

 IBM Advanced Interactive Executive
 for the RT, PS/2, and System/370
 C Language Reference
 Version 1.2.1

 Document Number SC23-2058-02

Copyright IBM Corp. 1985, 1991

 --
 IBM Advanced Interactive Executive
 for the RT, PS/2, and System/370

 C Language Reference

 Version 1.2.1

 Document Number SC23-2058-02

 --

Copyright IBM Corp. 1985, 1991

Edition Notice
 Third Edition (March 1991)

 This edition applies to Version 1.2.1 of the IBM Advanced Interactive
 Executive for the System/370 (AIX/370), Program Number 5713-AFL, to
 Version 2.2.1 of the IBM Advanced Interactive Executive for RT (AIX
 RT), Program Number 5601-061, and for Version 1.2.1 of the IBM
 Advanced Interactive Executive for the Personal System/2, Program
 Number 5713-AEQ, and to all subsequent releases until otherwise
 indicated in new editions or technical newsletters. Make sure you are
 using the correct edition for the level of the product.

 Order publications through your IBM representative or the IBM branch
 office serving your locality. Publications are not stocked at the
 address given below.

 A form for reader's comments appears at the back of this publication.
 If the form has been removed, address your comments to:

 IBM Corporation Department 52QA MS 911
 Neighborhood Road
 Kingston, NY, 12401
 U.S.A.

 When you send information to IBM, you grant IBM a nonexclusive right
 to use or distribute the information in any way it believes
 appropriate without incurring any obligation to you.

 ¦ Copyright International Business Machines Corporation 1985, 1991.
 All rights reserved.
 ¦ Copyright AT&T Technologies 1984, 1987, 1988
 ¦ Copyright INTEL 1986, 1987
 ¦ Copyright INTERACTIVE Systems Corporation 1985, 1988
 ¦ Copyright Locus Computing Corporation, 1988
 Note to U.S. Government Users -- Documentation related to restricted
 rights -- Use, duplication or disclosure is subject to restrictions
 set forth in GSA ADP Schedule Contract with IBM Corp.

C Language Reference
Edition Notice

¦ Copyright IBM Corp. 1985, 1991
EDITION - 1

Notices
 References in this publication to IBM products, programs, or services do
 not imply that IBM intends to make these available in all countries in
 which IBM operates. Any reference to an IBM product, program, or service
 is not intended to state or imply that only IBM's product, program, or
 service may be used. Any functionally equivalent product, program, or
 service that does not infringe any of IBM's intellectual property rights
 or other legally protectible rights may be used instead of the IBM
 product, program, or service. Evaluation and verification of operation in
 conjunction with other products, programs, or services, except those
 expressly designated by IBM, are the user's responsibility.

 IBM may have patents or pending patent applications covering subject
 matter in this document. The furnishing of this document does not give
 you any license to these patents. You can send license inquiries, in
 writing, to the IBM Director of Commercial Relations, IBM Corporation,
 Purchase, NY 10577.

 Subtopics
Trademarks and Acknowledgments

C Language Reference
Notices

¦ Copyright IBM Corp. 1985, 1991
FRONT_1 - 1

Trademarks and Acknowledgments
 The following trademarks apply to this book:

 � Portions of the code and documentation were developed at th
 Electrical Engineering and Computer Sciences Department at the
 Berkeley Campus of the University of California under the auspices of
 the Regents of the University of California.

 � AIX, Personal System/2, PS/2, RT, RT PC, and RT Personal Computer ar
 registered trademarks of International Business Machines Corporation.

 � IBM is a registered trademark of International Business Machine
 Corporation.

 � System/370 is a trademark of International Business Machine
 Corporation.

C Language Reference
Trademarks and Acknowledgments

¦ Copyright IBM Corp. 1985, 1991
FRONT_1.1 - 1

About This Book
 This book describes the C programming language as implemented on the
 Advanced Interactive Executive (AIX) Operating System. It includes
 reference information on the lexical and syntactic elements that make up
 the C programming language and the structure and format of C language
 programs.

 Subtopics
Who Should Read This Book
What You Should Know
How to Use This Book
Related Publications

C Language Reference
About This Book

¦ Copyright IBM Corp. 1985, 1991
PREFACE - 1

Who Should Read This Book

 This book is written for programmers who want to write application
 programs in C language that run on the AIX Operating System.

C Language Reference
Who Should Read This Book

¦ Copyright IBM Corp. 1985, 1991
PREFACE.1 - 1

What You Should Know

 To get the most out of this book, you should have an intermediate to
 advanced understanding of the C programming language. You should also
 have a general understanding of programming concepts and terminology and
 some experience in writing programs.

C Language Reference
What You Should Know

¦ Copyright IBM Corp. 1985, 1991
PREFACE.2 - 1

How to Use This Book

 This book is intended as a companion reference to the C Language User's
 Guide. It is organized according to the general classes of elements that
 are used to construct programs in the C language. To locate specific
 topics, use the table of contents or the index.

 Subtopics
Highlighting
Syntax Diagrams

C Language Reference
How to Use This Book

¦ Copyright IBM Corp. 1985, 1991
PREFACE.3 - 1

Highlighting

 This book uses different type styles to distinguish among certain kinds of
 information. General information is printed in the standard type style
 (for example, this sentence).

 The following type styles indicate other types of information:

 � Commands, keywords, types, objects, expressions, declarations
 statements, functions, and parameters appear in bold type.

 � Examples, words, and characters that must be entered literally appea
 in monospace type.

 � Variables appear in italics.

 � New terms appear in bold italic type.

 � Blue type indicates an AIX Family extension to the C language

C Language Reference
Highlighting

¦ Copyright IBM Corp. 1985, 1991
PREFACE.3.1 - 1

Syntax Diagrams

 The following typographic conventions are used in the syntax diagrams. If
 you need information on how to read the syntax diagrams, refer to the AIX
 Operating System Commands Reference.

 � Syntactic categories appear between angle brackets (< >)

 � Alternative syntactic categories appear on separate lines

 � Ellipses indicate that a preceding parameter can be repeated, fo
 example:

 <object>...

 � Variables that should be replaced by data objects in actual progra
 statements appear in italics.

 � An optional terminal symbol or non-terminal symbol is indicated by th
 notation:

 <object>...
 opt

 � A syntactic definition is indicated by the name of the object bein
 defined, followed by a colon, followed by the symbols that make up the
 object. Here is an example of the syntactic definition for a
 compound-statement:

 <compound-statement>:
 { <declaration>... <statement>... }
 opt opt

 This specification states that a compound-statement is made up of a
 left brace, followed by one or more optional declarations and one or
 more optional statements followed by a right brace. Note that this
 definition provides for an empty compound statement.

 � Brackets [] indicate optional items and subscripts of an array

 � Braces { } enclose optional elements that can be repeated more tha
 once.

C Language Reference
Syntax Diagrams

¦ Copyright IBM Corp. 1985, 1991
PREFACE.3.2 - 1

Related Publications
 For additional information, you may want to refer to the following
 publications:

 � AIX C Language User's Guide, SC23-2057, describes how to develop,
 link, and execute C language programs. This book also describes the
 operating dependencies of C language and shows how to use C
 language-related software utilities and other program development
 tools.

 � AIX Commands Reference, SC23-2292 (Vol. 1) and SC23-2184 (Vol. 2),
 lists and describes the AIX/370 and AIX PS/2 Operating System
 commands.

 � AIX Programming Tools and Interfaces, SC23-2304, describes the
 programming environment of the AIX Operating System and includes
 information about operating system tools that are used to develop,
 compile, and debug programs.

 � SAA Common Programming Interface C Reference, SC26-4353, describes
 each component of the common programming interface.

C Language Reference
Related Publications

¦ Copyright IBM Corp. 1985, 1991
PREFACE.4 - 1

Table of Contents
 TITLE Title Page
 COVER Book Cover
 EDITION Edition Notice
 FRONT_1 Notices
 FRONT_1.1 Trademarks and Acknowledgments
 PREFACE About This Book
 PREFACE.1 Who Should Read This Book
 PREFACE.2 What You Should Know
 PREFACE.3 How to Use This Book
 PREFACE.3.1 Highlighting
 PREFACE.3.2 Syntax Diagrams
 PREFACE.4 Related Publications
 CONTENTS Table of Contents
 FIGURES Figures
 TABLES Tables
 1.0 Chapter 1. Introduction
 1.1 CONTENTS
 1.2 About This Chapter
 1.3 Overview
 2.0 Chapter 2. Lexical Elements
 2.1 CONTENTS
 2.2 About This Chapter
 2.3 Lexical Elements
 2.4 Identifiers
 2.4.1 Keywords and Basic Symbols
 2.4.1.1 Keywords
 2.4.1.2 C Special Symbols
 2.5 Constants
 2.5.1 Integer Constants
 2.5.2 Floating Constants
 2.5.3 Character Constants
 2.5.3.1 Wide Character Constants
 2.5.4 String Constants
 2.5.4.1 Wide String Constants
 2.6 Other Separators
 2.6.1 Comments
 3.0 Chapter 3. Declarations
 3.1 CONTENTS
 3.2 About This Chapter
 3.3 Declarations
 3.4 Objects and Lvalues
 3.5 Declarations
 3.5.1 Storage Class Specifiers
 3.5.2 Type Specifiers
 3.5.3 Type Qualifiers
 3.5.4 Declarators
 3.5.5 Meaning of Declarators
 3.5.6 Arrays
 3.5.7 Pointers
 3.5.7.1 Structures and Unions
 3.5.8 Enum
 3.5.9 Void
 3.5.10 Complex Declarators
 3.5.11 typedef -- Declaring Type Name Synonyms
 3.6 Initializing Variables
 3.6.1 Initializing Strings
 3.7 Type Names
 3.8 Lifetimes of Variables
 3.8.1 Automatic and Register Variables

C Language Reference
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 1

 3.8.2 Static and External Variables
 3.8.3 Formal Arguments
 3.9 Implicit Declarations
 3.10 Name Spaces
 3.11 Scope
 4.0 Chapter 4. Expressions
 4.1 CONTENTS
 4.2 About This Chapter
 4.3 Expressions
 4.4 Conversions
 4.4.1 Integers, Shorts and Characters
 4.4.2 Float and Double
 4.4.3 Floating and Integral
 4.4.4 Pointers and Integers
 4.4.5 The Usual Arithmetic Conversions
 4.5 Operators in Expressions
 4.6 Summary of Operators
 4.6.1 Primary Expressions
 4.6.1.1 Identifiers
 4.6.1.2 Constant Expressions
 4.6.2 Constants
 4.6.2.1 Strings
 4.6.2.2 Parenthesized Expressions
 4.6.2.3 Member References
 4.6.2.4 Function References
 4.6.3 Unary Operators
 4.6.3.1 Binary Operators
 4.6.3.2 Multiplication Operators
 4.6.3.3 Addition Operators
 4.6.3.4 Shift Operators
 4.6.3.5 Relational Operators
 4.6.3.6 Equality Operators
 4.6.3.7 Bitwise AND Operator
 4.6.3.8 Bitwise Exclusive OR Operator
 4.6.3.9 Bitwise Inclusive OR Operator
 4.6.3.10 Logical AND Operator
 4.6.3.11 Logical OR Operator
 4.6.3.12 Conditional Expression
 4.6.3.13 Assignment Operators
 4.6.3.14 Comma Operator
 5.0 Chapter 5. Statements
 5.1 CONTENTS
 5.2 About This Chapter
 5.3 Statements
 5.3.1 Expression Statement
 5.3.2 Compound Statement
 5.3.3 Conditional Statement
 5.3.4 Switch Statements
 5.3.5 While Statements
 5.3.6 Do Statement
 5.3.7 For Statement
 5.3.8 Break Statement
 5.3.9 Continue Statement
 5.3.10 Return Statement
 5.3.11 Goto Statement and Labels
 5.3.12 asm Statement
 5.3.13 Null Statement
 6.0 Chapter 6. Functions
 6.1 CONTENTS
 6.2 About This Chapter

C Language Reference
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 2

 6.3 Functions
 6.4 The Main Function
 6.5 Defining Functions
 6.5.1 Arguments to Functions
 6.5.2 External Objects with the Static Attribute
 6.6 Block Structure
 6.7 External and Static Variables
 7.0 Chapter 7. Preprocessor Statements
 7.1 CONTENTS
 7.2 About This Chapter
 7.3 Preprocessor Statements
 7.4 Preprocessor Statement Format
 7.5 #define
 7.5.1 Simple Macro Definition
 7.5.2 Complex Macro Definition
 7.6 #undef
 7.7 #include
 7.8 Conditional Compilation
 7.8.1 #if
 7.8.2 #ifdef
 7.8.3 #ifndef
 7.9 #line
 7.10 # (Null Statement)
 7.11 #pragma
 7.12 Preprocessor Flags
 INDEX Index

C Language Reference
Table of Contents

¦ Copyright IBM Corp. 1985, 1991
CONTENTS - 3

Figures
 3-1. Example of External and Internal Linkage 3.11

C Language Reference
Figures

¦ Copyright IBM Corp. 1985, 1991
FIGURES - 1

Tables
 2-1. C Reserved Identifiers (Keywords) 2.4.1.1
 2-2. C Special Symbols 2.4.1.2
 2-3. Character Constants 2.5.3

C Language Reference
Tables

¦ Copyright IBM Corp. 1985, 1991
TABLES - 1

 1.0 Chapter 1. Introduction

 Subtopics
 1.1 CONTENTS
 1.2 About This Chapter
 1.3 Overview

C Language Reference
Chapter 1. Introduction

¦ Copyright IBM Corp. 1985, 1991
1.0 - 1

 1.1 CONTENTS

C Language Reference
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
1.1 - 1

 1.2 About This Chapter

 This chapter includes the main features of the AIX C language and a
 summary of terms and concepts in the book.

 The topics you will find covered in this reference include:

 � Lexical Element
 � Declaration
 � Expression
 � Statement
 � Program Structur
 � Preprocessor Statements

C Language Reference
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
1.2 - 1

 1.3 Overview

 IBM AIX C compilers are high-performance optimizing compilers that produce
 object code for execution under the AIX Operating System. AIX PS/2
 supports two C compilers. The C Language compiler (VSC) can be invoked
 with the vs command and can be used to compile C language source code. For
 information on this command, see AIX Operating System Commands Reference.
 The other compiler is the Extended C Language compiler (MCC).

 C language contains many building blocks that you can use to construct
 programs. Most of these building blocks fit into one of a few categories.

 � Lexical Elements

 There are six basic classes of lexical elements in C language:

 - Identifiers

 - Keywords

 - Constants

 - String constants

 - Operators

 - Other separators.

 � Declarations

 Declarations specify the way in which the C compilers interpret each
 identifier. When an identifier is declared, the declaration does not
 necessarily reserve any storage in memory for that identifier. Some
 declarations simply define a template, for instance, in struct and
 union declarations.

 � Expressions

 An expression is a construct that defines the rules of computation for
 creating a value by performing operations (specified by operators) on
 operands (specified by variables, constants, and function references).
 These newly created values can then be used in assignment statements
 or can be used (in conditional expressions) to control subsequent
 program actions.

 � Statements

 The C programming language contains expression statements and control
 flow statements. The expression statements are used to compute and
 assign new values to objects at runtime. The control-flow statements
 determine the order in which the computations are performed.

 � Functions

 A complete C program consists of a collection of external objects.
 These objects are either functions or variables. A function is the
 fundamental C method of grouping blocks into manageable units.

 � Preprocessor Statements

C Language Reference
Overview

¦ Copyright IBM Corp. 1985, 1991
1.3 - 1

 The preprocessor is a program that prepares C language programs for
 compilation. The preprocessor, rather than the compiler, interprets
 preprocessor statements. The cc command automatically sends programs
 through the preprocessor, then sends the output of the preprocessor
 through the compiler.

 Preprocessor statements enable you to:

 - Replace identifiers or strings in the current file with specified
 code

 - Embed files within the current file

 - Conditionally compile sections of the current file

 - Change the line number of the next line of code and change the
 file name of the current file.

C Language Reference
Overview

¦ Copyright IBM Corp. 1985, 1991
1.3 - 2

 2.0 Chapter 2. Lexical Elements

 Subtopics
 2.1 CONTENTS
 2.2 About This Chapter
 2.3 Lexical Elements
 2.4 Identifiers
 2.5 Constants
 2.6 Other Separators

C Language Reference
Chapter 2. Lexical Elements

¦ Copyright IBM Corp. 1985, 1991
2.0 - 1

 2.1 CONTENTS

C Language Reference
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
2.1 - 1

 2.2 About This Chapter

 This chapter describes the lexical and syntactic elements that make up the
 C programming language.

C Language Reference
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
2.2 - 1

 2.3 Lexical Elements

 There are six basic classes of lexical elements in C language:

 � Identifier

 � Keyword

 � Constant

 � String constant

 � Operator

 � Other separators

C Language Reference
Lexical Elements

¦ Copyright IBM Corp. 1985, 1991
2.3 - 1

 2.4 Identifiers

 Identifiers, which are also called names, are used to identify variables,
 functions, and macros. An identifier in C is a sequence of letters and
 digits. The first character of an identifier must be a letter. The
 underscore character (_) acts as a letter in the context of an identifier.

 Note: External identifiers beginning with an underscore are reserved as
 are all other identifiers beginning with two underscores or an
 underscore followed by an uppercase character.

 identifier

 +--------------+
 --- letter ----¦ +- letter -+ ¦
 +-+- digit --+-+
 �+--- - ----+¦
 +------------+

 character

 +--------------+
 ¦ Any printing ¦
 ---¦ character or +---¦
 ¦ a blank. ¦
 +--------------+

 letter

 one of
 +---------------------------+
 ¦ a b c d e f g h i j k l m ¦
 ---¦ n o p q r s t u v w x y z +---¦
 ¦ A B C D E F G H I J K L M ¦
 ¦ N O P Q R S T U V W X Y Z ¦
 +---------------------------+

 digit

 one of
 +-----------+
 ---¦ 0 1 2 3 4 +---¦
 ¦ 5 6 7 8 9 ¦
 +-----------+

 new-line

 +-------------------------+
 ---¦ The character code that +---¦
 ¦ the Enter key produces. ¦
 +-------------------------+

 Note: In the VSC and RT compilers, only the first 64 characters of an
 identifier are recognized, but the user may write identifiers of

C Language Reference
Identifiers

¦ Copyright IBM Corp. 1985, 1991
2.4 - 1

 any length, as long as they are unique in the first 64 characters.
 This is no limit for the identifiers in the AIX/370 and PS/2 MCC
 compilers.

 Uppercase and lowercase letters are considered different in C language
 identifiers. It is common practice to use uppercase names for macros and
 constants and lowercase names for variables.

 Examples:

 Albert Ada_Augusta Boole_and_Babbage

 Tau_Ceti Z_Transform

 UP_to_low up_to_LOW up_TO_low

 Note that the C Compiler considers the last row of names to be quite
 different, since the placing of the uppercase and lowercase letters is not
 the same from one to the other.

 Invalid Examples:

 1st_char _is_digit odd_#$"[_char

 Note: The RT, AIX/370, and PS/2 MCC C compilers prepend the underscore
 character (_) to external identifiers.

 Subtopics
 2.4.1 Keywords and Basic Symbols

C Language Reference
Identifiers

¦ Copyright IBM Corp. 1985, 1991
2.4 - 2

 2.4.1 Keywords and Basic Symbols

 C has a set of basic symbols that the compiler uses for specific purposes
 in the language. These symbols include selected (reserved) identifiers
 and special symbols composed of one or more characters. These basic
 symbols are used as keywords, operators, delimiters, and separators.

 Following are two lists of basic symbols. One is a list of C reserved
 identifiers (keywords) and the other is a list of the special symbols that
 C uses.

 Subtopics
 2.4.1.1 Keywords
 2.4.1.2 C Special Symbols

C Language Reference
Keywords and Basic Symbols

¦ Copyright IBM Corp. 1985, 1991
2.4.1 - 1

 2.4.1.1 Keywords

 No C keyword may be employed as a user-defined identifier.

 The C keywords are always lowercase. The C Compiler does not recognize
 keywords that are typed with uppercase letters in them.

 +---+
 ¦ Table 2-1. C Reserved Identifiers (Keywords) ¦
 +---¦
 ¦ asm (3) ¦ double ¦ if ¦ struct ¦
 +--------------+--------------+--------------+--------------¦
 ¦ auto ¦ else ¦ int ¦ switch ¦
 +--------------+--------------+--------------+--------------¦
 ¦ break ¦ entry (1), (2¦ long ¦ typedef ¦
 +--------------+--------------+--------------+--------------¦
 ¦ case ¦ enum ¦ register ¦ union ¦
 +--------------+--------------+--------------+--------------¦
 ¦ char ¦ extern ¦ return ¦ unsigned ¦
 +--------------+--------------+--------------+--------------¦
 ¦ const (1) ¦ float (3) ¦ short ¦ void ¦
 +--------------+--------------+--------------+--------------¦
 ¦ continue ¦ for ¦ signed (1) ¦ volatile ¦
 +--------------+--------------+--------------+--------------¦
 ¦ default ¦ fortran (2), ¦3sizeof (1) ¦ while ¦
 +--------------+--------------+--------------+--------------¦
 ¦ do ¦ goto ¦ static ¦ ¦
 +--------------+--------------+--------------+--------------¦
 ¦ ¦ ¦ ¦ ¦
 +---+

 (1) const, entry, and signed are not supported on the RT.

 (2) entry and fortran are used as reserved words but PS/2 does
 not associate any meaning with them. System/370 does not
 support these words.

 (3) These are reserved words for the PS/2 VSC compiler and are
 not supported by the PS/2 MCC compiler.

C Language Reference
Keywords

¦ Copyright IBM Corp. 1985, 1991
2.4.1.1 - 1

 2.4.1.2 C Special Symbols

 +--+
 ¦ Table 2-2. C Special Symbols ¦
 +--¦
 ¦ + ¦ Addition operator; unary plus operator ¦
 +----------+---¦
 ¦ ++ ¦ Increment operator ¦
 +----------+---¦
 ¦ - ¦ Subtraction operator; unary minus operator ¦
 +----------+---¦
 ¦ -- ¦ Decrement operator ¦
 +----------+---¦
 ¦ * ¦ Multiplication operator; indirection operator ¦
 +----------+---¦
 ¦ / ¦ Division operator ¦
 +----------+---¦
 ¦ % ¦ Remainder operator ¦
 +----------+---¦
 ¦ = ¦ Assignment operator ¦
 +----------+---¦
 ¦ . ¦ Separates integer from fraction in a float number; ¦
 ¦ ¦ references a member of a struct or union ¦
 +----------+---¦
 ¦ , ¦ Separates items in lists; comma operator ¦
 +----------+---¦
 ¦ ; ¦ Statement and declaration separator ¦
 +----------+---¦
 ¦ : ¦ Used after case and statement labels and bit field ¦
 ¦ ¦ declarations ¦
 +----------+---¦
 ¦ ' ¦ Character delimiter ¦
 +----------+---¦
 ¦ " ¦ String delimiter ¦
 +----------+---¦
 ¦ == ¦ Relational operator for equality ¦
 +----------+---¦
 ¦ != ¦ Relational operator for inequality ¦
 +----------+---¦
 ¦ < ¦ Relational operator for "less than" ¦
 +----------+---¦
 ¦ <= ¦ Relational operator for "less than or equal to" ¦
 +----------+---¦
 ¦ >= ¦ Relational operator for "greater than or equal to" ¦
 +----------+---¦
 ¦ > ¦ Relational operator for "greater than" ¦
 +----------+---¦
 ¦ () ¦ Enclose lists of elements; enclose parts of expressions ¦
 ¦ ¦ that are to be considered indivisible factors; casting ¦
 ¦ ¦ operator; function call operator ¦
 +----------+---¦
 ¦ [] ¦ Enclose array subscripts ¦
 +----------+---¦
 ¦ /* */ ¦ Comment delimiters ¦
 +----------+---¦
 ¦ >> ¦ Right-shift operator ¦
 +----------+---¦
 ¦ << ¦ Left-shift operator ¦
 +----------+---¦
 ¦ ? : ¦ Ternary (conditional expression) operator ¦

C Language Reference
C Special Symbols

¦ Copyright IBM Corp. 1985, 1991
2.4.1.2 - 1

 +----------+---¦
 ¦ ~ ¦ Logical ones complement operator ¦
 +----------+---¦
 ¦ ^ ¦ Bitwise exclusive OR operator ¦
 +----------+---¦
 ¦ | ¦ Bitwise inclusive OR operator ¦
 +----------+---¦
 ¦ || ¦ Logical connective OR ¦
 +----------+---¦
 ¦ & ¦ Bitwise AND; address operator ¦
 +----------+---¦
 ¦ && ¦ Logical connective AND ¦
 +----------+---¦
 ¦ ! ¦ Logical NOT operator ¦
 +----------+---¦
 ¦ { } ¦ Enclose block list of initializers; encloses compound ¦
 ¦ ¦ statements ¦
 +----------+---¦
 ¦ -> ¦ Pointer to a member of a struct or union ¦
 +----------+---¦
 ¦ ... ¦ Use to indicate variable argument parameter list in a ¦
 ¦ ¦ function declaration ¦
 +----------+---¦
 ¦ += ¦ Add and assign ¦
 +----------+---¦
 ¦ -= ¦ Subtract and assign ¦
 +----------+---¦
 ¦ *= ¦ Multiply and assign ¦
 +----------+---¦
 ¦ /= ¦ Divide and assign ¦
 +----------+---¦
 ¦ %= ¦ Remainder and assign ¦
 +----------+---¦
 ¦ ^= ¦ Exclusive OR and assign ¦
 +----------+---¦
 ¦ |= ¦ Inclusive OR and assign ¦
 +----------+---¦
 ¦ <<= ¦ Left shift and assign ¦
 +----------+---¦
 ¦ >>= ¦ Right shift and assign ¦
 +----------+---¦
 ¦ &= ¦ Bitwise AND and assign ¦
 +--+

C Language Reference
C Special Symbols

¦ Copyright IBM Corp. 1985, 1991
2.4.1.2 - 2

 2.5 Constants

 The C programming language contains several types of constants. These
 constants are described in this section.

 constant

 +-- char constant --+
 +-- int constant ---¦
 ---+-- long constant --+---¦
 +- float constant --¦
 +- string constant -¦
 +-- enum constant --+

 Subtopics
 2.5.1 Integer Constants
 2.5.2 Floating Constants
 2.5.3 Character Constants
 2.5.4 String Constants

C Language Reference
Constants

¦ Copyright IBM Corp. 1985, 1991
2.5 - 1

 2.5.1 Integer Constants

 An integer constant is a sequence of digits. Integers are assumed to be
 in the decimal number base, unless specifically designated as octal or
 hexadecimal numbers. Integer constants have type int. A plus (+) or a
 minus (-) sign preceding the constant is a unary operator and is not part
 of the constant. The following diagram lists three types of integer
 constants:

 int constant

 +--- decimal constant ---+
 ---+---- octal constant ----+---¦
 +- hexadecimal constant -+

 If an integer constant starts with the digit zero (0), it is assumed to be
 an octal number. The octal digits range from 0 to 7.

