| BM Advanced I nteractive Executive
for the RT, PS/2, and System 370
C Language User's Cuide

Rel ease 1.2.1

Docunent Nunber SC23-2057-02

Copyright IBM Corp. 1985, 1991

| BM Advanced | nteractive Executive
for the RT, PS/2, and System 370

C Language User's Cuide
Rel ease 1.2.1

Docunent Nunber SC23-2057-02

Copyright IBM Corp. 1985, 1991

C Language User's Guide
Edition Notice

Edition Notice
Third Edition (March 1991)

This edition applies to Version 1.2.1 of the | BM Advanced I nteractive
Executive for the System 370 (Al X/ 370), Program Number 5713-AFL, to
Version 2.2.1 of the I BM Advanced Interactive Executive for RT (Al X
RT), Program Nunber 5601-061, and for Version 1.2.1 of the |IBM
Advanced Interactive Executive for the Personal Systeni2, Program
Nunmber 5713-AEQ, and to all subsequent rel eases until otherw se
indicated in new editions or technical newsletters. Mke sure you are
using the correct edition for the |evel of the product.

Order publications through your IBMrepresentative or the | BM branch
of fice serving your locality. Publications are not stocked at the
address given bel ow.

A formfor reader's comments appears at the back of this publication.
If the form has been renoved, address your conments to:

| BM Cor poration, Departnent 52QA M5 911
Nei ghbor hood Road

Ki ngston, NY 12401

US A

VWhen you send information to IBM you grant | BM a nonexcl usive right
to use or distribute the information in any way it believes
appropriate without incurring any obligation to you. Changes are made
periodically to the information herein; these changes will be reported
in technical newsletters or in new editions of this publication.

| Copyright International Business Machi nes Corporation 1985, 1991.

Al'l rights reserved.

| Copyright AT&T Technol ogi es 1984, 1987, 1988

| Copyright | NTEL 1986, 1987

I

i Copyright | NTERACTIVE Systens Corporation 1985, 1988

i Copyright Locus Computing Corporation, 1988

Note to U S. Governnent Users -- Documentation related to restricted
rights -- Use, duplication or disclosure is subject to restrictions

set forth in GSA ADP Schedul e Contract with | BM Corp.

| Copyright IBM Corp. 1985, 1991
EDITION - 1

C Language User's Guide
Notices

Noti ces

References in this publication to | BM products, progranms, or services do
not inply that IBMintends to nmake these available in all countries in
which | BM operates. Any reference to an | BM product, program or service
is not intended to state or inply that only I1BMs product, program or
service may be used. Any functionally equival ent product, program or
service that does not infringe any of IBMs intellectual property rights
or other legally protectible rights may be used instead of the |IBM
product, program or service. Evaluation and verification of operation in
conjunction with other products, prograns, or services, except those
expressly designated by IBM are the user's responsibility.

| BM may have patents or pending patent applications covering subject
matter in this docunment. The furnishing of this docunent does not give
you any license to these patents. You can send license inquiries, in
witing, to the IBMDirector of Commercial Relations, |BM Corporation
Pur chase, Ny 10577.

Subt opi cs
Trademar ks and Acknow edgment s

| Copyright IBM Corp. 1985, 1991
FRONT_1-1

C Language User's Guide
Trademarks and Acknowledgments

Trademar ks and Acknow edgment s
The followi ng trademarks apply to this book:

O

Portions of the code and docunentation were devel oped at th

El ectrical Engineering and Conputer Sciences Departnent at the

Ber kel ey Canpus of the University of California under the auspices of
the Regents of the University of California.

Al X, Personal Systeni2, PS/ 2, RT, RT PC, and RT Personal Conputer ar
regi stered trademarks of International Business Machi nes Corporation.

IBMis a registered trademark of International Business Michine
Cor por ati on.

System 370 is a trademark of International Business Mchine
Cor por ati on.

| Copyright IBM Corp. 1985, 1991
FRONT_ 1.1-1

C Language User's Guide
About This Book

About Thi s Book

Thi s book shows you how to devel op, link, and execute prograns in C

| anguage, using the Advanced Interactive Executive (Al X) Operating System
It describes the operating system dependenci es of the |anguage as well as
the use of C | anguage, related software utilities, and other program
devel opnent t ool s.

Subt opi cs

Who Shoul d Read Thi s Book
What You Shoul d Know

How t o Use Thi s Book

Rel at ed Publications

| Copyright IBM Corp. 1985, 1991
FRONT_ 2-1

C Language User's Guide
Who Should Read This Book

Wio Shoul d Read Thi s Book

This book is witten for progranmers who want to wite application
prograns in C |anguage that run on the Al X Qperating System

| Copyright IBM Corp. 1985, 1991
FRONT_ 2.1-1

C Language User's Guide
What You Should Know
What You Shoul d Know

You shoul d have an internediate to advanced understanding of the C
progranm ng | anguage. You should al so have a general understandi ng of
progranm ng concepts and term nol ogy and some experience in witing
prograns. To get the nost out of this book, you should know how to
operate the Personal System 2, the RT, or the Systenf 370.

| Copyright IBM Corp. 1985, 1991
FRONT_ 2.2-1

C Language User's Guide
How to Use This Book

How to Use Thi s Book

This book is intended as a conpanion reference to the Al X C Language
Reference. It is organized according to the general classes of elenents
that are used to construct prograns in the C|language. To |ocate specific
topics, use the table of contents or the index.

Subt opi cs
Hi ghl i ghting
Synt ax Di agr anms

| Copyright IBM Corp. 1985, 1991
FRONT_2.3-1

C Language User's Guide
Highlighting

Hi ghl i ghting
This book uses different type styles to distinguish among certain kinds of
information. GCeneral information is printed in the standard type style
(for exanple, this sentence).
The follow ng type styles indicate other types of information:
0 Commands and keywords appear in bold type.

0 Exanples, words, and characters that nmust be entered literally appea
i N nonospace type.

O Variables appear in jtalics.

0 New terns appear in bold italic type.

| Copyright IBM Corp. 1985, 1991
FRONT_ 2.3.1-1

C Language User's Guide
Syntax Diagrams

Synt ax Di agrans

The follow ng typographic conventions are used in the syntax diagranms: |f
you need information on how to read the syntax diagranms, refer to the Al X
Commands Ref erence.

O

O

Syntactic categories appear between angle brackets (< >)
Al ternative syntactic categories appear on separate |ines

Ellipses indicate that a preceding paraneter can be repeated, fo
exanpl e:

<obj ect>. ..

Vari abl es that should be replaced by data objects in actual progra
statenents appear in italics.

An optional term nal synmbol or non-termnal synbol is indicated by th
not ati on:

<obj ect>. ..
opt

A syntactic definition is indicated by the nane of the object bein
defined, followed by a colon, followed by the synbols that nake up the
object. Here is an exanple of the syntactic definition for a
compound- st at enent :

<conpound- st at enent >:
{ <decl aration>... <statement>... }
opt opt

This specification states that a conpound-statenent is nmade up of a
left brace, followed by one or nore optional declarations and one or
nore optional statenents followed by a right brace. Note that this
definition provides for an enpty conpound statenent.

Brackets [] indicate optional itens and subscripts of an array

Braces { } encl ose optional elenents that can be repeated nore tha
once.

| Copyright IBM Corp. 1985, 1991
FRONT_2.3.2-1

C Language User's Guide
Related Publications

Rel at ed Publicati ons

For

addi tional information, you may want to refer to the follow ng

publi cati ons:

O

Al X C Language Reference, SC23-2058, describes the C programm ng
| anguage and contains reference information for witing progranms in C
| anguage that run on the Al X Operating System

Al X Commands Reference, SC23-2292 (Vol. 1) and SC23-2184 (Vol. 2),
lists and describes the Al X/ 370 and Al X PS/2 Qperating System
conmands.

Al X Progranmi ng Tools and Interfaces, SC23-2304, describes the
progranm ng environnent of the Al X Operating System and i ncl udes

i nformati on about operating systemtools that are used to devel op,
conpi l e, and debug prograns.

Al X Techni cal Reference, SC23-2300 (Vol. 1) and SC23-2301 (Vol. 2),
descri bes the systemcalls and subroutines a programer uses to wite
application prograns. This book al so provides information about the
Al X Operating Systemfile system special files, mscellaneous files,
and the witing of device drivers.

SAA Common Progranming Interface C Reference, SC26-4353, describes
each conponent of the common progranmi ng interface.

Using the Al X Qperating System SC23-2291, shows the begi nning user
how to use Al X Qperating System conmmands to do such basic tasks as | og
in and out of the system display and print files, and set and change
passwords. It includes information for intermediate to advanced users
about how to use communi cation and networking facilities and wite
shel | procedures.

VS FORTRAN Version 2 Progranm ng Quide for Al X/ 370, SC26-4741,
descri bes the VS FORTRAN progranm ng | anguage and is witten for
progranmers who want to devel op VS FORTRAN prograns that run in the
Al X/ 370 envi ronnent.

| Copyright IBM Corp. 1985, 1991
FRONT 2.4-1

C Language User's Guide
Table of Contents

Tabl e of Contents
TI TLE

COVER

EDI TI ON

FRONT 1

FRONT 1

FRONT 2

FRONT 2
FRONT 2
FRONT 2
FRONT 2
FRONT 2
FRONT 2

CONTENTS

FI GURES

TABLES

1.

NN NDNNNDNDNDNDNDNDNDNNDNNNDNDNDNNNDNDNDNNDNNDD =

0

CONONNUIARRRAAA R AR AAAARARARARAARARRRARRNNWWWWNRONE

il
A OWNPE

O©Coo~NOUM~WNE

PwwWwWN R

=

Titl e Page
Book Cover
Edition Notice
Not i ces
Trademar ks and Acknow edgnent s
About Thi s Book
Who Shoul d Read Thi s Book
What You Shoul d Know
How to Use This Book
Hi ghlighting
Synt ax Di agr anms
Rel at ed Publications
Tabl e of Contents
Fi gures
Tabl es
Chapter 1. Introduction
About This Chapter
Overvi ew
Chapter 2. The Conpilers
About This Chapter
The Conpilers
I nvoki ng a Conpil er
Conmmand- Li ne Opti ons
Debuggi ng
Ext ended Functi ons
PS/ 2 VSC Specific Options
System 370 and PS/2 MCC Specific Options
Al X/ 370 and PS/ 2 MCC Conpil er Toggl es
Align_nmenbers -- Default: On
Asm -- Default: Of
Char _default_unsigned -- Default: On
Char _is rep -- Default: Of
Cross_junp--Default: On
Double_math_only -- Default: Of
Doubl e return -- Default: Of
Downshi ft _file_nanes -- Default: Of
Int_function_warnings -- Default: Of
List -- Default: Of
Long_enuns -- Default: Of
Make_externs_global -- Default: On
Parm warnings -- Default: On
PCC -- Default: On
PCC nsgs -- Default: Of
Poi nters_conpatible -- Default: Of
Poi nters_conpatible with_ints -- Default: Of
Print_ppo -- Default: Of
Print_protos -- Default: Of
Prot ot ype_conversion_warn -- Default: On
Prot otype_override_warnings -- Default: On
Read_only_strings -- Default: Of
Recogni ze_library -- Default: On
Warn -- Default: On
Optim zation of Prograns
Al X/ 370 and PS/2 MCC Optim zation Considerations
Some ANSI - Required Specifics for Al X/ 370 and PS/2 MCC
Fl oati ng- Poi nt Exceptions for Al X PS/2
C Prograns Under Al X
PS/ 2 VSC Conpi |l ati on Process
System 370 and PS/2 MCC Conpil ati on Process

| Copyright IBM Corp. 1985, 1991
CONTENTS -1

PPN NONPONPONONNONPDDPUNUIUNUNIUNUGNNURARRRARRADRRARRWVWRW®WWHWWHW

C Language User's Guide
Table of Contents
Chapter 3. Data Representations on PS/2
CONTENTS
About This Chapter
Dat a Representations on PS/2
Integral Representation
Fl oati ng- Poi nt Representation
1 Si ngl e Precision
2 Doubl e Preci sion
Representati on of Extrene Nunbers
Arrays
Poi nters
Structures
Chapter 4. Data Representations on RT
CONTENTS
About This Chapter
Dat a Representations on RT
Integral Representation
Fl oati ng- Poi nt Representation
Si ngl e Precision
Doubl e Preci sion
Representati on of Extrene Nunbers
Arrays
Poi nters
Structures
Chapter 5. Data Representations on System 370
CONTENTS
About This Chapter
Dat a Representations on System 370
Integral Representation
Fl oati ng- Poi nt Representation
Si ngl e Precision
2 Doubl e Preci sion
Arrays
Poi nters
Structures
1 St orage Cl asses
Chapter 6. M xi ng Languages and Li nkage Convention on the PS/:
CONTENTS
About This Chapter
M xi ng Languages on the PS/2
Correspondence of Data Types
Character Variabl es
St orage of Matrices
I nput/Qutput Primtives
Designation of Entry Points and Qther d obal Synbols
Ar gunent - Passi ng Mechani sns
The 80386 Regi sters
The 80387 Regi sters
The Stack
.10 Subrouti ne Li nkage Conventi on
Par amet er - Passi ng Conventi on
Function Results
Stack Frane
FORTRAN Ar gunent - Passi ng Conventi ons
Pascal Paraneter-Passi ng Conventi ons
Vari abl e Paraneters
Val ue Paraneters
Const Paraneters
General Pascal Considerations
C Argument - Passi ng Conventi ons

N -~

COOOONOURAWNROOOINOUUNUIAWNRPOORNOUUIORWNROOONOUUURWNERO
=

WN B

=

o
CUUIUUIUTAWN R

rwWN R

| Copyright IBM Corp. 1985, 1991
CONTENTS - 2

> ©© 00000 OOC0nonwo0noma 00000000000 0REORNNNNNNNNNNNNNNNNNNNO O

COUUNAWNRORNNNNOUNUNIUNUNUNANWVWRWWRWWRWNRODDORDEDDEDONDNAWN RO

oo
0 ~

C Language User's Guide
Table of Contents
Assenbl er Routines Called By O her Al X PS/2 Languages
Usi ng VS Pascal Def/Ref Vari abl es
Chapter 7. M xing Languages and Li nkage Convention on the RT
CONTENTS
About This Chapter
M xi ng Languages on the RT
Correspondence of Data Types
Character Variabl es
St orage of Matrices
I nput/ Qutput Primtives
Subrouti ne Linkage Convention on RT
Load Modul e For nmat
Regi ster Usage
Stack Frane
Par anet er Passi ng
Functi on Val ues
Par amet er Addr essi ng
Traceback
Entry and Exit Code
Calling a Routine
0 Usi ng VS Pascal Def/Ref Vari abl es
Chapter 8. Al X/ 370 Li nkage Conventi ons
CONTENTS
About This Chapter
Li nkage Specifications
St ack- based
Cal | Linkage
Regi ster Volatility
Argunent Passi ng
Return Val ue
Trace Back
Speci al Consi derati ons
St andard Service Routines
St ack Frame Header
0 Trace Tabl e
Summary of Linkage Characteristics
Li nkage Exanpl es
Calling Procedure's Call Code
Cal | ed Procedure's Prol ogue Code
Smal | Size (=4K) Frane
Large Size (>4K) Frane
Execution Profiling
vararg Support
Epi | ogue Code
Servi ce Routines
Debugger Consi derati ons
Trace Back | nplications
1 Assunpti ons
.2 Met hodol ogy
Tagged Dat a
Chapter 9. Program Exanpl es
CONTENTS
About This Chapter
Prime Exanpl e
Al X System Cal | Exampl e
The ASM Statenent for Al X/ 370 and PS/ 2 MCC Conpil ers
1 _ASM St at enent Exanpl e for Al X/ 370 and PS/2 MCC
2 ASM St at enent Exanple for PS/ 2 VSC
MBCS Progranmm ng Exanpl es
Appendi x A. Messages

