| BM Advanced I nteractive Executive
for the RT, PS/2, and System 370
C Language Reference

Version 1.2.1

Docunent Nunber SC23-2058-02

Copyright IBM Corp. 1985, 1991

| BM Advanced | nteractive Executive
for the RT, PS/2, and System 370

C Language Reference
Version 1.2.1

Docunent Nunber SC23-2058-02

Copyright IBM Corp. 1985, 1991

C Language Reference
Edition Notice

Edition Notice
Third Edition (March 1991)

This edition applies to Version 1.2.1 of the | BM Advanced I nteractive
Executive for the System 370 (Al X/ 370), Program Number 5713-AFL, to
Version 2.2.1 of the I BM Advanced Interactive Executive for RT (Al X
RT), Program Nunber 5601-061, and for Version 1.2.1 of the |IBM
Advanced Interactive Executive for the Personal Systeni2, Program
Nunmber 5713-AEQ, and to all subsequent rel eases until otherw se
indicated in new editions or technical newsletters. Mke sure you are
using the correct edition for the |evel of the product.

Order publications through your IBMrepresentative or the | BM branch
of fice serving your locality. Publications are not stocked at the
address given bel ow.

A formfor reader's comments appears at the back of this publication.
If the form has been renoved, address your conments to:

| BM Corporation Departnment 52QA M5 911
Nei ghbor hood Road

Ki ngston, NY, 12401

US A

VWhen you send information to IBM you grant | BM a nonexcl usive right
to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

| Copyright International Business Machi nes Corporation 1985, 1991.
Al'l rights reserved.

| Copyright AT&T Technol ogi es 1984, 1987, 1988

| Copyright | NTEL 1986, 1987

I

i Copyright | NTERACTIVE Systens Corporation 1985, 1988

[pyrig (

i Copyright Locus Computing Corporation, 1988

Note to U S. Governnent Users -- Documentation related to restricted
rights -- Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedul e Contract with | BM Corp.

| Copyright IBM Corp. 1985, 1991
EDITION - 1

C Language Reference
Notices

Noti ces

References in this publication to | BM products, progranms, or services do
not inply that IBMintends to nmake these available in all countries in
which | BM operates. Any reference to an | BM product, program or service
is not intended to state or inply that only I1BMs product, program or
service may be used. Any functionally equival ent product, program or
service that does not infringe any of IBMs intellectual property rights
or other legally protectible rights may be used instead of the |IBM
product, program or service. Evaluation and verification of operation in
conjunction with other products, prograns, or services, except those
expressly designated by IBM are the user's responsibility.

| BM may have patents or pending patent applications covering subject
matter in this docunment. The furnishing of this docunent does not give
you any license to these patents. You can send license inquiries, in
witing, to the IBMDirector of Commercial Relations, |BM Corporation
Pur chase, Ny 10577.

Subt opi cs
Trademar ks and Acknow edgment s

| Copyright IBM Corp. 1985, 1991
FRONT_1-1

C Language Reference
Trademarks and Acknowledgments

Trademar ks and Acknow edgment s
The followi ng trademarks apply to this book:

O

Portions of the code and docunentation were devel oped at th

El ectrical Engineering and Conputer Sciences Departnent at the

Ber kel ey Canpus of the University of California under the auspices of
the Regents of the University of California.

Al X, Personal Systeni2, PS/ 2, RT, RT PC, and RT Personal Conputer ar
regi stered trademarks of International Business Machi nes Corporation.

IBMis a registered trademark of International Business Michine
Cor por ati on.

System 370 is a trademark of International Business Mchine
Cor por ati on.

| Copyright IBM Corp. 1985, 1991
FRONT_ 1.1-1

C Language Reference
About This Book
About Thi s Book
Thi s book describes the C programm ng | anguage as inplenented on the
Advanced Interactive Executive (Al X) Operating System It includes
reference informati on on the |exical and syntactic elenments that make up

the C programm ng | anguage and the structure and format of C | anguage
progr ans.

Subt opi cs

Who Shoul d Read Thi s Book
What You Shoul d Know

How t o Use Thi s Book

Rel at ed Publications

| Copyright IBM Corp. 1985, 1991
PREFACE - 1

C Language Reference
Who Should Read This Book

Wio Shoul d Read Thi s Book

This book is witten for progranmers who want to wite application
prograns in C |anguage that run on the Al X Qperating System

| Copyright IBM Corp. 1985, 1991
PREFACE.1-1

C Language Reference
What You Should Know
What You Shoul d Know

To get the nost out of this book, you should have an internediate to
advanced understandi ng of the C programm ng | anguage. You shoul d al so

have a general understandi ng of progranm ng concepts and term nol ogy and
Some experience in witing prograns.

| Copyright IBM Corp. 1985, 1991
PREFACE.2 - 1

C Language Reference
How to Use This Book

How to Use Thi s Book

This book is intended as a conpanion reference to the C Language User's
Quide. It is organized according to the general classes of elenents that
are used to construct prograns in the C language. To |locate specific
topics, use the table of contents or the index.

Subt opi cs
Hi ghl i ghting
Synt ax Di agr anms

| Copyright IBM Corp. 1985, 1991
PREFACE.3-1

C Language Reference
Highlighting

Hi ghl i ghting

This book uses different type styles to distinguish among certain kinds of
information. GCeneral information is printed in the standard type style
(for exanple, this sentence).

The follow ng type styles indicate other types of information:

O

Commands, keywords, types, objects, expressions, declarations
statenents, functions, and parameters appear in bold type.

Exanpl es, words, and characters that nust be entered literally appea
i N nonospace type.

Vari abl es appear in jtalics.
New terns appear in bold italic type.

Bl ue type indicates an Al X Fam |y extension to the C | anguage

| Copyright IBM Corp. 1985, 1991
PREFACE.3.1-1

C Language Reference
Syntax Diagrams

Synt ax Di agrans

The follow ng typographic conventions are used in the syntax diagrans. |f
you need information on how to read the syntax diagranms, refer to the Al X
Operati ng System Commands Ref erence.

O

O

Syntactic categories appear between angle brackets (< >)
Al ternative syntactic categories appear on separate |ines

Ellipses indicate that a preceding paraneter can be repeated, fo
exanpl e:

<obj ect>. ..

Vari abl es that should be replaced by data objects in actual progra
statenents appear in italics.

An optional term nal synmbol or non-termnal synmbol is indicated by th
not ati on:

<obj ect>. ..
opt

A syntactic definition is indicated by the nane of the object bein
defined, followed by a colon, followed by the synbols that nake up the
object. Here is an exanple of the syntactic definition for a
compound- st at enent :

<conpound- st at enent >:
{ <declaration>... <statenment>... }
opt opt

This specification states that a conpound-statenent is nmade up of a
|l eft brace, followed by one or nore optional declarations and one or
nore optional statenents followed by a right brace. Note that this
definition provides for an enpty conpound statenent.

Brackets [] indicate optional itens and subscripts of an array

Braces { } encl ose optional elenents that can be repeated nore tha
once.

| Copyright IBM Corp. 1985, 1991
PREFACE.3.2-1

C Language Reference
Related Publications

Rel at ed Publicati ons

For

addi tional information, you may want to refer to the follow ng

publi cati ons:

O

Al X C Language User's Gui de, SC23-2057, describes how to devel op,
Iink, and execute C | anguage prograns. This book al so describes the
operati ng dependenci es of C |anguage and shows how to use C

| anguage-rel ated software utilities and other program devel opnent

t ool s.

Al X Commands Reference, SC23-2292 (Vol. 1) and SC23-2184 (Vol. 2),
lists and describes the Al X/ 370 and Al X PS/2 Qperating System
conmands.

Al X Progranmi ng Tools and Interfaces, SC23-2304, describes the
progranm ng environnent of the Al X Operating System and i ncl udes

i nformati on about operating systemtools that are used to devel op,
conpi |l e, and debug prograns.

SAA Common Programming Interface C Reference, SC26-4353, describes
each conponent of the common progranmmi ng interface.

| Copyright IBM Corp. 1985, 1991
PREFACE.4 -1

Tabl e of
TI TLE
COVER
EDI TI ON
FRONT 1
FRONT 1.
PREFACE
PREFACE.
PREFACE.
PREFACE.
PREFACE.
PREFACE.
PREFACE.

C Language Reference
Table of Contents

Contents
Titl e Page
Book Cover
Editi on Notice
Not i ces
1 Trademar ks and Acknow edgnent s
About Thi s Book
Who Shoul d Read Thi s Book
What You Shoul d Know
How t o Use Thi s Book
Hi ghlighting
2 Synt ax Di agr anms
Rel at ed Publications

PwwWwWN R
=

CONTENTS Tabl e of Contents

FlI GURES
TABLES
1

il
N =

ARWWN R
=

— O

PONDOUNNUTNNTNNTNTNRWNRODONUNTNNUNTOARRRWNROWN RO
'_\

WRWRWRWPWWWWWWRWWWWRWRWNNNDNDNDONDNDNDNNDNNE P

Fi gures
Tabl es
Chapter 1. Introduction
CONTENTS
About This Chapter
Qvervi ew
Chapter 2. Lexical Elenents
CONTENTS
About This Chapter
Lexi cal El ements
Identifiers
Keywor ds and Basi c Synbol s
Keywor ds
C Speci al Synbol s
Const ant s
I nteger Constants
Fl oati ng Constants
Character Constants
W de Character Constants
String Constants
Wde String Constants
O her Separators
Comment s
Chapter 3. Declarations
CONTENTS
About This Chapter
Decl arati ons
bj ects and Lval ues
Decl arati ons
Storage Class Specifiers
Type Specifiers
Type Qalifiers
Decl arators
Meani ng of Declarators
Arrays
Poi nters
Structures and Uni ons
Enum
Voi d
Compl ex Decl arators
typedef -- Declaring Type Nane Synonyns
Initializing Variabl es
Initializing Strings
Type Nanes
Lifetinmes of Variabl es
Aut omati ¢ and Regi ster Vari abl es

| Copyright IBM Corp. 1985, 1991
CONTENTS -1

COOUNUONU NN NN AR AR R AR A AN A AR AR R AR AR R ARRARRARRRARRAROWWRW
NEOWRWRWWRWWNWWRWNRODDNONDDNDDNPNNONPDNONPONNARRARRWNRORE O®D®

— O

[CSIN\V)

b~ wWNPEF

WRWPRW®WWWWW®RWLWWNNNNNERE =

O©CoOoO~NOUr~WNEF

N -

A OWNPF

O©CoOoO~NOOUITA~, WNE

C Language Reference
Table of Contents
Static and External Variables
Formal Argunents
Implicit Declarations
Name Spaces
Scope

Chapter 4. Expressions

CONTENTS

About This Chapter
Expr essi ons
Conver si ons

Integers, Shorts and Characters

Fl oat and Doubl e
Fl oating and | ntegral
Poi nters and I ntegers

The Usual Arithnmetic Conversions

Operators in Expressions
Summary of QOperators
Primary Expressions
Identifiers
Const ant Expressi ons
Const ant s
Strings
Par ent hesi zed Expressi ons
Menmber References
Functi on References
Unary Operators
Bi nary Operators
Mul tiplication Operators
Addi tion Operators
Shift Operators
Rel ati onal Operators
Equal ity Operators
Bi twi se AND Oper at or

Bi t w se Exclusive OR Operator
Bi twi se Inclusive OR Operator

Logi cal AND Oper at or
Logi cal OR Operator
Condi ti onal Expression
Assi gnnment Operators
Comma Oper at or

Chapter 5. Statenments

CONTENTS
About This Chapter
St at enents

Expressi on Statenent
Compound St at enent
Condi ti onal Statenent
Switch Statenents
Whil e Statenents
Do St at enment
For St at enent
Br eak St at enent
Conti nue St at enent
Ret urn St at enent
GCoto Statenent and Label s
asm St at enent
Nul | St at ement

Chapter 6. Functions

CONTENTS
About This Chapter

| Copyright IBM Corp. 1985, 1991
CONTENTS - 2

SNNANNNNNNNNNNNNNNNNOOOOO OO

©COOPONDUITNURWNRONOUGU U AW

N -

WN -

NDEX

C Language Reference
Table of Contents

Functi ons
The Main Function
Def i ni ng Functi ons

Argurents to Functions

External Objects with the Static Attribute
Bl ock Structure
External and Static Variabl es

Chapter 7. Preprocessor Statements
CONTENTS
About This Chapter

Preprocessor Statenents
Preprocessor Statenent Format
#defi ne

Simple Macro Definition

Compl ex Macro Definition
#undef
#i ncl ude
Condi ti onal Conpil ation

#i f

#i f def

#i f ndef
i ne
(Nul | Statenent)
#pr agma
Preprocessor Fl ags

I ndex

| Copyright IBM Corp. 1985, 1991
CONTENTS - 3

C Language Reference
Figures

Fi gures
3-1. Exanple of External and Internal Linkage 3.11

| Copyright IBM Corp. 1985, 1991
FIGURES - 1

C Language Reference
Tables

C Reserved ldentifiers (Keywords) 2.4.1.1
C Speci al Synbol s 2.4.1.2
Character Constants 2.5.3

| Copyright IBM Corp. 1985, 1991
TABLES - 1

C Language Reference
Chapter 1. Introduction

1.0 Chapter 1. Introduction

Subt opi cs

1.1 CONTENTS

1.2 About This Chapter
1.3 Overview

| Copyright IBM Corp. 1985, 1991
1.0-1

C Language Reference
CONTENTS

1.1 CONTENTS

| Copyright IBM Corp. 1985, 1991
1.1-1

C Language Reference
About This Chapter

1.2 About This Chapter

This chapter includes the main features of the Al X C |anguage and a
sumary of terms and concepts in the book.

The topics you will find covered in this reference include:

Lexi cal El ement

Decl arati on

Expr essi on

St at enent

Program Struct ur
Preprocessor Statenments

I I o

| Copyright IBM Corp. 1985, 1991
1.2-1

C Language Reference
Overview

1.3 Overview

I BM Al X C conpilers are high-performance optim zing conpilers that produce
obj ect code for execution under the Al X Operating System Al X PS/2
supports two C conpilers. The C Language conpiler (VSC) can be invoked
with the vs command and can be used to conmpile C | anguage source code. For
information on this command, see Al X Operating System Commands Reference.
The other compiler is the Extended C Language conpiler (MC).

C | anguage contains many buil ding bl ocks that you can use to construct
progranms. Mst of these building blocks fit into one of a few categories.

0 Lexical Elenents
There are six basic classes of lexical elenents in C |anguage:
- Identifiers
- Keywor ds
- Const ant s
- String constants
- Qperators
- O her separators.

g Decl ar ati ons

Decl arations specify the way in which the C conpilers interpret each
identifier. Wen an identifier is declared, the declaration does not
necessarily reserve any storage in nenory for that identifier. Sone
declarations sinply define a tenplate, for instance, in struct and
uni on decl arati ons.

U Expressions

An expression is a construct that defines the rules of conputation for
creating a value by perform ng operations (specified by operators) on
operands (specified by variables, constants, and function references).
These new y created val ues can then be used in assignnent statenments
or can be used (in conditional expressions) to control subsequent
program acti ons.

0 Statements

The C programm ng | anguage contai ns expression statenents and contro
flow statenents. The expression statenents are used to conpute and
assign new values to objects at runtinme. The control-flow statements
determ ne the order in which the computations are perforned.

U Functions
A conplete C program consists of a collection of external objects.

These objects are either functions or variables. A function is the
fundanmental C method of grouping bl ocks into nanageabl e units.

O Preprocessor Statenents

| Copyright IBM Corp. 1985, 1991
13-1

C Language Reference
Overview

The preprocessor is a programthat prepares C | anguage prograns for
conmpi l ation. The preprocessor, rather than the conpiler, interprets
preprocessor statements. The cc command automatically sends prograns
through the preprocessor, then sends the output of the preprocessor

t hrough the conpiler.

Preprocessor statements enable you to:

- Repl ace identifiers or strings in the current file with specified
code

- Embed files within the current file
- Conditionally conpile sections of the current file

- Change the |ine nunber of the next |ine of code and change the
file nane of the current file.

| Copyright IBM Corp. 1985, 1991
1.3-2

C Language Reference
Chapter 2. Lexical Elements

2.0 Chapter 2. Lexical El enents

Subt opi cs

CONTENTS

About This Chapter
Lexi cal El enents
Identifiers

Const ant s

O her Separators

NENESENUNEN
OO, WN B

| Copyright IBM Corp. 1985, 1991
20-1

C Language Reference
CONTENTS

2.1 CONTENTS

| Copyright IBM Corp. 1985, 1991
21-1

C Language Reference
About This Chapter

2.2 About This Chapter

This chapter describes the |lexical and syntactic elenents that make up the
C progranm ng | anguage.

| Copyright IBM Corp. 1985, 1991
22-1

C Language Reference
Lexical Elements

2.3 Lexical Elenents

There are six basic classes of lexical elements in C |anguage:
d I dentifier

0 Keyword

0O Constant

0 String constant

O Qperator

O Oher separators

| Copyright IBM Corp. 1985, 1991
23-1

C Language Reference
Identifiers

2.4 ldentifiers

Identifiers, which are also called nanes, are used to identify vari abl es,
functions, and macros. An identifier in Cis a sequence of letters and
digits. The first character of an identifier nust be a letter. The
underscore character (_) acts as a letter in the context of an identifier.

Note: External identifiers beginning with an underscore are reserved as
are all other identifiers beginning with two underscores or an
underscore foll owed by an uppercase character.

identifier
o e e e o - +
--- letter ----} +- letter -+ |
+-+- digit --+-+
(H--- - ----+
o +
charact er
oo e +
. Any printing |
---1 character or +---]
. a bl ank. |
oo e +
letter
one of
oo e e ee e +
i abcdef ghij kl mj
-l nopgrstuvwxyz+--|
I ABCDEFGHI JKL M,
i NOPQRSTUVWXY Z|
oo e e e ee e +

digit
one of
Fomm e me oo o - +
---1 01234 +--}
I 567 89|
Fomm e me oo o - +
newline
oo e e e e e e ieaaoo- +

The character code that +---]
the Enter key produces. |

Note: In the VSC and RT conpilers, only the first 64 characters of an
identifier are recognized, but the user may wite identifiers of

| Copyright IBM Corp. 1985, 1991
24-1

C Language Reference
Identifiers
any length, as long as they are unique in the first 64 characters.
This is nolimt for the identifiers in the Al X/ 370 and PS/2 MCC
compi |l ers.

Uppercase and | owercase letters are considered different in C |anguage
identifiers. It is commobn practice to use uppercase nanes for nmacros and
constants and | owercase nanes for vari abl es.

Exanpl es:
Al bert Ada_August a Bool e_and_Babbage
Tau_Ceti Z Transform
UP_to low up_to LOW up_TO | ow

Note that the C Conpiler considers the last row of nanes to be quite
different, since the placing of the uppercase and | owercase letters i s not
the sanme fromone to the other.

I nval i d Exanpl es:
1st_char _is_digit odd_#$"[_char

Note: The RT, Al X/ 370, and PS/2 MCC C conpil ers prepend the underscore
character (_) to external identifiers.

Subt opi cs
2.4.1 Keywords and Basic Synbol s

| Copyright IBM Corp. 1985, 1991
24-2

C Language Reference
Keywords and Basic Symbols

2.4.1 Keywords and Basic Synbol s

C has a set of basic synbols that the conpiler uses for specific purposes
in the language. These synbols include selected (reserved) identifiers
and speci al synbols conposed of one or nore characters. These basic
synbol s are used as keywords, operators, delimters, and separators.

Follow ng are two |ists of basic synbols. One is a list of C reserved
identifiers (keywords) and the other is a list of the special synbols that
C uses.

Subt opi cs
2.4.1.1 Keywords
2.4.1.2 C Special Synbols

| Copyright IBM Corp. 1985, 1991
241-1

2.4.1.1 Keywords

C Language Reference

Keywords

No C keyword nay be enployed as a user-defined identifier.

The C keywords are al ways | owercase.

keywords that are typed with uppercase letters in them

| Table 2-1.

i asm (3) |
oo e oo +
| auto |
oo e oo +
| break |
oo e oo +
| case |
oo e oo +
| char !
oo e oo +
| const (1) |
oo e oo +
| continue |
oo e oo +
| default |
oo e oo +
i do i
oo e oo +
] 1
1 1
(1) const, entr

C Reserved ldentifiers (Keywords)

doubl e if
______________ o e e e e oo
el se i nt
______________ o e e e e oo
entry (1), (2} long
______________ o e e e e oo
enum regi ster
______________ o e e e e oo
extern return
______________ o e e e e oo
float (3) short
______________ o e e e e oo
for signed (1)
______________ o e e e e oo
fortran (2), |3sizeof (1)
______________ o e e e e oo
goto static
______________ o e e e e oo
y, and signed are not supported on the RT.

The C Conpil er does not

recogni ze

(2) entry and fortran are used as reserved words but PS/ 2 does
not associate any neaning with them System 370 does not

support thes

e words.

(3) These are reserved words for the PS/2 VSC conpiler and are
not supported by the PS/2 MCC conpiler.

| Copyright IBM Corp. 1985, 1991

2411-1

C Language Reference
C Special Symbols

2.4.1.2 C Special Synmbols

| Table 2.2, Cspesial smbols T
T Addition operator: wnary plus operator
DT | Increment operator T
CoT | Subtraction operator: unary minus operator
CTT | Decrement operator T
CTT Ml tipiication operator: indirestion operator
CT CDivision operator T
D | Remainder operator T
CoTT | hssignment operator T
T | Separates integer fromfraction in a float number:
| | references a nenber of a struct or union

C | Separates items inlists: comma operator
. | Statement and declaration separator
T Used after case and statement labels and bit field
| | declarations

CTT haracter delimter T
C CString delimter T
C T | Relational operator for equality 7
T | Relational operator for inequality
C T | Relational operator for "less than 7
P | Relational operator for "less than or equal tor
Cal T | Relational operator for "greater than or equal tor
CL T | Relational operator for "greater than
() Enciose 1ists of el ements: enclose parts of expressions
| | that are to be considered indivisible factors; casting

| | operator; function call operator

UL 1 U Enclose array subseripts T
Cre T comment delimters T
DT CRghtoshift operator T
D T | Left-shift operator T
R | Ternary (condi tional expression) operator

| Copyright IBM Corp. 1985, 1991
241.2-1

C Language Reference
C Special Symbols

- | Logi cal ones compl ement operator T
R | Bitw se exclusive GRoperator T
o | Bitwise inclusive GRoperator T
T | Logical commestive R T
e | Bitwise AND address operator T
Tee | Logical commective mwp T
. | Logical NOT operator T
Tty . Encl ose biock 115t of initializers: encloses compound
| statenents
__________ o o o e
-> | Pointer to a nenber of a struct or union
""""" | Use to indicate variable argument parameter [ist ina
i function declaration
s had and assign T
T sbtract and assign T
T Witiply and assign T
S bivide and assign T
o Reminder and assign
s Belusive Rand assign T
S inelusive cRand assign T
e U Left shitt and assign T
om U Rght shift and assign T
= CBtwise ADand assign T

| Copyright IBM Corp. 1985, 1991
241.2-2

C Language Reference
Constants

2.5 Constants

The C programm ng | anguage contai ns several types of constants. These
constants are described in this section.

const ant
+-- char constant --+
+-- int constant ---|
---+-- long constant --+---]
+- float constant --|
+- string constant -|
+-- enum constant --+

0
1 Integer Constants
2 Floating Constants
3 Character Constants
4 String Constants

| Copyright IBM Corp. 1985, 1991
25-1

C Language Reference
Integer Constants

2.5.1 Integer Constants

An integer constant is a sequence of digits. Integers are assuned to be
in the deci mal nunmber base, unless specifically designated as octal or
hexadeci mal nunbers. |Integer constants have type int. A plus (+) or a

mnus (-) sign preceding the constant is a unary operator and is not part
of the constant. The followi ng diagramlists three types of integer
constant s:

i nt constant

+--- decimal constant ---+
---+---- octal constant ----+---
+- hexadeci mal constant -+

If an integer constant starts with the digit zero (0), it is assumed to be
an octal nunber. The octal digits range fromO to 7.