 If an integer constant starts with the characters 0X or 0x (digit 0
 followed by an uppercase or lowercase X), it is taken as a hexadecimal
 number. The hexadecimal digits include the characters (a-f or A-F), which
 have the decimal values 10 through 15, respectively.

 decimal constant

 one of
 +-----------+ +---------------+
 ---¦ 1 2 3 4 +---¦ +-----------+ +---¦
 ¦ 5 6 7 8 9 ¦ +-¦ 0 1 2 3 4 +-+
 +-----------+ �¦ 5 6 7 8 9 ¦¦
 ¦+-----------+¦
 +-------------+

 octal constant

 +-------------+
 --- 0 ---¦ +---------+ +---¦
 +-¦ 0 1 2 3 +-+
 �¦ 4 5 6 7 ¦¦
 ¦+---------+¦
 +-----------+

 hexadecimal constant

 +- 0x -+ +-------------+
 ---¦ +---¦ 0 1 2 3 4 +---¦
 +- 0X -+ � ¦ 5 6 7 8 9 ¦ ¦
 ¦ ¦ a b c d e f ¦ ¦
 ¦ ¦ A B C D E F ¦ ¦
 ¦ +-------------+ ¦
 +-----------------+

 A decimal, octal, or hexadecimal number, as defined above, can be denoted
 as a long constant by following it immediately with an uppercase or
 lowercase L.

C Language Reference
Integer Constants

¦ Copyright IBM Corp. 1985, 1991
2.5.1 - 1

 Examples:

 666 is a decimal number.

 +99 -457L are decimal numbers.

 0377 is an octal number.

 0x3e8 is a hexadecimal number.

 Note: The RT C Compiler does not accept the unary plus operator (+).

 Invalid Examples:

 2FC9 is an invalid decimal number.

 F034 is an identifier, not a hex number.

C Language Reference
Integer Constants

¦ Copyright IBM Corp. 1985, 1991
2.5.1 - 2

 2.5.2 Floating Constants

 A floating constant is used to represent real or floating point numbers.
 Such a constant has an integer part, a decimal point, a fraction part, and
 an optional exponent. A plus or a minus sign preceding the constant is a
 unary operator and is not part of the constant. A floating constant has
 the form:

 float constant

 +-------------+
 +-¦ +--- . --- digit ---+
 ¦ +--- digit ---+ � ¦ ¦ +------------+
 +-¦ � ¦ +---------+ +---¦ +-+
 ¦ ¦ +---------+ ¦ +- exponent -+ ¦ +---------+
 ---¦ +----- digit ------- . -------------+ +---¦ one of +---¦
 ¦ � ¦ ¦ ¦ +-----+ ¦
 ¦ +---------+ ¦ +-¦ f F +-+
 +------- digit ----------------------------- exponent ---+ ¦ l L ¦
 � ¦ +-----+
 +---------+

 The integer and the fraction parts consist of a sequence of decimal
 digits. Either the integer part or the fraction part (but not both) may
 be omitted. An exponent has the form:

 exponent

 +- e -+ +-----+
 ---¦ +---+- + -+--- digit ---¦
 +- E -+ +- - -+ � ¦
 +---------+

 The exponent part consists of an uppercase or lowercase E followed by an
 optional sign and a sequence of decimal digits. Either the exponent part
 or the decimal point (but not both) may be omitted.

 Unsuffixed floating-point constants in a C program are taken as having
 double type. However, a floating point constant can be denoted as having
 float type, by following it immediately with an uppercase or lowercase F.
 It can be denoted as a long double type by following it immediately with
 an uppercase or lowercase L.

 Examples:

 0.0 3.14159 5. 1.02e3L
 1.5E10 .618F 3.784e-8 2e0

 Notes:

 1. The L suffix for floating constants is not supported on the RT.

 2. The decimal floating-point number that you store as a floating
 constant may lose some accuracy when stored by the computer because of
 the nature of decimal-to-binary conversions. Calculations made with
 the floating constant will reflect any inaccuracy. A floating-point
 number may also lose accuracy when converted from the internal binary

C Language Reference
Floating Constants

¦ Copyright IBM Corp. 1985, 1991
2.5.2 - 1

 representation to decimal. Any inaccuracy resulting from the
 conversion are reflected when you print the number in decimal format.

C Language Reference
Floating Constants

¦ Copyright IBM Corp. 1985, 1991
2.5.2 - 2

 2.5.3 Character Constants

 A character constant is one or more characters or the representation of
 one or more characters, enclosed in apostrophes ('). The representation
 of characters (and characters in strings) is based on the ASCII character
 set. Character constants have type int.

 Multiple-character character constants are supported. Up to four
 characters may appear inside apostrophes. The bit pattern of the
 characters is stored in 4 bytes. The entire character constant is stored
 in a 32-bit integer formed by shifting the characters one at a time onto
 the low order bits of the integer. Therefore, if more than four
 characters are enclosed in apostrophes, only the last four characters are
 stored. Assignment of such multiple-character character constants to
 shorter types causes truncation.

 int i;
 char c;
 short s;
 i = 'abcd'; /* i has the value (bit pattern) of all 4 chars */
 c = 'abcd'; /* c will only have the value of 'd' */
 s = 'abcd'; /* s will only have the value of 'cd' */

 A character constant has the form:

 char constant

 +-------------------------------+
 ¦ Any printing character ¦
 +-¦ except the ' (single quote) +-+
 ¦ ¦ and the \ (backslash). ¦ ¦
 ¦ +-------------------------------+ ¦
 ----- ' ------¦ +--- ' ---¦
 � ¦ ¦ ¦
 ¦ ¦ +-------------------------------+ ¦ ¦
 ¦ +-¦ escape sequence +-+ ¦
 ¦ +-------------------------------+ ¦
 +---------------------------------------+

 An escape sequence has the form:

 escape sequence

 one of
 +--------------------+
 ¦ a b f n r t ¦
 +-------¦ v ' " \ +---+
 ¦ +--------------------+ ¦
 ¦ one, two, or three of ¦
 ¦ +--------------------+ ¦
 --- \ ---¦ ¦ 0 1 2 3 ¦ +---¦
 ¦ ¦ 4 5 6 7 ¦ ¦
 ¦ +--------------------+ ¦
 ¦ +--------------------+ ¦
 ¦ ¦ 0 1 2 3 4 ¦ ¦
 +- x ---¦ 5 6 7 8 9 +---+
 � ¦ a b c d e f ¦ ¦
 ¦ ¦ A B C D E F ¦ ¦

C Language Reference
Character Constants

¦ Copyright IBM Corp. 1985, 1991
2.5.3 - 1

 ¦ +--------------------+ ¦
 +------------------------+

 The value of each escape sequence character is always an 8-bit quantity
 even though several characters may be required to specify it.

 Non-printable characters, the apostrophe sign, and certain other
 characters must be represented by multiple-character escape sequences in
 character constants according to the following table:

 +---+
 ¦ Table 2-3. Character Constants ¦
 +---¦
 ¦ C Escape Sequence ¦ Meaning ¦
 +----------------------+--------------------------------¦
 ¦ \a ¦ alert (audible) (not on RT) ¦
 +----------------------+--------------------------------¦
 ¦ \b ¦ backspace ¦
 +----------------------+--------------------------------¦
 ¦ \f ¦ form feed ¦
 +----------------------+--------------------------------¦
 ¦ \n ¦ new-line ¦
 +----------------------+--------------------------------¦
 ¦ \r ¦ carriage return ¦
 +----------------------+--------------------------------¦
 ¦ \t ¦ horizontal tab ¦
 +----------------------+--------------------------------¦
 ¦ \v ¦ vertical tab ¦
 +----------------------+--------------------------------¦
 ¦ \\ ¦ backslash ¦
 +----------------------+--------------------------------¦
 ¦ \' ¦ single quote ¦
 +----------------------+--------------------------------¦
 ¦ \" ¦ double quote ¦
 +----------------------+--------------------------------¦
 ¦ \octal digits ¦ octal character constant ¦
 +----------------------+--------------------------------¦
 ¦ \x hexadecimal ¦ hex character constant ¦
 ¦ digits ¦ ¦
 +----------------------+--------------------------------¦
 ¦ \? ¦ question mark ¦
 +----------------------+--------------------------------¦
 ¦ ¦ ¦
 +---+

 A backslash (\) followed by one, two, or three octal digits can be used
 to construct a single character. The numerical value of this octal
 integer is used as the value of the character. A backslash (\) followed
 by a lowercase x that is followed by one or more hexadecimal digits can
 also be used to construct a single character. The numerical value of this
 hexadecimal integer is used as the value of the character. A hexadecimal
 escape sequence is terminated by a non-hexadecimal digit. A backslash (\
) followed by any other character not defined in the previous table is
 treated as that character.

 Examples:

 'w' is the lowercase w.

C Language Reference
Character Constants

¦ Copyright IBM Corp. 1985, 1991
2.5.3 - 2

 '\\' is the backslash character itself.

 '\002' introduces an STX character in the text.

 '\n' is the new-line character.

 '\147' is the ASCII code (in octal) for the letter g.

 Subtopics
 2.5.3.1 Wide Character Constants

C Language Reference
Character Constants

¦ Copyright IBM Corp. 1985, 1991
2.5.3 - 3

 2.5.3.1 Wide Character Constants
 A wide character constant is the same as a character constant except that
 it is prefixed by the letter L. The elements of the sequence are any
 members of the source character set. Their mapping to the members of the
 execution character set is implementation defined.

 A wide character constant has type wchar_t, an integral type defined in
 the <stddef.h> header. The value of a wide character constant containing
 a single multibyte character that maps into a member of the extended
 character set is the wide character code corresponding to the multibyte
 character as defined by the mbtowc function with implementation-defined
 current conversion locale. In the following example, the
 implementation-defined value that results from the combination of the
 values 0123 and 4 is specified:

 wchar_t c=L'\1234';

C Language Reference
Wide Character Constants

¦ Copyright IBM Corp. 1985, 1991
2.5.3.1 - 1

 2.5.4 String Constants

 A sequence of characters enclosed in double quotation marks (") is called
 a string constant. A string constant in the C language has the data type
 of array of char. Chapter 3, "Declarations" contains the discussions on
 storage classes and type definitions. A string constant has the form:

 string constant

 +-------------------------------+
 ¦ Any printing character ¦
 +-¦ except the " (double quote) +-+
 ¦ ¦ and the \ (backslash). ¦ ¦
 ¦ +-------------------------------+ ¦
 ----- " ------¦ +--- " ---¦
 � ¦ ¦ ¦
 ¦ ¦ +-------------------------------+ ¦ ¦
 ¦ +-¦ escape sequence +-+ ¦
 ¦ +-------------------------------+ ¦
 +---------------------------------------+

 The initial value of a string constant is the characters inside the double
 quotation marks. In addition, the compiler places a null byte (value \0)
 at the end of a string so that a program which scans it can determine its
 length.

 Every string constant is stored at a distinct location, even when two
 string constants are written identically. In other words, the compiler
 does not share storage for string constants. A string constant occupies
 its storage the entire time its containing program is resident.

 To enter a double quotation mark character into a string constant, use the
 \" notation. The same escape sequences can be used as those described in
 Table 2-3 in topic 2.5.3 for character constants. Escape sequences are
 replaced before string concatenation as shown in the examples following.

 A string constant can be continued over more than one line by placing a
 (\) immediately before the end of the line (the end-of-line following the
 (\) is then ignored). Another way to continue a string constant is to
 have two or more consecutive string constants. Adjacent string constants
 are concatenated to produce a single string constant.

 Note: Adjacent string constant concatenation is not supported on the RT.

 Examples:

 "This is a string constant"

 "An imbedded \"quote sign"

 "A control-D \004 in a string"

 "\43" /* string contains "#" */

 "\0043" /* string contains Control-D, then the character 3 */

 "To get a backslash, just type \\"

C Language Reference
String Constants

¦ Copyright IBM Corp. 1985, 1991
2.5.4 - 1

 "Here is a string continued \
 over two lines"

 "This is a first string"
 "Which is concatenated with a second string"

 "Bach's \"Jesu, Joy of Man's Desiring\" "

 "A string has the form: "

 "The following tests proved positive:\n"

 ""

 "Last Name First Name MI Street Address \
 City State Zipcode "

 For information about operators and a table listing operators, see
 "Operators in Expressions" in topic 4.5.

 Subtopics
 2.5.4.1 Wide String Constants

C Language Reference
String Constants

¦ Copyright IBM Corp. 1985, 1991
2.5.4 - 2

 2.5.4.1 Wide String Constants
 A wide string constant is the same as a string constant except that it is
 prefixed by the letter L. For wide string literals, array elements have
 type wchar_t.

 The multibyte character sequences specified by any sequence of adjacent
 character string literal tokens, or adjacent wide string tokens are
 concatenated into a single multibyte sequence. If a character string
 literal token is adjacent to a wide sring literal token, the behavior is
 undefined.

 Wide string literals are initialized with the sequence of wide characters
 corresponding to the multibyte character sequence. For example:

 wchar_t *wstring=L"abc";

 This is initialized to implementation-defined values that result from the
 values of a, b, and c.

C Language Reference
Wide String Constants

¦ Copyright IBM Corp. 1985, 1991
2.5.4.1 - 1

 2.6 Other Separators

 Spaces (also called blanks), tab characters, new-line (end-of-line)
 characters, and comments are collectively called whitespace, and are
 ignored except as separations between tokens.

 Subtopics
 2.6.1 Comments

C Language Reference
Other Separators

¦ Copyright IBM Corp. 1985, 1991
2.6 - 1

 2.6.1 Comments
 Comments are delimited by the characters /* and */. Comments do not nest,
 but they can span multiple lines. Comments have the form:

 comment

 +------------------+
 ¦ Any sequence of ¦
 --- /* ---¦ characters that +--- */ ---¦
 ¦ does not contain ¦
 ¦ the */ sequence. ¦
 +------------------+

 Example:

 /* A comment extended
 over two lines */

C Language Reference
Comments

¦ Copyright IBM Corp. 1985, 1991
2.6.1 - 1

 3.0 Chapter 3. Declarations

 Subtopics
 3.1 CONTENTS
 3.2 About This Chapter
 3.3 Declarations
 3.4 Objects and Lvalues
 3.5 Declarations
 3.6 Initializing Variables
 3.7 Type Names
 3.8 Lifetimes of Variables
 3.9 Implicit Declarations
 3.10 Name Spaces
 3.11 Scope

C Language Reference
Chapter 3. Declarations

¦ Copyright IBM Corp. 1985, 1991
3.0 - 1

 3.1 CONTENTS

C Language Reference
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
3.1 - 1

 3.2 About This Chapter

 This chapter describes how variables and C objects are declared.

C Language Reference
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
3.2 - 1

 3.3 Declarations

 Declarations specify the way in which the C compilers interprets each
 identifier. When an identifier is declared, the declaration does not
 necessarily reserve any storage in memory for that identifier. Some
 declarations simply define a template, for instance, in struct and union
 declarations.

C Language Reference
Declarations

¦ Copyright IBM Corp. 1985, 1991
3.3 - 1

 3.4 Objects and Lvalues

 An object is a region of storage that can be manipulated in some way. The
 common examples of objects are simple variables and structured variables.
 Functions are not considered objects.

 An lvalue is an expression that refers to an object. The basic and most
 obvious lvalue expression is an identifier. There are specific operators
 that generate lvalues. For example, if the expression:

 E

 is an expression whose type is pointer to object, then the construct:

 *E

 is an lvalue expression that refers to the object to which the expression
 points.

 The term lvalue derives from the assignment expression:

 E1 = E2

 in that the operand to the left of the assignment operator must be an
 lvalue expression. In Chapter 4, "Expressions," the discussion of each
 operator states whether the operator expects its operands to be lvalues,
 and whether the operator generates an lvalue.

C Language Reference
Objects and Lvalues

¦ Copyright IBM Corp. 1985, 1991
3.4 - 1

 3.5 Declarations

 The basic form of a declaration in C is:

 declaration

 +------------------------+
 --- declaration specifier ---¦ +---¦
 +- unit-declarator-list -+

 declaration specifier

 +- storage class specifier -+ +-------------------------+
 ---¦ +---¦ +---¦
 +----- type specifier ------+ +- declaration specifier -+

 Subtopics
 3.5.1 Storage Class Specifiers
 3.5.2 Type Specifiers
 3.5.3 Type Qualifiers
 3.5.4 Declarators
 3.5.5 Meaning of Declarators
 3.5.6 Arrays
 3.5.7 Pointers
 3.5.8 Enum
 3.5.9 Void
 3.5.10 Complex Declarators
 3.5.11 typedef -- Declaring Type Name Synonyms

C Language Reference
Declarations

¦ Copyright IBM Corp. 1985, 1991
3.5 - 1

 3.5.1 Storage Class Specifiers

 The storage class of an identifier defines how the compiler reserves
 storage for objects of that type.

 storage class specifier

 +- typedef --+
 +-- extern --¦
 ---+-- static --+---¦
 +--- auto ---¦
 +- register -+

 The storage classes defined are:

 auto Variables are "automatic" variables and are considered local to
 each invocation of a block. The variable is accessible to the
 current block and any nested blocks provided that the inner
 blocks do not declare a variable having the same identifier.
 Space is allocated for the variable on entry to the block and is
 discarded on exit from that block. The variable must be defined
 within a block or declared as a parameter to a function.
 Initialization occurs when the system allocates storage for the
 variable. Using an auto variable saves space, as its storage is
 freed upon exit from the block in which it is defined.

 register Variables are essentially synonymous with auto variables. They
 obey all the same rules. The register designation can be
 considered as "advice" to the compiler that this variable will be
 used heavily and that the compiler should attempt to allocate
 this variable in a machine register for faster access. Code with
 register variables is usually smaller as well as faster. Note
 that you cannot take the address of a register variable.

 static Variables are local to a compilation file. Variables local to a
 block retain their values across different (in time) executions
 of the block. If the program reenters a block containing a
 static variable, that variable has retained the value it had when
 the block was last exited.

 As is described in Chapter 6, "Functions," the static storage
 class alters the visibility rules for external objects in a
 compilation unit. The static variables declared inside a block
 can only be referenced by that block or any nested blocks. A
 static variable declaration is also a definition of the variable,
 and allocates storage for it. A static function definition
 specifies that the function may only be accessed inside its
 compilation unit. You can use an external static variable or
 function any place following the definition in the source file
 that contains the definition. Also, a static function may be
 referenced before it is defined, provided an extern or static
 declaration precedes the reference. Initialization of static
 variables occurs at the start of program execution.

 extern Variables are global to an entire program and retain their values
 throughout the execution of a program. The extern declarations
 are thus a way to reference variables and functions in different
 compilation units. Variables and functions declared with the
 extern storage class refer to actual definitions which are later

C Language Reference
Storage Class Specifiers

¦ Copyright IBM Corp. 1985, 1991
3.5.1 - 1

 in the same compilation file, or in a different compilation file.

 typedef typedef is not a storage class, but obeys the syntax of a storage
 class keyword. A declaration whose storage class is typedef does
 not reserve any storage. A typedef defines an identifier that
 can later be used as if it were a type keyword.

 Only one storage class specifier may be given in a declaration. If the
 storage class specifier is omitted from a declaration, the following
 default rules apply:

 � Inside a function, a missing storage class specifier is assumed to b
 auto.

 � Outside a function (that is, at the global level of the compilatio
 unit), a missing storage class specifier for a function declaration or
 definition is assumed to be extern.

 The following information applies to the use of the extern storage class
 specifier.

 External variable definitions are indicated by a declaration without a
 storage class specifier. An external definition can appear only outside a
 function. External function definitions are indicated by a function
 declaration followed by a compound statement, with no storage class
 specifier or with the storage class specifier extern. An external
 variable definition allocates storage for the specified variable. An
 external variable or function definition or extern declaration also makes
 the described variable or function usable by the succeeding part of the
 current source file. If you want to use an external variable or function
 prior to its definition or in a file other than the file in which it is
 defined, you must explicitly declare the variable or function. This
 declaration does not replace the definition. The declaration just helps
 to describe the variable that is externally defined.

 An extern declaration can be distinguished from an external definition by
 the presence of the keyword extern. If the keyword extern is present, it
 is a declaration. Otherwise, it is a definition and a declaration. Only
 one external definition for an identifier may be present in a C program.

C Language Reference
Storage Class Specifiers

¦ Copyright IBM Corp. 1985, 1991
3.5.1 - 2

 3.5.2 Type Specifiers

 The type specifier is what assigns a specific data type to an identifier.

 type specifier

 +------ char specifier -------+
 +------- int specifier -------¦
 +------------------+ +------ float specifier ------¦
 ---¦ +---+------ void specifier -------+---¦
 +- type qualifier -+ +- struct or union specifier -¦
 +------ enum specifier -------¦
 +------- typedef name --------+

 The different type specifiers are:

 char Declares the object to be of type char (8-bit). Such an object
 holds a single character from the ASCII character set. This data
 type defines the set of 256 values of the ASCII character set.
 Their numeric values are 0..255. The unadorned type char is
 treated as an unsigned quantity.

 wchar_t Declares the object to be of type wchar_t (32 bits). Such an
 object holds a single multibyte character. This character can
 represent an ASCII character as well as MBCS characters such as
 Kanji. This datatype defines a set of thousands of characters of
 the multibyte character set.

 char specifier

 +------------+
 ---+-- signed --+--- char ---¦
 +- unsigned -+

 signed Declares that the object is signed and therefore the normal rules
 for signed arithmetic (sign change, sign extension, and
 propagation) do apply. The signed type may be used as a modifier
 to char, short, int, and long with the resulting ranges being
 -128..127, -32768..32767, -2147483648..2147483647, and
 -2147483648..2147483647, respectively. The type signed by itself
 stands for signed int.

 Note: The signed type is not supported on the RT.

 unsigned Declares that the object is unsigned and therefore the normal
 rules for signed arithmetic (sign change, sign extension and
 propagation) do not apply. The unsigned type may be used as a
 modifier to char, short, int, and long with the resulting ranges
 being 0 . . 255, 0 . . 65535, 0 . . 4294967295, and 0 . .
 4294967295, respectively.