POOO~NOUITA WNPEF

POoOO~NOOTA,WNPEF

NESESENYNEES
OarrWNPE

PP

| Copyright IBM Corp. 1985, 1991
CONTENTS - 3

C Language User's Guide
Table of Contents
Error and Warni ng Messages
Appendi x B. ASCII Character Set
Appendi x C. Program Exanpl es for M xi ng Languages
C Calling FORTRAN and Pascal
FORTRAN Cal I i ng Pascal and VSC
Pascal Calling FORTRAN and VSC
Appendix D. C Conpiler Limts
I ndex

Z200000m>

EOO\JI\JI—‘OOI—‘

| Copyright IBM Corp. 1985, 1991
CONTENTS -4

C Language User's Guide
Figures

Fi gures
2-1. Creating a C Program Under AIX 2.7
. PS/2 VSC Conpil ati on Process 2.8
370 and PS/ 2 MCC Conpil ati on Process 2.9
Typi cal Stack Frane 6.10.3

\IOOQOI\JI\J
PR WNRFRPWN

Stack After Call in Exanple A 6.10.4
- Stack After Call in Exanple C 6.10.5.4
- Stack After Call in Exanple E 6.10.6
- Contents of a Stack Frane 7.8.3

| Copyright IBM Corp. 1985, 1991
FIGURES - 1

C Language User's Guide
Tables

Correspondences of Data Types Anbng Languages
80386 Registers 6.9.1

Al X PS/ 2 Language Linkage Convention 6. 10
Correspondences of Data Types Anbng Languages
Regi ster Usage 7.8.2

ASCI | Character Set B.0

| Copyright IBM Corp. 1985, 1991
TABLES - 1

C Language User's Guide
Chapter 1. Introduction

1.0 Chapter 1. Introduction

Subt opi cs
1.1 About This Chapter
1.2 Overview

| Copyright IBM Corp. 1985, 1991
1.0-1

C Language User's Guide
About This Chapter

1.1 About This Chapter

This chapter includes the main features of the Al X C |anguage and a
sumary of terms and concepts in this manual .

| Copyright IBM Corp. 1985, 1991
1.1-1

C Language User's Guide
Overview

1.2 Overview

I BM Al X C conpilers are high-performance optim zing conpilers that produce
obj ect code for execution under the Al X Operating System

I BM Al X C offers these functions:

I I o

Automated installatio

Optim zed executabl e cod

Excel |l ent compile-tine perfornmanc

Separate nmodul e conpilatio

Access to conmand-|ine option

Easy inter-|anguage |inkages anmpbng VS Pascal, VS FORTRAN, and C

Thr oughout this manual, whenever possible, common el ements anong the Al X
PS/ 2, Al X RT, and Al X/ 370 have been grouped together

The main topics covered in this manual are:

O

The Conpil er

C- Language source code is conpiled on Al X by executing the cc command.
It produces executable binary code fromthe C source code.

C-1 anguage source code can al so be conpiled on the PS/ 2 by executing
the vs command. The vs command is a script that is user nodifiable.

Dat a Representation

Thi s manual describes characteristics of the C data types as defined
by the C compilers in AIX. It also describes how the C conpilers
present data in storage.

M xi ng Languages and Li nkage Conventi ons

The PS/2 and RT | anguage systens permt the mxing of elements from
different | anguages in a single program The |IBM Al X/ 370 | anguage
systempermts mxing elements of the C and Assenbl er | anguages in a
single program You should be fam liar with the | anguages you want to
m x; the elenents of the | anguages are not described here in detail.

This manual al so describes how to organi ze Systenf 370 specific
run-tinme functions and how the conpiler neets register usage
conventi ons.

In this manual, the FORTRAN | anguage described is |1 BM VS FORTRAN; the
Pascal |anguage is IBM VS Pascal; and the C | anguage is |IBM C

| Copyright IBM Corp. 1985, 1991
1.2-1

C Language User's Guide
Chapter 2. The Compilers

2.0 Chapter 2. The Conpilers

Subt opi cs

About This Chapter

The Conpilers

I nvoki ng a Compil er

Al X/ 370 and PS/2 MCC Conpil er Toggl es
Optim zation of Prograns

Fl oati ng- Poi nt Exceptions for Al X PS/2

C Prograns Under Al X

PS/ 2 VSC Conpi | ati on Process

System 370 and PS/2 MCC Conpil ati on Process

NESESESENESERENEN
OCoONOOOITP~WNPE

| Copyright IBM Corp. 1985, 1991
20-1

C Language User's Guide
About This Chapter

2.1 About This Chapter

This chapter contains instructions for conpiling C prograns and descri bes
each of the conmand-line options. Optimzation capabilities are also
described in detail.

| Copyright IBM Corp. 1985, 1991
21-1

C Language User's Guide
The Compilers

2.2 The Conpilers

C- Language source code is conpiled on Al X by executing the cc command.

See the Al X Operating System Conmands Reference. |t produces executable
bi nary code fromthe C source code.

Al X PS/ 2 supports two C conpilers. The first conpiler is the C Language
compiler (VSC). It can be invoked with the vs command and can be used to
conmpi |l e C | anguage source code. The vs command is a script that is user
nodi fiable. For information on this command, see Al X Operating System
Commands Reference. The second conpiler is called the Extended C Language
compi l er (MZC).

By default, if the VSC conpiler and the MCC conpiler are installed on a
system the cc command i nvokes the MCC conpiler. You can use the cc
conmand to invoke the VSC conpiler, but only if the environment variable
COWILER is set to VSC. If only one C conpiler is installed on the
system the cc command i nvokes that C conpiler. The vs comrand al ways

i nvokes the VSC compiler if that conpiler is installed.

When you compil e a programusing the Al X/ 370 conpiler, it generates an
object file that is executable on Al X 370.

| Copyright IBM Corp. 1985, 1991
22-1

C Language User's Guide
Invoking a Compiler

2.3 I nvoking a Compil er

To run a conpiler fromthe command line, enter the foll ow ng:
cc [file|l [option]

where file is any one of the file types described later under "File Types"
and option is any one of the options described under "Comand-Line
Options. ™

Description

The cc conmand runs the C conpiler. It accepts files containing C
source code, assenbler source code, or object code and changes them
into a formthat the conpute systemcan run. The cc conmand conpil es
and assenbl es source files and then links themw th an specified
object files, in order listed on the comuand line. It puts the
resulting executable programin a file named a.out. Comrand-Iline
options are used to nodify this process.

Note: If you are using a PS/2, it is recomended that you limt the
number of conpilation jobs concurrently running in the
background. Depending on the size of the job, attempts to
conpile nmore than one file in the background may cause an
error.

The Configuration File

The configuration file, /etc/cc.cfg, holds definitions for standard
pat h nanmes of conpiler conponents, header files, and libraries;
standard preprocessor nmacro definitions; and default val ues of other
options. These definitions may be overridden by the -B, -1, -L, -D
and -U flags. An alternative configuration file rmay be desi gnated by
the -F flag. See Al X Operating System Techni cal Reference for a

di scussion of cc.cfg.

Standard macro definitions include _Al X fanily plus one of _Al X370,
_AIXPS2 or AIXRT to identify the ALX platform plus STDC if
conpilation is at the Standard C | anguage | evel.

File Types
The cc conmand recogni zes and accepts the following file types.

file.c A C | anguage source file. A .c file is preprocessed, conpil ed,
and assenbl ed to produce an object file named file.o. Wen a
single file is conpiled and |inked in one command, the .o file
is not preserved. The -c¢ flag suppresses |linking and produces a
.o file. Conmpiling multiple files with or w thout Iinking
al ways produces .o files.

file.i Treated like a .c file, except that the preprocessing step is
ski pped.

file.s An assenbly | anguage source file. A .s fileis treated |like a
.c file, except that preprocessing and conpiling steps are
ski pped.

file.o An object file. A .o file is passed to the |inker

| Copyright IBM Corp. 1985, 1991
23-1

C Language User's Guide
Invoking a Compiler

file.a Alibrary (or "archive") file. A .afile is passed to the
i nker.
-1 key An abbreviation for the library file nane |ibkey.a -lkey is

passed to the linker, which searches for |ibkey.a in directories
designated by -L flags, then in standard directories.

ot her A file nane without a single-letter suffix is passed to the
[inker.

Subt opi cs
2.3.1 Command- Li ne Options

| Copyright IBM Corp. 1985, 1991
23-2

C Language User's Guide
Command-Line Options
2.3.1 Conmand- Li ne Options
Command- | i ne options may or rmay not be comon across platfornms. See the
i ndi vidual options for any notes or exceptions.

The foll owi ng conmand-I|ine options are al so described with the cc comuand
in Al X Qperating System Conmands Ref erence.

The cc conmand recogni zes several flags. |In addition, flags intended to
nodi fy the action of the |linkage editor (ld), the assenbler (as), or the
preprocessor (cpp) nay al so appear on the cc command line. cc sends any
flags it does not recognize to these commands for processing. The

following Iist includes the nost commonly used cpp flags (-D, -1), and Id
flags (-1, -L, -0).
-a Reserves a register for extended addressing. You should use

this flag if a conpiled procedure creates a stack greater
than 32,767 bytes. Because this flag causes the conpiler to
reserve a register for use by the assenbler, it reduces the
nunber of avail able registers by one.

Note: This option is needed only on the RT processor, which
limts the accessible stack size to 32,767 bytes.

-C Does not send the conpleted object file to the | d command.
Wth this flag, the output of cc is a .o file for each .c or
.s file.

-Dnane[=def] Defines nane as in a #define directive. |f no equal signis
specified, the default def is 1. |If an equal sign but no
def is specified, the def is null. This can be used to

renove occurrences of nane froma file.

-E Runs the naned C source file through only the preprocessor
and wites the result to standard out put.

-f CGenerates code that uses the Floating-Point Accel erator or
Advanced Fl oati ng-Point Accelerator. Prograns conpiled with
this flag will run correctly only on 032 m croprocessors
configured with either of the Floating-Point Accel erators.

Note: This option is only supported on the RT.

-f2 Generates code that uses the Advanced Fl oati ng- Poi nt
Accel erator. Prograns conpiled with this flag will run
correctly only on Al X processors configured with the
Advanced Fl oati ng-Poi nt Accel erator and an Advanced
Processor Card.

Note: This option is only supported on the RT.

-9 Produces additional information for use with a synbolic
debugger (for exanple, the dbx comrand).

-G I ndi cates that gl obal variables are volatile. The optim zer
makes fewer transformations when you specify this flag. To
make a particular variable volatile, add the .volatile
specification to its declaration

Note: This option is only supported on the RT.

| Copyright IBM Corp. 1985, 1991
231-1

Hnbcs

-ldir

-1 key

-Ldir

- N[ndpt] num

- Onhane

C Language User's Guide
Command-Line Options

Treats files with the suffix .h in the same way as files
with the suffix .c.

Note: This option is not supported on the System 370 and
PS/ 2 MCC conpi l ers.

Specifies that the conpiler is to use multibyte scan tables
for code page 932 and that it needs to link with the

mul tibyte library. This option is supported on the 370 and
PS/ 2 MCC conpi l ers.

Looks first in the directory specified by dir, then | ooks in
the directories on the standard list for #include files with
names that do not begin with / (slash).

Searches the specified library file, where key selects the
file libkey.a. |d searches for this file in the directory
specified by an -L flag, thenin /lib and /usr/lib. The |Id
command searches library files in the order in which you
list themon the conmand | i ne.

Note: |If you use the -| flag, it nust be the last entry on
the comand line, follow ng any file paraneters.

Looks in the directory specified by dir for files specified
by -1 keys. If it does not find the file in the directory
specified by dir, |d searches the standard directories.

Changes the size of the synbol table (n), the dinmension
table (d), the constant pool (p), or the space for building
the parse tree (t). FEach table nust be changed separately.
The default size of the synbol table is 1500; the default
size of the dinension table is 2000; the default size for
the constant pool is 600; the default space for the parse
tree is 1000.

Note: This option is needed only on the RT processor, which
al l ocates space for these itens at initialization
time. It is not supported or needed on the
System 370 or the PS/2; those processors allocate the
needed space dynanical ly.

Assigns the file nane specified by nane rather than a.out to
the output file.

Note: Wth the PS/2 VSC conpiler, if a debug/di sassenbl er
file (.d) exists and the output file specified is in
a directory other than the current directory, the .d
files are nmoved to the output file directory.

Sends conpiler output to the code optim zers.

Prepares the programso that the prof command can generate
an execution profile. The conpiler produces code that
counts the nunber of times each routine is called. |If
programs are sent to |d, the conpiler replaces the startup
routine with one that calls the nonitor subroutine at the
start (see Al X Operating System Technical Reference for a
description of this subroutine), and wites a non.out file

| Copyright IBM Corp. 1985, 1991
231-2

-Pg

C Language User's Guide
Command-Line Options

on normal programtermnation.

Like -p, but invokes a run-tine recording nmechani smthat
keeps nore extensive statistics and produces a gnmon.out file
at nornmal term nation. You can then use gprof to generate
an execution profile.

Note: This option is only supported on the RT.

Runs the named C source file through only the preprocessor
and stores the output ina .i file.

Turns off inlining. This option is only supported for the RT
conpi l er, except that the PS/2 VSC conpiler accepts -Q

wi t hout option variables. The follow ng may be used for the
RT compil er:

? Shows the reason for not inlining in the
out put file.

-nane, nane. .. Does not inline nane.
+nane, nane... Inlines nane.
| num Limts the size increase of the function in

whi ch inlining occurs to numinternedi ate
operations. The default numis 100.

#num Limts the expansion of an individual call to
num i nternmedi ate operators. The default num
is 100.

-@ile Reads a list of forbidden functions fromfile

+@il e Reads a list of requested functions fromfile

Requesting a function to be inlined overrides size
constraints.

Conpiles initialized data into the text segnent, naking the
data read-only.

Compi l es the specified C prograns, storing assenbly | anguage
output ina .s file.

Prevents printing of warning nessages.

Note: The RT C Conpiler prevents printing of warning
nmessages about functions that cannot be optim zed.

Produces an assenbler listing. This is stored in a file
that has the sane nane as the assenbler source file but with
the extension .|Ist instead of .s.

Note: On the PS/2 using the VSC conpiler, the assenbler
code listing may not match the executabl e code
generated by the C Compiler. This is because the VSC
Compi l er directly generates machi ne code; there is no
separate assenbler pass. This is not supported on
the System 370 or the PS/2 MCC conpiler.

| Copyright IBM Corp. 1985, 1991
231-3

C Language User's Guide
Command-Line Options

- Unane Undefines nane as in an #undef directive.

-y[dmpz] Specifies the roundi ng node for floating-point constant
fol ding. These nodes are specified as foll ows:

d Di sabl es fl oati ng-point constant folding.
m Rounds toward negative infinity.
n Rounds to nearest whole nunmber. This is the

default action and applies to constant folding in
al | applicable passes of the conpiler.

p Rounds toward positive infinity.

z Rounds toward O.

Note: This option is only supported on the RT.

-z Uses the |ibma version, or a version specified by the user,
of the follow ng transcendental functions:

ot o e o e o e o o ememeoo - +
| | acos | asin | atan | atan2 | cos | exp |
S N R RS +--m e - - oo e oo - B N o mm o - - |
i i log i 1loglO | sin I osgrt | tan | |
S N R RS +--m e - - oo e oo - B N o mm o - - |
I I | I I I I I
| I 1 | | | | I
ot o e o e o e o o ememeoo - +

If this flag is not used, the conpiler generates inline
instructions for the 80387 math co-processor for the PS/ 2,
or the Advanced Fl oati ng Point Accelerator for the RT. (For
nore information on |ibma, see math.h in the Al X Operating
Syst em Techni cal Reference.)

Note: This is not supported on the Systeni 370 or the PS/ 2

MCC conpi | er.
Subt opi cs
2.3.1.1 Debuggi ng
2.3.1.2 Extended Functions
2.3.1.3 PS/2 VSC Specific Options
2.3.1.4 System 370 and PS/2 MCC Specific Options

| Copyright IBM Corp. 1985, 1991
231-4

C Language User's Guide

Debugging
2.3.1.1 Debuggi ng
-V Di splays the trace as with -# and invokes the prograns.
-# Di spl ays a trace of the actions to be taken (for exanple,
i nvoki ng the preprocessor), w thout actually invoking any

prograns.

| Copyright IBM Corp. 1985, 1991
2311-1

C Language User's Guide
Extended Functions

2.3.1.2 Extended Functi ons

Note: The follow ng extended functions are not available on the
System 370 or the PS/ 2 MCC conpiler.