If an integer constant starts with the characters 0X or Ox (digit O

foll owed by an uppercase or |owercase X), it is taken as a hexadeci nal
nunber. The hexadecimal digits include the characters (a-f or A-F), which
have the deci mal val ues 10 through 15, respectively.

deci mal const ant

one of
Fomm e me oo o - + o m e e e e o e oo +
---1 1234 H+---) A----------- + +---
I 56789 +-1 01234 ++
t--------- - + 0 567 89 ;|
R +
o m e e oo +
octal constant
o m e e oo o - +
N | B + +---
+1 0123 ++
l 456 7]
e +
o e e oo - - +
hexadeci mal const ant
+- Ox -+ B +
--- +---1 01234 +---
+- 0X-+0O} 56789 |,
i 1 abcdef | |
i1 ABCDEF, |
e +
o e e e e oo oo +

A decimal, octal, or hexadeci mal nunber, as defi ned above, can be denot ed
as a long constant by following it imediately with an uppercase or
| ower case L.

| Copyright IBM Corp. 1985, 1991
251-1

C Language Reference
Integer Constants

Exanpl es:

666 is a deci mal nunber.

+99 -457L are deci mal nunbers.

0377 is an octal nunber.

0x3e8 i s a hexadeci mal nunber.

Note: The RT C Conpiler does not accept the unary plus operator (+).
I nval i d Exanpl es:

2FC9 is an invalid deci mal nunber.

FO34 is an identifier, not a hex number.

| Copyright IBM Corp. 1985, 1991
251-2

C Language Reference
Floating Constants

2.5.2 Floating Constants

A floating constant is used to represent real or floating point nunbers.
Such a constant has an integer part, a decinmal point, a fraction part, and
an optional exponent. A plus or a mnus sign preceding the constant is a
unary operator and is not part of the constant. A floating constant has
the form

fl oat const ant

fom oo +
+- | +--- --- digit ---+
| +--- digit ---+ LEEE LT +
+- O | R U + +--- +- +
b L + | +- exponent -+ | L +
R e digit ------- | s + +---1 one of +---
0 | BRI
| R S + i +1 f F +-+
Ho----- digit -----------miii e exponent ---+ I
g
| | +----- +
I +

The integer and the fraction parts consist of a sequence of deci mal
digits. Either the integer part or the fraction part (but not both) my
be omtted. An exponent has the form

exponent
+- e -+ Fomem- +

--- +---4- 4+ -+--- digit ---|
+- E -+ +- - -+ [!

The exponent part consists of an uppercase or | owercase E foll owed by an
optional sign and a sequence of decimal digits. Either the exponent part
or the decimal point (but not both) may be omtted.

Unsuffixed floating-point constants in a C program are taken as having
doubl e type. However, a floating point constant can be denoted as having
float type, by following it imediately with an uppercase or | owercase F.
It can be denoted as a |ong double type by following it imediately with
an uppercase or |owercase L.

Exanpl es:
0.0 3. 14159 5. 1. 02e3L
1. 5E10 . 618F 3.784e-8 2e0

Not es:

1. The L suffix for floating constants is not supported on the RT

2. The decimal floating-point nunber that you store as a floating
constant may | ose sone accuracy when stored by the conmputer because of
the nature of decimal-to-binary conversions. Calculations made with
the floating constant will reflect any inaccuracy. A floating-point
nunber may al so | ose accuracy when converted fromthe internal binary

| Copyright IBM Corp. 1985, 1991
252-1

C Language Reference
Floating Constants
representation to decinmal. Any inaccuracy resulting fromthe
conversion are reflected when you print the nunber in deciml fornat.

| Copyright IBM Corp. 1985, 1991
252-2

C Language Reference
Character Constants

2.5.3 Character Constants

A character constant is one or nore characters or the representation of
one or nore characters, enclosed in apostrophes ('). The representation
of characters (and characters in strings) is based on the ASCI| character
set. Character constants have type int.

Mul ti pl e-character character constants are supported. Up to four
characters may appear inside apostrophes. The bit pattern of the
characters is stored in 4 bytes. The entire character constant is stored
in a 32-bit integer forned by shifting the characters one at a tinme onto
the low order bits of the integer. Therefore, if nore than four
characters are encl osed in apostrophes, only the |last four characters are
stored. Assignnment of such multiple-character character constants to
shorter types causes truncation

int i;

char c;

short s;

i = '"abcd'; /* i has the value (bit pattern) of all 4 chars */
c = "abcd'; /* ¢ will only have the value of 'd' */
s = '"abcd'; /* s will only have the value of 'cd */

A character constant has the form

char const ant

g +
: Any printing character |
+-1 except the ' (single quote) +-+
Vo and the \ (backsl ash). b
: S +:
----- EEEEEEEEN o e
0 o
T R RARESLELLEE + 1
I escape sequence ++
i e + |
o m e e e e e e e e e e e eee e +

An escape sequence has the form

escape sequence

one of

Fom e e e e e oo +

ia b f n r t |
S R Pvo " +---+
| S + |
| one, two, or three of |
| S + |

RREARETEY ! 0 1 2 3 L

: : 4 5 6 7 : :
| S + |
| S + |
| 0O 1 2 3 4 |
+- X --- 5 6 7 8 9 -+

| Copyright IBM Corp. 1985, 1991
253-1

C Language Reference
Character Constants

The val ue of each escape sequence character is always an 8-bit quantity
even though several characters nmay be required to specify it.

Non- printabl e characters, the apostrophe sign, and certain other
characters nust be represented by multiple-character escape sequences in
character constants according to the foll owi ng table:

o m o m o o o o e e e e e e e e e e e e e e e e e e meemaoaooo- +
| Table 2-3. Character Constants i
B o m e ma o i
. C Escape Sequence i Meani ng :
Fom e e a - R T i
I \a | alert (audible) (not on RT) |
o e e e e e e e e oo Fo o m e e e e e e e e e e oo !

|
i \b | backspace i
Fom e e a - R T i
PN | form feed i
Fom e e a - R T i
P \n | new- | i ne |
Fom e e a - R T i
PoAr | carriage return i
o e e e e e e e e oo Fo o m e e e e e e e e e e oo i
P\t : hori zontal tab i
Fom e e a - R T i
Po\v | vertical tab i
Fom e e a - R T i
P\ | backsl ash i
Fom e e a - R T i
PV | single quote i
Fom e e a - R T i
P | doubl e quote i
Fom e e a - R T i
| \octal digits | octal character constant i
Fom e e a - R T i
I \'x hexadeci nal | hex character constant |
! digits ! |
Fom e e a - R T i
P\ | guestion mark :
o e e e e e e e e oo Fo o m e e e e e e e e e e oo i
I I I
I I |
o m o o o e o o e e e e e e e e e e e e e e e e e emmoaooo- +

A backslash (\) followed by one, two, or three octal digits can be used
to construct a single character. The numerical value of this octa

integer is used as the value of the character. A backslash (\) followed
by a lowercase x that is followed by one or nore hexadecimal digits can

al so be used to construct a single character. The nunerical value of this
hexadeci mal integer is used as the value of the character. A hexadeci nal
escape sequence is term nated by a non-hexadecinmal digit. A backslash (\
) followed by any other character not defined in the previous table is
treated as that character.

Exanpl es:

"w is the | owercase w

| Copyright IBM Corp. 1985, 1991
253-2

C Language Reference
Character Constants

A is the backslash character itself.

"\ 002 introduces an STX character in the text.

“\'n' is the newline character.

"\ 147 is the ASCIlI code (in octal) for the letter g.
Subt opi cs

2.5.3.1 Wde Character Constants

| Copyright IBM Corp. 1985, 1991
253-3

C Language Reference
Wide Character Constants

2.5.3.1 Wde Character Constants

A wi de character constant is the same as a character constant except that
it is prefixed by the letter L. The elenments of the sequence are any
menbers of the source character set. Their mapping to the nenbers of the
execution character set is inplenmentation defined.

A wi de character constant has type wchar t, an integral type defined in

t he <stddef.h> header. The value of a wi de character constant containing
a single multibyte character that maps into a nmenber of the extended
character set is the wide character code corresponding to the nmultibyte
character as defined by the nbtowe function with inplenentation-defined
current conversion locale. In the follow ng exanple, the

i npl emrent ati on-defined value that results fromthe conbination of the

val ues 0123 and 4 is specified:

wchar t c=L'\1234";

| Copyright IBM Corp. 1985, 1991
2531-1

C Language Reference
String Constants

2.5.4 String Constants

A sequence of characters enclosed in double quotation marks (") is called
a string constant. A string constant in the C |anguage has the data type
of array of char. Chapter 3, "Declarations" contains the discussions on
storage cl asses and type definitions. A string constant has the form

string constant

o +
: Any printing character |
+-1 except the " (double quote) +-+
Vo and the \ (backsl ash). b
: S +:
_____ n ______: +___ n ___:
0 o
T R RARESLELLEE + 1
I escape sequence ++
i e + |
o m e e e e e e e e e e e eee e +

The initial value of a string constant is the characters inside the double
gquotation marks. In addition, the conpiler places a null byte (value \0)
at the end of a string so that a programwhich scans it can determne its
| engt h.

Every string constant is stored at a distinct |ocation, even when two
string constants are witten identically. In other words, the conpiler
does not share storage for string constants. A string constant occupies
its storage the entire tine its containing programis resident.
To enter a double quotation mark character into a string constant, use the
\" notation. The same escape sequences can be used as those described in
Table 2-3 in topic 2.5.3 for character constants. Escape sequences are
repl aced before string concatenation as shown in the exanples foll ow ng.
A string constant can be continued over nore than one line by placing a
(\) imediately before the end of the line (the end-of-line follow ng the
(\) is then ignored). Another way to continue a string constant is to
have two or nore consecutive string constants. Adjacent string constants
are concatenated to produce a single string constant.
Not e: Adjacent string constant concatenation is not supported on the RT.
Exanpl es:

"This is a string constant”

"An i nbedded \"quote sign"

"A control-D\004 in a string"

"\ 43" [* string contains "#" */

"\ 0043" /* string contains Control-D, then the character 3 */

"To get a backslash, just type \\"

| Copyright IBM Corp. 1985, 1991
254-1

C Language Reference
String Constants

"Here is a string continued \
over two |ines"

"This is a first string"
"Which is concatenated with a second string"

"Bach's \"Jesu, Joy of Man's Desiring\"

"A string has the form

"The follow ng tests proved positive:\n"

"Last Nane Fi rst Nanme M Street Address \
Gty State Zi pcode "

For information about operators and a table listing operators,
"Operators in Expressions"” in topic 4.5.

Subt opi cs
2.5.4.1 Wde String Constants

| Copyright IBM Corp. 1985, 1991
254-2

see

C Language Reference
Wide String Constants

2.5.4.1 Wde String Constants

A wide string constant is the sane as a string constant except that it is
prefixed by the letter L. For wide string literals, array elenents have
type wchar t.

The mul ti byte character sequences specified by any sequence of adjacent
character string literal tokens, or adjacent wide string tokens are
concatenated into a single nultibyte sequence. |If a character string
literal token is adjacent to a wide sring literal token, the behavior is
undef i ned.

Wde string literals are initialized with the sequence of wi de characters
corresponding to the multibyte character sequence. For exanple:

wchar _t *wstring=L"abc";

This is initialized to inplenentation-defined values that result fromthe
val ues of a, b, and c.

| Copyright IBM Corp. 1985, 1991
2541-1

C Language Reference
Other Separators

2.6 O her Separators

Spaces (al so called blanks), tab characters, newline (end-of-1line)
characters, and comments are collectively called whitespace, and are
i gnored except as separati ons between tokens.

Subt opi cs
2.6.1 Comments

| Copyright IBM Corp. 1985, 1991
26-1

C Language Reference
Comments
2.6.1 Comments
Comments are delimted by the characters /* and */. Comments do not nest,
but they can span multiple lines. Coments have the form

coment
oo +
| Any sequence of |

--- [* ---} characters that +--- */ ---|
| does not contain |
| the */ sequence. |
oo +

Exanpl e:

/* A comment extended
over two |lines */

| Copyright IBM Corp. 1985, 1991
26.1-1

C Language Reference
Chapter 3. Declarations

3.0 Chapter 3. Declarations

Subt opi cs

CONTENTS

About Thi s Chapter

Decl arati ons

oj ects and Lval ues
Decl arati ons
Initializing Variabl es
Type Nanes

Lifeti mes of Variabl es
Implicit Declarations
.10 Nanme Spaces

.11 Scope

W W wWwwwwww o
OCoONOOOITP~WNPE

| Copyright IBM Corp. 1985, 1991
3.0-1

C Language Reference
CONTENTS

3.1 CONTENTS

| Copyright IBM Corp. 1985, 1991
31-1

C Language Reference
About This Chapter

3.2 About This Chapter

Thi s chapter describes how variables and C objects are decl ared.

| Copyright IBM Corp. 1985, 1991
3.2-1

C Language Reference
Declarations

3.3 Decl arati ons

Decl arations specify the way in which the C conpilers interprets each
identifier. Wen an identifier is declared, the declaration does not
necessarily reserve any storage in nenory for that identifier. Sone
decl arations sinply define a tenplate, for instance, in struct and union
decl arati ons.

| Copyright IBM Corp. 1985, 1991
33-1

C Language Reference
Objects and Lvalues

3.4 njects and Lval ues
An object is a region of storage that can be manipulated in sone way. The
common exanpl es of objects are sinple variables and structured vari abl es.
Functi ons are not consi dered objects.
An |value is an expression that refers to an object. The basic and nost
obvi ous |val ue expression is an identifier. There are specific operators
that generate |values. For exanple, if the expression:

E
is an expression whose type is pointer to object, then the construct:

*E

is an | value expression that refers to the object to which the expression
poi nts.

The term | val ue derives fromthe assignnment expression:
El = E2
in that the operand to the left of the assignment operator nust be an
| val ue expression. |In Chapter 4, "Expressions,” the discussion of each

operator states whether the operator expects its operands to be |val ues,
and whet her the operator generates an | val ue.

| Copyright IBM Corp. 1985, 1991
34-1

C Language Reference
Declarations

3.5 Decl arations

The basic formof a declaration in Cis:

decl arati on

d

o m e e e e e eooooo- +
eclaration specifier ---} +---
+- unit-declarator-list -+

decl arati on specifier

W W Wwwwwwwwn e
cononaananag

t

o
1
2
3
4
5
6
7
8

9

+- storage class specifier -

---- type specifier ------
pi cs

Storage Cl ass Specifiers
Type Specifiers

Type Qualifiers

Decl arators

Meani ng of Declarators
Arrays

Poi nters

Enum

Voi d
0 Compl ex Decl arators

.1
.1

+ o e e e e e ieaaoo - +
+-- - +- -
+ +- declaration specifier -+

1 typedef -- Declaring Type Name Synonymns

| Copyright IBM Corp. 1985, 1991

35-1

C Language Reference
Storage Class Specifiers

3.5.1 Storage C ass Specifiers

The storage class of an identifier defines how the conpiler reserves
storage for objects of that type.

storage cl ass specifier

+- typedef --+

+-- extern --|
---+-- static --+---

+--- auto ---|

+- register -+

The storage cl asses defined are:

aut o Vari ables are "automatic" variables and are considered local to
each invocation of a block. The variable is accessible to the
current block and any nested bl ocks provided that the inner
bl ocks do not declare a variable having the sanme identifier
Space is allocated for the variable on entry to the block and is
di scarded on exit fromthat block. The variable nmust be defined
within a block or declared as a paraneter to a function.
Initialization occurs when the system all ocates storage for the
variable. Using an auto vari able saves space, as its storage is
freed upon exit fromthe block in which it is defined.

regi ster Variables are essentially synonynous with auto variables. They
obey all the sane rules. The register designation can be
consi dered as "advice" to the conpiler that this variable will be
used heavily and that the conpiler should attenpt to allocate
this variable in a machine register for faster access. Code with
register variables is usually smaller as well as faster. Note
that you cannot take the address of a register variable.

static Vari ables are local to a conpilation file. Variables local to a
bl ock retain their values across different (in tine) executions
of the block. |If the programreenters a block containing a
static variable, that variable has retained the value it had when
the bl ock was |ast exited.

As is described in Chapter 6, "Functions," the static storage
class alters the visibility rules for external objects in a
conpilation unit. The static variables declared inside a bl ock
can only be referenced by that block or any nested bl ocks. A
static variable declaration is also a definition of the variable,
and all ocates storage for it. A static function definition
specifies that the function may only be accessed inside its
conpilation unit. You can use an external static variable or
function any place following the definition in the source file
that contains the definition. Also, a static function may be
referenced before it is defined, provided an extern or static
decl arati on precedes the reference. Initialization of static
vari abl es occurs at the start of program execution.

extern Vari ables are global to an entire programand retain their val ues
t hroughout the execution of a program The extern decl arations
are thus a way to reference variables and functions in different
conpilation units. Variables and functions declared with the
extern storage class refer to actual definitions which are |ater

| Copyright IBM Corp. 1985, 1991
351-1

C Language Reference
Storage Class Specifiers

in the sane conpilation file, or in a different conpilation file.

typedef typedef is not a storage class, but obeys the syntax of a storage
class keyword. A declaration whose storage class is typedef does
not reserve any storage. A typedef defines an identifier that
can |ater be used as if it were a type keyword.

Only one storage class specifier may be given in a declaration. |If the
storage class specifier is omtted froma declaration, the follow ng
default rules apply:

O Inside a function, a mssing storage class specifier is assuned to b
aut o.

0 Qutside a function (that is, at the global [evel of the conpilatio
unit), a missing storage class specifier for a function declaration or
definition is assunmed to be extern.

The followi ng information applies to the use of the extern storage cl ass
specifier.

External variable definitions are indicated by a declaration without a
storage class specifier. An external definition can appear only outside a
function. External function definitions are indicated by a function

decl aration foll owed by a conmpound statenent, with no storage cl ass
specifier or with the storage class specifier extern. An externa
variable definition allocates storage for the specified variable. An
external variable or function definition or extern declaration al so makes
t he described variable or function usable by the succeeding part of the
current source file. |[If you want to use an external variable or function
prior to its definition or in a file other than the file in which it is
defined, you nust explicitly declare the variable or function. This

decl aration does not replace the definition. The declaration just hel ps
to describe the variable that is externally defined.

An extern declaration can be distinguished froman external definition by
the presence of the keyword extern. |f the keyword extern is present, it
is a declaration. Oherwise, it is a definition and a declaration. Only
one external definition for an identifier nmay be present in a C program

| Copyright IBM Corp. 1985, 1991
351-2

C Language Reference
Type Specifiers

3.5.2 Type Specifiers

The type specifier is what assigns a specific data type to an identifier.

type specifier

- char specifier ------- +
oo int specifier ------- |
S + R float specifier ------
--- I void specifier ------- +---)
+- type qualifier -+ +- struct or union specifier -|
+------ enum specifier ------- |
Fo------ typedef name -------- +

The different type specifiers are:

char Decl ares the object to be of type char (8-bit). Such an object
hol ds a single character fromthe ASCI| character set. This data
type defines the set of 256 values of the ASCI| character set.
Their numeric values are 0..255. The unadorned type char is
treated as an unsigned quantity.

wchar t Declares the object to be of type wchar_t (32 bits). Such an
object holds a single nultibyte character. This character can
represent an ASCI| character as well as MBCS characters such as
Kanji. This datatype defines a set of thousands of characters of
the multi byte character set.

char specifier

---+-- signed --+--- char ---

+- unsigned -+

si gned Decl ares that the object is signed and therefore the normal rules
for signed arithmetic (sign change, sign extension, and
propagation) do apply. The signed type may be used as a nodifier
to char, short, int, and long with the resulting ranges being
-128..127, -32768..32767, -2147483648..2147483647, and
-2147483648. . 2147483647, respectively. The type signed by itself
stands for signed int.

Note: The signed type is not supported on the RT.

unsi gned Decl ares that the object is unsigned and therefore the norma
rules for signed arithmetic (sign change, sign extension and
propagati on) do not apply. The unsigned type may be used as a
modi fier to char, short, int, and long wWwth the resulting ranges
being 0 . . 255, 0. . 65535 0 . . 4294967295, and O .
4294967295, respectively.
Note: The type unsigned by itself stands for unsigned int.

int specifier

Rl +-short---+ +e- -

| Copyright IBM Corp. 1985, 1991
352-1

+-

| ong

short

i nt

fl oat

C Language Reference
Type Specifiers

- RS + oo - - - +

+- long --+ +--------- + +---1 +- +

unsigned ---+- short -+-+ + int -+
- signed --+ +- long --+

Decl ares the object as a |long (32-bit) integer object. In the

Al X Operating System the length of a |ong specifier is the sane
as that of an int.

Decl ares the object as a short (16-bit) integer object, which
represents an inplenentation-defined subset of the integers. It
is equivalent to a range of integers between the val ues -32768
and 32767. Thus short variables are also normally signed.

Decl ares the object as a standard size (32-bit) integer object.
It is equivalent to a range of integers between the val ues
-2147483648 and 2147483647.

Decl ares the object as a floating-point object. bjects of type
float are 32-bit quantities, having an 8-bit biased exponent and
a 24-bit signed nantissa. The range of float nunbers is

approxi mately -3.4E38..+3.4E38, with a precision of approximtely
seven deci mal places. Refer to Al X C Language User's Quide for
nore details.

fl oat specifier

---+ +- float --+
+--- +---

+ long -+ +- double -+

doubl e Decl ares the object as a doubl e-precision
fl oati ng-point object. The size of the
doubl e-precision object is 64 bits, having an 11-bit
exponent and a 53-bit signed nantissa. The range of
doubl e nunbers is approximately -1. 00E308 .
+1. O0E308, with a precision of approximately 16
deci mal places. Refer to C Language User's Guide for
nore details.

| ong doubl e Decl ares the object as a doubl e-precision
fl oating-point object. |ong double is treated the
sane as doubl e.

struct or union Decl ares the object as a structure or a union. The
details of structures and unions are discussed in
"Structures and Unions" in topic 3.5.7.1.

enum Decl ares the object to be one of an enunerated type.
The details of enuns are discussed under "Enuni in
topic 3.5.8.

voi d Decl ares the object as one having no value, such as a

function called only as a procedure, that is, having
no return val ue.

| Copyright IBM Corp. 1985, 1991
352-2

C Language Reference
Type Specifiers

t ypedef - nane Decl ares the object as one of whatever type is
synonynous with the typedef-nane previously defined in
a typedef specification.

| Copyright IBM Corp. 1985, 1991
3.52-3

C Language Reference
Type Qualifiers

3.5.3 Type Qualifiers

type qualifier

+-- const ---+
4o
O+ volatile -+ |
oo +

volatile The volatile attribute declares an object as nodifiable in ways
unknown to the inplenentation or having other unknown side
effects. Any reads or wites to the object will not be renoved
by the optimzing feature of the conpiler. Function return types
may not have the volatile attribute. Exanples of the volatile
attribute are:

vol atile int clock; /* Declares clock as a volatile int. */

int * volatile psoup; /* Declares psoup as a volatile pointer */
/* to an object of type int. */

vol atile double * pnut; /* Declares pnut as a pointer to a double */
/* having the volatile attribute. */

const The const attribute declares an object as being unnodi fiable.
The object may only be assigned a value through initialization
when it is defined. Function return types nmay not have the const
attribute. Exanples of the const attribute are:

extern const volatile int clock; /* Declares clock as being volatile */
/* and unnodifiable. */
const int x = 4; /* Declares x as a const int. */
int * const ptr; /* Declares ptr as a const pointer to
[* an int */

X = 5; . /* ERROR x is a const int */
ptr ++; /* ERROR ptr is a const pointer */
ptr) ++; / OK: increnments the integer at which ptr points */
p

Note: The const attribute is not supported on the RT.

| Copyright IBM Corp. 1985, 1991
353-1

C Language Reference
Declarators

3.5.4 Declarators
In the definition of a declaration list, a sequence of declarators,
separated by commas and with an optional initializer, is specified.