 Note: The type unsigned by itself stands for unsigned int.

 int specifier

 +-------------------- int -------------------+
 ---¦ +-short---+ +---¦

C Language Reference
Type Specifiers

¦ Copyright IBM Corp. 1985, 1991
3.5.2 - 1

 ¦ +----¦ +-------------+ +-------+ ¦
 +-¦ +- long --+ +---------+ +---¦ +-+
 +--- unsigned ---+- short -+-+ +- int -+
 +-- signed --+ +- long --+

 long Declares the object as a long (32-bit) integer object. In the
 AIX Operating System, the length of a long specifier is the same
 as that of an int.

 short Declares the object as a short (16-bit) integer object, which
 represents an implementation-defined subset of the integers. It
 is equivalent to a range of integers between the values -32768
 and 32767. Thus short variables are also normally signed.

 int Declares the object as a standard size (32-bit) integer object.
 It is equivalent to a range of integers between the values
 -2147483648 and 2147483647.

 float Declares the object as a floating-point object. Objects of type
 float are 32-bit quantities, having an 8-bit biased exponent and
 a 24-bit signed mantissa. The range of float numbers is
 approximately -3.4E38..+3.4E38, with a precision of approximately
 seven decimal places. Refer to AIX C Language User's Guide for
 more details.

 float specifier

 +--------+ +- float --+
 ---¦ +---¦ +---¦
 +- long -+ +- double -+

 double Declares the object as a double-precision
 floating-point object. The size of the
 double-precision object is 64 bits, having an 11-bit
 exponent and a 53-bit signed mantissa. The range of
 double numbers is approximately -1.00E308 ..
 +1.00E308, with a precision of approximately 16
 decimal places. Refer to C Language User's Guide for
 more details.

 long double Declares the object as a double-precision
 floating-point object. long double is treated the
 same as double.

 struct or union Declares the object as a structure or a union. The
 details of structures and unions are discussed in
 "Structures and Unions" in topic 3.5.7.1.

 enum Declares the object to be one of an enumerated type.
 The details of enums are discussed under "Enum" in
 topic 3.5.8.

 void Declares the object as one having no value, such as a
 function called only as a procedure, that is, having
 no return value.

C Language Reference
Type Specifiers

¦ Copyright IBM Corp. 1985, 1991
3.5.2 - 2

 typedef-name Declares the object as one of whatever type is
 synonymous with the typedef-name previously defined in
 a typedef specification.

C Language Reference
Type Specifiers

¦ Copyright IBM Corp. 1985, 1991
3.5.2 - 3

 3.5.3 Type Qualifiers

 type qualifier

 +-- const ---+
 ---¦ +---¦
 � +- volatile -+ ¦
 +----------------+

 volatile The volatile attribute declares an object as modifiable in ways
 unknown to the implementation or having other unknown side
 effects. Any reads or writes to the object will not be removed
 by the optimizing feature of the compiler. Function return types
 may not have the volatile attribute. Examples of the volatile
 attribute are:

 volatile int clock; /* Declares clock as a volatile int. */
 int * volatile psoup; /* Declares psoup as a volatile pointer */
 /* to an object of type int. */
 volatile double * pnut; /* Declares pnut as a pointer to a double */
 /* having the volatile attribute. */

 const The const attribute declares an object as being unmodifiable.
 The object may only be assigned a value through initialization
 when it is defined. Function return types may not have the const
 attribute. Examples of the const attribute are:

 extern const volatile int clock; /* Declares clock as being volatile */
 /* and unmodifiable. */
 const int x = 4; /* Declares x as a const int. */
 int * const ptr; /* Declares ptr as a const pointer to */
 /* an int */
 .
 .
 .
 x = 5; /* ERROR: x is a const int */
 ptr++; /* ERROR: ptr is a const pointer */
 (*ptr)++; /* OK: increments the integer at which ptr points */

 Note: The const attribute is not supported on the RT.

C Language Reference
Type Qualifiers

¦ Copyright IBM Corp. 1985, 1991
3.5.3 - 1

 3.5.4 Declarators
 In the definition of a declaration list, a sequence of declarators,
 separated by commas and with an optional initializer, is specified.

 Variable declarations consist of a type specification followed by a list
 of identifiers that represent variables of that type. Declarators have
 the form:

 declarator

 +--------------------------+
 ---¦ +------------------+ +---
 +- * -¦ +-+
 � +- type qualifier -+¦
 ¦ ¦
 +------------------------+

 +----- identifier ---------------------------------+
 +----- (--- declarator ---) ---------------------¦
 ---+- declarator --- subscript declarator ------------+---¦
 ¦ +- parameter list --+ ¦
 +- declarator --- (---+- identifier list -+---) -+
 +-------------------+

 subscript declarator

 +-----------------------+
 --- [---¦ +---] ---
 +- constant expression -+

 +---------------------------------------+
 ---¦ +---¦
 +--- [--- constant expression ---] ---+
 � ¦
 +-----------------------------------+

 init-declarator-list

 +---------------- init-declarator -----------------+
 ---¦ +---¦
 +- init-declarator-list --- , --- init-declarator -+

 init-declarator

 +---------------+
 --- declarator ---¦ +---¦
 +- initializer -+

C Language Reference
Declarators

¦ Copyright IBM Corp. 1985, 1991
3.5.4 - 1

 3.5.5 Meaning of Declarators
 Each declarator is taken as a statement to the compiler. When a
 declarator appears in an expression, it yields an object of the storage
 class and type indicated by the declarator. Each declarator contains
 exactly one identifier, and it is this identifier that is actually
 declared.

 A plain identifier (unqualified in any way) appearing in a declarator has
 a type indicated by the type specifier that starts the declaration.

 A declarator can appear in parentheses (). Such a declarator is
 identical to the plain declarator as mentioned above. However, the
 binding of more complex declarators can be altered by parentheses.

 If Type is a type specifier, and Object is a declarator, the declaration:

 Type Object

 indicates that Object is declarator of type Type.

 For example:

 int count;

 declares count as an object of type int.

 The declaration:

 Type *Object

 declares Object as a pointer to an object of type Type.

 For example:

 int *count;

 declares that count is a pointer to an object of type int.

 The declaration:

 Type Object()

 declares Object as a function returning a value of type Type.

 For example:

 float fact();

 declares that fact is a function that returns a value of type float.

C Language Reference
Meaning of Declarators

¦ Copyright IBM Corp. 1985, 1991
3.5.5 - 1

 3.5.6 Arrays
 Either of the declarations:

 Type Object [constant-expression]

 Type Object [] declares that Object is an array of type Type. In the
 first instance, the constant expression is an expression whose value the
 compiler can determine at compile time and whose type is int. A
 multi-dimensional array is specified when more than one "array of"
 specifications appear:

 Type Object [constant-expression] [constant-expression] ...

 The constant expression must be of integral type. For a simple array, the
 size may remain unspecified. For a multi-dimensional array, only the size
 of the first dimension may remain unspecified. This is used in cases
 where the array is an external or formal parameter array, and the actual
 storage for the array is allocated somewhere else in the program.

 The other case where the first constant expression may be omitted is when
 the array declaration is followed by a list of initializers. When this
 happens, the compiler calculates the size of the array from the number of
 initial elements that are actually supplied with the declaration.

 The index of the first element is zero. An array can be constructed from
 any of the basic types, from pointers, from structures, from unions, or
 from another array, in which a multi-dimensional array is constructed.

 The first subscript of each dimension is always zero. The following
 example defines a two-dimensional array that contains six elements of the
 type int:

 int roster [3][2];

 In multi-dimensional arrays, when referencing elements in order of
 increasing storage location, the last subscript varies the fastest. Thus,
 the array roster contains the elements:

 roster [0][0]
 roster [0][1]
 roster [1][0]
 roster [1][1]
 roster [2][0]
 roster [2][1]

 In single-dimensional arrays, there are two different but equivalent ways
 of accessing elements of an array. The first is simply to place the array
 index or indices in brackets after the array name. The second is to use
 the array name as a pointer and perform pointer arithmetic on it. These
 two ways are equivalent because an array reference is a pointer to the
 first element in the array, so that the subscript operation [] is
 interpreted such that A[I] is equivalent to *(A+I). See "Addition
 Operators" in topic 4.6.3.3 for a further explanation of what A+I means.

 Examples of array variable references:

 #include <stdio.h>
 #include <math.h>

 main ()

C Language Reference
Arrays

¦ Copyright IBM Corp. 1985, 1991
3.5.6 - 1

 {

 /* Declare some array variables */
 int egress[10] ;
 float lightly[5] [4] ;
 char coal[70] ;
 int idx, idy;

 /* Now reference those variables */
 for(idx = 0; idx < 10; idx++)
 egress [idx] = 10; /* Set it to a constant */

 for(idx = 0; idx < 5; idx++)
 for(idy = 0; idy < 4; idy++) {
 lightly[idx][idy]= .6;
 printf ("%f", sin (lightly[idx] [idy]));
 }

 for(idx = 0; idx < 70; idx++) {
 coal[idx]= 'b'; /* Write to standard output */
 putchar(coal[idx]);
 }
 putchar('\n');
 }

 In the case of a multi-dimensional array, if array is the name of an array
 of n dimensions, an expression containing a reference to array is
 converted to a pointer to an array of n-1 dimensions. Thus, in the above
 context the type of lightly is pointer to array[4] of float, the type of
 lightly[I] is "pointer to float", and lightly[I][J] is simply float.

C Language Reference
Arrays

¦ Copyright IBM Corp. 1985, 1991
3.5.6 - 2

 3.5.7 Pointers
 A pointer type holds the address of a data object or function, except that
 a pointer can never refer to an object having register storage class or to
 a bit-field object. Some common uses for pointers are:

 � To pass the address of a variable to a function. By referencing th
 address of a variable, a function can change the contents of that
 variable.

 � To access dynamic data structures, such as linked lists, trees, an
 queues.

 � To access elements of an array or members of a structure

 You can use any type specifier in a pointer declaration or definition. An
 asterisk (*) precedes the identifier. The following example declares
 pcoat as a pointer to an object having type double:

 double *pcoat;

 The following example declares argv as an array of pointers to characters:

 extern char *argv[];

 Subtopics
 3.5.7.1 Structures and Unions

C Language Reference
Pointers

¦ Copyright IBM Corp. 1985, 1991
3.5.7 - 1

 3.5.7.1 Structures and Unions
 The form of a struct or union specifier is:

 struct or union specifier

 +- struct -+ +---------------- identifier ----------------+
 ---¦ +---¦ +--------------+ +---¦
 +- union --+ +--¦ +--- { --- member --- } ---+
 +- identifier -+ � ¦
 +----------+

 A member has the form:

 member

 +------------------ declarator -------------------+
 --- type specifier ---¦ +--------------+ +--- : ---¦
 � +--¦ +--- : --- constant expression -+ ¦
 ¦ +- declarator -+ ¦
 +------------------------- , -------------------------+

 A structure is an object that contains a collection of components called
 members. Each member can be of any type, including another structure, but
 not, recursively, of the parent struct type itself. The names of the
 members are defined at the time that the structure is defined.

 A structure defines a sequence of members, each with a unique name, that
 are all present simultaneously. They are stored in sequential memory
 locations.

 A union is similar in concept to a structure, but a union can, at any
 given time, contain any one of several different members. A union defines
 several ways of looking at the same area in memory. Other than that, the
 forms of declaring and referencing structures and unions are the same.

 For example, a basic structure declaration looks like this:

 struct office { list of members };

 This declaration states that the identifier office refers to a structure
 specifier containing the list of members.

 The definition of the office structure above can now be filled in:

 struct office
 {
 int room_num;
 char rooms [9];
 int phone_ext;
 };

 This form of the struct or union specifier declares the identifier as a
 structure or union tag. This means that the declaration of the structure
 or union does not actually allocate any storage at this time, but instead
 declares a "template" that may be used later, in subsequent declarations
 using the second form of the declaration:

C Language Reference
Structures and Unions

¦ Copyright IBM Corp. 1985, 1991
3.5.7.1 - 1

 struct office off1, *off_ptr;

 Note that the bracketed list of members is no longer given once the struct
 or union specifier has been declared.

 The third form of the struct or union specifier does not specify a
 structure or union tag. For this form, all declarations of objects must
 follow the struct or union specifier, as the struct or union specifier has
 no name and may not be referenced later:

 struct {
 int num;
 char * name;
 } data [20];

 A struct or union specifier contains declarators for the members of a
 structure or a union. A member of a structure can also consist of a
 number of bits. Such a member is called a bit-field. The bit length of a
 bit-field is specified by following the member name by a colon (:) and
 the number of bits.

 The members declared within a structure have addresses that increase as
 their declarations are read from left to right. Each member that is not a
 bit-field always starts on an addressing boundary that is appropriate for
 its type. Because of this, there may be anonymous holes in a structure in
 order to get things lined up on correct addressing boundaries.

 The following example defines the structure type switches and the
 structure kitchen, which has the type switches:

 struct switches {
 unsigned light : 1;
 unsigned toaster : 1;
 int count;
 unsigned ac : 4;
 unsigned : 4;
 unsigned clock : 1;
 unsigned : 0;
 unsigned flag : 1;
 } kitchen;

 The structure kitchen contains six members. The following describes the
 storage that each member occupies:

 Member Name Storage Occupied

 light 1 bit
 toaster 1 bit
 count the size of int
 ac 4 bits
 4 bits (unnamed field)
 clock 1 bit
 undefined number of bits (unnamed field)
 flag 1 bit

 The fields light and toaster each require 1 bit of storage. These members
 are assigned storage next to each other in the same word. count is stored
 in the next word. ac requires 4 bits of storage and is aligned on the
 next word boundary. The next bit-field has no name. This unnamed field
 uses 4 bits to separate ac and clock. clock is stored in the following

C Language Reference
Structures and Unions

¦ Copyright IBM Corp. 1985, 1991
3.5.7.1 - 2

 bit. The unnamed field with a length of 0 (zero) forces flag to be on the
 next word boundary.

 All references to structure fields must be fully qualified. Therefore,
 you cannot reference the first field by light. You must reference this
 field by kitchen.light. The following expression sets the light field to
 1:

 kitchen.light = 1

 The following expression sets the toaster field to 0 because only the
 first low-order bit is assigned to the toaster field:

 kitchen.toaster = 2

 Bit-fields are assigned starting with the low-order bits of the 4-byte
 field on the PS/2, and starting with the high-order of the 4-byte field on
 the RT. Bit-fields do not cross from one 4-byte unit to the next, and
 thus are limited to a maximum size of 32 bits. If a bit-field is too
 large to fit into the current long word, it is placed starting in the next
 long word.

 Bit-fields may be declared as having type int, signed int, or unsigned
 int. However, the compiler always takes the type of the bit-field to be
 unsigned int.

 A colon having only a constant expression after it but no preceding
 declarator specifies an unnamed bit-field that is used to make the
 alignment of the other members in the structure appear in specific places.
 The special case of a bit-field width of 0 is used to align the next field
 on the next word boundary.

 A union can be considered as a structure whose members all start at offset
 zero, and whose size is big enough to contain the largest one of its
 members. At any time, only one of the members can be stored in the union.

 A structure or a union cannot contain an instance of itself as a member.
 However, it can contain a pointer to itself as a member. In this way,
 structures or unions that refer to themselves (such as a linked list) are
 possible.

 Within a struct or union declaration, the names of members must be unique.
 The same member name may appear in more than one struct or union
 declaration without restriction.

C Language Reference
Structures and Unions

¦ Copyright IBM Corp. 1985, 1991
3.5.7.1 - 3

 3.5.8 Enum

 An enum is an object much like an object declared to be an int, except
 that an enum contains one of an enumerated set of values. These values
 are constants which are associated with identifiers in the enum
 declaration.

 enum specifier

 +------------------- identifier -------------------+
 --- enum ---¦ +--------------+ +---¦
 +--¦ +--- { --- enum constant --- } --+
 +- identifier -+ � ¦
 +------- , -------+

 An enum constant has the form:

 enum constant

 +-----------------------------+
 --- identifier ---¦ +---¦
 +- = --- constant expression -+

 The enum type specifier declares the enum identifier for possible later
 use as a type specifier. It also declares as constants the identifiers in
 the list enclosed in
 braces { }. These constants take on numerically ascending values,
 starting with zero, unless an explicit constant expression sets the
 identifier to a specific value. In this case, the ascending sequence of
 values for succeeding unspecified identifiers is based on the prior
 constant expression as a base. Consider the following example:

 enum colors { red, green, blue = 12, black };

 Objects declared to be of type colors would be able to take on the values
 0, 1, 12, and 13, corresponding to the four constants red, green, blue,
 and black which are also declared in the enum declaration above.

 Objects declared as type enum can be operated on as if they were type int.

 It is possible to have duplicated values among the constant identifiers
 declared in a given enum type specifier. Moreover, objects declared using
 an enum type specifier are not restricted by the compiler to the values
 listed in the enum declaration, although program behavior may be
 unpredictable if an object declared as an enum is set to an unexpected
 value.

C Language Reference
Enum

¦ Copyright IBM Corp. 1985, 1991
3.5.8 - 1

 3.5.9 Void

 The void type specifier indicates that the associated identifier has no
 value. Thus, the nonexistent value of a void expression returns no value
 (that is, procedures) and allows the compiler to detect any use of that
 function that expects a return value. Variables may not be declared with
 void type, but they may be declared as pointers to void.

 void specifier

 --- void ---¦

 The following example declares buf as a pointer to void:

 void *buf;

 This is the proper way of declaring a generic pointer.

 Note: This pointer to void is not a valid type specifier under the RT C
 compiler. A char *b pointer is needed to access any data pointed
 to by the generic pointer.

 Expressions may be cast to void type. A cast expression consists of a
 left parenthesis (, followed by a type name, followed by a right
 parenthesis), and an operand expression. The cast causes the operand
 value to be converted to the type named within the parentheses. Any
 permissible conversion may be invoked by a cast expression.

 This is normally done to ignore the return value of a function. An
 example of this is:

 (void) printf ("hello\n");

C Language Reference
Void

¦ Copyright IBM Corp. 1985, 1991
3.5.9 - 1

 3.5.10 Complex Declarators

 Combining various declarations is also possible. When used in
 combination, the declaration can be thought of with the right most
 operation happening first, unless another order is enforced by additional
 parentheses. Thus the declaration:

 Type *Object()

 declares Object as a function that returns a pointer to an object of type
 Type. For example:

 char *malloc();

 declares a function called malloc that returns a pointer to an object of
 type char. If parentheses are used to bind the pointer operator directly
 to the name, a different type is constructed. Thus the declaration:

 Type (*Object) ()

 declares Object as a pointer to a function that returns an object of type
 Type. For example:

 int (*ItemProc) ();

 declares that the ItemProc is a pointer to a function that returns an
 object of type int.

 In general, it is helpful to read such declarations "from the inside out",
 obeying the grouping suggested by parentheses first, then using a
 right-to-left ordering for operators at the same level. For example:

 char *(*twisted) ();

 is read as "twisted is a pointer (the innermost *) to a function
 (indicated by the () signs) returning a pointer (the leftmost *) to a
 character (char)." There are some restrictions on the possibilities
 indicated by these rules. In particular:

 � Functions cannot return arrays. Functions can, however, retur
 pointers to arrays.

 � There is no such thing as an array of functions. However, there ca
 be an array of pointers to functions.

 � A structure or a union cannot contain a function, but can contain
 pointer to a function.

C Language Reference
Complex Declarators

¦ Copyright IBM Corp. 1985, 1991
3.5.10 - 1

 3.5.11 typedef -- Declaring Type Name Synonyms
 The typedef keyword is used in the context of a storage class, but it has
 nothing to do with storage classes. A declaration whose storage class is
 typedef actually declares an identifier that can be used later as if it
 were a type name. A type definition has the form:

 type definition

 +--enum specifier-----------------------------------+
 ---+-- struct or union specifier ----------------------+--- ; ---¦
 ¦ +------------------+ ¦
 +- typedef ---¦ +--- declarator ---+
 +- type specifier -+ � ¦
 +----- , ------+

 typedef name

 --- identifier ---¦

 Example:

 typedef unsigned *MICA;

 move (horiz, vert)
 MICA horiz, vert;
 {
 MICA dist;
 }

 This example shows a typedef defining the word MICA as a synonym for a
 pointer to a value of the unsigned data type. The word MICA can then be
 used later, as shown in the declarations in the move function, to declare
 objects of this type.

C Language Reference
typedef -- Declaring Type Name Synonyms

¦ Copyright IBM Corp. 1985, 1991
3.5.11 - 1

 3.6 Initializing Variables
 C Language provides for the initialization of most variables in a
 convenient and flexible manner. Even most auto and register variables may
 have an initial value specified. Arrays can be specified in such a way
 that the compiler computes their size from the number of initial values
 supplied.

 The initial value for a variable is supplied with the declarator for that
 variable. The initial values consist of an expression, or a list of
 values nested within braces { }, all preceded by an equal sign (=). An
 initializer has the form:

 initializer

 --- = --- initial expression ---¦

 An initial expression has the form:

 initial expression

 +---------------- expression ----------------+
 ---¦ +-----+ +---¦
 +- { --- initial expression ---¦ +--- } -+
 � ¦ +- , -+
 +--------- , ----------+

 All the expressions in an initializer for a static or external variable
 must be constant expressions or expressions that reduce to the address of
 a previously declared variable or function, possibly offset by a constant
 expression. The auto and register variables can be initialized by
 arbitrary expressions containing constants and previously declared
 variables and functions. All auto and register variables except arrays
 may be initialized.

 Note: Automatic aggregates cannot be initialized on the RT.

 An example of initialization of a struct is:

 struct {
 int a, b;
 double d;
 char C1,C2; }
 x = { 1, 2, 3.4, '5' };

 The members of the struct are initialized in order with the values shown.
 Since there is no value present for C2 it is initialized with the value
 zero, which is '\0'.

 Uninitialized static or extern variables have an initial value of zero
 (0). Uninitialized auto and register variables are guaranteed to start
 off with undefined values.

 When a scalar type is initialized to a pointer or arithmetic type, the
 initializer consists of a single expression that may or may not appear
 within braces { }. The initial value of the object is taken from the
 expression, and the same conversions are performed as for assignment.

C Language Reference
Initializing Variables

¦ Copyright IBM Corp. 1985, 1991
3.6 - 1

 When the variable is a structure, union or an array, the initializer
 consists of a list of initializers, separated by commas (,) and enclosed
 within braces { }. The initial values are written in ascending order of
 subscript or member. If the structure or array contains other structures
 or arrays, each member of the aggregate is also initialized according to
 the rule just stated. If there are fewer initializers in the list than
 there are members of the structure or array, the remaining members are
 filled with zeros. If there are too many, it is normally an error. When
 a variable is a union, only the first member can be initialized.

 Note: Unions cannot be initialized on the RT.

 It is an error to attempt to initialize any array whose storage class is
 auto. It is possible to leave out the internal braces from an
 initializer. If the internal braces are omitted, the meaning of the
 initializer list changes. If an initializer starts with a left brace {,
 the list of initializers that follows the brace represent initial values
 for the members of the structure or array. Note that it is an error if
 there are more initial values supplied than there are members of the
 structure or array.
 If the list of initial values does not start with a left brace, only
 enough elements of the list are used to initialize the members of the
 structure or array. Any elements left over in the list are then used to
 initialize the next member of the structure or array of which the current
 one is a part.

 Examples:

 int temp = 10;

 This is a simple initialization of the variable temp. An array can also
 be initialized:

 static float logs[4] = { 2.5, 3.8, 4.9, 10.76 };

 This is a completely declared array of four elements with its initial
 values. However, the C Compiler could compute the size on behalf of the
 programmer if the declaration is stated like this:

 static float logs[] = { 2.5, 3.8, 4.9, 10.76 };

 In this case, the declaration omits the size of the array, and the
 compiler determines the size from the number of initial values supplied.
 Now a two-dimensional array is declared and initialized:

 static float stuff [3] [3] = {
 { 1.0, 2.0, 3.0 },
 { 4.0, 5.0, 6.0 },
 { 7.0, 8.0, 9.0 } };

 This is a completely bracketed initialization of the stuff array. The
 first three elements in the list of initial values initialize the first
 row of the array stuff [0]. The next two lines of initial values
 initialize the rows stuff [1] and stuff [2]. But, according to the rules
 stated previously for omitting the braces { }, it is possible to state
 this initialization more simply:

 static float stuff [3] [3] = {
 1.0, 2.0, 3.0,
 4.0, 5.0, 6.0, 7.0,

C Language Reference
Initializing Variables

¦ Copyright IBM Corp. 1985, 1991
3.6 - 2

 8.0, 9.0 };

 Now the compiler takes the first three elements from the list and assigns
 them to stuff [0] [0] through stuff [0] [2], the next three elements are
 assigned to the second row of the array, and the last three elements to
 the third row of the array.