-Bprefix Constructs path nanes for substitute preprocessor, compiler
or optimzer programs. prefix defines part of a path nane
to the new prograns. To formthe conplete path nane for
each new program cc adds prefix to the standard program
nanmes (see Al X Commands Reference for a list of the standard
program nanes).

Note: The PS/ 2 VSC Compil er does not have a separate
optim zer program It also does not invoke the
assenbler as an internediate step to conpiling a C
program

For example, if you enter the conmand:

cc testfile.c -Blusr/jimnew

cc calls the follow ng PS/2 VSC conpiler progranms if the
conpi l er environnent variable is set:

{fusr/jin newcpp
fusr/jimnmnewsc
fusr/jimnewspass?2
fusr/jimnewspass3

cc calls the followi ng conmpiler programs on the RT:

{fusr/jin newcpp
{fusr/jin newcconD
{fusr/jimnmnewcccoml
Simlarly, if you enter the command:
cc testfile.c -Blusr/jimnmnew

cc calls the follow ng PS/2 VSC conpiler progranms if the
conpi l er environnent variable is set:

fusr/jimnew cpp
fusr/jimnew vsc
fusr/jimnmnew vspass?2
fusr/jimnmnew vspass3
cc calls the follow ng conpil er progranms on the RT:
{fusr/jimnmnew cpp
fusr/jinnew ccom
fusr/jimnmnew ccoml
The default prefix is /1ib/o.

-t[pcgfaloq] Applies the -B flag instructions for constructing file nanes
to only the designated prograns.

The paraneters accepted for PS/ 2 VSC are:

| Copyright IBM Corp. 1985, 1991
231.2-1

C Language User's Guide
Extended Functions

preprocessor
compi l er first

compi |l er second
conmpiler third

assenbl er

I i nkage editor

- "TQ OT

The paraneters accepted for RT are:

prepr ocessor
compi l er first

i nternmedi ate code optim zer
conmpi |l er second

optim zer

assenbl er

I i nkage editor

— v 0O OT

The -t flag with no additional paraneters designates by
default the preprocessor and conpil er prograns.

If you do not specify the -B flag when you specify the -t
flag, the default file name prefix is /lib/n.

Note: You can specify this prefix with the -B flag
However, dependi ng on what conbination of the -B and
the -t flags you specify, prefix can have two
possi bl e default values. |f you specify -B but no
acconpanying prefix, the default prefix is /lib/o. If
you specify the -t flag without al so specifying the
-B flag, the default prefix is /1ib/n.

-W, flagl[,flag2...]
Gves the listed flags to the conpiler program specified by
c; ¢ can be any one of the values described with the -t
flag. For exanple, since both |d and as recognize a -o
flag, use -Wto specify the programto which the flag is to
be sent. For exanple, -W,-o0 sends it to Id and -Wa, -0
sends it to as.

| Copyright IBM Corp. 1985, 1991
231.2-2

C Language User's Guide
PS/2 VSC Specific Options

2.3.1.3 PS/2 VSC Specific Options

The Al X PS/2 VSC conpiler's specific options are described bel ow. They
i ndi cate which features are enabl ed or disabled when the conpiler is

i nvoked. The options are described in al phabetical order.

b+ Fl oati ng Poi nt Conputation

Instructs the conpiler to pronote all floating-point values to
doubl e precision before all floating-point conputations.

d+ D sassenbl er I nformation

Produces additional information for use with the dis conmand
(the di sassenbler).

Note: Wth this option, you can al so use the dbx conmand
(synbolic debugger). (See the g+ option below.)
However, the .d file does not contain synmbolic
i nformation; therefore, you can only do nmachine | evel
debuggi ng.

efil enane Error File

Instructs the conmpiler to place its error output in the file

specified by filenane. |If the efilenane option is not
specified, error nessages are witten to the standard error
devi ce.

g+ Debugger | nformation

Produces additional information for use with the dbx conmand
(the synbol i c debugger).

Not es:
1. Wth this option, you can also use the dis command
(di sassenbl er), see the d+ option above. However,
al l ocation of variables into registers is turned off.
2. |If both the d+ and the g+ command-line options are set,
regardl ess of their order on the command |line, the g+
option has the higher priority.

3. The optim zation process is disabled whenever the g+
option is specified on the command |i ne.

[filename Listing File
Instructs the conpiler to place its listing output in the file

specified by filenane. |If the |filenane option is not
specified, a listing file is not generated.

| + List to Standard Qutput Device

Instructs the conpiler to generate a listing to the standard
out put devi ce.

ol+ Optimzation Level 1

| Copyright IBM Corp. 1985, 1991
2313-1

C Language User's Guide
PS/2 VSC Specific Options

Instructs the conmpiler to use optimzation |evel 1 (see
"Optimzation of Progranms” in topic 2.5).

02+ Optim zation Level 2

Instructs the conmpiler to use optimzation |evel 2 (see
"Optimzation of Programs” in topic 2.5).

03+ Optim zation Level 3

Instructs the conmpiler to use optimzation |evel 3 (see
"Optimzation of Progranms” in topic 2.5).

04+ Optim zation Level 4

Instructs the conmpiler to use optimzation |evel 4 (see
"Optimzation of Progranms” in topic 2.5).

v+ Conpi l er Progress Information

Instructs the conpiler to generate information on the progress
of the conpile.

W No Warni ng Messages

Instructs the conpiler not to generate warning nessages.

| Copyright IBM Corp. 1985, 1991
2313-2

C Language User's Guide
System/370 and PS/2 MCC Specific Options

2.3.1.4 System 370 and PS/2 MCC Specific Options

The Al X/ 370 and PS/2 MCC conpil er options are descri bed bel ow.

-F file[:stanza] Uses an alternate file and/or stanza for the cc

- Hanno

- Hansi

- Hasm

- Hcpp

- Hnocpp

- Hf si ngl e

-H i nes=n

configuration. See AlX Qperating System Technica
Ref erence for discussions of the configuration file
/etc/cc. cfg.

Used in conjunction with the -S option (expl ained bel ow).
Specifies that the generated -S file is to be annotated
with lines fromthe source file.

Causes the conpiler to accept only prograns conformng to
ANSI St andar ds.

Note: This option nust always be used in conjunction with
the -Hnocpp option |listed below. The conpiler
offers two macro preprocessors: the inboard
preprocessor and the outboard preprocessor. The
i nboard preprocessor is built in and produces
ANSI - st andard code. The outboard preprocessor is
stored in /lib/cpp; it offers a nunber of powerful
services not found in the inboard preprocessor, but
some of the code produced is not ANSI standard.

Directs the conpiler to produce a (pseudo-) assenbly
listing of the generated code on standard output, by
initializing the Asmtoggle to On. The assenbly listing is
annotated with lines fromthe main source file, but not
with lines fromany included files. These |ines appear as
comments i nmedi ately preceding the correspondi ng assenbly
instructions. |If the -S option (described below) is also
specified, the generated .s file is annotated with |lines
fromthe source file, and no listing is witten on standard
output; that is, it has the sane effect as -Hanno.

Specifies that the outboard C macro preprocessor (/1ib/cpp)
is to be used, rather than the inboard preprocessor

Specifies the use of the inboard C macro preprocessor.

Specifies that single-precision arithnetic is to be used in
conputations involving only float expressions. That is,

fl oati ng-point operations are not to be perfornmed in double
precision. Single-precision arithmetic is the default,
anyway. Use -Hon=Double_math_only to specify double
precision. Note that non-prototyped functions declared to
return float may actually return double, depending on the
setting of the toggle Double return. Sone progranms run
much faster if single-precision arithnetic is used, but
beware of |oss of significance due to | ower-precision

i nt ermedi at e conput ati ons.

Causes a page eject to occur after every n lines witten to
standard output. The default of 60 is appropriate for nost
6-1ines-per-inch printers, which allow a maxi nrum of 66

| ines per page for 11-inch paper. The setting of -Hines
is intended to all ow sone bl ank space at page boundari es.

| Copyright IBM Corp. 1985, 1991
2314-1

-H i st

- Hon=t oggl e
- Hof f =t oggl e

- Hpcc

- H+w

-M

C Language User's Guide
System/370 and PS/2 MCC Specific Options
For 8-lines-per-inch (88 |ines per page) printers, -Hines
shoul d be set to 80 or 82. This option is used in
conjunction with the -Hist and -Hasmoptions. If nis O,
no page ejects are emtted.

Causes the conpiler to generate a source listing on
standard output. It works by initializing the List toggle
to On.

Generates an XA370 executable. This option is not supported
on PS/ 2 MCC.

Specifies that the outboard C macro preprocessor is to be
i nvoked and makefil e dependencies are to be generated. The
output is sent to standard output. No conpilation occurs.
Turns a toggle On.
Turns a toggle Of.
Specifies that the conpiler is to run in PCC node. In this
nmode, the conpiler rel axes enough of the ANSI extensions to
more or less enulate the Portable C Conpiler. This permts
old C prograns that would not ordinarily conpile to conpile
with little (if any) nodification.
Specifically, -Hpcc does the follow ng:

Turns on the PCC toggle

Unreserves the follow ng keywords: signed, volatile,
and const.

Turns on the Long_enuns toggle so that enumtypes are
mapped to full words as is the PCC convention.
| ssues all warnings by turning off the PCC nsgs toggle.
Gener ates nakefil e dependencies for the naned C files and

wites the result to standard output. Does not compile or
link.

| Copyright IBM Corp. 1985, 1991
2314-2

C Language User's Guide
AIX/370 and PS/2 MCC Compiler Toggles

2.4 Al X/ 370 and PS/2 MCC Conpil er Toggl es

The Al X/ 370 and PS/2 MCC conpilers provide a set of toggles that can be
initialized on the command line, with -Hon and -Hoff. See "Invoking a
Conpiler" in topic 2.3.

The nanes, default values, and meani ngs of the conpiler toggles are
descri bed below. Mny of the defaults can be altered by naking
appropriate changes in the /etc/cc.cfg file. Toggles with alterable
defaults are denoted by the presence of alterable in the descriptions
bel ow.

Subt opi cs

1 Align_nenbers -- Default: On

2 Asm-- Default: Of

3 Char _default_unsigned -- Default: On

4 Char_is_rep -- Default: Of

5 Cross_junp--Default: On

6 Double_math_only -- Default: Of

7 Double return -- Default: Of

8 Downshift file nanmes -- Default: Of

9 Int_function_warnings -- Default: Of

10 List -- Default: Of

11 Long_enuns -- Default: Of
Make_externs_gl obal -- Default: On

13 Parmwarnings -- Default: On

14 PCC -- Default: On

15 PCC _nsgs -- Default: Of

16 Pointers_conpatible -- Default: Of

17 Pointers_conpatible with_ints -- Default: Of
18 Print_ppo -- Default: Of

19 Print_protos -- Default: Of

20 Prototype_conversion_warn -- Default: On
21 Prototype_override_warnings -- Default: On
22 Read_only_strings -- Default: Of

23 Recognize_library -- Default: On

24 Warn -- Default: On

NN NNDDNDNNDNNNDNDNDNDNNDND N
Phrhhbbhpsbhbhbhibhbbbiabhhrbhibhbnb
=
N

| Copyright IBM Corp. 1985, 1991
24-1

C Language User's Guide
Align_members -- Default: On

2.4.1 Align_nenbers -- Default: On

Wien On, nenbers of structures are aligned. Wen Of, no such alignnent
takes place. Not all other inplenmentations of Al X C permt nenber
al i gnnment to be suppressed.

| Copyright IBM Corp. 1985, 1991
241-1

C Language User's Guide
Asm -- Default: Off

2.4.2 Asm-- Default: Of

Wien On, a (pseudo-)assenbly listing is generated, annotated with source
code as assenbly comments. |If the Asmtoggle is to be turned On and Of
over sections of a nodule, On-Of pairs should surround function
definitions; if the pragma is used anpbng executabl e statenents, the point
at which the pragma takes place may be obscured by the use of

optim zati ons.

| Copyright IBM Corp. 1985, 1991
242-1

C Language User's Guide
Char_default_unsigned -- Default: On

2.4.3 Char_default_unsigned -- Default: On
VWhen On, type char is unsigned by default.

The Standard allows the type char by itself, that is, wthout the

adj ectives unsigned or signed, to be either signed or unsigned. O
course, the types unsigned char and signed char can be used to explicitly
control signedness.

| Copyright IBM Corp. 1985, 1991
243-1

C Language User's Guide
Char_is_rep -- Default: Off

2.4.4 Char_is_rep -- Default: Of

The ANSI Standard provides three character data types: char, unsigned
char, and signed char. Even though char is signed or unsigned, depending
on the inplenentation, it is never the same type as signed char or

unsi gned char. One of the effects is that char* is type conpatible with
nei ther unsigned char* nor signed char*. This increases program
portability.

When On, Char_is rep specifies that char is identically either signed char
or unsigned char, depending on whether char is signed or not. Although
this may permt a programto conmpile, the program m ght not conpile under
anot her C inplenentati on where the signedness of char is different. Be
sure to turn this toggle On before any declarations or preprocessor

st at ement s.

| Copyright IBM Corp. 1985, 1991
244-1

C Language User's Guide
Cross_jump--Default: On

2.4.5 Cross_junp--Default: On

VWhen O f, suppresses the cross-junping (tail-nerging) optimzation that is
ot herwi se perforned when -0 is specified. Suppressing cross-jumnping can
make code easier to debug at the instruction |evel.

| Copyright IBM Corp. 1985, 1991
245-1

C Language User's Guide
Double_math_only -- Default: Off

2.4.6 Double_math_only -- Default: Of
VWhen On, floating-point operations are perforned in double precision.

Wien two operands of certain arithmetic operations are both of type float,
the Standard pernmits an inplenentation to do one of two things: perform
the operation using float arithnmetic, in which case the result of the
operation is of type float, or convert both operands to type double and
use double arithmetic, in which case the result of the operation is of
type double. Wen toggle Double math_only is turned Of, single-
precision arithmetic is used. When it is turned On, doubl e-precision
arithnmetic is used instead.

| Copyright IBM Corp. 1985, 1991
246-1

C Language User's Guide
Double_return -- Default: Off

2.4.7 Double return -- Default: Of

VWhen On, any non-prototype function returning type float returns type
doubl e instead. This convention conforns to sone Portable C Conpiler
i npl enent ati ons.

| Copyright IBM Corp. 1985, 1991
24.7-1

C Language User's Guide
Downshift_file_names -- Default: Off

2.4.8 Downshift _file_names -- Default: Of

VWhen On, the file nane specification of any subsequent |nclude pragna is
interpreted as if it were in all lowercase. This toggle is useful when
nmovi ng source code froman operating systemin which file-name casing is
not significant to a systemin which it is significant.

| Copyright IBM Corp. 1985, 1991
248-1

C Language User's Guide
Int_function_warnings -- Default: Off

2.4.9 Int_function_warnings -- Default: Of

VWhen O f, suppresses the warning nessage normal |y generated when a
function returning int has no return exprn statement within it, or when a
function returning int contains a return withinit.