Vari abl e decl arati ons consist of a type specification followed by a |ist
of identifiers that represent variables of that type. Declarators have
the form

decl ar at or
oo m e e e e e iaaoo- +
--- o e e e e e oo + +---
+- x| +-+

0 +- type qualifier -+

oo e e e oo +
to---- identifier --------------------------------- +
Hoo-- - (--- declarator ---) ------------------n-- |
---+- declarator --- subscript declarator ------------ +---)
| +- paraneter list --+ i
+- declarator --- (---+- identifier list -+---) -+
o +

subscri pt decl arat or

o e e e oo- +
--- [- _ +---] ---
+- constant expression -+
e o m e e e mmeao - +
- +o-
+--- [--- constant expression ---] ---+
U i
e o e e e e mm e —ooa- +

Fommmmmmmeee oo init-declarator ----------------- +
___: +- - -
+- init-declarator-list --- , --- init-declarator -+

i nit-decl arator

--- declarator ---| - -
+- initializer -+

| Copyright IBM Corp. 1985, 1991
354-1

C Language Reference
Meaning of Declarators

3.5.5 Meaning of Declarators

Each declarator is taken as a statement to the conpiler. Wen a

decl arator appears in an expression, it yields an object of the storage
class and type indicated by the declarator. Each declarator contains
exactly one identifier, and it is this identifier that is actually
decl ar ed.

A plain identifier (unqualified in any way) appearing in a declarator has
a type indicated by the type specifier that starts the declaration

A decl arator can appear in parentheses (). Such a declarator is
identical to the plain declarator as nentioned above. However, the
bi ndi ng of nore conpl ex declarators can be altered by parentheses.
If Type is a type specifier, and Cbject is a declarator, the declaration:
Type Object
indicates that bject is declarator of type Type.
For exampl e:
int count;
decl ares count as an object of type int.
The decl arati on:
Type *Qbject
declares Object as a pointer to an object of type Type.
For exampl e:
int *count;
declares that count is a pointer to an object of type int.
The decl arati on:
Type bject()
declares Object as a function returning a value of type Type.
For exampl e:
float fact();

declares that fact is a function that returns a value of type fl oat.

| Copyright IBM Corp. 1985, 1991
355-1

C Language Reference
Arrays

3.5.6 Arrays
Ei t her of the decl arations:

Type Obj ect [constant-expression]

Type Object [] declares that Chject is an array of type Type. In the
first instance, the constant expression is an expressi on whose val ue the
conpi l er can determne at conpile tinme and whose type is int. A

mul ti-di nensional array is specified when nore than one "array of"

speci fications appear

Type Obj ect [constant-expression] [constant-expression]

The constant expression nust be of integral type. For a sinple array, the
size may remmin unspecified. For a nulti-dinmensional array, only the size
of the first dinmension may remain unspecified. This is used in cases
where the array is an external or formal paraneter array, and the actua
storage for the array is allocated sonewhere else in the program

The ot her case where the first constant expression may be omtted i s when
the array declaration is followed by a list of initializers. Wen this
happens, the compiler calcul ates the size of the array fromthe nunber of
initial elements that are actually supplied with the declaration.

The index of the first elenent is zero. An array can be constructed from
any of the basic types, frompointers, fromstructures, from unions, or
from another array, in which a multi-dinensional array is constructed.

The first subscript of each dinension is always zero. The follow ng
exanpl e defines a two-di nmensional array that contains six elements of the
type int:

int roster [3][2];

In multi-dinmensional arrays, when referencing elenents in order of
i ncreasing storage |ocation, the |last subscript varies the fastest. Thus,
the array roster contains the el ements:

roster [0][0]
roster [O0][1]
roster [1][0]
roster [1][1]
roster [2][0]
roster [2][1]

I n single-dinensional arrays, there are two different but equival ent ways
of accessing elenents of an array. The first is sinply to place the array
index or indices in brackets after the array nanme. The second is to use
the array name as a pointer and performpointer arithmetic on it. These
two ways are equival ent because an array reference is a pointer to the
first element in the array, so that the subscript operation [] is
interpreted such that AllI] is equivalent to *(A+l). See "Addition
Qperators” in topic 4.6.3.3 for a further explanation of what A+l neans.

Exanmpl es of array variable references:

#i ncl ude <stdio. h>
#i ncl ude <mat h. h>

main ()

| Copyright IBM Corp. 1985, 1991
3.56-1

C Language Reference

Arrays
{

/* Declare sone array variables */

i nt egress[10] ;

float [lightly[5] [4] ;

char coal [70]

i nt idx, idy;

/* Now reference those variables */

for(idx = 0; idx < 10; idx++)
egress [idx] = 10; /* Set it to a constant */

for(idx = 0; idx < 5; idx++)

for(idy = 0; idy < 4; idy++) {
lightly[idx][idy]= .6;
printf ("%", sin (lightly[idx] [idy]));
}

for(idx = 0; idx < 70; idx++) {
coal [idx]="b"; /[* Wite to standard output */
put char (coal [idx]);

}

putchar('\n");

}

In the case of a multi-dinensional array, if array is the name of an array
of n dinensions, an expression containing a reference to array is
converted to a pointer to an array of n-1 dinmensions. Thus, in the above
context the type of lightly is pointer to array[4] of float, the type of
lightly[I] is "pointer to float", and lightly[I][J] is sinply float.

| Copyright IBM Corp. 1985, 1991
3.5.6-2

O

C Language Reference
Pointers

.5.7 Pointers

poi nter type holds the address of a data object or function, except that
poi nter can never refer to an object having register storage class or to
bit-field object. Some conmobn uses for pointers are:

To pass the address of a variable to a function. By referencing th
address of a variable, a function can change the contents of that
vari abl e.

To access dynami c data structures, such as linked lists, trees, an
queues.

To access el enents of an array or nenbers of a structure

You can use any type specifier in a pointer declaration or definition. An
asterisk (*) precedes the identifier. The follow ng exanple declares
pcoat as a pointer to an object having type doubl e:

doubl e *pcoat;

The foll ow ng exanpl e declares argv as an array of pointers to characters:

extern char *argv[];

Subt opi cs
3.5.7.1 Structures and Uni ons

| Copyright IBM Corp. 1985, 1991
357-1

C Language Reference
Structures and Unions

3.5.7.1 Structures and Uni ons
The formof a struct or union specifier is:

struct or union specifier

+- struct -+ A---------------- identifier ---------------- +
---1 e T + +---
+- union --+ +": +- - - { --- nmenber --- } -+
+- identifier -+ 0 !

S +

A nmenber has the form

menber
Sty declarator ------------------- +
--- type specifier ---] #-------------- + +---
O +-- +--- © --- constant expression -+

| +- declarator -+

A structure is an object that contains a collection of conmponents called
menbers. Each menber can be of any type, including another structure, but
not, recursively, of the parent struct type itself. The nanes of the
nmenbers are defined at the tine that the structure is defined.

A structure defines a sequence of nmenbers, each with a uni que nane, that
are all present sinultaneously. They are stored in sequential nenory
| ocati ons.
A union is simlar in concept to a structure, but a union can, at any
given tinme, contain any one of several different nenbers. A union defines
several ways of |ooking at the sane area in nmenory. Oher than that, the
forms of declaring and referencing structures and unions are the sane.
For exanmple, a basic structure declaration | ooks |ike this:

struct office { list of nmembers };

This declaration states that the identifier office refers to a structure
specifier containing the |ist of nenbers.

The definition of the office structure above can now be filled in:

struct office

{
i nt room num
char roons [9];
i nt phone_ext;
3

This formof the struct or union specifier declares the identifier as a
structure or union tag. This neans that the declaration of the structure
or union does not actually allocate any storage at this tinme, but instead
declares a "tenplate” that nmay be used later, in subsequent declarations
usi ng the second formof the declaration:

| Copyright IBM Corp. 1985, 1991
3.571-1

C Language Reference
Structures and Unions

struct office offl, *off _ptr;

Note that the bracketed list of nenbers is no |onger given once the struct
or union specifier has been decl ared.

The third formof the struct or union specifier does not specify a
structure or union tag. For this form all declarations of objects nust
follow the struct or union specifier, as the struct or union specifier has
no nanme and may not be referenced | ater:

struct {
int num
char * nane;
} data [20];

A struct or union specifier contains declarators for the nenbers of a
structure or a union. A menber of a structure can also consist of a
nunber of bits. Such a menber is called a bit-field. The bit length of a
bit-field is specified by followi ng the nenber nane by a colon (:) and

t he nunber of bits.

The nmenbers declared within a structure have addresses that increase as
their declarations are read fromleft to right. Each nenber that is not a
bit-field always starts on an addressi ng boundary that is appropriate for
its type. Because of this, there nmay be anonynous holes in a structure in
order to get things lined up on correct addressing boundaries.

The follow ng exanple defines the structure type swi tches and the
structure kitchen, which has the type switches:

struct switches {

unsigned light : 1;
unsi gned toaster : 1
i nt count;
unsi gned ac : 4;
unsi gned : 4;
unsigned clock : 1
unsigned : O;
unsigned flag : 1;

} kitchen;

The structure kitchen contains six nmenbers. The foll ow ng describes the
storage that each nenber occupies:

Menber Name St orage QOccupi ed
l'i ght 1 bit
t oaster 1 bit
count the size of int
ac 4 bits
4 bits (unnaned field)
cl ock 1 bit
undefi ned nunmber of bits (unnanmed field)
flag 1 bit

The fields |ight and toaster each require 1 bit of storage. These nenbers
are assigned storage next to each other in the same word. count is stored
in the next word. ac requires 4 bits of storage and is aligned on the
next word boundary. The next bit-field has no name. This unnaned field
uses 4 bits to separate ac and clock. clock is stored in the follow ng

| Copyright IBM Corp. 1985, 1991
3.5.71-2

C Language Reference

Structures and Unions
bit. The unnanmed field with a Iength of O (zero) forces flag to be on the
next word boundary.

Al references to structure fields must be fully qualified. Therefore,
you cannot reference the first field by Iight. You nust reference this
field by kitchen.light. The follow ng expression sets the light field to
1

kitchen.light =1

The foll ow ng expression sets the toaster field to O because only the
first loworder bit is assigned to the toaster field:

ki tchen.toaster = 2

Bit-fields are assigned starting with the loworder bits of the 4-byte
field on the PS/2, and starting with the high-order of the 4-byte field on
the RT. Bit-fields do not cross fromone 4-byte unit to the next, and
thus are limted to a nmaxi numsize of 32 bits. If a bit-field is too
large to fit into the current long word, it is placed starting in the next
| ong word.

Bit-fields may be declared as having type int, signed int, or unsigned
int. However, the conpiler always takes the type of the bit-field to be
unsi gned int.

A colon having only a constant expression after it but no preceding

decl arator specifies an unnaned bit-field that is used to nmake the

al i gnnment of the other menbers in the structure appear in specific places.
The special case of a bit-field wdth of O is used to align the next field
on the next word boundary.

A union can be considered as a structure whose nenbers all start at offset
zero, and whose size is big enough to contain the |argest one of its
menbers. At any tinme, only one of the nenbers can be stored in the union

A structure or a union cannot contain an instance of itself as a nenber.
However, it can contain a pointer to itself as a nenber. In this way,
structures or unions that refer to thenselves (such as a linked list) are
possi bl e.

Wthin a struct or union declaration, the nanmes of nenbers nust be unique.
The sanme nenber nane nmay appear in nore than one struct Or union
decl aration without restriction.

| Copyright IBM Corp. 1985, 1991
3.5.71-3

C Language Reference
Enum

3.5.8 Enum

An enumis an object nmuch Iike an object declared to be an int, except
t hat an enum cont ai ns one of an enunerated set of values. These val ues
are constants which are associated with identifiers in the enum

decl arati on.

enum specifier

oo identifier ------------------- +
--- enum --- I + +- - -
+-- +--- { --- enumconstant --- } --+
+- identifier -+ O :
Fommme oo aaeoo - +

An enum constant has the form

enum const ant

g +
--- identifier ---} +o- !
+- = --- constant expression -+

The enum type specifier declares the enumidentifier for possible |ater
use as a type specifier. It also declares as constants the identifiers in
the list enclosed in

braces { }. These constants take on nunerically ascendi ng val ues,
starting with zero, unless an explicit constant expression sets the
identifier to a specific value. |In this case, the ascendi ng sequence of
val ues for succeeding unspecified identifiers is based on the prior
constant expression as a base. Consider the follow ng exanpl e:

enumcolors { red, green, blue = 12, black };

Obj ects declared to be of type colors would be able to take on the val ues
0, 1, 12, and 13, corresponding to the four constants red, green, bl ue,
and bl ack which are also declared in the enum decl arati on above.

hj ects declared as type enum can be operated on as if they were type int.

It is possible to have duplicated values anong the constant identifiers
declared in a given enumtype specifier. Moreover, objects declared using
an enumtype specifier are not restricted by the conpiler to the val ues
listed in the enum decl aration, although program behavi or may be
unpredictable if an object declared as an enumis set to an unexpected

val ue.

| Copyright IBM Corp. 1985, 1991
358-1

C Language Reference
Void
3.5.9 Vvoid
The void type specifier indicates that the associated identifier has no
val ue. Thus, the nonexistent value of a void expression returns no val ue
(that is, procedures) and allows the conpiler to detect any use of that

function that expects a return value. Variables may not be declared with
void type, but they may be declared as pointers to void.

void specifier

--- void ---)

The fol |l owi ng exanpl e declares buf as a pointer to void:
voi d *buf;
This is the proper way of declaring a generic pointer.

Note: This pointer to void is not a valid type specifier under the RT C
compiler. A char *b pointer is needed to access any data pointed
to by the generic pointer.

Expressions may be cast to void type. A cast expression consists of a
| eft parenthesis (, followed by a type nanme, followed by a right

parent hesis), and an operand expression. The cast causes the operand
value to be converted to the type naned within the parentheses. Any
perm ssi bl e conversion may be invoked by a cast expression.

This is normally done to ignore the return value of a function. An
exanple of this is:

(void) printf ("hello\n");

| Copyright IBM Corp. 1985, 1991
359-1

C Language Reference
Complex Declarators

3.5.10 Compl ex Decl arators
Combi ni ng various declarations is also possible. Wen used in
combi nati on, the declaration can be thought of with the right nost

operati on happening first, unless another order is enforced by additiona
parent heses. Thus the declaration:

Type *Qbject()

declares Object as a function that returns a pointer to an object of type
Type. For exanple:

char *mall oc();
declares a function called nalloc that returns a pointer to an object of
type char. |f parentheses are used to bind the pointer operator directly
to the nane, a different type is constructed. Thus the declaration

Type (*Qoject) ()

declares Object as a pointer to a function that returns an object of type
Type. For exanple:

int (*ItenProc) ();

declares that the ItenProc is a pointer to a function that returns an
obj ect of type int.

In general, it is helpful to read such declarations "fromthe inside out",
obeyi ng the groupi ng suggested by parentheses first, then using a
right-to-left ordering for operators at the sane level. For exanple:

char *(*twisted) ();

is read as "twisted is a pointer (the innernmost *) to a function
(indicated by the () signs) returning a pointer (the leftnost *) to a
character (char)." There are sonme restrictions on the possibilities
indicated by these rules. In particular:

0 Functions cannot return arrays. Functions can, however, retur
pointers to arrays.

O There is no such thing as an array of functions. However, there ca
be an array of pointers to functions.

O A structure or a union cannot contain a function, but can contain
pointer to a function

| Copyright IBM Corp. 1985, 1991
3.5.10-1

C Language Reference
typedef -- Declaring Type Name Synonyms

3.5.11 typedef -- Declaring Type Nane Synonyns

The typedef keyword is used in the context of a storage class, but it has
nothing to do with storage classes. A declaration whose storage class is
typedef actually declares an identifier that can be used later as if it
were a type nane. A type definition has the form

type definition

+--enum specifier----------------------------------- +
---+-- struct or union specifier ---------------------- - ==
| S + |
+- typedef ---| +--- declarator ---+
+- type specifier -+ [|
Fommmm aao - +

t ypedef name

--- identifier ---|

Exanpl e:
t ypedef unsigned *M CA;

nmove (horiz, vert)
M CA horiz, vert;
{

}

This exanpl e shows a typedef defining the word M CA as a synonymfor a
pointer to a value of the unsigned data type. The word M CA can then be
used later, as shown in the declarations in the nove function, to declare
objects of this type.

M CA di st ;

| Copyright IBM Corp. 1985, 1991
3511-1

C Language Reference
Initializing Variables

3.6 Initializing Variabl es

C Language provides for the initialization of nost variables in a
convenient and flexible manner. Even nost auto and register variables may
have an initial value specified. Arrays can be specified in such a way
that the compiler conputes their size fromthe nunber of initial values
suppl i ed

The initial value for a variable is supplied with the declarator for that
variable. The initial values consist of an expression, or a list of

val ues nested within braces { }, all preceded by an equal sign (=). An
initializer has the form

initializer

--- = --- initial expression ---}

An initial expression has the form

initial expression

Fommmmmmmome oo expression ---------------- +
--- +----- + +-- -
+- { --- initial expression ---, +--- } -4
O T

o e e e o n e e aao - +

Al'l the expressions in an initializer for a static or external variable
must be constant expressions or expressions that reduce to the address of
a previously declared variable or function, possibly offset by a constant
expression. The auto and register variables can be initialized by
arbitrary expressions containing constants and previously decl ared

vari ables and functions. Al auto and register variables except arrays
may be initialized.

Not e: Automatic aggregates cannot be initialized on the RT.
An exanple of initialization of a struct is:

struct {

int a, b;

doubl e d;

char C1,C2; }
x={1, 2, 3.4, '5 },;

The nenmbers of the struct are initialized in order with the val ues shown.
Since there is no value present for C2 it is initialized with the val ue
zero, which is "\(

Uninitialized static or extern variables have an initial value of zero
(0). Uninitialized auto and register variables are guaranteed to start
off with undefi ned val ues.

When a scalar type is initialized to a pointer or arithmetic type, the
initializer consists of a single expression that may or may not appear
within braces { }. The initial value of the object is taken fromthe
expression, and the sane conversions are perfornmed as for assignnent.

| Copyright IBM Corp. 1985, 1991
36-1

C Language Reference
Initializing Variables

Wien the variable is a structure, union or an array, the initializer
consists of alist of initializers, separated by commas (,) and encl osed
within braces { }. The initial values are witten in ascendi ng order of
subscript or nenber. |If the structure or array contains other structures
or arrays, each nenber of the aggregate is also initialized according to
the rule just stated. |If there are fewer initializers in the list than
there are nmenbers of the structure or array, the remaining nmenbers are
filled with zeros. |If there are too many, it is nornmally an error. \Wen
a variable is a union, only the first menber can be initialized.

Not e: Uni ons cannot be initialized on the RT

It is an error to attenpt to initialize any array whose storage class is

auto. It is possible to | eave out the internal braces from an
initializer. |If the internal braces are omtted, the nmeaning of the
initializer list changes. |If an initializer starts with a left brace {,

the list of initializers that follows the brace represent initial val ues
for the menbers of the structure or array. Note that it is an error if
there are nore initial values supplied than there are nenbers of the
structure or array.

If the list of initial values does not start with a left brace, only
enough elenents of the list are used to initialize the nenbers of the
structure or array. Any elements left over in the list are then used to
initialize the next nmenber of the structure or array of which the current
one is a part.

Exanpl es:
int tenp = 10;

This is a sinple initialization of the variable tenp. An array can al so
be initialized:

static float logs[4] ={ 2.5, 3.8, 4.9, 10.76 };

This is a completely declared array of four elenents with its initial
val ues. However, the C Conpiler could conpute the size on behalf of the
progranmer if the declaration is stated |like this:

static float logs[] ={ 2.5, 3.8, 4.9, 10.76 },;

In this case, the declaration omts the size of the array, and the
conpil er determines the size fromthe nunber of initial val ues supplied.
Now a two-dinensional array is declared and initialized:

static float stuff [3 3

]

0,
0,
0

) ’

) ’

s

This is a conpletely bracketed initialization of the stuff array. The
first three elenments in the list of initial values initialize the first
row of the array stuff [0]. The next two lines of initial values
initialize the rows stuff [1] and stuff [2]. But, according to the rules
stated previously for omtting the braces { }, it is possible to state
this initialization nore sinply:

® o1 I
QO O™

1 [
{1
{ 4
{7

Cow
o oo
]

static float stuff [3] [3] {

, 3.0,
6.0, 7.0,

2.
, 5.

i o
co—
ool

| Copyright IBM Corp. 1985, 1991
3.6-2

C Language Reference
Initializing Variables

8.0, 9.0 };
Now the conpiler takes the first three elements fromthe |ist and assigns
themto stuff [0] [O] through stuff [0] [2], the next three elenents are

assigned to the second row of the array, and the last three elenents to
the third row of the array.

Exanpl e:
uni on data {

char charctr;
i nt whol e;

} input = {"h},;
This initializes the first nenber, charctr, of input to character h.

Subt opi cs
3.6.1 Initializing Strings

| Copyright IBM Corp. 1985, 1991
3.6-3

C Language Reference
Initializing Strings

3.6.1 Initializing Strings

Initialization of strings is made conveni ent by a shorthand notation that
sinply places successive characters of the array adjacent (no comras in
the list) and enclosed in double quotation marks ("). Therefore, the
decl arati on:

static char greet[] = "Hello";

is a conpact way of stating the nore clunsy version of the sane
decl arati on:

static char greet[] ={ "H,'e,"I","I", "0 ,"\0" },;

Al so note that the declaration:

static char hi[5] = "Hello";
can be used to initialize the five character array hi. There will be no
final \0 stored. If an array bound is given, and exactly that nmany

characters are supplied, only the supplied characters are stored.

| Copyright IBM Corp. 1985, 1991
36.1-1

C Language Reference

Type Names
3.7 Type Nanes
type nane
e +
--- type specifier ---| +---

+- abstract declarator -+

A type nane is the data type name of an object, divorced fromthe actual
identifier that names the object itself.

The type name construct is used in three contexts in the C |anguage:
O In type conversions where a cast is require
O As an argunent to the sizeof operator

O In function prototype paraneter declarations

| Copyright IBM Corp. 1985, 1991
3.7-1

C Language Reference
Lifetimes of Variables

3.8 Lifetines of Variables

In an executable C program each variable has a predetermned lifetine
depending on its storage class and | ocation of declaration. These
lifetimes are di scussed here.

