 by the dmachanalloc routine. ptr->dma_arblevel must contain the same
 arbitration level used in the dmachanalloc routine.

 DMA Example: The following example shows you how to use the DMA kernel
 subroutines in an AIX device driver. This example assumes that the device
 will interrupt the device driver at the end of the DMA transfer.

 int mtstart();

 struct dmaralloc mtdma = {
 "Streaming tape", /* device name */
 mtstart, /* dma_availfunc */
 DMA_AVEPRI, /* priority */
 0 /* DMA arbitration level - to */
 /* be filled in by mtinit */
 };

 mtstart()
 {
 register struct buf *bp;

 kludge_flush();
 if ((bp = mttab.ib_actf) == NULL) {
 mttab.ib_active = 0;
 return;
 }
 mttab.ib_active = 1;
 if (! dmachanalloc(&mtdma))
 return;

AIX Operating System Technical Reference
Transferring Data to and from an Adapter

¦ Copyright IBM Corp. 1985, 1991
C.6.1.5 - 5

 dmasetup(bp->b_flags & B_READ, bp->b_bcount,
 &mtdma, 0, sizeof(char));

 outb(MTCR, (ONLINE | INTENB | DACK | TC)); /* Tell adapter*/
 /* to GO ! */
 }

 mtintr()
 {
 register struct buf *bp;
 unsigned short resid = 0;

 kludge_flush();
 if ((inb(MTFBP1R) & INTTR) ==0
 return; /* not for us */

 if (mtdma.dma_flags & DMA_HAVECHAN) {
 resid = dmaresid(&mtdma);
 dmachanfree(&mtdma);
 }
 if (bp = mttab.ib_actf)
 bp->b_resid = resid;
 /* Clear the interrupt latch */
 outb(MTCR,(RIL | ONLINE));

 if (bp) {
 if (mtcurstate == MT_ERROR) {
 bp->b_flags |= B_ERROR;

 if (mttab.ib_actf = bp->av_forw) {
 iodone(bp);
 mtstart();
 }
 else {
 iodone(bp);
 mttab.ib_active = 0;
 }
 }
 }
 mtinit(dev)
 dev_t dev;
 {
 int maj;
 int mtcardslot;

 maj = major(dev);
 if ((mtcardslot = devexist(MTCARDID, maj, 1, 0,)) != -1) {
 DEV_INSTALL(maj,mtinit,nulldev,mtopen,mtclose,
 mtintr,B_TAPE|B_MINBLK);
 CDEV_INSTALL(maj,mtread,mtwrite,mtioctl,nulldev,notty);
 BDEV_INSTALL(maj,mtstrategy,nulldev,&mttab);
 intrattach(mtintr, 6, SPL_BLKIO);

 /* SET UP ARBITRATION LEVEL in dmaralloc struct */
 mtdma.dma_arblevel = devdata[mtcardslot].pd_pos3 & 0x0f;
 }
 }

AIX Operating System Technical Reference
Transferring Data to and from an Adapter

¦ Copyright IBM Corp. 1985, 1991
C.6.1.5 - 6

 Direct Memory Access As a DMA Master: If the adapter card is equipped
 with a dedicated DMA controller, it can act as a DMA master and thus
 perform DMA operations without assistance from the AIX PS/2 DMA channels.
 For information on each adapter's use of its internal DMA controller,
 refer to the hardware reference manual.

AIX Operating System Technical Reference
Transferring Data to and from an Adapter

¦ Copyright IBM Corp. 1985, 1991
C.6.1.5 - 7

 C.6.1.6 Virtual Address Space Management for DMA Devices

 Prior to transferring data to or from an adapter via DMA, the memory
 stored at a virtual address must be converted to a physical address and
 pinned, and the virtual address must be converted to a physical address.
 After the transfer of the data has completed, the memory must be unpinned.
 Note that pages mapped to be contiguous in virtual space are rarely
 contiguous in physical memory. Therefore, DMA transfers should never
 cross page boundaries except when it has been verified that those pages
 are physically contiguous. Virtual address space management takes three
 forms:

 � Read and write entry points of block device driver

 � DMA operations directly into/out of user spac

 � DMA operations directly into/out of kernel space

 Read and Write Entry Points of Block Device Driver: Read and write entry
 points of block devices invoke the physio kernel subroutine. This routine
 faults in and pins the user buffer into memory, places the physical
 address of the buffer in b_physaddr field of the buf header provided by
 the driver, and then calls ddstrategy. ddstart then uses b_physaddr field
 as the physaddr argument to the dmasetup routine.

 Device driver writers are encouraged to use the physio routine rather than
 perform virtual address space management themselves when performing DMA
 operations directly into and out of user space.

 DMA operations Directly into and out of User Space: Prior to and after
 completing DMA operations into and out of user space, the device driver
 must perform the following steps on the user's virtual address:

 1. Fault the address into memory using the fubyte routine.

 2. If this is a read request, the device driver must issue the subyte
 kernel subroutine so that the copy-on-write gets handled correctly.

 3. Call the ubase2paddr routine to translate u.u_base to a physical
 address.

 4. Lock the page into memory by manually incrementing the page-frame
 reference count.

 5. Perform the DMA operation.

 6. When the interrupt is received on completion of the DMA, decrement the
 page-frame reference count.

 Steps 1 to 5 must not be performed from an interrupt handler and only one
 page of memory should be pinned at a time.

 The following example shows how to prepare the address for the DMA
 operation after the DMA channel has been successfully allocated:

 int byte;

 /* Make sure the page is in core */

AIX Operating System Technical Reference
Virtual Address Space Management for DMA Devices

¦ Copyright IBM Corp. 1985, 1991
C.6.1.6 - 1

 if ((byte = fubyte (u.u_base)) < 0)
 {
 u.u_error = EFAULT;
 break;
 }

 if ((flag == B_READ) && (subyte(u.u_base, byte)) < 0)
 {
 u.u_error = EFAULT;
 break;
 }

 /* translate the virtual address to a physical
 address */
 paddr = ubase2paddr (flag);

 /* lock the memory into core */
 pfdat[ADDRTOPFN(paddr)]pf_lockcnt++;

 /* perform the DMA operation */

 In the interrupt handler, after the I/O is complete, unlock the above
 memory from core by issuing the following statement:

 /* unlock the memory from core */
 pfdat[ADDRTOPFN(paddr)]pf_lockcnt--;

 --

 ubase2paddr

 paddr_t ubase2paddr (flag)
 int flag;

 The ubase2paddr kernel subroutine translates u.u_base into a physical
 address, checking that the memory in question exists and can be accessed
 as indicated by flag.

 Parameter:

 flag One of the following values:

 B_READ Perform a read operation with the physical address

 B_WRITE Perform a write operation with the physical address

 If the access checks fail, the ubase2paddr routine sets u.u_error to
 EFAULT and returns ((paddr_t)-1).

 DMA operations into/out of kernel space: All kernel space is
 automatically pinned into memory. Therefore, in order to perform DMA
 operations into and out of kernel memory, convert the kernel virtual
 address to a physical address before giving the address to the kernel DMA
 subroutines. The kvtophys kernel subroutine performs this conversion.
 --

AIX Operating System Technical Reference
Virtual Address Space Management for DMA Devices

¦ Copyright IBM Corp. 1985, 1991
C.6.1.6 - 2

 kvtophys

 paddr_t kvtophys (cptr)
 caddr_t cptr;

 The kvtophys kernel subroutine converts a kernel virtual address to a
 24-bit physical address. this routine is used primarily for converting
 addresses for DMA-type devices.

 For example, suppose you want a block device driver to initiate its own
 I/O, perhaps to read a tape label or a disk volume table of contents
 (VTOC). The typical way to implement this is shown in the following
 example. Note the use of the kvtophys routine to convert the kernel
 virtual address to a physical address.

 struct buf sampbuf;

 .
 .
 .

 sampcmd (dev, cmd, bufaddr, blkno, bcount)
 dev_t dev;
 u_char cmd;
 caddr_t bufaddr;
 daddr_t blkno;
 bcount_t bcount;
 {

 /* wait for the driver buffer to become available */
 while (sampbuf.b_flags & B_BUSY)
 {

 sampbuf.b_flags |= B_WANTED;
 sleep ((caddr_t) &sampbuf, PRIOBIO+1);
 }

 sampbuf.b_flags = B_BUSY + B_PHYS;

 if (cmd == WRITE)
 sampbuf.b_flags |= B_WRITE;

 if (cmd == READ)
 sampbuf.b_flags |= B_READ;

 sampbuf.b_blkno = blkno;

 sampbuf.b_bcount = bcount;
 sampbuf.bun.b_addr = bufaddr;
 sampbuf.b_physaddr = kvtophys (bufaddr);
 sampbuf.b_dev = dev;

 sampstrategy (&sampbuf);
 iowait (&sampbuf);

AIX Operating System Technical Reference
Virtual Address Space Management for DMA Devices

¦ Copyright IBM Corp. 1985, 1991
C.6.1.6 - 3

 sampbuf.b_flags &= ¬B_BUSY;

 if (sampbuf.b_b_flags & B_WANTED)
 wakeup ((caddr_t) &sampbuf);

 }

AIX Operating System Technical Reference
Virtual Address Space Management for DMA Devices

¦ Copyright IBM Corp. 1985, 1991
C.6.1.6 - 4

 C.6.2 Process Suspension and Timing

 The AIX operating system provides kernel subroutines to suspend and
 synchronize processes. These routines are described in this section.

 Subtopics
 C.6.2.1 sleep and wakeup
 C.6.2.2 Sleep and Signal Handling
 C.6.2.3 Kernel Timers
 C.6.2.4 Non-Cancellable Timers
 C.6.2.5 Cancellable Timers
 C.6.2.6 Signals

AIX Operating System Technical Reference
Process Suspension and Timing

¦ Copyright IBM Corp. 1985, 1991
C.6.2 - 1

 C.6.2.1 sleep and wakeup

 AIX device drivers typically suspend the calling process after issuing an
 I/O request by calling the sleep routine. When the interrupt from the
 hardware occurs, indicating that the I/O operation has completed, the
 ddintr routine calls the wakeup routine to start the process again.

 The sleep and wakeup routines work anonymously. That is, the caller of
 the wakeup routine does not know what processes will be awakened and the
 recipient of the wakeup routine does not know what process was
 responsible.

 The sleep and wakeup routines are primitive synchronization mechanisms.
 All processes sleeping on an event are awakened and the first process to
 run can not be determined. If a large number of processes are sleeping on
 a given event, it is desirable to implement some other sequencing
 mechanism so that processes are awakened one at a time and wasteful races
 are avoided.
 --

 sleep

 int sleep (chan, pri)
 caddr_t chan;
 int pri;

 The sleep kernel subroutine de-activates the calling process on channel
 chan. When the process activates again, it runs with the priority
 specified by pri. See the /usr/include/sys/param.h file for a list of
 valid priorities. The new priority is effective only while the device
 driver has control. Once control returns to the user program, the kernel
 controls the priorities.

 The channel specified by the chan parameter is simply a value that
 identifies an event to wait for, or to sleep on. Addresses of global
 structures are often used but the sleep routine accepts any 32-bit value.
 The channel identifier must be unique system-wide.

 The channel number is displayed in the WCHAN column of the ps command or
 in the WCHAN field of the crash subcommand proc. For more information on
 the ps and crash commands, see AIX Operating System Commands Reference.

 Call sleep only from a specific process context and not from an interrupt
 handler.
 --

 tsleep

 int tsleep (chan, pri, seconds)
 caddr_t chan;
 int pri, seconds;

 The tsleep kernel subroutine is similar to the sleep routine except that
 it sleeps on a given channel for no more than the indicated number of
 seconds.

AIX Operating System Technical Reference
sleep and wakeup

¦ Copyright IBM Corp. 1985, 1991
C.6.2.1 - 1

 The tsleep routine returns the following values:

 TS_OK Channel started normally by the wakeup routine.

 TS_TIME Timeout occurred

 TS_SIG Asynchronous signal occurred.

 --

 timesleep

 int timesleep (chan, pri, ticks)
 caddr_t chan;
 short pri;
 int ticks;

 The timesleep kernel subroutine is similar to tsleep routine except that
 the time resolution is in units of 1/HZ seconds, where HZ is defined in
 the /usr/include/sys/DOPTIONS.h file.

AIX Operating System Technical Reference
sleep and wakeup

¦ Copyright IBM Corp. 1985, 1991
C.6.2.1 - 2

 C.6.2.2 Sleep and Signal Handling

 A process may or may not be able to be interrupted while it is asleep.
 When the value of the pri parameter passed to the sleep routine is
 numerically less than or equal to the value of PZERO, which is defined in
 /usr/include/sys/param.h, the suspended process cannot be interrupted. In
 this case, signals that occur while the process is suspended do not
 interrupt it. If the value of the pri parameter is numerically greater
 than PZERO, the sleep can be interrupted and signals interrupt the
 suspended process.

 Note: The pri parameter also sets the run priority of the process when it
 is activated.

 When a signal interrupts a sleeping process, the process normally ends the
 sleep and restarts. The process does not return from the sleep, but uses
 the longjmp routine to return to the address saved in u.u_qsav. By
 default, u.u_qsav points to a routine that sets u.u_error (errno) to EINTR
 and returns the value -1 to the user process, indicating that the system
 call was interrupted by a signal. You can set the value of u.u_qsav to
 another address with the setjmp, longjmp, _setjmp, and _longjmp
 subroutines (see page 1.2.250).

 If the process does not return from the sleep, the device driver cannot
 cleanup and free resources. Therefore, instead of letting the process
 return to the address saved in u.u_qsav, the process can also catch the
 signal in the device driver or you can cause the process to sleep at
 negative priority. To allow the process to catch the signal in the device
 driver, logically OR the value PCATCH with the pri parameter passed to the
 sleep routine. If the sleep routine returns because of a signal, it
 returns a nonzero value. Otherwise, it returns a value of 0.

 This approach is demonstrated in the following example:

 if (sleep(chan, PZERO | PCATCH) != 0)
 {
 /* ... Perform operations in response to the signal ... */
 longjmp(&u.u_qsav);
 }

 In this case, a signal does not restart the process, but returns control
 to the next sequential instruction after the call to the sleep routine.
 This allows the kernel code to perform operations in response to the
 signal before returning normally.

 The process can sleep at negative priority, but the device driver must
 guarantee that the process will be activated because the process cannot be
 stopped.
 --

 wakeup

 void wakeup (chan)
 caddr_t chan;

 The wakeup kernel subroutine makes all processes that were suspended on

AIX Operating System Technical Reference
Sleep and Signal Handling

¦ Copyright IBM Corp. 1985, 1991
C.6.2.2 - 1

 channel chan by the sleep kernel subroutine ready to execute. The
 processes do not actually begin to execute until the current process
 relinquishes control of the processor or returns to user mode. Because
 all processes that are waiting on the channel are restarted, a race
 condition occurs. Thus, after returning from the sleep kernel subroutine,
 each process should check to see whether it needs to be suspended again.

 The wakeup kernel subroutine is usually called from the ddintr entry point
 and is called indirectly by the iodone routine for block devices.
 --

 wakeup_one

 void wakeup_one (chan)
 caddr_t chan;

 The wakeup_one kernel subroutine is identical to the wakeup routine except
 that exactly one process waiting on the channel is made runnable. This
 routine is useful when all waiting processes are equal; that is, when it
 does not matter which process runs next. The advantage of using this
 routine is that only one process will run, yet there is no guarantee of
 fairness regarding the order in which processes are chosen to run.
 --

 selwakeup

 void selwakeup (procptr, coll)
 struct proc *procptr;
 int coll;

 The selwakeup kernel subroutine is used by the ddintr routine to awaken a
 process that has attempted to do a select system call when the awaited
 event finally occurs. The ddselect routine is responsible for storing the
 pointer to the process structure of the process, usually the first to
 enter ddselect for a given event, that is to be woken up when a given
 event occurs.

 If the coll parameter is a nonzero value, the selwakeup routine knows that
 a collision was detected by the ddselect routine. Following collisions,
 the selwakeup routine causes all processes waiting on a given event to be
 activated. Only the process identified by procptr returns from the select
 system call. All other processes re-enter the ddselect routine to find
 out if a given event has occurred or if it has to wait for the next event.

 The following example of the selwakeup routine in an interrupt handler
 matches the example provided in the description of the ddselect entry
 point:

 tcaintr (vec_num)
 int vec_num;
 {

 .
 .
 .

AIX Operating System Technical Reference
Sleep and Signal Handling

¦ Copyright IBM Corp. 1985, 1991
C.6.2.2 - 2

 /* we determine that there is data available */
 {

 .
 .
 .

 /* wake those selecting on read */
 if(laP->dev_selr){
 selwakeup(laP->dev_selr, laP->dev_flags & RCOL);
 laP->dev_selr = NULL;
 laP->dev_flags &= ¬RCOL;
 }

 .
 .
 .

 }

 /* we determine that there is an exception */
 {

 .
 .
 .

 /* wake those selecting on exception */
 if(laP->dev_sele){
 selwakeup(laP->dev_sele, laP->dev_flags & ECOL);
 laP->dev_sele = NULL;
 laP->dev_flags &= ¬ECOL;
 }

 .
 .
 .

 }

 }

AIX Operating System Technical Reference
Sleep and Signal Handling

¦ Copyright IBM Corp. 1985, 1991
C.6.2.2 - 3

 C.6.2.3 Kernel Timers

 Kernel timers can be thought of as scheduled software interrupt
 mechanisms. Timers are useful for watchdog timers or fixed delays
 (breaks, speaker intervals, and so forth).

 Kernel timers cause heavy cycle consumption if overused. One technique to
 avoid this problem is to have a general watchdog routine to reduce
 overhead. The watchdog routine should be entered periodically to check
 for events and update state variables.

 Timeout routines are called at interrupt level and therefore must follow
 the conventions for interrupt handlers. For more information, see
 "General Considerations in AIX Device Drivers" in topic C.2.1.

 Callout Structure: A callout structure is for routines arranging to be
 called by the clock interrupt with a specified argument after a specified
 amount of time.

 The callout structure contains the following information:

 � Time of day for real interrupt

 � Time for virtual interrupt

 � Flags

 C_CANCELABLE Will be cancelled; do not free

 C_DONE Timeout has gone off

 C_DELETED Timeout has been cancelled and should be ignored

 � Pointers to the next element in the callout list.

 Device drivers do not manipulate callout structures, other than receiving
 a callout structure while initiating or terminating a cancellable timer.

AIX Operating System Technical Reference
Kernel Timers

¦ Copyright IBM Corp. 1985, 1991
C.6.2.3 - 1

 C.6.2.4 Non-Cancellable Timers
 --

 timeout

 void timeout (func, arg, ticks)
 int (*func)();
 int arg, ticks;

 The timeout kernel subroutine schedules the function pointed to by the
 func parameter to be called with the parameter arg after the number of
 timer ticks specified by the ticks parameter. The ticks parameter is
 measured in units of IHZ, as defined in the /usr/include/sys/param.h file.

 The kernel keeps track of pending timeout calls by keeping the information
 from calls made to timeout in a structure called the callout table. This
 table can be examined with the callout subcommand of the AIX crash
 command.
 --

 delayticks

 delayticks (ticks)
 int ticks;

 The delayticks kernel subroutine suspends the calling process for the
 number of timer ticks specified by the ticks parameter. The ticks
 parameter is measured in units of IHZ.

 This routine is a wait loop and its use is highly discouraged due to the
 effect wait loops have on overall system performance.

AIX Operating System Technical Reference
Non-Cancellable Timers

¦ Copyright IBM Corp. 1985, 1991
C.6.2.4 - 1

 C.6.2.5 Cancellable Timers
 --

 ctimeout

 struct callout *ctimeout (func, arg, ticks)
 int (*func)();
 caddr_t arg;
 int ticks;

 The ctimeout kernel subroutine is similar to the timeout routine except
 that it must be cancelled via the to_cancel routine, whether or not the
 timer expires. A pointer to a callout structure is returned by the
 ctimeout routine. This pointer is used to cancel the timer by the
 to_cancel routine.
 --

 to_cancel

 to_cancel (to_ptr)
 struct callout *to_ptr;

 The to_cancel kernel subroutine must be called after a ctimeout routine
 has been issued. The to_cancel routine returns a timeout event to the
 free pool. The to_ptr parameter is the pointer returned by the ctimeout
 routine.

 Failure to issue a to_cancel routine after a ctimeout routine causes the
 callout structures to be lost. The callout structures allocated by the
 ctimeout routine have the C_CANCELABLE bit set in their c_flag field and
 are not automatically freed when the timer goes off.

AIX Operating System Technical Reference
Cancellable Timers

¦ Copyright IBM Corp. 1985, 1991
C.6.2.5 - 1

 C.6.2.6 Signals

 The following signals allow AIX device drivers to directly notify user
 processes of certain events. Signals may be classified as follows:

 Job Control SIGHUP, SIGINTR, SIGQUIT, SIGCHLD, SIGTSTP, SIGSTOP,
 SIGCONT

 Error SIGSEGV, SIGTRAP, SIGILL, SIGFPE, SIGSYS

 Communication SIGALARM, SIGPIPE, SIGIO, SIGPOLL

 Stop process SIGKILL, SIGSTOP

 Signals are posted in the process table of the recipient. If a process is
 sleeping at a positive priority, it is awakened. All processes check for
 signals at several key junctures:

 � Upon waking up from sleep at positive priority

 � Before returning to user mode

 � At certain clean places after negative priority sleeps

 If pending signals are found, the process accepts one of the following
 consequences:

 � The process ignores the signal and nothing happens

 � The process catches the signal, pushing a new call frame onto th
 stack.

 � The process is stopped, possibly causing a user core dump of th
 process and causing the exit system call to be called.

 The following kernel subroutines may be called inside of device drivers to
 cause and process signals.
 --

 psignal

 void psignal (p, sig)
 struct proc *p;
 u_int sig;

 The psignal kernel subroutine sends a signal to a process.

 Parameters:

 p Points to the process table entry for the receiving process.

 sig Specifies the signal to send.

 To get the value for the p parameter, save the u.u_procp file, which
 contains a pointer to the process table entry for the process that made
 the system call. Remember that the user structure and hence u.u_propc may
 not be accessed at interrupt time.

AIX Operating System Technical Reference
Signals

¦ Copyright IBM Corp. 1985, 1991
C.6.2.6 - 1

 For a list of the valid signals and more information about how signals
 work, see "sigaction, sigvec, signal" in topic 1.2.263.
 --

 gsignal

 void gsignal (groupid, sig)
 pid_t groupid;
 u_int sig;

 The gsignal kernel subroutine sends a signal to all the processes with
 groupid as their process group. To get the value for groupid, save
 u.u_procp->p_pgrp. The gsignal routine is typically used by tty-type
 devices to send the SIGHUP, SIGINTR, and SIGQUIT signals.
 --

 ISSIG

 void ISSIG (pp)
 struct proc *pp;

 The ISSIG kernel subroutine returns the signal number if the current
 process has a signal to process; otherwise, it returns 0.

 The ISSIG routine is typically used in the following context:

 pp = u.u_procp;
 if (pp->p_cursig || ISSIG(pp) || pp->p_sig_arg[MIG_SIGARG])
 psig();

 --

 psig

 void psig ()

 The psig kernel subroutine performs the action specified by the current
 signal. This routine may or may not return a value, depending on the
 action taken.

AIX Operating System Technical Reference
Signals

¦ Copyright IBM Corp. 1985, 1991
C.6.2.6 - 2

 C.6.3 Memory Allocation and Deallocation
 If AIX device drivers expect to buffer more than a few characters of data,
 they should use the dynamic storage facilities provided by the kernel.
 --

 kmemalloc

 #include <vmalloc.h>
 caddr_t kmemalloc (nbytes, flags)
 int nbytes;
 u_int flags;

 The kmemalloc kernel subroutine allocates bytes of memory as defined by
 flags.

 Parameters:

 nbytes Number of bytes of memory

 flags One of the following values:

 � Alignment flags

 MA_DBLWD Align on a double-word boundary

 MA_PAGE Align on a page boundary

 MA_DBLWDNOPAGE
 Align on a double-word that is not on a page
 boundary.

 � Time of duration

 MA_LONGTERM Memory is not freed for more than 10 minutes, or
 at all

 MA_MIDTERM Memory is not freed within 10 minutes

 MA_SHORTTERM Memory is freed within seconds.

 � Other flags

 MA_OK2SLEEP Indicates that the process should sleep, waiting
 for memory to become available before returning.

 The kmemalloc routine can be called from both processes and interrupt
 routines, although the MA_OK2SLEEP flag must not be on when allocating
 memory from an interrupt routine.

 If the memory cannot be allocated, kmemalloc returns a NULL pointer.
 Callers must always check the return value of kmemalloc for NULL, even if
 the MA_OK2SLEEP flag is passed.
 --

 malloc

 caddr_t malloc (nbytes)

AIX Operating System Technical Reference
Memory Allocation and Deallocation

¦ Copyright IBM Corp. 1985, 1991
C.6.3 - 1

 u_int nbytes;

 The malloc kernel subroutine allocates kernel memory and is based on the
 kmemalloc routine. When using the malloc routine, memory is allocated on
 a double word boundary and is freed within 10 minutes. If memory is not
 available, the process will be suspended until sufficient memory can be
 allocated. This routine can only be called from process level.

 Note that malloc is not the same routine as those found in the lib.c file,
 despite the identical name.
 --

 palloc

 caddr_t palloc (size, align)

 The palloc kernel subroutine returns a pointer to an area of length
 aligned on an address boundary of 2 raised to a specified power. This
 routine is based on the kmemalloc routine.

 Parameters:

 size Area of length on the address boundary

 align Power used to raise specified byte area.

 For example, palloc (1024,11) returns a pointer to a 1024-byte area that
 is aligned on a 2048-byte boundary (p = 2048). The palloc routine returns
 a NULL pointer if the requested block of memory cannot be allocated. This
 routine can only be called from process level.

 When using the palloc routine, memory is aligned on a doubleword but not a
 page boundary and is freed within 10 minutes; if memory is not available,
 the process is suspended until sufficient memory can be allocated.

 Note that this is not the same routine as that found in the lib.c file,
 despite the identical name.
 --

 mfree

 void mfree (ap)
 caddr_t ap;

 The mfree kernel subroutine frees the memory pointed to by ap. This
 routine can be called from process level or interrupt level and must not
 be called with anything that was not the return value from the kmemalloc,
 malloc, or palloc routines.

AIX Operating System Technical Reference
Memory Allocation and Deallocation

¦ Copyright IBM Corp. 1985, 1991
C.6.3 - 2

 C.6.4 Error Handling and Tracing

 Kernel errors can be handled in one of four ways:

 � Logging messages to the consol

 � Logging messages to the error logge

 � Reflecting errors back to the use

 � Taking the system down

 The kernel tracing mechanism can be used for tracking conditions that lead
 up to an error.

 Subtopics
 C.6.4.1 Logging Messages to the Console
 C.6.4.2 Logging Messages to the Error Logger
 C.6.4.3 Reflecting Errors to the User
 C.6.4.4 Taking the System Down
 C.6.4.5 Trace Logging

AIX Operating System Technical Reference
Error Handling and Tracing

¦ Copyright IBM Corp. 1985, 1991
C.6.4 - 1

 C.6.4.1 Logging Messages to the Console
 --

 printf

 void printf (format, value1, value2, ...)

 The printf kernel subroutine writes a formatted character string to the
 /dev/osm file and then writes the string to the console.

 Warning: Most of the system's operation is suspended while printf is
 writing to the console so use this routine only for important messages.

 The printf kernel subroutine resembles the printf subroutine described in
 Chapter 2 Volume I, but the two should not be confused. The latter
 subroutine is part of the libc library, which is used by application
 programs. The kernel subroutine, on the other hand, is built into the
 kernel and is accessible only within the kernel and device drivers. In
 addition, the printf kernel subroutine recognizes only the %s, %d, %o, %x,
 %c, and %p conversion specifications as well as the 'l' (long modifier)
 and simple field width specifications, for example:

 "%8lx"

 Field width, precision, and other modifiers are not recognized. Noting
 these important differences, see "printf, fprintf, sprintf, NLprintf,
 NLfprintf, NLsprintf, wsprintf" in topic 1.2.208 for detailed information
 about the format parameter.

 It is common to use printf routines in device drivers as debugging aids in
 the early stages of driver development; however, most printf routines
 should be removed as the driver reaches production level. Errors should
 be reported through the errsave kernel subroutine.
 --

 ncprintf

 void ncprintf (format, value1,
 value2, ...)

 The ncprintf (non-console printf) kernel subroutine writes a formatted
 character string to the /dev/osm file, but not to the console. This
 routine is used to output diagnostic messages, such as the addresses found
 and locations in the device driver that were entered and other information
 that the user does not care about but may be useful in problem
 determination.
 --

 putchar

 void putchar (c, touser)
 int c;
 int touser

AIX Operating System Technical Reference
Logging Messages to the Console

¦ Copyright IBM Corp. 1985, 1991
C.6.4.1 - 1

 The putchar kernel subroutine prints one character to the system console
 or user's terminal. This routine does a busy wait rather than depending
 on interrupts.

 If the touser parameter has a nonzero value, the character is outputted to
 the user's terminal instead of to the system console.

AIX Operating System Technical Reference
Logging Messages to the Console

¦ Copyright IBM Corp. 1985, 1991
C.6.4.1 - 2

 C.6.4.2 Logging Messages to the Error Logger

 The error log data structure is used in combination with the errsave
 kernel subroutine to enter device driver errors into the AIX error logger.
 A record sent to the error logger consists of a header and data. The
 format of the data is specified in the /etc/errfmt file.

 Assume that the error record for a device driver is declared as follows:

 #include <erec.h>
 struct e_errsave err;

 Then the following fields of the driver error structure must be filled out
 before calling errsave with an error record:

 err.es_csmt
 Contains the error class, subclass, mask, and type. Values for
 class, subclass, and type are provided in the
 /usr/include/sys/erec.h file. The mask value is used to further
 subdivide an error subclass.

 err.es_stlen
 Set to 12.

 err.es_drvstat.e_intlvl
 Device interrupt level

 err.es_drvstat.e_dmalvl
 DMA arbitration level

 err.es_cardid
 The 2-byte adapter ID

 err.e_diag
 9 bytes of device-specific information that is formatted by the
 /etc/errfmt file.

 --

 errsave

 #include <erec.h>
 errsave (info, len)
 struct e_errsave *info;
 int len;

 The errsave kernel subroutine is the special purpose error logging routine
 for standard device errors.

 As long as the errdemon is running, all errors entered by errsave are
 placed into non-volatile RAM so that errors may be recovered after reboot
 from a kernel panic routine.

AIX Operating System Technical Reference
Logging Messages to the Error Logger

¦ Copyright IBM Corp. 1985, 1991
C.6.4.2 - 1

 C.6.4.3 Reflecting Errors to the User

 There are four ways to reflect errors to the user:

 � Setting the u.u_error field

 � Indicating that an exception occurred during a select system call

 � Signalling a proces

 � Posting an error in a buffer

 Setting u.u_error Field: Setting the u.u_error field results in a
 negative value being returned to the user's program from a system call.
 The u.u_error field may only be manipulated in the context of the
 requesting process and not from an interrupt handler. In addition, only
 certain system calls: ddopen, read, write, and ioctl may set u.u_error.

 Note: Do not set the u.u_error field from a ddclose entry point.

 Exception during select System Call: Character device drivers allow the
 user to indicate that an exception occurred a select system call. For
 more information on the ddselect entry point, see "Character Device Driver
 Entry Points" in topic C.4.2.2. If an error occurs prior to the
 exception, the ddselect entry point notifies the kernel that an exception
 has occurred and the process select system call is satisfied immediately.

 If an error occurs after the kernel suspends a process waiting on the
 select system call, the following events occur:

 1. The device driver detects that an error occurred, usually in the
 ddintr routine.

 2. The device driver issues the selwakeup kernel subroutine, thereby
 satisfying the process select system call.

 Signalling a Process: The interrupt handler usually signals a process
 provided that you have previously stored the process ID of the recipient
 during process context (during a read or write, for example).

 Posting an Error in a Buffer: If, while performing I/O on a disk buffer,
 the device driver detects an error, it can OR the B_ERROR bit in the
 buffer's b_flags parameter and optionally set b_error with a value from
 the usr/include/sys/errno.h file. There is one important side effect to
 setting errors in buffer headers: once the B_ERROR bit is set in b_flags,
 the buffer is no longer used in the buffer cache.

 Buffers can only be reflected back to the user if the B_ASYNC bit is not
 turned on in b_flags (that is, the read or write is synchronous). If the
 driver does not set b_error, the kernel sets u.u_error field to EIO.

 Posting errors in disk buffer headers is usually accomplished in the
 ddintr routine.

AIX Operating System Technical Reference
Reflecting Errors to the User

¦ Copyright IBM Corp. 1985, 1991
C.6.4.3 - 1

 C.6.4.4 Taking the System Down
 --

 panic

 panic (s)
 char *s;

 The panic kernel subroutine is called when a catastrophic error occurs and
 the system can no longer continue to operate. It performs the following
 actions:

 � Uses the printf routine to write the character string pointed to by
 the s parameter to the console, preceded by the word panic
 � Does a system dum
 � Records the first 14 characters of the s string in non-volatile random
 access memory (NVRAM)
 � Reboots the system

 --

 icpanic

 icpanic (name, number, file, panic_flags)
 char *name;
 int number;
 char *file;
 int panic_flags;

 The icpanic kernel subroutine is called when an inconsistency panic occurs
 and is typically used in file system code. It prints a standard
 inconsistency message that indicates a bug in the kernel. This routine
 should not be used to report resource exhaustion.