This is to renove frequent warnings for old C source that did not use the
reserved word void to indicate a function returning no result, because
such functions return int by default.

| Copyright IBM Corp. 1985, 1991
249-1

C Language User's Guide
List -- Default: Off

2.4.10 List -- Default: Of

When On, the conpiler produces a listing on standard output. It is
typically given when starting the conpilation but nmay appear in the source
file to turn the listing On or Of around a particular section of source.

| Copyright IBM Corp. 1985, 1991
24.10-1

C Language User's Guide
Long_enums -- Default: Off

2.4.11 Long_enuns -- Default: Of

Wien On, any variable of an enumtype is mapped to a full word.
O herwi se, such a variable is mapped to the snallest of one, two, or four
bytes, such that all values are representable.

| Copyright IBM Corp. 1985, 1991
24.11-1

C Language User's Guide
Make_externs_global -- Default: On

2.4.12 Make_externs_gl obal -- Default: On

VWhen On, any local declaration of an object with storage class extern is
made global if there is not already a gl obal declaration of the object.
Early C conpilers pronoted an extern declaration within a function to the
gl obal scope. This toggle supports prograns dependi ng upon that feature.
This option is not supported on the PS/2 MCC conpil er.

| Copyright IBM Corp. 1985, 1991
24.12-1

C Language User's Guide
Parm_warnings -- Default: On

2.4.13 Parmwarnings -- Default: On

VWhen On, the conpiler produces warnings whenever argunments to a

non- prototype (old-style) function F do not match the types of the
decl ared formal paraneters of F. Frequently this inconsistency is a
source of disastrous or difficult-to-find bugs. Exanple:

doubl e square(x) double x; "return x*x;
printf("%"n", square(3));
In this exanple, square is passed the integer 3, not doubl e-precision 3.0,
and the conpiler issues a warning. The C | anguage definition prohibits
the conmpiler fromcasting 3 to a double before passing it.
To elimnate the conpiler warnings, turn Of the toggle Parm warnings.
W reconmend, however, that the programtext be repaired to elimnate the

of fending function calls rather than elimnating the potentially useful
f eedback fromthe conpiler.

| Copyright IBM Corp. 1985, 1991
2413-1

C Language User's Guide
PCC -- Default: On

2.4.14 PCC -- Default: On

There are many UNI X C prograns that conpile under the Portable C Conpiler

that will not conmpile under an ANSI conpiler. Wen the PCC toggle is

turned On, many of the ANSI restrictions are relaxed so that such prograns
are nore likely to conmpile (wth appropriate warnings).

The following is a list of the ANSI restrictions that this toggle affects:
Structure nenber selection is permitted on a variable of any type; it
need not be a struct or union. However, if the name of the nenber
being selected is declared as a nmenber in nore than one struct or
uni on definition, each occurrence nust be declared with the sane type
and be mapped at the sane of fset.

Any pointer type is considered conmpatible with any other pointer type.
Note: Turning On the toggle Pointers_conpatible has this effect.
Poi nters and any integer type are consi dered conpati bl e.

Note: Turning On the toggle Pointers_conpatible with_ints has this
effect.

These PCC | anguage features are not supported:
O (Cast) variable as left side of assignnen
0 dd-fashioned assignment operators (=+

0 dd-fashioned initialization (no =

0 Unsi gnedness-preserving senantics

See al so the -Hpcc conpiler option in the section "Invoking a Conpiler" in
topic 2.3.

| Copyright IBM Corp. 1985, 1991
2414 -1

C Language User's Guide
PCC_msgs -- Default: Off

2.4.15 PCC_nsgs -- Default: Of

VWhen On, the diagnostic capabilities of the conpiler are reduced to the
PCC ("Portable C Conpiler") level, in that the foll ow ng warnings are not
emtted:

Function called but not defined.
"=" used where "==" may have been intended.

In addition, this toggle disables warnings about passing an int, for
exanple, to a non-prototyped function expecting a |ong int, because int
and long int are the sane size.

VWhen all warnings are enabled in C, code nust be "squeaky clean" to get
through the conpiler wi thout a warning. Sonme users have code that was
designed with a conpiler that is not so demandi ng, and woul d prefer fewer
prods fromthe conpiler. Hence the PCC nsgs toggle is supplied.

Note: The -H+w command-line option turns this toggle Of.

| Copyright IBM Corp. 1985, 1991
24.15-1

C Language User's Guide
Pointers_compatible -- Default: Off

2.4.16 Pointers_conpatible -- Default: Of

VWhen On, the conpiler permts a pointer value to be assigned to an
i nconpati bl e pointer variable, with an appropriate warning.

| Copyright IBM Corp. 1985, 1991
24.16-1

C Language User's Guide
Pointers_compatible_with_ints -- Default: Off

2.4.17 Pointers_conpatible with_ints -- Default: Of

VWhen On, allows pointers of any type to be conpatible with ints, with an
appropriate warning. Although this is in violation of Standard and C
compi | er specifications, many old C prograns inproperly assign pointers to
ints and vice versa. This toggle allows such prograns to be conpiled

wi t hout nodification.

ANSI and the C conpiler disallow this dangerous practice because pointers
are not necessarily the sane size as ints on all nachines.

| Copyright IBM Corp. 1985, 1991
2417 -1

C Language User's Guide
Print_ppo -- Default: Off

2.4.18 Print_ppo -- Default: Of

When On, the output of the preprocessor is witten to standard out put.
Wth this toggle, it is possible to print what the conpiler proper
receives over a local area of source code. This toggle can be used to
i nspect the expansion of a macro, by turning the toggle On prior to the
macro invocation and Of after it.

Note: This toggle is ignored unless -Hnocpp is specified or is the
defaul t.

This option is not supported on the PS/2 MCC conpil er.

| Copyright IBM Corp. 1985, 1991
24.18-1

C Language User's Guide
Print_protos -- Default: Off

2.4.19 Print_protos -- Default: Of
VWhen On, the conpiler wites to standard output a new, prototype-style
function header for each function definition. This toggle aids in the
conversion of C prograns to the ANSI prototype syntax derived fromthe C
| anguage. For exanple, for the function definition:

int f(x,y,z) int *x,z[]; double (*y)(); "..."
the conpiler produces the follow ng output:

int f(int *x, double (*y)(), int [Zz]);

The ol d function header can then be replaced with the generated one.

| Copyright IBM Corp. 1985, 1991
2419-1

C Language User's Guide
Prototype_conversion_warn -- Default: On

2.4.20 Prototype_conversion_warn -- Default: On

VWhen On, the conpiler generates a warni ng message when a function's
argunment is converted due to a prototype declaration.

When using function prototypes, the conpiler may automatically convert a
function's argunent so that the argunent's type matches that of the fornal
paraneter. \herever such a conversion does not match what woul d happen in
t he absence of prototypes, such C code would probably not run correctly on
ol der C conpilers that |ack prototypes.

| Copyright IBM Corp. 1985, 1991
24.20-1

C Language User's Guide
Prototype_override_warnings -- Default: On

2.4.21 Prototype_override_warnings -- Default: On

VWhen On, the conpiler produces a warning whenever a declaration (not
definition) for a function using the new prototype syntax overrides the
semantics of an old-style function definition.

Standard C requires that function prototype declarations override

ol d-style function definitions. This nmeans that the sinple inclusion of a
.h header file with prototype declarations of functions will obtain the
new prototype semantics for the definitions of those functions. This
feature has both di sadvantages and advant ages.

The advantage is that the new prototype semantics -- the Pascal -style
assi gnment - conversi on of argunents to the types of the formal paraneters
-- is obtainable by nerely including a declaration in a header file. The
di sadvantage is that a definition can no | onger be read out of context;

W t hout searching header files one cannot deterni ne whether or not the
compi l er conpiles the function using prototype-style semanti cs.

For exampl e:

file header. h:
int func(float f,long |);

file prog.c:
#i ncl ude "header. h"
int func(f,l) float f; long |; {

}”
voi d sub() {

func(3, 4.4); /* Passes 3.0 and 4L via */

} [/* automatic conversion. */

Wre header.h not included, the call to func in sub would pass the int 3
and the double 4.4, and probably func would not work properly. Wth the
header file included, the interface for func is changed to prototype-style
(3 is converted to float and 4.4 to long). Thus, one can find out how the
conmpiler treats func only by searching all the header files.

To obviate the need for searching, Al X C provides a warni ng nessage
whenever an old-style definition is overridden by a prototype. The
war ni ng nmessage can be disabled by turning Of toggle

Prot ot ype_override_warnings. W recommend that function definitions be
witten with the new prototype syntax for inproved readability and
reliability.

For exampl e:

file prog.c:
int func(float f,long |) {

The ANSI conmittee pernmitted the override feature for two reasons: first,
it would take some work to convert programs to use the new syntax in the
definition (although with toggle Print_protos, Al X C generates the headers
fromold-style definitions); second, nost conpilers do not support
prototype-formdefinitions, and the use of a header that is conditionally
i ncl uded based upon the conpil er being used nakes code nore easily
conpi |l abl e by different conpilers.

| Copyright IBM Corp. 1985, 1991
24.21-1

C Language User's Guide
Read_only_strings -- Default: Off

2.4.22 Read_only_strings -- Default: Of

When On, string constants are placed in a read-only data section. Two or

nore identical string literals in the sane nodule will appear only once in
menory. It is an error to nodify the storage of a string constant at run

time when the toggle is On.

Cstring literals are not true literals because they are witable data
items. This means that they cannot normally be placed in code space.
Furthernmore, two identical C string literals nmust nornmally be duplicated
in a program s object code, because one m ght be nodified and the other
not. To avoid this, use Read only strings and Literals_in_code. These
two toggles cause C string literals to be placed in code.

| Copyright IBM Corp. 1985, 1991
24.22-1

C Language User's Guide
Recognize_library -- Default: On

2.4.23 Recognize_library -- Default: On

VWhen On, the conpiler nay substitute in-line code for any function defined
in the ANSI Standard C library. Candidates for substitution currently
include the math and string functions. Future rel eases may enconpass nore
of the library.

| Copyright IBM Corp. 1985, 1991
24.23-1

C Language User's Guide
Warn -- Default: On

2.4.24 \Warn -- Default: On

VWhen O f, warning nessages are suppressed. The -w command-|ine option
turns Warn Of initially.

| Copyright IBM Corp. 1985, 1991
2424 -1

C Language User's Guide
Optimization of Programs

2.5 Optimzation of Prograns

Optimzation refers to the process of inproving the execution performance
of a given program It is done at the cost of conpile tinme but results in
reduced execution tine. The Al X VSC Conpiler perforns two separate

optim zation passes--machi ne-dependent optim zations and

machi ne-i ndependent optim zations. Iwh the PS/2 VSC conpiler, the type
of optimzation is controlled by selecting conpiler comrand-1ine options.
The comuand-1ine options for VSC optinization are:

ol+ Machi ne- dependent Optim zation

Instructs the compiler to performa machi ne-dependent optim zi ng
pass, which takes place after the code-generati on phase of the
conmpi lation. This pass exam nes object code at the basic bl ock
| evel and incl udes:

El i m nati ng unnecessary branches

El i m nati ng redundant | oads and stores
Expl oi ti ng machi ne idions

Strength reduction

OooOooOod

02+ Machi ne-i ndependent Optim zation

Instructs the compiler to performa machi ne-i ndependent optim zi ng
pass that includes:

Constant fol di ng

Strai ghteni ng

El i m nati ng unreachabl e code
Copy propagation

Eli m nating dead code.

I o o

03+ Machi ne-i ndependent Optim zation

Instructs the compiler to performa machi ne-i ndependent optim zi ng
pass that includes:

El i m nati ng conmon subexpressi ons
Subscript optimzation

El i m nating i nduction variabl es
Loop i nvariant code noti on.

OooOooOod

04+ Machi ne- dependent and Machi ne-i ndependent Opti m zation

Instructs the conpiler to perform machi ne-dependent and
machi ne-i ndependent optin zati on.

On the RT, both nmachi ne-dependent optim zation and machi ne-i ndependent
optim zations are invoked by selecting the -O fl ag.

The machi ne- dependent optim zations are:

El i m nati on of unnecessary branche

Eli mi nati on of redundant | oads and store

Strength reductio

Repl acenment of branches with branch-w th-execute instruction
I nstruction scheduling

I Iy |

The machi ne-i ndependent optim zations are:

| Copyright IBM Corp. 1985, 1991
25-1

C Language User's Guide
Optimization of Programs

Const ant propagation and foldin
Code notion of |oop invariant
Unused variable elimnatio

Dead code elimnatio

I diomrecognitio

Common subexpression elimnatio
Regi ster allocatio

Val ue recognitio

Copy propagatio

Short circuitin

I ntegrated return/assi gnnent

0 I |

ubt opi cs
1 AL X/ 370 and PS/2 MCC Optim zati on Consi derations

:2 Sone ANSI - Requi red Specifics for Al X/ 370 and PS/2 MCC

NN W
o

| Copyright IBM Corp. 1985, 1991
25-2

C Language User's Guide
AIX/370 and PS/2 MCC Optimization Considerations

2.5.1 ALX/ 370 and PS/2 MCC Optim zati on Consi derations

The choice of algorithmfor a given task can have a nuch greater inpact on
execution speed than any conpiler optimzation. It is generally true that
nost of program execution time is spent on | ess than 10% of the code.
Changes to the algorithmin the critical 10% frequently have dramatic
results.

The optim zing feature of the conpiler should not be used whil e devel oping
prograns. Some optim zati ons nove statenents fromone area of a program
to anot her, or change statenents or variables in a way that is not

obvious. Since this makes debuggi ng prograns nore difficult, optimzing
bef ore debuggi ng should be avoided. After a programis devel oped, it can
be reconpiled with optimnmzation command-|ine options to inprove its
perf or mance.

The conpiler translates each function definition into an interna
representation that materializes every conputation required by the target
machi ne, down to the |oading and storing of registers. The interna
representation assunes the exi stence of an unlimted nunber of virtua
registers. The register allocation phase nmaps these virtual registers
into the set of machine registers.

The internal representation is maintained in the formof a flow graph on
which a series of optimzations is perforned. Each node of the graph
represents a block of code that has no nore than one entry point or exit
point. The following is a brief description of the optim zations, in
roughly the order they are perforned:

0 Dead Code Elimnatio
The conpiler elimnates any bl ock of code that has no predecessor
block (that is, there exists no path to the block). This phase is
i nvoked from ot her phases when it is potentially valuable to do so.
For exanpl e, constant propagation nmay convert a conditional junmp into
an uncondi tional junp and thus elimnate a path out of the associ ated
bl ock.
0 Constant Propagatio
When the conpiler sees a variable being referenced such that the | ast
value V assigned to that variable was a constant, the reference is
replaced with V. For exanple:
i nt debug;
debug = 0;
i f (debug){ /* Constant propagation back-substitutes 0. */
}
0 Constant Expression Foldin
Arithmetic expressions whose operands are constants are eval uated at
compile tinme. Constant propagation often exposes such expressions
that are not otherw se apparent.

0 Local Conmon Subexpression Elimnation (Local CSE

The conpiler divides the flow graph into a m ni mum nurber of

| Copyright IBM Corp. 1985, 1991
251-1

C Language User's Guide
AIX/370 and PS/2 MCC Optimization Considerations
sub-graphs such that each sub-graph is a tree (that is, each node not
havi ng nore than one predecessor but any nunmber of successors).
Conmon subexpressions are elimnated across nodes of each sub-graph

through a techni que known as val ue nunbering. It recognizes the
commutativity of operations so that "A+B" yields the same val ue as
"B+A". It also keeps track of copy propagation so that, in the

foll ow ng exanpl e, the expressions atb and c+d woul d be recogni zed as
redundant :

int a,b,c,d, e, f;

a+b;

a;

b;

c+d; /* <== Sane val ue as a+b above. */

0 QO -

d obal Comon Subexpression Elimnatio

In this phase, comobn subexpressions are elimnated across the entire
flow graph. Unlike the |ocal CSE phase, the analysis is restricted to
arithnetic identities.

I nvari ant Expression Renoval from Loop

Any register conputation that is invariant within a loop is noved
above the | oop.

Li ve/ Dead Anal ysi

Comput ati ons whose results are never used are elimnated. Dead stores
are also elimnated

Strength Reduction

Mul tiplication by a constant is converted to a series of additions,
subtractions, and shifts. Division and nodulo by a integer power of
two are converted to a shift or nasking operation

d obal Register Allocatio

Regi ster allocation is perforned by building an interference graph and
coloring it. Each node of the interference graph represents a virtua
register. Each edge of the graph designates two registers that are
alive at the sanme tine and therefore nust be mapped to different
machi ne regi sters. The coloring process assigns each node to a
machi ne regi ster such that no two adjacent nodes are nmapped to the
same register

Cross Junping (Tail Merging

Two or nore nodes that end in the sanme sequence of code and have a
comMmDnh successsor are rewitten so as to elimnate the redundant code:

if (a>b) }
b=a;
foo(a);
}

el se
foo(a)

| Copyright IBM Corp. 1985, 1991
251-2

C Language User's Guide
AIX/370 and PS/2 MCC Optimization Considerations

is transforned to:

if (a>b)
b=a;
foo(a)

Function Inlinin

Function inlining replaces calls to functions with the |ogic contained
therein, elimnating call overhead and exposi ng opportunities for
further optim zation.

| Copyright IBM Corp. 1985, 1991
251-3

C Language User's Guide
Some ANSI-Required Specifics for AlX/370 and PS/2 MCC

2.5.2 Sone ANSI-Required Specifics for Al X/ 370 and PS/2 MCC

ANSI docunent X3J11/88-090 requests that each C inplenentation provide the
foll owi ng system specifics.