Subt opi cs

3.8.1 Automatic and Regi ster Variabl es
3.8.2 Static and External Variables
3.8.3 Formal Argunents

| Copyright IBM Corp. 1985, 1991
3.8-1

C Language Reference
Automatic and Register Variables

3.8.1 Automatic and Regi ster Vari abl es

The lifetinme of an auto or register variable is that of the function or
compound statenent in which it is declared. Allocation occurs on each
entry to that function or conpound statenent, and de-allocation occurs on
each exit fromthat function or conmpound statenent.

| Copyright IBM Corp. 1985, 1991
381-1

C Language Reference
Static and External Variables

3.8.2 Static and External Variables

Static or external variables are those variables declared either outside
any function or conpound statenment (that is, at the level of the
conpilation unit), or declared inside a function or conpound statenent,
but given the static or extern storage class. The lifetinme of a static or
external variable is the lifetine of the program

| Copyright IBM Corp. 1985, 1991
3.82-1

C Language Reference
Formal Arguments
3.8.3 Formal Argunents
The lifetime of a formal argunment is the lifetinme of the function in which
that formal argument is declared. The formal argunment becomes established
upon each entry to the function, and becones undefined upon exit fromthe
functi on.

| Copyright IBM Corp. 1985, 1991
3.83-1

C Language Reference
Implicit Declarations

3.9 Inplicit Declarations

VWhen declaring identifiers, it is not always necessary to declare the
storage class or the type of the identifier. |In many cases, the C
conmpiler can infer the storage class fromthe context in which the
identifier is declared.

For exampl e, any function declared at the external |level is automatically
assunmed to have the extern storage class. See the notes pertaining to the
use of extern on page 3-3 for nore details.

Inside a function, an identifier is automatically assunmed to have the auto
storage class. Note that this rule does not apply to the function

decl arations thensel ves, since functions can never have the auto storage
class; they are automatically given the extern storage class.

Formal argunents of functions are also given the auto storage class by
default. Simlarly, an identifier without a specified type is given the
type int.

Wthin a function, a previously undeclared identifier that is followed by
a left parenthesis (and appears in the context of an expression is
assunmed to be an extern function returning a value of type int.

| Copyright IBM Corp. 1985, 1991
39-1

C Language Reference
Name Spaces

3.10 Nanme Spaces

In any C program identifiers refer to many itens. You use identifiers
for functions, variables, paraneters, union menbers, and other itens. C

| ets you use the sane identifier for nore than one class of identifier, as
long as you follow the rules outlined in this section

Name spaces are categories used to group simlar types of identifiers.

The C conpil er sets up nanme spaces to distinguish anmong cl asses of
identifiers. You nust assign unique names within each nane space to avoid
conflict. The same identifier can be used to declare different objects as
long as each identifier is unique within its nanme space. The context of
an identifier within a programlets the conpiler resolve its class w thout
ambi gui ty.

Identifiers in the sane nane space mnmust be distinct from one another

Wthin each of the follow ng four nanme spaces, the identifiers must be
uni que:

0 Goup 1 - These identifiers nust be unique within a single scope

- Functi on nanes

- Vari abl e nanes

- Nanes of paranmeters of a function
- Enurer ati on constants

- t ypedef nanes.

O Goup 2 - These identifiers nust be unique within a single scope
- Enuner ati on tags
- Structure tags
- Uni on tags.

0 Goup 3 - These identifiers nust be unique within a single aggregate

- Structure menber
- Uni on nenber.

0 Goup 4 - These identifiers have function scope and nust be uni qu
wi thin a function.

- St at enent Label s
Structure tags, structure nenbers, and variable nanes are in three

di fferent nam ng classes; no conflict occurs between the three itens naned
student in the follow ng exanpl e:

struct student [* structure tag */
{
char student[20]; [* structure nenber */
i nt class;
int id;
} student; /* structure variable */

The conpiler interprets each occurrence of student by its context in the
program For exanple, when student appears after struct, it is a
structure tag. Wen student appears after either of the nenber selection
operators (.) or (->), the name refers to the structure nenber. In
ot her contexts, the identifier student refers to the structure variable.

| Copyright IBM Corp. 1985, 1991
3.10-1

C Language Reference
Scope

3.11 Scope

An object is visible in a block or source file if the data type and the
decl ared nanme of the object are known within the block or source file.

The region where an object is visible is referred to as the object's
scope. The four kinds of scope are: function, file, block, and function
prototype. The scope of an identifier is determned by the |ocation of
the identifier's declaration. An identifier has block scope if its
declaration is located inside a block. An identifier with block scope is
visible fromthe point where it is declared to the closing brace (})
that term nates the bl ock

The only type of identifier with function scope is a |abel nanme. A |abel
is inplicitly declared by its appearance in the programtext. A goto
statenent is used to transfer control to the | abel specified on the goto
statenent. The label is visible to any goto statenent that appears in the
same function as the | abel

An identifier has file scope if its definition appears outside of any
bl ock. An identifier with file scope is visible fromthe point where it

is declared to the end of the source file. |If there are source files
i ncl uded by neans of preprocessing directives, the identifier will be
visible to all included files that appear after the definition of the

identifier. An identifier has function prototype scope if its declaration
appears within the list of paraneters in a function prototype. An
identifier with function prototype scope is visible fromthe point where
it is declared to the terminating senmicolon (;) of the prototype

declaration. Identical identifiers declared in different source files
wi thout the storage class static can refer to the sane object or function.
This is called external linkage. In Figure 3-1 the variable b is declared

in both Source File 1 and Source File 2 as extern and refers to the sane
data object. By default, c is also an extern vari abl e.

If the first declaration of an identifier contains the keyword static, it
has internal |inkage. Wthin the source file, each variable with interna
| inkage refers to the sane object or function. |In Figure 3-1 al
references to the variable a in Source File 1 refer to the sane data
object. The variable a in Source File 2 refers to a different data object
than a in Source File 1.

Source File 1 Source File 2

static int a = 1; [F+-----------mmmmmmma oo + static int a;

I I
I I
I I
I I
I I
I I
I I
| :
I

pint b = 1; I + extern int b; i
| | i |
I I I I
i main () | i nyfunc () |
o | b l
: | l l
: a = 5; | l l
: | l l
P} : L) l
Fom e e e eooo o + o e e e e oo a oo +

Figure 3-1. Exanple of External and Internal Linkage

| Copyright IBM Corp. 1985, 1991
3.11-1

C Language Reference
Scope

Vari abl es decl ared or defined at the external |evel are visible fromthe
poi nt at which you declare or define themto the end of the source file.
Variables with a static storage class at the external |evel are visible
only within the source file in which you define them 1In general,

vari abl es declared or defined at the internal level are visible fromthe
poi nt at which you first declare themto the end of that block. These
vari ables are |ocal variables. |If a variable declared inside a block has
the sanme nane as a variable declared at the external |evel, the bl ock
definition replaces the external-level definition to the end of the block
The conpiler restores the visibility of the external-1level variable when
the current point of execution |eaves the bl ock

You can nest block visibility. This neans that a block nested inside a
bl ock can contain declarations that redefine variables declared in the
outer block. The new definition of the variable applies to the inner
block. Crestores the original definition when the current instruction
returns to the outer block. A variable fromthe outer block is visible
i nside inner blocks that do not redefine the variable. Functions with
static storage class are visible only in the source file in which you
define them Al other functions are globally visible. The follow ng
programillustrates blocks, nesting, and visibility of variables.

In this exanple, there are four levels of visibility: the external |evel
and three block |evels. Assum ng that you have defined the function
printf elsewhere, the main function prints the values 1,2,3,0,3,2,1

Exanpl e:
int i =1 /* i defined at external |evel */
main ()
{
printf("%\n", i); [* Prints 1 */
{
int i =2,] =3 /* i and | defined at
internal |evel */
printf("%\n%l\n", i, j); [* Prints 2, 3 */
{
int i =0; /[* i is redefined */
printf("%\n%l\n", i, j); [* Prints 0, 3 */
}
printf("%\n", i); [* Prints 2 */
}
printf("%\n", i); [* Prints 1 */
}

| Copyright IBM Corp. 1985, 1991
3.11-2

C Language Reference
Chapter 4. Expressions

4.0 Chapter 4. Expressions

Subt opi cs

1 CONTENTS

2 About This Chapter

3 Expressions

4 Conversions

5 Qperators in Expressions
6 Summary of COperators

e

| Copyright IBM Corp. 1985, 1991
40-1

C Language Reference
CONTENTS

4.1 CONTENTS

| Copyright IBM Corp. 1985, 1991
41-1

C Language Reference
About This Chapter

4.2 About This Chapter

Thi s chapter describes C expressions which are used to derive new data
val ues.

| Copyright IBM Corp. 1985, 1991
42-1

C Language Reference
Expressions

4.3 Expressions

Cis an expression | anguage. This neans that operations, such as
assi gnnment, can be part of expressions.

Expressi ons consi st of variables, constants, operators, and functions
operating on specified objects to produce new val ues. New val ues are
obt ai ned by eval uati ng expressions. These new y-created val ues can then
be used in assignnent statenents or can be used (in conditiona
expressions) to control subsequent program actions.

An expression is a construct that defines the rules of conputation for
creating a value by performng operations (specified by operators) on
operands (specified by variables, constants, and function references).
Operands of expressions are either declared in the programor are standard
Centities. Ccontains a fixed set of operators that define a mapping
fromgiven operand types into result types.

expressi on

+--- primary expression ---+
+---- unary expression ----
+--- binary expression ----

---+- conditional expression -+---
+- assi gnnent expression --|

I
+--- conmma expression ----- |
Hoomoo--- lvalue ---------- i
+-- constant expression ---+

| Copyright IBM Corp. 1985, 1991
43-1

C Language Reference
Conversions

4.4 Conver sions

When an expression is being evaluated, it is sonetines necessary for an
operand value to be converted to a different type. This section describes
the conversion rules in effect during expression eval uation.

Subt opi cs

4.4.1 Integers, Shorts and Characters
4. 4.2 Float and Doubl e

4.4.3 Floating and Integral

4.4.4 Pointers and Integers

4.4.5 The Usual Arithnetic Conversions

| Copyright IBM Corp. 1985, 1991
44 -1

C Language Reference
Integers, Shorts and Characters

4.4.1 Integers, Shorts and Characters

The types int, short and char forma group of conpatible integer types of
varying precision. By default, the types int and short are treated as
signed, and char is treated as unsigned. Each type may al so be either
signed or unsigned. For the nost part, a value of one type in this group
may be used anywhere a val ue of another type may be used. Wen the
precision required differs fromthat of the expression present, the value
of the expression is nodified to nmeet the required precision.

Several sinple rules govern this nodification process:

O Wen converting froma longer formto a shorter form the excess nos
significant bytes are sinply discarded, and the | east significant
bytes are used as the resulting value. |If the original value cannot
be represented by the target type, the result is pre-defined, and may
not be what the user expected. For exanple, assigning the int value
256 to a char variable gives it the value of 0, and assigning the int
value -1 to an unsigned short gives it the val ue 65535.

O Values of the sane size are used unaltered. Again unsigned and signe
guantities may yield surprising results when the original value cannot
be represented in the target type.

0 Wien values of the smaller size are changed to values of a |arge
size, sign-extension is perfornmed when the original type is signed and
zero fill is done when it is unsigned, independent of the target type.
The only potentially surprising results fromsuch treatnment is that
the conversion of negative signed values to unsigned values results in
a very large nunber instead of a negative one. This is unavoidable
since there is no representation of negative values in unsigned types.

| Copyright IBM Corp. 1985, 1991
441-1

C Language Reference
Float and Double

4.4.2 Float and Doubl e

Fl oati ng-point arithmetic is carried out in "single precision" (float)
unl ess one of the operands of the operation is double precision.

When a val ue of type double is converted to type float, it is rounded to
float with associated normal |oss in precision.

| Copyright IBM Corp. 1985, 1991
442-1

C Language Reference
Floating and Integral

4.4.3 Floating and Integra

The int values are converted to double with no |oss of precision. The int
val ues are converted to float with no | oss of precision unless the int
contained nore digits than are accurately representable in float.

Wien a double (float) value is converted to an int, the double (float) is
truncated at the decimal point. It is possible that the resulting int
will contain an incorrect value if the double value was outside the range
of integers. The result is always the mnimum val ue representabl e by int
when the value is out of range, nanely -2147483648. |f such an

out -of -range floating-point value is assigned to a short int, the result
will be zero, the value of the |owest 16 bits of -2147483648.

Note: On the RT, if the double is greater than 2147483647, the result
will be 2147483647.

Conversion of unsigned int to double (float) is the sane as first
converting the unsigned int to an int and then converting the resulting
int value to a double. This neans that if the nost significant bit of the
unsigned int was a 1, the resulting double will be negative.

Note: On the RT, unsigned int is converted directly to double or float.

| Copyright IBM Corp. 1985, 1991
443-1

C Language Reference
Pointers and Integers

4.4.4 Pointers and |Integers

A value of type int or of type |ong may be added to or subtracted froma
pointer, and two pointers to objects of the sane type may be subtracted.
See "Addition Operators" in topic 4.6.3.3 for the rules that apply in

t hese cases.

| Copyright IBM Corp. 1985, 1991
444-1

C Language Reference
The Usual Arithmetic Conversions

4.4.5 The Usual Arithnetic Conversions

This section describes what is called the usual arithmetic conversions.
Such a term neans that many operators convert their operands according to
simlar rules. The termusual arithnetic conversions will appear in many
subsequent discussions in this manual.

O If either operand is of type double, the other operand is converted to
type double and the result of the operation is also of type double.

O Oherwise, if either operand is of type float, the other operand is
converted to type float.

O herwi se, the integral pronotions are perfornmed:

O Operands of type signed char or short are converted to type int.

0 Operands of type char or unsigned short are converted to type int.

After these conversions, the follow ng rules apply:

O If either operand is of type unsigned int, the other operand is
converted to type unsigned int and the result of the operation is also

of type unsigned int.

O Oherw se, both operands nust be of type int, and the result of the
operation is also of type int.

| Copyright IBM Corp. 1985, 1991
445-1

C Language Reference
Operators in Expressions

4.5 QOperators in Expressions

Operators performoperations on a value or a pair of values to produce a
new value. This section describes the different operators that can be
applied in expressions. The ordering of the subsections is in the sane
order as the precedence of the operators discussed in this section.
Operators of the highest precedence are described first.

Wth the exception of the & (take the address of) operator, an operation
on a variable or field that has an undefined val ue produces an undefi ned
result. Normally there is no indication when this happens. The follow ng
table lists the operators. They are described in detail later in this
chapter.

| Copyright IBM Corp. 1985, 1991
45-1

C Language Reference
Summary of Operators

4.6 Summary of Operators

e e e e e e ee e e mcmmmmeasmmmeasmemmmesmememmmemmm e e e, e e m———-——a
i Operat or i Meani ng . Associativity,
o e e e e oo o m e m e e e e e eaoaoao- o m e e e oo
| @) | Application of function | left to

| i | right

o e e e e oo o m e m e e e e e eaoaoao- o m e e e oo
| [1 i Indexing an array | left to

| i | right

o e e e e oo o m e m e e e e e eaoaoao- o m e e e oo
| -> | Menber of struct or I left to

l ! union ! right

o e e e e oo o m e m e e e e e eaoaoao- o m e e e oo
| i Menber of struct or I left to

| ! union I right

o e e e e oo o m e m e e e e e aaoaoao- o m e e e oo
: | |

o e e e e oo o m e m e e e e e aaoaoao- o m e e e oo
| ! | Negation of expression | right to

: : I left

o e e e e oo o m e m e e e e e aaoaoao- o m e e e oo
| ~ | Bitwi se ones conplenent | right to

! ! | left

o e e e e oo o m e m e e e e e aaoaoao- o m e e e oo
! ++ ' | ncrenent i right to

: : I left

o e e e e oo o m e m e e e e e aaoaoao- o m e e e oo
| -- | Decrenent | right to

! ! | left

o e e e e oo o m e m e e e e e aaoaoao- o m e e e oo
| - i Unary m nus | right to

! ! | left

o e e e e oo o m e m e e e e e aaoaoao- o m e e e oo
| + i Unary plus | right to

: : I left

o e e e e oo o m e m e e e e e aaoaoao- o m e e e oo
i (type) | Type casting | right to

: : I left

o e e e e oo o m e m e e e e e aaoaoao- o m e e e oo
| * | Dereference | right to

: : I left

o e e e e oo o m e m e e e e e aaoaoao- o m e e e oo
| & | Address of | right to

! ! | left

o e e e e oo o m e m e e e e e aaoaoao- o m e e e oo
. sizeof I Obtain size of object I right to

' ' I left

I | |

o e e e e oo o m e m e e e e e aaoaoao- o m e e e oo
: | |

o e e e e oo o m e m e e e e e aaoaoao- o m e e e oo
| * i Multiply | left to

| i | right

o e e e e oo o m e m e e e e e aaoaoao- o m e e e oo
| / i Divide | left to

| i | right

o e e e e oo o m e m e e e e e aaoaoao- o m e e e oo
| % | Renmai nder | left to

| i | right

o e e e e oo o m e m e e e e e aaoaoao- o m e e e oo

| Copyright IBM Corp. 1985, 1991
46-1

C Language Reference

Summary of Operators

Greater than

Greater than or equal to

Logi cal connective AND

Logi cal connective OR

Mul ti ply and assign

left to
ri ght
left to
ri ght
left to
ri ght
left to
ri ght

left to
ri ght
left to
ri ght
left to
ri ght
left to
ri ght
left to
ri ght
left to
ri ght

| Copyright IBM Corp. 1985, 1991

46-2

C Language Reference
Summary of Operators

: : I left |
RS e T '
| /= i Divide and assign | right to '
: : I left |
RS e T '
| % i Renmui nder and assign | right to '
: : I left |
RS e T '
! <<= | Shift left and assign | right to |
' ' I left |
I | | |
RS e T '
! >>= i Shift right and assign | right to |
I I I I eft I
I | | |
RS e T '
| &= | AND and assign | right to |
: : I left |
RS e T '
| N= i Exclusive OR and assign | right to '
I I I I eft I
I | | |
RS e T '
| = i Inclusive OR and assign | right to '
I I I I eft I
I | | |
RS e T '
: , | Expression separator | I_eft to |
: | i right i
RS e T '
I I I I
I | | |
o o o o o o o e mmeme—aoo- +
Note: Some operators (*, +, -, & have a higher unary precedence than
bi nary.
Subt opi cs
4.6.1 Primary Expressions
4.6.2 Constants
4.6.3 Unary Qperators

| Copyright IBM Corp. 1985, 1991
46 -3

C Language Reference
Primary Expressions

4.6.1 Primary Expressions
Primary expressions involving the foll ow ng operators group left to right:
t he nmenber of operator
-> t he nmenber of operator
[] subscripting
() function references

primary expression

+- identifier ------------------------"----------------- +
o (mmmmmeemeee e expression -----------------) -
| o e e e oo o + |
+- primary expression --- (--- +o-- -
| +--- expression ---+ i
0 | oo
| +----- e + |
+- primary expression --- [------- expression ------- 1 -
+- primary expression --- . ------- identifier ----------- |
+- primary expression --- -> ------ identifier ----------- |
+- constant -------------------oooooooooooo oo +
| val ue
+- identifier -----------------------------------o o +
+- primary expression --- [------------------ expression ---] -j
---+- lvalue---------------- B identifier ------- +-- -
+- primary expression --- -> ----------------- identifier -------
Fo K e unary expression ---------------------- |
S (R lvalue ---------) "ccmmmmmmmmmmmmmme- +

The paragraphs follow ng contain descriptions of the properties of the
di fferent objects that nmay appear in expressions and include exanpl es of
the way these el enments are referenced, where appropriate.

Subt opi cs
4.6.1.1 ldentifiers
4.6.1.2 Constant Expressions

| Copyright IBM Corp. 1985, 1991
46.1-1

C Language Reference
Identifiers

4.6.1.1 Ildentifiers

An identifier is a primary expression. The type of an identifier is as
specified by its decl arati on.

A variable of sinple scalar type is accessed by its identifier. Since

such a sinple variable has no structure, its identifier alone is enough to
reference it.

Exanpl es of sinple variable references:

#i ncl ude <stdio. h>
#i ncl ude <mat h. h>

mai n()

{ |
/* Declare sone sinple variables */
i nt egress;
float lightly=1.3;
char coal =" A" ;
/* Now reference those variables */
egress = 10; /* Set it to a constant */
/* Pass it as an argunent */
printf("%", sin(lightly));
/[* Wite it to the standard out put */
put char (coal);
putchar('\n");

}

If the type of the identifier is an array, then the value of the
expression is a pointer to the first elenent in the array and the type of
the expression is a pointer to the type of object in the array. |If the
identifier is a function not followed by a | eft parenthesis, (, then the
value of the identifier, and the type of the expression, is the address of
the function. The type of the expression is also a pointer to the
function returning the type specified by the identifier function.

| Copyright IBM Corp. 1985, 1991
46.1.1-1

C Language Reference
Constant Expressions

4.6.1.2 Constant Expressions

A constant expression in C consists of constant operands together wth
operators listed below. Parentheses () may be used to alter the
precedence of operators. The sizeof construct is considered a constant of
type int. A constant expression has the form

const ant expression

F- CONSt ANt =--------mmmmmmmmm oo +
! one of |
R + const ant |
+-- - Ho- - @XPresSSiOn -----------moiomeoo oo |
o~ | |
oo + : one of i
Lo ! Fommeoeos + l
i1 (type) L % |
i 1 sizeof | l + - | |
I + ! << >> ! !
| const ant < > <= >= | const ant |

---+- expression ---; == |+ +--- expression --------------------- +o-
| | & l |
I I | I I
I | I |
1 1 A 1 1
I | I |
| | && I |
I I || I I
I | I |
| SRS + |
| const ant const ant const ant i
+- expression --- ? --- expression --- : --- expression ---------- |
! const ant |
- (--- EXPresSion ---) s-e-m-o-sooo-oooooooooooooo |
+- sizeof --- (--- type name ---) ------------------o-----oooo- +

The operators allowed are:

Bi nary Operators
+ -] %B&| N <<>> ==1=<><=>= || &&

Unary Operators

->[] &~ + ! sizeof (type) sizeof <expression> (type)

(Condi tional) Ternary Operator

?:

There are places in a C program where the conpiler requires that
expressions evaluate to a constant. These places are:

0 After a case in a switch statenent
0 At the bounds of an array when the array is declare
O Ininitializers for certain variable

O Bit-field width

| Copyright IBM Corp. 1985, 1991
46.1.2-1

C Language Reference
Constant Expressions

O Enuneration constants

In the case and array bounds situations, the expressions can only use
i nteger constants, character constants, enumeration constants, and sizeof
expr essi ons.

In the case of initializers, the rules are nore relaxed. The constant
expressions as defined above can be used, and in addition, the unary (&)
operator can be applied to extern or static objects, to nmenbers of extern
or static structures or unions and to extern or static arrays subscripted
with a constant expression. The unary (&) can also be applied
inplicitly by the appearance of unsubscripted arrays or functions. |In al
cases, an initializer nust eventually evaluate to either:

0 A constan

0 The address of a previously declared extern or static object plus or
m nus a constant.

| Copyright IBM Corp. 1985, 1991
46.1.2-2

C Language Reference
Constants

4.6.2 Constants

A constant is a primary expression. The type of the constant may be int,
long, float, or double, depending on its form Integer constants have
type int. Long constants are type long int. Floating-point constants are
either of type double or float. Character constants are considered to be
of type int.