 Parameters:

 name Name of the function where the failure occurred

 number Line number in the source file or a unique error code

 file Name of the source file where the failure occurred

 panic_flags If nonzero, the error is outputted as being non-fatal and the
 panic subroutine is not called. This flag is usually 0.

AIX Operating System Technical Reference
Taking the System Down

¦ Copyright IBM Corp. 1985, 1991
C.6.4.4 - 1

 C.6.4.5 Trace Logging
 --

 trsave

 void trsave (traceid, cnt, buf)
 unsigned short traceid;
 char *buf;
 unsigned int cnt;

 The trsave kernel subroutine allows device drivers and the AIX kernel to
 write trace log entries to the trace device driver. Application programs
 should use the trcunix kernel subroutine to log trace events. For more
 information, see "trace_on" in topic 1.2.307, "trcunix" in topic 1.2.308,
 and "trace" in topic 2.5.29.

 Parameters:

 traceid High-order 5 bits specify the channel number, and the low-order
 11 bits specify the hookid for the message. User programs can
 use only channel number 31.

 buf Points to a buffer that contains up to 20 bytes of data for the
 trace log entry.

 cnt Specifies the number of bytes in the buffer pointed to by the
 buf parameter.

 If the trace device driver has already been opened, and if the
 channel specified by the traceid parameter has been enabled, the
 log entry is stored in a queue. If there is not enough room in
 the queue, the entire entry is discarded and a special entry is
 made to record the fact that it was discarded.

AIX Operating System Technical Reference
Trace Logging

¦ Copyright IBM Corp. 1985, 1991
C.6.4.5 - 1

 C.6.5 Masking Interrupts
 AIX device drivers sometimes need to mask interrupts when in a critical
 section of code, such as when accessing data that is shared with the
 ddintr routine.

 The following are the recommended practices when manipulating interrupt
 masks:

 � Do not spl downwards except with the splx routine. The splx routine
 is used to restore the interrupt mask to the previous level.

 � Do not mask levels higher than necessary

 � Match or nest spl() and splx routines. For example:

 .
 .
 .

 x = splimp;

 .
 .
 .

 splx (x);

 .
 .
 .

 � To make your code more machine independent, use the descriptiv
 versions of the mask routines. For example, use the splhigh routine
 instead of the spl7 routine. Explicit numbers are therefore often
 used incorrectly. The following kernel subroutines mask and unmask
 interrupts. They all return the previous spl level.

 --

 splx

 int splx (level)
 int level;

 The splx kernel subroutine masks interrupts at or below the level
 specified by the level parameter, and then returns the current level.
 Refer to the /usr/include/sys/i386/intr86.h file for the appropriate
 values of the level parameter.

 Alternatively, you can use the following kernel subroutines:

 spl0 Masks interrupts at level 0 and below; all interrupts allowed
 spl1 Masks interrupts at level 1 and below
 spl2 Masks interrupts at level 2 and below
 spl3 Masks interrupts at level 3 and below
 spl4 Masks interrupts at level 4 and below

AIX Operating System Technical Reference
Masking Interrupts

¦ Copyright IBM Corp. 1985, 1991
C.6.5 - 1

 spl5 Masks interrupts at level 5 and below
 spl6 Masks interrupts at level 6 and below
 spl7 Masks interrupts at level 7 and below; no interrupts allowed at
 this level. The spl7 routine should only be used for very short
 periods of time.

 --

 splimp

 int splimp ()

 The splimp kernel subroutine is used to protect manipulation of mbuf
 chains for network device drivers in process or interrupt context.
 --

 splnet

 int splnet ()

 The splnet kernel subroutine is used to mask network software interrupts.
 --

 splblkio

 int splblkio()

 The splblkio kernel subroutine is used to protect buffer manipulation for
 disk, diskette, and tape device drivers during task-time processing. It
 disables all interrupts, which would otherwise cause the execution of code
 that would manipulate data structures associated with block devices, and
 returns the pre-empted interrupted level. This value is used when
 restoring interrupts with the splx() routine.
 --

 splhigh

 int splhigh()

 The splhigh kernel subroutine disables all external interrupts and returns
 the pre-empted interrupted level. This value is used when restoring
 interrupts with the splx() routine.

AIX Operating System Technical Reference
Masking Interrupts

¦ Copyright IBM Corp. 1985, 1991
C.6.5 - 2

 C.6.6 Determining Major and Minor Numbers
 The following macros can be called to obtain the major and minor numbers
 from the dev argument passed to device driver entry points.
 --

 major

 int major (dev)
 dev_t dev;

 The major macro returns the major number portion of the device number.
 Parameter:

 dev Contains the device's major and minor number.

 --

 minor

 int minor (dev)
 dev_t dev;

 The minor macro returns the minor number portion of the device number.

 Parameter:

 dev Contains the device's major and minor number.

AIX Operating System Technical Reference
Determining Major and Minor Numbers

¦ Copyright IBM Corp. 1985, 1991
C.6.6 - 1

 C.6.7 Determining Superuser
 --

 suser

 suser ()

 The suser kernel subroutine is used to determine whether the effective
 user ID of the process in context is that of the superuser. This routine
 can be useful in determining whether special device operations (such as
 disk formatting) are allowed. If the effective user ID is not that of the
 superuser, this routine sets the u.u_error field to EPERM.

AIX Operating System Technical Reference
Determining Superuser

¦ Copyright IBM Corp. 1985, 1991
C.6.7 - 1

 C.7 AIX Kernel Debugger (AIX PS/2)

 In order to help with the debugging of new kernel code (such as device
 drivers) and to help diagnose problems within the kernel or applications,
 a basic kernel debugger is provided. This debugger can be configured into
 a kernel, and can be used to examine and modify the state of the machine.

 Subtopics
 C.7.1 Configuring the Kernel Debugger into a System
 C.7.2 Using the Kernel Debugger
 C.7.3 Command Descriptions

AIX Operating System Technical Reference
AIX Kernel Debugger (AIX PS/2)

¦ Copyright IBM Corp. 1985, 1991
C.7 - 1

 C.7.1 Configuring the Kernel Debugger into a System

 The inclusion of the kernel debugger in a system is controlled by the
 kerndbg parameter in the sysparms stanza of the system configuration file
 /etc/system. To include the kernel debugger in a system, add the line:

 kerndbg = 1

 to the sysparms stanza of your system file. To exclude the kernel
 debugger from a system, change that line to read:

 kerndbg = 0

 Once you have made the necessary changes to the system file, you can build
 a new kernel with the newkernel command. For more information, see the
 newkernel command in AIX Operating System Commands Reference.

AIX Operating System Technical Reference
Configuring the Kernel Debugger into a System

¦ Copyright IBM Corp. 1985, 1991
C.7.1 - 1

 C.7.2 Using the Kernel Debugger

 There are three ways in which the kernel debugger can be invoked:

 � It can be manually invoked by pressing the key-combinatio
 CTRL-ALT-NUM4 on the console keyboard.

 � It is automatically invoked when a previously set breakpoint i
 encountered, or after single-stepping. In this case, the debugger
 prints out the address of the breakpoint that was encountered.

 � It can be called explicitly within the kernel for debugging in th
 following way:

 debugger((intA)0);

 When the kernel debugger is invoked, it prints out a simple herald of
 DEBUG and prompt you for input with a minus sign. Once you have invoked
 the kernel debugger, all other system activity ceases. No system
 activity, other than processing and responding to your commands, takes
 place until you exit the kernel debugger.

 To exit the kernel debugger and resume normal system activities, you can
 issue the go command to the debugger. Note that while you have the system
 stopped, you may lose data and connections. Incoming serial data may
 overrun and active network connections may time out.

 When you are in the kernel debugger, all command lines should be
 terminated with a carriage return (the Enter key on the console). Input
 case is ignored. It is not necessary to type the entire name of a
 command. For instance, the contents of the registers can be displayed by
 typing either registers or just reg.

 You can obtain a list of available commands by typing help. The
 acceptable abbreviation for each command is shown in upper case. You can
 obtain usage information on any of the available commands by typing the
 name of that command, followed by a question mark (?).

 All of the commands that accept numeric arguments expect hexadecimal.

 Any command that expects an address as an argument accepts any of the
 following:

 A hexadecimal constant

 An asterisk followed by a hex constant

 A register name

 A single quote

 That particular address

 Indirect that address

 Indirect that register

 The last address that was actually typed in.

 Many of the commands can be modified by flag arguments. Such arguments

AIX Operating System Technical Reference
Using the Kernel Debugger

¦ Copyright IBM Corp. 1985, 1991
C.7.2 - 1

 are always preceded with a slash /, and can be specified in any order and
 in any field of the command line.

AIX Operating System Technical Reference
Using the Kernel Debugger

¦ Copyright IBM Corp. 1985, 1991
C.7.2 - 2

 C.7.3 Command Descriptions

 The commands can be divided into four groups:

 � Basic commands that examine and modify the state of the machin

 � Commands that aid in the debugging of kernel cod

 � Commands that display the state of the operating syste

 � Commands that perform special functions

 Subtopics
 C.7.3.1 Examining and Modifying Machine State
 C.7.3.2 Debugging Kernel Code
 C.7.3.3 Displaying Operating System Information
 C.7.3.4 Special Functions

AIX Operating System Technical Reference
Command Descriptions

¦ Copyright IBM Corp. 1985, 1991
C.7.3 - 1

 C.7.3.1 Examining and Modifying Machine State

 The following commands display and modify the contents of memory, the
 general registers, or the I/O ports:

 Command Function

 Dump Dumps the contents of kernel virtual memory.

 This command displays (in hexadecimal) the contents of a
 specified area in the kernel's virtual address space. If no
 address is specified, the dump continues from the address at
 which the previous dump left off. By default, the dump
 command displays 128 bytes of memory.

 The specified area is displayed as bytes, shorts or longs,
 depending on whether the /b, /s or /l flag is specified. In
 any case, the contents is also displayed as ASCII characters.
 An optional second argument specifies the number of lines to
 dump (each representing 16 bytes).

 Enter Writes data into registers or memory.

 This command writes data to a registers or into the kernel's
 virtual address space. If two values are specified, the first
 is taken to be an address and the second is the value to be
 stored. If no address is specified, the data is stored at the
 address following the previous store.

 If the /r flag is specified, the destination address is
 treated as a register name, and 32 bits of data are stored
 into the specified register. Otherwise, the amount of data
 stored is 1, 2 or 4 bytes, according to whether the /b, /s or
 l flag is specified.

 Registers Dumps out the contents of the registers.

 This command prints out the contents of the general registers
 at the time of the interrupt or trap that caused the debugger
 to be entered. It also prints out the contents of the major
 debug and control registers if the /1 flag is specified.

 Inport Reads data from an input port.

 This command reads a byte or a short from the specified input
 port. If no address is specified, the same port address used
 in the previous input command is used. The /b and /s flags
 are used to specify whether a byte or a short should be
 performed.

 Outport Writes data to an output port.

 This command writes a byte or a short to the specified output
 port. If two values are specified, it is assumed that the
 written. If one value is specified it is taken to be the
 value to be written, and the port number from the previous out
 command is used. The /b and /s flags control whether a byte
 or short should be performed.

AIX Operating System Technical Reference
Examining and Modifying Machine State

¦ Copyright IBM Corp. 1985, 1991
C.7.3.1 - 1

 C.7.3.2 Debugging Kernel Code

 The following commands are used for stack tracing, single stepping, break
 points, or hexadecimal conversion:

 Command Function

 BAcktrace Prints out a kernel stack backtrace.

 This command prints nested calls, parameters, local variables
 and saved registers from the time the kernel was entered until
 the point where the debugger was entered. Normally, this
 trace starts with the trap or interrupt that caused the
 debugger to be entered; however, if the /f flag (for a full
 backtrace) is specified, the backtrace starts from the current
 top of stack (in the backtrace routine).

 Each frame is printed out individually, with the saved
 previous frame pointer and return pc first, followed by all of
 the parameters, locals and saved registers that were pushed
 into the previous frame before the call.

 Go Resumes the interrupted execution.

 This command causes you to exit from the kernel debugger. The
 system then resumes its normal activities at the point of
 interruption.

 Trace Single steps.

 This command can only be used if the debugger was entered as
 the result of a breakpoint or a previous single-step
 operation. It causes one more instruction to be executed and
 then re-enters the debugger.

 BReakpoint Sets, clears and displays breakpoints.

 If no arguments are specified, this command prints out a list
 of the currently set breakpoints.

 If the /d flag is specified, the argument is interpreted as
 the number of the breakpoint to be disabled. Otherwise, the
 argument is taken as the address where a new breakpoint should
 be set. The type of the breakpoint is determined by the
 following flags:

 /r Sets a hardware read breakpoint

 /w Sets a hardware write breakpoint

 /e Sets a hardware execution breakpoint

 /s Sets a software execution breakpoint

 /1 For the /r, /w, and /e flags, set the breakpoint
 length to one byte

 /2 For the /r, /w, and /e flags, set the breakpoint
 length to two bytes

AIX Operating System Technical Reference
Debugging Kernel Code

¦ Copyright IBM Corp. 1985, 1991
C.7.3.2 - 1

 /4 For the /r, /w, and /e flags, set the breakpoint
 length to four bytes.

 Hardware breakpoints are implemented using the breakpoint
 hardware on the PS/2. Software execution breakpoints are
 implemented by replacing the byte at the specified location
 with a breakpoint instruction.

 HEXarith Hexadecimal addition and subtraction.

 This command takes two hexadecimal arguments and prints out
 their sum and difference in both hexadecimal and decimal
 notation. It handles a surprisingly large portion of your
 hexadecimal arithmetic needs including hexadecimal to decimal
 conversion.

AIX Operating System Technical Reference
Debugging Kernel Code

¦ Copyright IBM Corp. 1985, 1991
C.7.3.2 - 2

 C.7.3.3 Displaying Operating System Information

 The following commands display important information regarding the state
 of the operating system:

 Command Function

 Gdt Prints the contents of the global descriptor table.

 Ldt Prints the contents of the local descriptor table.

 The Gdt and Ldt commands print the entire contents of the
 Global or Local descriptor tables--descriptor numbers, type,
 length, address and flags.

 MEMfree Displays information about the free memory pool.

 Process Prints information from the process table.

 If the /a flag is specified, only information on active
 processes is printed. This command can also take one or two
 numeric arguments. The first argument specifies which process
 table slot is to be printed. The second argument specifies
 the number of process table slots to be printed. If the
 second argument is not specified, all processes are printed.

 PVseg Prints out procvseg structures. With no arguments, pvseg
 prints the procvseg structure of the process in context. If
 an argument is given, it is used as an address of a specific
 procvseg structure to be displayed.

 SWAPfree Displays information about the available swap space.

 Version Prints system version information.

 This command prints a string indicating when and where the
 base system was built.

 VSeg Prints vseg structures. With no arguments, the vseg command
 prints out all of the vseg structures on the vseg busylist.
 If an argument is given, it is used as an address of a
 specific vseg to be displayed.

AIX Operating System Technical Reference
Displaying Operating System Information

¦ Copyright IBM Corp. 1985, 1991
C.7.3.3 - 1

 C.7.3.4 Special Functions

 The following commands perform special functions:

 Command Function

 Help Displays a help menu for debugger commands.

 REBoot Reboots the system.

 This command prompts you about rebooting the system. If you
 respond with a y, the system halts immediately without
 flushing system buffers to disk (which would synchronize disk
 and buffer versions).

AIX Operating System Technical Reference
Special Functions

¦ Copyright IBM Corp. 1985, 1991
C.7.3.4 - 1

 C.8 Driver Configuration and Initialization

 This section describes the following aspects of driver configuration and
 initialization on AIX:

 � Adding a device driver into the AIX kerne

 � Driver configuration component

 � Adding devices support for device driver

 � Passing parameters to a customize helpe

 � Passing parameters to a special processing routin

 � Adding possible choices for the devices command to displa

 � Adding descriptions for the devices command to display

 Subtopics
 C.8.1 Adding a Device Driver into AIX Kernel
 C.8.2 Driver Configuration Components
 C.8.3 Adding Devices Support for Device Drivers
 C.8.4 Parameters Passed to a Customization Helper
 C.8.5 Parameters Passed to a Special Processing Routine
 C.8.6 Adding Descriptions for Device Command to Display
 C.8.7 Adding Choices for the Devices Command to Display

AIX Operating System Technical Reference
Driver Configuration and Initialization

¦ Copyright IBM Corp. 1985, 1991
C.8 - 1

 C.8.1 Adding a Device Driver into AIX Kernel

 The newkernel command rebuilds the AIX kernel. This command links a
 device driver into the AIX kernel when one of the following is true:

 � The mandatory flag in the driver's /etc/master stanza is set to true

 � There is a stanza associated with the device driver in the /etc/system
 file.

 If the mandatory flag is set to true, the driver is always included into
 the kernel by the newkernel command. Only certain device drivers such as
 the console and fixed disk device drivers that are critical to the running
 of AIX should have mandatory set to true.

 If you do not want to configure the device driver, you can add the driver
 into the AIX kernel by performing the following steps:

 1. Compile the device driver using the following command:

 cc -c -DKERNEL -Di386 -I/usr/include/sys driver.c

 where driver.c is a C source file for your device driver.

 2. Archive the resulting .o files into the 386lib kernel archive by
 entering this command:

 ar -rv /usr/sys/386/386lib.a driver.o

 3. Place a stanza for the device driver into the /etc/master file, and
 make sure you have picked a unique major number. If your device
 driver is autoconfigured and supports both character and block
 devices, the stanza that you add to the /etc/master file should look
 something like the following:

 driver: type = dev
 routines = init,open,close,read,write,ioctl,intr,select,strategy
 softcfg = TRUE
 major = 45
 maxminor = 1
 prefix = dd
 struct = ddtab

 4. Add a stanza similar to the following to the /etc/system file:

 spdrvr0:
 driver = driver
 nospecial = true
 noshow = true

 5. Rebuild the AIX kernel by entering the following commands:

AIX Operating System Technical Reference
Adding a Device Driver into AIX Kernel

¦ Copyright IBM Corp. 1985, 1991
C.8.1 - 1

 cd /usr/sys
 newkernel

 6. Reboot the machine by entering:

 reboot

 7. When the system reboots, add the special file associated with the
 device by entering:

 mknod /dev/rspdrv0 c 45 0
 mknod /dev/spdrv0 b 45 0

 8. Write an AIX application that issues system calls to your device.

AIX Operating System Technical Reference
Adding a Device Driver into AIX Kernel

¦ Copyright IBM Corp. 1985, 1991
C.8.1 - 2

 C.8.2 Driver Configuration Components

 The following is a description of the important elements in the
 configuration of PS/2 device drivers:

 Configuration Files
 The following is a brief summary of PS/2 configuration files.

 /etc/master Describes available device drivers, specified
 system parameters, and configured system devices.
 Device drivers are described by their name, entry
 points, major device number, driver type, and
 associated table declarations. System parameters
 are described by the parameter value, the default
 value, symbol type (string or numeric) and
 identifies the kernel variables to be defined or
 patched while the /etc/config file is executed.
 Device class requirements and default values
 detail system devices.

 /etc/system Enumerates what AIX device drivers are to be
 configured into the AIX kernel. Each device that
 is added to the /etc/system file via the
 installp, updatep, or devices command contains a
 stanza. There can be more than one stanza per
 device driver in the /etc/system file.

 The /etc/system file also overrides default
 system parameter values and designates system
 devices.

 /etc/ddi/*.ddi
 Contains device-dependent information. Each
 device that you configure has this
 device-dependent information attribute file
 associated with it.

 /etc/ddi/*.kaf
 Contains keyword attribute files which have the
 input checking mechanisms if a device has
 displayable configuration information.

 /etc/predefined
 Contains stanza skeletons that are added to the
 /etc/system file by the devices command.

 API Contains a series of subroutines (see the cfgadev, cfgaply,
 cfgcadsz, cfgcdlsz, cfgcopsf, cfgcrdsz, and cfgddev routines
 in Volume I) that allow programs to manipulate attribute
 files, add and delete devices, and apply information into the
 system kernel. The following is the list of configuration
 programs that use the API:

 � /etc/devices

 � /etc/installp

 � /etc/updatep

 � /etc/penable, /etc/pstart, /etc/pdelay, /etc/pdisable,

AIX Operating System Technical Reference
Driver Configuration Components

¦ Copyright IBM Corp. 1985, 1991
C.8.2 - 1

 /etc/phold, and /etc/pshare.

 When installing a new driver into AIX via the installp
 command, the API searches the /etc/master file and assign the
 driver a unique major number.

 When a stanza is added to the /etc/system file by the API, the
 following occurs:

 1. The API read the device's stanza out of the
 /etc/predefined file.

 2. The devices command assigns the stanza a unique minor
 number, name, slot and port.

 3. The API adds the stanza to the /etc/system file.

 4. If the driver is in the kernel, the osconfig command is
 used to add the special file associated with the device.
 For more information on the osconfig command, refer to the
 AIX Commands Reference. This command invokes the driver's
 customization helper to issue ioctl system calls to the
 device driver to configure it.

 5. If the driver is not in the kernel, the osconfig command
 is used to add the special files and not to call the
 customize helper. The devices command rebuilds the kernel
 upon exit.

 6. The driver's special processing routine is called if the
 osconfig command successfully adds the device.

 When a device is deleted, the following occurs:

 1. The device's stanza is removed from the /etc/system file.

 2. The device's API invokes osconfig command to inform the
 device driver that a minor number has been deleted from
 device. This command calls the customization helper to
 notify the device driver that the device is being deleted,
 usually via ioctl system calls, and then deletes the
 special file associated with the device.

 3. The API invokes the special processing routine of the
 driver indicating that the device has been deleted.

 4. If all stanzas associated with a device driver are deleted
 from the /etc/system file and the mandatory flag is not
 set to true in the /etc/master file, the AIX kernel is
 rebuilt.

 When a device is changed, one or more of the following occurs:

 � The special processing routine of the device is invoked

 � The kernel is rebuilt

 Devices such as the fixed disk, diskette, and system console
 are not user configurable by API. Special devices associated
 with the diskette drives, including those for the external

AIX Operating System Technical Reference
Driver Configuration Components

¦ Copyright IBM Corp. 1985, 1991
C.8.2 - 2

 5.25-inch external diskette drive, always exist in the AIX
 base, whether or not they are used. Fixed disks are
 configured by the minidisks command. Stanzas exist in the
 /etc/system file for each minidisk, fixed disk, diskette
 drive, and the system console.

 The API is stored in the /lib/librts.a file.

 osconfig Performs the following functions:

 � Creates or deletes special files when the user adds or
 deletes a device.

 � If there is a customization helper associated with the
 device, as specified by the config parameter in the
 device's /etc/master stanza, the customization helper is
 called during adding, deleting, starting up, or shutting
 down.

 The osconfig command is invoked every time AIX is booted from
 single to multi user mode, in the /etc/init.dir/Singl2multi
 file. For more information, see the osconfig command in the
 AIX Operating System Commands Reference.

 Customization helper
 Interprets the information in the device configuration files
 and then configures the AIX device drivers by issuing ioctl
 routines.

 Installp, updatep
 Add code to the AIX kernel, update the system configuration
 files, and rebuild the AIX kernel. These commands are used by
 developers of licensed program products (LPPs).

 pstart, pdelay, pdisable, penable, phold, pshare
 Allows a user to manipulate the status of a terminal device or
 pseudo-terminal.

 device Allows the user to add and delete special devices and
 reconfigure device-specific parameters

 /usr/sys/newkernel
 Builds and installs the AIX kernel. While rebuilding the
 kernel, the newkernel command invokes a program called
 /etc/config that generates a configuration summary, a file
 containing device switch tables, external variable
 definitions, and other pertinent kernel information. The
 configuration summary defines what device drivers are added to
 the kernel and the values of system parameters.

 The newkernel command is invoked when an API-based application
 calls the cfgaply subroutine.

 /etc/config Processes the /etc/master and /etc/system files to build a
 machine-independent conf.c file and a configuration summary,
 thereby pulling drivers into or out of the kernel linkage
 edit.

 The configuration summary is used to patch the /usr/sys/conf.o
 file so that the AIX kernel can be rebuilt without a C

AIX Operating System Technical Reference
Driver Configuration Components

¦ Copyright IBM Corp. 1985, 1991
C.8.2 - 3

 compiler.

 conf.c Contains the following kernel configuration information:

 devsw The device switch table. A table of configured
 device drivers, indexed by the major device
 number. Once a device's ddinit routine is placed
 into the device switch table, it is configured
 into the AIX kernel. If the device driver is
 autoconfigured, then after the rest of the
 driver's entry points are placed into the switch
 table, subsequent system calls or socket calls
 enter the device driver's entry points or
 procedure handles.

 spinitsw Configures non-driver packages; contains
 initialization entry points only.

 gensw The system configuration summary. A table of all
 configured devices and drivers in the AIX kernel.

 System device designations
 Specifies the initialization of major and minor
 numbers for each system device. Examples of
 system devices are the root file system, the local
 file system, the swap device, and so forth.

 Parameter values
 Definitions for each parameter with the default or
 overridden value.

 Variable definitions
 Important system variable definitions. Most
 definitions come from either the
 /usr/include/sys/space.h or the
 /usr/include/sys/i386/sufcfg386.h file.

 Static table allocations
 Important static table allocations. Most tables
 are initialized in the /usr/include/sys/space.h or
 /usr/include/sys/i386/sufcfg386.h file.

 Special Processing
 An optional program that the devices command invokes when
 adding or deleting a device. There are special processing
 routines built into the API when a printer or tty port is
 added.

 Special processing routines can be used to update the
 /etc/environment file, to add a variable concerning the device
 driver for every AIX user, and to add an additional process
 that is run during system boot by editing the
 /etc/init.dir/Singl2multi file.

 Special processing routines are only called during the adding,
 deleting or changing of the device, not during system boot.

 AIX Device Drivers
 Device drivers that are configured via the devices command
 contain support for ddioctl routines that customization

AIX Operating System Technical Reference
Driver Configuration Components

¦ Copyright IBM Corp. 1985, 1991
C.8.2 - 4

 helpers issue to configure the device driver.

 A device driver can be both autoconfigured and configured by
 the devices command. An autoconfigured device driver
 determines the hardware information from the POS data base
 while customization helpers use ioctl system calls to
 configure the software parameters of the device driver.

 Network device drivers do not require a customization helper.

 See Figure C-12 for an illustration of configuration components.

 --

 +---------+
 ¦pstart ¦
 ¦pdelay ¦
 ¦pdisable ¦
 ¦penable ¦ +---------+
 ¦phold ¦ ¦updatep ¦ +--------+
 ¦pshare ¦ ¦installp ¦ ¦devices ¦
 +---------+ +---------+ +--------+
 ¦ ¦ ¦
 +--------+---------------+
 ¦
 configuration files ¦
 +------------------+ ¦
 ¦/etc/master ¦ ¦
 ¦/etc/predefined ¦ +------+ +------------+
 ¦/etc/ddi/*.kaf ¦�- ¦ API ¦ �- ¦ special ¦
 ¦/etc/ddi/*.ddi ¦ +------+ ¦ processing ¦
 ¦/etc/system ¦ ¦ ¦ +------------+
 +------------------+ ¦ ¦
 ¦ ¦ +----------+
 ¦ +-- ¦newkernel ¦
 ¦ +----------+
 +---------------+ ¦
 ¦ ¦
 ¦ +------------+ +-------+
 ¦ ¦/etc/config ¦- ¦conf.c ¦
 ¦ +------------+ +-------+
 ¦
 ¦ +----------+
 +---------+ ¦customize ¦
 ¦osconfig ¦ --- ¦helpers ¦
 +---------+ +----------+
 USER ¦
 ----------------------------------+------------------------
 KERNEL ¦
 ¦
 +----------+
 ¦ ioctl ¦
 ¦ entry ¦
 ¦ points ¦
 ¦ of ¦
 ¦ AIX ¦
 ¦ device ¦
 ¦ drivers ¦
 ¦ ¦
 +----------+

AIX Operating System Technical Reference
Driver Configuration Components

¦ Copyright IBM Corp. 1985, 1991
C.8.2 - 5

 --
 Figure C-12. AIX Configuration Overview

AIX Operating System Technical Reference
Driver Configuration Components

¦ Copyright IBM Corp. 1985, 1991
C.8.2 - 6

 C.8.3 Adding Devices Support for Device Drivers

 It is possible to add devices support for device drivers. Suppose you
 have a character device driver, sampldrv, that you wish to configure with
 the devices command. In addition, suppose that the attributes associated
 with this particular driver are as follows:

 � One configured parameter is cfgprm, that can be any value from 1 to 5.

 � The customization helper associated with the driver is calle
 "samphlpr".

 � The device is not multiplexed

 � The device has ddopen, ddclose, ddread, ddwrite, ddioctl, and ddselect
 entry points and an interrupt handler.

 � The device is autoconfigured, supporting up to four adapters with a
 adapter ID of 0xE2D2. Each adapter is represented by a minor number.

 � There is no special processing routine associated with the devic
 driver.

 To allow this device driver to be reconfigured via the devices command,
 perform the following steps:

 1. Create a stanza in the /etc/master file for the device driver:

 sampdrv: type = dev
 config = samphlpr
 routines = init,open,close,read,write,ioctl,intr,select
 softcfg = TRUE
 nocount = TRUE
 char = TRUE
 mpx = FALSE
 prefix = sampdrv
 major = 48
 maxminor = 4

 2. Update the /etc/predefined file as follows:

 a. Add the following lines to the ports stanza:

 samp1 = 0
 * sample port 1
 samp2 = 1
 * sample port 1
 samp3 = 2
 * sample port 1
 samp4 = 3
 * sample port 1

 Each of the four adapters can be thought of a port. Therefore,
 the first adapter's port name is samp1 and its minor number is 0.

 b. Each adapter ID has a range of ports. For our device, we would

AIX Operating System Technical Reference
Adding Devices Support for Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.8.3 - 1

 add the following lines to the adapts stanza:

 e2d2 = samp1-4
 * IBM PS/2 Sample Adapter

 3. Add the template for the stanza to be added into the /etc/system file:

 sampdrv:
 * IBM PS/2 Sample Adapter
 name = samp
 driver = sampdrv
 minor = c
 kaf_file = /etc/ddi/samp.ddi
 kaf_use = ksamp
 file = /etc/ddi/samp.kaf
 use = dsamp
 noddi = false
 noduplicate = false
 dtype = adapters
 * IBM PS/2 Adapters
 noshow = false
 dname = sampc
 pflag = true
 * sample port 1
 port = samp1-4
 slot = 0
 noipl = false

 4. Create a ddi file in /etc/ddi:

 default:
 * defaults for Sample Device driver
 sysadd = o
 sysdel = o
 cfgprm = 2
 * The one changeable parameter * 1 - 5

 sampcsamp1:

 sampcsamp2:

 sampcsamp3:

 sampcsamp4:

 5. Create a kaf file in /etc/ddi:

 default:
 smf_file = /etc/ddi/samp.kaf

 cfgprm:
 syschg = none
 vtype = 3

AIX Operating System Technical Reference
Adding Devices Support for Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.8.3 - 2

 display = true
 type = I
 range = 1,5,1

 6. Write a customization helper as follows:

 #include <stdio.h>
 #include <errno.h>
 #include <cfgcdefs.h>
 #include <fcntl.h>
 #include <sys/sampdrv.h> /* defines for IOCTL's to d.d. */

 #ifdef NLS
 #define STRTOK NLstrtok
 #else
 #define STRTOK strtok
 #endif

 char *STRTOK();

 main(argc, argv)
 int argc;
 char *argv[]
 {
 int i;
 int add = 0;
 int delete = 0;
 char *special; /* pointer to the special file
 name */
 char temp_parm[100];
 char temp_value[100];
 int val_cfgprm; /* the value of cfgprm */
 int fd;
 extern int errno;
 extern int sys_nerr;
 char chgprm[100]; /* pointer to the one lone parameter */
 int ret_code = 0;

 /* determine if we are adding or deleting */
 if (!strcmp (argv[1], "-a") ||
 !strcmp (argv[1], "-startup"))
 add = 1;

 if (!strcmp (argv[1], "-d"))
 delete = 1;

 /* get the special file name */
 special = STRTOK (argv[2], ":");

 /* get the value for cfgprm */
 for (i=4; i < argc; i++)
 {
 temp_parm = STRTOK (argv[i], "=");
 temp_value = STRTOK (NULL, "");
 if (strstr(temp_parm,"cfgprm") != NULL)
 {
 strcpy(cfgprm,temp_value);
 break;
 }
 }

AIX Operating System Technical Reference
Adding Devices Support for Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.8.3 - 3

 /* get the value for cfgprm */
 val_cfgprm = atoi (cfgprm);

 /* if this is an add then issue the ioctl to tell
 the device driver the value of cfgprm */
 if (add)
 {
 /* open the special file */
 if ((fd = open (special, O_RDWR)) != -1)
 {
 if (ioctl (fd, SAMP_ADD, val_cfgprm, 0) == -1)
 {
 fprintf(stderr,
 "Error %d performing sample initialization.",
 errno);
 return (errno);
 }
 close (fd);
 }

 else
 {
 fprintf(stderr," Could not open
 %s errno = %d-n", special_file,
 errno);
 ret_code = errno;
 }
 }

 /* if this is a delete then just return */
 if (delete)
 {
 /* do nothing for this device driver */
 ret_code = 0;
 }
 return (ret_code);
 }

AIX Operating System Technical Reference
Adding Devices Support for Device Drivers

¦ Copyright IBM Corp. 1985, 1991
C.8.3 - 4

 C.8.4 Parameters Passed to a Customization Helper

 The following parameters can be passed to a customization helper:

 argv[1] The customization flag which has one of the following values:

 -a Add the device. Called after the device is added
 with the devices command.