O Identifier

There is no inposed |imt on the nunber of significant characters in
an identifier. Casing is preserved.

O Char act er

Source and execution character sets are both Standard ASCII. Each
character in the source character set maps into the identica
character in the execution character set. Wthout exception, al
character constants map into sone value in the execution character
set.

A character is stored in a byte, and there are four bytes in an int.
The type specifier char, when not acconpanied by an adjective, denotes
an unsi gned character type. However, this can be changed by turning
O f the toggle Char_default_unsigned.

O Integer
Integers are represented in two' s-conplenent binary form The

following table illustrates the ranges of values to which the various
i nteger types are restricted:

o o o o o o e e o e oo +
i Type i Range | | |
e o e e e e e e e o o e e e e e e e oo |
| signed char | -128 | to | 127 :
o e e e e e e e e aeaaaaa Fom e e e e e . |
I unsigned char O] ! to | 255 :
e o e e e e e o o e e e e e e oo |
| short | -32,768 | to | 32,767 |
o e e e e e e e e aeaaaaa Fom e e e e e . |
! unsi gned short HEO) | to | 65,535 :
e o e e e e e o o e e e e e e oo |
|oint | -2,147, 483, 648 | to | 2,147,483, 647 |
o m e e e e e e e maaaa Fom e e e e e . |
I unsigned int O] | to | 4,294,967, 296 :
e o e e e e e e e o o e e e e e e e oo |
. long | -2,147, 483, 648 | to | 2,147,483, 647 |
e o e e e e e e e o o e e e e e e e oo |
i unsigned | ong) I to | 4,294,967, 296 i
e o e e e e e o o e e e e e e oo |
I | I | I
1 | I | |
o o o o o o e e o e oo +

An integer is converted to a shorter signed integer or int bit field
by bit truncation; that is, when an X-bit value is to be stored into a
Y-bit receptacle, where X > Y, the rightnost Y bits of the first value
are stored.

An unsigned integer Uis converted to a signed integer | where sizeof
(U = sizeof(l) by transferring the bits of Uinto |, whether or not
the value of Uis representable in|. For exanple, (short int)(short

| Copyright IBM Corp. 1985, 1991
252-1

C Language User's Guide
Some ANSI-Required Specifics for AlX/370 and PS/2 MCC

unsi gned) 65535 is the short int value -1. The sizeof operator
returns an int, unless the value returned is not representable in int,
in which case unsigned int is the type returned.

The result of a bitw se operation on a signed integer is the same as
if the integer were treated as unsigned.

The sign of the remainder on integer division is the same as the sign
of the dividend.

The right shift of a signed integral type is arithnetic; that is, the
sign bit is propagated to the right.

Fl oati ng poin

Fl oating-point data is represented in the floating-point format
defined in | BM System 370 Principles of Operation manual. The default
rounding nmode is to "truncate toward zero".

VWhen a negative floating-point nunber is truncated to an integra
type, the truncation is toward zero. Thus -2.7 is truncated to -2 and
-1.2 to -1.

Poi nter
The difference of two pointers is type int.
Regi st er

The conpiler attenpts to map each auto- (or register-) class variable
to a register provided that its type is appropriate and its address is
not required.

Structures, unions, and bit field

Signed and unsigned bit fields are supported. A bit field declared as
int is treated as unsigned int. A bit field declared as signed int
will be interpreted as signed.

Preprocessing directive

A singl e-character constant in a constant expression controlling
conditional inclusion is always non-negative in value, ranging fromO
to 255.

Mul ti byte character

The source character set can contain nultibyte characters, which are
used to represent the extended character set. The execution character
set can also contain nmultibyte characters and it does not need to have
the same encoding as the source character set. The presence, neaning,
and representation of any additional nenbers is |ocale specific.
Mul ti byte characters have state-dependent encodi ngs, wherein each
sequence of multibyte characters begins in an initial shift state and
enters other inplenentation-defined shift states when specific
mul ti byte characters are encountered in that sequence. For the source
character set, a nmultibyte character cannot have a |linefeed (Oxa) or
an ASCI| question mark (Ox3f = '?'") as one of its characters.

Code page 932 introduces a nultibyte character interpretation of

| Copyright IBM Corp. 1985, 1991
252-2

C Language User's Guide
Some ANSI-Required Specifics for AlX/370 and PS/2 MCC
length 2 over the streamof ASCI| characters. A byte in the range of
0x81..0x9f or 0OxdO..Oxfc is interpreted as the first byte of a byte
pair; the second byte of the pair can be in the range 0x40..0xff.
ANSI standard allows nmultibyte characters within strings, characters,
comments and #include <..> file nanes.

To use nultibyte characters from code page 932, environnment variable
LANG needs to be set to "Jp_JP.pc932" before conmpiling source files
with 932 nultibyte characters. A call to function setlocale is
required in the followi ng manner before calling any of the nmultibyte
or wi de character conversion functions:

setlocal e(LC_ALL,"")

| Copyright IBM Corp. 1985, 1991
252-3

C Language User's Guide
Floating-Point Exceptions for AIX PS/2

2.6 Floating-Point Exceptions for Al X PS/2

The follow ng six operations or types of operations can produce an Al X
fl oati ng- poi nt exception. They apply to PS/2s configured with or w thout
the Intel 80387 floating-point coprocessor.

0 Stack operations--stack overflow, underflo

O Arithnetic operations--includes invalid operations defined in |IEE
St andard 754

0 Division by zer
O Denor nal numbe
0 Overflo

O Under f | ow

Fl oati ng point exception interrupts are disabled by default. You can use
the fp_control, fp_exmask, fp_exunmask, fp_round, fp_precision, fp_getex,
fp_getprecision, fp _getcw, fp_restore, and fp_getround subroutines to
mani pul ate the runtine environment with respect to floating-point handling
and to set the desired rounding and precision nodes. (See Al X Operating
Syst em Techni cal Reference for nore information about these subroutines.)

The following is an exanple of a programthat wites the current control
word and then enables the divide by zero interrupt. Note the inclusion of
the header file /usr/include/sys/fpcontrol.h, which defines the constant
FPM DIVIDE 0. Also, see fp_getcw(3) for the library calling option.

#i ncl ude <sys/fpcontrol. h>

main ()

{
doubl e x,vy;
printf("%\n",fp_getcw));
f p_exunmask(FPM_DI VI DE_O) ;

x = 0.0
y = 1.0;
y = y/x

}

Any conbi nation of the exception mask constants defined in fpcontrol.h can
be ORed together to formthe desired argunent to the appropriate
subrouti ne.

| Copyright IBM Corp. 1985, 1991
26-1

C Language User's Guide
C Programs Under AIX

2.7 C Progranms Under AlIX
As illustrated in Figure 2-1, the four main steps in creating an
execut abl e C program under the Al X Operating System are:

1. Create your programusing a text editor and store it with a .c
ext ensi on.

2. Conpile your source programto generate an object file. The conpile
process is described in detail bel ow.

3. Link the output with the AIX systemlinker |d to create an executable
file.

4. Run the program

Steps 2 and 3 are executed by the cc command, which includes the libc.a
library by default.

Note: The RT C conpiler also includes the |ibrts.a library. Optional
user libraries may be added to the cc command |ine by using the -
option flag.

STEP 1
e + e +
| Edi t or | | Source File |
| oo c |
e + e +
STEP 2
e + o m e oo - + o m e e e oo +
| Sour ce | i Conpiler ; | Binary File i
| File] L 0 |
| c R oo |
I I I I I I
I | | | | |
o e e e e e oo - + | | S +
o m e oo - +

STEP 3
e +
| Binary File |
| .0 R +
I I |
I | 1
o e e e e e oo - + |

l

O
e + o m e oo - + o m e e e oo +
| Li brary | | Al X | | Executable File
| [1ib/libc.a +---- | Linker +4---- | a. out |
o e e e e e oo - + | | d | S +

o m e oo - +

O
o e e e e e oo - + |
| User Library Files |
: (Optional) Fommmeeeeee +
e +
STEP 4
e +
| Run the |

| Copyright IBM Corp. 1985, 1991
27-1

C Language User's Guide
C Programs Under AIX

Figure 2-1. Creating a C Program Under Al X

| Copyright IBM Corp. 1985, 1991
2.7-2

C Language User's Guide
PS/2 VSC Compilation Process

2.8 PS/2 VSC Conpi l ati on Process

As illustrated in Figure 2-2, the conpiler follows these steps when

i nvoked:

1. The source file is passed to the cpp command,

whi ch produces a preprocessed C source file.

2. The preprocessed file is passed to vsc,
whi ch produces internedi ate code with an .i extension

3. The .i file is passed to vspass2,

t he

internmediate code with a .j extension

4. The .j file is passed to vspass3,
binary file with an .o extension

t he

code generator,

code formatter,

the C preprocessor,

the C compiler front end,

whi ch produces

whi ch produces a

5. The .o file is passed to the AlX linker (Id) which creates an

executable file.

Fom e e e e e e oo + o e e e e e e oo +
i.c source file +---- | cpp |
Fom e e e e e e oo + o e e e e e e oo +
O
Fom e e e e oo - +
| .1 preprocessed file |
Fom e e e e oo - +
O
o e e e e e e oo +
| vVsc |
o e e e e e e oo +
O
o e e e e e e oo +
! i file |
o e e e e e e oo +
O
o e e e e e e oo +
| vspass?2 |
o e e e e e e oo +
O
o e e e e e e oo +
! j file |
o e e e e e e oo +
O
o e e e e e e oo +
| vspass3 |
o e e e e e e oo +
O
o e e e e e e oo +
| ofile |
o e e e e e e oo +
O
o e e e e e e oo +
: Id :
o e e e e e e oo +
O
o m e o e oo o - +
| execut abl e |
! file |

| Copyright IBM Corp. 1985, 1991

28-1

C Language User's Guide
PS/2 VSC Compilation Process

Figure 2-2. PS/2 VSC Conpil ation Process

| Copyright IBM Corp. 1985, 1991
28-2

C Language User's Guide
System/370 and PS/2 MCC Compilation Process

2.9 System’ 370 and PS/2 MCC Conpil ati on Process

As illustrated in Figure 2-3, the conpiler follows these steps when
i nvoked:

1. The source file is passed to the cpp command, the C preprocessor,
whi ch produces a preprocessed C source file.

2. The preprocessed file is passed to hclcom and hc2com which produces
assenbl er code.

3. The assenbler file is passed to as, the assenbler, which produces a
binary file with an .o extension.

4. The .o file is passed to the Iinker (1d), which creates an executable

file.
Preprocessor
Fom e e e e e e oo + o e e e e e e oo +
| source.file +---- [1iblcpp |
Fom e e e e e e oo + o e e e e e e oo +
O
Fom e e e e oo - +
| conmpi | er |
Fom e e e e oo - +
O
o e e e e e e oo +
| assenbl er |
o e e e e e e oo +
O
o e e e e e e oo +
| binary file .0 |
o e e e e e e oo +
+
o e e e e e e oo +
i /lib/libc.a |
o e e e e e e oo +
+
o e e e e e e oo +
| user libraries |
o e e e e e e oo +
O
o e e e e e e oo +
| Id |
o e e e e e e oo +
O
o m e o e oo o - +
| execut abl e |
(file a.out |
o m e o e oo o - +

Figure 2-3. 370 and PS/2 MCC Conpil ati on Process

Note: The conpiler consists of two passes: /lib/hclcomand /I|ib/hc2com

| Copyright IBM Corp. 1985, 1991
29-1

C Language User's Guide
Chapter 3. Data Representations on PS/2

3.0 Chapter 3. Data Representations on PS/ 2

Subt opi cs

CONTENTS

About This Chapter

Dat a Representations on PS/2

I ntegral Representation

Fl oat i ng- Poi nt Representation
Representation of Extrene Nunbers
Arrays

Poi nters

Structures

W W wwwwnw
OCoONOOOITP~WNPE

| Copyright IBM Corp. 1985, 1991
3.0-1

C Language User's Guide
CONTENTS

3.1 CONTENTS

| Copyright IBM Corp. 1985, 1991
31-1

C Language User's Guide
About This Chapter

3.2 About This Chapter

This chapter describes how the Al X PS/2 VSC and MCC conpil ers represent
data in storage. It also describes characteristics of the C data types as
defined by the C conpilers.

| Copyright IBM Corp. 1985, 1991
3.2-1

C Language User's Guide
Data Representations on PS/2

3.3 Data Representations on PS/2

The following ternms are used as defined by the Intel 80386 m croprocessor:

O A byte contains 8 bits
O A word contains 16 bits
O A doubl eword contains 32 bits

The foll owi ng exanpl e shows the byte order of a word and doubl eword stored
in menory:

15 7 0

o m e e e e e e e ieieooo - +

| High Byte { Low Byte |

o m e e e e e e e ieieooo - +

address n+1 n

31 0

o m e m o o e e e e e e e e memeaoo- +
| H gh Byte, | | Low Byte |
o m e m o o e e e e e e e e memeaoo- +
address n+3 n+2 n+1 n

Al t hough the 80386 m croprocessor does not absolutely require alignment of
data, there is a performance benefit in aligning 2-byte and 4-byte data.
For this reason, both AIX PS/2 C conmpilers seek to align 2-byte entities
on even addresses and 4-byte entities on addresses which are multiples of
4; 8-byte entities are aligned on addresses which are nultiples of 4.

| Copyright IBM Corp. 1985, 1991
33-1

C Language User's Guide
Integral Representation

3.4 Integral Representation

The followi ng i nformati on describes characteristics of the integral data
types including the storage size in nunber of bits, the range of val ues
represented by the data type, and the alignnment. Two's conpl ement fornmat
is used for all signal integer types.

e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
. Data Type I Bits . Range i Alignment
o m e e e e e oo oo o e e e e o e e e a oo oo dom e e e e oo oo
| signed char | 8 -128 to 127 | byte
o m e e e e e oo oo o e e e e o e e e a oo oo dom e e e e oo oo
| signed wchar _t | 32 | thousands of | doubl eword
| | i val ues |
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
bi t 76 0
. +
i 1 byte 0|
. +
|
1
sign
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
. Data Type I Bits . Range i Alignment
o m e e e e e oo oo o e e e e o e e e a oo oo dom e e e e oo oo
| | 8 i 0 to 255 | byte
| char | | :
| unsigned char | | |
: | | l
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
bit 7 0
S +
I byte 0 |
S +
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
. Data Type I Bits . Range i Alignment
o m e e e e e oo oo o e e e e o e e e a oo oo dom e e e e oo oo
: I 16 | -32768 to 32767 | word
i short i i |
| short int | |
| signed short int) | |
: | | l
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
bi t 15 14 0
o e e e e oo +
| ‘byte 1 | byte O
o e e e e oo +
|
1
sign
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
. Data Type I Bits . Range i Alignment
o m e e e e e oo oo o e e e e o e e e a oo oo dom e e e e oo oo

| Copyright IBM Corp. 1985, 1991
34-1

C Language User's Guide
Integral Representation

| 1 16 i 0 to 65535 ! word
| unsigned short | | |
| unsigned short it | |
: | | l
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
bi t 15 0
o e e e e oo oo - +
| byte 1 | byte O
o e e e e oo oo - +
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
. Data Type I Bits . Range i Alignment
o m e e e e e oo oo o e e e e o e e e a oo oo dom e e e e oo oo
| | 32 | -2147483648 to | doubl eword
I | |
Iint : | 2147483647 !
i long | | l
long int		
signed		
signed int		
signed	ong	
signed long int		
:		l
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a		
bi t 31 30 0		
o m o e e e e e e e e aaoa-o-- +		
‘byte 3	byte 2	byte 1
o m o e e e e e e e e aaoa-o-- +		
l		
sign		
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a		
. Data Type I Bits . Range i Alignment		
o m e e e e e oo oo o e e e e o e e e a oo oo dom e e e e oo oo		
	32 i 0 to 4294967295	doubl eword
unsigned		
unsigned int		
unsigned	ong	
unsigned long in,		
:		l
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a		
bi t 31 0		
o e o e e e e e e eeaoooo- +		
byte 3	byte 2	byte 1 byte 0
o e o e e e e e e eeaoooo- +

| Copyright IBM Corp. 1985, 1991
34-2

C Language User's Guide
Floating-Point Representation

3.5 Floating-Point Representation

The followi ng informati on describes characteristics of the floating-point
data types. Both PS/2 C conpilers support single and doubl e precision
fl oati ng-poi nt data, according to the ANSI/|EEE 754-1985 standard.