Subt opi cs

4.6.2.1 Strings

2.2 Parent hesi zed Expressions
2.3 Menmber References

2

4. 6.
4. 6.
4.6.2.4 Function References

| Copyright IBM Corp. 1985, 1991
46.2-1

C Language Reference
Strings
4.6.2.1 Strings
A string is a primary expression. Since the type of a string is assuned
to be of type array of char, the result of the expression is actually a
pointer to char and the value is a pointer to the first character in the
string.

| Copyright IBM Corp. 1985, 1991
46.2.1-1

C Language Reference
Parenthesized Expressions

4.6.2.2 Parenthesi zed Expressions

A parent hesi zed expression is a primary expression whose type and val ue
are the sane as that of a plain expression without the parentheses. The
presence of the parentheses does not affect whether the expression is an

| val ue. However, brackets do affect the order in which operations are
done. For exanple, *AlI] would mean use the |th element of A as a pointer
to the value desired, but (*A) [I] would nean use A as a pointer to an
array, and use the value of the Ith element of that array.

| Copyright IBM Corp. 1985, 1991
46.22-1

C Language Reference
Member References

4.6.2.3 Menber References

A primary expression followed by a dot (.) followed by an identifier is
an expression. The first expression nust have struct or union type. The
identifier normally nust nane a nenber of that struct or union. The
result of the expression refers to the named nmenber of the struct or
union, and its type is the type of that nenber. The expression is an
[value only if the struct or union expression preceding the dot (.) is
an | val ue.

A primary expression followed by a (->) sign followed by an identifier is
al so an expression. The first expression nust be a pointer to a struct or
union. The identifier normally must be the nane of a nenber of that

struct or union. The result of the expression is an |value that refers to
the nanmed nmenber of the struct or union and its type is the type of that
menber. The operator (->) is just a shorthand for a conbination of the
unary (*) operator with the (.) operator; therefore, a->b is
equivalent to (*a).b.

There are five operations that nmay be done on a structure or a union

0 Referencing a menber of the structure or union by neans of the (.)
or (->) operators.

0 Taking the address of the entire structure or union by using the (&)
operator.

O Finding the size of a structure or union by using the sjzeof operator.

0 Passing (by value) the entire structure or union as an actua
paraneter to a subroutine.

0 Assigning the entire structure or union to another simlarly type
variable with a normal assignnment statenent.

The (.) operator is used in contexts where the structure or union
identifier is available directly to the expression. The (->) operator
is used when the identifier for the structure or union is a pointer to the
obj ect.
Exanpl es of accessi ng nmenbers of structures:

#i ncl ude <stdi o. h>

struct record

{
i nt nunber;
struct record *next_num
i
mai n()
{

struct record nanel, nane2, nane3;
struct record *recd_pointer = &nanel;
int sum= 0;

nanmel. nunber = 144;
name2. nunber = 203;
nane3. nunber = 488;

| Copyright IBM Corp. 1985, 1991
46.23-1

C Language Reference
Member References

nanmel. next _num = &nane2;
name2. next _num = &nane3;
nanme3. next _num = NULL;

while (recd_pointer !'= NULL)
{

sum += recd_poi nt er - >nunber ;
recd_pointer = recd_pointer->next_num

}

printf("sum= %\n", sun);

| Copyright IBM Corp. 1985, 1991
46.2.3-2

C Language Reference
Function References

4.6.2.4 Function References

A function call is a primary expression. The function call mnust be
foll owed by parentheses () containing a possible enpty |ist of actua
argunments to the function. The primary expression nmust be of the type:

function returni ng w dget
and the result of that function reference is of type:
w dget

A previously undeclared identifier followed inmredi ately by a | eft
parenthesis (is declared to be an extern function returning int.

When a function call is nade, the conpiler perforns sone automatic
conver si ons:

O Any actual argunents of type float are converted to double before the
function call is nade.

0 Actual argunents of type char or short are converted to type int
before the call is nmade.

0 Array nanes are converted to pointers
0 Function nanes are converted to pointers

Types get inmplicitly converted if a prototype exists before the function
call. If function prototyping is used and the types of the argunents do
not match the types of the formal paraneters indicated by the prototype,
the argunents being passed are converted to the types of the paraneters

i ndicated by the prototype. |[If any argunent cannot be converted, an error
occurs. Also, if a function prototype exists, the nunmber of passed
argunments to the function nust equal the nunber of paranmeters specified in
the function prototype, or an error occurs. See Chapter 6, "Functions,"
for a full discussion of function prototypes.

Exanpl e:
doubl e atan2(doubl e y, double x);
main ()

{
printf ("Arc tangent of y/x=%\n", atan2 (1,1));

}

In this exanple, both argunents to atan2 are converted to type doubl e
before they are passed.

Not e: Function prototypes are not supported on the RT.

The di scussion on function declarations is covered in detail in Chapter 6,
"Functions."

There are only two operations that nay be perfornmed on a function:
O Invoking the function as part of an expressio

0 Taking the address of the function

| Copyright IBM Corp. 1985, 1991
46.24-1

C Language Reference
Function References
If a function nane is followed by a |left parenthesis (, it is assuned to
be a function reference. |If a function nane appears and is not foll owed
by a left parenthesis, a pointer to the function is generated.

Exanmpl e of function reference:

int acker(m n)
int m n;
{

if (m==0)
return(n + 1);
else if (n == 0)
return(acker(m- 1, 1));
el se
return(acker(m- 1, acker(m n - 1)));

Exanmpl e of passing functions:

d oseCGen(Type)
char Type;
{

int CoseBlock(), CoselList();

if (Type == "'Db")

O oseEnv(d oseBl ock) ;
else if (Type =="'1")

O oseEnv(d oseli st);
el se

printf("Di saster\n");

}

Thi s exanpl e shows the declaration of some functions that are passed as
argunments to another generic function, depending on the value of sone
vari abl e.

| Copyright IBM Corp. 1985, 1991
4.6.2.4-2

C Language Reference
Unary Operators

4.6.3 Unary QOperators

Unary operators appear to the right or left of an expression and are
consi dered to have a single operand. A unary expression has the form

unary expression

one of
S +
+-- + +--- unary expression ----------------- +
Lo - : :
b ! : :
1 1 - 1 1
1 1 1 1
Lo & :
1 ! * 1 1
1 1 1 1
I | sizeof | |
| + |
| one of |
N |
a T lvalue --------------------------- |
1 ! 1 1
1 1 T 1
| +--- -+ one of
| oo |
---+--- lvalue------ |t e +e- -
: RN l
L LR | |
+--- sizeof --------------- unary expression ------ l
+-- sizeof -------- (--- type nane ---) --------- I
+--- (--- type nane ---) --- unary expression ---;
t--- primary expression --------------------------- +
type name
o m e m e e e e oo +
--- type specifier ---| +---

+- abstract declarator -+

I ndirection
The (*) operator neans indirection. The expression to the right
of the (*) operator nmust be a pointer. The result of the
operator is an |value that refers to the object to which the
poi nter points.
If the type of the expression is:
poi nter to w dget
then the type of the result is:
w dget

Exanmpl es of pointer references:

#i ncl ude <stdio. h>
#i ncl ude <mat h. h>

mai n()

| Copyright IBM Corp. 1985, 1991
46.3-1

C Language Reference
Unary Operators

/[*Decl are sone pointer variables */
int *egress, egr;

float *lightly, lgt =1.3;

char *coal = "A"

/* Initialize the pointer variables */
egress = &egr;
lightly = & gt;

/* Now reference those variabl es */
egress = 10; / Set it to a constant */

/* Pass it as an argunent */
printf("%", sin(*lightly));

/[* Wite it to the standard out put */
put char (*coal) ;
putchar('\n");

}

As nentioned previously in the discussion on array referencing,
an array nane can be used with the (*) operator to access
el enents of an array by pointer arithnetic.

Exanpl e of array referencing with the * operator:

i nt egress[100]; /* Declare an array variable */
int idx;
/[* Initialize the array to zeros */
for (idx = 0; idx < 100; idx++)
*(egress+idx) = 0;

In this exanple, note that the [val ue expression is enclosed in
parentheses (). This is because the (*) operator is
eval uated before the (+) operator unless they are present.

*(egress+i dx)

Addr ess Eval uati on

Exanpl es:

&G zno

The (&) operator generates the address of the object referred
to by the |value to the right of the operator. |[If the type of
the Ivalue is:

w dget
the type of the result by applying the (&) operator is:

poi nter to w dget
The (&) operator can be applied to any |val ue except objects
W th the register storage class and bit field menbers of
structs. This includes non-bit field nmenbers of structs,

menbers of unions, arrays and array elenments, functions, and any
vari abl e.

generates the address of a variable named G zno

| Copyright IBM Corp. 1985, 1991
46.3-2

C Language Reference
Unary Operators

&Book_Case[shel f] generates the address of the shelf elenent of the array
Book Case.

&based- >val ue generates the address of the nenber value of the struct or
union that the identifier based points to.

Unary Pl us
The unary plus operator (+) maintains the value of the
operand. The expression must be nuneric. The usual arithnetic
conver si ons apply.

Not e: The unary plus operator is not supported on the RT.

Unary Negati on
The unary negation operator (-) generates the negative of the
expression to its right. The expression nust be numeric. The
usual arithnetic conversions apply.

Logi cal Negation
The | ogi cal negation operator (|) generates a zero value if
the val ue of the expression to its right is nonzero, and
generates a value of 1 if the value of the expression to its
right is zero. The type of the result of the operator is int.

The (!) operator can be applied to any nuneric type and to
poi nters.

Logi cal Ones Conpl enent
The | ogi cal ones conpl ement operator (~) generates the ones
conpl ement of the expression to its right. The usual arithmetic
conversions are perforned on the operand. The type of the
operand nust be integral.

I ncrement and Decr enent
The increnment and decrement operators, (++) and (--), may be
applied to their operands either as prefix or as postfix
operators. The types accepted include all nuneric types
(including float, double, |ong double) and pointer. The
operands nust be |values. The result of the operation is not an
| val ue.

When either the (++) or the (--) operators are applied as prefix
operators, the object that the |value refers to is increnmented
or decremented. The value of the resulting expression is the
new i ncrenented or decrenented val ue.

When either the (++) or the (--) operators are applied as
postfix operators, the result is the original value of the
object referred to by the [value. After the result of the
expressi on has been noted, the object is incremented or
decremented. The type of the result is the same as the type of
the | val ue expression.

When applied to a nuneric object, that object is incremented or
decrenented by one. Wen applied to any object of type pointer
that object is incremented or decrenmented by the size of the
type of the object that it points to. Thus if pis type pointer
to double, the p++ increnents p by the size of a double, which
is 8.

| Copyright IBM Corp. 1985, 1991
46.3-3

Cast

Si zeof

C Language Reference
Unary Operators

Exanpl es:
int a,b,c,d,e;
a = 6; * Set up a */
b = ++a; /* b becones 7; a becones 7 */
c = --4a; /* ¢ becones 6; a becones 6 */
d = a++; /* d becones 6; a becones 7 */
e = a--; /* e becones 7; a becones 6 */
These exanples illustrate the use of the increment and decrenent

operators, showing the results generated by the prefix and
postfix forms.

A type cast is used to specify an explicit conversion of an
expression to a specific type. The unary expression being
converted as well as the parenthesized type nane, nust have
nuneri c or pointer type.

A cast may or may not actually change the bit pattern of the
expression. Conversion of an int to a float does, but
conversion of a pointer to char into an int does not. A pointer
may be converted to an integral type, and integral types may be
converted to pointers.

Exanpl e:
#i ncl ude <stdi o. h>

mai n()

{

i nt val ue;

val ue = 10;
printf("integer = %\n", (double) value);

}

When the sizeof operator is applied to an array or structure,
the result is the total number of bytes in that array or
structure. When the sizeof operator is applied to a union, the
result is the size of the | argest nenber of the union. 1In
general, the sizeof operator results in the nunber of storage
bytes the foll ow ng object occupies, including any roundi ng up
to acconmodate alignnment. For exanple, when the sizeof operator
is applied to the followi ng structure, the result is 16 since
the structure is given 16 bytes when stored.

Exanpl e:
struct s1{
int i;
char char_array[11];

H

However, when the sizeof operator is applied to the foll ow ng
structure, the result is 15.

| Copyright IBM Corp. 1985, 1991
46.3-4

PEAREBEABBARABIDRAOD

c

PPN NONPONPOT

—

W W0 W W W WwWwwWwwo

pi cs

C Language Reference
Unary Operators

Exanpl e:

struct s2{
char a[4];
char char_array[11];

b

Thi s exampl e shows that the conpiler aligns elenments within a
structure based on the alignnent of the nost restrictive
element. See the "Data Representation” sections in C Language
User's @Quide for information on storage and alignment.

The sizeof operator is semantically equivalent to an integer
constant, and it rmay be used anywhere an integer constant can be
used.

The sizeof operator may also be applied to a type name encl osed
in parentheses (). In this case, the value is the size (in
byt es) of any object which has that type.

The construction sizeof (type) is taken as a single indivisible
unit.

Exanpl es:
int fred [10];
int a, b;
a = sizeof fred, /* a becones 40 */
b = sizeof (double); /* b becones 8 */

In this exanple, the result of the first sizeof operator is 40
since the size of the fred array is 10 tinmes 4 bytes. The
second sizeof operator is taking the size of a double object,
which is 8 bytes in this inplenentation. It is illegal to apply
the sizeof operator to a bit field.

Note: The RT C Conpiler allows the sjzeof operator on a bit
field. 1t always returns 4.

i

1 Binary Operators

2 Multiplication Operators

3 Addition Operators

4 shift Operators

5 Rel ati onal Operators

6 Equality Operators

7 Bitwi se AND Oper at or

8 Bitwi se Exclusive OR Qperator
9 Bitwi se Inclusive OR Qperator
.10 Logi cal AND Qper at or

.11 Logi cal OR Operator

.12 Conditional Expression

.13 Assignment Operators

.14 Comma QOper at or

| Copyright IBM Corp. 1985, 1991
46.3-5

C Language Reference
Binary Operators

4.6.3.1 Binary Operators

Bi nary operators have two operands. A binary expression has the form

bi nary expression

to----- mul tiplicative expression ------ +
Hoom------ additive expression --------- l
Hommmeen shift expression ----------- i
Fomo--o-- rel ati onal expression -------- |
SRR equal ity expression --------- +-- -
Hoo--o-- bitw se AND expression -------- l
+--- bitwi se exclusive OR expression ---|
+--- bitwi se inclusive OR expression ---|
Hommm--- | ogi cal AND expression -------- |
Fo-m----- | ogi cal OR expression -------- +

| Copyright IBM Corp. 1985, 1991
46.31-1

C Language Reference
Multiplication Operators

4.6.3.2 Multiplication Cperators
The multiplication operators (*, /, and %) group fromleft to right.

mul tiplicative expression

t---oUnary exXPresSiOn -------- - --m oo +
---1 one of +- - -
| Hooooe + |
+--- nultiplicative expression ---} * [/ %+--- unary expression ---+

S S +

The (*) operator neans multiplication. Both operands nust be nuneric.
The usual arithnetic conversions are perforned.

The (/) operator neans division. Both operands nust be numeric. Wen
integers are divided, the result is truncated towards zero. |If the right
operand of the binary

(/) operator is zero, an illegal instruction error is generated for

i ntegral operands, and INF (Infinity) for floating-point operands. The
usual arithnetic conversions are perforned. |f either operand is unsigned
int or unsigned |ong, then unsigned arithnmetic is done; otherw se, signed
arithnetic is perforned.

The (%) operator defines the renmainder operation between its operands.
Bot h operands nust be integral value; float and doubl e are not all owed.

An illegal instruction error is generated if the right operand of (%) is
zero. |f either operand is unsigned int or unsigned | ong, then unsigned
arithnetic is done, otherw se signed arithnetic is done. The
interpretation of (%) is:

a %b=a- (al/ b) *b

| Copyright IBM Corp. 1985, 1991
46.32-1

C Language Reference
Addition Operators

4.6.3.3 Addition Qperators

addi tive expression

+--- multiplicative expression ------------------------------------- +
---1 one of +-- -
| NRREEES |
+--- additive expression ---} + - +--- multiplicative expression ---+

+--- - +

The addition operators (+ and -) group left to right. The usual
arithnetic conversions are perforned, as described at the start of this
chapter. Both operands may be nuneric or, in sone cases, pointers.

The result of the (+) operator is the sumof its operands. The usua
arithnetic conversion rules determine if the addition is to be done in

floating-point arithmetic or integral. Two pointers cannot be added. A
pointer and an integral type may be added, in either order, but the result
is not sinmply adding the two values. |If the pointer points to an object

of size n bytes, then the integer is nmultiplied by n before the addition
is performed. Thus, the value of the expression is the address of the nth
element relative to what p points to, as if it were an array. Hence, if a
is an array, then the value of the expression *(a+n) is the value of the
nth element in a, exactly the same as indexing a by n, a[n].

The result of the (-) operator is the difference of its operands. The
usual arithnetic conversions are perfornmed. A value of integral type may
be subtracted froma pointer, and the sane di scussion applies to
subtraction as to addition

Two pointers to objects of the sane type may be subtracted. The result is
converted (by dividing the result by the size in bytes of an object of the
type pointed to by the pointer) to an int whose value is the nunmber of

obj ects separating the objects pointed to. Note, however, that if the
pointers do not point to elenments in the same array, the distance between
them nmay not divide evenly and the result will probably be neaningl ess.

| Copyright IBM Corp. 1985, 1991
46.33-1

C Language Reference
Shift Operators
4.6.3.4 Shift Qperators
The shift operators are left shift (<<) and right shift (>>). The shift
operators group left to right. Both operands of the shift operators nust
be integral. The usual arithnetic conversions are perforned on the
oper ands.

The right operand of a shift operator is converted to an int. The type of
the result is the sane as the type of the |eft operand.

shift expression

+--- additive expression ------------------------------------ +
---1 one of +- - -
| MR + |
+--- shift expression ---] << >> +--- additive expression ---+

S R +

If the right operand is negative, or if the right operand is greater than
the nunber of bits in the left operand, the results are undefined.

The (<<) operator is a left shift. The result of the expression:

El << E2

is EL (interpreted as a bit pattern) shifted | eft the nunber of bits given
by the value of E2. The vacated bits are filled with zeros.

The (>>) operator is a right shift. The result of the expression:

El >> E2

is EL (interpreted as a bit pattern) shifted right the nunber of bits
given by the value of E2. If the expression El is unsigned int or

unsi gned long, the right shift is a logical right shift; that is, the
vacated bits are filled with zeros. |If the expression El1 is signed, the
right shift is an arithnetic shift; that is, the sign bit is propagated.

| Copyright IBM Corp. 1985, 1991
46.34-1

C Language Reference
Relational Operators

4.6.3.5 Relational Operators

rel ati onal expression

+--- shift expression --- +
---1 one of +---
| S + |
+--- relational expression ---| < > <= >= +--- shift expression----+

o m e m oo oo +

The rel ational operators group left to right. Relational operators apply
to all nuneric types as well as to pointers and the usual arithnetic
conversi ons apply.

Al'l these operators generate a value of 1 if the specified relation is
true, and O if the specified relation is false. The type of the result is
of type int. The usual arithnetic conversions are perfornmed on the
operands. |If either operand is unsigned int, an unsigned conparison is
done; otherw se, a signed conparison is done.

Pointers to the sanme type may be conpared. The result of conmparing

poi nters depends on the relative |locations of the pointed to objects in
t he address space of the machine. An unsigned conparison is done when
compari ng pointers.

| Copyright IBM Corp. 1985, 1991
46.35-1

C Language Reference
Equality Operators

4.6.3.6 Equality Operators

equal ity expression

AR rel ational expression -------------------- +
---1 one of +-- -
| MR + |
+- equality expression ---] ==1! = +--- relational expression -+
S +
The equality operator (==) and inequality operator (!=) have a | ower

precedence than the relational operators. The result is either a value of
1 for true or O for false. The type of the result is int. Both operands
must be arithmetic types, nmust be pointers to objects of the sane type, or
one must be a pointer to an object and the other a pointer to void, or one
must be a pointer and the other must be O.

| Copyright IBM Corp. 1985, 1991
46.36-1

C Language Reference
Bitwise AND Operator

4.6.3.7 Bitwi se AND Operat or
bi twi se AND expression
equal ity expression

— +___:
+- bitwi se AND expression --- & --- equality expression -+

The bitwi se AND operator (&) perfornms a bit-by-bit AND function on the
bits of its operands. The usual arithnetic conversions are performed on
t he operands. Both operands must be integral.

The following table is the truth table for the bitwi se AND operator (&)

oo o e e e eeoa-o- +
| El | E2 I E1 & E2 |
T T T |
| 0 0 0 |
T T T |
| 0 1 0 |
T T T |
| 1 0 0 |
T T T |
| 1 1 1 |
e e - o a o - o e - - |
I 1 I 1
1 1 I 1
oo o e e e eeoaoo- +
Exampl e

#define SIGNCLR Ox7fffffff

deno(t hi ng)

int thing;

{

return(thing & SIGNCLR); /* Clears the sign bit */

| Copyright IBM Corp. 1985, 1991
46.3.7-1

C Language Reference
Bitwise Exclusive OR Operator

4.6.3.8 Bitwi se Exclusive OR Qperator

bitwi se exclusive OR expression

oo bitwi se AND expression ------------------------ +
— +-

I

+--- bitw se exclusive OR expression --- ~ --- bitwise AND expression ---+

The bitw se exclusive OR operator (~) perforns a bit-by-bit exclusive OR
function on the bits of its operands. The usual arithnetic conversions
are perforned on the operands. Both operands nust be integral.

The following table is the truth table for the bitw se exclusive OR
operator (")

oo o o o e e e e e e e e e e o e e e e e e e e e e e e e e oo - +
! E1 ! E2 | El1 ~ B2 :

e S e e e e oo |

| 0 | 0 | 0 i

Fom e e e oo oo e e e oo oo o e e e o oo oo - !

| 0 | 1 | 1 i

Fom e e e oo oo e e e oo oo o e e e o oo oo - !

| 1 | 0 | 1 i

Fom e e e oo oo e e e oo oo o e e e o oo oo - !

| 1 | 1 | 0 l

e S e e e e oo |

I I I |

I | | 1

oo o o o e o e o e e e e e e e e e e e e e e e e e e oo - +
Exampl e

#define TOGGELE 0x80000000
i nt deno(thing)

int thing;

{

return(thing ~ TOGGALE); /* Toggles the sign bit */

| Copyright IBM Corp. 1985, 1991
46.38-1

C Language Reference
Bitwise Inclusive OR Operator

4.6.3.9 Bitwi se Inclusive OR Qperator
bitwi se inclusive OR expression
bitwi se exclusive OR expression

bitwi se |
exclusive OR expression -+

bitw se
i nclusive OR expression ---

The bitw se inclusive OR operator (|) perfornms a bit-by-bit inclusive OR
function on the bits of its operands. The usual arithnetic conversions
are perforned on the operands. Both operands nust be integral.

The following table is the truth table for the bitw se inclusive OR
operator (|)

o m o o o o o eemamaoo- +
| El ' E2 ' El | E2 |
T Ty |
| 0 0 0 |
T Ty |
| 0 1 1 !
T Ty |
| 1 0 1 |
T Ty |
: 1 1 1 !
T Ty |
I I I I
I I I |
o m o o o e o e e e e e e e e o e e e e e e e e e e eeeaoaooo- +
Exampl e

#define SETSI GN 0x80000000

i nt deno(thing)

int thing;

{

return(thing | SETSIGN); /* Sets the sign bit */
}

| Copyright IBM Corp. 1985, 1991
46.39-1

C Language Reference
Logical AND Operator

4.6.3.10 Logi cal AND QOperat or

| ogi cal AND expression

Sty bitw se inclusive OR expression ------------------ +
4o
+- | ogical AND expression --- && --- bitwi se inclusive OR expression -+

The | ogical AND operator (&%) returns the value 1 if both of its
operands are true (nonzero) and O if either is false (zero). Each operand
must have nuneric or pointer type. The type of the result is int.
Left-to-right short circuit evaluation is guaranteed; that is, the |eft

operand is checked first. If it is false, then the result of the
expression nust also be false, so the value of the right operand is never
conputed. This fact can be useful as illustrated in the foll ow ng
exanpl e.