 Example:

 union data {
 char charctr;
 int whole;

 } input = {'h'};

 This initializes the first member, charctr, of input to character h.

 Subtopics
 3.6.1 Initializing Strings

C Language Reference
Initializing Variables

¦ Copyright IBM Corp. 1985, 1991
3.6 - 3

 3.6.1 Initializing Strings
 Initialization of strings is made convenient by a shorthand notation that
 simply places successive characters of the array adjacent (no commas in
 the list) and enclosed in double quotation marks ("). Therefore, the
 declaration:

 static char greet[] = "Hello";

 is a compact way of stating the more clumsy version of the same
 declaration:

 static char greet[] = { 'H','e','l','l', 'o','\0' };

 Also note that the declaration:

 static char hi[5] = "Hello";

 can be used to initialize the five character array hi. There will be no
 final \0 stored. If an array bound is given, and exactly that many
 characters are supplied, only the supplied characters are stored.

C Language Reference
Initializing Strings

¦ Copyright IBM Corp. 1985, 1991
3.6.1 - 1

 3.7 Type Names

 type name

 +-----------------------+
 --- type specifier ---¦ +---¦
 +- abstract declarator -+

 A type name is the data type name of an object, divorced from the actual
 identifier that names the object itself.

 The type name construct is used in three contexts in the C language:

 � In type conversions where a cast is require

 � As an argument to the sizeof operator

 � In function prototype parameter declarations

C Language Reference
Type Names

¦ Copyright IBM Corp. 1985, 1991
3.7 - 1

 3.8 Lifetimes of Variables
 In an executable C program, each variable has a predetermined lifetime
 depending on its storage class and location of declaration. These
 lifetimes are discussed here.

 Subtopics
 3.8.1 Automatic and Register Variables
 3.8.2 Static and External Variables
 3.8.3 Formal Arguments

C Language Reference
Lifetimes of Variables

¦ Copyright IBM Corp. 1985, 1991
3.8 - 1

 3.8.1 Automatic and Register Variables
 The lifetime of an auto or register variable is that of the function or
 compound statement in which it is declared. Allocation occurs on each
 entry to that function or compound statement, and de-allocation occurs on
 each exit from that function or compound statement.

C Language Reference
Automatic and Register Variables

¦ Copyright IBM Corp. 1985, 1991
3.8.1 - 1

 3.8.2 Static and External Variables
 Static or external variables are those variables declared either outside
 any function or compound statement (that is, at the level of the
 compilation unit), or declared inside a function or compound statement,
 but given the static or extern storage class. The lifetime of a static or
 external variable is the lifetime of the program.

C Language Reference
Static and External Variables

¦ Copyright IBM Corp. 1985, 1991
3.8.2 - 1

 3.8.3 Formal Arguments
 The lifetime of a formal argument is the lifetime of the function in which
 that formal argument is declared. The formal argument becomes established
 upon each entry to the function, and becomes undefined upon exit from the
 function.

C Language Reference
Formal Arguments

¦ Copyright IBM Corp. 1985, 1991
3.8.3 - 1

 3.9 Implicit Declarations
 When declaring identifiers, it is not always necessary to declare the
 storage class or the type of the identifier. In many cases, the C
 compiler can infer the storage class from the context in which the
 identifier is declared.

 For example, any function declared at the external level is automatically
 assumed to have the extern storage class. See the notes pertaining to the
 use of extern on page 3-3 for more details.

 Inside a function, an identifier is automatically assumed to have the auto
 storage class. Note that this rule does not apply to the function
 declarations themselves, since functions can never have the auto storage
 class; they are automatically given the extern storage class.

 Formal arguments of functions are also given the auto storage class by
 default. Similarly, an identifier without a specified type is given the
 type int.

 Within a function, a previously undeclared identifier that is followed by
 a left parenthesis (and appears in the context of an expression is
 assumed to be an extern function returning a value of type int.

C Language Reference
Implicit Declarations

¦ Copyright IBM Corp. 1985, 1991
3.9 - 1

 3.10 Name Spaces

 In any C program, identifiers refer to many items. You use identifiers
 for functions, variables, parameters, union members, and other items. C
 lets you use the same identifier for more than one class of identifier, as
 long as you follow the rules outlined in this section.

 Name spaces are categories used to group similar types of identifiers.

 The C compiler sets up name spaces to distinguish among classes of
 identifiers. You must assign unique names within each name space to avoid
 conflict. The same identifier can be used to declare different objects as
 long as each identifier is unique within its name space. The context of
 an identifier within a program lets the compiler resolve its class without
 ambiguity.
 Identifiers in the same name space must be distinct from one another.

 Within each of the following four name spaces, the identifiers must be
 unique:

 � Group 1 - These identifiers must be unique within a single scope

 - Function names
 - Variable names
 - Names of parameters of a function
 - Enumeration constants
 - typedef names.

 � Group 2 - These identifiers must be unique within a single scope

 - Enumeration tags
 - Structure tags
 - Union tags.

 � Group 3 - These identifiers must be unique within a single aggregate

 - Structure member
 - Union member.

 � Group 4 - These identifiers have function scope and must be uniqu
 within a function.

 - Statement Labels

 Structure tags, structure members, and variable names are in three
 different naming classes; no conflict occurs between the three items named
 student in the following example:

 struct student /* structure tag */
 {
 char student[20]; /* structure member */
 int class;
 int id;
 }student; /* structure variable */

 The compiler interprets each occurrence of student by its context in the
 program. For example, when student appears after struct, it is a
 structure tag. When student appears after either of the member selection
 operators (.) or (->), the name refers to the structure member. In
 other contexts, the identifier student refers to the structure variable.

C Language Reference
Name Spaces

¦ Copyright IBM Corp. 1985, 1991
3.10 - 1

 3.11 Scope

 An object is visible in a block or source file if the data type and the
 declared name of the object are known within the block or source file.

 The region where an object is visible is referred to as the object's
 scope. The four kinds of scope are: function, file, block, and function
 prototype. The scope of an identifier is determined by the location of
 the identifier's declaration. An identifier has block scope if its
 declaration is located inside a block. An identifier with block scope is
 visible from the point where it is declared to the closing brace (})
 that terminates the block.

 The only type of identifier with function scope is a label name. A label
 is implicitly declared by its appearance in the program text. A goto
 statement is used to transfer control to the label specified on the goto
 statement. The label is visible to any goto statement that appears in the
 same function as the label.

 An identifier has file scope if its definition appears outside of any
 block. An identifier with file scope is visible from the point where it
 is declared to the end of the source file. If there are source files
 included by means of preprocessing directives, the identifier will be
 visible to all included files that appear after the definition of the
 identifier. An identifier has function prototype scope if its declaration
 appears within the list of parameters in a function prototype. An
 identifier with function prototype scope is visible from the point where
 it is declared to the terminating semicolon (;) of the prototype
 declaration. Identical identifiers declared in different source files
 without the storage class static can refer to the same object or function.
 This is called external linkage. In Figure 3-1 the variable b is declared
 in both Source File 1 and Source File 2 as extern and refers to the same
 data object. By default, c is also an extern variable.

 If the first declaration of an identifier contains the keyword static, it
 has internal linkage. Within the source file, each variable with internal
 linkage refers to the same object or function. In Figure 3-1 all
 references to the variable a in Source File 1 refer to the same data
 object. The variable a in Source File 2 refers to a different data object
 than a in Source File 1.

 Source File 1 Source File 2
 +---------------------+ +--------------------+
 ¦ ¦ different data objects ¦ ¦
 ¦ static int a = 1; �-+----------------------------+ static int a; ¦
 ¦ ¦ ¦ ¦
 ¦ ¦ same data object ¦ ¦
 ¦ ¦ ¦ ¦
 ¦ int b = 1; �-+----------------------------+ extern int b; ¦
 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦
 ¦ main () ¦ ¦ myfunc () ¦
 ¦ { ¦ ¦ { ¦
 ¦ ¦ ¦ ¦
 ¦ a = 5; ¦ ¦ ¦
 ¦ ¦ ¦ ¦
 ¦ } ¦ ¦ } ¦
 +---------------------+ +--------------------+

 Figure 3-1. Example of External and Internal Linkage

C Language Reference
Scope

¦ Copyright IBM Corp. 1985, 1991
3.11 - 1

 Variables declared or defined at the external level are visible from the
 point at which you declare or define them to the end of the source file.
 Variables with a static storage class at the external level are visible
 only within the source file in which you define them. In general,
 variables declared or defined at the internal level are visible from the
 point at which you first declare them to the end of that block. These
 variables are local variables. If a variable declared inside a block has
 the same name as a variable declared at the external level, the block
 definition replaces the external-level definition to the end of the block.
 The compiler restores the visibility of the external-level variable when
 the current point of execution leaves the block.

 You can nest block visibility. This means that a block nested inside a
 block can contain declarations that redefine variables declared in the
 outer block. The new definition of the variable applies to the inner
 block. C restores the original definition when the current instruction
 returns to the outer block. A variable from the outer block is visible
 inside inner blocks that do not redefine the variable. Functions with
 static storage class are visible only in the source file in which you
 define them. All other functions are globally visible. The following
 program illustrates blocks, nesting, and visibility of variables.

 In this example, there are four levels of visibility: the external level
 and three block levels. Assuming that you have defined the function
 printf elsewhere, the main function prints the values 1,2,3,0,3,2,1.

 Example:

 int i = 1; /* i defined at external level */

 main ()
 {

 printf("%d\n", i); /* Prints 1 */

 {
 int i = 2, j = 3; /* i and j defined at
 internal level */
 printf("%d\n%d\n", i, j); /* Prints 2, 3 */

 {
 int i = 0; /* i is redefined */

 printf("%d\n%d\n", i, j); /* Prints 0, 3 */
 }

 printf("%d\n", i); /* Prints 2 */

 }

 printf("%d\n", i); /* Prints 1 */

 }

C Language Reference
Scope

¦ Copyright IBM Corp. 1985, 1991
3.11 - 2

 4.0 Chapter 4. Expressions

 Subtopics
 4.1 CONTENTS
 4.2 About This Chapter
 4.3 Expressions
 4.4 Conversions
 4.5 Operators in Expressions
 4.6 Summary of Operators

C Language Reference
Chapter 4. Expressions

¦ Copyright IBM Corp. 1985, 1991
4.0 - 1

 4.1 CONTENTS

C Language Reference
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
4.1 - 1

 4.2 About This Chapter

 This chapter describes C expressions which are used to derive new data
 values.

C Language Reference
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
4.2 - 1

 4.3 Expressions

 C is an expression language. This means that operations, such as
 assignment, can be part of expressions.

 Expressions consist of variables, constants, operators, and functions
 operating on specified objects to produce new values. New values are
 obtained by evaluating expressions. These newly-created values can then
 be used in assignment statements or can be used (in conditional
 expressions) to control subsequent program actions.

 An expression is a construct that defines the rules of computation for
 creating a value by performing operations (specified by operators) on
 operands (specified by variables, constants, and function references).
 Operands of expressions are either declared in the program or are standard
 C entities. C contains a fixed set of operators that define a mapping
 from given operand types into result types.

 expression

 +--- primary expression ---+
 +---- unary expression ----¦
 +--- binary expression ----¦
 ---+- conditional expression -+---¦
 +- assignment expression --¦
 +--- comma expression -----¦
 +-------- lvalue ----------¦
 +-- constant expression ---+

C Language Reference
Expressions

¦ Copyright IBM Corp. 1985, 1991
4.3 - 1

 4.4 Conversions

 When an expression is being evaluated, it is sometimes necessary for an
 operand value to be converted to a different type. This section describes
 the conversion rules in effect during expression evaluation.

 Subtopics
 4.4.1 Integers, Shorts and Characters
 4.4.2 Float and Double
 4.4.3 Floating and Integral
 4.4.4 Pointers and Integers
 4.4.5 The Usual Arithmetic Conversions

C Language Reference
Conversions

¦ Copyright IBM Corp. 1985, 1991
4.4 - 1

 4.4.1 Integers, Shorts and Characters

 The types int, short and char form a group of compatible integer types of
 varying precision. By default, the types int and short are treated as
 signed, and char is treated as unsigned. Each type may also be either
 signed or unsigned. For the most part, a value of one type in this group
 may be used anywhere a value of another type may be used. When the
 precision required differs from that of the expression present, the value
 of the expression is modified to meet the required precision.

 Several simple rules govern this modification process:

 � When converting from a longer form to a shorter form, the excess mos
 significant bytes are simply discarded, and the least significant
 bytes are used as the resulting value. If the original value cannot
 be represented by the target type, the result is pre-defined, and may
 not be what the user expected. For example, assigning the int value
 256 to a char variable gives it the value of 0, and assigning the int
 value -1 to an unsigned short gives it the value 65535.

 � Values of the same size are used unaltered. Again unsigned and signe
 quantities may yield surprising results when the original value cannot
 be represented in the target type.

 � When values of the smaller size are changed to values of a large
 size, sign-extension is performed when the original type is signed and
 zero fill is done when it is unsigned, independent of the target type.
 The only potentially surprising results from such treatment is that
 the conversion of negative signed values to unsigned values results in
 a very large number instead of a negative one. This is unavoidable
 since there is no representation of negative values in unsigned types.

C Language Reference
Integers, Shorts and Characters

¦ Copyright IBM Corp. 1985, 1991
4.4.1 - 1

 4.4.2 Float and Double

 Floating-point arithmetic is carried out in "single precision" (float)
 unless one of the operands of the operation is double precision.

 When a value of type double is converted to type float, it is rounded to
 float with associated normal loss in precision.

C Language Reference
Float and Double

¦ Copyright IBM Corp. 1985, 1991
4.4.2 - 1

 4.4.3 Floating and Integral

 The int values are converted to double with no loss of precision. The int
 values are converted to float with no loss of precision unless the int
 contained more digits than are accurately representable in float.

 When a double (float) value is converted to an int, the double (float) is
 truncated at the decimal point. It is possible that the resulting int
 will contain an incorrect value if the double value was outside the range
 of integers. The result is always the minimum value representable by int
 when the value is out of range, namely -2147483648. If such an
 out-of-range floating-point value is assigned to a short int, the result
 will be zero, the value of the lowest 16 bits of -2147483648.

 Note: On the RT, if the double is greater than 2147483647, the result
 will be 2147483647.

 Conversion of unsigned int to double (float) is the same as first
 converting the unsigned int to an int and then converting the resulting
 int value to a double. This means that if the most significant bit of the
 unsigned int was a 1, the resulting double will be negative.

 Note: On the RT, unsigned int is converted directly to double or float.

C Language Reference
Floating and Integral

¦ Copyright IBM Corp. 1985, 1991
4.4.3 - 1

 4.4.4 Pointers and Integers

 A value of type int or of type long may be added to or subtracted from a
 pointer, and two pointers to objects of the same type may be subtracted.
 See "Addition Operators" in topic 4.6.3.3 for the rules that apply in
 these cases.

C Language Reference
Pointers and Integers

¦ Copyright IBM Corp. 1985, 1991
4.4.4 - 1

 4.4.5 The Usual Arithmetic Conversions

 This section describes what is called the usual arithmetic conversions.
 Such a term means that many operators convert their operands according to
 similar rules. The term usual arithmetic conversions will appear in many
 subsequent discussions in this manual.

 � If either operand is of type double, the other operand is converted to
 type double and the result of the operation is also of type double.

 � Otherwise, if either operand is of type float, the other operand is
 converted to type float.

 Otherwise, the integral promotions are performed:

 � Operands of type signed char or short are converted to type int.

 � Operands of type char or unsigned short are converted to type int.

 After these conversions, the following rules apply:

 � If either operand is of type unsigned int, the other operand is
 converted to type unsigned int and the result of the operation is also
 of type unsigned int.

 � Otherwise, both operands must be of type int, and the result of the
 operation is also of type int.

C Language Reference
The Usual Arithmetic Conversions

¦ Copyright IBM Corp. 1985, 1991
4.4.5 - 1

 4.5 Operators in Expressions

 Operators perform operations on a value or a pair of values to produce a
 new value. This section describes the different operators that can be
 applied in expressions. The ordering of the subsections is in the same
 order as the precedence of the operators discussed in this section.
 Operators of the highest precedence are described first.

 With the exception of the & (take the address of) operator, an operation
 on a variable or field that has an undefined value produces an undefined
 result. Normally there is no indication when this happens. The following
 table lists the operators. They are described in detail later in this
 chapter.

C Language Reference
Operators in Expressions

¦ Copyright IBM Corp. 1985, 1991
4.5 - 1

 4.6 Summary of Operators

 +--+
 ¦ Operator ¦ Meaning ¦ Associativity¦
 +--------------+--------------------------+--------------¦
 ¦ () ¦ Application of function ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ [] ¦ Indexing an array ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ -> ¦ Member of struct or ¦ left to ¦
 ¦ ¦ union ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ . ¦ Member of struct or ¦ left to ¦
 ¦ ¦ union ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ ¦ ¦ ¦
 +--------------+--------------------------+--------------¦
 ¦ ! ¦ Negation of expression ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ ~ ¦ Bitwise ones complement ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ ++ ¦ Increment ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ -- ¦ Decrement ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ - ¦ Unary minus ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ + ¦ Unary plus ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ (type) ¦ Type casting ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ * ¦ Dereference ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ & ¦ Address of ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ sizeof ¦ Obtain size of object ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ ¦ ¦ ¦
 +--------------+--------------------------+--------------¦
 ¦ * ¦ Multiply ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ / ¦ Divide ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ % ¦ Remainder ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦

C Language Reference
Summary of Operators

¦ Copyright IBM Corp. 1985, 1991
4.6 - 1

 ¦ + ¦ Add ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ - ¦ Subtract ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ << ¦ Left shift ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ >> ¦ Right shift ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ < ¦ Less than ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ <= ¦ Less than or equal to ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ > ¦ Greater than ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ >= ¦ Greater than or equal to ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ == ¦ Equal to ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ ¦ ¦ ¦
 +--------------+--------------------------+--------------¦
 ¦ != ¦ Not equal to ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ & ¦ Bitwise AND ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ ^ ¦ Bitwise exclusive OR ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ | ¦ Bitwise inclusive OR ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ && ¦ Logical connective AND ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ || ¦ Logical connective OR ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ ? : ¦ Ternary conditional ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ = ¦ Assignment ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ += ¦ Add and assign ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ -= ¦ Subtract and assign ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ *= ¦ Multiply and assign ¦ right to ¦

C Language Reference
Summary of Operators

¦ Copyright IBM Corp. 1985, 1991
4.6 - 2

 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ /= ¦ Divide and assign ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ %= ¦ Remainder and assign ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ <<= ¦ Shift left and assign ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ >>= ¦ Shift right and assign ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ &= ¦ AND and assign ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ ^= ¦ Exclusive OR and assign ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ |= ¦ Inclusive OR and assign ¦ right to ¦
 ¦ ¦ ¦ left ¦
 +--------------+--------------------------+--------------¦
 ¦ , ¦ Expression separator ¦ left to ¦
 ¦ ¦ ¦ right ¦
 +--------------+--------------------------+--------------¦
 ¦ ¦ ¦ ¦
 +--+

 Note: Some operators (*, +, -, &) have a higher unary precedence than
 binary.

 Subtopics
 4.6.1 Primary Expressions
 4.6.2 Constants
 4.6.3 Unary Operators

C Language Reference
Summary of Operators

¦ Copyright IBM Corp. 1985, 1991
4.6 - 3

 4.6.1 Primary Expressions

 Primary expressions involving the following operators group left to right:

 . the member of operator

 -> the member of operator

 [] subscripting

 () function references

 primary expression

 +- identifier --+
 +- (-------------------- expression -----------------) -¦
 ¦ +------------------+ ¦
 +- primary expression --- (---¦ +--- -¦
 ¦ +--- expression ---+ ¦
 ---¦ � ¦ +---¦
 ¦ +----- , ------+ ¦
 +- primary expression --- [------- expression -------] -¦
 +- primary expression --- . ------- identifier -----------¦
 +- primary expression --- -> ------ identifier -----------¦
 +- constant --+

 lvalue

 +- identifier ---+
 +- primary expression --- [------------------ expression ---] -¦
 ---+- lvalue---------------- . ------------------ identifier -------+---¦
 +- primary expression --- -> ----------------- identifier -------¦
 +- * -------------------- unary expression ----------------------¦
 +- (-------------------- lvalue ---------) --------------------+

 The paragraphs following contain descriptions of the properties of the
 different objects that may appear in expressions and include examples of
 the way these elements are referenced, where appropriate.

 Subtopics
 4.6.1.1 Identifiers
 4.6.1.2 Constant Expressions

C Language Reference
Primary Expressions

¦ Copyright IBM Corp. 1985, 1991
4.6.1 - 1

 4.6.1.1 Identifiers

 An identifier is a primary expression. The type of an identifier is as
 specified by its declaration.

 A variable of simple scalar type is accessed by its identifier. Since
 such a simple variable has no structure, its identifier alone is enough to
 reference it.

 Examples of simple variable references:

 #include <stdio.h>
 #include <math.h>

 main()
 {
 /* Declare some simple variables */
 int egress;
 float lightly=1.3;
 char coal='A';

 /* Now reference those variables */
 egress = 10; /* Set it to a constant */

 /* Pass it as an argument */
 printf("%f", sin(lightly));

 /* Write it to the standard output */
 putchar(coal);
 putchar('\n');
 }

 If the type of the identifier is an array, then the value of the
 expression is a pointer to the first element in the array and the type of
 the expression is a pointer to the type of object in the array. If the
 identifier is a function not followed by a left parenthesis, (, then the
 value of the identifier, and the type of the expression, is the address of
 the function. The type of the expression is also a pointer to the
 function returning the type specified by the identifier function.

C Language Reference
Identifiers

¦ Copyright IBM Corp. 1985, 1991
4.6.1.1 - 1

 4.6.1.2 Constant Expressions

 A constant expression in C consists of constant operands together with
 operators listed below. Parentheses () may be used to alter the
 precedence of operators. The sizeof construct is considered a constant of
 type int. A constant expression has the form:

 constant expression

 +- constant --+
 ¦ one of ¦
 ¦ +--------+ constant ¦
 +--¦ - +--- expression --------------------------------------¦
 ¦ ¦ ~ ¦ ¦
 ¦ ¦ + ¦ one of ¦
 ¦ ¦ ! ¦ +-----------+ ¦
 ¦ ¦ (type) ¦ ¦ * / % ¦ ¦
 ¦ ¦ sizeof ¦ ¦ + - ¦ ¦
 ¦ +--------+ ¦ << >> ¦ ¦
 ¦ constant ¦ < > <= >= ¦ constant ¦
 ---+- expression ---¦ == |+ +--- expression ---------------------+---¦
 ¦ ¦ & ¦ ¦
 ¦ ¦ | ¦ ¦
 ¦ ¦ ^ ¦ ¦
 ¦ ¦ && ¦ ¦
 ¦ ¦ || ¦ ¦
 ¦ +-----------+ ¦
 ¦ constant constant constant ¦
 +- expression --- ? --- expression --- : --- expression ----------¦
 ¦ constant ¦
 +- (--- expression ---) --¦
 +- sizeof --- (--- type name ---) -----------------------------+

 The operators allowed are:

 Binary Operators

 + - * / % & | ^ << >> == != < > <= >= || &&

 Unary Operators

 . -> [] & ~ + ! sizeof (type) sizeof <expression> (type)

 (Conditional) Ternary Operator

 ?:

 There are places in a C program where the compiler requires that
 expressions evaluate to a constant. These places are:

 � After a case in a switch statement

 � At the bounds of an array when the array is declare

 � In initializers for certain variable

 � Bit-field width

C Language Reference
Constant Expressions

¦ Copyright IBM Corp. 1985, 1991
4.6.1.2 - 1

 � Enumeration constants

 In the case and array bounds situations, the expressions can only use
 integer constants, character constants, enumeration constants, and sizeof
 expressions.

 In the case of initializers, the rules are more relaxed. The constant
 expressions as defined above can be used, and in addition, the unary (&)
 operator can be applied to extern or static objects, to members of extern
 or static structures or unions and to extern or static arrays subscripted
 with a constant expression. The unary (&) can also be applied
 implicitly by the appearance of unsubscripted arrays or functions. In all
 cases, an initializer must eventually evaluate to either:

 � A constan

 � The address of a previously declared extern or static object plus or
 minus a constant.