Subt opi cs
3.5.1 Single Precision
3.5.2 Doubl e Precision

| Copyright IBM Corp. 1985, 1991
35-1

C Language User's Guide
Single Precision

3.5.1 Single Precision

e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
. Data Type I Bits . Range i Alignment
o m e e e e e oo oo o e e e e o e e e a oo oo dom e e e e oo oo
i float | 32 i Approxi mately | doubl eword
: : | -3.4e+38 to |
| | I 3.4e+38 |
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
bit 31 30 23 22 0
o m o e e o o emeaoo - +
s Exponent | Manti ssa i
o m o e e o o emeaoo - +
l | |
sign | Manti ssa(23+1 bits)
I
|

Exponent, bi ased by 127
The three fields of a single-precision floating-point nunber are:

0 Asign bit designated by s in the diagram The sign bit is 1 only if
the floating-point nunber is negative.

O An 8-bit biased exponent

O A 23-bit mantissa with the high-order 1-bit hidden

| Copyright IBM Corp. 1985, 1991
351-1

C Language User's Guide
Double Precision

3.5.2 Doubl e Precision

e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
. Data Type I Bits . Range i Alignment
o m e e e e e oo oo o e e e e o e e e a oo oo dom e e e e oo oo
| | 64 i Approxi mately | doubl eword
i doubl e | | -1.0e+308 to |
i long double | | 1.0e+308 |
: | | l
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
bit 63 62 52 51 0
o m o e e o o emeaoo - +
s Exponent | Manti ssa i
o m o e e o o emeaoo - +
l | |
sign | Manti ssa(52+1 bits)
I
|

Exponent, bi ased by 1023
The three fields of a doubl e-precision floating-point nunber are:

O Asign bit designated by s in the diagram The sign bit is 1 only if
the floating-point nunber is negative.

0 An 11-bit biased exponent
O ADbB2-bit mantissa with the high-order 1 bit hidden
A fl oating-point nunmber is represented by the form

sign exponent - bi as
(-1) * 2 * 1.fraction

where fraction is the pattern of bits in the mantissa.

| Copyright IBM Corp. 1985, 1991
352-1

C Language User's Guide
Representation of Extreme Numbers

3.6 Representation of Extreme Numbers

zero (signed) is represented by an exponent of zero and a mantissa
of zero.
signed infinity (or affine infinity) is represented by the | argest

val ue that the exponent can assune (all ones), and a
zero mantissa. Wen infinity is printed, it appears
as +INF or -INF

Not - a- Nunber (NaN) is represented by the | argest value that the
exponent can assume (all ones), and a non-zero
manti ssa. The sign is usually ignored. Wen NaN is
printed, it appears as QNaN (for quiet NaN), or SNaN
(for signalling NaN)

denornmal i zed nunbers are a product of gradual underflow. They are
non-zero nunbers with an exponent of zero. The form
of a denornmalized nunber is:

exponent - bi as+1
2 * 0O.fraction

where fraction is the nunber of bits in the nmanti ssa.

Normal i zed nunbers are said to contain a hidden bit, providing for one
nore bit of precision than would normally be the case. To understand the
reason for this, you need to understand the process of normalization

Unnormal i zed nunbers are generated as intermedi ate results during nost

fl oati ng- poi nt operations, and they nust be normalized before they can be
processed further. Nornalization of an unnormalized nunber consists of
repeatedly shifting the mantissa left or right with the correspondi ng
decrenent or increnent, respectively, of the exponent field. This process
is repeated until the nost significant on bit of the mantissa is in the
nost significant bit of the mantissa field. At this point, one nore shift
left is perfornmed along with a correspondi ng decrenent of the exponent
field. The leading on bit of the mantissa is |ost and, therefore, not
represented explicitly.

Denormal i zed nunbers may be thought of as unnormali zabl e because the
exponent field is already so small that the left-shift decrenent cannot be
perforned. Consequently, denormalized nunmbers do not have a hidden bit.

| Copyright IBM Corp. 1985, 1991
36-1

C Language User's Guide
Arrays

3.7 Arrays
Arrays are stored in row major order, such that the | ast subscript in a
mul ti-di nensional array varies fastest. For exanple, an array dinensioned
as:

x[3][2]

is stored in this order:

x[o][0], x[OJ[1], x[1][0], x[1][1], x[2][0O], x[2][1]

| Copyright IBM Corp. 1985, 1991
3.7-1

C Language User's Guide
Pointers

3.8 Pointers

Poi nters occupy four bytes and are unsigned. The NULL val ue pointer is
represented by zero (0). Al arithmetic on pointers is conputed with four
byt es of accuracy.

| Copyright IBM Corp. 1985, 1991
3.8-1

C Language User's Guide
Structures

3.9 Structures

Structure nenbers are stored sequentially in the order in which they are
declared. The first menber is stored at an offset of zero relative to the
address of the structure. Subsequent menbers are given the next avail able
of fset consistent with their size. Since char and unsigned char occupy a
single byte, nenbers of these types are given the next free byte. Larger
si zed nenbers, including those of type int, float, and wchar t are

assi gned the next avail abl e doubl eword offset. The struct and union

vari ables are aligned according to the maxi num ali gnment of their nenbers.
Bytes that are skipped are not reused to store subsequent char val ues.

Bit fields are assigned bits within the next avail abl e doubl eword
beginning at the least significant bit. Subsequent bit fields are kept in
adj acent bits, if they will fit in the same doubleword. |If not, the upper
portion of the current doubleword is left unused, and the bit field is
assigned the least significant portion of the next doubl eword.

| Copyright IBM Corp. 1985, 1991
39-1

C Language User's Guide
Chapter 4. Data Representations on RT

4.0 Chapter 4. Data Representations on RT

Subt opi cs

4.1 CONTENTS

4.2 About This Chapter

4.3 Data Representations on RT

4.4 Integral Representation

4.5 Fl oati ng-Poi nt Representation

4.6 Representation of Extrene Numbers
4.7 Arrays

4.8 Pointers

4.9 Structures

| Copyright IBM Corp. 1985, 1991
40-1

C Language User's Guide
CONTENTS

4.1 CONTENTS

| Copyright IBM Corp. 1985, 1991
41-1

C Language User's Guide
About This Chapter

4.2 About This Chapter

This chapter describes how the AIX RT C conpiler represents data in
storage. It also describes characteristics of the C data types as defi ned
by the C conpiler.

| Copyright IBM Corp. 1985, 1991
42-1

C Language User's Guide
Data Representations on RT

4.3 Data Representations on RT

The following ternms are used as defined by the | BM processor:

O A byte contains 8 bits
O A hal fword contains 16 bits
O A word or fullword contains 32 bhits

The fol |l owi ng exanpl e shows the byte order of a halfword and fullword
stored in nenory:

15 7 0

o m e e e e e e e ieieooo - +

i High Byte i Low Byte |

o m e e e e e e e ieieooo - +

address n n+1

31 0

o m e m o o e e e e e e e e memeaoo- +
| H gh Byte, | | Low Byte |
o m e m o o e e e e e e e e memeaoo- +
address n n+1 n+2 n+3

The RT m croprocessor requires alignnment of data. For this reason, the
Al X RT C conpiler aligns 2-byte entities on even addresses and 4-byte
entities on addresses which are nmultiples of 4; 8-byte entities are

al i gned on addresses which are nultiples of 4.

| Copyright IBM Corp. 1985, 1991
43-1

C Language User's Guide
Integral Representation

4.4 Integral Representation

The followi ng i nformati on describes characteristics of the integral data
types including the storage size in nunber of bits, the range of val ues
represented by the data type, and the alignnment. Two's conpl ement fornmat
is used for all signed integer types.

e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
. Data Type I Bits . Range i Alignment
o m e e e e e oo oo o e e e e o e e e a oo oo dom e e e e oo oo
| | 8 i 0 to 255 | byte
| char | | :
| unsigned char | | |
l | | l
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
bit 7 0
S +
I byte 0 |
S +
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
. Data Type I Bits . Range i Alignment
o m e e e e e oo oo o e e e e o e e e a oo oo dom e e e e oo oo
: I 16 I -32768 to 32767 | hal fword
i short i i |
| short int | |
I I I |
I | | 1
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
bi t 15 14 0
o e e e e oo +
| 1byte 0| byte 1 |
o e e e e oo +
|
1
sign
Note: An external short data type is fullword aligned.
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
. Data Type I Bits . Range i Alignment
o m e e e e e oo oo o e e e e o e e e a oo oo dom e e e e oo oo
| | 16 i 0 to 65535 I hal fword
| unsigned short | | |
| unsigned short i)t | |
l | | l
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
bi t 15 0
o e e e e oo oo - +
| byte 0 | byte 1
o e e e e oo oo - +
Note: An external short data type is fullword aligned.
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
. Data Type I Bits . Range i Alignment

| Copyright IBM Corp. 1985, 1991
44 -1

C Language User's Guide
Integral Representation

-2147483648 to
2147483647

ful |l word

0 to 4294967295

ful |l word

_________________ +
I
I
i nt |
| ong |
| ong int |
:
bi t 31 30
Fo oo -
I 1byte O
Fo oo -
l
sign
Data Type |
_________________ +
|
unsi gned |
unsi gned i nt |
unsi gned | ong |
unsi gned | ong in|
:
bi t 31
Fo e - -
I byte O
Fo e - -

| Copyright IBM Corp. 1985, 1991
4.4 -2

C Language User's Guide
Floating-Point Representation

4.5 Fl oati ng-Poi nt Representation

The followi ng informati on describes characteristics of the floating-point
data types. The Al X C conpiler supports both single and doubl e precision
fl oati ng-poi nt data, according to the ANSI/|EEE 754-1985 standard.

Subt opi cs
4.5.1 Single Precision
4.5.2 Doubl e Precision

| Copyright IBM Corp. 1985, 1991
45-1

C Language User's Guide
Single Precision

4.5.1 Single Precision

o o o o o o o o o o o o o e o e aa o
. Data Type I Bits . Range i Alignment
o e e aa o o e e e e oo oo
. float I 32 ! Approximately | fullword
! ! I .3.4e+38 to !
! ! ! 3.4e+38 !
o o o o o o o o o o o o o e o e aa o
bit 31 30 23 22 0
g +
s Exponent | Manti ssa i
g +
I | |
sign | Manti ssa(23+1 bits)
I
|

Exponent, bi ased by 127
The three fields of a single-precision floating-point nunber are:

0 Asign bit designated by s in the diagram The sign bit is 1 only if
the floating-point nunber is negative.

O An 8-bit biased exponent

O A 23-bit mantissa with the high-order 1-bit hidden

| Copyright IBM Corp. 1985, 1991
451-1

C Language User's Guide
Double Precision

4.5.2 Doubl e Precision

e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
. Data Type I Bits . Range i Alignment
o m e e e e e oo oo o e e e e o e e e a oo oo dom e e e e oo oo
| | 64 i Approxi mately i fullword
i doubl e | | -1.0e+308 to |
i long double | | 1.0e+308 |
: | | l
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
bit 63 62 52 51 0
o m o e e o o emeaoo - +
s Exponent | Manti ssa i
o m o e e o o emeaoo - +
l | |
sign | Manti ssa(52+1 bits)
I
|

Exponent, bi ased by 1023
The three fields of a doubl e-precision floating-point nunber are:

O Asign bit designated by s in the diagram The sign bit is 1 only if
the floating-point nunber is negative.

0 An 11-bit biased exponent

O ADbB2-bit mantissa with the high-order 1 bit hidden

A fl oating-point nunber is represented by the form

sign exponent - bi as
(-1) * 2 * 1.fraction

where fraction is the pattern of bits in the mantissa.

| Copyright IBM Corp. 1985, 1991
452-1

C Language User's Guide
Representation of Extreme Numbers

4.6 Representation of Extrenme Numbers

zero (signed) is represented by an exponent of zero, and a mantissa
of zero.
signed infinity (or affine infinity) is represented by the | argest

val ue that the exponent can assune (all ones), and a
zero mantissa. Wen infinity is printed, it appears
as +INF or -INF

Not - a- Nunber (NaN) is represented by the | argest value that the
exponent can assume (all ones), and a non-zero
manti ssa. The sign is usually ignored. Wen NaN is
printed, it appears as QNaN (for quiet NaN), or SNaN
(for signalling NaN)

denornmal i zed nunbers are a product of gradual underflow. They are
non-zero nunbers with an exponent of zero. The form
of a denornmalized nunber is:

exponent - bi as+1
2 * 0O.fraction

where fraction is the nunber of bits in the nmanti ssa.

Normal i zed nunbers are said to contain a hidden bit, providing for one
nore bit of precision than would normally be the case. To understand the
reason for this, you need to understand the process of normalization

Unnormal i zed nunbers are generated as intermedi ate results during nost

fl oati ng- poi nt operations, and they nust be normalized before they can be
processed further. Nornalization of an unnormalized nunber consists of
repeatedly shifting the mantissa left or right with the correspondi ng
decrenent or increnent, respectively, of the exponent field. This process
is repeated until the nost significant on bit of the mantissa is in the
nost significant bit of the mantissa field. At this point, one nore shift
left is perfornmed along with a correspondi ng decrenent of the exponent
field. The leading on bit of the mantissa is |ost and, therefore, not
represented explicitly.

Denormal i zed nunbers may be thought of as unnormali zabl e because the
exponent field is already so small that the left-shift decrenent cannot be
perforned. Consequently, denormalized nunmbers do not have a hidden bit.

| Copyright IBM Corp. 1985, 1991
46-1

C Language User's Guide
Arrays

4.7 Arrays
Arrays are stored in row major order, such that the | ast subscript in a
mul ti-di nensional array varies fastest. For exanple, an array dinensioned
as:

x[3][2]

is stored in this order:

x[1[1), x[1][02], x[21[01], x[2][2], x[3][1], x[3][2]

| Copyright IBM Corp. 1985, 1991
4.7 -1

C Language User's Guide
Pointers

4.8 Pointers

Poi nters occupy four bytes and are unsigned. The NULL val ue pointer is

represented by zero (0). Al arithmetic on pointers is conputed with four
byt es of accuracy.

| Copyright IBM Corp. 1985, 1991
48-1

C Language User's Guide
Structures

4.9 Structures

Structure nenbers are stored sequentially in the order in which they are
declared. The first menber is stored at an offset of zero relative to the
address of the structure. Subsequent menbers are given the next avail able
of fset consistent with their size. Since char and unsigned char occupy a
single byte, nenbers of these types are given the next free byte. Larger
si zed nenbers, including those of type int and float are assigned the next
available fullword offset. The struct and union variables are aligned
according to the maxi mum al i gnment of their nenbers. Bytes that are

ski pped are not reused to store subsequent char val ues.