Exanpl e:

| ogi cal AND expression

oo bitw se inclusive OR expression ------------------ +
___: +- -1
+- | ogical AND expression --- && --- bitwi se inclusive OR expression -+

while (p!=NULL && p->size > 10) {
p = p->next;
}
If the full expression were evaluated in the case in which p has the val ue

NULL, then an erroneous nmenory reference may occur when attenpting to
eval uate p-> size

| Copyright IBM Corp. 1985, 1991
46.3.10-1

C Language Reference
Logical OR Operator

4.6.3.11 Logi cal OR Qperator

| ogi cal OR expression

R | ogi cal AND expression ------------------ +
I | - -1
I I
+- |l ogical OR expression --- || --- logical AND expression -+
The | ogical OR operator (||) evaluates the boolean OR of its operands.

Each operand nust have nuneric or pointer type. The type of the result is
int. The value 1 is returned if either operand is true (nonzero);
otherwise, the value 0 is returned. As with the |ogical operator, short
circuit left-to-right evaluation is guaranteed.

Exanpl e:

if (p == NULL || p-> size < 10)
printf ("error\n");

In the exanple, it is inportant that the second operand of the || operator
not be evaluated if the first is true. The |logical OR operator ensures
that this is the case.

| Copyright IBM Corp. 1985, 1991
46.3.11-1

C Language Reference
Conditional Expression

4.6.3.12 Conditional Expression
condi ti onal expression

oo | ogical OR expression --------------------- +
I | +- -
1

+- | ogi cal OR expression ? expression : conditional expression -+

The condi tional operator (?:), sonetinmes known as the ternary operator,
sel ects between the val ue of two expressions based on a bool ean
expression. The value of the first operand is conmputed. |If it is true
(nonzero), then the value of the second operand is conputed and returned
as the value of the conditional expression. |In this case, the third
operand is never evaluated. |If the value of the first operand is false
(zero) then the second operand is skipped and the value of the third
operand is used. The result is not an |val ue.

If both the second and third operands have arithnetic type, then the type
of the result is determ ned by applying the usual arithmetic rules to both
operands. If both the second and third operands have void type, then the
result has void type. |If both the second and third operands have the sane
struct or union type, the result has that type. |If both the second and
third operands are pointers to the sane type, or one is a pointer and the
other is an integer constant, then the result has that pointer type. |If
either the second or third operand is a pointer to an object and the other
is a pointer to a void, then the result has type pointer to void.

Exanpl e:
#defi ne MAXSECTORS 15

deno(bl ocks)

i nt bl ocks;
{

int sec_count;

sec_count = (bl ocks > MAXSECTORS) ? MAXSECTORS : bl ocks;
}

The exanpl e denponstrates the shorthand notation that the conditiona
operator provides.

The equi val ent program usi ng ot her conditional forns m ght be:
#defi ne MAXSECTORS 15

deno(bl ocks)

i nt bl ocks;
{
int sec_count;
i f (blocks > MAXSECTORS)
sec_count = MAXSECTORS
el se
sec_count = bl ocks;
}

| Copyright IBM Corp. 1985, 1991
46.3.12-1

C Language Reference
Assignment Operators

4.6.3.13 Assignnent Cperators
Assi gnnment operators assign run-tine values to objects. An assignnent
expression has the form

assi gnment expression

oo condi tional expression ---------------- +
---1 one of +-- -
| S + i
+- lvalue ---} = += -= *= +--- assignnment expression -+
= % <<= >>= |
: &= N= : = :
o m e e e e me oo +

It takes two operands, an |value on the left and an expression on the
right. The nmeaning is to assign the value of the right expression to the
obj ect described by the |value. Both operands nust have arithnetic type,
the same structure type, or the same union type. Oherw se, both operands
must be pointers to the sanme type, or the |left operand nust be a pointer
and the right operand nust be the constant 0 (zero). |If both operands
have arithnetic type, the value of the right operand is converted to the
type of the |Ivalue prior to the assignnment. The result of an assignnment
operator is the value assigned into the object described by the |val ue,
and the type is the type of that object. Assignnent associates to the
right. Thus the expression i=j=0 assigns the value 0 to first j, and then
assigns j to i. The result of an assignment operator is not an |val ue.

C contains a series of other conpound assignnent operators that provide a
shorthand for operating on an object. In addition, the conpiler can
soneti mes generate nore efficient code when the conpact operators are
used. Both operands of a compound assi gnnment operator nust have
arithnetic type consistent with those allowed for the correspondi ng binary
operator, except for (+=) and (-=) operands nust have nuneric type, or
the left shall have pointer type and the right shall have integral type.

The nmeaning of a op=b is simlar to a = a op b, except that it is
guaranteed that the [value a is only evaluated once. Thus if the |value
has any side effects, the result is well defined, such as A[l++] += 5.

Type conversions are perfornmed as follows. The usual arithmetic
conversions are perforned, depending upon the operator, and the result is
computed. Then, if needed, it is coerced into the type of the |value, as
descri bed previously for the assignnent operator , (=) and the result is
stored into the object described by the [|val ue.

| Copyright IBM Corp. 1985, 1991
46.3.13-1

C Language Reference
Comma Operator

4.6.3.14 Comma Operator

The commma operator (,) is used to conbine a pair of expressions into a
singl e expression. A conma operator has the form

comma expression

oo assi gnnment expression ------ +
ARy
+- expression --- , --- expression -+

VWhen t he comma operator appears between a pair of expressions, the |eft
expression is evaluated and its value is then discarded. Then the right
expression is evaluated, and the type and value of the resulting
expression is the type and value of the right expression. The expressions
are evaluated left to right.

The comma operator is nost useful when the syntax of C expects a single
expression but it is necessary to evaluate nore than one expression. An
exanple would be initializing two variables at the start of a for |oop, as
illustrated here:

for (i =0,) = 10; i<20; i++) { ... }

If used in a function call, the comra expression nust be enclosed in
parent heses ().

| Copyright IBM Corp. 1985, 1991
46.3.14-1

C Language Reference
Chapter 5. Statements

5.0 Chapter 5. Statements

Subt opi cs

5.1 CONTENTS

5.2 About This Chapter
5.3 Statenents

| Copyright IBM Corp. 1985, 1991
50-1

C Language Reference
CONTENTS

5.1 CONTENTS

| Copyright IBM Corp. 1985, 1991
51-1

C Language Reference
About This Chapter

5.2 About This Chapter

This chapter describes C statenents and how they are used in prograns.

| Copyright IBM Corp. 1985, 1991
52-1

C Language Reference
Statements

5.3 Statenents

The C programm ng | anguage contai ns expression statenents and control flow
statenents. The expression statements are used to conpute and assi gn new
values to objects at runtine. The control-flow statenents determ ne the
order in which the conmputations are perforned. Belowis a sunmary of the
statenents available in C

st at enent

+- block statenent ------ +
+- break statenent ------ |
+- conpound statenent ---)|
+- continue statenment ---|
+- do statenment --------- |
+- expression statenment -
+- for statenent -------- |
---+- goto statenent ------- +---)
+ if statement --------- |
+- | abel ed statenent ----}
+- null statenment ------- |
+- return statenment ----- |
+- switch statenment ----- |
+- while statenent ------ +

Structured statenents specify sequential, selective, or repetitive
execution of their conponent statements. Sequential execution is
specified by the conpound statement; conditional and sel ective execution
by the if statement and the switch statenent; and repetitive execution
either by the while and do-while statenents or by the for statenment. The
break statenment provides the neans to exit a |loop prematurely or to end a
case of a switch statenent; the continue statenent starts the next
iteration of its enclosing | oop.

Subt opi cs

Expressi on St at ement
Compound St at enent
Condi ti onal Statenent
Switch Statements
Wil e Statenents

Do St at enent

For St at enent

Br eak St at enent

Cont i nue St at enent
.10 Return Statenent

.11 Goto Statenment and Label s
.12 asm St at enent

.13 Null Statenent

O©CoOo~NOUr,WNPE

GESEGES RS RO RO RS RO RO NGRS
WWWWWWwwwwwwww

| Copyright IBM Corp. 1985, 1991
53-1

C Language Reference
Expression Statement

5.3.1 Expression Statenent

An expression statenent contains an expression. An expression statenent
has the form

expressi on st at enent

--- expression --- ; ---|

An expression (as described in Chapter 4, "Expressions") becones a
statenent when it is followed by a semicolon (;). The semcolon is the
statement term nator. For exanple, the follow ng constructs:

tenmp = 25
++count
printf("hello\n")

are all expressions, and nmay generate val ues that can be used in the
context of larger expressions. |If they are followed by a sem col on, they
becone statenents:

tenmp = 25;
++count ;
printf("hello\n");

An expression statenent is normally only useful when it has sone kind of
side effect, such as assigning a new value to a variable or calling a
function that does sonmething. It is permssible, however, to have a
statement that is just a value, such as [+3; or even 25; but this is of
m ni nrum advant age.

Note: The semicolon is part of a Cstatenment. It is not a statenent
separator as in other |anguages.

| Copyright IBM Corp. 1985, 1991
531-1

C Language Reference
Compound Statement

5. 3.2 Conpound St at enent

A conpound or block statenent, is a sequence of statenents grouped
together so that they appear to be a single syntactic statement. This is
done by surrounding the sequence of statements with braces, { and }. The
compound st atenent has the form

bl ock st at enent

o m e e e e e e eeao-o + o e e e me oo oo +
SREEE SR B S type definition ------ + Ao L
+-+---- extern declaration ----+-+ +--- statement ---+
[(*- internal data definition -+ O !

o m e e e e e oo + o m e i e oo oo oo +

Note that new vari abl es may be declared at the begi nning of any conpound
statements. Any new identifiers declared specifically within a conmpound
statenent have a scope and lifetime that are bound by that statenent; that
is, they are both unknown outside of that statement and, in the case of
auto and register variables, beconme undefined upon exit fromthat

st at ement .

The foll ow ng exanpl e shows how t he val ues of data objects change in
nested bl ocks:

1 #i ncl ude <stdi o. h>

2

3 mai n()

4 A

5 int x = 1; /[* Initialize x to 1 */
6 int y =3

7

8 if (y >0)

9 {

10 int x = 2; /[* Initialize x to 2 */
11 printf("second x = %d\n", Xx);

12 }

13 printf("first x = %d\n", x);

14 }

The precedi ng exanpl e produces the follow ng output:

2
1

second x =
first x =
Two variables naned x are defined in main. The definition of x on line 5
retains storage throughout the execution of main. However, since the

definition of x on line 10 occurs within a nested block, line 11

recogni zes x as the variable defined on line 10. Line 13 is not part of
the nested bl ock. Thus, line 13 recognizes x as the variable defined on
line 5.

| Copyright IBM Corp. 1985, 1991
53.2-1

C Language Reference
Conditional Statement

5.3.3 Condi tional Statenent

The basic conditional statenents in C are the |f statenent and the jf-el se
statement. The if and if-else statenent have the form

i f statenment

o e e e e e e +

---if --- (--- expression ---) --- statenent ---, +---
+- else --- statenment -+

The type of the expression nmust be either nunmeric or pointer. |If the type

is a pointer, then the statenment is equivalent to testing the pointer for
the value NULL. A non-NULL val ue causes the first statement to be
execut ed.

In both cases, the expression is evaluated. |If the value of the
expression is nonzero (true), the first statenent is executed.

If the value of the expression is zero (false), the actions defined by the
second statement are performed, assuming that there is an else part in the
statenent. |If there is no else part, the next statenent in order after
the if statenent is executed.

Because statenents are open forns, it is possible to construct a chain of
el se-if clauses to select one out of nmany different conditions.

In conmon with simlar |anguages, C resolves the so-called dangling el se
probl em by having the el se cl ause match the nost recent un-el sed preceding
if statenent. The follow ng exanple clarifies this point. |If an
alternate grouping of else statements is required, the nested if statenent
that does not contain an el se clause nust be enclosed in braces { },
maki ng it a conpound statement containing a single statenent.

Exanpl es:
mai n()
{
i nt paygrade = 6;
int level = 3;
float salary = 10. 30;
i f (paygrade == 7)
if (level > 0 && level < = 8)
salary *= 1.05;
el se
salary *= 1.04;
el se
salary *= 1.06
}

| Copyright IBM Corp. 1985, 1991
533-1

C Language Reference
Switch Statements

5.3.4 Switch Statements

switch statement

--- switch --- (--- expression ---) --- switch body ---}
swi tch body
+- case |l abel --- statement --- +
| S + S + |
R +--- default |abel ---) +-- statenment --+---
| +- case |abel -+ +- case | abel -+ |
| e + Fo e e e e e oo - + |
LI SR type definition ------ +-- -1 +--- |
O +---- extern declaration ----] | +--- case clause ---+ i
I +- internal data definition -+ | O ! :
o e e e e e e e e e e e m o + S + |
|
|
- + Fmm e e e e e aaas + |
.- +---) +--- } mm-man---- +
+- default clause -+ +--- case clause ---+
O l
o m e e e e m oo o +

case cl ause

--- case |label --- statenment ---|
O |
o e e oo +
case | abel
--- case --- constant expression --- : ---|
O |
oo e e e e e e e eee——oos +

Fom e e oo oo oo oo + Fom e e oo +
--- +--- default |abel ---) +--- statenment ---)|
+- case | abel -+ +- case label -+ 0O |

Fom e e oo +

defaul t | abel

--- default --- : ---|

A switch statenment selects one of its conponent statenents dependi ng on
the value of the expression. The expression is called the switch
selector. It must be an integral type. Each of the conponent statenents
is tagged with one or nore sinple scalar constants. The tags are called
sel ection specifications.

| Copyright IBM Corp. 1985, 1991
534-1

C Language Reference
Switch Statements

If the value of the selector matches that of one of the statenent tags,
control is transferred to that statement. Control continues fromthe
sel ected statement onwards until altered by another change of control. If
the sel ector val ue matches none of the statenent selection specifications,
the statenment tagged by a default synbol is executed, if present. If no
default statenment exists, then the body of a switch statenent does
not hi ng.

Exanpl e:
mai n()
{
char command;
command = getchar();
switch (command)
{
case 'H:
case 'h':
| eftcursor();
br eak;
case 'L':
case '|':
rightcursor();
br eak;
case 'J':
case 'j':
downcur sor () ;
br eak;
case 'K :
case 'k':
upcursor();
br eak;
defaul t:
nonove() ;
}
/* End of switch statenment */
}

As the exampl e shows, the switch statenment is normally used in conjunction
with the break statenment, which is described in "Break Statenent” in

topic 5.3.8. Wthout the break statenent, execution of any selection
woul d al so execute all subsequent sel ections.

| Copyright IBM Corp. 1985, 1991
534-2

C Language Reference
While Statements

5.3.5 Wiile Statenents

A while statenent controls repetitive execution of another statenent until
eval uation of an expression yields a zero value. The while statenent has
the form

whi | e st at enent

--- while --- (--- expression ---) --- statement ---|

The val ue of an expression is conputed. |If it is nonzero (true), then the
statement is executed. The value of the expression is then tested again
and the statenment is executed repeatedly while the val ue of expression
remai ns nonzero (true). The type of the expression nust be numeric or a
poi nter. Wen the expression evaluates to zero (false), control passes to
the statenment after the while statenment. |If the value of expression is
zero at the time that the while statenent is encountered for the first
time, the subordinate statenent is never executed. Contrast this behavior
with the do statenent described in "Do Statenment” in topic 5.3.6.

Exanpl e:
#define MAX_ | NDEX (sizeof(item) / sizeof(itenf0]))
#i ncl ude <stdi o. h>
mai n()
{ static int itenf] = { 12, 55, 62, 85, 102 };
i nt index = MAX_|I NDEX;

while (--index >= 0)

{
itenfindex] *=3;
printf("iten{%] = %\ n", index,
itenfindex]);
}

| Copyright IBM Corp. 1985, 1991
535-1

C Language Reference
Do Statement

5.3.6 Do Statenent

The do statenment controls the repetitive execution of a |ist of
statenents. The statenents are executed until the expression at the end
of the statenent evaluates to zero. The do statenent has the form

do st at enent

--- do --- statenent --- while --- (--- expression ---) --- ; ---]

The statenment between the do and while synbols is executed repeatedly and
t he expression evaluated until the expression is zero. The type of the
expression nmust be either nunmeric or a pointer. Note that the body of a
do statenment is always executed at | east once, since the termnation test
is at the end. Contrast this behavior with the while statenent described
in "Wiile Statements” in topic 5.3.5.

Exanpl e:
mai n()
{
int replyl;
do
{
printf("Enter a 1.\n");
scanf ("%", &replyl),;
} while (replyl I'=1);
}

| Copyright IBM Corp. 1985, 1991
536-1

C Language Reference
For Statement

5.3.7 For Statenent

The for statenent in Cis a convenient and special formof the while
statenent. The for statenment is nmore conpact than the while, and is
better suited to | oops in which the control statenents are single and
logically related. The for statenment has the form

for statenent

o m e e e e + o m e e e oo +
--- for --- (---} R to--) -
+- expression -+ +- expression -+
o e e e m e oo +
--- +---) --- statement ---|

+- expression -+

The three conponents of the for statenment are expressions. Any or all
the expressions may be left out, but the sem colons nust be there. The

type of the expression 2 nmust be nuneric or a pointer. |If either
expression 1 or expression 3 is left out, it is sinply dropped fromthe
expansion. |If the expression 2 is omtted, the condition is always

consi dered nonzero. This neans that a |oop forever construct can be nmade

froma for statenent that | ooks like this:

for (;;) A

statenents .

}

In such a loop, it is assunmed that some other nmeans of ending the | oop
(such as a break statenent) is being used.

Exanpl es:

/[* initialize an array to zero */
for (index = 0; index < 100; index ++)
row i ndex] = 0;

/* scan fromthe end of an array */
for (where = 200; where > 0;)
if (what[--where]== thing)
foundit = 1;

| Copyright IBM Corp. 1985, 1991
53.7-1

C Language Reference
Break Statement

5.3.8 Break Statenent

The break statenment provides a nmechanismfor breaking out of a | oop
structure prematurely. The break statement has the form

break st at enent

--- break --- ; ---)

The break statenent supplies an exit mechanismfromwhile, for, and do

statenents. A break nust also be used to exit fromthe specific cases of
a switch statenment; otherwi se, a case falls through to the next one. An
error will occur if the break statenment is used outside these statenents.

A break statenent causes an imediate exit fromthe i nnernost encl osing
| oop structure or switch statenent. There is no provision for breaking
out of | oop constructs other than the innernost.

Exanpl e:

#i ncl ude <stdio. h>
deno()
{

i nt ch;

while ((ch = getchar()) !'= EOF)

if (ch =="'1003")
break; /* exit when ETX read */

}

| Copyright IBM Corp. 1985, 1991
538-1

C Language Reference
Continue Statement

5.3.9 Continue Statenent

The continue statenent is the logical analog to the break statenent. A
continue statenment causes the next iteration of the innernost enclosing
| oop structure to begin. The continue statenent has the form

conti nue statenent

--- continue --- ; ---|

In a while or a do loop, the continue statenent executes the test part of
the structure. 1In a for |loop, expression 3 is executed, followed by
expression 2, the test condition. The continue statenment does not apply
to the switch statenent. An error occurs if the continue statenment is
used outside a for, while, or do statenent.

Exanpl e:

/* weed out zero elements */
deno(array, n)

int array[];

int n;

int from
int to = 0;

for (from= 0; from< n; from+) {
if (array[fron] == 0)
conti nue;
array[to++] = array[fron];

return(to);

| Copyright IBM Corp. 1985, 1991
539-1

C Language Reference
Return Statement

5.3.10 Return Statenent

A function returns to its caller by neans of a return statement. A return
statement can return a value. The return statenent has the form

return statenent

--- return ---| to-- -
+- expression -+

In the first formof the return statenent, the value of the function from
which the return is made is undefined. |In the second formof the return
statenent, the value of the expression is the value of the function. |If
necessary, the expression is converted to the type of the function in
which it appears. This formmay not be used in a function defined with a
return type of void.

If execution of a function reaches the end of the function (falling off
the end), it is equivalent to a return statenment w thout an expression.
If a return statenent without an expression is in a function where a
return value is expected, the result is unpredictable.

Exanpl es:
return; /* Returns no value */
return result; /* Returns the value of result */
return 1; /* Returns the value 1 */
return (x * x); /* Returns the value of x * x */

| Copyright IBM Corp. 1985, 1991
5.3.10-1

C Language Reference
Goto Statement and Labels

5.3.11 Goto Statenent and Label s

The goto statenent passes control to a statenment that has a |abel attached
toit. The goto statenent has the form

got o st at enent

--- goto --- identifier --- ; ---}

A |l abel in the C Language is sinply an identifier followed by a colon (:).
If alabel is to be associated with a statenent, it mnust precede that
statenent. Transfer to a label via a goto statenment continues execution
with the statenment preceded by the appropriate |abel. The |abel statenent
has the form

| abel ed st at enent

--- jdentifier --- : --- statenent ---}

The scope of a label is the entire function in which that |abel is
defined. Nested scopes defined by conpound statenents have no effect of
limting the range of a label. It is not possible (nor valid) to junp
into a function fromoutside that function. It is possible to junp into
the mddle of a structured statenent, although this is not a safe
practice. Using goto can violate structured progranm ng constructions;
the use of the goto statenment should be evaluated carefully. It is
sonetines difficult for the user to be aware of the results of goto when
the | abel used is internal to a statenent.

A | abel becones defined when it is encountered as a | abel on a statenent
in the body of the function

Exanpl e:

if (status == error)
/[* exit to end of function */
got 0 wi peout;
...Statenents. ..
W peout :

The foll ow ng exanpl e shows a goto statenment that is used to junp out of a
nested loop. This function could be witten w thout using a goto
st at ement .

voi d di splay(matri x)
int matrix[3] [3];
{

int i, j;

for (i =0; i < 3; i++4)
for (j =0;] <3; j++)

{
if ((matrix[i] [j] <21) | | (matrix
[i] [il >6))

| Copyright IBM Corp. 1985, 1991
53.11-1

C Language Reference
Goto Statement and Labels

got o out _of _bounds;
printf("matrix[%l] [%] = %\n", i, j,
matrix[i] [j]);
}

return;
out _of _bounds: printf("nunber nust be 1 through 6\n");

| Copyright IBM Corp. 1985, 1991
5.311-2

C Language Reference
asm Statement

5.3.12 asm St at enent

The asm statenent is provided for the very limted insertion of nachine
instructions in-line in a programwitten in C. The asm statenent on the
PS/2 VSC C conpiler has the form

asm st at enent

--- asm--- (--- constant expression ---) -- ; --|

The commma separated |ist of constant expressions is interpreted as a
sequence of values of type char. The values are placed into the generated
obj ect code text space (instructions) literally at the point of the asm
st at ement .

The asm statenent on the Al X/ 370 and PS/2 MCC conpilers has the form
_ASM (" assenbl er instruction \n"):

The assenbl er code is actual 370 or PS/ 2 assenbl er menoni cs.