C Language Reference
Constant Expressions

¦ Copyright IBM Corp. 1985, 1991
4.6.1.2 - 2

 4.6.2 Constants

 A constant is a primary expression. The type of the constant may be int,
 long, float, or double, depending on its form. Integer constants have
 type int. Long constants are type long int. Floating-point constants are
 either of type double or float. Character constants are considered to be
 of type int.

 Subtopics
 4.6.2.1 Strings
 4.6.2.2 Parenthesized Expressions
 4.6.2.3 Member References
 4.6.2.4 Function References

C Language Reference
Constants

¦ Copyright IBM Corp. 1985, 1991
4.6.2 - 1

 4.6.2.1 Strings
 A string is a primary expression. Since the type of a string is assumed
 to be of type array of char, the result of the expression is actually a
 pointer to char and the value is a pointer to the first character in the
 string.

C Language Reference
Strings

¦ Copyright IBM Corp. 1985, 1991
4.6.2.1 - 1

 4.6.2.2 Parenthesized Expressions

 A parenthesized expression is a primary expression whose type and value
 are the same as that of a plain expression without the parentheses. The
 presence of the parentheses does not affect whether the expression is an
 lvalue. However, brackets do affect the order in which operations are
 done. For example, *A[I] would mean use the Ith element of A as a pointer
 to the value desired, but (*A) [I] would mean use A as a pointer to an
 array, and use the value of the Ith element of that array.

C Language Reference
Parenthesized Expressions

¦ Copyright IBM Corp. 1985, 1991
4.6.2.2 - 1

 4.6.2.3 Member References

 A primary expression followed by a dot (.) followed by an identifier is
 an expression. The first expression must have struct or union type. The
 identifier normally must name a member of that struct or union. The
 result of the expression refers to the named member of the struct or
 union, and its type is the type of that member. The expression is an
 lvalue only if the struct or union expression preceding the dot (.) is
 an lvalue.

 A primary expression followed by a (->) sign followed by an identifier is
 also an expression. The first expression must be a pointer to a struct or
 union. The identifier normally must be the name of a member of that
 struct or union. The result of the expression is an lvalue that refers to
 the named member of the struct or union and its type is the type of that
 member. The operator (->) is just a shorthand for a combination of the
 unary (*) operator with the (.) operator; therefore, a->b is
 equivalent to (*a).b.

 There are five operations that may be done on a structure or a union:

 � Referencing a member of the structure or union by means of the (.)
 or (->) operators.

 � Taking the address of the entire structure or union by using the (&)
 operator.

 � Finding the size of a structure or union by using the sizeof operator.

 � Passing (by value) the entire structure or union as an actua
 parameter to a subroutine.

 � Assigning the entire structure or union to another similarly type
 variable with a normal assignment statement.

 The (.) operator is used in contexts where the structure or union
 identifier is available directly to the expression. The (->) operator
 is used when the identifier for the structure or union is a pointer to the
 object.

 Examples of accessing members of structures:

 #include <stdio.h>

 struct record
 {
 int number;
 struct record *next_num;
 };

 main()
 {
 struct record name1, name2, name3;
 struct record *recd_pointer = &name1;
 int sum = 0;

 name1.number = 144;
 name2.number = 203;
 name3.number = 488;

C Language Reference
Member References

¦ Copyright IBM Corp. 1985, 1991
4.6.2.3 - 1

 name1.next_num = &name2;
 name2.next_num = &name3;
 name3.next_num = NULL;

 while (recd_pointer != NULL)
 {
 sum += recd_pointer->number;
 recd_pointer = recd_pointer->next_num;
 }

 printf("sum = %d\n", sum);
 }

C Language Reference
Member References

¦ Copyright IBM Corp. 1985, 1991
4.6.2.3 - 2

 4.6.2.4 Function References
 A function call is a primary expression. The function call must be
 followed by parentheses () containing a possible empty list of actual
 arguments to the function. The primary expression must be of the type:

 function returning widget

 and the result of that function reference is of type:

 widget

 A previously undeclared identifier followed immediately by a left
 parenthesis (is declared to be an extern function returning int.

 When a function call is made, the compiler performs some automatic
 conversions:

 � Any actual arguments of type float are converted to double before the
 function call is made.

 � Actual arguments of type char or short are converted to type int
 before the call is made.

 � Array names are converted to pointers

 � Function names are converted to pointers

 Types get implicitly converted if a prototype exists before the function
 call. If function prototyping is used and the types of the arguments do
 not match the types of the formal parameters indicated by the prototype,
 the arguments being passed are converted to the types of the parameters
 indicated by the prototype. If any argument cannot be converted, an error
 occurs. Also, if a function prototype exists, the number of passed
 arguments to the function must equal the number of parameters specified in
 the function prototype, or an error occurs. See Chapter 6, "Functions,"
 for a full discussion of function prototypes.

 Example:

 double atan2(double y, double x);

 main ()
 {
 printf ("Arc tangent of y/x=%f\n", atan2 (1,1));
 }

 In this example, both arguments to atan2 are converted to type double
 before they are passed.

 Note: Function prototypes are not supported on the RT.

 The discussion on function declarations is covered in detail in Chapter 6,
 "Functions."

 There are only two operations that may be performed on a function:

 � Invoking the function as part of an expressio

 � Taking the address of the function

C Language Reference
Function References

¦ Copyright IBM Corp. 1985, 1991
4.6.2.4 - 1

 If a function name is followed by a left parenthesis (, it is assumed to
 be a function reference. If a function name appears and is not followed
 by a left parenthesis, a pointer to the function is generated.

 Example of function reference:

 int acker(m, n)
 int m, n;
 {
 if (m ==0)
 return(n + 1);
 else if (n == 0)
 return(acker(m - 1, 1));
 else
 return(acker(m - 1, acker(m, n - 1)));
 }

 Example of passing functions:

 CloseGen(Type)
 char Type;
 {
 int CloseBlock(), CloseList();

 if (Type == 'b')
 CloseEnv(CloseBlock);
 else if (Type == 'l')
 CloseEnv(CloseList);
 else
 printf("Disaster\n");
 }

 This example shows the declaration of some functions that are passed as
 arguments to another generic function, depending on the value of some
 variable.

C Language Reference
Function References

¦ Copyright IBM Corp. 1985, 1991
4.6.2.4 - 2

 4.6.3 Unary Operators

 Unary operators appear to the right or left of an expression and are
 considered to have a single operand. A unary expression has the form:

 unary expression

 one of
 +--------+
 +--¦ + +--- unary expression -----------------+
 ¦ ¦ - ¦ ¦
 ¦ ¦ ! ¦ ¦
 ¦ ¦ ~ ¦ ¦
 ¦ ¦ & ¦ ¦
 ¦ ¦ * ¦ ¦
 ¦ ¦ sizeof ¦ ¦
 ¦ +--------+ ¦
 ¦ one of ¦
 ¦ +----+ ¦
 +----¦ ++ +----- lvalue ---------------------------¦
 ¦ ¦ -- ¦ ¦
 ¦ +----+ one of ¦
 ¦ +----+ ¦
 ---+--- lvalue------¦ ++ +----------------------------+---¦
 ¦ ¦ -- ¦ ¦
 ¦ +----+ ¦
 +--- sizeof --------------- unary expression ------¦
 +-- sizeof -------- (--- type name ---) ---------¦
 +--- (--- type name ---) --- unary expression ---¦
 +--- primary expression ---------------------------+

 type name

 +-----------------------+
 --- type specifier ---¦ +---¦
 +- abstract declarator -+

 Indirection
 The (*) operator means indirection. The expression to the right
 of the (*) operator must be a pointer. The result of the
 operator is an lvalue that refers to the object to which the
 pointer points.

 If the type of the expression is:

 pointer to widget

 then the type of the result is:

 widget

 Examples of pointer references:

 #include <stdio.h>
 #include <math.h>

 main()

C Language Reference
Unary Operators

¦ Copyright IBM Corp. 1985, 1991
4.6.3 - 1

 {
 /*Declare some pointer variables */
 int *egress, egr;
 float *lightly, lgt =1.3;
 char *coal = "A";

 /* Initialize the pointer variables */
 egress = &egr;
 lightly = &lgt;

 /* Now reference those variables */
 egress = 10; / Set it to a constant */

 /* Pass it as an argument */
 printf("%f", sin(*lightly));

 /* Write it to the standard output */
 putchar(*coal);
 putchar('\n');
 }

 As mentioned previously in the discussion on array referencing,
 an array name can be used with the (*) operator to access
 elements of an array by pointer arithmetic.

 Example of array referencing with the * operator:

 int egress[100]; /* Declare an array variable */
 int idx;
 /* Initialize the array to zeros */
 for (idx = 0; idx < 100; idx++)
 *(egress+idx) = 0;

 In this example, note that the lvalue expression is enclosed in
 parentheses (). This is because the (*) operator is
 evaluated before the (+) operator unless they are present.

 *(egress+idx)

 Address Evaluation
 The (&) operator generates the address of the object referred
 to by the lvalue to the right of the operator. If the type of
 the lvalue is:

 widget

 the type of the result by applying the (&) operator is:

 pointer to widget

 The (&) operator can be applied to any lvalue except objects
 with the register storage class and bit field members of
 structs. This includes non-bit field members of structs,
 members of unions, arrays and array elements, functions, and any
 variable.

 Examples:

 &Gizmo generates the address of a variable named Gizmo

C Language Reference
Unary Operators

¦ Copyright IBM Corp. 1985, 1991
4.6.3 - 2

 &Book_Case[shelf] generates the address of the shelf element of the array
 Book_Case.

 &based->value generates the address of the member value of the struct or
 union that the identifier based points to.

 Unary Plus
 The unary plus operator (+) maintains the value of the
 operand. The expression must be numeric. The usual arithmetic
 conversions apply.

 Note: The unary plus operator is not supported on the RT.

 Unary Negation
 The unary negation operator (-) generates the negative of the
 expression to its right. The expression must be numeric. The
 usual arithmetic conversions apply.

 Logical Negation
 The logical negation operator (!) generates a zero value if
 the value of the expression to its right is nonzero, and
 generates a value of 1 if the value of the expression to its
 right is zero. The type of the result of the operator is int.

 The (!) operator can be applied to any numeric type and to
 pointers.

 Logical Ones Complement
 The logical ones complement operator (~) generates the ones
 complement of the expression to its right. The usual arithmetic
 conversions are performed on the operand. The type of the
 operand must be integral.

 Increment and Decrement
 The increment and decrement operators, (++) and (--), may be
 applied to their operands either as prefix or as postfix
 operators. The types accepted include all numeric types
 (including float, double, long double) and pointer. The
 operands must be lvalues. The result of the operation is not an
 lvalue.

 When either the (++) or the (--) operators are applied as prefix
 operators, the object that the lvalue refers to is incremented
 or decremented. The value of the resulting expression is the
 new incremented or decremented value.

 When either the (++) or the (--) operators are applied as
 postfix operators, the result is the original value of the
 object referred to by the lvalue. After the result of the
 expression has been noted, the object is incremented or
 decremented. The type of the result is the same as the type of
 the lvalue expression.

 When applied to a numeric object, that object is incremented or
 decremented by one. When applied to any object of type pointer,
 that object is incremented or decremented by the size of the
 type of the object that it points to. Thus if p is type pointer
 to double, the p++ increments p by the size of a double, which
 is 8.

C Language Reference
Unary Operators

¦ Copyright IBM Corp. 1985, 1991
4.6.3 - 3

 Examples:

 int a,b,c,d,e;
 a = 6; /* Set up a */
 b = ++a; /* b becomes 7; a becomes 7 */
 c = --a; /* c becomes 6; a becomes 6 */
 d = a++; /* d becomes 6; a becomes 7 */
 e = a--; /* e becomes 7; a becomes 6 */

 These examples illustrate the use of the increment and decrement
 operators, showing the results generated by the prefix and
 postfix forms.

 Cast
 A type cast is used to specify an explicit conversion of an
 expression to a specific type. The unary expression being
 converted as well as the parenthesized type name, must have
 numeric or pointer type.

 A cast may or may not actually change the bit pattern of the
 expression. Conversion of an int to a float does, but
 conversion of a pointer to char into an int does not. A pointer
 may be converted to an integral type, and integral types may be
 converted to pointers.

 Example:

 #include <stdio.h>

 main()
 {

 int value;

 value = 10;
 printf("integer = %f\n", (double) value);
 }

 Sizeof
 When the sizeof operator is applied to an array or structure,
 the result is the total number of bytes in that array or
 structure. When the sizeof operator is applied to a union, the
 result is the size of the largest member of the union. In
 general, the sizeof operator results in the number of storage
 bytes the following object occupies, including any rounding up
 to accommodate alignment. For example, when the sizeof operator
 is applied to the following structure, the result is 16 since
 the structure is given 16 bytes when stored.

 Example:

 struct s1{
 int i;
 char char_array[11];
 };

 However, when the sizeof operator is applied to the following
 structure, the result is 15.

C Language Reference
Unary Operators

¦ Copyright IBM Corp. 1985, 1991
4.6.3 - 4

 Example:

 struct s2{
 char a[4];
 char char_array[11];
 };

 This example shows that the compiler aligns elements within a
 structure based on the alignment of the most restrictive
 element. See the "Data Representation" sections in C Language
 User's Guide for information on storage and alignment.

 The sizeof operator is semantically equivalent to an integer
 constant, and it may be used anywhere an integer constant can be
 used.

 The sizeof operator may also be applied to a type name enclosed
 in parentheses (). In this case, the value is the size (in
 bytes) of any object which has that type.

 The construction sizeof (type) is taken as a single indivisible
 unit.

 Examples:

 int fred [10];
 int a , b;

 a = sizeof fred; /* a becomes 40 */

 b = sizeof (double); /* b becomes 8 */

 In this example, the result of the first sizeof operator is 40
 since the size of the fred array is 10 times 4 bytes. The
 second sizeof operator is taking the size of a double object,
 which is 8 bytes in this implementation. It is illegal to apply
 the sizeof operator to a bit field.

 Note: The RT C Compiler allows the sizeof operator on a bit
 field. It always returns 4.

 Subtopics
 4.6.3.1 Binary Operators
 4.6.3.2 Multiplication Operators
 4.6.3.3 Addition Operators
 4.6.3.4 Shift Operators
 4.6.3.5 Relational Operators
 4.6.3.6 Equality Operators
 4.6.3.7 Bitwise AND Operator
 4.6.3.8 Bitwise Exclusive OR Operator
 4.6.3.9 Bitwise Inclusive OR Operator
 4.6.3.10 Logical AND Operator
 4.6.3.11 Logical OR Operator
 4.6.3.12 Conditional Expression
 4.6.3.13 Assignment Operators
 4.6.3.14 Comma Operator

C Language Reference
Unary Operators

¦ Copyright IBM Corp. 1985, 1991
4.6.3 - 5

 4.6.3.1 Binary Operators

 Binary operators have two operands. A binary expression has the form:

 binary expression

 +------ multiplicative expression ------+
 +--------- additive expression ---------¦
 +---------- shift expression -----------¦
 +-------- relational expression --------¦
 ---+--------- equality expression ---------+---¦
 +------- bitwise AND expression --------¦
 +--- bitwise exclusive OR expression ---¦
 +--- bitwise inclusive OR expression ---¦
 +------- logical AND expression --------¦
 +-------- logical OR expression --------+

C Language Reference
Binary Operators

¦ Copyright IBM Corp. 1985, 1991
4.6.3.1 - 1

 4.6.3.2 Multiplication Operators
 The multiplication operators (*, /, and %) group from left to right.

 multiplicative expression

 +--- unary expression ---+
 ---¦ one of +---¦
 ¦ +-------+ ¦
 +--- multiplicative expression ---¦ * / % +--- unary expression ---+
 +-------+

 The (*) operator means multiplication. Both operands must be numeric.
 The usual arithmetic conversions are performed.

 The (/) operator means division. Both operands must be numeric. When
 integers are divided, the result is truncated towards zero. If the right
 operand of the binary
 (/) operator is zero, an illegal instruction error is generated for
 integral operands, and INF (Infinity) for floating-point operands. The
 usual arithmetic conversions are performed. If either operand is unsigned
 int or unsigned long, then unsigned arithmetic is done; otherwise, signed
 arithmetic is performed.

 The (%) operator defines the remainder operation between its operands.
 Both operands must be integral value; float and double are not allowed.
 An illegal instruction error is generated if the right operand of (%) is
 zero. If either operand is unsigned int or unsigned long, then unsigned
 arithmetic is done, otherwise signed arithmetic is done. The
 interpretation of (%) is:

 a % b = a - (a / b) * b

C Language Reference
Multiplication Operators

¦ Copyright IBM Corp. 1985, 1991
4.6.3.2 - 1

 4.6.3.3 Addition Operators

 additive expression

 +--- multiplicative expression -------------------------------------+
 ---¦ one of +---¦
 ¦ +-----+ ¦
 +--- additive expression ---¦ + - +--- multiplicative expression ---+
 +-----+

 The addition operators (+ and -) group left to right. The usual
 arithmetic conversions are performed, as described at the start of this
 chapter. Both operands may be numeric or, in some cases, pointers.

 The result of the (+) operator is the sum of its operands. The usual
 arithmetic conversion rules determine if the addition is to be done in
 floating-point arithmetic or integral. Two pointers cannot be added. A
 pointer and an integral type may be added, in either order, but the result
 is not simply adding the two values. If the pointer points to an object
 of size n bytes, then the integer is multiplied by n before the addition
 is performed. Thus, the value of the expression is the address of the nth
 element relative to what p points to, as if it were an array. Hence, if a
 is an array, then the value of the expression *(a+n) is the value of the
 nth element in a, exactly the same as indexing a by n, a[n].

 The result of the (-) operator is the difference of its operands. The
 usual arithmetic conversions are performed. A value of integral type may
 be subtracted from a pointer, and the same discussion applies to
 subtraction as to addition.

 Two pointers to objects of the same type may be subtracted. The result is
 converted (by dividing the result by the size in bytes of an object of the
 type pointed to by the pointer) to an int whose value is the number of
 objects separating the objects pointed to. Note, however, that if the
 pointers do not point to elements in the same array, the distance between
 them may not divide evenly and the result will probably be meaningless.

C Language Reference
Addition Operators

¦ Copyright IBM Corp. 1985, 1991
4.6.3.3 - 1

 4.6.3.4 Shift Operators
 The shift operators are left shift (<<) and right shift (>>). The shift
 operators group left to right. Both operands of the shift operators must
 be integral. The usual arithmetic conversions are performed on the
 operands.

 The right operand of a shift operator is converted to an int. The type of
 the result is the same as the type of the left operand.

 shift expression

 +--- additive expression ------------------------------------+
 ---¦ one of +---¦
 ¦ +-------+ ¦
 +--- shift expression ---¦ << >> +--- additive expression ---+
 +-------+

 If the right operand is negative, or if the right operand is greater than
 the number of bits in the left operand, the results are undefined.

 The (<<) operator is a left shift. The result of the expression:

 E1 << E2

 is E1 (interpreted as a bit pattern) shifted left the number of bits given
 by the value of E2. The vacated bits are filled with zeros.

 The (>>) operator is a right shift. The result of the expression:

 E1 >> E2

 is E1 (interpreted as a bit pattern) shifted right the number of bits
 given by the value of E2. If the expression E1 is unsigned int or
 unsigned long, the right shift is a logical right shift; that is, the
 vacated bits are filled with zeros. If the expression E1 is signed, the
 right shift is an arithmetic shift; that is, the sign bit is propagated.

C Language Reference
Shift Operators

¦ Copyright IBM Corp. 1985, 1991
4.6.3.4 - 1

 4.6.3.5 Relational Operators

 relational expression

 +--- shift expression ---+
 ---¦ one of +---¦
 ¦ +-----------+ ¦
 +--- relational expression ---¦ < > <= >= +--- shift expression----+
 +-----------+

 The relational operators group left to right. Relational operators apply
 to all numeric types as well as to pointers and the usual arithmetic
 conversions apply.

 All these operators generate a value of 1 if the specified relation is
 true, and 0 if the specified relation is false. The type of the result is
 of type int. The usual arithmetic conversions are performed on the
 operands. If either operand is unsigned int, an unsigned comparison is
 done; otherwise, a signed comparison is done.

 Pointers to the same type may be compared. The result of comparing
 pointers depends on the relative locations of the pointed to objects in
 the address space of the machine. An unsigned comparison is done when
 comparing pointers.

C Language Reference
Relational Operators

¦ Copyright IBM Corp. 1985, 1991
4.6.3.5 - 1

 4.6.3.6 Equality Operators

 equality expression

 +------------------- relational expression --------------------+
 ---¦ one of +---¦
 ¦ +--------+ ¦
 +- equality expression ---¦ == ! = +--- relational expression -+
 +--------+

 The equality operator (==) and inequality operator (!=) have a lower
 precedence than the relational operators. The result is either a value of
 1 for true or 0 for false. The type of the result is int. Both operands
 must be arithmetic types, must be pointers to objects of the same type, or
 one must be a pointer to an object and the other a pointer to void, or one
 must be a pointer and the other must be 0.

C Language Reference
Equality Operators

¦ Copyright IBM Corp. 1985, 1991
4.6.3.6 - 1

 4.6.3.7 Bitwise AND Operator

 bitwise AND expression

 +----------------- equality expression ------------------+
 ---¦ +---¦
 +- bitwise AND expression --- & --- equality expression -+

 The bitwise AND operator (&) performs a bit-by-bit AND function on the
 bits of its operands. The usual arithmetic conversions are performed on
 the operands. Both operands must be integral.

 The following table is the truth table for the bitwise AND operator (&)
 :

 +--------------------------------------+
 ¦ E1 ¦ E2 ¦ E1 & E2 ¦
 +------------+------------+------------¦
 ¦ 0 ¦ 0 ¦ 0 ¦
 +------------+------------+------------¦
 ¦ 0 ¦ 1 ¦ 0 ¦
 +------------+------------+------------¦
 ¦ 1 ¦ 0 ¦ 0 ¦
 +------------+------------+------------¦
 ¦ 1 ¦ 1 ¦ 1 ¦
 +------------+------------+------------¦
 ¦ ¦ ¦ ¦
 +--------------------------------------+

 Example:

 #define SIGNCLR 0x7fffffff
 demo(thing)
 int thing;
 {

 return(thing & SIGNCLR); /* Clears the sign bit */
 }

C Language Reference
Bitwise AND Operator

¦ Copyright IBM Corp. 1985, 1991
4.6.3.7 - 1

 4.6.3.8 Bitwise Exclusive OR Operator

 bitwise exclusive OR expression

 +------------------------ bitwise AND expression ------------------------+
 ---¦ +---¦
 +--- bitwise exclusive OR expression --- ^ --- bitwise AND expression ---+

 The bitwise exclusive OR operator (^) performs a bit-by-bit exclusive OR
 function on the bits of its operands. The usual arithmetic conversions
 are performed on the operands. Both operands must be integral.

 The following table is the truth table for the bitwise exclusive OR
 operator (^) :

 +---+
 ¦ E1 ¦ E2 ¦ E1 ^ E2 ¦
 +-----------------+-----------------+-----------------¦
 ¦ 0 ¦ 0 ¦ 0 ¦
 +-----------------+-----------------+-----------------¦
 ¦ 0 ¦ 1 ¦ 1 ¦
 +-----------------+-----------------+-----------------¦
 ¦ 1 ¦ 0 ¦ 1 ¦
 +-----------------+-----------------+-----------------¦
 ¦ 1 ¦ 1 ¦ 0 ¦
 +-----------------+-----------------+-----------------¦
 ¦ ¦ ¦ ¦
 +---+

 Example:

 #define TOGGLE 0x80000000
 int demo(thing)
 int thing;
 {

 return(thing ^ TOGGLE); /* Toggles the sign bit */
 }

C Language Reference
Bitwise Exclusive OR Operator

¦ Copyright IBM Corp. 1985, 1991
4.6.3.8 - 1

 4.6.3.9 Bitwise Inclusive OR Operator

 bitwise inclusive OR expression

 +-------------- bitwise exclusive OR expression --------------+
 ---¦ +---¦
 ¦ bitwise bitwise ¦
 +- inclusive OR expression --- | --- exclusive OR expression -+

 The bitwise inclusive OR operator (|) performs a bit-by-bit inclusive OR
 function on the bits of its operands. The usual arithmetic conversions
 are performed on the operands. Both operands must be integral.