 -d Delete the device. Called after the device is
 deleted with the devices command.

 -startup Startup the device. Called during system boot. The
 customization helper should perform similar
 operations to that of the a flag.

 argv[2] The special file name, such as tty0 or 3270c0. The special
 file name is also the name of the stanza in the /etc/system
 file.

 argv[3] The driver name, as specified by the driver parameter in the
 device's /etc/system stanza.

 argv[4] - argv[argc-1]
 The rest of the arguments passed to the customization helper
 are:

 � All of the keyword = value pairs from the /etc/system and
 /etc/master files and ddi stanzas for the device.

 � The keyword = value pairs from the default stanzas in the
 ddi file for the device.

 An example illustrating how the arguments are passed follows:

 argv[4] = major=45
 argv[5] = maxminor=1
 argv[6] = prefix=drvr

 .
 .
 .

 The customization helper parses argv[4] to argv[argc-1], fills out the
 appropriate device driver data structures, and then issues the ioctl
 routines to configure the device driver.

AIX Operating System Technical Reference
Parameters Passed to a Customization Helper

¦ Copyright IBM Corp. 1985, 1991
C.8.4 - 1

 C.8.5 Parameters Passed to a Special Processing Routine

 The following parameters are passed to the special processing routine from
 the API:

 argv[1] The full path of the master file, such as /etc/master

 argv[2] The full path of the system file, such as /etc/system

 argv[3] The special file name, such as tty0 or 3270c0. The device name
 is also the name of the stanza in the /etc/system file.

 argv[4] Customization flag, having one of the following values:

 -a Add the device. Called after the device is added with
 the devices command

 -as Add the special file associated with the device but do
 not call the customization helper. Handle this flag
 just as you would handle -a.

 -d Delete the device. Called after the device is deleted
 with the devices command.

AIX Operating System Technical Reference
Parameters Passed to a Special Processing Routine

¦ Copyright IBM Corp. 1985, 1991
C.8.5 - 1

 C.8.6 Adding Descriptions for Device Command to Display

 Most screens displayed by the devices command contain a column for
 descriptions. You must provide the descriptions in the configuration
 files in order for them to be displayed.

 Descriptions fall into two categories:

 � Descriptions for keywords in the /etc/system, /etc/master, and
 /etc/predefined files. To add a descriptive phrase for a keyword in
 one of these files, put the description in a comment line following
 the keyword it describes.

 The following example shows how a comment for the 5152 printer might
 appear in the /etc/predefined file.

 5152:
 * IBM PC Graphics Printer (5152)
 . . .
 noddi = false
 dtype = printer
 * Printer

 � Descriptions for keywords in the ddi files. There are two methods for
 providing descriptions in the /etc/ddi files. They both produce the
 same results, but the second method can save some file space.

 - The first method is the same as descriptions for the /etc/system,
 /etc/master, and /etc/predefined files. Put the description in a
 comment line following the keyword it describes.

 The following is an example of descriptive text in the
 /etc/predefined file:

 default:
 . . .
 lpi = 6
 * Lines per Inch * 6, 8
 ep = no
 * Emphasized Print * yes, no

 - The second method is to combine all the descriptions into the
 /etc/ddi/descriptions file. If a description line following the
 keyword (as described in the first method) is not found, the
 devices command uses the keyword as the key to search the
 /etc/ddi/descriptions file for a description to display.

AIX Operating System Technical Reference
Adding Descriptions for Device Command to Display

¦ Copyright IBM Corp. 1985, 1991
C.8.6 - 1

 C.8.7 Adding Choices for the Devices Command to Display

 Some screens provided by the devices command contain a "Possible Choices"
 column heading. Under that heading are the valid choices for the
 associated ddi keyword. You must provide the possible choices in the
 configuration files in order for them to be displayed. There are two
 methods for providing the possible choices:

 1. Incorporate the choices with the keyword descriptions as explained
 under "Descriptions" in the /etc/ddi file. In the same line as the
 keyword description, insert an asterisk (*) followed by the possible
 choices. As seen in the above example, the second set of comments (6,
 8 and yes, no) are the valid choices for the "Possible Choices"
 column.

 2. Combine all valid options into one file called /etc/ddi/options. This
 file must follow the specific format described under "options" in
 topic 2.3.43. If the devices command does not find a description line
 following the keyword as explained in method one under Descriptions in
 /etc/ddi, the devices command looks for the opts keyword in the kaf
 file stanza for the keyword. The devices command then uses the opts
 keyword to generate a key to search on in the /etc/ddi/options file.
 The devices command then displays the choices column. The format of
 the /etc/ddi/options file is important.

AIX Operating System Technical Reference
Adding Choices for the Devices Command to Display

¦ Copyright IBM Corp. 1985, 1991
C.8.7 - 1

 D.0 Appendix D. Glossary

 access. To obtain data from or put data in storage.

 access permission. A group of designations that determine who can access
 a particular AIX file and how the user may access the file.

 account. The log in directory and other information that give a user
 access to the system.

 activity manager. A collection of system-supplied tasks allowing users to
 manage their activities. Provides the ability to list current activities
 (Activity List) and to begin, cancel, hide, and activate activities.

 All Points Addressable (APA) display. A display that allows each pel to
 be individually addressed. An APA display allows for images to be
 displayed that are not made up of images predefined in character boxes.
 Contrast with character display.

 allocate. To assign a resource, such as a disk file or a diskette file,
 to perform a specific task.

 alphabetic. Pertaining to a set of letters a through z.

 alphanumeric character. Consisting of letters, numbers and often other
 symbols, such as punctuation marks and mathematical symbols.

 American National Standard Code for Information Interchange (ASCII). The
 code developed by ANSI for information interchange among data processing
 systems, data communications systems, and associated equipment. The ASCII
 character set consists of 7-bit control characters and symbolic
 characters.

 American National Standards Institute. An organization sponsored by the
 Computer and Business Equipment Manufacturers Association for establishing
 voluntary industry standards.

 application. A program or group of programs that apply to a particular
 business area, such as the Inventory Control or the Accounts Receivable
 application.

 application program. A program used to perform an application or part of
 an application.

 argument. Numbers, letters, or words that change the way a command works.

 ASCII. See American National Standard Code for Information Interchange.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 1

 asynchronous transmission. In data communication, a method of
 transmission in which the bits included in a character or block of
 characters occur during a specific time interval. However, the start of
 each character or block of characters can occur at anytime during this
 interval. Contrast with synchronous transmission.

 attribute. A characteristic. For example, the attribute for a displayed
 field could be blinking.

 authorize. To grant to a user the right to communicate with, or make use
 of, a computer system or display station.

 auto carriage return. The system function that places carriage returns
 automatically within the text and on the display. This is accomplished by
 moving whole words that exceed the line end zone to the next line.

 backend. The program that sends output to a particular device. There are
 two types of backends: friendly and unfriendly.

 background process. (1) A process that does not require operator
 intervention that can be run by the computer while the work station is
 used to do other work. (2) A mode of program execution in which the shell
 does not wait for program completion before prompting the user for another
 command.

 backup copy. A copy, usually of a file or group of files, that is kept in
 case the original file or files are unintentionally changed or destroyed.

 backup diskette. A diskette containing information copied from a fixed
 disk or from another diskette. It is used to restore information in case
 the original information becomes unusable.

 bad block. A portion of a disk that can never be used reliably.

 base address. The beginning address for resolving symbolic references to
 locations in storage.

 base name. The last element to the right of a full path name. A filename
 specified without its parent directories.

 batch printing. Queueing one or more documents to print as a separate
 job. The operator can type or revise additional documents at the same
 time. This is a background process.

 batch processing. A processing method in which a program or programs
 execute with little or no operator action. This is a background process.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 2

 Contrast with interactive processing.

 binary. (1) Pertaining to a system of numbers to the base two; the binary
 digits are 0 and 1. (2) Involving a choice of two conditions, such as
 on-off or yes-no.

 bit. From BInary digiT. Either of the binary digits 0 or 1 used in
 computers to store information. See also byte.

 block. (1) A group of records that is recorded or processed as a unit.
 Same as physical record. (2) In data communication, a group of records
 that is recorded, processed, or sent as a unit. (3) A physical block in
 AIX is 4096 bytes long. (4) A logical block in AIX is 1024 bytes long.

 block file. A file listing the usage of blocks on a disk.

 block special file. A special file that provides access to an input or
 output device that is capable of supporting a file system. See also
 character special file.

 bootstrap. A small program that loads larger programs during system
 initialization.

 branch. In a computer program an instruction that selects one of two or
 more alternative sets of instructions. A conditional branch occurs only
 when a specified condition is met.

 breakpoint. A place in a computer program, usually specified by an
 instruction, where execution may be interrupted by external intervention
 or by a monitor program.

 buffer. (1) A temporary storage unit, especially one that accepts
 information at one rate and delivers it at another rate. (2) An area of
 storage, temporarily reserved for performing input or output, into which
 data is read, or from which data is written.

 burst pages. On continuous-form paper, pages of output that can be
 separated at the perforations.

 byte. The amount of storage required to represent one character; a byte
 is 8 bits.

 call. (1) To activate a program or procedure at its entry point. Compare
 with load.

 callouts. An AIX kernel parameter establishing the maximum number of
 scheduled activities that can be pending simultaneously.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 3

 canonical processing. Processing that occurs according to a defined set
 of rules.

 cancel. To end a task before it is completed.

 carriage return. (1) In text data, the action causing line ending
 formatting to be performed at the current cursor location followed by a
 line advance of the cursor. Equivalent to the carriage return of a
 typewriter. (2) A keystroke generally indicating the end of a command
 line.

 case sensitive. Able to distinguish between uppercase and lowercase
 letters.

 character. A letter, digit, or other symbol.

 character display. A display that uses a character generator to display
 predefined character boxes of images (characters) on the screen. This
 kind of display cannot address the screen any less than one character box
 at a time. Contrast with All Points Addressable display.

 character key. A keyboard key that allows the user to enter the character
 shown on the key. Compare with function keys.

 character position. On a display, each location that a character or
 symbol can occupy.

 character set. A group of characters used for a specific reason; for
 example, the set of characters a printer can print or a keyboard can
 support.

 character special file. A special file that provides access to an input
 or output device. The character interface is used for devices that do not
 use block I/O. See also block special file.

 character string. A sequence of consecutive characters.

 character variable. The name of a character data item whose value may be
 assigned or changed while the program is running.

 child. (1) Pertaining to a secured resource, either a file or library,
 that uses the user list of a parent resource. A child resource can have
 only one parent resource. (2) In the AIX Operating System, child is a
 process spawned by a parent process that shares resources of parent
 process. Contrast with parent.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 4

 C language. A general purpose programming language that is the primary
 language of the AIX Operating System.

 class. Pertaining to the I/O characteristics of a device. AIX devices
 are classified as block or character.

 client. A computer or process that accesses the data, services, or
 resources of another computer or process in a network.

 close. (1) To end an activity and remove that window from the display.
 (2) To finalize I/O operations on a file.

 code. (1) Instructions for the computer. (2) To write instructions for
 the computer; to program. (3) A representation of a condition, such as an
 error code.

 code page. (1) An assignment of graphic characters and control function
 meanings to all code points. (2) Arrays of code points representing
 characters that establish ordinal sequence (numeric order) of characters.
 AIX uses 256-character code pages.

 code point. (1) A 1-byte code representing one of 256 potential
 characters. (2) A 1- or 2-byte representation of a character. A byte can
 contain a single-shifted bit that indicates that the second byte is a part
 of the same code point, and indicates the code page of the character. The
 second byte (only byte in the case of a 1-byte character) places the
 character in the code page array.

 code segment. See segment.

 collating sequence. The sequence in which characters are ordered within
 the computer for sorting, combining, or comparing.

 color display. A display device capable of displaying more than two
 colors and the shades produced via the two colors, as opposed to a
 monochrome display.

 color expansion operation. A graphics programming operation that occurs
 automatically when the source pixel map data area contains only one bit
 per pixel, and the destination pixel map data area is a color display
 adapter buffer frame defined to have more than one bit per pixel.

 column. A vertical arrangement of text or numbers.

 column headings. Text appearing near the top of columns of data for the
 purpose of identifying or titling.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 5

 command. A request to perform an operation or run a program. When
 parameters, arguments, flags, or other operands are associated with a
 command, the resulting character string is a single command.

 command interpreter. A program (such as the Bourne or C shell) that reads
 text lines representing commands and invokes the corresponding command.

 command line. (1) The area of the screen where commands are displayed as
 they are typed. (2) The contents of such a line.

 command line editing keys. Keys for editing the command line.

 command programming language. Facility that allows programming by the
 combination of commands rather than by writing statements in a
 conventional programming language.

 command word. The name of the 16-bit units used for storing graphic
 primitive strings (GPS). The first command word determines the primitive
 type and sets the length of the string. Subsequent command words contain
 information in multiples of quid, or, four bits of data.

 compile. (1) To translate a program written in a high-level programming
 language into a machine language program. (2) The computer actions
 required to transform a source file into an executable object file.

 compress. (1) To move files and libraries together on disk to create one
 continuous area of unused space. (2) In data communications, to delete a
 series of duplicate characters in a character string.

 concatenate. (1) To link together. (2) To join two character strings.

 condition. An expression in a program or procedure that can be evaluated
 to a value of either true or false when the program or procedure is
 running.

 configuration. The group of machines, devices, and programs that make up
 a computer system. See also system customization.

 configuration file. A file that specifies the characteristics of a system
 or subsystem, for example, the AIX queueing system.

 consistent. Pertaining to a file system, without internal discrepancies.

 console. (1) The main AIX display station. (2) A device name associated
 with the main AIX display station.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 6

 constant. A data item with a value that does not change. Contrast with
 variable.

 context search. A search through a file whose target is a character
 string.

 control block. A storage area used by a program to hold control
 information.

 control character. (1) A character, occurring in a particular context,
 that initiates, modifies, or stops any operation that affects the
 recording, processing, transmission, or interpretation of data (such as
 carriage return, font change, and end of transmission). (2) A
 non-printing character that performs formatting functions in a text file.

 control code. A code point and its assigned control function meaning; for
 example, "end of transmission". Control codes do not have graphical
 representations. For 7-bit codes such as ASCII, the first 32 code points
 are reserved for control purposes. See also single-shift control.

 control program. Part of the AIX Operating System that determines the
 order in which basic functions should be performed.

 controlled cancel. The system action that ends the job step being run,
 and saves any new data already created. The job that is running can
 continue with the next job step.

 copy. The action by which the user makes a whole or partial duplicate of
 already existing data.

 coupler. A device connecting a modem to a telephone network.

 crash. An unexpected interruption of computer service, usually due to a
 serious hardware or software malfunction.

 current directory. The directory that is active, and can be displayed
 with the pwd command.

 current line. The display line on which the cursor is located.

 current working directory. See current directory.

 cursor. (1) A movable symbol (such as an underline) on a display, used to
 indicate to the operator where the next typed character will be placed or
 where the next action will be directed. (2) A marker that indicates the
 current data access location within a file.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 7

 cursor movement keys. The directional keys used to move the cursor.

 customize. To describe (to the system) the devices, programs, users, and
 user defaults for a particular data processing system.

 cylinder. All fixed disk or diskette tracks that can be read or written
 without moving the disk drive or diskette drive read/write mechanism.

 daemon. See daemon process.

 daemon process. A process begun by the root or the root shell that can be
 stopped only by the root. Daemon processes generally provide services
 that must be available at all times such as sending data to a printer.

 data block. See block.

 data communications. The transmission of data between computers, or
 remote devices or both (usually over long distance).

 data link. The equipment and rules (protocols) used for sending and
 receiving data.

 data stream. All information (data and control information) transmitted
 over a data link.

 debug. (1) To detect, locate, and correct mistakes in a program. (2) To
 find the cause of problems detected in software.

 default. A value that is used when no alternative is specified by the
 operator.

 default directory. The directory name supplied by the operating system if
 none is specified.

 default drive. The drive name supplied by the operating system if none is
 specified.

 default value. A value stored in the system that is used when no other
 value is specified.

 delete. To remove. For example, to delete a file.

 dependent work station. A work station having little or no stand-alone

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 8

 capability, that must be connected to a host or server in order to provide
 any meaningful capability to the user.

 device. An electrical or electronic machine that is designed for a
 specific purpose and that attaches to your computer, for example, a
 printer, plotter, disk drive, and so forth.

 device driver. A program that operates a specific device, such as a
 printer, disk drive, or display.

 device manager. Collection of routines that act as an intermediary
 between device drivers and virtual machines for complex interfaces. For
 example, supervisor calls from a virtual machine are examined by a device
 manager and are routed to the appropriate subordinate device drivers.

 device name. A name reserved by the system that refers to a specific
 device.

 diagnostic. Pertaining to the detection and isolation of an error.

 diagnostic aid. A tool (procedure, program, reference manual) used to
 detect and isolate a device or program malfunction or error.

 diagnostic routine. A computer program that recognizes, locates, and
 explains either a fault in equipment or a mistake in a computer program.

 digit. Any of the numerals from 0 through 9.

 directory. A type of file containing the names and controlling
 information for other files or other directories.

 disable. To make nonfunctional.

 discipline. Pertaining to the order in which requests are serviced, for
 example, first-come-first-served (fcfs) or shortest job next (sjn).

 discriminated unions. An XDR discriminated union is a set of data
 composed of a discriminant and another data type. The discriminant is an
 enumeration. The other data type is selected from a set of prearranged
 types according to the value of the discriminant. The component types are
 called arms of the union. The discriminated union is encoded starting
 with the discriminant followed by the arm.

 disk I/O. Fixed-disk input and output.

 diskette. A thin, flexible magnetic plate that is permanently sealed in a

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 9

 protective cover. It can be used to store information copies from a fixed
 disk or another diskette.

 diskette drive. The device used to read and write information on
 diskettes.

 display device. An output unit that gives a visual representation of
 data.

 display screen. The part of the display device that displays information
 visually.

 display station. A device that includes a keyboard from which an operator
 can send information to the system and a display screen on which an
 operator can see the information sent to or received from the computer.

 distributed file system. A file system whose files, directories, and
 other components are stored on different sites in a particular cluster.

 distributed operating system. An operating system where multiple machines
 cooperate to seem like one machine.

 distributed processing. Results when a user involves multiple cluster
 sites in a single operation--for example, by editing a remote file and
 starting a task on another cluster site using the on, fast, fastsite, and
 migrate commands.

 Distributed Services (DS). A licensed program that allows you to share
 files with other AIX systems in a network. You can mount the file systems
 located on other AIX systems to create file trees that are independent of
 the file systems.

 dump. (1) To copy the contents of all or part of storage, usually to an
 output device. (2) Data that has been dumped.

 dump diskette. A diskette that contains a dump or is prepared to receive
 a dump.

 dump formatter. Program for analyzing a dump.

 EBCDIC. See extended binary-coded decimal interchange code.

 EBCDIC character. Any one of the symbols included in the 8-bit EBCDIC
 set.

 edit. To modify the form or format of data.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 10

 edit buffer. A temporary storage area used by an editor.

 editor. A program used to enter and modify programs, text, and other
 types of documents and data.

 effective root directory. The point where a system starts when searching
 for a file. Its path name begins with /(slash).

 emulation. Imitation; for example, when one computer imitates the
 characteristics of another computer.

 enable. To make functional.

 enter. To send information to the computer by pressing the Enter key.

 entry. A single input operation on a work station.

 environment. The settings for shell variables and paths associated with
 each process. These variables can be modified later by the user.

 error-correct backspace. An editing key that performs editing based on a
 cursor position; the cursor is moved one position toward the beginning of
 the line, the character at the new cursor location is deleted, and all
 characters following the cursor are moved one position toward the
 beginning of the line (to fill the vacancy left by the deleted element).

 escape character. A character that suppresses the special meaning of one
 or more characters that follow.

 Ethernet. A physical medium through which computers in the same or
 different clusters can communicate and share files.

 exit value. A numeric value that a command returns to indicate whether it
 completed successfully. Some commands return exit values that give other
 information, such as whether a file exists. Shell programs can test exit
 values to control branching and looping.

 expression. A representation of a value. For example, variables and
 constants appearing alone or in combination with operators.

 extended binary-coded decimal interchange code (EBCDIC). A set of 256
 eight-bit characters.

 extended character. A graphic character other than a 7-bit ASCII

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 11

 character. An extended character can be a 1-byte code point with the
 eighth bit set or a 2-byte code point.

 feature. A programming or hardware option, usually available at an extra
 cost.

 field. (1) An area in a record or panel used to contain a particular
 category of data. (2) The smallest component of a record that can be
 referred to by a name.

 FIFO. See first-in-first-out.

 file. A collection of related data that is stored and retrieved by an
 assigned name.

 file name. The name used by a program to identify a file. See also
 label.

 filename. In DOS, that portion of the file name that precedes the
 extension.

 file specification (filespec). The name and location of a file. A file
 specification consists of a drive specifier, a path name, and a file name.

 file system. The collection of files and file management structures on a
 physical or logical mass storage device, such as a diskette or minidisk.

 filetab. An AIX kernel parameter establishing the maximum number of files
 that can be open simultaneously.

 filter. A command that reads standard input data, modifies the data, and
 sends it to standard output.

 first-in-first-out (FIFO). A named permanent pipe. A FIFO allows two
 unrelated processes to exchange information using a pipe connection.

 fixed disk. A flat, circular, nonremoveable plate with a magnetizable
 surface layer on which data can be stored by magnetic recording.

 fixed-disk drive. The mechanism used to read and write information on
 fixed disk.

 flag. A modifier that appears on a command line with the command name
 that defines the action of the command. Flags in the AIX Operating System
 almost are always preceded by a dash.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 12

 font. A family or assortment of characters of a given size and style.

 flattened character. An ASCII character created by translating an
 extended character to the ASCII character most like it. The code point
 information is lost and the character cannot be retranslated to an
 extended character. For example, a c cedilla would be flattened to a
 plain c.

 foreground. A mode of program execution in which the shell waits for the
 program specified on the command line to complete before returning your
 prompt.

 format. (1) A defined arrangement of such things as characters, fields,
 and lines, usually used for displays, printouts, or files. (2) The
 pattern which determines how data is recorded.

 formatted diskette. A diskette on which control information for a
 particular computer system has been written but which may or may not
 contain any data.

 free list. A list of available space on each file system. This is
 sometimes called the free-block list.

 free-block list. See free list.

 full path name. The name of any directory or file expressed as a string
 of directories and files beginning with the root directory.

 function. A synonym for procedure. The C language treats a function as a
 data type that contains executable code and returns a single value to the
 calling function.

 function keys. Keys that request actions but do not display or print
 characters. Included are the keys that normally produce a printed
 character, but when used with the code key produce a function instead.
 Compare with character key.

 generation. For some remote systems, the translation of configuration
 information into machine language.

 Gid. See group number.

 global. Pertains to information available to more than one program or
 subroutine.

 global action. An action having general applicability, independent of the

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 13

 context established by any task.

 global character. The special characters * and ? that can be used in a
 file specification to match one or more characters. For example, placing
 a ? in a file specification means any character can be in that position.

 global search. The process of having the system look through a document
 for specific characters, words, or groups of characters.

 global variable. A symbol defined in one program module, but used in
 other independently assembled program modules.

 GPS. See graphic primitive string.

 graphic character. A character that can be displayed or printed.

 group name. A name that uniquely identifies a group of users to the
 system.

 graphic primitive string (GPS). The format used for storing graphics file
 data. A GPS is composed of up to five types of graphical data: comments,
 lines, arcs, text, and hardware.

 group number (Gid). A unique number assigned to a group of related users.
 The group number can often be substituted in commands that take a group
 name as an argument.

 hardware. The equipment, as opposed to the programming, of a computer
 system.

 header. Constant text that is formatted to be in the top margin of one or
 more pages.

 header label. A special set of records on a diskette describing the
 contents of the diskette.

 here document. Data contained within a shell script (also called inline
 input).

 hexadecimal. Pertaining to a system of numbers to the base sixteen;
 hexadecimal digits range from 0 (zero) through 9 (nine) and A (ten)
 through F (fifteen).

 hierarchical tree structure. The organization of files on AIX, similar to
 tree-structure directories, with each file like a small branch of a larger
 branch that represents the file's parent directory. A directory can also

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 14

 be contained in another higher level directory, with the parent of all
 directories represented by the tree's root (root or root directory).

 highlight. To emphasize an area on the display by any of several methods,
 such as brightening the area or reversing the color of characters within
 the area.

 history. A C-shell mechanism that lists previously executed commands.
 These commands can be re-executed with the ! command.

 history file. A file containing a log of system actions and operator
 responses.

 hog factor. In system accounting, an analysis of how many times each
 command was run, how much processor time and memory it used, and how
 intensive that use was.

 hole. A block of binary zeros in a file.

 home directory. (1) A directory associated with an individual user.
 (2) The user's current directory on login or after issuing the cd command
 with no argument.

 home site. The computer that stores the modifiable copy of a user's home
 directory. This is the cluster site with the primary copy of his home
 directory if it is replicated. A user typically logs in to the computer
 that is his home site.

 I/O. See input/output.

 ID. Identification.

 IF expressions. Expressions within a procedure, used to test for a
 condition.

 indirect block. A block containing pointers to other blocks. Indirect
 blocks can be single-indirect, double-indirect, or triple-indirect.

 informational message. A message providing information to the operator,
 that does not require a response.

 initial program load (IPL). The process of loading the system programs
 and preparing the system to run jobs. See initialize.

 initialize. To set counters, switches, addresses, or contents of storage
 to 0 or other starting values at the beginning of, or at prescribed points

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 15

 in, the operation of a computer routine.

 inline input. See here document.

 inode. The internal structure for managing files in the system. Inodes
 contain all of the information pertaining to the node, type, owner, and
 location of a file. A table of inodes is stored near the beginning of a
 file system.

 i-number. A number specifying a particular inode on a file system.

 inodetab. An AIX kernel parameter that establishes a table in memory for
 storing copies of inodes for all active files.

 input. Data to be processed.

 input device. Physical devices used to provide data to a computer.

 input file. A file opened by a program so that the program can read from
 that file.

 input list. A list of variables to which values are assigned from input
 data.

 input redirection. The specification of an input source other than the
 standard one.

 input-output file. A file opened for input and output use.

 input-output device number. A value assigned to a device driver by the
 guest operating system or to the virtual device by the virtual resource
 manager. This number uniquely identifies the device regardless of whether
 it is real or virtual.

 input/output (I/O). Pertaining to either input, output, or both between a
 computer and a device.

 interactive processing. A processing method in which each system user
 action causes response from the program or the system. Contrast with
 batch processing.

 interface. A shared boundary between two or more entities. An interface
 might be a hardware component to link two devices together or it might be
 a portion of storage or registers accessed by two or more computer
 programs.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 16

 interleave factor. Specification of the ratio between contiguous physical
 blocks (on a fixed-disk) and logically contiguous blocks (as in a file).

 interrupt. (1) To temporarily stop a process. (2) In data
 communications, to take an action at a receiving station that causes the
 sending station to end a transmission. (3) A signal sent by an I/O device
 to the processor when an error has occurred or when assistance is needed
 to complete I/O. An interrupt usually suspends execution of the currently
 executing program.

 IPL. See initial program load.

 job. (1) A unit of work to be done by a system. (2) One or more related
 procedures or programs grouped into a procedure.

 job queue. A list, on disk, of jobs waiting to be processed by the
 system.

 justify. To print a document with even right and left margins.

 K-byte. See kilobyte.

 kernel. The memory-resident part of the AIX Operating System containing
 functions needed immediately and frequently. The kernel supervises the
 input and output, manages and controls the hardware, and schedules the
 user processes for execution.

 kernel parameters. Variables that specify how the kernel allocates
 certain system resources.

 key pad. A physical grouping of keys on a keyboard (for example, numeric
 key pad, and cursor key pad).

 keyboard. An input device consisting of various keys allowing the user to
 input data, control cursor and pointer locations, and to control the
 dialog between the user and the display station

 keylock feature. A security feature in which a lock and key can be used
 to restrict the use of the display station.

 keyword. One of the predefined words of a programming language; a
 reserved word.

 keyword argument. One type of variable assignment that can be made on the
 command line.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 17

 kill. An AIX Operating System command that stops a process or sends a
 signal to it.

 kill character. The character that is used to delete a line of characters
 entered after the user's prompt.

 kilobyte. 1024 bytes.

 kprocs. An AIX kernel parameter establishing the maximum number of
 processes that the kernel can run simultaneously.

 label. (1) The name in the disk or diskette volume table of contents that
 identifies a file. See also file name. (2) The field of an instruction
 that assigns a symbolic name to the location at which the instruction
 begins, or such a symbolic name.

 left justify. See left-adjust.

 left margin. The area on a page between the left paper edge and the
 leftmost character position on the page.

 left-adjust. The process of aligning lines of text at the left margin or
 at a tab setting such that the leftmost character in the line or field is
 in the leftmost position. Contrast with right-adjust.

 library. A collection of functions, calls, subroutines, or other data.

 Licensed Program (LP). Software programs that remain the property of the
 manufacturer, for which customers pay a license fee.

 line editor. An editor that modifies the contents of a file one line at a
 time.

 linefeed. An ASCII character that causes an output device to move forward
 one line.

 link. A connection between an inode and one or more file names associated
 with it.

 literal. A symbol or a quantity in a source program that is itself data,
 rather than a reference to data.

 load. (1) To move data or programs into storage. (2) To place a diskette
 into a diskette drive, or a magazine into a diskette magazine drive.
 (3) To insert paper into a printer.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 18

 loader. A program that reads run files into main storage, thus preparing
 them for execution.

 local. Pertaining to a device directly connected to your system without
 the use of a communications line. Contrast with remote.

 <LOCAL> alias. The <LOCAL> alias can translate into different strings on
 different cluster sites for different processes. When <LOCAL> is the
 first component of the destination name for a symbolic link, it is
 replaced with its alias string, normally /machinename.

 local cluster site. The site on a cluster that the user is logged in to.
 The term local normally refers to a TCF cluster site.

 <LOCAL> file system. The part of the root file system hierarchy
 comprising system directories and files (such as the /etc/motd "message of
 the day" file) defined uniquely on a particular computer in the cluster.
 These files are not replicated. The name of the <LOCAL> file system
 appears in response to the site-l command.

 location transparency. Allows an object to change location without the
 user's or program's knowledge if that location is not part of the object's
 name. For example, /u/joe/glossary may have been a file on eyore last
 week, but it is a file on pooh this week. Joe may not need to know that
 the file was on either eyore or pooh. If, however, Joe wants to find out
 where the site is located, he may invoke the where command.

 log. To record; for example, to log all messages on the system printer.
 A list of this type is called a log, such as an error log.

 log in. To begin a session at a display station.

 log in shell. The program, or command interpreter, started for a user at
 log in.

 log off. To end a session at a display station.

 log out. To end a session at a display station.

 logical device. A file for conducting input or output with a physical
 device.

 loop. A sequence of instructions performed repeatedly until an ending
 condition is reached.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 19

 LP. See licensed program.

 magic number. A constant located at a predefined offset in a file, used
 to verify the format of the file. Magic numbers are chosen because they
 are unlikely to occur as a random pattern in normal output.

 mailbox. An area designated for storage of mail messages directed to a
 specific system user.

 main storage. The part of the processing unit where programs are run and
 data are manipulated.

 maintenance system. A special version of the AIX Operating System which
 is loaded from diskette and used to perform system management tasks.

 major device number. A system identification number for each device or
 type of device.

 mapped files. Files on the fixed-disk that are accessed as if they were
 in memory.

 mask. A pattern of characters that controls the keeping, deleting, or
 testing of portions of another pattern of characters.

 matrix. An array arranged in rows and columns.

 maxprocs. An AIX kernel parameter establishing the maximum number of
 processes that can be run simultaneously by a user.

 memory. Storage on electronic chips. Examples of memory are random
 access memory, read only memory, or registers. See storage.

 menu. A displayed list of items from which an operator can make a
 selection.

 message. (1) A response from the system to inform the operator of a
 condition which may affect further processing of a current program.
 (2) Information sent from one user in a multi-user operating system to
 another.

 minidisk. A logical division of a fixed disk.

 minor device number. A number used to specify various types of
 information about a particular device, for example, to distinguish among
 several printers of the same type.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 20

 mode word. An inode field that describes the type and state of the inode.

 modem. See modulator-demodulator.

 modulation. Changing the frequency or size of one signal by using the
 frequency or size of another signal.

 modulator-demodulator (modem). A device that converts data from the
 computer to a signal that can be transmitted on a communications line, and
 converts the signal received to data for the computer.

 module. A discrete programming unit that usually performs a specific task
 or set of tasks. Modules are subroutines and calling programs that are
 assembled separately, then linked to make a complete program.

 monitor mode. A console display mode in which an application program can
 directly access the display adapter without conflict with the standard
 virtual terminal output mechanism.

 mount. To make a file system accessible.

 mountab. An AIX kernel parameter establishing the maximum number of file
 systems that can be mounted simultaneously.

 multiprogramming. The processing of two or more programs at the same
 time.

 multivolume file. A diskette file occupying more than one diskette.