Not e: Embeddi ng assenbl er code can disturb the contents of registers that
the conpiler uses. Therefore, take care when using the asm
st at ement .
Al so, portability of C prograns containing asmstatenents is likely
to be restricted. A nore portable usage would be to call an

assenbly routine, instead of coding in-line. See Al X C Language
User's Qui de program exanples for an exanple of the asm statenent.

| Copyright IBM Corp. 1985, 1991
5312-1

C Language Reference
Null Statement

5.3.13 Null Statenent

A null statenment can appear in a C programsinply by your entering a
semcolon (;). The null statement has the form

nul | st atenent

A null statenment is useful to carry a | abel before the closing bracket of
a conpound statenment, or to supply a null body to a |oop statenment where
all the conputation is done in the | oop control expression.

Exanpl es:

if (snarks == booj uns)
{

statenments

if (tinme_to_get_out)

goto out;
nore statenents

out: ;
}
for (i =0; i <= 100 & what[i] == 0; i++)

Beware of extra sem colons. They can easily lead to |loops with null
bodi es, produci ng unexpected results, as this exanpl e shows:

while ((c = getchar()) !=EOF) ;
next ok() ;

In the exanple, the sem colon inadvertently placed after the closing
parenthesis of the while nakes the | oop consune the entire input file, and
the nextok function only gets called after the end of file is reached.

| Copyright IBM Corp. 1985, 1991
5313-1

C Language Reference
Chapter 6. Functions

6.0 Chapter 6. Functions

Subt opi cs

CONTENTS

About Thi s Chapter

Functi ons

The Mai n Function

Defini ng Functions

Bl ock Structure

External and Static Variabl es

coo0000
~NOoO O~ WN -

| Copyright IBM Corp. 1985, 1991
6.0-1

C Language Reference
CONTENTS

6. 1 CONTENTS

| Copyright IBM Corp. 1985, 1991
6.1-1

C Language Reference
About This Chapter

6.2 About This Chapter

Thi s chapter describes the structure and usage of functions.

| Copyright IBM Corp. 1985, 1991
6.2-1

C Language Reference
Functions

6. 3 Functi ons

Functions are the fundanental C nethod of grouping bl ocks into nmanageabl e
units. Declaring a function requires an identifier and, usually, a type
descri pti on.

Cdiffers fromsome | anguages in that it contains only functions. The
effect of a procedure or subroutine is achieved by declaring a void
function, one that does not return a result. C functions have
simlarities to mathematical usage -- a C function is applied to sone
argunents and generates a result. C functions differ fromthe rigorous
mat hermatical variety in that they can have side effects, such as altering
a global variable or witing to a file. The type of the returned val ue
may be specified as part of the function declaration

A function can itself contain declarations of new objects and conpound
statements, but a function may not contain other functions. These newy
defined objects can be referenced only within that function and are thus
said to be |ocal to the function. The programtext that conprises a
function body is called the scope of any identifiers declared local to
that function.

(hj ects decl ared outside of any function in the conpilation unit w thout
the storage class specifier static, are said to be global, in that their
scope is that of the entire program (bjects decl ared outside of any
function with the storage class specifier static have scope limted to the
poi nt where the object is defined to the end of the conpilation unit only.

A function can have a nunber of argunents that are determned at the tine
the function is defined. Each argunment is denoted by an identifier called
the formal paraneter. Wen a function is called, each of the form
paraneters has the value of a run-tine expression at the calling |ocation
associated with that paraneter. This value, which is accessed by nam ng
the formal paraneter identifier, is called an actual paraneter.

Argunents in C, except for arrays, are passed by value. That neans that
the called function receives a copy of the actual argunent and cannot
directly alter the value of a variable whose value is passed. For a
function to modify the caller's copy of the argunent, it must have a
pointer to the argunent and it nust use pointer reference notation

C functions can be recursive. This neans that a function may call itself
again before the current activation has been conpleted. On each
activation, a fresh set of all the automatic variables is created.
Recursive invocation can be direct (the reference is contained within the
function itself) or indirect (the reference is fromanother function that
inturn is referenced fromthe current function).

| Copyright IBM Corp. 1985, 1991
6.3-1

C Language Reference
The Main Function

6.4 The Main Function

An executabl e C program nmust have one function whose nane is main. This
mai n function is considered the place where program execution starts.
Under normal circunstances, execution termnates upon exit frommain. A
mai n function has the form

mai n function

oo + oo +
e omain cs (oo tooe) oo
+- type ------ + +--- identifier ---+
speci fier O |
+----- , —----- +
3 maxi mum
oo +
--- +--- conpound ----
+--- paraneter ----+ st at ement
O declaration |
oo e oo +
3 maxi mum

The function main can declare optional paraneters. The first paraneter,
argc, has type int and indicates how many argunents were entered on the
command line. The second paraneter, argv, has type array of pointers to
char objects. The value of argc indicates the nunber of pointers in the
array argv. The first elenent in argv always points to a character array
that contains the name (as invoked) of the programthat is executing.

A third paraneter, envp, has type array of pointers to char objects. The
array envp contains pointers to the environment of the program The
system determ nes the value of this parameter during program
initialization (before calling main).

These paraneters are always passed to mmin, and argc nust always be
declared first, followed by argv, then by envp.

Note: Some operating systens do not generate the envp paranmeter. You can
access the value of the envp pointer using the function getenv.
The Al X PS/ 2 Qperating System does generate envp paraneters.

Exanpl e:
mai n()
{
}
Exanpl e:
mai n (argc, argv)
int argc;
char *argv[],;
{ .
int 1;

| Copyright IBM Corp. 1985, 1991
6.4-1

C Language Reference
The Main Function
printf("argc = %\ n",argc) ;
for (i =0; I < argc; i++)
printf("argv[%] = %\n", i,argv[i]);

| Copyright IBM Corp. 1985, 1991
6.4-2

C Language Reference
Defining Functions

6.5 Defining Functions

A function definition usually contains the code for a single programmi ng
t ask.

abstract decl arat or

o e e e e oo +
+o-- F oo U
n +- type qualifier -+
I e +
-- o e e e e oo o +
I e +-- -+
+-1 O +- type qualifier -+ | +---
I +
o m e m e e e e eea—a-o +
+-- (--- abstract declarator ---) ----------------moioooo +
--1 +- abstract declarator -+ +---- subscript declarator ----+ +-
+- - +-- - S + +- -+
e + + (- +) -+
+- paraneter list -+
function decl arator
+-function header -- +
L G R function declarator ---) -------------- |
e R function declarator -------------------- +-- -
+- function declarator --- subscript declarator ------------------- |
L G R function declarator ---) ---- (---) -+

functi on header

+-- paraneter list -+
--- identifier --- (---+- identifier list -+---) ---|

i +
par anet er decl aration
+- type specifier ------------------ +
R AR + +--- declarator --- ; ---|
+- register ---)| +-+ 0 :
+- type specifier -+ +----- yoTTToo +
identifier |ist
oo identifier ---------------- +
[+- - -

+--- jdentifier list --- , --- identifier ---+

paraneter |ist

HFo--m-o-- type specifier --------- + - declarator ------ +
--- e + +--- +- - -
O+ register -| +- -+ +- abstract declarator -+

| Copyright IBM Corp. 1985, 1991
6.5-1

C Language Reference
Defining Functions

: +- type specifier -+ :

g +
Fomeea - +
I

-- - 4- - -
+- . -4

A function is defined when a declarator is in the form

function definition

---+- extern -+---] +--- function declarator ---
+- static -+ +- type specifier -+

oo e e e aoao-- +
SRl +--- block statenment ---|
+--- paraneter declaration ---+
O l
oo e e e e e eaaoo - +

Thus the sinplest function, a dumy do nothing function, is:

usel ess()

{
}

A function is declared when a declarator of the above formis not foll owed
by a conmpound statenent. For exanple:

doubl e sin(), cos(), tan() ;

The type specified in the function declaration specifies the type of the
function. The type specification nust be included in the function

The traditional function definition requires the list of names of the
formal arguments to the function in the function header. The declarations
of the formal argunents nust imediately follow the function header,
before the braces { } that begin the body of the function. Any storage
class for a formal argunent, if given, nust be register. Formal argunents
that are not specifically declared are taken as type int with the auto

st orage cl ass.

Exanpl e:

fl oat bal sa(pl, p2, p3) /*function header (not using prototype for
float pl, /*declare formal arguments */
int p2;
char p3;

{ /*openi ng brace for the block */

body of the bal sa function
} /*end of the function*/

The function prototype formof a function definition requires the nanes
and types of the formal argunments to the function in the function header

| Copyright IBM Corp. 1985, 1991
6.5-2

C Language Reference
Defining Functions

The brace which begins the function nust inmediately follow the function

header. Any storage classes, if given, nust be register. |If the |ist
termnates with an ellipsis (,...), no information about the nunber or
types of the paraneters after the comma is supplied. |If void is used as

the only itemin the list, this specifies that the function has no
par anmet ers.

Note: The use of function prototypes is not supported on the RT
Exanpl e:

float balsa(float pl, int p2, char p3)
/* function header (using prototype form */
{

/* opening brace for the block */

.bbdy of the bal sa function

[* end of the function x|
Exanpl e:

int printf(char * format_string,...); /* declaration
of printf using the prototype ellipsis form?*/
/* defines printf's formal paranmeters to be at | east
a pointer to a char and al so all ows any nunber of
paraneters of any type after it */

Exanpl e:

char *function(void);
/* declares function to have no paraneters */

Note that if prototyping is used in a function declaration, then argunent
nanes nay or may not be supplied. These nanmes have scope limted to that
function declaration, and only exist for clarity of the paraneter

decl arati ons.

Subt opi cs
6.5.1 Argunents to Functions
6.5.2 External Cbjects with the Static Attribute

| Copyright IBM Corp. 1985, 1991
6.5-3

C Language Reference
Arguments to Functions

6.5.1 Argunents to Functions

Paraneters to C functions are always passed by value. The type of al

i ntegral expressions are first converted to int (that is, 4 bytes) and al
fl oati ng-poi nt expressions are converted to double. Wen an array or
function is given as a paraneter, a pointer to that array or function is
passed since the type of an array nane or function nane (w thout a
following left parenthesis) is pointer to.... A structure or union can be
passed as an argunent (by value) or the address of either can be passed
with the use of the address operator (&).

| Copyright IBM Corp. 1985, 1991
6.51-1

C Language Reference
External Objects with the Static Attribute

6.5.2 External Cbhjects with the Static Attribute

Wien an external function or variable is declared in a conpilation unit,
it is possible to place the static storage class in the declaration of
t hat obj ect.

The nmeaning of the static storage class in the declaration of an external
object is that the specified object is private to the conpilation unit
where it resides. Thus, the object is not visible outside the enclosing
conmpilation unit, and is only directly accessible fromfunctions in the
same conpilation unit. O course, there is nothing to prevent the other
functions in the conpilation unit from passing the address of the static
object to functions outside that conpilation unit.

Exanpl e:

o m o o o e o e e e e e e e e o e e e e e e e e e e eeeaoaooo- +
. COWPI LATION UNIT A | COWPI LATION UNIT B :
e o |
| static func_a() i func_p() |
e o |
v { v { l
e o |
: statenents : i nt hol d; :
e o |
) l l
e o |
| | statenents |
e o |
| static func_b() | hold = func_a(); |
e o |
v {) l
e o |
I I |
I I 1
e o |
| i nt grab; ! !
e o |
| i func_i nd(who) |
e o |
! statenents : int (*who)(); :
e o |
| grab = func_a(); P |
e o |
) l l
e o |
| ! st at enent s !
e o |
i func_c() | return(who()); |
e o |
v {) l
e o |
! int grip; | |
e o |
I I |
I I 1
e o |
| statenents | |
e o |
| grip = l l
i func_i nd(func_b); | |
e o |

| Copyright IBM Corp. 1985, 1991
6.52-1

C Language Reference
External Objects with the Static Attribute

+
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
+
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Thi s exanpl e shows two conpilation units side by side. In compilation
unit A, the function func_b can reference func_a because it is in the sane
conpilation unit. The function func_p in conpilation unit B, however,

w Il eventually generate a |inker error, because func_a has been decl ared
with the static storage attribute and so will never be visible.

The function func_c in conpilation unit A on the other hand, passes the
address of func_b as an argunment to the function func_ind in conpilation
unit B, and this is perfectly correct.

| Copyright IBM Corp. 1985, 1991
6.5.2-2

C Language Reference
Block Structure

6.6 Block Structure

internal data definition

+- type specifier ---------------------- +
---) +--- auto ---+ o e e e e e oo + +---
+-+- register -+---| +-+

+-- static --+ +- type specifier -+

o e +

--- declarator ---) LR
0 + initializer -+ |

o e e e memma e aooa- +

Al though the C Language has only a single |level of nesting for functions,
compound statenents can place a block structure within functions. A
compound st atenent enclosed in braces { } can have decl arations foll ow ng
the left brace that starts the conpound statenent. This process can nest
indefinitely. |If variables are declared within a block, the scope of such
variables is the duration of that block. Variables declared outside the
bl ock may be referenced inside the block, with the restriction that any
vari abl es of the sane nane that m ght already have been declared in outer
bl ocks are hidden fromview of expressions in the inner block. This also
applies to external variables and to formal argunents to the encl osing
function.

Exanpl e:

denmo() /* here is a denonstration function */

{

int count;
int c;

...sonme statenents in the denp function..

while ((c = getchar()) != ECF) {
/* redeclare 'count' */
int count;
...statements in the while | oop..

for (count = 0; count < 100; count ++) {
/* redeclare 'count' again */

int count;
...staterments in the for |oop..
} /* end of the for |oop */

...nore statenents in the while | oop..
} /* end of the while | oop */

...nore statements in the deno function

}

In this exanple, the variable count is declared in the deno function. Al
statements in the body of the denp function that are outside of the while
| oop are using the count variable declared at the head of the function

In the body of the while |loop, the variable count is declared again. Al
the statenents in the body of the while loop that are outside the for |oop

| Copyright IBM Corp. 1985, 1991
6.6-1

C Language Reference
Block Structure
are using the count variable declared in the while | oop, and the count
vari able declared in the function body is hidden fromthose statemnents.

In the body of the for |oop, the variable count is declared once nore.

Al the statenents in the body of the for |oop are now using the count
vari able declared in the for |oop, and both of the other count variables
declared in the function body and in the body of the while | oop are hidden
fromthose statenments in the body of the for |oop.

Exanpl e:

unsi gned pi e;
char broil;

deno(pi e)
doubl e pie;
{

int broil;

statenents in the deno function

}

Thi s exanpl e shows the way that external variables can be redeclared

wi thin the body of a function. The external variables pie and broil are
decl ared one way outside of the denp function. But within the function
deno() the second declarations take precedence, and the original types of
t hose variables are hidden fromstatenments inside the deno function.

| Copyright IBM Corp. 1985, 1991
6.6-2

C Language Reference
External and Static Variables

6.7 External and Static Vari abl es

extern decl aration

o m e o - - - + o e e e e +
--- +-- - +--- declarator --- ; ---|
+- extern -+ +- type specifier -+ 0 |

external data definition

+- type specifier ---------------- +
--- e + +---
+ static ---| +-+

+- type specifier -+

o e +
--- declarator ---) LR
0 + initializer -+ |
o e e ooa- +

By definition, variables declared outside of the scope of a function body
are external variables. Variables declared within the body of functions,
or within blocks within functions, normally have the auto storage class by
default. This nmeans that the lifetinme of that variable is only the
dynamic lifetine of the enclosing bl ock.

It is however possible for the programmer to assign the static storage
class to a local variable. Wen this is done, the variable remains
defined across successive invo-

cations of the function or block but it remains private to that function
or bl ock.

Exanpl e:

deno()

{

static int init = 0O;

if (init ==0) { /* First tinme flag */
do initialization code..
init = 1;
}

...normal sequence of events..

}

Thi s exanpl e denonstrates one of the conmmon uses of static variables,
nanely as a first-tine flag to determ ne whet her the deno function should
performsone initialization work before it goes on to its main line. See
"Storage C ass Specifiers"” in topic 3.5.1 for nore details.

| Copyright IBM Corp. 1985, 1991
6.7-1

C Language Reference
Chapter 7. Preprocessor Statements

7.0 Chapter 7. Preprocessor Statenents

Subt opi cs

7.1 CONTENTS

7.2 About This Chapter

7.3 Preprocessor Statenents
7.4 Preprocessor Statenent Fornat
7.5 #define

7.6 #undef

7.7 #include

7.8 Conditional Conpilation
7.9 #line

7.10 # (Null Statenent)
7.11 #pragma

7.12 Preprocessor Fl ags

| Copyright IBM Corp. 1985, 1991
70-1

C Language Reference
CONTENTS

7.1 CONTENTS

| Copyright IBM Corp. 1985, 1991
71-1

C Language Reference
About This Chapter

7.2 About This Chapter

This chapter describes the C preprocessor statenents.

| Copyright IBM Corp. 1985, 1991
72-1

C Language Reference
Preprocessor Statements

7.3 Preprocessor Statenents

The preprocessor, rather than the conpiler, interprets preprocessor
statenents. The preprocessor is a programthat prepares C | anguage
prograns for conpilation. The cc command automatically sends prograns

t hrough the preprocessor, then sends the output of the preprocessor

t hrough the compiler. The preprocessor recognizes the follow ng types of
st at ement s:

preprocessor statenent

+- preprocessor define ------- +

+- preprocessor undef -------- |

+- preprocessor null --------- |
---+- preprocessor include ------ +-- -1

+- preprocessor conditional --|

+- preprocessor pragma ------- |

+- preprocessor |line control -+

Preprocessor statenents enable you to:

0 Replace identifiers or strings in the current file with specified cod
0 Enbed files within the current fi

0 Conditionally compile sections of the current fil

O Change the line nunber of the next line of code and change the fi
nane of the current file.

C preprocessor directives may be included in C source code. They are
interpreted by the C preprocessor command cpp. Directives in a source
file apply to that source file and its included files only. Each
directive applies only to the portion of the file follow ng the directive.
If a set of directives applies throughout a source program all the source
files must include the set.

The preprocessor handl es such things as synmbolic constant definition and
macr o expansi on via the #define directive. The #include directive
provides for the inclusion of other source text into the source text of
the current conpilation unit. The #if and #ifdef directives provide for
condi tional conpil ation.

| Copyright IBM Corp. 1985, 1991
73-1

C Language Reference
Preprocessor Statement Format

7.4 Preprocessor Statenent Format

Preprocessor statements begin with a nunber sign (#) character foll owed
by a preprocessor keyword. A nunmber sign (#) need not be the first
character on the line, as long as it is preceded only by white space.
Only space and tab characters can separate the nunber sign (#) and the
preprocessor keyword. The remainder of the line can be filled with
argunments to the preprocessor, C Language conments, and white space.

Wiite space is a general termfor blanks, tabs, new lines, fornfeeds, and
conments. Comments begin with the characters (/*) and end with the
characters (*/).

Not es:

1. On the RT, the nunber sign (#) nmust be the first character on the
line. Wiite space is not all owed before the nunber sign.

2. For readability and portability, it is recommended that the nunber
sign (#) be placed in colum 1 for all preprocessor statenents.

When a back slash (\) character appears as the last character in the
preprocessor line, the preprocessor interprets the back slash (\) (and
the following newline character) and interprets the following line as a
conti nuation of the current preprocessor |ine.

Preprocessor statements can appear any place in a program They cannot,
however, appear on the sane line as C Language code that is not part of a
preprocessor statenent.

The effect of a preprocessor statenent |asts until the end of the source
file in which the statenment appears.

| Copyright IBM Corp. 1985, 1991
74-1

C Language Reference
#define

7.5 #define

A define statenment causes the preprocessor to replace an identifier or
macro with specified code. A define statenment has the form

preprocessor define

o e e e e e e e e e ao - +
--- # --- define --- identifier ---| oo + +---
+- (- +-) -+
+--- identifier ---+
0 i
+----- R +
o e e e e e e e +
---1 +--- identifier --+ +---]
+-+--- character ----+-+
(- \ --- newline -+
o e e e e e e +

The define statement can contain a sinple macro definition or a conpl ex
macro definition.

Subt opi cs
7.5.1 Sinple Macro Definition
7.5.2 Conpl ex Macro Definition

| Copyright IBM Corp. 1985, 1991
75-1

C Language Reference
Simple Macro Definition

7.5.1 Sinple Macro Definition
A sinple macro definition replaces a single identifier wth another
identifier or with a string of characters and identifiers. The follow ng
sinple definition causes the preprocessor to replace all subsequent
i nstances of the identifier COUNT with the constant 1000:

#defi ne COUNT 1000
This definition would cause the preprocessor to change the foll ow ng
statenent (if the statenent appeared after the previous definition and in
the sane file as the definition):

i nt arry[COUNT];

In the output of the preprocessor, the preceding statenment woul d appear
as:

int arry[1000];

The following definition references the previously defined identifier
COUNT:

#defi ne MAX_COUNT COUNT + 100

The preprocessor replaces each subsequent occurrence of MAX COUNT wi th
COUNT + 100, which the preprocessor then replaces with 1000 + 100.

| Copyright IBM Corp. 1985, 1991
751-1

C Language Reference
Complex Macro Definition

7.5.2 Conpl ex Macro Definition

A conpl ex macro definition receives paraneters froma nmacro call, enbeds
these parameters in sone replacenent code, and substitutes the repl acenent
code for the macro call. A conplex definition is an identifier followed

by a parenthesized paraneter list and the replacenent code. Wite space
cannot separate the identifier (which is the nanme of the macro) and the
paraneter list. A conma (,) nust separate each paraneter.

A macro call, like a function call, is an identifier followed by a Ilist of
argunments encl osed in parentheses (). Unlike a function call, white
space cannot separate the identifier and the argunment list. A conma nust
be used to separate the argunents.

The following |ine defines the macro SUM as having two paraneters a and b
and the replacenent code (a + b):

#define SUMa,b) (a + b)

This definition would cause the preprocessor to change the foll ow ng
statenents (if the statenents appeared after the previous definition and
inthe same file as the definition):

SUMX, Y);
d * SUM X, y);

C
C

In the output of the preprocessor, the preceding statenment woul d appear
as:

C
C

(x +y);
d > (x +y);

A macro call must have the sanme nunber of argunments as the correspondi ng
macro definition has paraneters.

In the macro call argument list, commas that appear as character
constants, in string constants, or surrounded by parentheses do not
separate arguments.

A definition is not required to specify replacenent code. The follow ng
definition renoves all instances of the word static from subsequent |ines
in the current file:

#define static

You can change the definition of a defined identifier or macro with a
second preprocessor define statenent or with a preprocessor undef
st at ement .

Wthin the text of the program the preprocessor does not scan character
constants or string constants for macro calls.

Exanpl es:

The fol |l owi ng programcontains two macro definitions and a macro call that
references both of the defined nacros:

#define SQR(s) ((s) * (s))
#define PRNT(a,b) printf("value 1 = %\n", a); \
printf("value 2 = %l\n", b)

| Copyright IBM Corp. 1985, 1991
752-1

C Language Reference
Complex Macro Definition

mai n()

{
int x = 2;
int y =3

} PRNT(SQR(X) , ¥) ;

After being interpreted by the preprocessor, the precedi ng program appears
as foll ows:

1 "macro.c"

mai n()

{
int x = 2;
int y =3

printf("value 1 = %l\n", ((x) * (x))); printf("value 2 = %l\n", vy);
}

In the precedi ng exanpl e, the preprocessor inserted the |line:

1 "macro.c"

The preprocessor inserted this Iine, which indicates the |line nunber 1 and
the name of the file in which the programwas stored (nmacro.c), so that
any |line nunber references to the preprocessed code would match the |ine
nunbers in the original source code.