Bit fields are assigned bits within the next available fullwrd begi nning
at the nost significant bit. Subsequent bit fields are kept in adjacent
bits, if they will fit in the sane fullword. |[If not, the upper portion of
the current fullword is |left unused, and the bit field is assigned the

| east significant portion of the next fullword.

| Copyright IBM Corp. 1985, 1991
49-1

C Language User's Guide
Chapter 5. Data Representations on System/370

5.0 Chapter 5. Data Representations on System 370

Subt opi cs

CONTENTS

About This Chapter

Dat a Representations on System 370
Integral Representation

Fl oat i ng- Poi nt Representation
Arrays

Poi nters

Structures

GRS RO RS RO RO RSN
O~NO OIS~ WN P

| Copyright IBM Corp. 1985, 1991
50-1

C Language User's Guide
CONTENTS

5.1 CONTENTS

| Copyright IBM Corp. 1985, 1991
51-1

C Language User's Guide
About This Chapter

5.2 About This Chapter

This chapter describes how the Al X System 370 C conpiler represents data
in storage. It also describes characteristics of the C data types as
defined by the C conpiler.

| Copyright IBM Corp. 1985, 1991
52-1

C Language User's Guide
Data Representations on System/370

5.3 Data Representations on System 370

The following terns are used as defined by the |IBM Systeni 370
architecture:

O A byte contains 8 bits
O A hal fword contains 16 bits
O A word or fullword contains 32 bhits

The fol |l owi ng exanpl e shows the byte order of a halfword and fullword
stored in nenory:

0 8 15
o m e e e e e e e ieieooo - +

i low Byte i\ high Byte
o m e e e e e e e ieieooo - +
address n n+1

0 31
o m e m o o e e e e e e e e memeaoo- +
| |l ow Byte | | hi gh Byte,
o m e m o o e e e e e e e e memeaoo- +
address n n+1 n+2 n+3

The Systeni 370 architecture requires alignment of data. For this reason
the Al X Systeni 370 C conpiler aligns 2-byte entities on even addresses and
4-byte entities on addresses which are nultiples of 4; 8-byte entities are
al i gned on addresses which are nultiples of 4.

| Copyright IBM Corp. 1985, 1991
53-1

C Language User's Guide
Integral Representation

5.4 Integral Representation
The followi ng i nformati on describes characteristics of the integral data

types including the storage size in nunber of bits, the range of val ues
represented by the data type, and the alignnent.

char

o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +
bi t 0 7
S +
I byte 0 |
S +
o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +
. Data Type I Bits . Range i Alignment |
e S o e e e e oo e e e e e e oo |
: I 16 | -32768 to 32767 | hal fword :
| short | | : :
| short int | | | |
I 1 1 | I
1 1 1 | |
o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +
bi t 0 1 15
o e e e e oo +
| 1byte 0| byte 1 |
o e e e e oo +
|
|
sign
e e e e e e e e e ee e mmemmmmmsmmmemsmemMeemmmemmmmemmmmmmasmmmememem-mmmmmmemmmmmm .- m .. m——m—-—-———-a
. Data Type I Bits . Range i Alignment
e s s o m e e e e e aa oo
| | 16 i 0 to 65535 i hal fword
| unsigned short | | i
| unsigned short int) | i
: : : |
e e e e e e e e e ee e mmemmmmmsmmmemsmemMeemmmemmmmemmmmmmasmmmememem-mmmmmmemmmmmm .- m .. m——m—-—-———-a
bi t 0 15
o e e e e oo oo - +
I byte 0 | byte 1 |
o e e e e oo oo - +
o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +
. Data Type I Bits . Range i Alignment |
e S o e e e e oo e e e e e e oo |
: I 32 | -2147483648 to | fullword :
Iint : | 2147483647 ! :
i 1 ong : | l l
i long int | | | |

| Copyright IBM Corp. 1985, 1991
54-1

C Language User's Guide
Integral Representation

I
I
unsi gned |
unsi gned i nt |
unsi gned | ong |
unsi gned | ong in|

0 to 4294967295

ful |l word

| Copyright IBM Corp. 1985, 1991
54-2

C Language User's Guide
Floating-Point Representation

5.5 Fl oating-Point Representation

The followi ng informati on describes characteristics of the floating-point
data types. The AI X/ 370 C conpiler supports both single and doubl e
precision floating-point data, according to System 370 architecture.

Subt opi cs
5.5.1 Single Precision
5.5.2 Doubl e Precision

| Copyright IBM Corp. 1985, 1991
55-1

C Language User's Guide
Single Precision

5.5.1 Single Precision
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
. Data Type I Bits . Range i Alignment
o m e e e e e oo oo o e e e e o e e e a oo oo dom e e e e oo oo
. float I 32 ! Approximately | fullword
| | | 5.4e-75 to |
| | | 7.2e+75 :
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
bi t 0 1 8 31

o m o e e o o emeaoo - +

i s, Characteristic | 6-digit fraction i

o m o e e o o emeaoo - +

l

sign
The three fields of a single-precision floating-point nunber are:
0 Asign bit designated by s in the diagram The sign bit is 1 only if

the floating-point nunber is negative.

O A 7-bit characteristi
O A 24-bit 6-digit fraction

| Copyright IBM Corp. 1985, 1991
551-1

C Language User's Guide
Double Precision

5.5.2 Doubl e Precision

o o o o o e m e m e e e m e

, Data Type | Bits . Range . Al'i gnrent

o e e aa o o e e e e oo oo

| | 64 | See "Single i fullword

i doubl e | ! Precision" in |

. long doubl e I ! topic 5.5.1 !

I | | l

o o o o o e o e m e e m -

bit 0 1 8 63
o +
s Exponent | Manti ssa i
o +

The three fields of a doubl e-precision floating-point nunber are:

O Asign bit designated by s in the diagram The sign bit is 1 only if
the floating-point nunber is negative.

O A 7-bit characteristic
O ADbB4-bit 14-digit fraction

Pl ease refer to I BM System 370 Principles of Operation for nore details.

| Copyright IBM Corp. 1985, 1991
552-1

C Language User's Guide
Arrays

5.6 Arrays
Arrays are stored in row major order, such that the | ast subscript in a
mul ti-di nensional array varies fastest. For exanple, an array dinensioned
as:

x[3][2]

is stored in this order:

x[1[1), x[1][02], x[21[01], x[2][2], x[3][1], x[3][2]

| Copyright IBM Corp. 1985, 1991
56-1

C Language User's Guide
Pointers

5.7 Pointers

Poi nters occupy four bytes and are unsigned. The NULL val ue pointer is
represented by zero (0). Al arithmetic on pointers is conputed with four
byt es of accuracy.

| Copyright IBM Corp. 1985, 1991
57-1

C Language User's Guide
Structures

5.8 Structures

The size of a struct or union is dependent upon whether the conpiler
generates padding to align nenbers. The conpiler generates such paddi ng
by default if the toggle Align_nenbers is on, and does not do so by
default if the toggle is off.

The size of an unpadded union is the size of the biggest nenber. The size
of a padded union is the size of the biggest nenber, padded so that its
size is evenly divisible by its alignnent.

The size of an unpadded struct is the sumof the sizes of its nenbers.
Non-bit-field nmenbers always start on byte boundaries, and there is no
paddi ng between nenbers, except in the case of bit menbers. The size of a
padded struct is the sumof the sizes of its nmenbers, including alignnent
paddi ng between nenbers. It is padded so that its size is evenly
divisible by its alignnent.

Not es:

1. A struct or union is aligned according to the nost stringent
requi rements anong its nenbers.

2. The size of enumtypes depends on the status of the Long enuns toggle.
If the toggle is Of, the type is mapped to the snallest of a byte,
half word, or full word, such that all the values can be represented.
If the toggle is On, the enummaps to a full word (matching the
Portable C compiler convention). See "Al X 370 and PS/ 2 MCC Conpil er
Toggl es” in topic 2.4.

Subt opi cs
5.8.1 Storage C asses

| Copyright IBM Corp. 1985, 1991
58-1

C Language User's Guide
Storage Classes

5.8.1 Storage Cl asses

Each static variable is placed in either the BSS section or the DATA
section -- the latter if it is initialized.

Each gl obal variable with no extern specifier that is not initialized is
defined as a common block; if it is initialized, it is nmapped into the
DATA section and given the global attribute. Each extern variable is

gi ven the global and undefined attributes. Each local static variable is
placed in either the BSS section or the DATA section.

Each auto variable is assigned either to a machine register or to storage
in the routine's stack frame. The conpiler attenpts to place each

auto-cl assed variable in a register provided the variable's type is
appropriate and its address is not required. In a function containing
calls to setjnp, auto variables are not mapped to registers, so that their
val ues are not |ost across such calls.

| Copyright IBM Corp. 1985, 1991
58.1-1

C Language User's Guide
Chapter 6. Mixing Languages and Linkage Convention on the PS/2

6.0 Chapter 6. M xing Languages and Li nkage Convention on the PS/ 2

Subt opi cs

1 CONTENTS

2 About This Chapter

3 M xing Languages on the PS/2
4 Correspondence of Data Types
5 Character Variables

6 Storage of Matrices

7 Input/Qutput Primtives

8 Designation of Entry Points and O her d obal Synbols
9 Argument - Passi ng Mechani sns

10 Subroutine Linkage Convention

000D

| Copyright IBM Corp. 1985, 1991
6.0-1

C Language User's Guide
CONTENTS

6. 1 CONTENTS

| Copyright IBM Corp. 1985, 1991
6.1-1

C Language User's Guide
About This Chapter

6.2 About This Chapter

Thi s chapter describes the conditions, rules, and conventions that the
user or programrer nust observe when m xi ng program el enents of two or
nore Al X PS/ 2 high-level |anguages. Detailed information is provided for
the VS FORTRAN, VS Pascal, and C Conpilers on the PS/ 2.

| Copyright IBM Corp. 1985, 1991
6.2-1

C Language User's Guide
Mixing Languages on the PS/2

6.3 M xi ng Languages on the PS/2

The 1 BM Al X PS/ 2 | anguage systempermits the m xing of elenents from
different [anguages in a single program This chapter assunes you are
famliar with the | anguages you want to mx; the elenents of the |anguages
are not described here in detail. Appendix C, "Program Exanples for

M xi ng Languages" gives sanple prograns that show how to pass paraneters
bet ween different |anguages.

| Copyright IBM Corp. 1985, 1991
6.3-1

C Language User's Guide
Correspondence of Data Types

6.4 Correspondence of Data Types

The data types of one | anguage are usually quite different fromthe data
types of another |anguage. Al so, the way data is stored is not the sane
across | anguages; the internal data representation is |left unspecified and
usual |y varies with the inplenentation.

However ,
di fferent

a certain amount of simlarity anong the data types of the
| anguages exi sts since the | anguages share many system

primtives and since | EEE (1) standard data representations are used as

much as possi bl e.
| anguages.

o m o o o o o m e e e e e o e o e o e e e o eemamao-- +
| Table 6-1. Correspondences of Data Types Anbng Languages

o m m e o e me i m o |
. FORTRAN i FORTRAN | : |
i IBMand RL Mbdes | VX Mde | Pascal I C |
o e e oo - S S o e e e e e o |
| Logical *1 | Logical *1 i Bool ean i :
o e e oo - S S o e e e e e o |
| | Logi cal *2 | | |
o e e oo - S S o e e e e e o |
| | | i l
i Logical, i Logical, i i |
| Logical *4 | Logical *4 | | |
: | | i l
o e e oo - S S o e e e e e o |
| Integer*1 | | packed/ unpacked | signed char

: | Integer*1 | CHAR el enment |

| i Byte | i l
I I I I I
I | | | :
e o m e e e e e oo oo o m e e e e oa oo Fom e e e oo |
| I nteger*2 | I nteger*2 | i short
o e e oo - S S o e e e e e o |
| Integer*4 | Integer*4 | Integer | int
o e e oo - S S o e e e e e o |
| | | Shortreal 1 float |
| Real, | Real, i i

| Real *4 | Real *4 | | |
: | | i l
o e e oo - S S o e e e e e o |
| Real *8 | Real *8 | Real |

| | | | doubl e |
| | i i long doubl e

: | | i l
o e e oo - S S o e e e e e o |
i Conpl ex | | i I
| i Doubl e Precision, i

| i Conpl ex | i l
: | | i l
o e e oo - S S o e e e e e o |
i Conpl ex*8 i Conpl ex*8 i i
o e e oo - S S o e e e e e o |
i Conpl ex*16 I Conpl ex*16 : :
o e e oo - S S o e e e e e o |
| Character | Character | packed array of | char |
: | i Char i l
o e e oo - S S o e e e e e o |
: | i String i l
o m m e o e m o |

| Copyright IBM Corp. 1985, 1991

6.4-1

Tabl e 6-1 shows sone of the correspondence anpng

C Language User's Guide
Correspondence of Data Types
| Note: Table 6-1 shows how the | anguages represent data internally in
| the conputer's nenory rather than how data are passed between program
| units.
I

As Table 6-1 shows, sone data types do not exist in the other |anguages.
When you interface | anguages, nmake sure you either avoid m smatchi ng data
types or use the m smatches very cautiously. Wen data types do
correspond, the interfacing of the | anguages is nore straightforward.

Most numeric data types have counterparts across the | anguages. However,
character and string data types do not. The nost difficult aspect of

| anguage interfacing is the passing of character, string, or text

vari abl es between | anguages.

(1) I EEE 754 Fl oati ng-Poi nt Standard

| Copyright IBM Corp. 1985, 1991
6.4-2

C Language User's Guide
Character Variables

6.5 Character Vari abl es

FORTRAN s only character variable type is Character, which is stored as a
set of contiguous bytes, one character per byte. The |length of a FORTRAN
character variable or character array element is determned at conpile
time and is, therefore, static. Character lengths are returned by the
FORTRAN intrinsic function LEN

When a FORTRAN character variable is passed as a paraneter, the address of
t he begi nning of the character is passed along with a hi dden paraneter
which is the static length of the character string. The hi dden paraneter
is added to the end of the declared paraneter |ist.

Pascal 's character-variable data types are String and packed array of

Char. The String data type has a 4-byte double word-aligned string |ength
followed by a set of contiguous bytes, one character per byte. The
dynam c length of the string can be determ ned using the |ength function
However, packed array of Char, like the type Character in FORTRAN, is
stored as a set of contiguous bytes, one character per byte.

C character data is typically stored as arrays of type char. The char
data type stores one character per byte; therefore, an array of char is
stored exactly |ike a FORTRAN Character variable or a Pascal packed array
of Char.

| Copyright IBM Corp. 1985, 1991
6.5-1

C Language User's Guide
Storage of Matrices

6.6 Storage of Matrices
FORTRAN matrices are stored in computer nmenory by colum (col unm maj or
order); therefore, the first subscript in a nulti-dinmensional array varies
fastest. An array dinensioned as:

A(3, 2)
is stored in this order:

A(1,1) A(2,1) A(3,1) A(L,2) A(2,2) A3 2

Pascal and C matrices are stored in conputer nmenory by row (row nmaj or
order). For exanple, an array in Pascal declared as:

A: array [1..3,1..2] of Real
is stored in this order:
Al1,1] Al1,2] A21 A272 A3 1 A3 2]
Since the matrix storage convention for Pascal and C differs fromthat for

FORTRAN, be careful when passing references to matrices between FORTRAN
and the other |anguages.

| Copyright IBM Corp. 1985, 1991
6.6-1

C Language User's Guide
Input/Output Primitives

6.7 Input/Qutput Primtives

Primtive input/output routines are contained in the | anguage run-tine
libraries. They are bound to your programduring the final |inking
process by the Al X Iinker |d.

Wien you conpile a programusing the cc or vs conmand, the appropriate
libraries are linked in the proper order. The libraries are:

o o o eea o +
| Language | Libraries |
e o i
I C ! libc.a l
e o i
i VS Pascal | i
| . libvssys.a |
| i libc.a

I I I
I | |
e o i
I VS FORTRAN ! !
| i libvsfor.a |
| ! libvssys.a !
| i libc.a

I I I
I | |
o o o eea o +

The input/output primtives are different for each | anguage; because of
this you are not able, for exanple, to open a file or device for use by
one | anguage and wite to it or read fromit in a different |anguage.
Ceneral ly, however, two | anguages can exist in a programas |long as they
each have their own files and device for input/output, which includes the
consol e devi ce.

Input/Qutput lnitialization: Wen mxing |anguages, special handling is
required when calling Al X VS Pascal or FORTRAN subroutines that perform
input/output. An initialization routine must first be called fromthe
mai n program so that the input/output buffers and fl oati ng-point
information are properly set up. These routines do not require
paraneters. The initialization routines and run-time libraries in which
they are contained are:

o o o em e meeo - +
i Language of . Initialization : |
| Called Routine I Routine i\ Library |
o e e oo - Fo e e e e e oo e |
' VS Pascal | vspio i libvssys.a |
o e e oo - Fo e e e e oo o |
! VS FORTRAN I vsfio i libvsfor.a |
o o o ee e meao - +
I nput/ Qut put Termination: |If a Cfunction is called froman Al X VS

FORTRAN or Pascal main program the termnation routine vstio in
l'i bvssys.a nust be called upon to return fromthe C function to properly
flush the input/output buffers.