 IBM AIX Network File System (NFS). A licensed program that allows you to
 share files with other computers in one or more networks that have a
 variety of machine types and operating systems. You can mount file systems
 located on network servers and use remote files as if they were on your
 work stations by creating file trees that are independent of the file
 systems.

 nest. To incorporate a structure or structures of some kind into a
 structure of the same kind. For example, to nest one loop (the nested
 loop) within another loop (the nesting loop); to nest one subroutine (the
 nested subroutine) within another subroutine (the nesting subroutine).

 network. A collection of products connected by communication lines for
 information exchange between locations.

 new-line character. A control character that causes the print or display
 position to move to the first position on the next line.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 21

 null. Having no value, containing nothing.

 null character (NUL). The character hex 00, used to represent the absence
 of a printed or displayed character.

 numeric. Pertaining to any of the digits 0 through 9.

 object code. Machine-executable instruction, usually generated by a
 compiler from source code written in a higher level language. For
 programs that must be linked, object code consists of relocatable machine
 code.

 octal. A base eight numbering system consisting of the digits 0 (zero)
 through 7 (seven).

 opaque data. XDR opaque data is data of a fixed size that is passed to
 another machine without being interpreted.

 open. (1) To make a file available to a program for processing.

 operating system. Software that controls the running of programs; in
 addition, an operating system may provide services such as resource
 allocation, scheduling, input/output control, and data management.

 operation. A specific action (such as move, add, multiply, load) that the
 computer performs when requested.

 operator. (1) A symbol representing an operation to be done. (2) A
 person entering commands to the system.

 output. The result of processing data.

 output devices. Physical devices used by a computer to present data to a
 user.

 output file. A file that is opened by a program so that the program can
 write to that file.

 output redirection. The specification of an output destination other than
 the standard one.

 override. (1) A parameter or value that replaces a previous parameter or
 value. (2) To replace a parameter or value.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 22

 overwrite. To write output into a storage or file space that is already
 occupied by data.

 owner. The user who has the highest level of access authority to a data
 object or action, as defined by the object or action.

 pad. To fill unused positions in a field with dummy data, usually zeros
 or blanks.

 page. A block of instructions, data, or both.

 page space minidisk. The area on a fixed disk that temporarily stores
 instructions or data currently being run. See also minidisk.

 pagination. The process of adjusting text to fit within margins and/or
 page boundaries.

 paging. The action of transferring instructions, data, or both between
 real storage and external page storage.

 parallel processing. The condition in which multiple tasks are being
 performed simultaneously within the same activity.

 parameter. Information that the user supplies to a panel, command, or
 function.

 parent. Pertaining to a secured resource, either a file or library, whose
 user list is shared with one or more other files or libraries. Contrast
 with child.

 parent directory. The directory one level above the current directory.

 partition. See minidisk.

 password. A string of characters that, when entered along with a user
 identification, allows an operator to sign on to the system.

 password security. A program product option that helps prevent the
 unauthorized use of a display station, by checking the password entered by
 each operator at sign-on.

 path name. See full path name and relative path name.

 pattern-matching character. Special characters such as * or ? that can be

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 23

 used in search patterns. Some used in a file specification to match one
 or more characters. For example, placing a ? in a file specification
 means any character can be in that position. Pattern-matching characters
 are also called wildcards.

 permission code. A three-digit octal code, or a nine-letter alphabetic
 code, indicating the access permissions for a file. The access
 permissions are read, write, and execute.

 permission field. One of the three-character fields within the
 permissions column of a directory listing indicating the read, write, and
 run permissions for the file or directory owner, group, and all others.

 phase. One of several stages file system checking and repair performed by
 the fsck command.

 physical device. See device.

 physical file. An indexed file containing data for which one or more
 alternative indexes have been created.

 physical record. (1) A group of records recorded or processed as a unit.
 Same as block. (2) A unit of data moved into or out of the computer.

 PID. See process ID.

 pipe. To direct the data so that the output from one process becomes the
 input to another process.

 pipeline. A direct, one-way connection between two or more processes.

 pitch. A unit of width of typewriter type, based on the number of times a
 letter can be set in a linear inch. For example, 10-pitch type has 10
 characters per inch.

 platen. The support mechanism for paper on a printer, commonly
 cylindrical, against which printing mechanisms strike to produce an
 impression.

 pointer. A logical connection between physical blocks.

 port. (1) To make the programming changes necessary to allow a program
 that runs on one type of computer to run on another type of computer.
 (2) An access point for data input to or data output from a computer
 system. See connector.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 24

 position. The location of a character in a series, as in a record, a
 displayed message, or a computer printout.

 print queue. A file containing a list of the names of files waiting to be
 printed.

 printout. Information from the computer produced by a printer.

 priority. The relative ranking of items. For example, a job with high
 priority in the job queue will be run before one with medium or low
 priority.

 priority number. A number that establishes the relative priority of
 printer requests.

 privileged user. The account with superuser authority.

 problem determination. The process of identifying why the system is not
 working. Often this process identifies programs, equipment, data
 communications facilities, or user errors as the source of the problem.

 problem determination procedure. A prescribed sequence of steps aimed at
 recovery from, or circumvention of, problem conditions.

 procedure. See shell procedure.

 process. (1) A sequence of actions required to produce a desired result.
 (2) An entity receiving a portion of the processor's time for executing a
 program. (3) An activity within the system begun by entering a command,
 running a shell program, or being started by another process.

 process accounting. An analysis of the use each process makes of the
 processing unit, memory, and I/O resources.

 process ID (PID). A unique number assigned to a process that is running.

 process transparency. The ability to execute and control tasks on any
 site in the cluster, regardless of where the user is logged in. The same
 system calls and commands are used, no matter where the process is
 located. For example, a remote job is aborted the same way that a local
 job is abandoned.

 profile. (1) A file containing customized settings for a system or user.
 (2) Data describing the significant features of a user, program, or
 device.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 25

 program. A file containing a set of instructions conforming to a
 particular programming language syntax.

 prompt. A displayed request for information or operator action.

 propagation time. The time necessary for a signal to travel from one
 point on a communications line to another.

 qdaemon. The daemon process that maintains a list of outstanding jobs and
 sends them to the specified device at the appropriate time.

 queue. A line or list formed of items waiting to be processed.

 queued message. A message from the system that is added to a list of
 messages stored in a file for viewing by the user at a later time. This
 is in contrast to a message that is sent directly to the screen for the
 user to see immediately.

 quit. A key, command, or action that tells the system to return to a
 previous state or stop a process.

 quote. To mask the special meaning of certain characters; to cause them
 to be taken literally.

 random access. An access mode in which records can be read from, written
 to, or removed from a file in any order.

 raw interface. In I/O, an interface in which data is not manipulated by
 the kernel before it arrives at the device driver.

 readonly. Pertaining to file system mounting, a condition that allows
 data to be read, but not modified.

 recovery procedure. (1) An action performed by the operator when an error
 message appears on the display screen. Usually, this action permits the
 program to continue or permits the operator to run the next job. (2) The
 method of returning the system to the point where a major system error
 occurred and running the recent critical jobs again.

 redirect. To divert data from a process to a file or device to which it
 would not normally go.

 reference count. In an inode, a record of the total number of directory
 entries that refer to the inode.

 relational expression. A logical statement describing the relationship

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 26

 (such as greater than or equal) of two arithmetic expressions or data
 items.

 relational operator. The reserved words or symbols used to express a
 relational condition or a relational expression.

 relative address. An address specified relative to the address of a
 symbol. When a program is relocated, the addresses themselves will
 change, but the specification of relative addresses remains the same.

 relative addressing. A means of addressing instructions and data areas by
 designating their locations relative to some symbol.

 relative path name. The name of a directory or file expressed as a
 sequence of directories followed by a file name, beginning from the
 current directory.

 remote. Pertaining to a system or device that is connected to your system
 through a communications line. Contrast with local.

 remote cluster site. A site on the cluster that the user is not logged in
 to. The term remote normally refers to a TCF cluster site.

 replicated root file system. The replicated root system is a file system
 with key common files and directories for basic system operation. Almost
 all system commands, programs and libraries are in the replicated root
 file system. Other user and system file systems (like the local file
 system) are mounted on top of directories in the replicated root file
 system.

 reserved character. A character or symbol that has a special
 (non-literal) meaning unless quoted.

 reserved word. A word that is defined in a programming language for a
 special purpose, and that must not appear as a user-declared identifier.

 reset. To return a device or circuit to a clear state.

 restore. To return to an original value or image. For example, to
 restore a library from diskette.

 right justify. See right-adjust.

 right margin. The area on a page between the last text character and the
 right upper edge.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 27

 right-adjust. To place or move an entry in a field so that the rightmost
 character of the field is in the rightmost position. Contrast with
 left-adjust.

 root. Another name sometimes used for superuser.

 root directory. The top level of a tree-structured directory system.

 root file system. The basic AIX Operating System file system, which
 contains operating system files and onto which other file systems can be
 mounted. The root file system is the file system that contains the files
 that are run to start the system running.

 routine. A set of statements in a program causing the system to perform
 an operation or a series of related operations.

 run. To cause a program, utility, or other machine function to be
 performed.

 run-time environment. A collection of subroutines and shell variables
 that provide commonly used functions and information for system
 components.

 scratch file. A file, usually used as a work file, that exists until the
 program that uses it ends.

 screen. See display screen.

 scroll. To move information vertically or horizontally to bring into view
 information that is outside the display screen boundaries.

 sector. (1) An area on a disk track or a diskette track reserved to
 record information. (2) The smallest amount of information that can be
 written to or read from a disk or diskette during a single read or write
 operation.

 security. The protection of data, system operations, and devices from
 accidental or intentional ruin, damage, or exposure.

 segment. A contiguous area of virtual storage allocated to a job or
 system task. A program segment can be run by itself, even if the whole
 program is not in main storage.

 semantic transparency. Allow the same command to function identically
 from all cluster sites. It provides, for example, for the grep command to
 have the same options and give the same results no matter where it is
 invoked.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 28

 separator. A character used to separate parts of a command or file.

 sequential access. An access method in which records are read from,
 written to, or removed from a file based on the logical order of the
 records in the file.

 server. A computer or process that provides the data, services, or
 resources that can be accessed by another computer or process in a
 network.

 session. A collection of related processes sharing the same controlling
 terminal.

 session leader. A process whose process ID, process group ID and session
 ID value are equal. The session leader is the one who establishes the
 controlling terminal, if any, for the session. Every process group
 belongs to exactly one session.

 session records. In the accounting system, a record of time connected and
 line usage for connected display stations, produced from log in and log
 out records.

 shared printer. A printer that is used by more than one work station.

 shell. See shell program.

 shell procedure. A series of commands combined in a file that carry out a
 particular function when the file is run or when the file is specified as
 an argument to the sh command. Shell procedures are frequently called
 shell scripts.

 shell program. A program that accepts and interprets commands for the
 operating system.

 shell prompt. The character string on the command line indicating the
 system can accept a command (typically the $ character).

 shell script. See shell procedure.

 shell variables. Facilities of the shell program for assigning variable
 values to names.

 signal. An event that interrupts the normal execution of a process.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 29

 single-shift control. In code page switching, a control code that shifts
 to another page for a single character; nonlocking shifts.

 size field. In an inode, a field that indicates the size, in bytes, of
 the file associated with the inode.

 sort. To rearrange some or all of a group of items based upon the
 contents or characteristics of those items.

 source diskette. The diskette containing data to be copied, compared,
 restored, or backed up.

 source program. A set of instructions written in a programming language,
 that must be translated to machine language compiled before the program
 can be run.

 special character. A character other than an alphabetic or numeric
 character. For example; *, +, and % are special characters.

 special file. Special files are used in the AIX system to provide an
 interface to input/output devices. There is at least one special file for
 each device connected to the computer. Contrast with directory and file.
 See also block special file and character special file.

 spool files. Files used in the transmission of data among devices.

 stand-alone work station. A work station that can be used to preform
 tasks independent of (without being connected to) other resources such as
 servers or host systems.

 standard error. The place where many programs place error messages.

 standard input. The primary source of data going into a command.
 Standard input comes from the keyboard unless redirection or piping is
 used, in which case standard input can be from a file or the output from
 another command.

 standard output. The primary destination of data coming from a command.
 Standard output goes to the display unless redirection or piping is used,
 in which case standard output can be to a file or another command.

 stanza. A group of lines in a file that together have a common function.
 Stanzas are usually separated by blank lines, and each stanza has a name.

 statement. An instruction in a program or procedure.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 30

 status. (1) The current condition or state of a program or device. For
 example, the status of a printer. (2) The condition of the hardware or
 software, usually represented in a status code.

 storage. (1) The location of saved information. (2) In contrast to
 memory, the saving of information on physical devices such as disk or
 tape. See memory.

 storage device. A device for storing and/or retrieving data.

 string. A linear sequence of entities such as characters or physical
 elements. Examples of strings are alphabetic string, binary element
 string, bit string, character string, search string, and symbol string.

 su. See superuser.

 subdirectory. A directory contained within another directory in the file
 system hierarchy.

 subprogram. A program invoked by another program.

 subroutine. (1) A sequenced set of statements that may be used in one or
 more computer programs and at one or more points in a computer program.
 (2) A routine that can be part of another routine.

 subscript. An integer or variable whose value refers to a particular
 element in a table or an array.

 subshell. An instance of the shell program started from an existing shell
 program.

 substitution. A procedure used by a text editor like ed or vi to replace
 one specified string of characters with another. If a global substitution
 is made, all occurrences of the specified text pattern are replaced with
 the new one.

 substring. A part of a character string.

 subsystem. A secondary or subordinate system, usually capable of
 operating independently of, or synchronously with, a controlling system.

 super block. The most critical part of the file system containing
 information about every allocation or deallocation of a block in the file
 system.

 superuser. Super user authority; root permissions.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 31

 superuser (su). The user who can operate without the restrictions
 designed to prevent data loss or damage to the system (User ID 0).

 superuser authority. The unrestricted ability to access and modify any
 part of the operating system associated with the user who manages the
 system. The authority obtained when one logs in as root.

 symbolic link. Type of file that contains the path name to another file
 as a directory; it functions as a pointer to the other file or directory.
 See link.

 synchronous. Occurring in a regular or predictable sequence.

 synchronous transmission. In data communication, a method of transmission
 in which the sending and receiving of characters is controlled by timing
 signals. Contrast with asynchronous transmission.

 system. The computer and its associated devices and programs.

 system call. A request by an active process for a service by the system
 kernel.

 system customization. A process of specifying the devices, programs, and
 users for a particular data processing system.

 system date. The date assigned by the system user during setup and
 maintained by the system.

 system dump. A copy of memory from all active programs (and their
 associated data) whenever an error stops the system. Contrast with task
 dump.

 system management. The tasks involved in maintaining the system in good
 working order and modifying the system to meet changing requirements.

 system parameters. See kernel parameters.

 system primary site. The machine (cluster site) designated to hold the
 primary copy of the replicated root file system. When files are changed
 in the replicated root file system, in primary site for the cluster must
 be available.

 system profile. A file containing the default values used in system
 operations.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 32

 system-replicated file system. One that contains files and directories
 accessed by many users regardless of the users' specific applications.
 These system files, programs and directories are replicated on different
 sites in a cluster.

 system unit. The part of the system that contains the processing unit,
 the disk drives, and the diskette drives.

 system user. A person who uses a computer system.

 system network architecture (SNA). A set of rules for controlling the
 transfer of information in a data communication network.

 target diskette. The diskette to be used to receive data from a source
 diskette.

 task. A basic unit of work to be performed. Examples are a user task, a
 server task, and a processor task.

 task dump. A copy of memory from a program that failed (and its
 associated data). Contrast with system dump.

 TCF. Transparent Computing Facility. TCF is an operating system that
 automatically allows for data, process, name, location and semantic
 transparency. Process transparency is the ability to execute and control
 tasks on any cluster site, no matter where the user program is currently
 executing. A TCF LPP is required to obtain support.

 template. In enhanced edit mode, a character buffer associated with the
 terminal.

 terminal. An input/output device containing a keyboard and either a
 display device or a printer. Terminals usually are connected to a
 computer and allow a person to interact with the computer.

 text. A type of data consisting of a set of linguistic characters (for
 example, alphabet, numbers, and symbols) and formatting controls.

 text application. A program defined for the purpose of processing text
 data (for example, memos, reports, and letters).

 text editing program. See editor and text application.

 texttab. A kernel parameter establishing the size of the text table, in
 memory, that contains one entry each active shared program text segment.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 33

 trace. To record data that provides a history of events occurring in the
 system.

 trace table. A storage area into which a record of the performance of
 computer program instructions is stored.

 track. A circular path on the surface of a fixed disk or diskette on
 which information is magnetically recorded and from which recorded
 information is read.

 transfer. To move data from one location to another in a computer system
 or between two or more systems.

 transmission control characters. In data communication, special
 characters that are included in a message to control communication over a
 data link. For example, the sending station and the receiving station use
 transmission control characters to exchange information; the receiving
 station uses transmission control characters to indicate errors in data it
 receives.

 transparency. The obscuring of machine boundaries in a distributed
 system. The AIX/370 system supports several kinds of transparency,
 including name, location, semantic, data, and process transparency.

 trap. An unprogrammed, hardware-initiated jump to a specific address.
 Occurs as a result of an error or certain other conditions.

 tree-structured directories. A method for connecting directories such
 that each directory is listed in another directory except for the root
 directory, which is at the top of the tree.

 true color adapters. In the Graphics Support Library, color adapters in
 which the pixel color value drives the digital-to-analog converters
 without the level of indirection forced by the video lookup table (VLT).
 Contrast with VLT-based adapters.

 truncate. To shorten a field or statement to a specified length,
 discarding the remainder.

 TTY. Designates a terminal. On a system with more than one terminal, the
 TTY field of the process status displayed by the ps command indicates
 which terminal started the process.

 typematic key. A key that repeats its function multiple times when held
 down.

 typestyle. Characters of a given size, style and design.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 34

 UID. See user number.

 UNIX link. A mechanism that lets you use the ln command to assign more
 than one name to a file. Both the new name and the file being linked to
 must be in the same file system. A file is deleted when all the UNIX
 links (including the first link-- the original name) have been removed.
 Synonym for hard link.

 update. An improvement for some part of the system.

 user. The name associated with an account.

 user account. See account.

 user ID. See user number.

 user name. A name that uniquely identifies a user to the system.

 user number (UID). (1) A unique number identifying an operator to the
 system. This string of characters limits the functions and information
 the operator is allowed to use. The UID can often be substituted in
 commands that take a user's name as an argument.

 user profile. A file containing a description of user characteristics and
 defaults (for example, printer assignment, formats, group ID) to be
 conveyed to the system while the user is signed on.

 user-replicated file system. One that contains files and directories
 accessed only by specific users or for particular applications. These
 user files and directories are replicated on different sites in a cluster.

 utility. A service; in programming, a program that performs a common
 service function.

 valid. (1) Allowed. (2) True, in conforming to an appropriate standard
 or authority.

 value. (1) In Usability Services, information selected or typed into a
 pop-up. (2) A set of characters or a quantity associated with a parameter
 or name. (3) In programming, the contents of a storage location.

 variable. A name used to represent a data item whose value can change
 while the program is running. Contrast with constant.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 35

 verify. To confirm the correctness of something.

 version. Information in addition to an object's name that identifies
 different modification levels of the same logical object.

 video lookup table (VLT). In the Graphic Support Library, a table of
 indexes that contains a value for each of the red, green, and blue
 digital-to-analog converters on the VLT-based color adapter that drives
 the color guns in the display table.

 virtual device. A device that appears to the user as a separate entity
 but is actually a shared portion of a real device. For example, several
 virtual terminals may exist simultaneously, but only one is active at any
 given time.

 virtual storage. Addressable space that appears to be real storage. From
 virtual storage, instructions and data are mapped into real storage
 locations.

 virtual terminal. Any of several logical equivalents of a display station
 available at a single physical display station.

 VLT. See video lookup table.

 VLT-based adapter. A color display adapter in which the pixel color value
 serves as an index into a video lookup table (VLT). The actual color
 resulting from a particular pixel color value depends on the values loaded
 into the VLT. Contrast with true color adapter.

 Volume ID (Vol ID). A series of characters recorded on the diskette used
 to identify the diskette to the user and to the system.

 wildcard. See pattern-matching characters.

 word. A contiguous series of 32 bits (4 bytes) in storage, addressable as
 a unit. The address of the first byte of a word is evenly divisible by
 four.

 work file. A file used for temporary storage of data being processed.

 work station. A device at which an individual may transmit information
 to, or receive information from, a computer for the purpose of performing
 a task, for example, a display station or printer. See programmable work
 station and dependent work station.

 working directory. See current directory.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 36

 wrap around. Movement of the point of reference in a file from the end of
 one line to the beginning of the next, or from one end of a file to the
 other.

 zombie. A terminated process whose entry remains in the process table in
 the kernel.

AIX Operating System Technical Reference
Appendix D. Glossary

¦ Copyright IBM Corp. 1985, 1991
D.0 - 37

 Special Characters
 C prefix2 1.2.28
 _C_func2 1.2.28
 _exit system call2 1.2.73
 with TCF 1.2.73
 _longjmp subroutine 1.2.250
 _mbxcol subroutine 1.2.329
 _mbxcolu subroutine 1.2.329
 _NCtolower macro2 1.2.50
 _NCtoupper macro2 1.2.50
 _NCxcol macro 1.2.182
 _NLxcol macro 1.2.182
 _setjmp subroutine 1.2.250
 _tolower subroutine2 1.2.50
 _toupper subroutine2 1.2.50
 _wcxcol subroutine 1.2.329
 _wcxcolu subroutine 1.2.329
 .cshrc file 2.3.12
 .forward file 2.3.37
 .ilog file 2.3.60
 with TCF 2.3.60
 .login subroutine 2.3.12
 .maildelivery file 2.3.37
 Numerics
 0 field, fstore 2.3.23
 12ps keyword 2.3.13.1
 3-byte integer conversion to long integers 1.2.139
 3270 devices keywords
 lobibp 2.3.13.1
 machtype 2.3.13.1
 mnonid 2.3.13.1
 printer 2.3.13.1
 serial 2.3.13.1
 slow 2.3.13.1
 370-XA I/O C.3.1
 4.3BSD
 differences in routines in AIX 1.2.22.2.2
 include files 1.2.22.2.1
 porting applications to AIX 1.2.22.2
 subroutines 1.2.22
 TTY devices 1.2.22.2.3
 A
 a64l subroutine 1.2.6
 aa keyword 2.3.13.1
 abort file changes 1.2.75
 abort subroutine 1.2.7
 abs subroutine 1.2.8
 absolute value function 1.2.81
 absolute value, integer 1.2.8
 accept
 socket connection 1.2.9
 accept socket system call 1.2.9
 access list
 group 1.2.135 1.2.249
 access system call 1.2.10
 with NFS 1.2.10
 access time
 file 1.2.321
 access utmp file entry 1.2.126
 accessibility, determine file 1.2.10

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 1

 accounting
 process 1.2.11
 accounting file structure 2.3.3
 accounting, process file 2.3.3
 acct file 2.3.3
 acct system call 1.2.11
 with TCF 1.2.11
 acos subroutine 1.2.270
 acosh subroutine 1.2.12
 action
 upon receipt of signal 1.2.263
 active pane, XDR definition of 1.2.74.1
 acute accent character 2.4.3.2
 add a device 1.2.31
 addch subroutine 1.2.56.1 1.2.74.7
 adding device driver C.8.1
 addmntent routine 1.2.104
 with TCF 1.2.104
 Address Family 1.1.5.1.3
 addressing
 kernel mode 1.1.4.2.3
 user mode 1.1.4.2.1
 addstr subroutine 1.2.56.1 1.2.74.7
 adjtime system call 1.2.13
 Advanced Display Graphics Support Library
 See GSL (Graphics Support Library)
 ae keyword 2.3.13.1
 afork flag 2.3.3
 AIX driver stanzas 2.3.32.1
 AIX file system 1.1.5
 AIX kernel debugger (AIX PS/2) C.7
 AIX kernel, rebuild 1.2.32
 AIX system name
 extended 1.2.316
 get 1.2.316
 AIX trace collector 1.2.308
 AIX/370 I/O concepts C.3
 alarm clock
 set 1.2.14
 alarm subroutine 1.2.14
 with TCF 1.2.14
 alias file, message system 2.3.34
 alloca subroutine 1.2.162
 allocating free blocks 1.1.5.9
 allocation
 change data segment space 1.2.21
 free blocks 1.1.5.9
 i-number 1.1.5.6
 allocator, main memory 1.2.162
 alphabetical sort
 of an array 1.2.15
 alphasort subroutine 1.2.15
 API C.8.2
 append
 data to a file 1.2.330
 apply configuration information 1.2.32
 ar file 2.3.4
 arc subroutine 1.2.206
 arccosine function 1.2.270
 archive file format 2.3.4

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 2

 archive file member structure 2.3.4
 archive format, cpio 2.3.11
 arcsine function 1.2.270
 arctangent function 1.2.270
 argc parameter 1.2.71
 argument list, print 1.2.324
 argv parameter 1.2.71
 ARP kernel subroutines C.4.5 C.4.9
 arpcom structure C.4.6.4
 arpinput kernel subroutine C.4.9
 arpresolve kernel subroutine C.4.9
 arptab structure C.4.6.4
 arptfree kernel subroutine C.4.9
 arptimer kernel subroutine C.4.9
 arptnew kernel subroutine C.4.9
 arpwhohas kernel subroutine C.4.9
 array
 sort alphabetically 1.2.15
 ars keyword 2.3.13.1
 ARTIC general driver support routines C.5
 icacmd C.5
 icafindtask C.5
 icagetbcb C.5
 icaintratch C.5
 icarshort C.5
 icarstr C.5
 icastat C.5
 icawaittask C.5
 icawchar C.5
 icawshort C.5
 icawstr C.5
 ASCII character set 2.4.2
 ASCII controls 2.4.3.3.1
 ASCII facility 2.4.2
 ASCII to floating-point conversion 1.2.290
 ASCII to integer conversion 1.2.6
 asctime subroutine 1.2.54
 asin subroutine 1.2.270
 asinh subroutine 1.2.12
 assembler output file 2.3.2
 assert subroutine 1.2.16
 assertion verification 1.2.16
 assign buffering to a stream 1.2.247 1.2.248
 async_daemon system call 1.2.17
 with NFS 1.2.17
 atan subroutine 1.2.270
 atan2 subroutine 1.2.270
 atanh subroutine 1.2.12
 atof subroutine 1.2.290
 atoi subroutine 1.2.291
 atol subroutine 1.2.291
 atomic operation 1.2.269
 attach
 shared memory segment 1.2.258
 attribute file 1.2.33
 attribute file, close 1.2.34
 attribute file, read stanza 1.2.37
 attribute files 1.2.35 1.2.36
 attributes
 file system 2.3.18.1 2.3.21.1

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 3

 attributes file 2.3.5
 attributes, GSL 2.6.2.3 to 2.6.2.3.2
 attroff subroutine 1.2.56.1
 attron subroutine 1.2.56.1
 attrset subroutine 1.2.56.1
 authentication, RPC message
 See RPC (Remote Procedure Call), message authentication
 autoconfigured device drivers C.2.5
 autolog file 2.3.6
 with TCF 2.3.6
 automatic new line mode (AUTONL) 2.5.11.4.1
 AUTONL mode 2.5.11.4.1
 B
 backend
 burst pages B.1.3
 exit codes B.1.7
 extra print copies B.1.4
 job charge B.1.6
 job status information B.1.5
 return error messages B.1.8
 routines in libqb B.1.11
 SIGTERM terminate B.1.10
 waiting state B.1.9
 backends B.0
 background color index 2.6.57.1
 backs keyword 2.3.13.1
 backup file 2.3.7
 with TCF 2.3.7.8
 badblock minidisk 1.1.3.1
 baudrate subroutine 1.2.56.1
 bcmp subroutine 1.2.18
 bcopy kernel subroutine C.6.1.4
 bcopy subroutine 1.2.166
 BDEV_INSTALL kernel subroutine C.4.1.3
 beep subroutine 1.2.56.1 1.2.74.7
 Berkeley subroutine library 1.2.22
 bessel subroutines 1.2.19
 bigs keyword 2.3.13.1
 binary input/output 1.2.84
 binary search 1.2.23
 binary search trees 1.2.309
 bind
 name to socket 1.2.20
 bind socket system call 1.2.20
 with TCF 1.2.20
 block 0 layout 1.1.5.3
 block device data structures C.4.3.1
 block device driver C.4
 block device drivers C.4.3
 block device kernel subroutines C.4.3.4
 brelse C.4.3.4
 disksort C.4.3.4
 geteblk C.4.3.4
 iodone C.4.3.4
 iowait C.4.3.4
 physio C.4.3.4
 blocked signals
 release 1.2.269
 blocks
 allocation of free 1.1.5.9

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 4

 data 1.1.5.7
 delayed 1.2.295
 free 1.1.5.8
 super block 1.1.5.4
 bm keyword 2.3.13.1
 boot0 1.1.3.1
 bootstrap program 1.1.3.1
 bound, definition 1.2.333.3
 box subroutine 1.2.56.1 1.2.74.7
 bpc keyword 2.3.13.1
 break map (hft) 2.5.11.8.4
 break value 1.2.68
 brelse kernel subroutine C.4.3.4
 breve accent character 2.4.3.2
 brk system call 1.2.21
 BRKINT 2.5.28
 BS0 2.5.28
 BS1 2.5.28
 BSD 4.3
 differences in routines in AIX 1.2.22.2.2
 include files 1.2.22.2.1
 library 1.2.22
 list of library routines 1.2.22.1
 porting applications to AIX 1.2.22.2
 subroutines 1.2.22
 TTY devices 1.2.22.2.3
 BSDLY 2.5.28
 bsearch subroutine 1.2.23
 buf 1.1.6.8
 buf structure C.4.3.1
 buffer header 1.1.6.8
 buffer subsystem 1.1.6.4
 buffer, input ring 2.5.11.4.2
 buffered I/O 1.2.283
 buffering assignment to a stream 1.2.247
 bus pseudo device 2.5.11.12
 byte order conversion
 host to network 1.2.131
 network to host 1.2.131
 byte string operations 1.2.18
 byte swapping 1.2.292
 byte-ordering considerations, hft 2.5.11.12.2
 bytes per pixel 2.6.57.1
 bzero kernel subroutine C.6.1.4
 bzero subroutine 1.2.18
 C
 C_ prefix2 1.2.28
 C_func2 1.2.28
 cabs subroutine 1.2.132
 caddr_t data type 2.4.27
 call switch table 1.1.6.2
 calling sequence 1.2.4
 calloc subroutine 1.2.162
 callout structure C.6.2.3
 callout table C.6.2.4
 calls
 to devices 1.1.6.10
 calls, AIX supervisor
 See Remote Procedure Call
 calls, function

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 5

 See kernel subroutines
 See system calls and subroutines
 calls, kernel
 See kernel subroutines
 See Remote Procedure Call
 calls, routine
 See kernel subroutines
 See system calls and subroutines
 calls, subroutine
 See kernel subroutines
 See system calls and subroutines
 calls, supervisor, AIX
 See Remote Procedure Call
 calls, system
 See Remote Procedure Call
 cancel sound 2.5.11.4.3
 canonical processing 1.2.74.7
 caps keyword 2.3.13.1
 caron accent character 2.4.3.2
 case
 conversion 1.2.50 1.2.188 1.2.189
 translation 1.2.50 1.2.188
 catclose subroutine 1.2.24
 catgetmsg subroutine 1.2.26
 catgets subroutine 1.2.25
 catopen subroutine 1.2.27
 CAW (channel address word) C.3
 CBAUD 2.5.28
 cblock C.4.4.4
 cbox subroutine 1.2.74.7
 cbreak subroutine 1.2.56.1
 cbrt subroutine 1.2.28
 CC (completion code) C.3
 cc.cfg file 2.3.8
 ccblocks C.4.4.5
 CCW (command control word) C.3
 cd open subroutine 1.2.29
 CD ROM access 1.2.29 1.2.30
 cdalias subroutine 1.2.29
 cdclose subroutine 1.2.29
 cddir subroutine 1.2.30
 CDEV_INSTALL kernel subroutine C.4.1.3
 cdlseek subroutine 1.2.29
 cdp keyword 2.3.13.1
 cdread subroutine 1.2.29
 cdrom file 2.5.3
 cdstat subroutine 1.2.29
 cedilla accent character 2.4.3.2
 ceil subroutine 1.2.81
 ceiling function 1.2.81
 ceti device driver 2.5.4
 cfgadev subroutine 1.2.31
 cfgaply subroutine 1.2.32
 cfgcadsz subroutine 1.2.33
 cfgcclsf subroutine 1.2.34
 cfgcdlsz subroutine 1.2.35
 cfgcopsf subroutine 1.2.36
 cfgcrdsz subroutine 1.2.37
 cfgddev subroutine 1.2.38
 cfgetispeed subroutine 1.2.39