 The following table is the truth table for the bitwise inclusive OR
 operator (|) :

 +---+
 ¦ E1 ¦ E2 ¦ E1 | E2 ¦
 +-----------------+-----------------+-----------------¦
 ¦ 0 ¦ 0 ¦ 0 ¦
 +-----------------+-----------------+-----------------¦
 ¦ 0 ¦ 1 ¦ 1 ¦
 +-----------------+-----------------+-----------------¦
 ¦ 1 ¦ 0 ¦ 1 ¦
 +-----------------+-----------------+-----------------¦
 ¦ 1 ¦ 1 ¦ 1 ¦
 +-----------------+-----------------+-----------------¦
 ¦ ¦ ¦ ¦
 +---+

 Example:

 #define SETSIGN 0x80000000
 int demo(thing)
 int thing;
 {
 return(thing | SETSIGN); /* Sets the sign bit */
 }

C Language Reference
Bitwise Inclusive OR Operator

¦ Copyright IBM Corp. 1985, 1991
4.6.3.9 - 1

 4.6.3.10 Logical AND Operator

 logical AND expression

 +------------------ bitwise inclusive OR expression ------------------+
 ---¦ +---¦
 +- logical AND expression --- && --- bitwise inclusive OR expression -+

 The logical AND operator (&&) returns the value 1 if both of its
 operands are true (nonzero) and 0 if either is false (zero). Each operand
 must have numeric or pointer type. The type of the result is int.
 Left-to-right short circuit evaluation is guaranteed; that is, the left
 operand is checked first. If it is false, then the result of the
 expression must also be false, so the value of the right operand is never
 computed. This fact can be useful as illustrated in the following
 example.

 Example:

 logical AND expression

 +------------------ bitwise inclusive OR expression ------------------+
 ---¦ +---¦
 +- logical AND expression --- && --- bitwise inclusive OR expression -+

 while (p!=NULL && p->size > 10) {
 . . .
 p = p->next;
 }

 If the full expression were evaluated in the case in which p has the value
 NULL, then an erroneous memory reference may occur when attempting to
 evaluate p-> size.

C Language Reference
Logical AND Operator

¦ Copyright IBM Corp. 1985, 1991
4.6.3.10 - 1

 4.6.3.11 Logical OR Operator

 logical OR expression

 +----------------- logical AND expression ------------------+
 ---¦ +---¦
 +- logical OR expression --- || --- logical AND expression -+

 The logical OR operator (||) evaluates the boolean OR of its operands.
 Each operand must have numeric or pointer type. The type of the result is
 int. The value 1 is returned if either operand is true (nonzero);
 otherwise, the value 0 is returned. As with the logical operator, short
 circuit left-to-right evaluation is guaranteed.

 Example:

 if (p == NULL || p-> size < 10)
 printf ("error\n");

 In the example, it is important that the second operand of the || operator
 not be evaluated if the first is true. The logical OR operator ensures
 that this is the case.

C Language Reference
Logical OR Operator

¦ Copyright IBM Corp. 1985, 1991
4.6.3.11 - 1

 4.6.3.12 Conditional Expression

 conditional expression

 +------------------- logical OR expression ---------------------+
 ---¦ +----¦
 +- logical OR expression ? expression : conditional expression -+

 The conditional operator (?:), sometimes known as the ternary operator,
 selects between the value of two expressions based on a boolean
 expression. The value of the first operand is computed. If it is true
 (nonzero), then the value of the second operand is computed and returned
 as the value of the conditional expression. In this case, the third
 operand is never evaluated. If the value of the first operand is false
 (zero) then the second operand is skipped and the value of the third
 operand is used. The result is not an lvalue.

 If both the second and third operands have arithmetic type, then the type
 of the result is determined by applying the usual arithmetic rules to both
 operands. If both the second and third operands have void type, then the
 result has void type. If both the second and third operands have the same
 struct or union type, the result has that type. If both the second and
 third operands are pointers to the same type, or one is a pointer and the
 other is an integer constant, then the result has that pointer type. If
 either the second or third operand is a pointer to an object and the other
 is a pointer to a void, then the result has type pointer to void.

 Example:

 #define MAXSECTORS 15

 demo(blocks)
 int blocks;
 {

 int sec_count;
 sec_count = (blocks > MAXSECTORS) ? MAXSECTORS : blocks;
 }

 The example demonstrates the shorthand notation that the conditional
 operator provides.

 The equivalent program using other conditional forms might be:

 #define MAXSECTORS 15

 demo(blocks)
 int blocks;
 {
 int sec_count;

 if (blocks > MAXSECTORS)
 sec_count = MAXSECTORS;
 else
 sec_count = blocks;
 }

C Language Reference
Conditional Expression

¦ Copyright IBM Corp. 1985, 1991
4.6.3.12 - 1

 4.6.3.13 Assignment Operators
 Assignment operators assign run-time values to objects. An assignment
 expression has the form:

 assignment expression

 +---------------- conditional expression ----------------+
 ---¦ one of +---¦
 ¦ +---------------+ ¦
 +- lvalue ---¦ = += -= *= +--- assignment expression -+
 ¦ /= %= <<= >>= ¦
 ¦ &= ^= ¦= ¦
 +---------------+

 It takes two operands, an lvalue on the left and an expression on the
 right. The meaning is to assign the value of the right expression to the
 object described by the lvalue. Both operands must have arithmetic type,
 the same structure type, or the same union type. Otherwise, both operands
 must be pointers to the same type, or the left operand must be a pointer
 and the right operand must be the constant 0 (zero). If both operands
 have arithmetic type, the value of the right operand is converted to the
 type of the lvalue prior to the assignment. The result of an assignment
 operator is the value assigned into the object described by the lvalue,
 and the type is the type of that object. Assignment associates to the
 right. Thus the expression i=j=0 assigns the value 0 to first j, and then
 assigns j to i. The result of an assignment operator is not an lvalue.

 C contains a series of other compound assignment operators that provide a
 shorthand for operating on an object. In addition, the compiler can
 sometimes generate more efficient code when the compact operators are
 used. Both operands of a compound assignment operator must have
 arithmetic type consistent with those allowed for the corresponding binary
 operator, except for (+=) and (-=) operands must have numeric type, or
 the left shall have pointer type and the right shall have integral type.

 The meaning of a op= b is similar to a = a op b, except that it is
 guaranteed that the lvalue a is only evaluated once. Thus if the lvalue
 has any side effects, the result is well defined, such as A[I++] += 5.

 Type conversions are performed as follows. The usual arithmetic
 conversions are performed, depending upon the operator, and the result is
 computed. Then, if needed, it is coerced into the type of the lvalue, as
 described previously for the assignment operator , (=) and the result is
 stored into the object described by the lvalue.

C Language Reference
Assignment Operators

¦ Copyright IBM Corp. 1985, 1991
4.6.3.13 - 1

 4.6.3.14 Comma Operator

 The comma operator (,) is used to combine a pair of expressions into a
 single expression. A comma operator has the form:

 comma expression

 +------ assignment expression ------+
 ---¦ +---¦
 +- expression --- , --- expression -+

 When the comma operator appears between a pair of expressions, the left
 expression is evaluated and its value is then discarded. Then the right
 expression is evaluated, and the type and value of the resulting
 expression is the type and value of the right expression. The expressions
 are evaluated left to right.

 The comma operator is most useful when the syntax of C expects a single
 expression but it is necessary to evaluate more than one expression. An
 example would be initializing two variables at the start of a for loop, as
 illustrated here:

 for (i = 0,j = 10; i<20; i++) { ... }

 If used in a function call, the comma expression must be enclosed in
 parentheses ().

C Language Reference
Comma Operator

¦ Copyright IBM Corp. 1985, 1991
4.6.3.14 - 1

 5.0 Chapter 5. Statements

 Subtopics
 5.1 CONTENTS
 5.2 About This Chapter
 5.3 Statements

C Language Reference
Chapter 5. Statements

¦ Copyright IBM Corp. 1985, 1991
5.0 - 1

 5.1 CONTENTS

C Language Reference
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
5.1 - 1

 5.2 About This Chapter

 This chapter describes C statements and how they are used in programs.

C Language Reference
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
5.2 - 1

 5.3 Statements

 The C programming language contains expression statements and control flow
 statements. The expression statements are used to compute and assign new
 values to objects at runtime. The control-flow statements determine the
 order in which the computations are performed. Below is a summary of the
 statements available in C:

 statement

 +- block statement ------+
 +- break statement ------¦
 +- compound statement ---¦
 +- continue statement ---¦
 +- do statement ---------¦
 +- expression statement -¦
 +- for statement --------¦
 ---+- goto statement -------+---¦
 +- if statement ---------¦
 +- labeled statement ----¦
 +- null statement -------¦
 +- return statement -----¦
 +- switch statement -----¦
 +- while statement ------+

 Structured statements specify sequential, selective, or repetitive
 execution of their component statements. Sequential execution is
 specified by the compound statement; conditional and selective execution
 by the if statement and the switch statement; and repetitive execution
 either by the while and do-while statements or by the for statement. The
 break statement provides the means to exit a loop prematurely or to end a
 case of a switch statement; the continue statement starts the next
 iteration of its enclosing loop.

 Subtopics
 5.3.1 Expression Statement
 5.3.2 Compound Statement
 5.3.3 Conditional Statement
 5.3.4 Switch Statements
 5.3.5 While Statements
 5.3.6 Do Statement
 5.3.7 For Statement
 5.3.8 Break Statement
 5.3.9 Continue Statement
 5.3.10 Return Statement
 5.3.11 Goto Statement and Labels
 5.3.12 asm Statement
 5.3.13 Null Statement

C Language Reference
Statements

¦ Copyright IBM Corp. 1985, 1991
5.3 - 1

 5.3.1 Expression Statement

 An expression statement contains an expression. An expression statement
 has the form:

 expression statement

 --- expression --- ; ---¦

 An expression (as described in Chapter 4, "Expressions") becomes a
 statement when it is followed by a semicolon (;). The semicolon is the
 statement terminator. For example, the following constructs:

 temp = 25
 ++count
 printf("hello\n")

 are all expressions, and may generate values that can be used in the
 context of larger expressions. If they are followed by a semicolon, they
 become statements:

 temp = 25;
 ++count;
 printf("hello\n");

 An expression statement is normally only useful when it has some kind of
 side effect, such as assigning a new value to a variable or calling a
 function that does something. It is permissible, however, to have a
 statement that is just a value, such as I+3; or even 25; but this is of
 minimum advantage.

 Note: The semicolon is part of a C statement. It is not a statement
 separator as in other languages.

C Language Reference
Expression Statement

¦ Copyright IBM Corp. 1985, 1991
5.3.1 - 1

 5.3.2 Compound Statement

 A compound or block statement, is a sequence of statements grouped
 together so that they appear to be a single syntactic statement. This is
 done by surrounding the sequence of statements with braces, { and }. The
 compound statement has the form:

 block statement

 +--------------------------------+ +-----------------+
 --- { ---¦ +----- type definition ------+ +---¦ +--- } ---¦
 +-+---- extern declaration ----+-+ +--- statement ---+
 �+- internal data definition -+¦ � ¦
 +------------------------------+ +-------------+

 Note that new variables may be declared at the beginning of any compound
 statements. Any new identifiers declared specifically within a compound
 statement have a scope and lifetime that are bound by that statement; that
 is, they are both unknown outside of that statement and, in the case of
 auto and register variables, become undefined upon exit from that
 statement.

 The following example shows how the values of data objects change in
 nested blocks:

 1 #include <stdio.h>
 2
 3 main()
 4 {
 5 int x = 1; /* Initialize x to 1 */
 6 int y = 3;
 7
 8 if (y > 0)
 9 {
 10 int x = 2; /* Initialize x to 2 */
 11 printf("second x = %4d\n", x);
 12 }
 13 printf("first x = %4d\n", x);
 14 }

 The preceding example produces the following output:

 second x = 2
 first x = 1

 Two variables named x are defined in main. The definition of x on line 5
 retains storage throughout the execution of main. However, since the
 definition of x on line 10 occurs within a nested block, line 11
 recognizes x as the variable defined on line 10. Line 13 is not part of
 the nested block. Thus, line 13 recognizes x as the variable defined on
 line 5.

C Language Reference
Compound Statement

¦ Copyright IBM Corp. 1985, 1991
5.3.2 - 1

 5.3.3 Conditional Statement

 The basic conditional statements in C are the if statement and the if-else
 statement. The if and if-else statement have the form:

 if statement

 +----------------------+
 --- if --- (--- expression ---) --- statement ---¦ +---¦
 +- else --- statement -+

 The type of the expression must be either numeric or pointer. If the type
 is a pointer, then the statement is equivalent to testing the pointer for
 the value NULL. A non-NULL value causes the first statement to be
 executed.

 In both cases, the expression is evaluated. If the value of the
 expression is nonzero (true), the first statement is executed.

 If the value of the expression is zero (false), the actions defined by the
 second statement are performed, assuming that there is an else part in the
 statement. If there is no else part, the next statement in order after
 the if statement is executed.

 Because statements are open forms, it is possible to construct a chain of
 else-if clauses to select one out of many different conditions.

 In common with similar languages, C resolves the so-called dangling else
 problem by having the else clause match the most recent un-elsed preceding
 if statement. The following example clarifies this point. If an
 alternate grouping of else statements is required, the nested if statement
 that does not contain an else clause must be enclosed in braces { },
 making it a compound statement containing a single statement.

 Examples:

 main()
 {
 int paygrade = 6;
 int level = 3;
 float salary = 10.30;

 if (paygrade == 7)
 if (level > 0 && level < = 8)
 salary *= 1.05;
 else
 salary *= 1.04;
 else
 salary *= 1.06;
 }

C Language Reference
Conditional Statement

¦ Copyright IBM Corp. 1985, 1991
5.3.3 - 1

 5.3.4 Switch Statements

 switch statement

 --- switch --- (--- expression ---) --- switch body ---¦

 switch body

 +- case label --- statement ---+
 ¦ +--------------+ +--------------+ ¦
 ---+--¦ +--- default label ---¦ +-- statement --+---¦
 ¦ +- case label -+ +- case label -+ ¦
 ¦ +----------------------------+ +-------------------+ ¦
 +-- { ---+----- type definition ------+---¦ +--- ¦
 � +---- extern declaration ----¦ ¦ +--- case clause ---+ ¦
 ¦ +- internal data definition -+ ¦ � ¦ ¦
 +--------------------------------+ +---------------+ ¦
 ¦
 +------------------+ +-------------------+ ¦
 ---¦ +---¦ +--- } ----------+
 +- default clause -+ +--- case clause ---+
 � ¦
 +---------------+

 case clause

 --- case label --- statement ---¦
 � ¦
 +-------------+

 case label

 --- case --- constant expression --- : ---¦
 � ¦
 +--------------------------------------+

 default clause

 +--------------+ +--------------+
 ---¦ +--- default label ---¦ +--- statement ---¦
 +- case label -+ +- case label -+ � ¦
 +-------------+

 default label

 --- default --- : ---¦

 A switch statement selects one of its component statements depending on
 the value of the expression. The expression is called the switch
 selector. It must be an integral type. Each of the component statements
 is tagged with one or more simple scalar constants. The tags are called
 selection specifications.

C Language Reference
Switch Statements

¦ Copyright IBM Corp. 1985, 1991
5.3.4 - 1

 If the value of the selector matches that of one of the statement tags,
 control is transferred to that statement. Control continues from the
 selected statement onwards until altered by another change of control. If
 the selector value matches none of the statement selection specifications,
 the statement tagged by a default symbol is executed, if present. If no
 default statement exists, then the body of a switch statement does
 nothing.

 Example:

 main()
 {
 char command;

 command = getchar();
 switch (command)
 {

 case 'H':
 case 'h':
 leftcursor();
 break;

 case 'L':
 case 'l':
 rightcursor();
 break;

 case 'J':
 case 'j':
 downcursor();
 break;

 case 'K':
 case 'k':
 upcursor();
 break;

 default:
 nomove();
 }
 /* End of switch statement */
 }

 As the example shows, the switch statement is normally used in conjunction
 with the break statement, which is described in "Break Statement" in
 topic 5.3.8. Without the break statement, execution of any selection
 would also execute all subsequent selections.

C Language Reference
Switch Statements

¦ Copyright IBM Corp. 1985, 1991
5.3.4 - 2

 5.3.5 While Statements

 A while statement controls repetitive execution of another statement until
 evaluation of an expression yields a zero value. The while statement has
 the form:

 while statement

 --- while --- (--- expression ---) --- statement ---¦

 The value of an expression is computed. If it is nonzero (true), then the
 statement is executed. The value of the expression is then tested again
 and the statement is executed repeatedly while the value of expression
 remains nonzero (true). The type of the expression must be numeric or a
 pointer. When the expression evaluates to zero (false), control passes to
 the statement after the while statement. If the value of expression is
 zero at the time that the while statement is encountered for the first
 time, the subordinate statement is never executed. Contrast this behavior
 with the do statement described in "Do Statement" in topic 5.3.6.

 Example:

 #define MAX_INDEX (sizeof(item) / sizeof(item[0]))

 #include <stdio.h>

 main()
 {
 static int item[] = { 12, 55, 62, 85, 102 };
 int index = MAX_INDEX;

 while (--index >= 0)
 {
 item[index] *=3;
 printf("item[%d] = %d\n", index,
 item[index]);
 }
 }

C Language Reference
While Statements

¦ Copyright IBM Corp. 1985, 1991
5.3.5 - 1

 5.3.6 Do Statement

 The do statement controls the repetitive execution of a list of
 statements. The statements are executed until the expression at the end
 of the statement evaluates to zero. The do statement has the form:

 do statement

 --- do --- statement --- while --- (--- expression ---) --- ; ---¦

 The statement between the do and while symbols is executed repeatedly and
 the expression evaluated until the expression is zero. The type of the
 expression must be either numeric or a pointer. Note that the body of a
 do statement is always executed at least once, since the termination test
 is at the end. Contrast this behavior with the while statement described
 in "While Statements" in topic 5.3.5.

 Example:

 main()
 {
 int reply1;

 do
 {
 printf("Enter a 1.\n");
 scanf("%d", &reply1);
 } while (reply1 != 1);
 }

C Language Reference
Do Statement

¦ Copyright IBM Corp. 1985, 1991
5.3.6 - 1

 5.3.7 For Statement

 The for statement in C is a convenient and special form of the while
 statement. The for statement is more compact than the while, and is
 better suited to loops in which the control statements are single and
 logically related. The for statement has the form:

 for statement

 +--------------+ +--------------+
 --- for --- (---¦ +--- ; ---¦ +--- ; ---
 +- expression -+ +- expression -+

 +--------------+
 ---¦ +---) --- statement ---¦
 +- expression -+

 The three components of the for statement are expressions. Any or all of
 the expressions may be left out, but the semicolons must be there. The
 type of the expression 2 must be numeric or a pointer. If either
 expression 1 or expression 3 is left out, it is simply dropped from the
 expansion. If the expression 2 is omitted, the condition is always
 considered nonzero. This means that a loop forever construct can be made
 from a for statement that looks like this:

 for (;;) {

 . . . statements . . .

 }

 In such a loop, it is assumed that some other means of ending the loop
 (such as a break statement) is being used.

 Examples:

 /* initialize an array to zero */
 for (index = 0; index < 100; index ++)
 row[index] = 0;

 /* scan from the end of an array */
 for (where = 200; where > 0;)
 if (what[--where]== thing)
 foundit = 1;

C Language Reference
For Statement

¦ Copyright IBM Corp. 1985, 1991
5.3.7 - 1

 5.3.8 Break Statement

 The break statement provides a mechanism for breaking out of a loop
 structure prematurely. The break statement has the form:

 break statement

 --- break --- ; ---¦

 The break statement supplies an exit mechanism from while, for, and do
 statements. A break must also be used to exit from the specific cases of
 a switch statement; otherwise, a case falls through to the next one. An
 error will occur if the break statement is used outside these statements.

 A break statement causes an immediate exit from the innermost enclosing
 loop structure or switch statement. There is no provision for breaking
 out of loop constructs other than the innermost.

 Example:

 #include <stdio.h>
 demo()
 {

 int ch;

 while ((ch = getchar()) != EOF)
 if (ch == '\003')
 break; /* exit when ETX read */
 }

C Language Reference
Break Statement

¦ Copyright IBM Corp. 1985, 1991
5.3.8 - 1

 5.3.9 Continue Statement

 The continue statement is the logical analog to the break statement. A
 continue statement causes the next iteration of the innermost enclosing
 loop structure to begin. The continue statement has the form:

 continue statement

 --- continue --- ; ---¦

 In a while or a do loop, the continue statement executes the test part of
 the structure. In a for loop, expression 3 is executed, followed by
 expression 2, the test condition. The continue statement does not apply
 to the switch statement. An error occurs if the continue statement is
 used outside a for, while, or do statement.

 Example:

 /* weed out zero elements */
 demo(array,n)
 int array[];
 int n;
 {
 int from;
 int to = 0;

 for (from = 0; from < n; from++) {
 if (array[from] == 0)
 continue;
 array[to++] = array[from];
 }
 return(to);
 }

C Language Reference
Continue Statement

¦ Copyright IBM Corp. 1985, 1991
5.3.9 - 1

 5.3.10 Return Statement

 A function returns to its caller by means of a return statement. A return
 statement can return a value. The return statement has the form:

 return statement

 +--------------+
 --- return ---¦ +--- ; ---¦
 +- expression -+

 In the first form of the return statement, the value of the function from
 which the return is made is undefined. In the second form of the return
 statement, the value of the expression is the value of the function. If
 necessary, the expression is converted to the type of the function in
 which it appears. This form may not be used in a function defined with a
 return type of void.

 If execution of a function reaches the end of the function (falling off
 the end), it is equivalent to a return statement without an expression.
 If a return statement without an expression is in a function where a
 return value is expected, the result is unpredictable.

 Examples:

 return; /* Returns no value */
 return result; /* Returns the value of result */
 return 1; /* Returns the value 1 */
 return (x * x); /* Returns the value of x * x */

C Language Reference
Return Statement

¦ Copyright IBM Corp. 1985, 1991
5.3.10 - 1

 5.3.11 Goto Statement and Labels

 The goto statement passes control to a statement that has a label attached
 to it. The goto statement has the form:

 goto statement

 --- goto --- identifier --- ; ---¦

 A label in the C Language is simply an identifier followed by a colon (:).
 If a label is to be associated with a statement, it must precede that
 statement. Transfer to a label via a goto statement continues execution
 with the statement preceded by the appropriate label. The label statement
 has the form:

 labeled statement

 --- identifier --- : --- statement ---¦
 � ¦
 +--------------------+

 The scope of a label is the entire function in which that label is
 defined. Nested scopes defined by compound statements have no effect of
 limiting the range of a label. It is not possible (nor valid) to jump
 into a function from outside that function. It is possible to jump into
 the middle of a structured statement, although this is not a safe
 practice. Using goto can violate structured programming constructions;
 the use of the goto statement should be evaluated carefully. It is
 sometimes difficult for the user to be aware of the results of goto when
 the label used is internal to a statement.

 A label becomes defined when it is encountered as a label on a statement
 in the body of the function.

 Example:

 if (status == error)
 /* exit to end of function */
 goto wipeout;
 ...statements...
 wipeout: ...

 The following example shows a goto statement that is used to jump out of a
 nested loop. This function could be written without using a goto
 statement.

 void display(matrix)
 int matrix[3] [3];
 {
 int i, j;

 for (i = 0; i < 3; i++)
 for (j = 0; j < 3; j++)
 {
 if ((matrix[i] [j] < 1) | | (matrix
 [i] [j] > 6))

C Language Reference
Goto Statement and Labels

¦ Copyright IBM Corp. 1985, 1991
5.3.11 - 1

 goto out_of_bounds;
 printf("matrix[%d] [%d] = %d\n", i, j,
 matrix[i] [j]);
 }
 return;
 out_of_bounds: printf("number must be 1 through 6\n");
 }

C Language Reference
Goto Statement and Labels

¦ Copyright IBM Corp. 1985, 1991
5.3.11 - 2

 5.3.12 asm Statement

 The asm statement is provided for the very limited insertion of machine
 instructions in-line in a program written in C. The asm statement on the
 PS/2 VSC C compiler has the form:

 asm statement

 --- asm --- (--- constant expression ---) -- ; --¦
 � ¦
 +---------- , ----------+

 The comma separated list of constant expressions is interpreted as a
 sequence of values of type char. The values are placed into the generated
 object code text space (instructions) literally at the point of the asm
 statement.

 The asm statement on the AIX/370 and PS/2 MCC compilers has the form:

 _ASM (" assembler instruction \n"):

 The assembler code is actual 370 or PS/2 assembler mnemonics.

 Note: Embedding assembler code can disturb the contents of registers that
 the compiler uses. Therefore, take care when using the asm
 statement.