Execution of this program produces the follow ng output:

4
3

value 1
val ue 2

| Copyright IBM Corp. 1985, 1991
752-2

C Language Reference
#undef

7.6 #undef

An undef statenent causes the preprocessor to end the scope of a
preprocessor definition. An undef statement has the form

preprocessor undef

--- # --- undef --- identifier ---|

Exanpl es:
The foll owi ng statenments define BUFFER and SQR

#defi ne BUFFER 512
#define SQR(X) (x) * (Xx)

The followi ng statenents nullify the preceding definitions:

#undef BUFFER
#undef SOR

Cccurrences of the identifiers BUFFER and SQR that appear follow ng these
undef statenents are not substituted for the previously defined code.

| Copyright IBM Corp. 1985, 1991
76-1

C Language Reference
#include

7.7 #include

An include statement causes the preprocessor to replace the statenment with
the contents of the specified file. An include statenment has the form

preprocessor include

+- " --- file name --- " -+
--- # --- include ---| +-- -
+- < --- file nane --- > -+

If the file name is enclosed in double quotation marks ("), the
preprocessor searches the directory that contains the source file, then a
standard or specified sequence of directories until it finds the specified
file. For example:

#i nclude "lib/payroll.h"

If the file name is enclosed in angle brackets (< and >), the
preprocessor searches only the standard or specified directories for the
specified file. For exanple:

#i ncl ude <stdi o. h>

If you have a nunber of definitions that several files use, you can place
all these definitions in one file and include that file in each file that
nust know the definitions. For exanple, the following file defs.h
contains several definitions and an inclusion of an additional file of
definitions:

[* defs.h */

#defi ne TRUE 1

#defi ne FALSE O

#defi ne BUFFERSI ZE 512
#def i ne MAX_ROW 66
#def i ne MAX _COLUWN 80

i nt hour;

int mn;

int sec;

#i ncl ude "/u/davi d/ defs. h"

You can enbed the definitions that appear in defs.h with the foll ow ng
st at ement :

#i ncl ude "defs. h"

The preprocessor would |l ook for the file defs.h first in the directory
that contains the source file. |[If not found there, the preprocessor would
search a sequence of specified or standard pl aces.

If the file nanme begins with the slash (/) character, the preprocessor
searches only the specified directory for the file. For exanple:

#i ncl ude "/u/ davi d/ defs. h"

The C Language does not define how you can specify a sequence of
directories for the preprocessor to search. The command cc, however,
recogni zes the flag -ldirectory, which enables you to specify a directory
for the preprocessor to search before searching the standard directories.

| Copyright IBM Corp. 1985, 1991
7.7-1

C Language Reference
#include

Assune the file pgmc contains the follow ng statenent:
#include "in file"

I'f pgmc were conpiled using the follow ng command:
cc -1 melanie/include pgmc

The preprocessor would search for the file in file in the follow ng
di rectories:

O The directory that contains the file pgmc

O The directory nel ani e/incl ude

0 The standard sequence of directories

If instead, the file pgmc contained the statenent:
#include <in file>

The preprocessor would search for the file in file in the follow ng
di rectories:

0 The directory of nel ani e/incl ude

0 The standard sequence of directories

| Copyright IBM Corp. 1985, 1991
7.7-2

C Language Reference
Conditional Compilation

7.8 Conditional Conpilation

A preprocessor conditional conpilation statenent causes the preprocessor
to insert specified code in the file depending on how a specified

condi tion evaluates. A preprocessor conditional conpilation statenent
spans several |ines:

O The condition specification lin

00 Lines containing code that the preprocessor inserts in the programi
the condition evaluates to a nonzero val ue (optional)

O A preprocessor elif statenent (optional)

00 Lines containing code that the preprocessor inserts in the programi
the condition in the elif line evaluates to 1 (one), or true
(optional)

Note: The previous 2 steps may be repeated any nunber of tines.

O The else line (optional)

0 Lines containing code that the preprocessor inserts in the programi
all previous conditions evaluate to O (zero) (optional)

O The preprocessor endif statenent.
A preprocessor conditional conpilation statenent has the form

preprocessor conditiona

+- if --- constant expression -+ H----------------- +
--- # ---+- jfdef --- identifier ------- +-- - +---
+- ifndef --- identifier ------ + +--- statement ---+
O |
RS +
o e e e e e i e e oo +
___: +- - -
+--- preprocessor elif ---+
O l
o e e e e e e e e e o +
o e e e e e e e e o +
--- +--- preprocessor endif ---|

+- preprocessor else -+
A preprocessor conditional conpilation statenent can have one of three
types of conditions: if, ifdef, and ifndef.
The follow ng describes the usage of each:

if Inserts the code that imediately follows the condition if the
condition evaluates to a nonzero val ue.

i fdef Inserts the code that immediately follows the condition if the
identifier specified in the condition is defined.

| Copyright IBM Corp. 1985, 1991
78-1

C Language Reference
Conditional Compilation
i f ndef Inserts the code that immediately follows the condition if the
identifier specified in the condition is not defined.

If the condition evaluates to O (zero), or false, and the conditiona
conpi |l ati on statement contains a preprocessor else statenent, the
preprocessor inserts the |ines that appear between the preprocessor else
statement and the preprocessor endif statement. Qherw se, the
preprocessor deletes these |lines. The preprocessor else statenent has the
form

preprocessor el se

g +
--- # --- else ---| +-- -
+--- statement ---+
0 :
o e e oo +

If the condition evaluates to O (zero), or false, and the conditiona
conpi l ati on statement contains a preprocessor elif statenent, the constant
expression following the elif is evaluated. |If the condition evaluates to
1 (one), or true, the preprocess or inserts the lines that appear between
the preprocessor elif statenment and the next elif, else, or endif
statenent. O herwi se, the preprocessor deletes these |lines. Each elif
statenent is evaluated in turn, until the constant expression of the elif
evaluates to 1 (one), or true. Only one group of lines in a conditiona
conmpilation unit will be inserted in the program |If a preprocessor else
statenent is present, the |lines which appear between it and the endif
statenent will only be inserted if the condition evaluates to O (zero), or
false, and all elif statenents, if any, evaluate to O (zero) or fal se

The preprocessor elif statenent has the form

preprocessor elif

o e ea o +
--- # --- elif --- constant expression ---| oo
+--- statenent ---+
u l
o e oo +

Note: The preprocessor elif is not supported on the RT.

The preprocessor endif statenment ends the conditional conpilation
statement. The preprocessor endif statenent has the form

preprocessor endif

-~ # --- endif ---|

You can nest preprocessor conditional statements.

Subt opi cs
7.8.1 #if
7.8.2 #ifdef
7.8.3 #ifndef

| Copyright IBM Corp. 1985, 1991
7.8-2

C Language Reference
#if
7.8.1 #if

The if keyword nust be followed by a constant expression. The constant
expressi on cannot contain a sizeof expression, an enuneration constant, or
a cast operator. For exanple:

#if TEST >= 1

printf("i = %l\n", i);
printf("array[i] = %\n", array[i]);
#endi f

The constant expression can contain the keyword defined. This keyword can
be used only with the preprocessor keyword if. The expression:

defined jdentifier
R
defined(identifier)

evaluates to 1 if the identifier is defined in the preprocessor, otherw se
to 0 (zero). For exanple:

#1f defined (TEST1)|| defined(TEST2)
defi ne PHASE 1

#elif defined (TEST3)

defi ne PHASE 2

#el se

defi ne PHASE 3

#endi f

| Copyright IBM Corp. 1985, 1991
781-1

C Language Reference
#ifdef

7.8.2 #ifdef

An identifier nmust follow the jfdef keyword. The follow ng exanple
defines SIZEOF INT to be 32 if 180386 is defined for the preprocessor.
QG herw se, SIZEOF INT is defined to be 16.

#i fdef 180386

define SIZEOF I NT 32
#el se

define SIZEOF INT 16
#endi f

| Copyright IBM Corp. 1985, 1991
782-1

C Language Reference
#ifndef

7.8.3 #ifndef

An identifier nmust follow the jfndef keyword. The follow ng exanple
defines SIZEOF INT to be 16 if 180386 is not defined for the preprocessor.
QG herw se, SIZEOF INT is defined to be 32.

#i f ndef 180386

define SIZEOF INT 16
#el se

define SIZEOF I NT 32
#endi f

The command cc recogni zes the flag -Didentifier, which enables you to
specify at conpile tinme an identifier for the preprocessor to define. For
exanpl e, the follow ng command defines the identifier 180386 in the file

pgm c:
cc -DI 80386 pgmc

Exanpl es:

The foll owi ng exanpl e shows how you can nest preprocessor conditiona
conpi |l ati on statements:

#i f defined(TARGET1)

define SIZEOF INT 16

i fdef PHASE2
define MAX PHASE 2
el se
defi ne MAX PHASE 8
endi f
#el se

define SIZEOF I NT 32
define MAX PHASE 16

#endi f

The fol |l owi ng program contai ns preprocessor conditional conpilation
st at enent s:

mai n()

{
static int array[1| ={ 1, 2, 3, 4, 5 };

int i;
for (i =0; i <=4, i++)
{

array[i] *= 2;

#if TEST >= 1

printf("i = %l\n", i);

printf("array[i] = %\n", array[i]);
#endi f

}

| Copyright IBM Corp. 1985, 1991
783-1

C Language Reference
#line

7.9 #line

A line control statement causes the conpiler to view the |line nunber of
the next source line as the specified nunmber. A |ine statenent has the
form

preprocessor line contro

g +
--- # --- line --- decinmal constant ---| +e- -
+- " --- file nane --- " -+

A file nane specification enclosed in quotes can follow the |ine nunber.
If you specify a file nane, the conpiler views the next line as part of

the specified file. |If you do not specify a file nane, the conpiler views
the next line as part of the file specified by the preceding |ine contro
statenent. If a |ine control statement does not precede the current

statenent, the conpiler views the line as part of the current source file.
The conpiler recognizes the identifiers = LINE _ and _ FILE .
LINE _ evaluates to the current |line nunber. The identifier _ FILE _
evaluates to the current file name. Thus, the follow ng statenment prints
an error nessage that contains the current |line nunber and file nane:

printf("Error online % in file %.\n", _ LINE_ _, _ _FILE _);

The preprocessor and ot her prograns may produce |ine control statements
(other than those specified in the file). For example, if the first line
of afileis an include statenment, the preprocessor inserts the specified
file and a |ine control statement that sets the number of the |ine that
follows the included code to 2.

You can use |line control statenents to nake the compiler provide nore
meani ngful error nessages. The follow ng programuses |ine contro
statements to give each function an easily recognizabl e |ine numnber

#i ncl ude <stdi o. h>

mai n()
{
func_1();
func_2();
}
#line 100
func_1()
{
printf("Func_1 - the current l|ine nunber is %\n", _ _LINE_
}
#1ine 200
func_2()
{
printf("Func_2 - the current |ine nunber is %\n", _ _LINE_
}

The precedi ng program produces the follow ng output:

Func 1 - the current line nunber is 102
Func 2 - the current |ine nunber is 202

| Copyright IBM Corp. 1985, 1991
79-1

)

)

C Language Reference
(Null Statement)

7.10 # (Null Statenent)

The null statenment perfornms no action. The null statenent consists of a
single nunmber sign (#) on a line of its own.

preprocessor null

--- H# ___:

In the follow ng exanple, if MNVAL is a defined nmacro nane, no action is
performed. If MNVAL is not a defined identifier, it is defined as the
val ue 1.

#i fdef M NVAL

#
#el se

#define M NVAL 1
#endi f

| Copyright IBM Corp. 1985, 1991
7.10-1

C Language Reference
#pragma

7.11 #pragnma

A pragma is an inplenentation-defined instruction to the conpiler. It has
the general formgiven below, where character-sequence is a series of
characters giving a specific conpiler instruction and argunents, if any.

preprocessor pragnma

o e e e me oo oo +
--- # --- pragma --- +o--
+--- character ---+
a :
o m e e e oo oo oo +

The character-sequence on a pragma i s not subject to macro substitutions.
VWi t e-space characters (for exanple, blanks, tabs, and new |lines) can
appear between the nunber sign and the word pragma.

Note: The preprocessor pragma i s not supported on the RT.

There are no pragmas currently defined for Al X C | anguage.

| Copyright IBM Corp. 1985, 1991
711-1

C Language Reference
Preprocessor Flags

7.12 Preprocessor Fl ags

Al X runs on several hardware platforns and offers several C conpilers. By
conbi ni ng preprocessor flags and #i fdef statements, you can wite a single
C programwhich will be conmpiled differently according to the platformit
is intended for or the conpiler which is to be used.

Those bl ocks of code which nmake the program suitable for each hardware
platformor conpiler are preceded by a line of the following form

#i fdef TAG

where TAG is one of the predefined synbols recogni zed by the preprocessor,
such as i386. A program neant for several platfornms or conpilers contains
a series of such blocks. Each is preceded with a different #ifdef TAG
sequence.

The programis then conpiled one or nore tines; each conpilation specifies
one of these TAGs on the command line. The TAGis used as a preprocessor
flag, and is preceded by -D:

cc sourcefile -DTAG

This causes TAG to be defined within the program The bl ock of code
preceded by #ifdef TAG is then conpiled.

The cc command reads the file /etc/cc.cfg to determ ne which cpp flags to
recogni ze. See cc.cfg in Al X Technical Reference for further information.

| Copyright IBM Corp. 1985, 1991
712-1

C Language Reference
Index

Speci al Characters
4.6.3.14
4.6.3.8

#pragma 7.11
% 4.6.3.2

addition operators 4.6.3.3
address eval uati on operator 4.6.3
argc 6.4

argunments to functions 6.5.1
argv 6.4

arithnetic conversions 4.4.5
arrays 3.5.6

asm statenment 5.3.12

assi gnment operator 4.6.3.13
automatic variables 3.8.1

B

basic synbols 2.4.1

bi nary operator 4.6.1.2

bi nary operators 4.6.3.1
bit-field 3.5.7.1

bitwi se AND operator 4.6.3.7
Bi twi se exclusive OR operator
bitwi se inclusive OR operator
bl ock scope 3.11

bl ock statement 5.3.2

bl ock structure 6.6

break 5.3.8

break statenent 5.3.8

C

cast operator 4.6.3

cc 7.3 7.7 7.8.3

char 3.5.2

characters 2.4 4.4

commua operator 4.6.3.14
command |ine argunents 6.4
conments, as white space 7.4
conments, exanple of 2.6.1
compound statenent 5.3.2
conditional conpilation 7.8
condi ti onal expression 4.6.3.12
conditional statement 5.3.3
const 3.5.3

4.6.3.8
4.6.3.9

| Copyright IBM Corp. 1985, 1991
INDEX - 1

C Language Reference
Index
constant expression 4.6.1.2
constants 2.5.4
character 2.5.3
character constants, table of 2.5.3
deci mal constant 2.5.1
double 4.6.2
exponent 2.5.2
floating 2.5.2
hexadeci mal constant 2.5.1
int 4.6.2
integer 2.5.1
long 4.6.2
octal constant 2.5.1
wi de character 2.5.3.
conti nue statenent 5.3.
conversions 4.3
D
deci mal constant 2.5.1
decl arations 3.0
decl arations, formof 3.5
decl arations, inplicit 3.9
declarators 3.5.4
decl arators, neaning of 3.5.5
decrenent 4.6.3
define preprocessor statenment 7.5
defined, preprocessor keyword 7.8.1
definition, macro 7.5
digit 2.4
do statenment 5. 3.
double 3.5.2 4.4.
E
el se, preprocessor keyword 7.8
endi f, preprocessor line 7.8
enum 3.5. 8
envp 6.4
equality operator 4.6.3.6
escape sequence 2.5.3
exponent 2.5.2
expressi on | anguage 4.3
expression statenent 5.3.1
expressions 4.0
expressions, parenthesized 4.6.2.2
external objects, static attribute of 6.5.2
external variables 3.8.2 6.7
F
file inclusion 7.7
float 3.5.2 4.4.2
floating and integral 4.4.3
for 5.3.7
for statenent 5.3.7
formal argunents 3.8.3
function prototype 6.5
function prototype scope 3.11
function references 4.6.2.4
functions 6.0
functions, defining 6.5
functions, restrictions 3.5.10
G
goto statenent 5.3.11
H

1
9

6
2

| Copyright IBM Corp. 1985, 1991
INDEX - 2

C Language Reference
Index
hexadeci mal constant 2.5.1
hi ghl i ghti ng PREFACE. 3. 1
[
identifiers 2.4
if preprocessor statenent 7.8.1
i fdef preprocessor statement 7.8.2
i f ndef preprocessor statenent 7.8.3
inmplicit declarations 3.9
ncl ude preprocessor statenent 7.7
ncrement 4.6.3
ndentation of code 7.4
ndirection 4.6.3
nitializer 3.6
nt 3.5.2
ntegers 4.4 4.4.4

K
keywords 2.4.1
keywords, list of 2.4.1.1
L
| abel 5.3.11
letters 2.4
| exical elements 2.0
lifetimes 3.8
line control preprocessor statenent 7.9
| ogi cal AND operator 4.6.3.10
| ogi cal negation 4.6.3
| ogi cal ones conpl enent 4.6.3
| ogical OR operator 4.6.3.11
long 3.5.2
| ong constant 2.5
| ong double 2.5.2
| value 3.4
M
macro call 7.5.2
macro definition 7.5 7.5.2
mai n function 6.4
menber references 4.6.2.3
mul tiplication operator 4.6.3.2
N
nanme 3. 10
nam ng spaces 3.10
newline 2.4
null statenent 5.3.13 7.10
O
object 3.4
octal constant 2.5.1
operators in expressions 4.5
operators, sunmary 4.6
P
pointers 3.5.7 4.4. 4
precedence 4.5
preprocessor 7.0
preprocessor directives 7.3
#define 7.3
#if 7.3
#ifdef 7.3
#include 7.3
preprocessor flags 7.12
preprocessor statenent character 7.4
preprocessor statenents 7.0

| Copyright IBM Corp. 1985, 1991
INDEX - 3

C Language Reference
Index
primary expressions
constants 4.6.2
function calls 4.6.2.4
function references 4.6.2.4
identifiers 4.6.1.1
menber references 4.6.2.3
par ent hesi zed expressions 4.6.2.2
strings 4.6.2.1
prototype, function 6.5
R
references, function 4.6.2.4
ref erences, nenber 4.6.2.3
register variables 3.8.1
relational operator 4.6.3.5
reserved identifiers, list of 2.4.1.1
reserved keywords 2.4.1
return statenent 5.3.10
S
scope 3.11
separators 2.6
shift operator 4.6.3.4
short 3.5.2 4.4
signed 3.5.2
si zeof operator 4.6.3
space character 7.4
spaces 3.10
spaces, namng 3.10
special symbols 2.4.1.2
statenments
asm 5. 3.12
break 5.3 5.3.8
case 5.3
compound 5. 3.2
conditional 5.3.3
continue 5.3 5.3.9
do 5.3.6
do-while 5.3
expression 5.3.1
for 5.3 5.3.7
goto 5.3.11
if 5.3
null 5.3.13
return 5.3.10
sumary of 5.0
switch 5.3 5.3.4
while 5.3 5.3.5
static variables 3.8.2
storage cl ass specifier
st orage cl asses
auto 3.5.1
extern 3.5.
register 3.5.1
static 3.5.1
typedef 3.5.1
strings 2.5.4 4.6. 2.
strings, initializi
structures 3.5.
switch statenen
synbols 2.4.1
synt ax di agranms PREFACE. 3. 2

n o

l—"\'—

zin
.1 4.
5.3

| Copyright IBM Corp. 1985, 1991
INDEX - 4

C Language Reference
Index

abstract declarator 6.5
additive expression 4.6.3.3
asm statenent 5.3.12
assi gnment expression 4.6.3.13
bi nary operators 4.6.3.1
bitwi se AND expression 4.6.3.7
bi twi se exclusive OR operator
bitwi se inclusive OR operator
bl ock statenment 5.3.2
break statenment 5.3.8
case clause 5.3.4
case label 5.3.4
character 2.4
character constant 2.5.3
character specifier 3.5.2
comma expression 4.6.3.14
coment 2.6.1
constant 2.5
constant expression 4.6.1.2
continue statenent 5.3.9
deci mal constant 2.5.1
declaration 3.5
decl aration specifier 3.5
declarator 3.5.4
default clause 5.3.4
default |abel 5.3.4
digit 2.4
do statement 5.3.6
enum constant 3.5.8
enum specifier 3.5.8
equality expression 4.6.3.6
escape sequence 2.5.3
expression 4.3
expression statenent 5.3.1
extern declaration 6.7
external data definition 6.7
float specifier 3.5.2
for statement 5.3.7
function declarator 6.5
function header 6.5
goto statenent 5.3.11
hexadeci mal constant 2.5.1
identifier 2.4
identifier list 6.5
if statenent 5.3.3
nit-declarator 3.5 3.5.4
nit-declarator-list 3.5 3.5. 4
nitial expression 3.6
nitializer 3.6
nt specifier 3.5.2
nternal data device 6.6
abel ed statenent 5.3.11
letter 2.4
| ogi cal AND operator 4.6.3.10
| ogi cal OR operator 4.6.3.11
| value 4.6.1
main function 6.4
menber 3.5.7.1
mul tiplication operators 4.6.3.2
new-line 2.4

4.6.3.8
4.6.3.9

| Copyright IBM Corp. 1985, 1991
INDEX - 5

C Language Reference
Index
null statenent 5.3.13
octal constant 2.5.1
paraneter declaration 6.5
paraneter list 6.5
pragma 7.11
preprocessor conditional 7.8
preprocessor define 7.5
preprocessor elif 7.8
preprocessor else 7.8
preprocessor endif 7.8
preprocessor include statenment 7.7
preprocessor line control 7.9
preprocessor null 7.10
preprocessor statenment 7.3
preprocessor undef statenment 7.6
primary expression 4.6.1
relati onal expression 4.6.3.5
return statenent 5.3.10
shift expression 4.6.3.4
statenent 5.3
storage cl ass specifier 3.5.1
string constant 2.5.4
structure or union specifier 3.5.7.1
subscript declarator 3.5.4
switch body 5.3.4
switch statement 5.3.4
type definition 3.5.11
type nane 4.6.3
type qualifier 3.
type specifier 3.
typedef name 3.5.11
unary expression 4.6.3
voi d specifier 3.5.9
while statenent 5.3.5

5.3
5.2

T
ternary operator 4.6
t okens, classes of 1.
type nane 3.7
type nane synonyns, declaring 3.5.11
type qualifiers 3.5.3
type specifiers

char 3.5.2

double 3.5.2

enum 3. 5.2

float 3.5.2

int 3.5.2

long 3.5.2

| ong double 3.5.2

short 3.5.2

signed 3.5.2

struct-or-union 3.5.2

t ypedef-name 3.5.2

unsi gned 3.5.2
typedef 3.5.11
U
unary

negation 4.6.3

operator 4.6.1.2 4.6.3
undef preprocessor statenent 7.6
union 3.5.2 3.5.7.1 4.6.2.3

1.2
3 2.3

| Copyright IBM Corp. 1985, 1991
INDEX - 6

C Language Reference
Index

unsi gned 3.5.2
\Y
vari ables 6.7

automatic 3.8.1

external 6.7

formal argunents 3.8.3

initializing 3.6

lifetines 3.8

static 3.8.2
void 3.5.2 3.5.
vol atile 3.5.3
w
whi | e st at enent
white space 7.4
whi t espace 2.6

6.7
9

5.3.5
7.5.2

| Copyright IBM Corp. 1985, 1991
INDEX - 7