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 6

 cfgetospeed subroutine 1.2.39
 cfsetispeed subroutine 1.2.39
 cfsetospeed subroutine 1.2.39
 change
 access permissions 1.2.44
 current directory 1.2.40
 data segment space allocation 1.2.21
 effective root directory 1.2.46
 file mode 1.2.44
 group of a file 1.2.45
 owner of a file 1.2.45
 change fonts 2.5.11.7.3
 change priority
 of a process 1.2.111
 channel
 create 1.2.204
 channel address word (CAW) C.3
 channel report word (CRW) C.3.1
 channel status word (CSW) C.3
 character
 conversion 1.2.189
 locate in string 1.2.133
 character classification 1.2.55
 international character support 1.2.183
 character clock C.4.4.4
 character code processing 2.5.11.4.1
 character codes 2.4.4
 character collation
 code point 1.2.190
 international character support 1.2.182
 character control blocks C.4.4.5
 character device driver C.4
 character I/O 1.2.317
 character list C.4.4.3
 character set
 ASCII 2.4.2
 character set definition 2.5.11.8.3
 character translation 1.2.50 1.2.188
 character, get from stream 1.2.91
 characteristics, device 2.3.15
 characters
 international character support 1.2.188
 characters, nonspacing 2.4.3.2
 chdir system call 1.2.40
 with NFS 1.2.40
 with TCF 1.2.40
 check whether trace channel is enabled 1.2.307
 chfstor system call 1.2.41
 with TCF 1.2.41
 chgat subroutine 1.2.74.7
 chhidden system call 1.2.42
 with TCF 1.2.42
 child process 1.1.4.3.2 1.2.83 1.2.325
 child process times
 getting 1.2.304
 chlwm system call 1.2.43
 chmod system call 1.2.44
 with NFS 1.2.44
 with TCF 1.2.44
 chown system call 1.2.45

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 7

 with NFS 1.2.45
 with TCF 1.2.45
 chroot system call 1.2.46
 with TCF 1.2.46
 circle subroutine 1.2.206
 circumflex accent character 2.4.3.2
 ckd special file 2.5.5
 classify characters 1.2.55
 clear subroutine 1.2.56.1 1.2.74.7
 clearerr macro 1.2.79
 clearok subroutine 1.2.56.1 1.2.74.7
 client interface, Network Information Service
 See Network Information Service client interface
 clist C.4.4.3
 clnt_broadcast subroutine 1.2.231.2.5
 IP
 pmap_getport 1.2.231.2.5
 CLOCAL 2.5.28
 clock
 set alarm 1.2.14
 clock rate 1.2.304
 clock resolution 1.2.47
 clock subroutine 1.2.47
 close
 a file 1.2.48
 log file 1.2.297
 network data base 1.2.105
 network protocol data base 1.2.112
 network services data base 1.2.118
 close a directory 1.2.60
 close a message catalog 1.2.24
 close a stream 1.2.77
 close an attribute file 1.2.34
 close system call 1.2.48
 closedir subroutine 1.2.60
 closelog subroutine 1.2.297
 closepl subroutine 1.2.206
 closex system call 1.2.48
 clrtobot subroutine 1.2.56.1 1.2.74.7
 clrtoeol subroutine 1.2.56.1 1.2.74.7
 cluster communication 1.2.2.6
 code page 2.4.3 2.4.3.1
 P0 2.4.3.1 2.4.4.1
 P1 2.4.4.1
 code point 2.4.3
 character collation 1.2.190
 collector, AIX errors 1.2.70
 color expansion operation 2.6.57.1
 color map attribute 2.6.2.3.1
 color palette, setting 2.5.11.7.2
 color table attribute 2.6.3.2
 colorend subroutine 1.2.74.7
 colorout subroutine 1.2.74.7
 colp keyword 2.3.13.1
 COLUMNS variable 1.2.302
 command control word (CCW) C.3
 command execution
 remote host 1.2.223 1.2.235
 command words (GPS) 2.3.25
 arc 2.3.25

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 8

 comment 2.3.25
 hardware 2.3.25
 lines 2.3.25
 text 2.3.25
 comment field, site 2.3.54
 commit operation, definition 1.2.87
 common object file
 ldaclose subroutine 1.2.142
 ldahread subroutine 1.2.141
 ldaopen subroutine 1.2.149
 ldclose subroutine 1.2.142
 ldfcn routines 1.2.143
 ldfhread subroutine 1.2.144
 ldgetname subroutine 1.2.145
 ldlinit subroutine 1.2.146
 ldlitem subroutine 1.2.146
 ldlread subroutine 1.2.146
 ldlseek subroutine 1.2.147
 ldnlseek subroutine 1.2.147
 ldnrseek subroutine 1.2.150
 ldnshread subroutine 1.2.151
 ldnsseek subroutine 1.2.152
 ldohseek subroutine 1.2.148
 ldopen subroutine 1.2.149
 ldrseek subroutine 1.2.150
 ldshread subroutine 1.2.151
 ldsseek subroutine 1.2.152
 ldtbindex subroutine 1.2.153
 ldtbread subroutine 1.2.154
 ldtbseek subroutine 1.2.155
 communication endpoint
 See socket
 communication protocols 1.1.5.1.3
 communication, interprocess 1.2.2.10 1.2.284
 compile regular expression 1.2.228
 complementary error function 1.2.69
 completion code (CC) C.3
 component escapes 2.3.35.1
 configuration file
 sendmail 2.3.53
 configuration files C.8.2
 configuration information, apply 1.2.32
 configuring hft virtual terminal 2.5.11.8
 configuring kernel debugger C.7.1
 connect socket system call 1.2.49
 connect.con file 2.3.9
 connection
 socket 1.2.49
 console device driver 2.5.11
 construct a unique file name 1.2.170
 construct the name for a temporary file 1.2.306
 cont subroutine 1.2.206
 contents
 directory 1.1.5.9.1
 control
 execution of another process 1.2.212
 file 1.2.78
 I/O devices 1.2.137
 control characters 2.4.3.3.1
 control escapes 2.3.35.1

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 9

 control operations
 shared memory 1.2.259
 control sequence, virtual terminal data 2.5.11.7.1
 control sequences 2.4.3.3.2
 control word subroutines
 fp_control 1.2.83
 fp_exmask 1.2.83
 fp_exunmask 1.2.83
 fp_getcw 1.2.83
 fp_getex 1.2.83
 fp_getprecision 1.2.83
 fp_getround 1.2.83
 fp_precision 1.2.83
 fp_restore 1.2.83
 fp_round 1.2.83
 controlling terminal interface 2.5.30
 controls 2.4.3.3
 conversion subroutines 1.2.188
 conversion, byte order
 host to network 1.2.131
 network to host 1.2.131
 convert
 ASCII string to floating-point number 1.2.290
 string to integer 1.2.291
 convert base-64 ASCII to long integer 1.2.6
 convert between 3-byte integers and long integers 1.2.139
 convert date and time to string 1.2.54
 convert floating-point number to string 1.2.67
 convert formatted input 1.2.241
 convert long integer to base-64 ASCII string 1.2.6
 convert multibyte character strings to wide character strings 1.2.165
 convert multibyte characters to wide characters 1.2.165
 convert wide character strings to multibyte character strings 1.2.328
 convert wide characters to multibyte characters 1.2.328
 converting 4.3BSD application programs to AIX 1.2.22.2
 copy
 sign of a number 1.2.51
 copyiin kernel subroutine C.6.1.3
 copyin kernel subroutine C.6.1.2
 copyiout kernel subroutine C.6.1.3
 copyout kernel subroutine C.6.1.2
 copysign subroutine 1.2.51
 core file 2.3.10
 cos subroutine 1.2.270
 cosh subroutine 1.2.271
 cosine function 1.2.270
 cp1 keyword 2.3.13.1
 cpass kernel subroutine C.6.1.1
 cpcmd special file 2.5.6
 cpio file 2.3.11
 cpio structure 2.3.11
 cps keyword 2.3.13.1
 cpu speed field, site 2.3.54
 CPU time used report 1.2.47
 cpu type field, site 2.3.54
 CPU-type field, fstore 2.3.23
 cr keyword 2.3.13.1
 CR0 2.5.28
 CR1 2.5.28
 CR2 2.5.28

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 10

 CR3 2.5.28
 CRDLY 2.5.28
 CREAD 2.5.28
 creat system call 1.2.199
 with TCF 1.2.199
 create
 interprocess channel 1.2.204
 new process 1.2.83
 pair of connected sockets 1.2.276
 socket 1.2.275
 create a temporary file 1.2.305
 creating backends B.0
 cresetty subroutine 1.2.74.7
 crmode subroutine 1.2.74.7
 CRW (channel report word) C.3.1
 crypt subroutine 1.2.52
 cs keyword 2.3.13.1
 csavetty subroutine 1.2.74.7
 CSIZE 2.5.28
 CSTOPB 2.5.28
 CSW (channel status word) C.3
 ctermid subroutine 1.2.53
 ctime subroutine 1.2.54
 ctimeout kernel subroutine C.6.2.5
 ctype macros and wide character macros 1.2.55
 current directory
 get path name of 1.2.92 1.2.127
 current signal mask
 setting 1.2.267
 curses subroutine library 1.2.56
 cursor attributes
 multicolor 2.6.2.3.2
 multicolor cursor background color 2.6.2.3.2
 multicolor cursor foreground color 2.6.2.3.2
 multicolor cursor logical operation 2.6.2.3.2
 multicolor cursor mask 2.6.2.3.2
 multicolor cursor origin 2.6.2.3.2
 multicolor cursor pattern 2.6.2.3.2
 single color 2.6.2.3.2
 cursor color 2.6.2.3.2
 cursor origin 2.6.2.3.2
 cursor pattern 2.6.2.3.2
 cursor representation 2.5.11.7.4
 cus keyword 2.3.13.1
 cuserid subroutine 1.2.57
 customization helper C.8.2
 D
 daddr_t data type 2.4.27
 DARPA 1.2.277.4
 data
 append to a file 1.2.330
 lock 1.2.205
 unlock 1.2.205
 data access
 machine-independent 1.2.280
 data base subroutines 1.2.58
 data base, terminal capability 2.3.59
 data blocks 1.1.5.7
 data flow, TTY device driver C.4.4.9
 data segment 1.1.4.2.1

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 11

 change space allocation 1.2.21
 data stream 2.4.3
 data structures
 file system 1.1.5.10.3
 I/O 1.1.6.8
 data types, defined 2.4.27
 data types, major
 monitor mode 2.5.11.4.2
 datagrams 1.2.275
 date format 1.2.194
 date to string conversion 1.2.54
 daylight external variable 1.2.54
 dbm subroutines 1.2.58
 dbminit subroutine 1.2.58
 dd_ifioctl kernel subroutine C.4.7.1
 dd_ostart kernel subroutine C.4.7
 dd_output kernel subroutine C.4.7
 dd_watchdog kernel subroutine C.4.7.1
 ddi 2.3.14 2.3.43
 ddi file 2.3.13
 declarations, parameter 1.2.4
 Defense Advanced Research Projects Agency 1.2.277.4
 Defense Communications Agency 1.2.277.4
 defer commit 1.2.75
 deferred open of message catalog 1.2.187
 define
 log priority mask 1.2.297
 delay_output subroutine 1.2.56.1 1.2.56.2
 delayticks kernel subroutine C.6.2.4
 delch subroutine 1.2.56.1 1.2.74.7
 delete a device 1.2.38
 delete stanza 1.2.35
 deleteln subroutine 1.2.56.1 1.2.74.7
 delta table format 2.3.52.2
 delwin subroutine 1.2.56.1 1.2.74.7
 description file, port 2.3.46
 description, file system 2.3.18 2.3.21
 descriptions file format 2.3.14
 descriptor
 file 1.2.242
 detach
 shared memory segment 1.2.260
 DEV_INSTALL kernel subroutine C.4.1.3
 dev_t data type 2.4.27
 devdata data structure C.4.1.3
 devexist kernel subroutine (AIX PS/2) C.4.1.2
 device characteristics 2.3.15
 device command C.8.6
 device driver 1.1.6.9.1
 kernel 1.1.6.6
 device drivers
 See also special files
 adding driver into kernel C.8.1
 AIX/370 C.3.2
 concepts C.2
 data storage C.2.1.3
 definition 1.1.6.10
 entry points C.2.2 C.4.1.1
 general considerations in AIX C.2.1
 trace 2.5.29

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 12

 types C.4
 device I/O 1.1.6.10
 device management 1.1.6.9
 device number
 major 1.1.6.9.2
 minor 1.1.6.9.3
 device switch table 1.1.6.5 C.2.2
 device-dependent information 2.3.14 2.3.43
 device, add 1.2.31
 device, delete 1.2.38
 devices
 See special files
 devinfo structure 2.3.15 2.5.14.1
 devsw table C.2.2
 diacritic characters 2.4.3.2
 difftime subroutine 1.2.59
 dir file 2.3.16
 direct memory access, as DMA master C.6.1.5
 directory
 change current 1.2.40
 change the root 1.2.46
 close 1.2.60
 create 1.2.169
 get path name of current 1.2.127
 hidden directory 1.1.5.1.5
 chhidden system call 1.2.42
 open 1.2.60
 read next entry 1.2.60
 scan 1.2.240
 set pointer for reading 1.2.60
 directory contents 1.1.5.9.1
 directory entry 2.3.16
 create a new 1.2.156 1.2.294
 remove 1.2.318
 directory entry ".." 2.3.16
 directory entry "." 2.3.16
 directory file 1.1.5.1.1
 directory format 2.3.16
 directory pointer
 current location 1.2.60
 reset to beginning 1.2.60
 directory subroutines 1.2.60
 closedir subroutine 1.2.60
 opendir subroutine 1.2.60
 readdir subroutine 1.2.60
 rewinddir subroutine 1.2.60
 seekdir subroutine 1.2.60
 telldir subroutine 1.2.60
 directory, path name of current 1.2.92
 dirstat system call 1.2.61
 disclaim system call 1.2.62
 discriminated union, definition of
 discriminated unions 1.2.332.1.3
 disk buffer handling C.4.3.4
 diskette file 2.5.9
 disksort kernel subroutine C.4.3.4
 display symbols 2.4.4
 dispsym definition 2.4.4
 distance function, euclidean 1.2.132
 DMA access as DMA slave C.6.1.5

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 13

 DMA example C.6.1.5
 DMA transfers C.2.1.4
 dmachanalloc kernel subroutine C.6.1.5
 dmachanfree kernel subroutine C.6.1.5
 dmaralloc structure C.6.1.5
 dmaresid kernel subroutine C.6.1.5
 dmasetup kernel subroutine C.6.1.5
 dn_comp subroutine 1.2.234
 dn_expand subroutine 1.2.234
 domain
 definition 1.2.277.2
 dot notation, Internet 1.2.134
 double acute accent character 2.4.3.2
 dounctrl subroutine 1.2.74.7
 doupdate subroutine 1.2.56.1
 dpc keyword 2.3.13.1
 drand48 subroutine 1.2.63
 drawbox subroutine 1.2.74.7
 driver format, message 2.5.20
 driver support routines, ARTIC C.5
 driver, event-tracing 2.5.29
 drivers
 console device 2.5.11
 hft 2.5.11
 virtual terminal device 2.5.11
 drivers, device
 See special files
 dsp keyword 2.3.13.1
 dsps keyword 2.3.13.1
 dtom kernel subroutine C.4.8.1
 dup system call 1.2.64
 with TCF 1.2.64
 dup2 system call 1.2.65
 with TCF 1.2.65
 duplicate an open file descriptor 1.2.64
 dvam keyword 2.3.13.1
 dwp keyword 2.3.13.1
 dwps keyword 2.3.13.1
 E
 EBCDIC character set 2.4.5
 ecactp subroutine 1.2.74.7
 ecadpn subroutine 1.2.74.7
 ecaspn subroutine 1.2.74.7
 ecblks subroutine 1.2.74.7
 ecbpls subroutine 1.2.74.7
 ecbpns subroutine 1.2.74.7
 ecdfpl subroutine 1.2.74.7
 ecdppn subroutine 1.2.74.7
 ecdspl subroutine 1.2.74.7
 ecdvpl subroutine 1.2.74.7
 ecflin subroutine 1.2.74.7
 ECHO 2.5.28
 echo map (hft) 2.5.11.8.4
 echo subroutine 1.2.56.1 1.2.74.7
 ECHOE 2.5.28
 ECHOK 2.5.28
 ECHONL 2.5.28
 ecpnin subroutine 1.2.74.7
 ecrfpl subroutine 1.2.74.7
 ecrfpn subroutine 1.2.74.7

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 14

 ecrlpl subroutine 1.2.74.7
 ecrmpl subroutine 1.2.74.7
 ecscpn subroutine 1.2.74.7
 ecshpl subroutine 1.2.74.7
 ectitl subroutine 1.2.74.7
 ecvt subroutine 1.2.67
 edata 1.2.68
 effective root directory, changing 1.2.46
 effective user ID 1.2.254
 emulation, hft 2.5.11.11
 encrypt subroutine 1.2.52
 encrypted password 2.3.44.1
 encryption, password 1.2.52
 end 1.2.68
 endfsent subroutine 1.2.95
 endgrent subroutine 1.2.96
 endmntent routine 1.2.104
 with TCF 1.2.104
 endnetent subroutine 1.2.105
 endprotoent subroutine 1.2.112
 endpwent subroutine 1.2.114
 endservent subroutine 1.2.118
 endsf subroutine 1.2.257
 with TCF 1.2.257
 endutent subroutine 1.2.126
 endwin subroutine 1.2.56.1 1.2.74.7
 entries in name list, obtaining 1.2.192
 entry
 in system log 1.2.297
 entry points for device drivers C.2.2
 ddclose C.4.1.1
 dddump (AIX PS/2) C.4.3.2
 dddump (AIX/370) C.4.3.2
 ddenqueue (AIX/370) C.4.3.3
 ddinit (AIX/370) C.4.1.1
 ddinit (PS/2) C.4.1.1
 ddintr (AIX PS/2) C.4.1.1
 ddintr (AIX/370) C.4.1.1
 ddioctl C.4.2.2
 ddmbstrategy C.4.3.2
 ddopen C.4.1.1
 ddproc C.4.4.8
 ddread C.4.2.2
 ddreset (AIX PS/2) C.4.1.1
 ddselect C.4.2.2
 ddstart (AIX PS/2) C.4.3.2
 ddstart (AIX/370) C.4.3.2
 ddstrategy C.4.3.2
 ddtty C.4.4.8
 ddwrite C.4.2.2
 environ global variable 1.2.71
 environment 1.2.71
 environment alteration 1.2.214
 environment facility 2.4.6
 environment setting 2.3.48
 environment subroutines 1.2.94 1.2.190
 getenv 1.2.94
 NLgetenv 1.2.94
 environment variable, value of 1.2.94
 envp parameter 1.2.71

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 15

 eof character 2.5.28
 eol character 2.5.28
 ep keyword 2.3.13.1
 eps keyword 2.3.13.1
 eqn special character definitions 2.4.7
 eqnchar facility 2.4.7
 erand48 subroutine 1.2.63
 erase
 portion of a file 1.2.76
 erase character 2.5.28
 erase subroutine 1.2.56.1 1.2.74.7 1.2.206
 erasechar subroutine 1.2.56.1
 erf subroutine 1.2.69
 erfc subroutine 1.2.69
 errfile file 2.3.17
 errno 1.2.203 C.4.2.1
 errno values A.0
 errno.h A.0
 error codes A.0
 error codes, GSL 2.6.4.3.2
 error collector, AIX 1.2.70
 error function 1.2.69
 error log data structure C.6.4.2
 error logging 2.5.7
 error messages 1.2.203
 error numbers A.0
 error special file 2.5.7
 error values A.0
 error-handling function 1.2.163
 errsave kernel subroutine C.6.4.2
 errunix subroutine 1.2.70
 escape sequences 2.4.3.3.2
 escapes, message handling 2.3.35.1
 etext 1.2.68
 euclidean distance function 1.2.132
 event log file 2.3.17
 event logging 2.5.7
 event-tracing driver 2.5.29
 exceptions 1.1.4.1
 exec system call 1.2.71
 with NFS 1.2.71
 with TCF 1.2.71
 execl system call 1.2.71
 with NFS 1.2.71
 with TCF 1.2.71
 execle system call 1.2.71
 with NFS 1.2.71
 with TCF 1.2.71
 execlp system call 1.2.71
 with NFS 1.2.71
 with TCF 1.2.71
 exect subroutine 1.2.72
 execute
 file 1.2.71
 execution monitor 1.2.171
 execution profile 1.2.171
 execution suspension 1.2.273
 execution time
 profile 1.2.210
 execv system call 1.2.71

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 16

 with NFS 1.2.71
 with TCF 1.2.71
 execve system call 1.2.71
 with NFS 1.2.71
 with TCF 1.2.71
 execvp system call 1.2.71
 with NFS 1.2.71
 with TCF 1.2.71
 exit system call 1.2.73
 with TCF 1.2.73
 exit system call2 1.2.73
 with TCF 1.2.73
 exp subroutine 1.2.28
 expm1 subroutine 1.2.28
 exponential function 1.2.28
 exponentiation 1.2.28
 expression, regular 1.2.228 1.2.230
 extended AIX system name 1.2.316
 extended character, XDR definition of 1.2.74.1
 extended curses subroutine library 1.2.74
 extended message receive 1.2.181
 extended path name C.2.4
 extended read 1.2.224
 extended subroutine 1.2.74.7
 external Data Representation (XDR)
 See XDR (external Data Representation)
 externals
 edata 1.2.68
 end 1.2.68
 etext 1.2.68
 F
 F_DUPFD 1.2.78
 F_GETFD 1.2.78
 F_GETFL 1.2.78
 F_GETLK 1.2.78
 F_GETOWN 1.2.78
 F_SETFD 1.2.78
 F_SETFL 1.2.78
 F_SETLK 1.2.78
 F_SETLKW 1.2.78
 F_SETOWN 1.2.78
 fabort system call 1.2.75
 fabs subroutine 1.2.81
 facilities
 mm 2.4.15
 regexp 1.2.230
 facilities, miscellaneous 2.4.1
 See also miscellaneous facilities
 fast sleep C.6.2.2
 fault generation, IOT 1.2.7
 fba special file 2.5.8
 fchmod system call 1.2.44
 with NFS 1.2.44
 with TCF 1.2.44
 fchown system call 1.2.45
 with NFS 1.2.45
 with TCF 1.2.45
 fclear system call 1.2.76
 with TCF 1.2.76
 fclose subroutine 1.2.77

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 17

 fcntl system call 1.2.78
 with TCF 1.2.78
 fcntl.h header file 2.4.8
 fcommit system call 1.2.87
 fcvt subroutine 1.2.67
 fd devinfo structure 2.5.9.1
 fd file 2.5.9
 fdopen subroutine 1.2.82
 feof macro 1.2.79
 ferror macro 1.2.79
 fetch subroutine 1.2.58
 FF0 2.5.28
 FF1 2.5.28
 FFDLY 2.5.28
 fflush subroutine 1.2.77
 ffs subroutine 1.2.18
 ffullstat system call 1.2.282
 fgetc subroutine 1.2.91
 fgets subroutine 1.2.117
 fgetws subroutine 1.2.117
 field, XDR definition of 1.2.74.1
 FIFO 1.1.5.1.3
 create 1.2.169
 file 1.2.199 1.2.224
 accessibility, determine 1.2.10
 close a 1.2.48
 control 1.2.78
 create 1.2.169
 data translation
 serialization 1.2.332
 directory entry
 create a new 1.2.156 1.2.294
 erase portion of 1.2.76
 execute 1.2.71
 mode change 1.2.44
 open to read or write 1.2.199
 read from 1.2.224
 read from, extended 1.2.224
 relationship to C constructs
 passing addresses 1.2.332
 shorten 1.2.88
 write 1.2.330 1.2.331
 write changes 1.2.87
 file access
 set time 1.2.321
 file control 1.2.2.2
 file creation mask
 get 1.2.314
 set 1.2.314
 file creation, temporary 1.2.305
 file descriptor 1.2.242
 close 1.2.48
 duplication 1.2.64 1.2.65
 get table size 1.2.93
 file entry, group, obtaining 1.2.96
 file entry, utmp access 1.2.126
 file formats 2.3.1
 archive 2.3.4
 fstore 2.3.23
 gettydefs 2.3.24

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 18

 process accounting 2.3.3
 sendmail.cf 2.3.53
 site 2.3.54
 file I/O subsystem 1.1.6.3
 file locks 1.2.78
 read lock 1.2.78
 write lock 1.2.78
 file maintenance 1.2.2.2
 file member, archive structure 2.3.4
 file modification
 set time 1.2.321
 file name generation, terminal 1.2.53
 file name, construct 1.2.170
 file name, make 1.2.170
 file naming, temporary files 1.2.306
 file pointer
 read/write 1.2.161
 file pointer repositioning 1.2.86
 file system
 backup format 2.3.7
 data structures 1.1.5.10.3
 layout 1.1.5.2
 mount 1.2.172
 statistics 1.2.320
 unmount 1.2.315
 file system attributes 2.3.18.1 2.3.21.1
 file system description 2.3.18 2.3.21
 file system management 1.1.5
 file system replication 1.2.2.7
 file time, set 1.2.322
 file tree, read 1.2.89
 file types 1.1.5.1
 directory 1.1.5.1.1
 ordinary 1.1.5.1.2
 special 1.1.5.1.3
 symbolic links 1.1.5.1.4
 file, assembler output 2.3.2
 file, link editor output 2.3.2
 file, storage image 2.3.10
 fileno macro 1.2.79
 files
 directory 1.2.169
 header 1.2.5
 ordinary 1.2.169
 special 1.1.6.10 1.2.169 1.2.172
 files, device
 See special files
 files, special 2.5.1
 See also special files
 filesystems file 2.3.18
 with NFS 2.3.18.1
 with TCF 2.3.18 2.3.18.1
 filled areas attributes
 fill color 2.6.2.3.2
 fill pattern 2.6.2.3.2
 find slot in utmp file for current user 1.2.312
 find value of user information name 1.2.125
 finite subroutine 1.2.80
 firstkey subroutine 1.2.58
 fixterm subroutine 1.2.56.1

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 19

 fl keyword 2.3.13.1
 flag letter, get from argument vector 1.2.106
 flash subroutine 1.2.56.1 1.2.74.7
 floating point operations
 copy sign 1.2.51
 finite subroutine 1.2.80
 logb subroutine 1.2.80
 scalb subroutine 1.2.80
 floating-point
 conversion from ASCII 1.2.290
 floating-point numbers manipulation 1.2.85
 floating-point to string conversion 1.2.67
 flock system call 1.2.78
 floor function 1.2.81
 floor subroutine 1.2.81
 flush a stream 1.2.77
 flushinp subroutine 1.2.56.1
 fmod subroutine 1.2.81
 fnt1 keyword 2.3.13.1
 font file format 2.3.19
 font keywords 2.3.13.1
 IBM 4202 2.3.13.1
 IBM 5201 2.3.13.1
 font symbols 2.4.4
 font, hardware-generated 2.3.19
 font, programmable character set (PCS) 2.3.19
 font, software-generated 2.3.19
 fonts, changing hft 2.5.11.7.3
 fopen subroutine 1.2.82
 foreground color index 2.6.57.1
 fork system call 1.2.83
 with TCF 1.2.83
 form 1.2.4
 format 1.2.4 1.2.194
 date 1.2.194
 time 1.2.194
 format file, message system 2.3.35
 format of cpio archive 2.3.11
 format of SCCS file 2.3.52
 format specification, text files 2.3.22
 format, archive 2.3.4
 format, GPS 2.3.25
 format, message driver 2.5.20
 format, system volume 2.3.20
 formats
 directory 2.3.16
 event log file 2.3.17
 inode 2.3.29
 master 2.3.32
 SCCS delta table 2.3.52.2
 SCCS file 2.3.52
 formats, file
 See file formats
 formatted input conversion 1.2.241
 formatted output, print 1.2.208
 formatted varargs argument list, print 1.2.324
 formatting a permuted index, macro package 2.4.16
 forward file 2.3.37
 fp_control subroutine 1.2.83
 fp_exmask subroutine 1.2.83

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 20

 fp_exunmask subroutine 1.2.83
 fp_getcw subroutine 1.2.83
 fp_getex subroutine 1.2.83
 fp_getprecision subroutine 1.2.83
 fp_getround subroutine 1.2.83
 fp_getsw subroutine 1.2.83
 fp_precision subroutine 1.2.83
 fp_restore subroutine 1.2.83
 fp_round subroutine 1.2.83
 fpathconf system call 1.2.201
 with NFS 1.2.201
 fprintf subroutine 1.2.208
 fputc subroutine 1.2.213
 fputs subroutine 1.2.216
 fputwc subroutine 1.2.213
 frame buffer, definition of 2.6.2.1
 fread subroutine 1.2.84
 free blocks
 allocation 1.1.5.9
 free subroutine 1.2.162
 free-block list 1.1.5.8
 freopen subroutine 1.2.82
 frexp subroutine 1.2.85
 fs file 2.3.20
 fscanf subroutine 1.2.241
 fseek subroutine 1.2.86
 fsmap file 2.3.21
 fspec file 2.3.22
 fstat system call 1.2.282
 fstatx system call 1.2.282
 with TCF 1.2.282.1
 fstore file-format 2.3.23
 fsync system call 1.2.87
 with TCF 1.2.87
 ftell subroutine 1.2.86
 ftime subroutine 1.2.123
 ftok subroutine 1.2.284
 ftruncate system call 1.2.88
 with TCF 1.2.88
 ftw subroutine 1.2.89
 fubyte kernel subroutine C.6.1.2
 fuibyte kernel subroutine C.6.1.3
 fuiword kernel subroutine C.6.1.3
 full name field, site 2.3.54
 full path 1.1.5.10.1
 fullbox subroutine 1.2.74.7
 fullstat system call 1.2.282
 fullttyname subroutine 1.2.310
 with TCF 1.2.310
 fumount system call 1.2.315
 with TCF 1.2.315
 function escapes 2.3.35.1
 function libraries
 See libraries
 function, complementary error 1.2.69
 function, error 1.2.69
 function, error-handling 1.2.163
 function, euclidean distance 1.2.132
 functions
 See also kernel subroutines

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 21

 See also system calls and subroutines
 absolute value 1.2.81
 ceiling 1.2.81
 floor 1.2.81
 remainder 1.2.81
 functions hyperbolic 1.2.271
 functions, trigonometric 1.2.270
 fuscopy kernel subroutine C.6.1.2
 fuword kernel subroutine C.6.1.2
 fw keyword 2.3.13.1
 fwrite subroutine 1.2.84
 G
 gamma function 1.2.90
 gamma subroutine 1.2.90
 gcvt subroutine 1.2.67
 generate file name for terminal 1.2.53
 generate pseudo-random numbers 1.2.221 1.2.222
 generating an IOT fault 1.2.7
 geometric text font 2.3.19.2
 geometric text, definition of 2.6.2.1
 get
 group IDs 1.2.124
 message queue identifier 1.2.174
 process IDs 1.2.110
 time 1.2.303
 user IDs 1.2.124
 get a string from a stream 1.2.117
 get character, wide character or word from stream 1.2.91
 get file system statistics 1.2.320
 get group file entry 1.2.96
 get login name 1.2.103
 get names from name list 1.2.192
 get option letter from argument vector 1.2.106
 get password file entry 1.2.114
 get path name of current directory 1.2.92
 get the name of a terminal 1.2.310
 get user name 1.2.57
 get_howflip subroutine 1.2.200
 getc kernel subroutine C.4.4.12
 getc macro 1.2.91
 getcb kernel subroutine C.4.4.12
 getcbp kernel subroutine C.4.4.12
 getcf kernel subroutine C.4.4.12
 getch subroutine 1.2.56.1 1.2.74.7
 getchar macro 1.2.91
 getcwd subroutine 1.2.92
 getdtablesize system call 1.2.93
 geteblk kernel subroutine C.4.3.4
 getegid system call 1.2.124
 getenv subroutine 1.2.94
 geteuid system call 1.2.124
 getfsent subroutine 1.2.95
 getfsfile subroutine 1.2.95
 getfsspec subroutine 1.2.95
 getfstype subroutine 1.2.95
 getgid system call 1.2.124
 getgrent subroutine 1.2.96
 getgrgid subroutine 1.2.96
 getgrnam subroutine 1.2.96
 getgroups system call 1.2.97