 Also, portability of C programs containing asm statements is likely
 to be restricted. A more portable usage would be to call an
 assembly routine, instead of coding in-line. See AIX C Language
 User's Guide program examples for an example of the asm statement.

C Language Reference
asm Statement

¦ Copyright IBM Corp. 1985, 1991
5.3.12 - 1

 5.3.13 Null Statement

 A null statement can appear in a C program simply by your entering a
 semicolon (;). The null statement has the form:

 null statement

 --- ; ---¦

 A null statement is useful to carry a label before the closing bracket of
 a compound statement, or to supply a null body to a loop statement where
 all the computation is done in the loop control expression.

 Examples:

 if (snarks == boojums)
 {
 . . .
 statements
 . . .
 if (time_to_get_out)
 goto out;
 . . .
 more statements
 . . .
 out: ;
 }

 for (i = 0; i <= 100 && what[i] == 0; i++)
 ;

 Beware of extra semicolons. They can easily lead to loops with null
 bodies, producing unexpected results, as this example shows:

 while ((c = getchar()) !=EOF) ;
 nextok();

 In the example, the semicolon inadvertently placed after the closing
 parenthesis of the while makes the loop consume the entire input file, and
 the nextok function only gets called after the end of file is reached.

C Language Reference
Null Statement

¦ Copyright IBM Corp. 1985, 1991
5.3.13 - 1

 6.0 Chapter 6. Functions

 Subtopics
 6.1 CONTENTS
 6.2 About This Chapter
 6.3 Functions
 6.4 The Main Function
 6.5 Defining Functions
 6.6 Block Structure
 6.7 External and Static Variables

C Language Reference
Chapter 6. Functions

¦ Copyright IBM Corp. 1985, 1991
6.0 - 1

 6.1 CONTENTS

C Language Reference
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
6.1 - 1

 6.2 About This Chapter

 This chapter describes the structure and usage of functions.

C Language Reference
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
6.2 - 1

 6.3 Functions

 Functions are the fundamental C method of grouping blocks into manageable
 units. Declaring a function requires an identifier and, usually, a type
 description.

 C differs from some languages in that it contains only functions. The
 effect of a procedure or subroutine is achieved by declaring a void
 function, one that does not return a result. C functions have
 similarities to mathematical usage -- a C function is applied to some
 arguments and generates a result. C functions differ from the rigorous
 mathematical variety in that they can have side effects, such as altering
 a global variable or writing to a file. The type of the returned value
 may be specified as part of the function declaration.

 A function can itself contain declarations of new objects and compound
 statements, but a function may not contain other functions. These newly
 defined objects can be referenced only within that function and are thus
 said to be local to the function. The program text that comprises a
 function body is called the scope of any identifiers declared local to
 that function.

 Objects declared outside of any function in the compilation unit without
 the storage class specifier static, are said to be global, in that their
 scope is that of the entire program. Objects declared outside of any
 function with the storage class specifier static have scope limited to the
 point where the object is defined to the end of the compilation unit only.

 A function can have a number of arguments that are determined at the time
 the function is defined. Each argument is denoted by an identifier called
 the formal parameter. When a function is called, each of the formal
 parameters has the value of a run-time expression at the calling location
 associated with that parameter. This value, which is accessed by naming
 the formal parameter identifier, is called an actual parameter.

 Arguments in C, except for arrays, are passed by value. That means that
 the called function receives a copy of the actual argument and cannot
 directly alter the value of a variable whose value is passed. For a
 function to modify the caller's copy of the argument, it must have a
 pointer to the argument and it must use pointer reference notation.

 C functions can be recursive. This means that a function may call itself
 again before the current activation has been completed. On each
 activation, a fresh set of all the automatic variables is created.
 Recursive invocation can be direct (the reference is contained within the
 function itself) or indirect (the reference is from another function that
 in turn is referenced from the current function).

C Language Reference
Functions

¦ Copyright IBM Corp. 1985, 1991
6.3 - 1

 6.4 The Main Function

 An executable C program must have one function whose name is main. This
 main function is considered the place where program execution starts.
 Under normal circumstances, execution terminates upon exit from main. A
 main function has the form:

 main function

 +-------------+ +------------------+
 ---¦ +--- main --- (---¦ +---) ---
 +- type ------+ +--- identifier ---+
 specifier � ¦
 +----- , ------+
 3 maximum

 +------------------+
 ---¦ +--- compound ----¦
 +--- parameter ----+ statement
 � declaration ¦
 +--------------+
 3 maximum

 The function main can declare optional parameters. The first parameter,
 argc, has type int and indicates how many arguments were entered on the
 command line. The second parameter, argv, has type array of pointers to
 char objects. The value of argc indicates the number of pointers in the
 array argv. The first element in argv always points to a character array
 that contains the name (as invoked) of the program that is executing.

 A third parameter, envp, has type array of pointers to char objects. The
 array envp contains pointers to the environment of the program. The
 system determines the value of this parameter during program
 initialization (before calling main).

 These parameters are always passed to main, and argc must always be
 declared first, followed by argv, then by envp.

 Note: Some operating systems do not generate the envp parameter. You can
 access the value of the envp pointer using the function getenv.
 The AIX PS/2 Operating System does generate envp parameters.

 Example:

 main()
 {
 . . .
 }

 Example:

 main (argc,argv)
 int argc;
 char *argv[];
 {
 int i;

C Language Reference
The Main Function

¦ Copyright IBM Corp. 1985, 1991
6.4 - 1

 printf("argc = %d\n",argc) ;
 for (i = 0; i < argc; i++)
 printf("argv[%d] = %s\n", i,argv[i]);
 }

C Language Reference
The Main Function

¦ Copyright IBM Corp. 1985, 1991
6.4 - 2

 6.5 Defining Functions

 A function definition usually contains the code for a single programming
 task.

 abstract declarator

 +------------------+
 +--- * ---¦ +--+
 ¦ � +- type qualifier -+ ¦ ¦
 ¦ +------------------------------+ ¦
 --¦ +------------------+ +---¦
 ¦ +--- * ---¦ +---+ ¦
 +-¦ � +- type qualifier -+ ¦ +--- ¦
 ¦ +----------------------------+ ¦ ¦
 +--------------------------------+ ¦
 ¦
 +-- (--- abstract declarator ---) -----------------------------+ ¦
 --¦ +- abstract declarator -+ +---- subscript declarator ----+ +-+
 +--¦ +---¦ +------------------+ +--+
 +-----------------------+ +- (-¦ +-) -+
 +- parameter list -+

 function declarator

 +-function header ---+
 +- (--------------------- function declarator ---) --------------¦
 ---+- * --------------------- function declarator --------------------+---¦
 +- function declarator --- subscript declarator -------------------¦
 +- (--- * --------------- function declarator ---) ---- (---) -+

 function header

 +-- parameter list -+
 --- identifier --- (---+- identifier list -+---) ---¦
 +-------------------+

 parameter declaration

 +- type specifier ------------------+
 ---¦ +------------------+ +--- declarator --- ; ---¦
 +- register ---¦ +-+ � ¦
 +- type specifier -+ +----- , ------+

 identifier list

 +---------------- identifier ----------------+
 ---¦ +---¦
 +--- identifier list --- , --- identifier ---+

 parameter list

 +--------- type specifier ---------+ +----- declarator ------+
 ---¦ +------------------+ +---¦ +---
 � +- register -¦ +--+ +- abstract declarator -+ ¦

C Language Reference
Defining Functions

¦ Copyright IBM Corp. 1985, 1991
6.5 - 1

 ¦ +- type specifier -+ ¦
 +--+

 +--------+
 ---¦ +---¦
 +- ,... -+

 A function is defined when a declarator is in the form:

 function definition

 +----------+ +------------------+
 ---+- extern -+---¦ +--- function declarator ---
 +- static -+ +- type specifier -+

 +-----------------------------+
 ---¦ +--- block statement ---¦
 +--- parameter declaration ---+
 � ¦
 +-------------------------+

 Thus the simplest function, a dummy do nothing function, is:

 useless()
 {
 }

 A function is declared when a declarator of the above form is not followed
 by a compound statement. For example:

 double sin(), cos(), tan() ;

 The type specified in the function declaration specifies the type of the
 function. The type specification must be included in the function.

 The traditional function definition requires the list of names of the
 formal arguments to the function in the function header. The declarations
 of the formal arguments must immediately follow the function header,
 before the braces { } that begin the body of the function. Any storage
 class for a formal argument, if given, must be register. Formal arguments
 that are not specifically declared are taken as type int with the auto
 storage class.

 Example:

 float balsa(p1, p2, p3) /*function header (not using prototype form)*/
 float p1; /*declare formal arguments */
 int p2;
 char p3;
 { /*opening brace for the block */

 body of the balsa function

 } /*end of the function*/

 The function prototype form of a function definition requires the names
 and types of the formal arguments to the function in the function header.

C Language Reference
Defining Functions

¦ Copyright IBM Corp. 1985, 1991
6.5 - 2

 The brace which begins the function must immediately follow the function
 header. Any storage classes, if given, must be register. If the list
 terminates with an ellipsis (,...), no information about the number or
 types of the parameters after the comma is supplied. If void is used as
 the only item in the list, this specifies that the function has no
 parameters.

 Note: The use of function prototypes is not supported on the RT.

 Example:

 float balsa(float p1, int p2, char p3)
 /* function header (using prototype form) */
 {
 /* opening brace for the block */

 body of the balsa function

 }
 /* end of the function */

 Example:

 int printf(char * format_string,...); /* declaration
 of printf using the prototype ellipsis form */
 /* defines printf's formal parameters to be at least
 a pointer to a char and also allows any number of
 parameters of any type after it */

 Example:

 char *function(void);
 /* declares function to have no parameters */

 Note that if prototyping is used in a function declaration, then argument
 names may or may not be supplied. These names have scope limited to that
 function declaration, and only exist for clarity of the parameter
 declarations.

 Subtopics
 6.5.1 Arguments to Functions
 6.5.2 External Objects with the Static Attribute

C Language Reference
Defining Functions

¦ Copyright IBM Corp. 1985, 1991
6.5 - 3

 6.5.1 Arguments to Functions

 Parameters to C functions are always passed by value. The type of all
 integral expressions are first converted to int (that is, 4 bytes) and all
 floating-point expressions are converted to double. When an array or
 function is given as a parameter, a pointer to that array or function is
 passed since the type of an array name or function name (without a
 following left parenthesis) is pointer to.... A structure or union can be
 passed as an argument (by value) or the address of either can be passed
 with the use of the address operator (&).

C Language Reference
Arguments to Functions

¦ Copyright IBM Corp. 1985, 1991
6.5.1 - 1

 6.5.2 External Objects with the Static Attribute

 When an external function or variable is declared in a compilation unit,
 it is possible to place the static storage class in the declaration of
 that object.

 The meaning of the static storage class in the declaration of an external
 object is that the specified object is private to the compilation unit
 where it resides. Thus, the object is not visible outside the enclosing
 compilation unit, and is only directly accessible from functions in the
 same compilation unit. Of course, there is nothing to prevent the other
 functions in the compilation unit from passing the address of the static
 object to functions outside that compilation unit.

 Example:

 +---+
 ¦ COMPILATION UNIT A ¦ COMPILATION UNIT B ¦
 +--------------------------+--------------------------¦
 ¦ static func_a() ¦ func_p() ¦
 +--------------------------+--------------------------¦
 ¦ { ¦ { ¦
 +--------------------------+--------------------------¦
 ¦ statements ¦ int hold; ¦
 +--------------------------+--------------------------¦
 ¦ } ¦ ¦
 +--------------------------+--------------------------¦
 ¦ ¦ statements ¦
 +--------------------------+--------------------------¦
 ¦ static func_b() ¦ hold = func_a(); ¦
 +--------------------------+--------------------------¦
 ¦ { ¦ } ¦
 +--------------------------+--------------------------¦
 ¦ ¦ ¦
 +--------------------------+--------------------------¦
 ¦ int grab; ¦ ¦
 +--------------------------+--------------------------¦
 ¦ ¦ func_ind(who) ¦
 +--------------------------+--------------------------¦
 ¦ statements ¦ int (*who)(); ¦
 +--------------------------+--------------------------¦
 ¦ grab = func_a(); ¦ { ¦
 +--------------------------+--------------------------¦
 ¦ } ¦ ¦
 +--------------------------+--------------------------¦
 ¦ ¦ statements ¦
 +--------------------------+--------------------------¦
 ¦ func_c() ¦ return(who()); ¦
 +--------------------------+--------------------------¦
 ¦ { ¦ } ¦
 +--------------------------+--------------------------¦
 ¦ int grip; ¦ ¦
 +--------------------------+--------------------------¦
 ¦ ¦ ¦
 +--------------------------+--------------------------¦
 ¦ statements ¦ ¦
 +--------------------------+--------------------------¦
 ¦ grip = ¦ ¦
 ¦ func_ind(func_b); ¦ ¦
 +--------------------------+--------------------------¦

C Language Reference
External Objects with the Static Attribute

¦ Copyright IBM Corp. 1985, 1991
6.5.2 - 1

 ¦ } ¦ ¦
 +--------------------------+--------------------------¦
 ¦ ¦ ¦
 +---+

 This example shows two compilation units side by side. In compilation
 unit A, the function func_b can reference func_a because it is in the same
 compilation unit. The function func_p in compilation unit B, however,
 will eventually generate a linker error, because func_a has been declared
 with the static storage attribute and so will never be visible.

 The function func_c in compilation unit A, on the other hand, passes the
 address of func_b as an argument to the function func_ind in compilation
 unit B, and this is perfectly correct.

C Language Reference
External Objects with the Static Attribute

¦ Copyright IBM Corp. 1985, 1991
6.5.2 - 2

 6.6 Block Structure

 internal data definition

 +- type specifier ----------------------+
 ---¦ +--- auto ---+ +------------------+ +---
 +-+- register -+---¦ +-+
 +-- static --+ +- type specifier -+

 +---------------+
 --- declarator ---¦ +--- ; ---¦
 � +- initializer -+ ¦
 +--------------- , ----------------+

 Although the C Language has only a single level of nesting for functions,
 compound statements can place a block structure within functions. A
 compound statement enclosed in braces { } can have declarations following
 the left brace that starts the compound statement. This process can nest
 indefinitely. If variables are declared within a block, the scope of such
 variables is the duration of that block. Variables declared outside the
 block may be referenced inside the block, with the restriction that any
 variables of the same name that might already have been declared in outer
 blocks are hidden from view of expressions in the inner block. This also
 applies to external variables and to formal arguments to the enclosing
 function.

 Example:

 demo() /* here is a demonstration function */
 {
 int count;
 int c;

 ...some statements in the demo function...

 while ((c = getchar()) != EOF) {
 /* redeclare 'count' */
 int count;
 ...statements in the while loop...

 for (count = 0; count < 100; count ++) {
 /* redeclare 'count' again */
 int count;
 ...statements in the for loop...
 } /* end of the for loop */

 ...more statements in the while loop...
 } /* end of the while loop */

 ...more statements in the demo function
 }

 In this example, the variable count is declared in the demo function. All
 statements in the body of the demo function that are outside of the while
 loop are using the count variable declared at the head of the function.

 In the body of the while loop, the variable count is declared again. All
 the statements in the body of the while loop that are outside the for loop

C Language Reference
Block Structure

¦ Copyright IBM Corp. 1985, 1991
6.6 - 1

 are using the count variable declared in the while loop, and the count
 variable declared in the function body is hidden from those statements.

 In the body of the for loop, the variable count is declared once more.
 All the statements in the body of the for loop are now using the count
 variable declared in the for loop, and both of the other count variables
 declared in the function body and in the body of the while loop are hidden
 from those statements in the body of the for loop.

 Example:

 unsigned pie;
 char broil;

 demo(pie)
 double pie;
 {

 int broil;

 . . . statements in the demo function
 }

 This example shows the way that external variables can be redeclared
 within the body of a function. The external variables pie and broil are
 declared one way outside of the demo function. But within the function
 demo() the second declarations take precedence, and the original types of
 those variables are hidden from statements inside the demo function.

C Language Reference
Block Structure

¦ Copyright IBM Corp. 1985, 1991
6.6 - 2

 6.7 External and Static Variables

 extern declaration

 +----------+ +------------------+
 ---¦ +---¦ +--- declarator --- ; ---¦
 +- extern -+ +- type specifier -+ � ¦
 +----- , ------+

 external data definition

 +- type specifier ----------------+
 ---¦ +------------------+ +---
 +- static ---¦ +-+
 +- type specifier -+

 +---------------+
 --- declarator ---¦ +--- ; ---¦
 � +- initializer -+ ¦
 +--------------- , ----------------+

 By definition, variables declared outside of the scope of a function body
 are external variables. Variables declared within the body of functions,
 or within blocks within functions, normally have the auto storage class by
 default. This means that the lifetime of that variable is only the
 dynamic lifetime of the enclosing block.

 It is however possible for the programmer to assign the static storage
 class to a local variable. When this is done, the variable remains
 defined across successive invo-
 cations of the function or block but it remains private to that function
 or block.

 Example:

 demo()
 {
 static int init = 0;

 if (init == 0) { /* First time flag */
 ... do initialization code...
 init = 1;
 }
 ...normal sequence of events...
 }

 This example demonstrates one of the common uses of static variables,
 namely as a first-time flag to determine whether the demo function should
 perform some initialization work before it goes on to its main line. See
 "Storage Class Specifiers" in topic 3.5.1 for more details.

C Language Reference
External and Static Variables

¦ Copyright IBM Corp. 1985, 1991
6.7 - 1

 7.0 Chapter 7. Preprocessor Statements

 Subtopics
 7.1 CONTENTS
 7.2 About This Chapter
 7.3 Preprocessor Statements
 7.4 Preprocessor Statement Format
 7.5 #define
 7.6 #undef
 7.7 #include
 7.8 Conditional Compilation
 7.9 #line
 7.10 # (Null Statement)
 7.11 #pragma
 7.12 Preprocessor Flags

C Language Reference
Chapter 7. Preprocessor Statements

¦ Copyright IBM Corp. 1985, 1991
7.0 - 1

 7.1 CONTENTS

C Language Reference
CONTENTS

¦ Copyright IBM Corp. 1985, 1991
7.1 - 1

 7.2 About This Chapter

 This chapter describes the C preprocessor statements.

C Language Reference
About This Chapter

¦ Copyright IBM Corp. 1985, 1991
7.2 - 1

 7.3 Preprocessor Statements

 The preprocessor, rather than the compiler, interprets preprocessor
 statements. The preprocessor is a program that prepares C language
 programs for compilation. The cc command automatically sends programs
 through the preprocessor, then sends the output of the preprocessor
 through the compiler. The preprocessor recognizes the following types of
 statements:

 preprocessor statement

 +- preprocessor define -------+
 +- preprocessor undef --------¦
 +- preprocessor null ---------¦
 ---+- preprocessor include ------+---¦
 +- preprocessor conditional --¦
 +- preprocessor pragma -------¦
 +- preprocessor line control -+

 Preprocessor statements enable you to:

 � Replace identifiers or strings in the current file with specified cod

 � Embed files within the current fil

 � Conditionally compile sections of the current fil

 � Change the line number of the next line of code and change the fil
 name of the current file.

 C preprocessor directives may be included in C source code. They are
 interpreted by the C preprocessor command cpp. Directives in a source
 file apply to that source file and its included files only. Each
 directive applies only to the portion of the file following the directive.
 If a set of directives applies throughout a source program, all the source
 files must include the set.

 The preprocessor handles such things as symbolic constant definition and
 macro expansion via the #define directive. The #include directive
 provides for the inclusion of other source text into the source text of
 the current compilation unit. The #if and #ifdef directives provide for
 conditional compilation.

C Language Reference
Preprocessor Statements

¦ Copyright IBM Corp. 1985, 1991
7.3 - 1

 7.4 Preprocessor Statement Format

 Preprocessor statements begin with a number sign (#) character followed
 by a preprocessor keyword. A number sign (#) need not be the first
 character on the line, as long as it is preceded only by white space.
 Only space and tab characters can separate the number sign (#) and the
 preprocessor keyword. The remainder of the line can be filled with
 arguments to the preprocessor, C Language comments, and white space.

 White space is a general term for blanks, tabs, new lines, formfeeds, and
 comments. Comments begin with the characters (/*) and end with the
 characters (*/).

 Notes:

 1. On the RT, the number sign (#) must be the first character on the
 line. White space is not allowed before the number sign.

 2. For readability and portability, it is recommended that the number
 sign (#) be placed in column 1 for all preprocessor statements.

 When a back slash (\) character appears as the last character in the
 preprocessor line, the preprocessor interprets the back slash (\) (and
 the following new-line character) and interprets the following line as a
 continuation of the current preprocessor line.

 Preprocessor statements can appear any place in a program. They cannot,
 however, appear on the same line as C Language code that is not part of a
 preprocessor statement.

 The effect of a preprocessor statement lasts until the end of the source
 file in which the statement appears.

C Language Reference
Preprocessor Statement Format

¦ Copyright IBM Corp. 1985, 1991
7.4 - 1

 7.5 #define

 A define statement causes the preprocessor to replace an identifier or
 macro with specified code. A define statement has the form:

 preprocessor define

 +------------------------------+
 --- # --- define --- identifier ---¦ +------------------+ +---
 +- (-¦ +-) -+
 +--- identifier ---+
 � ¦
 +----- , ------+

 +----------------------+
 ---¦ +--- identifier --+ +---¦
 +-+--- character ----+-+
 �+- \ --- new-line -+¦
 +--------------------+

 The define statement can contain a simple macro definition or a complex
 macro definition.

 Subtopics
 7.5.1 Simple Macro Definition
 7.5.2 Complex Macro Definition

C Language Reference
#define

¦ Copyright IBM Corp. 1985, 1991
7.5 - 1

 7.5.1 Simple Macro Definition

 A simple macro definition replaces a single identifier with another
 identifier or with a string of characters and identifiers. The following
 simple definition causes the preprocessor to replace all subsequent
 instances of the identifier COUNT with the constant 1000:

 #define COUNT 1000

 This definition would cause the preprocessor to change the following
 statement (if the statement appeared after the previous definition and in
 the same file as the definition):

 int arry[COUNT];

 In the output of the preprocessor, the preceding statement would appear
 as:

 int arry[1000];

 The following definition references the previously defined identifier
 COUNT:

 #define MAX_COUNT COUNT + 100

 The preprocessor replaces each subsequent occurrence of MAX_COUNT with
 COUNT + 100, which the preprocessor then replaces with 1000 + 100.

C Language Reference
Simple Macro Definition

¦ Copyright IBM Corp. 1985, 1991
7.5.1 - 1

 7.5.2 Complex Macro Definition

 A complex macro definition receives parameters from a macro call, embeds
 these parameters in some replacement code, and substitutes the replacement
 code for the macro call. A complex definition is an identifier followed
 by a parenthesized parameter list and the replacement code. White space
 cannot separate the identifier (which is the name of the macro) and the
 parameter list. A comma (,) must separate each parameter.

 A macro call, like a function call, is an identifier followed by a list of
 arguments enclosed in parentheses (). Unlike a function call, white
 space cannot separate the identifier and the argument list. A comma must
 be used to separate the arguments.

 The following line defines the macro SUM as having two parameters a and b
 and the replacement code (a + b):

 #define SUM(a,b) (a + b)

 This definition would cause the preprocessor to change the following
 statements (if the statements appeared after the previous definition and
 in the same file as the definition):

 c = SUM(x,y);
 c = d * SUM(x,y);

 In the output of the preprocessor, the preceding statement would appear
 as:

 c = (x + y);
 c = d * (x + y);

 A macro call must have the same number of arguments as the corresponding
 macro definition has parameters.

 In the macro call argument list, commas that appear as character
 constants, in string constants, or surrounded by parentheses do not
 separate arguments.

 A definition is not required to specify replacement code. The following
 definition removes all instances of the word static from subsequent lines
 in the current file:

 #define static

 You can change the definition of a defined identifier or macro with a
 second preprocessor define statement or with a preprocessor undef
 statement.

 Within the text of the program, the preprocessor does not scan character
 constants or string constants for macro calls.

 Examples:

 The following program contains two macro definitions and a macro call that
 references both of the defined macros:

 #define SQR(s) ((s) * (s))
 #define PRNT(a,b) printf("value 1 = %d\n", a); \
 printf("value 2 = %d\n", b)

C Language Reference
Complex Macro Definition

¦ Copyright IBM Corp. 1985, 1991
7.5.2 - 1

 main()
 {
 int x = 2;
 int y = 3;

 PRNT(SQR(x),y);
 }

 After being interpreted by the preprocessor, the preceding program appears
 as follows:

 # 1 "macro.c"

 main()
 {
 int x = 2;
 int y = 3;

 printf("value 1 = %d\n", ((x) * (x))); printf("value 2 = %d\n", y);
 }

 In the preceding example, the preprocessor inserted the line:

 # 1 "macro.c"

 The preprocessor inserted this line, which indicates the line number 1 and
 the name of the file in which the program was stored (macro.c), so that
 any line number references to the preprocessed code would match the line
 numbers in the original source code.