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 22

 gethostid socket system call 1.2.99
 gethostname socket system call 1.2.100
 getitimer system call 1.2.101
 getlocal system call 1.2.102
 with TCF 1.2.102
 getlogin subroutine 1.2.103
 getlong subroutine 1.2.234
 getmntent routine 1.2.104
 with TCF 1.2.104
 getnetbyaddr subroutine 1.2.105
 getnetbyname subroutine 1.2.105
 getnetent subroutine 1.2.105
 getopt subroutine 1.2.106
 getpagesize system call 1.2.107
 getpass subroutine 1.2.108
 getpeername socket system call 1.2.109
 getpgrp system call 1.2.110
 getpid system call 1.2.110
 getppid system call 1.2.110
 getpriority system call 1.2.111
 getprotobyname subroutine 1.2.112
 getprotobynumber subroutine 1.2.112
 getprotoent subroutine 1.2.112
 getpw subroutine 1.2.113
 getpwent subroutine 1.2.114
 getpwnam subroutine 1.2.114
 getpwuid subroutine 1.2.114
 getrlimit system call 1.2.115
 getrusage system call 1.2.116
 gets subroutine 1.2.117
 getservbyname subroutine 1.2.118
 getservbyport subroutine 1.2.118
 getservent subroutine 1.2.118
 getshort subroutine 1.2.234
 getsites system call 1.2.119
 with TCF 1.2.119
 getsockname socket system call 1.2.120
 getsockopt socket system call 1.2.121
 getspath system call 1.2.122
 getstr subroutine 1.2.56.1 1.2.74.7
 gettimeofday system call 1.2.123
 gettmode subroutine 1.2.56.1 1.2.74.7
 getty speed and terminal setting 2.3.24
 gettydefs file-format 2.3.24
 getuid system call 1.2.124
 getuinfo subroutine 1.2.125
 getutent subroutine 1.2.126
 getutid subroutine 1.2.126
 getutline subroutine 1.2.126
 getw subroutine 1.2.91
 getwd subroutine 1.2.127
 getws subroutine 1.2.117
 getxperm system call 1.2.128
 getxvers system call 1.2.129
 getyx subroutine 1.2.56.1 1.2.74.7
 gfs (global file system) number 2.4.22
 global file system (gfs) number 2.4.22
 glyphs 2.3.19.3
 gmtime subroutine 1.2.54
 goto, nonlocal 1.2.250

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 23

 GPS (graphic primitive strings)
 command words 2.3.25
 arc 2.3.25
 comment 2.3.25
 hardware 2.3.25
 lines 2.3.25
 text 2.3.25
 format 2.3.25
 types of data 2.3.25
 arc 2.3.25
 comment 2.3.25
 hardware 2.3.25
 lines 2.3.25
 text 2.3.25
 graphic output file format 2.3.45
 graphic primitive strings (GPS)
 See GPS (graphic primitive strings)
 graphic symbols 2.4.4
 graphics interface 2.3.45
 graphics interface subroutines
 Graphics Support Library (GSL) 2.6.1
 attributes 2.6.2.3 to 2.6.2.3.2
 error codes 2.6.4.3.2
 grave accent character 2.4.3.2
 Greek characters 2.4.9
 greek facility 2.4.9
 group access list 1.2.135
 get 1.2.97
 set 1.2.249
 group file 2.3.26
 group file entry, obtaining 1.2.96
 group ID
 set 1.2.255
 set for a process 1.2.252
 group ID of a file
 change 1.2.45
 group ID translation 1.2.45
 group IDs
 get 1.2.124
 gsbply subroutine 2.6.5
 gscarc subroutine 2.6.6
 gscatt subroutine 2.6.7
 gsccnv subroutine 2.6.8
 gscir subroutine 2.6.9
 gsclrs subroutine 2.6.10
 gscmap subroutine 2.6.11
 gscrca subroutine 2.6.12
 gsdjply subroutine 2.6.13
 gseara subroutine 2.6.14
 gsearc subroutine 2.6.15
 gsecnv subroutine 2.6.16
 gsecur subroutine 2.6.17
 gsell subroutine 2.6.18
 gseply subroutine 2.6.19
 gsevds subroutine 2.6.20
 gseven subroutine 2.6.21
 gsevwt subroutine 2.6.22
 gsfatt subroutine 2.6.23
 gsfci subroutine 2.6.24
 gsfell subroutine 2.6.25

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 24

 gsfply subroutine 2.6.26
 gsfrec subroutine 2.6.27
 gsgtat subroutine 2.6.28
 gsgtxt subroutine 2.6.29
 gsignal kernel subroutine C.6.2.6
 gsignal subroutine 1.2.281
 gsinit subroutine 2.6.30
 GSL (Graphics Support Library) 2.6.1
 attributes 2.6.2.3 to 2.6.2.3.2
 error codes 2.6.4.3.2
 gslatt subroutine 2.6.31
 gslcat subroutine 2.6.32
 gsline subroutine 2.6.33
 gslock subroutine 2.6.34
 gslop subroutine 2.6.35
 gsmask subroutine 2.6.36
 gsmatt subroutine 2.6.37
 gsmcat subroutine 2.6.38
 gsmcur subroutine 2.6.39
 gsmult subroutine 2.6.40
 gspcls subroutine 2.6.41
 gsplym subroutine 2.6.42
 gspoly subroutine 2.6.43
 gspp subroutine 2.6.44
 gsqdsp subroutine 2.6.45
 gsqfnt subroutine 2.6.46
 gsqgtx subroutine 2.6.47
 gsqlext subroutine 2.6.48
 gsqloc subroutine 2.6.49
 gsrrst subroutine 2.6.50
 gsrsav subroutine 2.6.51
 gstatt subroutine 2.6.52
 gsterm subroutine 2.6.53
 gstext subroutine 2.6.54
 gsulns subroutine 2.6.55
 gsunlk subroutine 2.6.56
 gsxblt subroutine 2.6.57
 gsxcnv subroutine 2.6.58
 gsxptr subroutine 2.6.59
 gsxtat subroutine 2.6.60
 gsxtxt subroutine 2.6.61
 gtty system call 1.2.137
 H
 H_HASCL kernel subroutine C.4.8.1
 has_ic subroutine 1.2.56.1
 has_il subroutine 1.2.56.1
 hash tables 1.2.130
 hasmntopt routine 1.2.104
 with TCF 1.2.104
 hcreate subroutine 1.2.130
 HD devinfo structure 2.5.10.1
 hdestroy subroutine 1.2.130
 head, of screen manager ring 2.5.11.6.2
 header files 1.2.5 C.2.6
 help text, issue 1.2.175
 help text, retrieve 1.2.179
 hft compatibility with RT 2.5.11.12
 hft device ID 2.5.11.5.6
 hft device, query 1.2.302
 hft driver 2.5.11

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 25

 hft emulation 2.5.11.11
 hft I/O error 2.5.11.5.5
 hft, initial state 2.5.11.8.1
 hft, remote 2.5.11.11
 hidden directory 1.1.5.1.5 1.2.129
 chhidden system call 1.2.42
 history file 2.3.27
 hole
 make in a file 1.2.76
 hop count, definition of 2.3.53.1
 host byte order
 conversion to network byte order 1.2.131
 host identifier 1.2.99
 host name 1.2.100
 hsearch subroutine 1.2.130
 hsi keyword 2.3.13.1
 htonl subroutine 1.2.131
 htons subroutine 1.2.131
 hts keyword 2.3.13.1
 HUPCL 2.5.28
 hyperbolic cosine function 1.2.271
 hyperbolic functions 1.2.271
 hyperbolic sine function 1.2.271
 hyperbolic tangent function 1.2.271
 hypot subroutine 1.2.132
 I
 i-list layout 1.1.5.5
 i-number allocation 1.1.5.6
 I/O 1.2.2.1
 370-XA C.3.1
 concepts, AIX/370 C.3
 operations, AIX/370 C.3
 I/O activity
 wait for 1.2.242
 I/O data structures 1.1.6.8
 I/O devices
 See also special files
 control operations 1.2.137
 I/O error, hft 2.5.11.5.5
 I/O overview 1.1.6
 I/O status
 check 1.2.242
 I/O, buffered 1.2.283
 IBM 4202 font keywords 2.3.13.1
 IBM 5201 font keywords 2.3.13.1
 icacmd ARTIC support routine C.5
 icafindtask ARTIC support routine C.5
 icagetbcb ARTIC support routine C.5
 icaintratch ARTIC support routine C.5
 ICANON 2.5.28
 icarshort ARTIC support routine C.5
 icarstr ARTIC support routine C.5
 icastat ARTIC support routine C.5
 icawaittask ARTIC support routine C.5
 icawchar ARTIC support routine C.5
 icawshort ARTIC support routine C.5
 icawstr ARTIC support routine C.5
 icpanic kernel subroutine C.6.4.4
 ICRNL 2.5.28
 IDAW (indirect address word) C.3

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 26

 idlok subroutine 1.2.56.1
 ie5_arptab structure C.4.6.4
 if_attach kernel subroutine C.4.1.3
 IF_DEQUEUE kernel subroutine C.4.8.1
 IF_DROP kernel subroutine C.4.8.1
 IF_EMPTYQUEUE kernel subroutine C.4.8.1
 IF_ENQUEUE kernel subroutine C.4.8.1
 IF_PREPEND kernel subroutine C.4.8.1
 IF_QFULL kernel subroutine C.4.8.1
 ifaddr structure C.4.6.3
 IGNBRK 2.5.28
 IGNCR 2.5.28
 IGNPAR 2.5.28
 ilans 2.5.12
 image, memory 2.5.16 2.5.18
 image, virtual memory 2.5.16 2.5.18
 immediate message, issue 1.2.176
 implementation of new XDR streams 1.2.332.1.10
 in_arpinput kernel subroutine C.4.9
 in_ifaddr structure C.4.6.3
 inch subroutine 1.2.56.1 1.2.74.7
 include files C.2.6
 index subroutine 1.2.133
 indirect address word (IDAW) C.3
 indirect addressing 1.1.5.5.1
 inet_addr subroutine 1.2.134
 inet_lnaof subroutine 1.2.134
 inet_makeaddr subroutine 1.2.134
 inet_netof subroutine 1.2.134
 inet_network subroutine 1.2.134
 inet_ntoa subroutine 1.2.134
 initgroups subroutine 1.2.135
 initialize group access list 1.2.135
 initiate a pipe to or from a process 1.2.207
 initscr subroutine 1.2.56.1 1.2.74.7
 initstate subroutine 1.2.222
 inittab file 2.3.28
 with TCF 2.3.28
 INLCR 2.5.28
 ino_t data type 2.4.27
 inode format 2.3.29
 inode layout 1.1.5.5.1
 inode structure 2.3.29
 inodes
 update 1.2.295
 INPCK 2.5.28
 input stream, put character or wide character back 1.2.317
 input, binary 1.2.84
 input/output 1.2.2.1
 input/output devices
 control operations 1.2.137
 input/output, buffered 1.2.283
 input/output, device 1.1.6.10
 inquiry, stream status 1.2.79
 insch subroutine 1.2.56.1 1.2.74.7
 insert
 queue element 1.2.136
 insert mode 2.5.11.4.1
 insert, retrieve 1.2.179
 insertln subroutine 1.2.56.1 1.2.74.7

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 27

 insque subroutine 1.2.136
 installing line discipline routines C.4.4.11
 installp command C.8.2
 integer
 conversion from string 1.2.291
 integer absolute value 1.2.8
 integer to ASCII conversion 1.2.6
 interface control, terminal 2.5.30
 interface, graphics 2.3.45
 interface, terminal 2.5.28.4
 BSD compatibility 2.5.28.4
 internal timer
 get value of 1.2.101
 set value of 1.2.101
 international character support 1.2.194
 character classification 1.2.183
 character collation 1.2.182
 character conversion 1.2.50
 date format 1.2.194
 environment 1.2.190 2.4.6
 formatted output 1.2.208
 NLchar data type 1.2.188
 parameter fetching 1.2.191
 string conversion 1.2.189
 string handling 1.2.194 1.2.195
 string operations 1.2.184 1.2.193
 time format 1.2.194
 time structure 1.2.195
 Internet address
 manipulation 1.2.134
 Internet dot notation 1.2.134
 interprocess channel
 create 1.2.204
 interprocess communication 1.2.2.10 1.2.284
 interrupt response block (IRB) C.3.1
 interruption of device drivers C.6.2.2
 interrupts 1.1.4.1
 AIX C.2.2
 device driver C.2.2
 intr character 2.5.28
 intrattach kernel subroutine (AIX PS/2) C.4.1.2
 intrdetach kernel subroutine (AIX PS/2) C.4.1.2
 intrflush subroutine 1.2.56.1
 iobuf structure C.4.3.1
 ioctl system call 1.2.137
 ioctl system calls, ARTIC 2.5.24.3
 refid=ARTIC.ioctl system calls 2.5.24.3
 ioctlx system call 1.2.137
 with TCF 1.2.137.1
 iodone kernel subroutine C.4.3.4
 ioin kernel subroutine C.6.1.5
 ioinb kernel subroutine C.6.1.5
 iomove kernel subroutine C.6.1.1
 ioout kernel subroutine C.6.1.5
 iooutb kernel subroutine C.6.1.5
 IOT fault generation 1.2.7
 iowait kernel subroutine C.4.3.4
 IPC 1.2.2.10
 ipc_perm structure 1.2.2.10
 IPC_RMID 1.2.259

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 28

 IPC_SET 1.2.259
 IPC_STAT 1.2.259
 ipintrq input queue C.4.5
 IRB (interrupt response block) C.3.1
 isalnum macro 1.2.55
 isalpha macro 1.2.55
 isascii macro 1.2.55
 isatty subroutine 1.2.310
 with TCF 1.2.310
 iscntrl macro 1.2.55
 isdigit macro 1.2.55
 isgraph macro 1.2.55
 ISIG 2.5.28
 islower macro 1.2.55
 isprint macro 1.2.55
 ispunct macro 1.2.55
 ISSIG kernel subroutine C.6.2.6
 isspace macro 1.2.55
 issue a queued message 1.2.177
 issue a shell command 1.2.298
 issue an immediate message 1.2.176
 issue help text 1.2.175
 ISTRIP 2.5.28
 isupper macro 1.2.55
 iswalnum macro 1.2.55
 iswalpha macro 1.2.55
 iswascii macro 1.2.55
 iswcntrl macro 1.2.55
 iswdigit macro 1.2.55
 iswgraph macro 1.2.55
 iswlower macro 1.2.55
 iswprint macro 1.2.55
 iswpunct macro 1.2.55
 iswspace macro 1.2.55
 iswupper macro 1.2.55
 iswxdigit macro 1.2.55
 isxdigit macro 1.2.55
 IUCLC 2.5.28
 IXANY 2.5.28
 IXOFF 2.5.28
 IXON 2.5.28
 ixp keyword 2.3.13.1
 J
 j0, j1, jn subroutines 1.2.19
 jrand48 subroutine 1.2.63
 js keyword 2.3.13.1
 K
 kaf file format 2.3.30
 kernel bulk data manipulations C.6.1.4
 kernel calls
 See kernel subroutines
 See Remote Procedure Call
 kernel debugger, configuring C.7.1
 kernel device driver 1.1.6.6
 kernel features 1.1.3
 kernel functions 1.1.2
 cluster management 1.1.2
 file system management 1.1.2
 input/output control 1.1.2
 memory management 1.1.2

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 29

 process management 1.1.2
 resource management 1.1.2
 time management 1.1.2
 kernel mode 1.1.4.1
 kernel mode addressing 1.1.4.2.3
 kernel structure 1.1.2
 kernel subroutines
 kernel swap 2.5.26
 kernel timers C.6.2.3
 kernel trap routine 1.1.6.1
 kernel, AIX, rebuild 1.2.32
 key_t data type 2.4.27
 keyboard 2.5.13.1
 keyboard input 2.5.11.3
 keypad subroutine 1.2.56.1 1.2.74.7
 keywords
 fonts 2.3.13.1
 printer 2.3.13.1
 printer font 2.3.13.1
 TTY devices 2.3.13.1
 TTYN devices 2.3.13.1
 TTYP devices 2.3.13.1
 keywords, ddi 2.3.14
 keywords, printer 2.3.13.1
 kill character 2.5.28
 kill system call 1.2.138
 kill3 system call 1.2.138
 with TCF 1.2.138
 killchar subroutine 1.2.56.1
 killpg system call 1.2.138
 kmem file 2.5.16
 kmemalloc kernel subroutine C.6.3
 kpoe keyword 2.3.13.1
 KSR mode 2.5.11.4.1
 definition of 2.6.2.1
 kvtophys kernel subroutine C.6.1.6
 L
 l_close kernel subroutine C.4.4.10
 l_input kernel subroutine C.4.4.10
 l_ioctl kernel subroutine C.4.4.10
 l_open kernel subroutine C.4.4.10
 l_output kernel subroutine C.4.4.10
 l_read kernel subroutine C.4.4.10
 l_write kernel subroutine C.4.4.10
 l3tol subroutine 1.2.139
 l64a subroutine 1.2.6
 label subroutine 1.2.206
 labs subroutine 1.2.140
 landscaping orientation 2.6.4.2
 langinfo.h header file 2.4.10
 language information, pointer to 1.2.198
 layout
 block 0 1.1.5.3
 file system 1.1.5.2
 i-list 1.1.5.5
 inode 1.1.5.5.1
 super block 1.1.5.4
 lcong48 subroutine 1.2.63
 ldaclose subroutine 1.2.142
 ldahread subroutine 1.2.141

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 30

 ldaopen subroutine 1.2.149
 ldclose subroutine 1.2.142
 ldexp subroutine 1.2.85
 ldfcn routines 1.2.143
 ldfhread subroutine 1.2.144
 ldgetname subroutine 1.2.145
 ldlinit subroutine 1.2.146
 ldlitem subroutine 1.2.146
 ldlread subroutine 1.2.146
 ldlseek subroutine 1.2.147
 ldnlseek subroutine 1.2.147
 ldnrseek subroutine 1.2.150
 ldnshread subroutine 1.2.151
 ldnsseek subroutine 1.2.152
 ldohseek subroutine 1.2.148
 ldopen subroutine 1.2.149
 ldrseek subroutine 1.2.150
 ldshread subroutine 1.2.151
 ldsseek subroutine 1.2.152
 ldtbindex subroutine 1.2.153
 ldtbread subroutine 1.2.154
 ldtbseek subroutine 1.2.155
 leaveok subroutine 1.2.56.1 1.2.74.7
 letter, option, get from argument vector 1.2.106
 lfind subroutine 1.2.160
 lflip subroutine 1.2.200
 lflipa subroutine 1.2.200
 lgamma subroutine 1.2.90
 libPW subroutine library 1.2.211
 libraries
 4.3BSD 1.2.22
 extended curses 1.2.74
 programmers workbench 1.2.211
 sockets 1.2.277
 standard I/O 1.2.283
 libsock subroutine library 1.2.277
 light-emitting diodes, setting 2.5.11.7.5
 limits
 user 1.2.313
 limits.h header file 2.4.11
 line buffer mode 1.2.248
 line discipline routines C.4.4.10
 line discipline routines, installing C.4.4.11
 line discipline switching 2.5.28.4.1
 line disciplines 2.5.28.4.1
 line subroutine 1.2.206
 linear congruential algorithm 1.2.63
 linear search and update 1.2.160
 linemod subroutine 1.2.206
 lines attributes
 line color 2.6.2.3.2
 line style 2.6.2.3.2
 LINES variable 1.2.302
 link
 create 1.2.156 1.2.294
 link editor output file 2.3.2
 link system call 1.2.156
 with TCF 1.2.156
 list
 free-block 1.1.5.8

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 31

 listen
 for socket connection 1.2.157
 listen system call 1.2.157
 lm keyword 2.3.13.1
 loads file 2.3.31
 local file field, site 2.3.54
 locale 1.2.158 1.2.251
 locale.h header file 2.4.12
 localeconv subroutine 1.2.158
 localtime subroutine 1.2.54
 locator thresholds 2.5.11.3.1
 lock
 data 1.2.205
 process 1.2.205
 text 1.2.205
 lockf system call 1.2.78
 log file
 close 1.2.297
 define priority mask 1.2.297
 open 1.2.297
 log priority mask 1.2.297
 log subroutine 1.2.28
 log10 subroutine 1.2.28
 log1p subroutine 1.2.28
 logarithm 1.2.28
 logb subroutine 1.2.80
 logger keyword 2.3.13.1
 logical operation attribute 2.6.2.3.1 2.6.3.2
 login name 1.2.57
 login name of user, obtaining 1.2.159
 login name, get 1.2.103
 login, remote 2.5.21
 logname subroutine 1.2.159
 long integers from 3-byte integers 1.2.139
 longjmp subroutine 1.2.250
 longname subroutine 1.2.56.1 1.2.74.7
 lower-left coordinate system 2.6.57.1
 lp special file 2.5.14 2.5.15
 lpi keyword 2.3.13.1
 lprio structure 2.5.14.1
 lprmode structure 2.5.14.1
 LPRUDE structure 2.5.14.1
 lrand48 subroutine 1.2.63
 lrmc keyword 2.3.13.1
 lsearch subroutine 1.2.160
 lseek system call 1.2.161
 with TCF 1.2.161
 lstat system call 1.2.282
 ltol3 subroutine 1.2.139
 M
 m_cat kernel subroutine C.4.8.1
 m_copy kernel subroutine C.4.8.1
 m_free kernel subroutine C.4.8.1
 m_freem kernel subroutine C.4.8.1
 m_get kernel subroutine C.4.8.1
 m_getclr kernel subroutine C.4.8.1
 m_pullup kernel subroutine C.4.8.1
 machine-independent data access 1.2.280
 macro definitions 1.2.5
 macro package for formatting a permuted index 2.4.16

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 32

 macron accent character 2.4.3.2
 macros
 _NCtolower 1.2.50
 _NCtoupper 1.2.50
 _tolower 1.2.50
 _toupper 1.2.50
 clearerr 1.2.79
 ctype 1.2.55
 feof 1.2.79
 ferror 1.2.79
 fileno 1.2.79
 getc 1.2.91
 getchar 1.2.91
 isalnum 1.2.55
 isalpha 1.2.55
 isascii 1.2.55
 iscntrl 1.2.55
 isdigit 1.2.55
 isgraph 1.2.55
 islower 1.2.55
 isprint 1.2.55
 ispunct 1.2.55
 isspace 1.2.55
 isupper 1.2.55
 iswalnum 1.2.55
 iswalpha 1.2.55
 iswascii 1.2.55
 iswcntrl 1.2.55
 iswdigit 1.2.55
 iswgraph 1.2.55
 iswlower 1.2.55
 iswprint 1.2.55
 iswpunct 1.2.55
 iswspace 1.2.55
 iswupper 1.2.55
 iswxdigit 1.2.55
 isxdigit 1.2.55
 NCesc 1.2.50
 NCunesc 1.2.50
 PAD 1.2.200
 PADCLOSE 1.2.200
 PADOPEN 1.2.200
 putc 1.2.213
 putchar 1.2.213
 varargs 1.2.323
 macros, lists of 2.4.21
 magic number 1.2.71
 maildelivery file 2.3.37
 main memory allocator 1.2.162
 main subroutine 1.2.71
 maintenance 1.2.2.2
 major and minor numbers C.6.6
 major device numbers C.2.3
 major macro C.6.6
 major number 1.1.6.5
 make
 hole in a file 1.2.76
 make a unique file name 1.2.170
 malloc kernel subroutine C.6.3
 malloc subroutine 1.2.162

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 33

 management
 device 1.1.6.9
 manipulate parts of floating-point numbers 1.2.85
 manipulating
 Internet addresses 1.2.134
 MAPIN macro C.6.1.5
 MAPIN_RO macro C.6.1.5
 maps, yellow page 1.2.333.2
 marker attributes
 marker color 2.6.2.3.2
 marker height 2.6.2.3.2
 marker origin 2.6.2.3.2
 marker pattern 2.6.2.3.2
 marker style 2.6.2.3.2
 marker width 2.6.2.3.2
 mask
 file creation 1.2.314
 interrupt C.6.5
 site permission 1.2.128
 master file 2.3.32
 with NFS 2.3.32.2 2.3.32.3
 with TCF 2.3.32.3
 master format 2.3.32
 match regular expression 1.2.228
 math.h header file 2.4.13
 matherr subroutine 1.2.163
 mbcs.h header file 2.4.14
 MBecflin subroutine 1.2.74.7
 mbpbrk subroutine 1.2.164
 mbsadvance subroutine 1.2.164
 mbschr subroutine 1.2.164
 mbscmp subroutine 1.2.164
 mbscoll subroutine 1.2.286
 mbsinvalid subroutine 1.2.164
 mbslen subroutine 1.2.164
 mbsncat subroutine 1.2.164
 mbsncmp subroutine 1.2.164
 mbsncoll subroutine 1.2.286
 mbsncpy subroutine 1.2.164
 mbsrchr subroutine 1.2.164
 mbsscpn subroutine 1.2.164
 mbsspn subroutine 1.2.164
 mbstomb subroutine 1.2.165
 mbstowcs subroutine 1.2.165
 mbtok subroutine 1.2.164
 mbtowc subroutine 1.2.165
 mbuf chain C.4.6.1
 mccs keyword 2.3.13.1
 MCLALLOC kernel subroutine C.4.8.1
 MCLFREE kernel subroutine C.4.8.1
 MCLGET kernel subroutine C.4.8.1
 mclgetx kernel subroutine C.4.8.1
 mem file 2.5.16
 memccpy subroutine 1.2.166
 memchr subroutine 1.2.166
 memcmp subroutine 1.2.166
 memcpy subroutine 1.2.166
 memory addressing 1.1.4.2
 memory allocator 1.2.162
 memory control operations

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 34

 shared 1.2.259
 memory image 2.3.10 2.5.16
 memory image file 2.5.16
 memory operations 1.2.166
 memory segment
 attach to process 1.2.258
 detach 1.2.260
 get 1.2.261
 memory subroutine 1.2.166
 memory-mapped I/O C.6.1.5
 memory, disclaim 1.2.62
 memset subroutine 1.2.166
 message
 control operations 1.2.173
 from queue 1.2.178
 receive from a socket 1.2.227
 send to a socket 1.2.246
 message authentication, RPC
 See RPC (Remote Procedure Call), message authentication
 message catalog, close 1.2.24
 message catalog, deferred open 1.2.187
 message catalog, open 1.2.27
 message catalog, retrieve a message 1.2.186
 message catalog, retrieve from 1.2.25
 message catalog, retrieve into buffer 1.2.26
 message control 1.2.173
 message driver format 2.5.20
 message file 2.3.33
 message handling (MH) package 2.3.35
 message queue 1.2.242
 get identifier 1.2.174
 send message 1.2.180
 message receive
 extended 1.2.181
 message system alias file 2.3.34
 message system format file 2.3.35
 message, issue a queued 1.2.177
 message, issue an immediate 1.2.176
 message, retrieve 1.2.179
 messages, error 1.2.203
 meta subroutine 1.2.56.1 1.2.74.7
 MFREE kernel subroutine C.4.8.1 C.6.3
 MGET kernel subroutine C.4.8.1
 MH (message handling) package 2.3.35
 mh-alias file 2.3.34
 mh-format file 2.3.35
 mh-mail file 2.3.36
 mh-profile file 2.3.38
 mh-tailor file 2.3.39
 mhook 2.3.37
 migrate system call 1.2.167
 minor device numbers C.2.3
 minor macro C.6.6
 minor number 1.1.6.5
 miscellaneous facilities 2.4.1
 mkdir system call 1.2.168
 with TCF 1.2.168
 mkfifo system call 1.2.169
 mknod system call 1.2.169
 with NFS 1.2.169.1

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 35

 with TCF 1.2.169.1
 mknodx system call 1.2.169
 with TCF 1.2.169.1
 mktemp subroutine 1.2.170
 mm facility 2.4.15
 mm macro package 2.4.15
 mntent file 2.3.40
 with TCF 2.3.40
 mode bit
 set-group-ID 1.2.71
 set-user-ID 1.2.71
 mode change, file 1.2.44
 modes
 kernel 1.1.4.1
 user 1.1.4.1
 modf subroutine 1.2.85
 modification time
 file 1.2.321
 moncontrol subroutine 1.2.171
 monitor mode 2.6.3.1
 definition of 2.6.2.1
 major data type 2.5.11.4.2
 monitor subroutine 1.2.171
 monstartup subroutine 1.2.171
 mount
 file system 1.2.172
 mount point 2.4.22
 mount system call 1.2.172
 with TCF 1.2.172
 mouse, using the 2.5.11.3.1
 move
 read/write file pointer 1.2.161
 move subroutine 1.2.56.1 1.2.74.7 1.2.206
 mptx facility 2.4.16
 mrand48 subroutine 1.2.63
 msgbuf structure 1.2.178
 msgctl system call 1.2.173
 with TCF 1.2.173
 msgget system call 1.2.174
 with TCF 1.2.174
 msghdr structure 1.2.227
 msghelp subroutine 1.2.175
 msgimed subroutine 1.2.176
 msgop system calls 1.2.178 1.2.180 1.2.181
 msgqued subroutine 1.2.177
 msgrcv system call 1.2.178
 with TCF 1.2.178
 msgrtrv subroutine 1.2.179
 msgsnd system call 1.2.180
 with TCF 1.2.180
 msgxrcv system call 1.2.181
 with TCF 1.2.181
 mt 2.5.17
 mtab file 2.3.40
 with TCF 2.3.40
 mtod kernel subroutine C.4.8.1
 mtstailor file 2.3.39
 multibyte character support
 string operations 1.2.164 1.2.286 1.2.327
 multibyte controls 2.4.3.3.2

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 36

 multicolor cursor attributes
 multicolor cursor background color 2.6.2.3.2
 multicolor cursor foreground color 2.6.2.3.2
 multicolor cursor logical operation 2.6.2.3.2
 multicolor cursor mask 2.6.2.3.2
 multicolor cursor origin 2.6.2.3.2
 multicolor cursor pattern 2.6.2.3.2
 multiplex device, hft 2.5.11.2
 multiplexed device C.2.4
 mv facility 2.4.17
 mvaddch subroutine 1.2.56.1 1.2.74.7
 mvaddstr subroutine 1.2.56.1 1.2.74.7
 mvchgat subroutine 1.2.74.7
 mvcur subroutine 1.2.56.1 1.2.74.7
 mvdelch subroutine 1.2.56.1 1.2.74.7
 mvgetch subroutine 1.2.56.1 1.2.74.7
 mvgetstr subroutine 1.2.56.1 1.2.74.7
 mvinch subroutine 1.2.56.1 1.2.74.7
 mvinsch subroutine 1.2.56.1 1.2.74.7
 mvpaddch subroutine 1.2.74.7
 mvpaddstr subroutine 1.2.74.7
 mvpchgat subroutine 1.2.74.7
 mvprintw subroutine 1.2.56.1
 mvscanw subroutine 1.2.56.1
 mvwaddch subroutine 1.2.56.1 1.2.74.7
 mvwaddstr subroutine 1.2.56.1 1.2.74.7
 mvwchgat subroutine 1.2.74.7
 mvwdelch subroutine 1.2.56.1 1.2.74.7
 mvwgetch subroutine 1.2.56.1 1.2.74.7
 mvwgetstr subroutine 1.2.56.1 1.2.74.7
 mvwin subroutine 1.2.56.1 1.2.74.7
 mvwinch subroutine 1.2.56.1 1.2.74.7
 mvwinsch subroutine 1.2.56.1 1.2.74.7
 mvwprchtypew subroutine 1.2.56.1
 mvwscanw subroutine 1.2.56.1
 N
 name for a temporary file, create 1.2.306
 name list entries, obtaining 1.2.192
 name of a terminal 1.2.310
 name of the user 1.2.57
 name, login 1.2.103
 name, user login, obtaining 1.2.159
 name, user, find value 1.2.125
 NCchrlen macro 1.2.188
 NCcollate subroutine 1.2.182
 NCcoluniq subroutine 1.2.182
 NCctype 1.2.183
 NCdec macro 1.2.188
 NCdechr macro 1.2.188
 NCdecode subroutine 1.2.188
 NCdecstr subroutine 1.2.188
 NCenc macro 1.2.188
 NCencode subroutine 1.2.188
 NCencstr subroutine 1.2.188
 NCeqvmap subroutine 1.2.182
 NCesc macro 1.2.50
 NCflatchar subroutine 1.2.50
 NCisalnum subroutine 1.2.183
 NCisalpha subroutine 1.2.183
 NCisdigit subroutine 1.2.183

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 37

 NCisgraph subroutine 1.2.183
 NCislower subroutine 1.2.183
 NCisNLchar subroutine 1.2.183
 NCisprint subroutine 1.2.183
 NCispunct subroutine 1.2.183
 NCisshift subroutine 1.2.183
 NCisspace subroutine 1.2.183
 NCisupper subroutine 1.2.183
 NCisxdigit subroutine 1.2.183
 ncprintf kernel subroutine C.6.4.1
 NCstrcat subroutine 1.2.184
 NCstrchr subroutine 1.2.184
 NCstrcmp subroutine 1.2.184
 NCstrcpy subroutine 1.2.184
 NCstrcspn subroutine 1.2.184
 NCstring subroutine 1.2.184
 NCstrlen subroutine 1.2.184
 NCstrncat subroutine 1.2.184
 NCstrncmp subroutine 1.2.184
 NCstrncpy subroutine 1.2.184
 NCstrpbrk subroutine 1.2.184
 NCstrrchr subroutine 1.2.184
 NCstrspn subroutine 1.2.184
 NCstrtok subroutine 1.2.184
 NCtolower macro2 1.2.50
 NCtolower subroutine 1.2.50
 NCtoNLchar subroutine 1.2.50
 NCtoupper macro2 1.2.50
 NCtoupper subroutine 1.2.50
 NCunesc macro 1.2.50
 NCxcol macro 1.2.182
 neqn special character definitions 2.4.7
 netctrl system call 1.2.185
 with TCF 1.2.185
 netent structure 1.2.105
 netparams file 2.3.41
 with TCF 2.3.41
 network byte order
 conversion to host byte order 1.2.131
 network data base
 close 1.2.105
 find an entry in 1.2.105
 open 1.2.105
 network data base entry 1.2.105
 network device driver C.4
 network device driver procedure handles C.4.7
 Network File System (NFS)
 See NFS (Network File System)
 network groups 2.4.18
 Network Information Center 1.2.277.4
 Network Information Service client interface 1.2.333
 client interface routines 1.2.333.3
 described 1.2.333.1
 error information 1.2.333.3
 maps 1.2.333.2
 parameter note 1.2.333.3
 service, binding and unbinding 1.2.333.3
 working with domains and maps 1.2.333.3
 network protocol address 1.2.112
 network protocol data base

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 38

 close 1.2.112
 find an entry in 1.2.112
 open 1.2.112
 network protocol name 1.2.112
 network service address 1.2.118
 network service name 1.2.118
 network services data base
 close 1.2.118
 find an entry in 1.2.118
 open 1.2.118
 new process image 1.2.71
 new-line character 2.5.28
 newpad subroutine 1.2.56.1
 newterm subroutine 1.2.56.1
 newview subroutine 1.2.74.7
 newwin subroutine 1.2.56.1 1.2.74.7
 nextkey subroutine 1.2.58
 NFS (Network File System)
 access system call with 1.2.10
 asynch_daemon system call with 1.2.17
 chdir system call with 1.2.40
 chmod system call with 1.2.44
 chown system call with 1.2.45
 exec system call with 1.2.71
 execl system call with 1.2.71
 execle system call with 1.2.71
 execlp system call with 1.2.71
 execv system call with 1.2.71
 execve system call with 1.2.71
 execvp system call with 1.2.71
 fchmod system call with 1.2.44
 fchown system call with 1.2.45
 filesystems file with 2.3.18.1
 fpathconf system call with 1.2.201
 master file with 2.3.32.2 2.3.32.3
 mknod system call with 1.2.169.1
 pathconf system call with 1.2.201
 rename system call with 1.2.233
 rmdir system call with 1.2.238
 setquota system call with 1.2.253
 symbolic link system call with 1.2.294
 symlink system call with 1.2.294
 sysconf system call with 1.2.296
 nice system call 1.2.111
 nl subroutine 1.2.56.1 1.2.74.7
 nl_types.h header file 2.4.19
 NL1 2.5.28
 NLcatgets subroutine 1.2.186
 NLcatopen subroutine 1.2.187
 NLchar data type 1.2.188
 NLchrlen macro 1.2.188
 NLconvstr subroutines 1.2.189
 NLDLY 2.5.28
 NLecflin subroutine 1.2.74.7
 NLescstr subroutine 1.2.189
 NLflatstr subroutine 1.2.189
 NLfprintf subroutine 1.2.208
 NLfscanf subroutine 1.2.241
 NLgetctab subroutine 1.2.190
 NLgetenv subroutine 1.2.94

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 39

 NLgetfile 1.2.191
 NLisNLcp macro 1.2.188
 nlist subroutine 1.2.192
 NLO 2.5.28
 NLprintf subroutine 1.2.208
 NLscanf subroutine 1.2.241
 NLSCHAR, XDR definition of 1.2.74.1
 NLsprintf subroutine 1.2.208
 NLsscanf subroutine 1.2.241
 NLstrcat subroutine 1.2.193
 NLstrchr subroutine 1.2.193
 NLstrcmp subroutine 1.2.193
 NLstrcpy subroutine 1.2.193
 NLstrcspn subroutine 1.2.193
 NLstring 1.2.193
 NLstrlen subroutine 1.2.193
 NLstrncat subroutine 1.2.193
 NLstrncmp subroutine 1.2.193
 NLstrncpy subroutine 1.2.193
 NLstrpbrk subroutine 1.2.193
 NLstrrchr subroutine 1.2.193
 NLstrspn subroutine 1.2.193
 NLstrtime subroutine 1.2.194
 NLstrtok subroutine 1.2.193
 NLtmtime subroutine 1.2.195
 NLunescstr subroutine 1.2.189
 NLvfprintf subroutine 1.2.324
 NLvprintf subroutine 1.2.324
 NLvsprintf subroutine 1.2.324
 NLxcol macro 1.2.182
 NLxin 1.2.196
 NLxin subroutine 1.2.196
 NLxout 1.2.197
 NLxout subroutine 1.2.197
 nocbreak subroutine 1.2.56.1
 nocr keyword 2.3.13.1
 nocrmode subroutine 1.2.74.7
 nodelay subroutine 1.2.56.1 1.2.74.7
 noecho subroutine 1.2.56.1 1.2.74.7
 noff keyword 2.3.13.1
 NOFLSH 2.5.28
 nometa subroutine 1.2.74.7
 non-autoconfigured device drivers C.2.5
 non-standard tabbing 2.3.22
 non-volatile memory image 2.5.18
 non-volatile memory image file 2.5.18
 nonl subroutine 1.2.56.1 1.2.74.7
 nonlocal goto 1.2.250
 nonspacing characters 2.4.3.2
 noraw subroutine 1.2.56.1 1.2.74.7
 nosb keyword 2.3.13.1
 nrand48 subroutine 1.2.63
 ntohl subroutine 1.2.131
 ntohs subroutine 1.2.131
 null special file 2.5.19
 number
 magic 1.2.71
 number of bits per pixel 2.6.57.1
 number of pixels per byte 2.6.57.1
 numbers, pseudo-random 1.2.63 1.2.221 1.2.222

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 40

 nvram file 2.5.18
 O
 object-code-only options 2.3.32.2
 OCRNL 2.5.28
 OFDEL 2.5.28
 OFILL 2.5.28
 ogonek accent character 2.4.3.2
 OLCUC 2.5.28
 ONLCR 2.5.28
 ONLRET 2.5.28
 ONOCR 2.5.28
 open
 directory 1.2.60
 log file 1.2.297
 network data base 1.2.105
 network protocol data base 1.2.112
 network services data base 1.2.118
 open a message catalog 1.2.27
 open a stream 1.2.82
 open attribute file 1.2.36
 open file
 to read 1.2.199
 to write 1.2.199
 open system call 1.2.199
 with TCF 1.2.199
 opendir subroutine 1.2.60
 openlog subroutine 1.2.297
 openpl subroutine 1.2.206
 openx system call 1.2.199
 with TCF 1.2.199
 operation request block (ORB) C.3.1
 OPOST 2.5.28
 oprmode structure 2.5.14.1
 option letter, get from argument vector 1.2.106
 options
 socket 1.2.121
 options file format 2.3.43
 ORB (operation request block) C.3.1
 ordinary file 1.1.5.1.2
 osconfig C.8.2
 osm driver 2.5.20
 out-of-band data 1.2.121
 output file, assembler 2.3.2
 output file, link editor 2.3.2
 output, binary 1.2.84
 output, print formatted 1.2.208
 overcircle accent character 2.4.3.2
 overdot accent character 2.4.3.2
 overlay subroutine 1.2.56.1 1.2.74.7
 overview
 I/O 1.1.6
 signals 1.2.2.9
 overview of sockets 1.2.277.1
 overwrite subroutine 1.2.56.1 1.2.74.7
 owner ID translation 1.2.45
 owner of a file 1.2.45
 change 1.2.45
 P
 pacs keyword 2.3.13.1
 PAD macro 1.2.200

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 41

 PADCLOSE macro 1.2.200
 paddch subroutine 1.2.74.7
 paddr_t data type 2.4.27
 paddstr subroutine 1.2.74.7
 PADOPEN macro 1.2.200
 palette, setting color 2.5.11.7.2
 palloc kernel subroutine C.6.3
 pane, XDR definition of 1.2.74.1
 panel, XDR definition of 1.2.74.1
 panic kernel subroutine C.6.4.4
 param.h header file 2.4.20
 parameter passing 1.2.71
 parameters 1.2.4
 PARENB 2.5.28
 parent directory 2.3.16
 parent process 1.1.4.3.2 1.2.83
 parent process ID 1.2.110
 PARMRK 2.5.28
 PARODD 2.5.28
 passc kernel subroutine C.6.1.1
 passing
 parameter 1.2.71
 passwd file 2.3.44
 password description 2.3.44.1
 password encryption 1.2.52
 password file entry, get 1.2.113 1.2.114
 password file entry, write 1.2.215
 password, read 1.2.108
 path name
 direct 1.1.5.10.1
 relative 1.1.5.10.2
 resolution 1.1.5.10
 path name extension C.2.4
 path name of current directory 1.2.92
 pathconf system call 1.2.201
 with NFS 1.2.201
 pattern field, fstore 2.3.23
 pause system call 1.2.202
 pchgat subroutine 1.2.74.7
 pclose subroutine 1.2.207
 with TCF 1.2.207
 pcs font 2.3.19.2
 peer
 definition 1.2.109
 peer name
 socket 1.2.109
 pel box
 definition 2.3.19.3.5
 perase subroutine 1.2.74.7
 permanent storage
 write file to 1.2.87
 permission
 file access 1.2.44
 perror subroutine 1.2.203
 ph keyword 2.3.13.1
 physadr structure 2.4.27
 physical display attributes,1502 2.5.11.7.3
 physio kernel subroutine C.4.3.4
 pipe 1.1.5.1.3
 pipe initiation 1.2.207

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 42

 pipe system call 1.2.204
 pitch keyword 2.3.13.1
 pitch1 keyword 2.3.13.1
 pixel format 2.6.57.1
 pixel map 2.6.57.1
 definition of 2.6.2.1
 terms 2.6.57.1
 background color index 2.6.57.1
 bytes per pixel 2.6.57.1
 device ID 2.6.57.1
 foreground color index 2.6.57.1
 lower-left coordinate system 2.6.57.1
 number of bits per pixel 2.6.57.1
 number of pixels per byte 2.6.57.1
 pixel format 2.6.57.1
 plane format 2.6.57.1
 repetitive tiling operation 2.6.57.1
 upper-left coordinate system 2.6.57.1
 pixel, definition of 2.6.2.1
 plane format 2.6.57.1
 plane mask attribute 2.6.2.3.1 2.6.3.2
 plock system call 1.2.205
 plot file format 2.3.45
 plot subroutines 1.2.206
 plotter keywords 2.3.13.1
 pnoutrefresh subroutine 1.2.56.1
 point subroutine 1.2.206
 popen subroutine 1.2.207
 with TCF 1.2.207
 port description file 2.3.46
 port I/O C.6.1.5
 porting application programs
 from 4.3BSD to AIX 1.2.22.2
 portrait orientation 2.6.4.2
 ports file 2.3.46
 POS (programmable option select) registers C.2.5
 pow subroutine 1.2.28
 power (exponentiation) 1.2.28
 pq keyword 2.3.13.1
 predefined file 2.3.47
 prefresh subroutine 1.2.56.1
 presentation space, XDR definition of 1.2.74.1
 prin keyword 2.3.13.1
 print
 formatted output 1.2.208
 print floating-point number 1.2.67
 print formatted varargs argument list 1.2.324
 printer keywords 2.3.13.1
 plotter 2.3.13.1
 printer line discipline routines C.4.4.10
 printf kernel subroutine C.6.4.1
 printf subroutine 1.2.208
 printw subroutine 1.2.56.1 1.2.74.7
 priority computation 1.1.4.4
 priority of a process
 change 1.2.111
 privileged address 1.2.223
 pro keyword 2.3.13.1
 probe system call 1.2.209
 with TCF 1.2.209

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 43

 proc structure C.2.1.2
 proc0 1.2.138
 proc1 1.2.138
 process
 child 1.1.4.3.2
 creation 1.2.83
 get IDs 1.2.110
 get owner 1.2.319
 lock 1.2.205
 parent 1.1.4.3.2
 preemption 1.1.4.3.3
 set owner 1.2.319
 states 1.1.4.3.3
 trace execution 1.2.212
 unlock 1.2.205
 process accounting 1.2.11
 process accounting file 2.3.3
 process alarm 1.2.14
 process communication
 signals 1.1.4.5
 process control 1.1.4 1.2.2.3
 of process execution 1.2.212
 process creation 1.1.4.3.1
 process data structures 1.1.4.3
 process table 1.1.4.3
 user structure 1.1.4.3
 vseg table 1.1.4.3
 process execution 1.1.4.3.1
 process group ID 1.2.110 1.2.252 1.2.255
 set 1.2.252
 process ID 1.2.110
 process identification 1.2.2.4
 process image
 new 1.2.71
 process pre-emption C.2.1.1
 process priority
 automatic assignment 1.1.4.4
 change 1.2.111
 process statistics 1.2.11
 process suspension 1.2.202 C.6.2.4
 process table 1.1.4.3
 process termination 1.2.73
 process times
 child 1.2.304
 getting 1.2.304
 parent 1.2.304
 process trace 1.2.212
 process user ID 1.2.255
 process-to-process communication 1.2.2.10
 processor status word (PSW) C.3
 procvseg structure C.7.3.3
 profil system call 1.2.210
 profile
 execution time 1.2.210
 profile file 2.3.48
 profile setting 2.3.48
 profile, execution 1.2.171
 programmable character set font 2.3.19.2
 programmable option select (POS) registers C.2.5
 programmers workbench library 1.2.211

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 44

 programming with remote procedure calls 1.2.231
 protocol
 definition 1.2.277.2
 protocol modes 2.5.11.7.6
 protoent structure 1.2.112
 psd keyword 2.3.13.1
 pseudo-random number generator 1.2.221 1.2.222
 pseudo-random numbers 1.2.63
 pseudo-terminal device 2.5.21
 psig kernel subroutine C.6.2.6
 psignal kernel subroutine C.6.2.6
 pss keyword 2.3.13.1
 PSW (processor status word) C.3
 pt keyword 2.3.13.1
 ptime keyword 2.3.13.1
 ptrace system call 1.2.212
 pty special file 2.5.21
 publications
 related PREFACE.5
 punch special file 2.5.22
 push character or wide character back into input stream 1.2.317
 putc kernel subroutine C.4.4.12
 putc macro 1.2.213
 putcb kernel subroutine C.4.4.12
 putcbp kernel subroutine C.4.4.12
 putcf kernel subroutine C.4.4.12
 putchar kernel subroutine C.6.4.1
 putchar macro 1.2.213
 putenv subroutine 1.2.214
 putlong subroutine 1.2.234
 putp subroutine 1.2.56.2
 putpwent subroutine 1.2.215
 puts kernel subroutine C.4.4.12
 puts subroutine 1.2.216
 putshort subroutine 1.2.234
 pututline subroutine 1.2.126
 putw subroutine 1.2.213
 putwc subroutine 1.2.213
 putwchar subroutine 1.2.213
 PZERO C.6.2.2
 Q
 qconfig file 2.3.49
 with TCF 2.3.49
 qdaemon to backend interaction B.1.1
 qsort subroutine 1.2.217
 query hft device 1.2.302 2.5.11.5.6
 query physical device 2.5.11.5.6
 query physical device identifiers 2.5.11.5.6
 query presentation space 2.5.11.5.6
 query terminal characteristics 1.2.302
 queue
 message 1.2.242
 send message to 1.2.180
 queue element
 insert 1.2.136
 remove 1.2.136
 queue identifier 1.2.174
 queue message
 read 1.2.178
 store 1.2.178

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 45

 queued message, issue 1.2.177
 queuing system B.0
 quick sort 1.2.217
 quit character 2.5.28
 quota system call 1.2.218
 R
 raccept system call 1.2.219
 raise subroutine 1.2.220
 rand subroutine 1.2.221
 random numbers 1.2.63
 random subroutine 1.2.222
 random-number generator 1.2.221 1.2.222
 rasconf file 2.3.50
 raw subroutine 1.2.56.1 1.2.74.7
 rcmd subroutine 1.2.223
 re_comp subroutine 1.2.229
 re_exec subroutine 1.2.229
 read
 from a file, extended 1.2.224
 message from a queue 1.2.178
 next directory entry 1.2.60
 open a file to 1.2.199
 read a file tree 1.2.89
 read a message 1.2.25
 read a password 1.2.108
 read attribute file stanza 1.2.37
 read from a file 1.2.224
 read lock 1.2.78
 read system call 1.2.224
 with TCF 1.2.224
 read/write file pointer
 move 1.2.161
 readdir subroutine 1.2.60
 reader special file 2.5.23
 readlink system call 1.2.225
 with TCF 1.2.225
 readv system call 1.2.224
 readx system call 1.2.224
 with TCF 1.2.224
 readx system call, ARTIC 2.5.24.3
 real user ID 1.2.254
 realloc subroutine 1.2.162
 reboot system call 1.2.226
 rebuild AIX kernel 1.2.32
 receive
 extended message from queue 1.2.181
 recv system call 1.2.227
 recvfrom system call 1.2.227
 recvmsg system call 1.2.227
 reflecting errors to user C.6.4.3
 refresh subroutine 1.2.56.1 1.2.74.7
 regcmp subroutine 1.2.228
 regex subroutine 1.2.228
 regex subroutines 1.2.229
 re_comp subroutine 1.2.229
 re_exec subroutine 1.2.229
 regexp facility 1.2.230
 registers, POS (programmable option select) C.2.5
 regular expression 1.2.228 1.2.230
 advance 1.2.230

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 46

 compile 1.2.228 1.2.230
 match 1.2.228
 step 1.2.230
 related publications PREFACE.5
 relative path 1.1.5.10.2
 release
 blocked signals 1.2.269
 remainder function 1.2.81
 remote hft 2.5.11.11
 remote host
 command execution 1.2.223 1.2.235
 remote login 2.5.21
 Remote Procedure Call
 Remote Procedure Call (RPC)
 See RPC (Remote Procedure Call)
 remote procedure calls 1.2.231
 authentication 1.2.231
 communication model 1.2.231
 terms 1.2.231
 remote requests
 authentication 1.2.223
 remove
 directory entry 1.2.318
 queue element 1.2.136
 remove system call 1.2.318
 with TCF 1.2.318
 remque subroutine 1.2.136
 rename system call 1.2.233
 with NFS 1.2.233
 repetitive tiling operation 2.6.57.1
 replace mode 2.5.11.4.1
 report CPU time used 1.2.47
 reposition the file pointer of a stream 1.2.86
 res_init subroutine 1.2.234
 res_mkquery subroutine 1.2.234
 res_send subroutine 1.2.234
 reserved 1.2.263
 reset
 directory pointer 1.2.60
 resetterm subroutine 1.2.56.1
 resetty subroutine 1.2.56.1 1.2.74.7
 resolution
 path name 1.1.5.10
 resolver subroutines 1.2.234
 dn_comp subroutine 1.2.234
 dn_expand subroutine 1.2.234
 getlong subroutine 1.2.234
 getshort subroutine 1.2.234
 putlong subroutine 1.2.234
 putshort subroutine 1.2.234
 res_init subroutine 1.2.234
 res_mkquery subroutine 1.2.234
 res_send subroutine 1.2.234
 resource utilization 1.2.116
 retrieve a message 1.2.186
 retrieve a message into buffer 1.2.26
 retrieve a message, insert, or help text 1.2.179
 return login name of user 1.2.159
 rewind subroutine 1.2.86
 rewinddir subroutine 1.2.60

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 47

 rexec subroutine 1.2.235
 with TCF 1.2.235
 rexec system call 1.2.236
 with TCF 1.2.236
 rexecl system call 1.2.236
 with TCF 1.2.236
 rexecle system call 1.2.236
 with TCF 1.2.236
 rexeclp system call 1.2.236
 with TCF 1.2.236
 rexecv system call 1.2.236
 with TCF 1.2.236
 rexecve system call 1.2.236
 with TCF 1.2.236
 rexecvp system call 1.2.236
 with TCF 1.2.236
 rfork system call 1.2.237
 with TCF 1.2.237
 RIC file 2.5.24
 rindex subroutine 1.2.133
 ring buffer, definition of 2.6.2.1
 ring, screen manager 2.5.11.6.2
 rint subroutine 1.2.81
 rlfs keyword 2.3.13.1
 rmdir system call 1.2.238
 with NFS 1.2.238
 with TCF 1.2.238
 rmslink system call 1.2.318
 with TCF 1.2.318
 root directory
 change 1.2.46
 routine libraries
 See libraries
 routines
 See kernel subroutines
 See system calls and subroutines
 RPC (Remote Procedure Call)
 See also RPC protocol
 asynchronous processing 1.2.231.2.5
 C programs 1.2.231
 defined 1.2.231
 identifying remote programs 1.2.231.2.1
 Internet addresses 1.2.231.2.5
 IP 1.2.231.2.5
 message authentication 1.2.231
 authentication parameter 1.2.231.2.1
 broadcasts 1.2.231.2.5
 credentials 1.2.231.2.1 1.2.231.2.3
 credentials parameter 1.2.231.2.3
 credentials, shorthand form 1.2.231.2.3
 identifying caller 1.2.231.2.1
 of server 1.2.231.2.1
 opaque structure 1.2.231.2.3
 permission checking 1.2.231.2.3
 permissions 1.2.231.2.3
 permissions, caller 1.2.231.2.1
 permissions, refused 1.2.231.2.1
 structure of 1.2.231.2.1
 subroutines 1.2.231.2.5
 verifier parameter 1.2.231.2.3

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 48

 version number 1.2.231.2.1
 version numbers 1.2.231.2.1
 overview 1.2.231
 procedure number 1.2.231.2.1
 protocol compatibility 1.2.231.2.1
 protocol specification 1.2.231.2.1
 RPC required XDR subroutines 1.2.231.2.5
 xdr_accepted_reply 1.2.231.2.5
 xdr_callhdr 1.2.231.2.5
 xdr_callmsg 1.2.231.2.5
 xdr_opaque_auth 1.2.231.2.5
 xdr_pmap 1.2.231.2.5
 xdr_pmaplist 1.2.231.2.5
 xdr_rejected_reply 1.2.231.2.5
 xdr_replymsg 1.2.231.2.5
 RPC subroutines 1.2.231.2.5
 auth_destroy 1.2.231.2.5
 authnone_create 1.2.231.2.5
 authunix_create 1.2.231.2.5
 authunix_create_default 1.2.231.2.5
 broadcasting 1.2.231.2.5
 callrpc 1.2.231.2.5
 clnt_broadcast 1.2.231.2.5
 clnt_call 1.2.231.2.5
 clnt_destroy 1.2.231.2.5
 clnt_freeres 1.2.231.2.5
 clnt_geterr 1.2.231.2.5
 clnt_pcreateerror 1.2.231.2.5
 clnt_perrno 1.2.231.2.5
 clnt_perror 1.2.231.2.5
 clntraw_create 1.2.231.2.5
 clnttcp_create 1.2.231.2.5
 clntudp_create 1.2.231.2.5
 common parameters 1.2.231.2.5
 error routines 1.2.231.2.5
 get_myaddress 1.2.231.2.5
 overview 1.2.231.2.5
 pmap_rmtcall 1.2.231.2.5
 pmap_set 1.2.231.2.5
 pmap_unset 1.2.231.2.5
 registerrpc 1.2.231.2.5
 rpc_createerr 1.2.231.2.5
 simulation routine 1.2.231.2.5
 svc_destroy 1.2.231.2.5
 svc_fds 1.2.231.2.5
 svc_freeargs subroutine 1.2.231.2.5
 svc_getargs 1.2.231.2.5
 svc_getcaller 1.2.231.2.5
 svc_register 1.2.231.2.5
 svc_run 1.2.231.2.5
 svc_sendreply 1.2.231.2.5
 svc_unregister 1.2.231.2.5
 svcerr_auth 1.2.231.2.5
 svcerr_decode 1.2.231.2.5
 svcerr_noproc 1.2.231.2.5
 svcerr_noprog 1.2.231.2.5
 svcerr_progvers 1.2.231.2.5
 svcerr_systemerr 1.2.231.2.5
 svcerr_weakauth 1.2.231.2.5
 svcraw_create 1.2.231.2.5

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 49

 svctcp_create 1.2.231.2.5
 svcudp_create 1.2.231.2.5
 xprt_register 1.2.231.2.5
 xprt_unregister 1.2.231.2.5
 simulating remote programs 1.2.231.2.5
 RPC file 2.3.51
 RPC protocol 1.2.231.1
 assigning procedure numbers 1.2.231.1
 assigning program numbers 1.2.231.1
 assigning version numbers 1.2.231.1
 byte stream protocol 1.2.231.2.2
 client 1.2.231.2.1
 broadcast 1.2.231.2.5
 matching replies 1.2.231.2.1
 permission checking 1.2.231.2.3
 recognition of messages 1.2.231.2.1
 RPC handle 1.2.231.2.5
 simulation programs 1.2.231.2.5
 data 1.2.231.2.1
 deallocation 1.2.231.2.5
 decoding 1.2.231.2.5
 freeing 1.2.231.2.5
 opaque data structures 1.2.231.2.1
 record fragment 1.2.231.2.2
 UDP/IP 1.2.231.2.5
 message 1.2.231.2
 broadcasting 1.2.231.2.1 1.2.231.2.5
 call message 1.2.231.2.1
 call, structure 1.2.231.2.1
 discriminants 1.2.231.2.1
 error information 1.2.231.2.5
 error messages, subroutines 1.2.231.2.5
 error structure 1.2.231.2.5
 overview 1.2.231.2
 record marking 1.2.231.2.2
 reply message 1.2.231.2.1
 reply, error lists 1.2.231.2.1
 reply, multiple 1.2.231.2.1
 reply, rejected form 1.2.231.2.1
 reply, simulating rejection 1.2.231.2.5
 reply, structure of 1.2.231.2.1
 reply, unnecessary 1.2.231.2.1
 simulating RPC messages 1.2.231.2.5
 transaction identifiers 1.2.231.2.1
 union, discriminant 1.2.231.2.1
 portmap program 1.2.231.2.4
 closing sockets 1.2.231.2.5
 defined 1.2.231.2.4
 Internet address 1.2.231.2.5
 mapping, destroying 1.2.231.2.5
 mapping, removing 1.2.231.2.5
 mapping, user interface 1.2.231.2.5
 port number 1.2.231.2.5
 reserved ports 1.2.231.2.4
 socket structures 1.2.231.2.5
 socket, opening 1.2.231.2.5
 socket, pointer 1.2.231.2.5
 socket, setting 1.2.231.2.5
 servers 1.2.231.2.1
 broadcast 1.2.231.2.5

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 50

 Internet address 1.2.231.2.5
 permission checking 1.2.231.2.3
 RPC handle 1.2.231.2.5
 simultaneous request servicing 1.2.231.2.1
 rpopen subroutine 1.2.207
 with TCF 1.2.207
 rresvport subroutine 1.2.223
 rtfont file format 2.3.19.3
 rts keyword 2.3.13.1
 run system call 1.2.239
 with TCF 1.2.239
 runl system call 1.2.239
 with TCF 1.2.239
 runle system call 1.2.239
 with TCF 1.2.239
 runlp system call 1.2.239
 with TCF 1.2.239
 runv system call 1.2.239
 with TCF 1.2.239
 runve system call 1.2.239
 with TCF 1.2.239
 runvp system call 1.2.239
 with TCF 1.2.239
 ruserok subroutine 1.2.223
 S
 saveterm subroutine 1.2.56.1
 savetty subroutine 1.2.56.1 1.2.74.7
 sbrk system call 1.2.21
 scalb subroutine 1.2.80
 scan
 directory 1.2.240
 scandir subroutine 1.2.240
 scanf subroutine 1.2.241
 scanw subroutine 1.2.56.1 1.2.74.7
 SCCS delta table format 2.3.52.2
 SCCS file format 2.3.52
 sccsfile 2.3.52
 schedule alarm 1.2.14
 SCHIB (subchannel information block) C.3.1
 schnednetisr kernel subroutine C.4.8.1
 screen handling package 1.2.56
 screen manager ring 2.5.11.6.2
 screen manager, hft 2.5.11.6.1
 screen optimization package 1.2.56
 screen, XDR definition of 1.2.74.1
 scroll subroutine 1.2.56.1 1.2.74.7
 scrollok subroutine 1.2.56.1 1.2.74.7
 SCSW (subchannel status word) C.3.1
 search and update, linear 1.2.160
 search trees, binary 1.2.309
 search, binary 1.2.23
 second-level interrupt handler (SLIH) C.4.1.1
 seed48 subroutine 1.2.63
 seekdir subroutine 1.2.60
 segment
 data 1.1.4.2.1
 shared 1.1.4.2.2
 stack 1.1.4.2.1
 text 1.1.4.2.1
 sel_attr subroutine 1.2.74.7

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 51

 select support 2.5.21.1 2.5.28.1
 select support, hft 2.5.11.10
 select system call 1.2.242
 selwakeup kernel subroutine C.6.2.2
 semaphores 1.2.243 1.2.244 1.2.245
 semctl system call 1.2.243
 with TCF 1.2.243
 semget system call 1.2.244
 with TCF 1.2.244
 semop system call 1.2.245
 with TCF 1.2.245
 send
 message to message queue 1.2.180
 signal to a process 1.2.138
 signal to process group 1.2.138
 send a message to a queue 1.2.180
 send system call 1.2.246
 with TCF 1.2.246
 sendmail
 configuration file 2.3.53
 sendmail.cf file format 2.3.53
 with TCF 2.3.53
 sendmsg system call 1.2.246
 with TCF 1.2.246
 sendto system call 1.2.246
 with TCF 1.2.246
 servent structure 1.2.118
 set time 1.2.285
 set-group-ID mode bit 1.2.71
 set-user-ID mode bit 1.2.71
 set_term subroutine 1.2.56.1
 setbuf subroutine 1.2.247
 setbuffer subroutine 1.2.248
 seteuid system call 1.2.254
 setfsent subroutine 1.2.95
 setgid system call 1.2.255
 setgrent subroutine 1.2.96
 setgroups system call 1.2.249
 sethostid socket system call 1.2.99
 sethostname socket system call 1.2.100
 setitimer system call 1.2.101
 setjmp subroutine 1.2.250
 setlinebuf subroutine 1.2.248
 setlocal system call 1.2.102
 setlocale subroutine 1.2.251
 setlogmask subroutine 1.2.297
 setmntent routine 1.2.104
 with TCF 1.2.104
 setnetent subroutine 1.2.105
 setpgid subroutine 1.2.252
 setpgid system call 1.2.252
 setpgrp subroutine 1.2.252
 setpgrp system call 1.2.252
 setpriority system call 1.2.111
 setprotoent subroutine 1.2.112
 setpwent subroutine 1.2.114
 setquota system call 1.2.253
 with NFS 1.2.253
 with TCF 1.2.253
 setregid subroutine 1.2.254

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 52

 setreuid subroutine 1.2.254
 setrlimit system call 1.2.115
 setruid system call 1.2.254
 setscrreg subroutine 1.2.56.1
 setservent subroutine 1.2.118
 setsf subroutine 1.2.257
 with TCF 1.2.257
 setsid subroutine 1.2.252
 setsockopt socket system call 1.2.121
 setspath system call 1.2.122
 setstate subroutine 1.2.222
 setterm subroutine 1.2.56.1 1.2.74.7
 settimeofday system call 1.2.123
 setting environment 2.3.48
 setting the profile 2.3.48
 setuid system call 1.2.255
 setup_attr subroutine 1.2.74.7
 setupterm subroutine 1.2.56.2
 setutent subroutine 1.2.126
 setvbuf subroutine 1.2.247
 setxperm system call 1.2.128
 setxuid system call 1.2.256
 setxvers system call 1.2.129
 sfctype subroutine 1.2.257
 with TCF 1.2.257
 sfent subroutine 1.2.257
 with TCF 1.2.257
 sflip subroutine 1.2.200
 sflipa subroutine 1.2.200
 sfname subroutine 1.2.257
 with TCF 1.2.257
 sfnum subroutine 1.2.257
 with TCF 1.2.257
 sfxcode subroutine 1.2.257
 with TCF 1.2.257
 sgetl subroutine 1.2.280
 shadow page 1.1.5.9
 shared library data segments 1.1.4.2.2
 shared library text segments 1.1.4.2.2
 shared memory
 control operations 1.2.259
 shared memory segment
 attach 1.2.258
 detach 1.2.260
 get 1.2.261
 shared segment 1.1.4.2.2
 shell command, issue 1.2.298
 shell environment 1.2.71
 shell variable 1.2.71
 shell variable, value of 1.2.94
 shmat system call 1.2.258
 with TCF 1.2.258
 shmctl system call 1.2.259
 with TCF 1.2.259
 shmdt system call 1.2.260
 shmget system call 1.2.261
 with TCF 1.2.261
 shmop system calls 1.2.258 1.2.259 1.2.260 1.2.261
 with TCF 1.2.258 1.2.259 1.2.261
 shorten a file 1.2.88