 Execution of this program produces the following output:

 value 1 = 4
 value 2 = 3

C Language Reference
Complex Macro Definition

¦ Copyright IBM Corp. 1985, 1991
7.5.2 - 2

 7.6 #undef

 An undef statement causes the preprocessor to end the scope of a
 preprocessor definition. An undef statement has the form:

 preprocessor undef

 --- # --- undef --- identifier ---¦

 Examples:

 The following statements define BUFFER and SQR:

 #define BUFFER 512
 #define SQR(x) (x) * (x)

 The following statements nullify the preceding definitions:

 #undef BUFFER
 #undef SQR

 Occurrences of the identifiers BUFFER and SQR that appear following these
 undef statements are not substituted for the previously defined code.

C Language Reference
#undef

¦ Copyright IBM Corp. 1985, 1991
7.6 - 1

 7.7 #include

 An include statement causes the preprocessor to replace the statement with
 the contents of the specified file. An include statement has the form:

 preprocessor include

 +- " --- file name --- " -+
 --- # --- include ---¦ +---¦
 +- < --- file name --- > -+

 If the file name is enclosed in double quotation marks ("), the
 preprocessor searches the directory that contains the source file, then a
 standard or specified sequence of directories until it finds the specified
 file. For example:

 #include "lib/payroll.h"

 If the file name is enclosed in angle brackets (< and >), the
 preprocessor searches only the standard or specified directories for the
 specified file. For example:

 #include <stdio.h>

 If you have a number of definitions that several files use, you can place
 all these definitions in one file and include that file in each file that
 must know the definitions. For example, the following file defs.h
 contains several definitions and an inclusion of an additional file of
 definitions:

 /* defs.h */
 #define TRUE 1
 #define FALSE 0
 #define BUFFERSIZE 512
 #define MAX_ROW 66
 #define MAX_COLUMN 80
 int hour;
 int min;
 int sec;
 #include "/u/david/defs.h"

 You can embed the definitions that appear in defs.h with the following
 statement:

 #include "defs.h"

 The preprocessor would look for the file defs.h first in the directory
 that contains the source file. If not found there, the preprocessor would
 search a sequence of specified or standard places.

 If the file name begins with the slash (/) character, the preprocessor
 searches only the specified directory for the file. For example:

 #include "/u/david/defs.h"

 The C Language does not define how you can specify a sequence of
 directories for the preprocessor to search. The command cc, however,
 recognizes the flag -Idirectory, which enables you to specify a directory
 for the preprocessor to search before searching the standard directories.

C Language Reference
#include

¦ Copyright IBM Corp. 1985, 1991
7.7 - 1

 Assume the file pgm.c contains the following statement:

 #include "in_file"

 If pgm.c were compiled using the following command:

 cc -I melanie/include pgm.c

 The preprocessor would search for the file in_file in the following
 directories:

 � The directory that contains the file pgm.c

 � The directory melanie/include

 � The standard sequence of directories

 If instead, the file pgm.c contained the statement:

 #include <in_file>

 The preprocessor would search for the file in_file in the following
 directories:

 � The directory of melanie/include

 � The standard sequence of directories

C Language Reference
#include

¦ Copyright IBM Corp. 1985, 1991
7.7 - 2

 7.8 Conditional Compilation

 A preprocessor conditional compilation statement causes the preprocessor
 to insert specified code in the file depending on how a specified
 condition evaluates. A preprocessor conditional compilation statement
 spans several lines:

 � The condition specification lin

 � Lines containing code that the preprocessor inserts in the program i
 the condition evaluates to a nonzero value (optional)

 � A preprocessor elif statement (optional)

 � Lines containing code that the preprocessor inserts in the program i
 the condition in the elif line evaluates to 1 (one), or true
 (optional)

 Note: The previous 2 steps may be repeated any number of times.

 � The else line (optional)

 � Lines containing code that the preprocessor inserts in the program i
 all previous conditions evaluate to 0 (zero) (optional)

 � The preprocessor endif statement.

 A preprocessor conditional compilation statement has the form:

 preprocessor conditional

 +- if --- constant expression -+ +-----------------+
 --- # ---+- ifdef --- identifier -------+---¦ +---
 +- ifndef --- identifier ------+ +--- statement ---+
 � ¦
 +-------------+

 +-------------------------+
 ---¦ +---
 +--- preprocessor elif ---+
 � ¦
 +---------------------+

 +---------------------+
 ---¦ +--- preprocessor endif ---¦
 +- preprocessor else -+

 A preprocessor conditional compilation statement can have one of three
 types of conditions: if, ifdef, and ifndef.

 The following describes the usage of each:

 if Inserts the code that immediately follows the condition if the
 condition evaluates to a nonzero value.

 ifdef Inserts the code that immediately follows the condition if the
 identifier specified in the condition is defined.

C Language Reference
Conditional Compilation

¦ Copyright IBM Corp. 1985, 1991
7.8 - 1

 ifndef Inserts the code that immediately follows the condition if the
 identifier specified in the condition is not defined.

 If the condition evaluates to 0 (zero), or false, and the conditional
 compilation statement contains a preprocessor else statement, the
 preprocessor inserts the lines that appear between the preprocessor else
 statement and the preprocessor endif statement. Otherwise, the
 preprocessor deletes these lines. The preprocessor else statement has the
 form:

 preprocessor else

 +-----------------+
 --- # --- else ---¦ +---¦
 +--- statement ---+
 � ¦
 +-------------+

 If the condition evaluates to 0 (zero), or false, and the conditional
 compilation statement contains a preprocessor elif statement, the constant
 expression following the elif is evaluated. If the condition evaluates to
 1 (one), or true, the preprocess or inserts the lines that appear between
 the preprocessor elif statement and the next elif, else, or endif
 statement. Otherwise, the preprocessor deletes these lines. Each elif
 statement is evaluated in turn, until the constant expression of the elif
 evaluates to 1 (one), or true. Only one group of lines in a conditional
 compilation unit will be inserted in the program. If a preprocessor else
 statement is present, the lines which appear between it and the endif
 statement will only be inserted if the condition evaluates to 0 (zero), or
 false, and all elif statements, if any, evaluate to 0 (zero) or false.
 The preprocessor elif statement has the form:

 preprocessor elif

 +-----------------+
 --- # --- elif --- constant expression ---¦ +---¦
 +--- statement ---+
 � ¦
 +-------------+

 Note: The preprocessor elif is not supported on the RT.

 The preprocessor endif statement ends the conditional compilation
 statement. The preprocessor endif statement has the form:

 preprocessor endif

 --- # --- endif ---¦

 You can nest preprocessor conditional statements.

 Subtopics
 7.8.1 #if
 7.8.2 #ifdef
 7.8.3 #ifndef

C Language Reference
Conditional Compilation

¦ Copyright IBM Corp. 1985, 1991
7.8 - 2

 7.8.1 #if

 The if keyword must be followed by a constant expression. The constant
 expression cannot contain a sizeof expression, an enumeration constant, or
 a cast operator. For example:

 #if TEST >= 1
 printf("i = %d\n", i);
 printf("array[i] = %d\n", array[i]);
 #endif

 The constant expression can contain the keyword defined. This keyword can
 be used only with the preprocessor keyword if. The expression:

 defined identifier

 OR

 defined(identifier)

 evaluates to 1 if the identifier is defined in the preprocessor, otherwise
 to 0 (zero). For example:

 #if defined (TEST1)|| defined(TEST2)
 # define PHASE 1
 #elif defined (TEST3)
 # define PHASE 2
 #else
 # define PHASE 3
 #endif

C Language Reference
#if

¦ Copyright IBM Corp. 1985, 1991
7.8.1 - 1

 7.8.2 #ifdef

 An identifier must follow the ifdef keyword. The following example
 defines SIZEOF_INT to be 32 if I80386 is defined for the preprocessor.
 Otherwise, SIZEOF_INT is defined to be 16.

 #ifdef I80386
 # define SIZEOF_INT 32
 #else
 # define SIZEOF_INT 16
 #endif

C Language Reference
#ifdef

¦ Copyright IBM Corp. 1985, 1991
7.8.2 - 1

 7.8.3 #ifndef

 An identifier must follow the ifndef keyword. The following example
 defines SIZEOF_INT to be 16 if I80386 is not defined for the preprocessor.
 Otherwise, SIZEOF_INT is defined to be 32.

 #ifndef I80386
 # define SIZEOF_INT 16
 #else
 # define SIZEOF_INT 32
 #endif

 The command cc recognizes the flag -Didentifier, which enables you to
 specify at compile time an identifier for the preprocessor to define. For
 example, the following command defines the identifier I80386 in the file
 pgm.c:

 cc -DI80386 pgm.c

 Examples:

 The following example shows how you can nest preprocessor conditional
 compilation statements:

 #if defined(TARGET1)
 # define SIZEOF_INT 16
 # ifdef PHASE2
 # define MAX_PHASE 2
 # else
 # define MAX_PHASE 8
 # endif
 #else
 # define SIZEOF_INT 32
 # define MAX_PHASE 16
 #endif

 The following program contains preprocessor conditional compilation
 statements:

 main()
 {
 static int array[] = { 1, 2, 3, 4, 5 };
 int i;

 for (i = 0; i <= 4; i++)
 {
 array[i] *= 2;

 #if TEST >= 1
 printf("i = %d\n", i);
 printf("array[i] = %d\n", array[i]);
 #endif

 }
 }

C Language Reference
#ifndef

¦ Copyright IBM Corp. 1985, 1991
7.8.3 - 1

 7.9 #line

 A line control statement causes the compiler to view the line number of
 the next source line as the specified number. A line statement has the
 form:

 preprocessor line control

 +-------------------------+
 --- # --- line --- decimal constant ---¦ +---¦
 +- " --- file name --- " -+

 A file name specification enclosed in quotes can follow the line number.
 If you specify a file name, the compiler views the next line as part of
 the specified file. If you do not specify a file name, the compiler views
 the next line as part of the file specified by the preceding line control
 statement. If a line control statement does not precede the current
 statement, the compiler views the line as part of the current source file.
 The compiler recognizes the identifiers _ _LINE_ _ and _ _FILE_ _. _
 LINE _ evaluates to the current line number. The identifier _ _FILE_ _
 evaluates to the current file name. Thus, the following statement prints
 an error message that contains the current line number and file name:

 printf("Error on line %d in file %s.\n", _ _LINE_ _, _ _FILE_ _);

 The preprocessor and other programs may produce line control statements
 (other than those specified in the file). For example, if the first line
 of a file is an include statement, the preprocessor inserts the specified
 file and a line control statement that sets the number of the line that
 follows the included code to 2.

 You can use line control statements to make the compiler provide more
 meaningful error messages. The following program uses line control
 statements to give each function an easily recognizable line number:

 #include <stdio.h>
 main()
 {
 func_1();
 func_2();
 }

 #line 100
 func_1()
 {
 printf("Func_1 - the current line number is %d\n", _ _LINE_ _);
 }

 #line 200
 func_2()
 {
 printf("Func_2 - the current line number is %d\n", _ _LINE_ _);
 }

 The preceding program produces the following output:

 Func_1 - the current line number is 102
 Func_2 - the current line number is 202

C Language Reference
#line

¦ Copyright IBM Corp. 1985, 1991
7.9 - 1

 7.10 # (Null Statement)

 The null statement performs no action. The null statement consists of a
 single number sign (#) on a line of its own.

 preprocessor null

 --- # ---¦

 In the following example, if MINVAL is a defined macro name, no action is
 performed. If MINVAL is not a defined identifier, it is defined as the
 value 1.

 #ifdef MINVAL
 #
 #else
 #define MINVAL 1
 #endif

C Language Reference
(Null Statement)

¦ Copyright IBM Corp. 1985, 1991
7.10 - 1

 7.11 #pragma

 A pragma is an implementation-defined instruction to the compiler. It has
 the general form given below, where character-sequence is a series of
 characters giving a specific compiler instruction and arguments, if any.

 preprocessor pragma

 +-----------------+
 --- # --- pragma ---¦ +---¦
 +--- character ---+
 � ¦
 +-------------+

 The character-sequence on a pragma is not subject to macro substitutions.
 White-space characters (for example, blanks, tabs, and new lines) can
 appear between the number sign and the word pragma.

 Note: The preprocessor pragma is not supported on the RT.

 There are no pragmas currently defined for AIX C language.

C Language Reference
#pragma

¦ Copyright IBM Corp. 1985, 1991
7.11 - 1

 7.12 Preprocessor Flags
 AIX runs on several hardware platforms and offers several C compilers. By
 combining preprocessor flags and #ifdef statements, you can write a single
 C program which will be compiled differently according to the platform it
 is intended for or the compiler which is to be used.

 Those blocks of code which make the program suitable for each hardware
 platform or compiler are preceded by a line of the following form:

 #ifdef TAG

 where TAG is one of the predefined symbols recognized by the preprocessor,
 such as i386. A program meant for several platforms or compilers contains
 a series of such blocks. Each is preceded with a different #ifdef TAG
 sequence.

 The program is then compiled one or more times; each compilation specifies
 one of these TAGs on the command line. The TAG is used as a preprocessor
 flag, and is preceded by -D:

 cc sourcefile -DTAG

 This causes TAG to be defined within the program. The block of code
 preceded by #ifdef TAG is then compiled.

 The cc command reads the file /etc/cc.cfg to determine which cpp flags to
 recognize. See cc.cfg in AIX Technical Reference for further information.

C Language Reference
Preprocessor Flags

¦ Copyright IBM Corp. 1985, 1991
7.12 - 1

 Special Characters
 , 4.6.3.14
 ^ 4.6.3.8
 != 4.6.3.6
 ? 4.6.1.2 4.6.3.12
 / 4.6.3.2
 ~ 4.6.3
 * 4.6.3 4.6.3.2
 4.6.3 4.6.3.7
 plus 4.6.3
 & 4.6.3.10
 - 4.6.3 4.6.3.3
 -- 4.6.3
 #pragma 7.11
 % 4.6.3.2
 + 4.6.3 4.6.3.3
 ++ 4.6.3
 << 4.6.3.4
 == 4.6.3.6
 >> 4.6.3.4
 | 4.6.3.9
 || 4.6.3.11
 A
 addition operators 4.6.3.3
 address evaluation operator 4.6.3
 argc 6.4
 arguments to functions 6.5.1
 argv 6.4
 arithmetic conversions 4.4.5
 arrays 3.5.6
 asm statement 5.3.12
 assignment operator 4.6.3.13
 automatic variables 3.8.1
 B
 basic symbols 2.4.1
 binary operator 4.6.1.2
 binary operators 4.6.3.1
 bit-field 3.5.7.1
 bitwise AND operator 4.6.3.7
 Bitwise exclusive OR operator 4.6.3.8
 bitwise inclusive OR operator 4.6.3.9
 block scope 3.11
 block statement 5.3.2
 block structure 6.6
 break 5.3.8
 break statement 5.3.8
 C
 cast operator 4.6.3
 cc 7.3 7.7 7.8.3
 char 3.5.2
 characters 2.4 4.4
 comma operator 4.6.3.14
 command line arguments 6.4
 comments, as white space 7.4
 comments, example of 2.6.1
 compound statement 5.3.2
 conditional compilation 7.8
 conditional expression 4.6.3.12
 conditional statement 5.3.3
 const 3.5.3

C Language Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 1

 constant expression 4.6.1.2
 constants 2.5.4
 character 2.5.3
 character constants, table of 2.5.3
 decimal constant 2.5.1
 double 4.6.2
 exponent 2.5.2
 floating 2.5.2
 hexadecimal constant 2.5.1
 int 4.6.2
 integer 2.5.1
 long 4.6.2
 octal constant 2.5.1
 wide character 2.5.3.1
 continue statement 5.3.9
 conversions 4.3
 D
 decimal constant 2.5.1
 declarations 3.0
 declarations, form of 3.5
 declarations, implicit 3.9
 declarators 3.5.4
 declarators, meaning of 3.5.5
 decrement 4.6.3
 define preprocessor statement 7.5
 defined, preprocessor keyword 7.8.1
 definition, macro 7.5
 digit 2.4
 do statement 5.3.6
 double 3.5.2 4.4.2
 E
 else, preprocessor keyword 7.8
 endif, preprocessor line 7.8
 enum 3.5.8
 envp 6.4
 equality operator 4.6.3.6
 escape sequence 2.5.3
 exponent 2.5.2
 expression language 4.3
 expression statement 5.3.1
 expressions 4.0
 expressions, parenthesized 4.6.2.2
 external objects, static attribute of 6.5.2
 external variables 3.8.2 6.7
 F
 file inclusion 7.7
 float 3.5.2 4.4.2
 floating and integral 4.4.3
 for 5.3.7
 for statement 5.3.7
 formal arguments 3.8.3
 function prototype 6.5
 function prototype scope 3.11
 function references 4.6.2.4
 functions 6.0
 functions, defining 6.5
 functions, restrictions 3.5.10
 G
 goto statement 5.3.11
 H

C Language Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 2

 hexadecimal constant 2.5.1
 highlighting PREFACE.3.1
 I
 identifiers 2.4
 if preprocessor statement 7.8.1
 ifdef preprocessor statement 7.8.2
 ifndef preprocessor statement 7.8.3
 implicit declarations 3.9
 include preprocessor statement 7.7
 increment 4.6.3
 indentation of code 7.4
 indirection 4.6.3
 initializer 3.6
 int 3.5.2
 integers 4.4 4.4.4
 K
 keywords 2.4.1
 keywords, list of 2.4.1.1
 L
 label 5.3.11
 letters 2.4
 lexical elements 2.0
 lifetimes 3.8
 line control preprocessor statement 7.9
 logical AND operator 4.6.3.10
 logical negation 4.6.3
 logical ones complement 4.6.3
 logical OR operator 4.6.3.11
 long 3.5.2
 long constant 2.5
 long double 2.5.2
 lvalue 3.4
 M
 macro call 7.5.2
 macro definition 7.5 7.5.2
 main function 6.4
 member references 4.6.2.3
 multiplication operator 4.6.3.2
 N
 name 3.10
 naming spaces 3.10
 new-line 2.4
 null statement 5.3.13 7.10
 O
 object 3.4
 octal constant 2.5.1
 operators in expressions 4.5
 operators, summary 4.6
 P
 pointers 3.5.7 4.4.4
 precedence 4.5
 preprocessor 7.0
 preprocessor directives 7.3
 #define 7.3
 #if 7.3
 #ifdef 7.3
 #include 7.3
 preprocessor flags 7.12
 preprocessor statement character 7.4
 preprocessor statements 7.0

C Language Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 3

 primary expressions
 constants 4.6.2
 function calls 4.6.2.4
 function references 4.6.2.4
 identifiers 4.6.1.1
 member references 4.6.2.3
 parenthesized expressions 4.6.2.2
 strings 4.6.2.1
 prototype, function 6.5
 R
 references, function 4.6.2.4
 references, member 4.6.2.3
 register variables 3.8.1
 relational operator 4.6.3.5
 reserved identifiers, list of 2.4.1.1
 reserved keywords 2.4.1
 return statement 5.3.10
 S
 scope 3.11
 separators 2.6
 shift operator 4.6.3.4
 short 3.5.2 4.4
 signed 3.5.2
 sizeof operator 4.6.3
 space character 7.4
 spaces 3.10
 spaces, naming 3.10
 special symbols 2.4.1.2
 statements
 asm 5.3.12
 break 5.3 5.3.8
 case 5.3
 compound 5.3.2
 conditional 5.3.3
 continue 5.3 5.3.9
 do 5.3.6
 do-while 5.3
 expression 5.3.1
 for 5.3 5.3.7
 goto 5.3.11
 if 5.3
 null 5.3.13
 return 5.3.10
 summary of 5.0
 switch 5.3 5.3.4
 while 5.3 5.3.5
 static variables 3.8.2 6.5.2 6.7
 storage class specifiers 3.5.1
 storage classes
 auto 3.5.1
 extern 3.5.1
 register 3.5.1
 static 3.5.1
 typedef 3.5.1
 strings 2.5.4 4.6.2.1
 strings, initializing 3.6.1
 structures 3.5.7.1 4.6.2.3
 switch statement 5.3.4
 symbols 2.4.1
 syntax diagrams PREFACE.3.2

C Language Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 4

 abstract declarator 6.5
 additive expression 4.6.3.3
 asm statement 5.3.12
 assignment expression 4.6.3.13
 binary operators 4.6.3.1
 bitwise AND expression 4.6.3.7
 bitwise exclusive OR operator 4.6.3.8
 bitwise inclusive OR operator 4.6.3.9
 block statement 5.3.2
 break statement 5.3.8
 case clause 5.3.4
 case label 5.3.4
 character 2.4
 character constant 2.5.3
 character specifier 3.5.2
 comma expression 4.6.3.14
 comment 2.6.1
 constant 2.5
 constant expression 4.6.1.2
 continue statement 5.3.9
 decimal constant 2.5.1
 declaration 3.5
 declaration specifier 3.5
 declarator 3.5.4
 default clause 5.3.4
 default label 5.3.4
 digit 2.4
 do statement 5.3.6
 enum constant 3.5.8
 enum specifier 3.5.8
 equality expression 4.6.3.6
 escape sequence 2.5.3
 expression 4.3
 expression statement 5.3.1
 extern declaration 6.7
 external data definition 6.7
 float specifier 3.5.2
 for statement 5.3.7
 function declarator 6.5
 function header 6.5
 goto statement 5.3.11
 hexadecimal constant 2.5.1
 identifier 2.4
 identifier list 6.5
 if statement 5.3.3
 init-declarator 3.5 3.5.4
 init-declarator-list 3.5 3.5.4
 initial expression 3.6
 initializer 3.6
 int specifier 3.5.2
 internal data device 6.6
 labeled statement 5.3.11
 letter 2.4
 logical AND operator 4.6.3.10
 logical OR operator 4.6.3.11
 lvalue 4.6.1
 main function 6.4
 member 3.5.7.1
 multiplication operators 4.6.3.2
 new-line 2.4

C Language Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 5

 null statement 5.3.13
 octal constant 2.5.1
 parameter declaration 6.5
 parameter list 6.5
 pragma 7.11
 preprocessor conditional 7.8
 preprocessor define 7.5
 preprocessor elif 7.8
 preprocessor else 7.8
 preprocessor endif 7.8
 preprocessor include statement 7.7
 preprocessor line control 7.9
 preprocessor null 7.10
 preprocessor statement 7.3
 preprocessor undef statement 7.6
 primary expression 4.6.1
 relational expression 4.6.3.5
 return statement 5.3.10
 shift expression 4.6.3.4
 statement 5.3
 storage class specifier 3.5.1
 string constant 2.5.4
 structure or union specifier 3.5.7.1
 subscript declarator 3.5.4
 switch body 5.3.4
 switch statement 5.3.4
 type definition 3.5.11
 type name 4.6.3
 type qualifier 3.5.3
 type specifier 3.5.2
 typedef name 3.5.11
 unary expression 4.6.3
 void specifier 3.5.9
 while statement 5.3.5
 T
 ternary operator 4.6.1.2
 tokens, classes of 1.3 2.3
 type name 3.7
 type name synonyms, declaring 3.5.11
 type qualifiers 3.5.3
 type specifiers
 char 3.5.2
 double 3.5.2
 enum 3.5.2
 float 3.5.2
 int 3.5.2
 long 3.5.2
 long double 3.5.2
 short 3.5.2
 signed 3.5.2
 struct-or-union 3.5.2
 typedef-name 3.5.2
 unsigned 3.5.2
 typedef 3.5.11
 U
 unary
 negation 4.6.3
 operator 4.6.1.2 4.6.3
 undef preprocessor statement 7.6
 union 3.5.2 3.5.7.1 4.6.2.3

C Language Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 6

 unsigned 3.5.2
 V
 variables 6.7
 automatic 3.8.1
 external 6.7
 formal arguments 3.8.3
 initializing 3.6
 lifetimes 3.8
 static 3.8.2 6.7
 void 3.5.2 3.5.9
 volatile 3.5.3
 W
 while statement 5.3.5
 white space 7.4 7.5.2
 whitespace 2.6

C Language Reference
Index

¦ Copyright IBM Corp. 1985, 1991
INDEX - 7