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 53

 shut down
 socket connection 1.2.262
 shutdown socket system call 1.2.262
 sigaction system call 1.2.263
 sigaddset subroutine 1.2.264
 SIGALRM signal 1.2.263
 sigblock subroutine 1.2.267
 sigblock system call 1.2.267
 SIGBUS signal 1.2.263
 SIGCHLD signal 1.2.73 1.2.263 1.2.325
 SIGCLD signal 1.2.177
 SIGCONT signal 1.2.263
 SIGDANGER signal 1.2.263
 sigdelset subroutine 1.2.264
 sigemptyset subroutine 1.2.264
 SIGEMT signal 1.2.263
 sigfillset subroutine 1.2.264
 SIGFPE signal 1.2.263
 SIGGRANT signal 1.2.263
 SIGHUP signal 1.2.73 1.2.263
 SIGILL signal 1.2.263
 SIGINT signal 1.2.263
 siginterrupt subroutine 1.2.265
 SIGIO signal 1.2.263
 sigismember subroutine 1.2.264
 SIGKILL signal 1.2.71 1.2.263
 SIGMIGRATE signal 1.2.263
 SIGMSG signal 1.2.263
 signal action 1.2.263
 signal handler 1.1.4.5 1.2.263
 signal mask 1.1.4.5 1.2.264
 setting 1.2.267
 signal overview 1.2.2.9
 signal stack 1.1.4.5
 signal stack context 1.2.268
 signal subroutine 1.2.263
 signal system call 1.2.263
 signal-catching function 1.2.263
 signals 1.1.4.5 1.2.263 1.2.264 1.2.269 C.6.2.6
 handling within device drivers C.6.2.2
 release blocked 1.2.269
 signals, software 1.2.281
 sigpause subroutine 1.2.269
 sigpending system call 1.2.266
 SIGPIPE signal 1.2.263
 SIGPRE signal 1.2.263
 sigprocmask system call 1.2.267
 SIGPROF signal 1.2.263
 SIGPWR signal 1.2.263
 SIGQUIT signal 1.2.263
 SIGRETRACT signal 1.2.263
 SIGSEGV signal 1.2.263
 sigsetmask subroutine 1.2.267
 sigsetmask system call 1.2.267
 SIGSOUND signal 1.2.263
 sigstack system call 1.2.268
 SIGSTOP signal 1.2.263
 sigsuspend system call 1.2.269
 SIGSYS signal 1.2.263
 SIGTERM signal 1.2.263

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 54

 SIGTRAP signal 1.2.263
 SIGTSTP signal 1.2.263
 SIGTTIN signal 1.2.263
 SIGTTOU signal 1.2.263
 SIGURG signal 1.2.263
 SIGUSR1 signal 1.2.263
 SIGUSR2 signal 1.2.263
 sigvec subroutine 1.2.263
 sigvec system call 1.2.263
 SIGVTALRM signal 1.2.263
 SIGWINCH signal 1.2.263
 SIGXCPU signal 1.2.263
 SIGXFSZ signal 1.2.263
 sin subroutine 1.2.270
 sine function 1.2.270
 single stepping 1.2.212
 single-byte controls 2.4.3.3.1
 sinh subroutine 1.2.271
 site file routines
 endsf 1.2.257
 setsf 1.2.257
 sfctype 1.2.257
 sfent 1.2.257
 sfname 1.2.257
 sfnum 1.2.257
 sfxcode 1.2.257
 with TCF 1.2.257
 site file-format 2.3.54
 with TCF 2.3.54
 site name field, site 2.3.54
 site number field, site 2.3.54
 site path, managing 1.2.122
 site permission mask 1.2.128
 site system call 1.2.272
 site-specific parameters 2.3.32.3
 slap keyword 2.3.13.1
 sleep kernel subroutine C.6.2.1
 sleep subroutine 1.2.273
 SLIH (second-level interrupt handler) C.4.1.1
 slocal program 2.3.37
 slow sleep C.6.2.2
 snap system call 1.2.274
 sockaddr structure 1.2.277.3 C.4.6.3
 sockaddr_in structure C.4.6.3
 socket
 bind to privileged address 1.2.223
 create 1.2.275
 definition 1.2.277.2
 initiate a connection 1.2.49
 socket connection
 accept 1.2.9
 listen 1.2.157
 shut down 1.2.262
 socket message
 receive 1.2.227
 send 1.2.246
 socket name 1.2.120
 bind 1.2.20
 socket options 1.2.121
 socket peer name 1.2.109

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 55

 socket system call 1.2.275
 socketpair system call 1.2.276
 sockets 1.1.5.1.3
 overview 1.2.277.1
 routines 1.2.277.1
 sockets subroutine library 1.2.277
 software signals 1.2.281
 sort, array 1.2.15
 sort, quick 1.2.217
 sound command, hft 2.5.11.4.3
 sound data 2.5.11.4.3
 space
 allocation change for data segment 1.2.21
 space subroutine 1.2.206
 special character definitions for eqn and neqn 2.4.7
 special file 1.2.172 C.2.4
 create 1.2.169
 multiplexed device C.2.4
 path name extension C.2.4
 special file, FIFO 1.1.5.1.3
 special file, pipe 1.1.5.1.3
 special files 1.1.5.1.3 1.1.6.10 2.5.1
 specification of text file format 2.3.22
 speed setting 2.3.24
 splblkio kernel subroutine C.6.5
 splhigh kernel subroutine C.6.5
 splimp kernel subroutine C.6.5
 splnet kernel subroutine C.6.5
 splx kernel subroutine C.6.5
 spools() subroutine 1.2.278
 sprintf subroutine 1.2.208
 spropin system call 1.2.279
 sputl subroutine 1.2.280
 sqrt subroutine 1.2.28
 square root 1.2.28
 srand subroutine 1.2.221
 srand48 subroutine 1.2.63
 srandom subroutine 1.2.222
 sscanf subroutine 1.2.241
 ssignal subroutine 1.2.281
 sss keyword 2.3.13.1
 st special file 2.5.25
 stack
 signal 1.2.268
 stack segment 1.1.4.2.1
 standard I/O 1.2.213
 standard I/O subroutine library 1.2.283
 standard interprocess communication package 1.2.284
 standend subroutine 1.2.56.1 1.2.74.7
 standout subroutine 1.2.56.1 1.2.74.7
 stanza, add 1.2.33
 stanza, delete 1.2.35
 stanza, read 1.2.37
 stanza, replace 1.2.33
 stanza, write 1.2.33
 start
 character 2.5.28
 stat system call 1.2.282
 stat.h header file 2.4.22
 with TCF 2.4.22

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 56

 statistics
 file system 1.2.320
 process 1.2.11
 statistics, file system 1.2.320
 status
 check I/O 1.2.242
 status, stream 1.2.79
 statusfile parameter B.1.2
 statx system call 1.2.282
 with TCF 1.2.282.1
 stddef.h header file 2.4.23
 stdio subroutine library 1.2.283
 stdipc subroutine 1.2.284
 stdlib.h header file 2.4.24
 stime system call 1.2.285
 stop character 2.5.28
 storage image file 2.3.10
 store
 message from a queue 1.2.178
 store subroutine 1.2.58
 strcat subroutine 1.2.288
 strchr subroutine 1.2.288
 strcmp subroutine 1.2.288
 strcoll subroutine 1.2.286
 strcpy subroutine 1.2.288
 strcspn subroutine 1.2.288
 stream closing and flushing 1.2.77
 stream I/O 1.2.213
 stream open 1.2.82
 stream status 1.2.79
 stream, assigning buffering to 1.2.247
 stream, data 2.4.3
 stream, get character, wide character or word from 1.2.91
 streams, implementation of new XDR 1.2.332.1.10
 strftime subroutine 1.2.287
 string 1.2.129
 string from a stream, obtaining 1.2.117
 string handling 1.2.189
 string operations 1.2.18 1.2.133 1.2.193 1.2.288
 international character support 1.2.184
 multibyte character support 1.2.164 1.2.286 1.2.327
 string to integer conversion 1.2.291
 string, write to a stream 1.2.216
 string.h header file 2.4.25
 strlen subroutine 1.2.288
 strncat subroutine 1.2.288
 strncmp subroutine 1.2.288
 strncoll subroutine 1.2.286
 strncpy subroutine 1.2.288
 strpbrk subroutine 1.2.288
 strrchr subroutine 1.2.288
 strspn subroutine 1.2.288
 strstr subroutine 1.2.289
 strtod subroutine 1.2.290
 strtok subroutine 1.2.288
 strtol subroutine 1.2.291
 structures
 accounting file 2.3.3
 archive file member 2.3.4
 backup 2.3.7

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 57

 cpio 2.3.11
 devinfo 2.3.15 2.5.14.1
 fd devinfo 2.5.9.1
 fstore 2.3.23
 gettydefs 2.3.24
 HD devinfo 2.5.10.1
 inode 2.3.29
 ipc_perm 1.2.2.10
 lprio.h 2.5.14.1
 lprmode 2.5.14.1
 LPRUDE 2.5.14.1
 msghdr 1.2.227
 netent 1.2.105
 oprmode 2.5.14.1
 process data 1.1.4.3
 process table 1.1.4.3
 protoent 1.2.112
 servent 1.2.118
 site 2.3.54
 sockaddr 1.2.277.3
 tacct.h 2.3.3
 tape archive header 2.3.58
 termio 2.5.28
 structures, file
 See file formats
 strxfrm subroutine 1.2.286
 stty system call 1.2.137
 subchannel information block (SCHIB) C.3.1
 subchannel status word (SCSW) C.3.1
 subroutine libraries
 See libraries
 subroutines 1.2.1
 See also kernel subroutines
 subsystem
 buffer 1.1.6.4
 file I/O 1.1.6.3
 I/O, components of C.3
 subwin subroutine 1.2.56.1 1.2.74.7
 subyte kernel subroutine C.6.1.2
 suibyte kernel subroutine C.6.1.3
 suiword kernel subroutine C.6.1.3
 super block 1.1.5.4
 update 1.2.295
 superbox subroutine 1.2.74.7
 supervisor calls, AIX
 See Remote Procedure Call
 suser kernel subroutine C.6.7
 suspend
 process 1.2.202
 suspend execution 1.2.273
 suspension, processes C.6.2.4
 suword kernel subroutine C.6.1.2
 svc_getargs macro 1.2.231.2.5
 SVCs, AIX
 See Remote Procedure Call
 swab subroutine 1.2.292
 swap bytes 1.2.292
 swap special file 2.5.26
 swapctl system call 1.2.293
 switch table, device C.2.2

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 58

 symbolic link system call 1.2.294
 with NFS 1.2.294
 with TCF 1.2.294
 symbolic links 1.1.5.1.4
 symbols, display 2.4.4
 symlink system call 1.2.294
 symbolic link 1.2.294
 with NFS 1.2.294
 with TCF 1.2.294
 sync system call 1.2.295
 syntax 1.2.4
 sys_errlist 1.2.203
 sys_nerr 1.2.203
 sysconf system call 1.2.296
 with NFS 1.2.296
 with TCF 1.2.296
 syslog subroutine 1.2.297
 system administration 1.2.2.5
 system buffers C.4.3.1
 system calls 1.2.1
 difference from subroutines 1.2.1
 errno values A.0
 functional summary 1.2.2
 system calls and subroutines 1.2.1
 system data types 2.4.27
 system error messages 1.2.203
 system file 2.3.56
 system log
 make entry 1.2.297
 system name
 extended 1.2.316
 get 1.2.316
 system parameter keywords 2.3.32.2
 system parameter stanzas 2.3.32.2
 system parameters 2.3.32.2
 system subroutine 1.2.298
 system timer 1.1.4.1
 system volume format 2.3.20
 System.Netid file 2.3.57
 with TCF 2.3.57
 T
 TAB0 2.5.28
 TAB1 2.5.28
 TAB2 2.5.28
 TAB3 2.5.28
 TABDLY 2.5.28
 table
 call switch 1.1.6.2
 device switch 1.1.6.5
 tabs, non-standard 2.3.22
 tacct.h structure 2.3.3
 tail, of screen manager ring 2.5.11.6.2
 tan subroutine 1.2.270
 tangent function 1.2.270
 tanh subroutine 1.2.271
 tape archive header structure 2.3.58
 tape backup 2.5.25
 tape driver file 2.5.27
 tape special file 2.5.27
 tar file 2.3.58

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 59

 with TCF 2.3.58
 tbc keyword 2.3.13.1
 tcdrain subroutine 1.2.301
 TCF (Transparent Computing Facility)
 _exit system call2 with 1.2.73
 .ilog file with 2.3.60
 acct system call with 1.2.11
 addmntent routine 1.2.104
 alarm subroutine with 1.2.14
 autolog file with 2.3.6
 backup file with 2.3.7.8
 bind socket system call with 1.2.20
 chdir system call with 1.2.40
 chfstore system call with 1.2.41
 chhidden system call with 1.2.42
 chmod system call with 1.2.44
 chown system call with 1.2.45
 chroot system call with 1.2.46
 clusters, symbolic links in 1.1.5.1.4
 creat system call with 1.2.199
 dup system call with 1.2.64
 dup2 system call with 1.2.65
 endmntent routine 1.2.104
 endsf subroutine with 1.2.257
 exec system call with 1.2.71
 execl system call with 1.2.71
 execle system call with 1.2.71
 execlp system call with 1.2.71
 execv system call with 1.2.71
 execve system call with 1.2.71
 execvp system call with 1.2.71
 exit system call with 1.2.73
 exit system call2 with 1.2.73
 fchmod system call with 1.2.44
 fchown system call with 1.2.45
 fclear system call with 1.2.76
 fcntl system call with 1.2.78
 filesystems file with 2.3.18 2.3.18.1
 fork system call with 1.2.83
 fstatx system call with 1.2.282.1
 fsynch system call with 1.2.87
 ftruncate system call with 1.2.88
 fullttyname system call with 1.2.310
 fumount system call with 1.2.315
 getlocal system call with 1.2.102
 getmntent routine 1.2.104
 getsites system call with 1.2.119
 hasmntopt routine 1.2.104
 inittab file with 2.3.28
 ioctlx system call with 1.2.137.1
 isatty system call with 1.2.310
 kernel processes 1.1.4.3.1
 kill3 system call with 1.2.138
 link system call with 1.2.156
 lseek system call with 1.2.161
 master file with 2.3.32.3
 mkdir system call with 1.2.168
 mknod system call with 1.2.169.1
 mknodx system call with 1.2.169.1
 mntent file with 2.3.40

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 60

 mount system call with 1.2.172
 msgctl system call with 1.2.173
 msgget system call with 1.2.174
 msgrcv system call with 1.2.178
 msgsnd system call with 1.2.180
 msgxrcv system call with 1.2.181
 mtab file with 2.3.40
 netctrl system call with 1.2.185
 netparams file with 2.3.41
 open system call with 1.2.199
 openx system call with 1.2.199
 pclose system call with 1.2.207
 popen system call with 1.2.207
 probe system call with 1.2.209
 qconfig file with 2.3.49
 read system call with 1.2.224
 readlink system call with 1.2.225
 readx system call with 1.2.224
 remove system call with 1.2.318
 rexec subroutine with 1.2.235
 rexec system call with 1.2.236
 rexecl system call with 1.2.236
 rexecle system call with 1.2.236
 rexeclp system call with 1.2.236
 rexecv system call with 1.2.236
 rexecve system call with 1.2.236
 rexecvp system call with 1.2.236
 rfork system call with 1.2.237
 rmdir system call with 1.2.238
 rmslink system call with 1.2.318
 rpopen system call with 1.2.207
 run system call with 1.2.239
 runl system call with 1.2.239
 runle system call with 1.2.239
 runlp system call with 1.2.239
 runv system call with 1.2.239
 runve system call with 1.2.239
 runvp system call with 1.2.239
 semctl system call with 1.2.243
 semget system call with 1.2.244
 semop system call with 1.2.245
 send system call with 1.2.246
 sendmail.cf file with 2.3.53
 sendmsg system call with 1.2.246
 sendto system call with 1.2.246
 setmntent routine 1.2.104
 setquota system call with 1.2.253
 setsf subroutine with 1.2.257
 sfctype subroutine with 1.2.257
 sfent subroutine with 1.2.257
 sfname subroutine with 1.2.257
 sfnum subroutine with 1.2.257
 sfxcode subroutine with 1.2.257
 shmat system call with 1.2.258
 shmctl system call with 1.2.259
 shmget system call with 1.2.261
 site file with 2.3.54
 stat.h header file with 2.4.22
 statx system call with 1.2.282.1
 symbolic link system call with 1.2.294

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 61

 symlink system call with 1.2.294
 sysconf system call with 1.2.296
 System.Netid file with 2.3.57
 tar file with 2.3.58
 times system call with 1.2.304
 truncate system call with 1.2.88
 ttyname system call with 1.2.310
 ttyslot subroutine with 1.2.312
 umount system call with 1.2.315
 uname system call with 1.2.316
 unamex system call with 1.2.316
 unlink system call with 1.2.318
 ustat system call with 1.2.320
 utime system call with 1.2.321
 utmp file with 2.3.60
 vfork system call with 1.2.83
 wait system call with 1.2.325
 wait3 system call with 1.2.326
 waitpid system call with 1.2.325
 write system call with 1.2.330
 writev system call with 1.2.331
 writex system call with 1.2.330
 wtmp file with 2.3.60
 tcflsh 2.5.28.3
 tcflush subroutine 1.2.301
 tcgeta 2.5.28.3
 tcgetattr subroutine 1.2.299
 tcgetpgrp subroutine 1.2.300
 TCP/IP communication 1.2.2.8
 tcsbrk 2.5.28.3
 tcsendbreak subroutine 1.2.301
 tcseta 2.5.28.3
 tcsetaf 2.5.28.3
 tcsetattr subroutine 1.2.299
 tcsetaw 2.5.28.3
 tcsetpgrp subroutine 1.2.300
 tcxonc 2.5.28.3
 tdelete subroutine 1.2.309
 telldir subroutine 1.2.60
 tempnam subroutine 1.2.306
 temporary file creation 1.2.305
 temporary file naming 1.2.306
 TERM environment variable 2.4.26
 TERM variable 1.2.302
 termcap
 emulation using terminfo 1.2.56.3
 termdef subroutine 1.2.302
 terminal capability data base 2.3.59
 terminal characteristics 1.2.302
 terminal error codes 2.5.11.5.1
 terminal file name generation 1.2.53
 terminal interface control 2.5.30
 terminal line discipline routines C.4.4.10
 terminal name 1.2.310
 terminal setting 2.3.24
 terminal, data base 2.3.59
 terminal, XDR definition of 1.2.74.1
 terminate a process 1.2.73
 terminfo file 2.3.59
 termio file 2.5.28

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 62

 termio structures 2.5.28
 termio, hft 2.5.11.9
 text
 lock 1.2.205
 unlock 1.2.205
 text attributes
 baseline direction 2.6.2.3.2
 code page 2.6.2.3.2
 text color 2.6.2.3.2
 text font 2.6.2.3.2
 text file format specification 2.3.22
 text font, geometric 2.3.19
 text segment 1.1.4.2.1
 text, help, issue 1.2.175
 tgetent subroutine 1.2.56.3
 tgetflag subroutine 1.2.56.3
 tgetnum subroutine 1.2.56.3
 tgetstr subroutine 1.2.56.3
 tgoto subroutine 1.2.56.3
 thresholds, locator 2.5.11.3.1
 tilde accent character 2.4.3.2
 time
 ftime 1.2.123
 get 1.2.303
 obtain 1.2.123
 set 1.2.285
 time correction 1.2.13
 time format 1.2.194
 time profile
 execution time 1.2.210
 time servers 1.2.13
 time structure 1.2.195
 time system call 1.2.303
 time to string conversion 1.2.54
 time used report, CPU 1.2.47
 time_t data type 2.4.27
 timeout kernel subroutine C.6.2.4
 timer, system 1.1.4.1
 times system call 1.2.304
 with TCF 1.2.304
 timesleep kernel subroutine C.6.2.1
 timezone external variable 1.2.54
 tm keyword 2.3.13.1
 tmpfile subroutine 1.2.305
 tmpnam subroutine 1.2.306
 to_cancel kernel subroutine C.6.2.5
 toascii subroutine 1.2.50
 tolower subroutine 1.2.50
 tolower subroutine2 1.2.50
 touchwin subroutine 1.2.56.1 1.2.74.7
 toupper subroutine 1.2.50
 toupper subroutine2 1.2.50
 tparm subroutine 1.2.56.2
 tputs subroutine 1.2.56.2 1.2.56.3
 trace 1.2.307
 execution of a process 1.2.212
 trace channel, check whether enabled 1.2.307
 trace collector, AIX 1.2.308
 trace driver 2.5.29
 trace mode 1.2.212

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 63

 trace special file 2.5.29
 trace_on subroutine 1.2.307
 traced process
 control 1.2.212
 traceoff subroutine 1.2.56.1
 traceon subroutine 1.2.56.1
 trackloc subroutine 1.2.74.7
 trailer record 2.3.11
 transferring data to device C.2.1.4
 translate
 characters 1.2.50 1.2.188
 group IDs 1.2.45
 owner IDs 1.2.45
 Transparent Computing Facility (TCF)
 See TCF (Transparent Computing Facility)
 trap, kernel 1.1.6.1
 trcunix subroutine 1.2.308
 tree, read 1.2.89
 trees, binary search 1.2.309
 trigonometric functions 1.2.270
 trsave kernel subroutine C.6.4.5
 true color adapters 2.6.2.3.1
 truncate system call 1.2.88
 with TCF 1.2.88
 tsearch subroutine 1.2.309
 tsleep kernel subroutine C.6.2.1
 tstp subroutine 1.2.74.7
 tt keyword 2.3.13.1
 ttinit kernel subroutine C.4.4.10
 ttiocom kernel subroutine C.4.4.10
 TTY device driver C.4
 TTY device driver data flow C.4.4.9
 tty device driver kernel subroutines C.4.4.12
 TTY devices keywords 2.3.13.1
 tty special file 2.5.30
 tty structures C.4.4.2
 ttychars C.4.4.6
 ttyflush kernel subroutine C.4.4.10
 ttymaps C.4.4.7
 TTYN devices keywords 2.3.13.1
 ttyname subroutine 1.2.310
 with TCF 1.2.310
 TTYP devices keywords 2.3.13.1
 ttysite subroutine 1.2.311
 ttyslot subroutine 1.2.312
 with TCF 1.2.312
 twalk subroutine 1.2.309
 type1 keyword 2.3.13.1
 typeahead subroutine 1.2.56.1
 types.h header file 2.4.27
 tzname external variable 1.2.54
 tzset subroutine 1.2.54
 U
 u structure C.2.1.2
 U.S. English keyboard 2.5.13.1
 u.u_base C.4.2.1
 u.u_count C.4.2.1
 u.u_dirp C.4.2.1
 u.u_error C.4.2.1
 u.u_fmode C.4.2.1

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 64

 u.u_mpxchan C.4.2.1
 u.u_offset C.4.2.1
 u.u_procp C.4.2.1
 u.u_qsav C.4.2.1
 u.u_seg C.4.2.1
 ubase2paddr kernel subroutine C.6.1.6
 uint data type 2.4.27
 ulimit system call 1.2.313
 ulong data type 2.4.27
 umask system call 1.2.314
 umlaut accent character 2.4.3.2
 umount system call 1.2.315
 with TCF 1.2.315
 uname system call 1.2.316
 with TCF 1.2.316
 unamex system call 1.2.316
 with TCF 1.2.316
 unctrl subroutine 1.2.56.1 1.2.74.7
 undo file changes 1.2.75
 ungetc subroutine 1.2.317
 ungetwc subroutine 1.2.317
 unions, discriminated 1.2.332.1.3
 Unix error collector 1.2.70
 unlink system call 1.2.318
 with TCF 1.2.318
 unmount
 file system 1.2.315
 update
 delayed blocks 1.2.295
 inodes 1.2.295
 super block 1.2.295
 update, linear 1.2.160
 updatep command C.8.2
 upper-left coordinate system 2.6.57.1
 urpim keyword 2.3.13.1
 user ID
 get 1.2.124
 set 1.2.255
 set effective 1.2.254
 set real 1.2.254
 user information 1.2.319
 user information name, find value 1.2.125
 user limits 1.2.313
 user login name 1.2.57
 user login name, obtaining 1.2.159
 user mode 1.1.4.1
 user mode addressing 1.1.4.2.1
 user name 1.2.57
 user settable control characters C.4.4.6 C.4.4.7
 user structure 1.1.4.3
 ushort data type 2.4.27
 usrinfo system call 1.2.319
 ustat system call 1.2.320
 with TCF 1.2.320
 utime system call 1.2.321
 with TCF 1.2.321
 utimes system call 1.2.322
 utmp file 2.3.60
 with TCF 2.3.60
 utmp file entry access 1.2.126

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 65

 utmp file, find user's slot 1.2.312
 utmpname subroutine 1.2.126
 V
 valloc subroutine 1.2.162
 value of environment variable 1.2.94
 value of user information name, find 1.2.125
 values.h header file 2.4.28
 varargs argument list, print 1.2.324
 varargs macro 1.2.323
 variable-length parameter list 1.2.323 1.2.324
 verify program assertion 1.2.16
 vfork system call 1.2.83
 with TCF 1.2.83
 vfprint subroutine 1.2.324
 VGA adapter, possible graphic renditions 2.5.11.7.3
 vhs keyword 2.3.13.1
 vidattr subroutine 1.2.56.2
 video lookup table (VLT) 2.6.2.3.1
 vidputs subroutine 1.2.56.2
 virtual memory image 2.5.16
 virtual terminal commands 2.5.11.7
 virtual terminal configuration 2.5.11.8
 virtual terminal data (VTD) 2.5.11.5.6 2.5.11.7.1
 control sequence 2.5.11.7.1
 header 2.5.11.5.6
 virtual terminal device driver 2.5.11
 vlimit system call 1.2.115
 VLT (video lookup table) 2.6.2.3.1
 VLT-based adapters attribute 2.6.2.3.1
 vpqs keyword 2.3.13.1
 vprintf subroutine 1.2.324
 vscroll subroutine 1.2.74.7
 vseg table 1.1.4.3
 vsi keyword 2.3.13.1
 vsprint subroutine 1.2.324
 VT0 2.5.28
 VT1 2.5.28
 VTD (virtual terminal data) 2.5.11.5.6 2.5.11.7.1
 control sequence 2.5.11.7.1
 header 2.5.11.5.6
 header, virtual terminal data 2.5.11.5.6
 VTDLY 2.5.28
 vtimes subroutine 1.2.116
 vts keyword 2.3.13.1
 W
 waddch subroutine 1.2.56.1 1.2.74.7
 waddfld subroutine 1.2.74.7
 waddstr subroutine 1.2.56.1 1.2.74.7
 wait
 for I/O activity 1.2.242
 for signal 1.2.202
 wait system call 1.2.325
 with TCF 1.2.325
 wait3 system call 1.2.326
 with TCF 1.2.326
 waitpid system call 1.2.325
 with TCF 1.2.325
 wakeup kernel subroutine C.6.2.2
 wakeup_one kernel subroutine C.6.2.2
 walk a file tree 1.2.89

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 66

 wattroff subroutine 1.2.56.1
 wattron subroutine 1.2.56.1
 wattrset subroutine 1.2.56.1
 wc_collate subroutine 1.2.329
 wc_coluniq subroutine 1.2.329
 wc_eqvmap subroutine 1.2.329
 wchgat subroutine 1.2.74.7
 wclear subroutine 1.2.56.1 1.2.74.7
 wclrtobot subroutine 1.2.56.1 1.2.74.7
 wclrtoeol subroutine 1.2.56.1 1.2.74.7
 wcnscat subroutine 1.2.327
 wcolorend subroutine 1.2.74.7
 wcolorout subroutine 1.2.74.7
 wcscat subroutine 1.2.327
 wcschr subroutine 1.2.327
 wcscmp subroutine 1.2.327
 wcscoll subroutine 1.2.286
 wcscpy subroutine 1.2.327
 wcscspn subroutine 1.2.327
 wcslen subroutine 1.2.327
 wcsncmp subroutine 1.2.327
 wcsncoll subroutine 1.2.286
 wcsncpy subroutine 1.2.327
 wcspbrk subroutine 1.2.327
 wcsrchr subroutine 1.2.327
 wcsspn subroutine 1.2.327
 wcstok subroutine 1.2.327
 wcstombs system call 1.2.328
 wcswcs subroutine 1.2.327
 wctomb system call 1.2.328
 wdelch subroutine 1.2.56.1 1.2.74.7
 wdeleteln subroutine 1.2.56.1 1.2.74.7
 well-known port 1.2.223
 werase subroutine 1.2.56.1 1.2.74.7
 wgetch subroutine 1.2.56.1 1.2.74.7
 wgetstr subroutine 1.2.56.1 1.2.74.7
 winch subroutine 1.2.56.1 1.2.74.7
 window, XDR definition of 1.2.74.1
 winsch subroutine 1.2.56.1 1.2.74.7
 winsertln subroutine 1.2.56.1 1.2.74.7
 wll keyword 2.3.13.1
 wmove subroutine 1.2.56.1 1.2.74.7
 wnoutrefresh subroutine 1.2.56.1
 word, get from stream 1.2.91
 workbench library 1.2.211
 wprintw subroutine 1.2.56.1 1.2.74.7
 wrefresh subroutine 1.2.56.1 1.2.74.7
 write
 file to permanent storage 1.2.87
 open a file to 1.2.199
 to a file 1.2.330 1.2.331
 write a string to a stream 1.2.216
 write characters 1.2.213
 write lock 1.2.78
 write password file entry 1.2.215
 write stanza 1.2.33
 write system call 1.2.330
 with TCF 1.2.330
 write to a stream 1.2.213
 write words 1.2.213

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 67

 writev system call 1.2.331
 with TCF 1.2.331
 writex system call 1.2.330
 with TCF 1.2.330
 writex system call, ARTIC 2.5.24.3
 writing device drivers C.1
 wscanw subroutine 1.2.56.1 1.2.74.7
 wsetscrreg subroutine 1.2.56.1
 wsprintf subroutine 1.2.208
 wsscanf subroutine 1.2.241
 wstandend subroutine 1.2.56.1 1.2.74.7
 wstandout subroutine 1.2.56.1 1.2.74.7
 wtmp file 2.3.60
 with TCF 2.3.60
 X
 XCASE 2.5.28
 XDR (external Data Representation)
 bit fields 1.2.332
 bit maps 1.2.332
 data blocks 1.2.332
 data translation 1.2.332
 data type representation
 arrays, counted 1.2.332.1.1
 arrays, fixed 1.2.332.1.1
 arrays, fixed-length 1.2.332.1.3
 basic data types 1.2.332.1.3
 basic data types, overview 1.2.332.1.3
 Booleans 1.2.332.1.1
 constructed data types 1.2.332.1.3
 counted byte strings 1.2.332.1.1
 data stream access routines, overview 1.2.332.1.6
 differences from C constructs 1.2.332.1.1
 discriminated unions 1.2.332.1.1
 double-precision 1.2.332.1.1
 enumerations 1.2.332.1.1
 floating-point 1.2.332.1.1
 integers 1.2.332.1.1
 opaque data 1.2.332.1.1
 structures 1.2.332.1.1
 unsigned integers 1.2.332.1.1
 defined 1.2.332
 implementation of new streams 1.2.332.1.10
 library routines
 basic data types, overview 1.2.332.1.3
 filter primitives, overview 1.2.332.1.3
 filters, constructed data type 1.2.332.1.3
 filters, floating-point numbers 1.2.332.1.3
 filters, generic enumeration 1.2.332.1.3
 filters,double-precision number 1.2.332.1.3
 non-filter primitives 1.2.332.1.4
 overview 1.2.332.1.2
 primitives, basic data 1.2.332.1.3
 primitives, constructed data 1.2.332.1.3
 record stream utilities, overview 1.2.332.1.9
 return values 1.2.332.1.2
 with C programs 1.2.332.1.2
 xdr_array subroutine 1.2.332.1.3
 xdr_bool subroutine 1.2.332.1.3
 xdr_bytes subroutine 1.2.332.1.3
 xdr_double-precision number subroutine 1.2.332.1.3

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 68

 xdr_enum subroutine 1.2.332.1.3
 xdr_floats subroutine 1.2.332.1.3
 xdr_getpos subroutine 1.2.332.1.4
 xdr_opaque subroutine 1.2.332.1.3
 xdr_reference subroutine 1.2.332.1.3
 xdr_string subroutine 1.2.332.1.3
 xdr_union subroutine 1.2.332.1.3
 xdr_void subroutine 1.2.332.1.3
 xdrmem_create subroutine 1.2.332.1.8
 xdrrec_create subroutine 1.2.332.1.9
 xdrrec_endofrecord subroutine 1.2.332.1.9
 xdrrec_eof subroutine 1.2.332.1.9
 xdrrec_skiprecord subroutine 1.2.332.1.9
 xdrs parameter 1.2.332.1.2
 xdrstdio_create subroutine 1.2.332.1.7
 relationship to C constructs 1.2.332
 standard types 1.2.332
 syntax 1.2.332
 XSCAN 2.5.28
 xtext attributes
 xtext background color 2.6.2.3.2
 xtext clip box 2.6.2.3.2
 xtext foreground color 2.6.2.3.2
 xtext logical operation 2.6.2.3.2
 Y
 y0, y1, yn subroutines 1.2.19
 Z
 zombie process 1.2.73

AIX Operating System Technical Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 69