Whenever you m x | anguages, you need first to becone famliar with the
requi rements of each particular subroutine and each | anguage's
ar gunent - passi nhg requi renents.

| Copyright IBM Corp. 1985, 1991
6.7-1

C Language User's Guide
Designation of Entry Points and Other Global Symbols

6.8 Designation of Entry Points and O her d obal Synbols

An entry point is the address of the first instruction of a subroutine or
function. If an entry point is not known at conpile tinme, the relative
entry point is determned at link time when all the separately conpiled
routines are brought together with the systemlibrary (or libraries) to
produce an executable binary file.

An entry-point reference in FORTRAN is designated in a CALL statenment or
by the invocation of a function in an expression. An entry-point
reference in Pascal is designated by a procedure or function call, and in
C by a function call. An entry-point reference in Assenbler code is
designated by a reference to an external synbol

VWhen conpil ed prograns are linked, the entry points referenced in a
calling program cause the linker to add an entry to a table of synbols.
The linker then needs to associate a start address with each symbol in the
table, which it does when it finds the called routine. The entry point
for a called FORTRAN routine is designated by a subroutine or function
decl aration. The entry point for a called Pascal routine is designated by
a procedure or function declaration at the global scope. The entry point
for a called C function is designated when the function is defined. The
entry point for a called Assenbler routine is designated by a gl oba
decl ar ati on.

VWhen conpil ed programunits of m xed | anguages are |linked together, it is
important to note that the conpilers may maintain different nunbers of
significant characters in global names, which include entry points. Al so,

all local and gl obal names in FORTRAN and Pascal are nade | owercase. As a
result, for exanmple, a FORTRAN and a Pascal program cannot call a C
function whose nane is not all |owercase. The AIX PS/2 C conpilers create

external synbols which are in the sanme case as the user has declared them
Thus a C routine declared as Upper cannot be called from FORTRAN or Pasca
since both conpilers would produce an external synmbol upper regardless of
t he user specified nane.

The entry-point nanme you assign to | ocal Pascal procedures (not visible in
t he gl obal scope) stays the sane.

| Copyright IBM Corp. 1985, 1991
6.8-1

C Language User's Guide
Argument-Passing Mechanisms

6.9 Argunent-Passing Mechani sns

When control is passed fromone routine to another by a call, operands for
the called routine to act upon are usually al so passed. Wen finished,
the called routine usually has results to report and needs to know where
control is to be returned in the calling routine. The Al X PS/2 |anguage
system provides this informati on by using one or both of the follow ng:

O Intel 80386 or Intel 80387 register
0 Data structure known as the stack
.1 The 80386 Registers

b
9
9.2 The 80387 Registers
9.3 The Stack

| Copyright IBM Corp. 1985, 1991
6.9-1

C Language User's Guide
The 80386 Registers

6.9.1 The 80386 Registers

The Al X PS/2 Operating Systemis built around the Intel 80386
nm croprocessor, which has sixteen 32-bit internal registers. Table 6-2
contains nore informati on on these registers:

e e e e e e e mm e mmemmmemsmmeemmemmeEmmmememmmemmmmeammmemmmmemmmemmmmmmmmmmmm———-——a
| Table 6-2. 80386 Registers

e e e e e e e mm e mmemmmemsmmeemmemmeEmmmememmmemmmmeammmemmmmemmmemmmmmmmmmmmm———-——a
. Registers | Type . Use

Fomm e e oo oo o e o e e e e e eaoo-- oo e o e e e e aoo-
| | General purpose registers |

i EAX EBP | | Logical and arithnetic

i EBX ESP | | operations.

i ECX ESI i | Address conputations (2)
I EDX EDI : !

| | |

Fomm e e oo oo o e o e e e e e eaoo-- oo e o e e e e aoo-
| | Segment registers (3) i Initialized by operating
i CS ES i | system and shoul d not be
i DS FS i | changed.

I SS GS : |

: | |

Fomm e e oo oo o e o e e e e e eaoo-- oo e o e e e e aoo-
| | Status register |

I EFLAGS : |

: | |

Fomm e e oo oo o e o e e e e e eaoo-- oo e o e e e e aoo-
: | Instruction pointer register |

 EIP i |

I I I

I | I

e e e e e e e mm e mmemmmemsmmeemmemmeEmmmememmmemmmmeammmemmmmemmmemmmmmmmmmmmm———-——a

(2) The exception is ESP which may be used as an i ndex operand.

(3) Aflat address nodel has been adopted by the Al X PS/ 2
Operating Systemwhich results in a real address space of 4
gi gabytes. The segnmented features of the Intel 80386 chip
architecture are not used.

| Copyright IBM Corp. 1985, 1991
6.9.1-1

C Language User's Guide
The 80387 Registers

6.9.2 The 80387 Registers

Al X PS/ 2 floating-point perfornmance is optionally provided by the Intel
80387 fl oating-point numeric processor. The presence of the Intel 80387
chip is determined at the tine of the first floating-point instruction for
a given process. |If the optional 80387 chip is not installed in the
system then the behavior of the 80387 chip is exactly duplicated by
software enulation. This enulation is transparent (other than at
execution tine) to you. The 80387 chip has a floating-point stack
architecture which consists of eight 80-bit extended precision registers.

| Copyright IBM Corp. 1985, 1991
6.9.2-1

C Language User's Guide
The Stack

6.9.3 The Stack

Al though it is not inmportant to be famliar with the stack when coding in
only one language, it is hel pful when | anguages are being interfaced. The
stack is a last-in first-out data structure that is |located, initialized,
and used by the Al X PS/ 2 | anguage system Stacks are thought of as having
i nformation pushed onto them and having information popped off them This
i s because each time a routine is called, the conpiler pushes information
about the calling argunents followed by the return address onto the stack
If routines call other routines before a return is nmade, the stack
continues to grow, as control returns to the calling routines, the stack
beconmes smaller. The called routine renoves the return address and the

| ocal data space. The paraneter list of the called routine is popped off
the stack by the calling routine.

The physical nenory address of the stack is usually not relevant. The
stack grows toward snal |l er absol ute addresses, so pushing data onto the
stack consists of decrenenting the value stored in ESP and witing to the
address in nmenory indicated by ESP.

The data witten to the stack by the calling routine depends both on the
| anguage and on the data type of the argunents being passed to the called
routine. Usually either the addresses of the argunents (used in the

call -by-reference nechani sm or the values of the argunents (used in the
cal | -by-val ue nechani sn) are placed on the stack. The |anguages al so

pl ace a 4-byte return address on the stack, which is the last item pushed
on to the stack by the calling routine. This return address indicates
where execution is to resune after the called routine finishes executing.

| Copyright IBM Corp. 1985, 1991
6.9.3-1

C Language User's Guide
Subroutine Linkage Convention

6. 10 Subroutine Linkage Convention

The Al X PS/ 2 | anguage system adheres to the follow ng |inkage conventi on:

o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +
| Table 6-3. Al X PS/2 Language Linkage Convention :
o m m e o e m o |
. Registers | Type | Use |
RS o e e e e e e oo o m e e e e e e e e e e e e e e e e e o |
| i Scratch registers | Need not be preserved |
i EAX | | l
i ECX | | l
i EDX | | l
I I I I
I | | I
RS o e e e e e e oo o m e e e e e e e e e e e e e e e e e o |
| | Register variables | Must be preserved across calls |
i EBX | | l
i ESI | | l
, EDI | | l
I I I I
I | | I
RS o e e e e e e oo o m e e e e e e e e e e e e e e e e e o |
| i Frame pointer | Must be restored at the end of a |
| EBP | | call |
| | i l
RS o e e e e e e oo o m e e e e e e e e e e e e e e e e e o |
| | Stack pointer i Shoul d not be popped by called |
| ESP | | routine :
| | i l
o m o o o o o m e e e e e e o e o e e o eema—aoo-- +

Al paraneters are passed in reverse order and the calling routine has the
responsibility for cleaning up the stack.

Routines witten in FORTRAN, Pascal, and C respect these register usage
conventions by preserving the registers listed in Table 6-3 to the states
they were in before their call. Al routines used with the Al X PS/ 2

| anguages nust al so preserve these registers.

Subt opi cs

6. 10. 1 Paraneter-Passi ng Convention

6. 10.2 Function Results

6. 10.3 Stack Frane

6. 10. 4 FORTRAN Argunent - Passi ng Conventi ons

6.10.5 Pascal Paraneter-Passi ng Conventions

6.10. 6 C Argunent-Passi ng Conventions

6.10.7 Assenbler Routines Called By O her Al X PS/2 Languages
6.10.8 Using VS Pascal Def/Ref Variabl es

| Copyright IBM Corp. 1985, 1991
6.10-1

C Language User's Guide
Parameter-Passing Convention

6. 10. 1 Paraneter-Passi ng Convention

For ease of |anguage interfacing, all Al X PS/ 2 | anguages foll ow the sane
calling convention. Paraneters are passed to the called routine on the
stack. They are pushed onto the stack in the reverse order fromthe way
that they were declared. That nmeans the | ast paraneter is pushed first on
the stack, and the first paraneter is pushed | ast.

Al argunments to FORTRAN subroutines and functions are passed by
reference. For every argunment except a character argunent, a 32-bit
pointer to the object is pushed onto the stack. Character paraneters are
passed as a 32-bit pointer to the Character object. A 32-bit val ue which
is the static length of the Character object is passed at the end of the
actual argunent |ist.

In Pascal, if the called procedure is not a procedure or function at the
gl obal level, the static link is the last thing pushed onto the stack
before the routine is called. Pascal call by reference parameters always
have a 4-byte pointer to the variable pushed onto the stack. Pascal cal
by val ue paraneters are pushed onto the stack. Pascal Reals are pushed
onto the stack as 8 bytes. Pascal sets are pushed onto the stack with the
| east significant elenment in the |east significant word. Thus, the
representation of a set on the stack is the sane as the representation in
menory. |f a Pascal value paraneter is |onger than 4 bytes and not a
doubl e or a set, the address of the data is pushed onto the stack, and the
call ed procedure or function copies the data into |ocal storage.

Pascal procedure and function paraneters are pushed as follows: the
address of the procedure or function is pushed onto the stack. The static
link is then pushed onto the stack if the procedure or function is not at
the global level. |If the procedure or function is at the gl oba
(outernost) level, the value 0 (nil) is pushed onto the stack instead of
the static link.

Al argunments to C functions are passed by value. Actual argunents which
are expressions are evaluated before the function reference. The result
of the expression is then pushed onto the stack. Arrays are passed by the
address of the first elenment of the array as a 4-byte quantity.

Al'l C argunents except double, struct and union argunments are passed as
four-byte val ues; double argunents are passed as eight-byte values. Al
fl oat values are passed as doubles. The struct and union arguments are
passed by val ue, regardl ess of the nunber of bytes required to pass the
argunent .

Wien C functions which return struct or Pascal functions which return
records are called, the calling routine allocates sufficient space for the
structure and passes a hidden first paranmeter to the called routine.
Renmenber, the first paranmeter is the | ast one pushed on the stack. This
paraneter is a pointer to the all ocated space.

| Copyright IBM Corp. 1985, 1991
6.10.1-1

C Language User's Guide
Function Results

6.10.2 Function Results

The Al X PS/ 2 | anguages return the results of functions in register EAX for
non-fl oati ng-poi nt values. Floating-point values are returned at the top
of the Intel 80387 floating-point stack. C functions which return struct
or Pascal functions which return records return a 32-bit pointer to the
struct or record in EAX

| Copyright IBM Corp. 1985, 1991
6.10.2-1

C Language User's Guide
Stack Frame

6.10. 3 Stack Frane

A typical stack frame for a function call is created by the foll ow ng
sequence: The caller pushes the function argunents in reverse order (right
to left) fromthe function declaration. |If the called routine returns a C
struct or Pascal record, then the caller pushes the address of a buffer

al located by the caller for the struct or record. The return address is
pushed on the stack by executing the call instruction. The base pointer
register EBP is pushed and EBP is made to point to the stack top, which
now contains its old value. The called function allocates all of its

| ocal data space. |If the allocated registers need to be used in the
called routine, then their values may be saved on the stack. The return
result is |oaded into the EAX register for non-floating-point values. C
functions returning a struct and Pascal functions returning a record |oad
the address of the buffer into EAX. Floating-point values are returned at
the top of the 80387 nuneric processor stack. |If the registers EBX, EDI
and ESI were saved, then they are restored. The called function then

rel oads the original value of the EBP register, renoves its | ocal space
fromthe stack, and returns. The caller pops the argunents off the stack
The following diagramillustrates a typical stack frane after a function
call:

o e e e e e e oooooo +
l arg n i
o o o m o e e e e e e e e I
|
| I
1 |
o e e e e e e i e o i
l arg 1 i
o e e e e e e i e o i
| return address i
o e e e e e e i e o i
| caller's EBP |
o : +--- EBP
| | ocal space |
o e e e e e e i e o i
| I
1 |
o e e e e e e i e o i
i caller's ESI, EDI, EBX | (saved if necessary)
o : +--- ESP

Figure 6-1. Typical Stack Frane

| Copyright IBM Corp. 1985, 1991
6.10.3-1

C Language User's Guide
FORTRAN Argument-Passing Conventions

6. 10. 4 FORTRAN Argunent - Passi ng Conventi ons

FORTRAN uses the call-by-reference nmechani smfor passing argunents. This
means that a 4-byte address of each argunent is pushed onto the stack from
the last argunent to the first when a call is made. The return address of
the calling programunit is pushed onto the stack after the |ast argunent
addr ess.

Character data types in FORTRAN are treated differently. Wen an argunent
is a character variable, 8 bytes are placed on the stack: a 4-byte address
in the location of the argunent in the argunent |ist and the 4-byte static
character count of the variable at the end of the argunent list. This
length is the size of the variable made known to the conpiler by the
character type specification, and is not the nunber of characters that
happen to be stored in the variable.

VWhen an array is passed as an argunent in a subroutine call or externa
function reference, the address of the first byte of the first elenent is
pushed onto the stack. |If an elenment of an array is passed as an
argunent, the address of that elenent is pushed.

Actual argunents that are expressions are eval uated before the subroutine
call or function reference. The result of the expression is assigned to a
tenporary storage |ocation and the address of the location is pushed onto
the stack. Wen storing a numeric expression, the tenporary storage

|l ocation is usually 4 bytes (8 bytes for doubl e-precision val ues).

When an external function is referenced, the result is returned in

regi ster EAX (or at the top of the floating-point stack if the result is a
fl oati ng-point nunber). One exception to this occurs if the externa
function returns character data. |In this case, the 4-byte address of the
result is returned in register EAX. Wen the called programunit finishes
its conputation, the stack nust be cleaned up so that it does not continue
to grow indefinitely. Wen control is returned to the calling function
all argunments are discarded fromthe stack.

Exanmpl e A

Character*5 STR

| nt eger DWORD

A=5.0

CALL XYZ(4.0*A STR, DAWDORD)

END

VWhen the call in Exanple A is made, the 4-byte integer 5 is pushed onto
the stack. This value is the static length of STR The address of the
4-byte variable DWORD i s then pushed onto the stack. Then the address of
t he begi nning of the character string is pushed onto the stack. Then the
expression (4.0*A) is evaluated and a tenporary storage |location is set up
for it. The address of this location is the |ast paraneter you pushed
onto the stack. Lastly, the return address in the calling programunit is
stored in 4 bytes. Figure 6-2 illustrates a stack after the call in
Example A is nade (nsb and | sb indicating the nost and | east significant
bytes, respectively).

H gher Addresses

| Copyright IBM Corp. 1985, 1991
6.104 -1

Fo e oo -
i nmsb
I
|
i I sb
Fo e oo -
i nsb
I
|
i I sb
Fo e oo -
i nsb
I
|
i I sb
Fo e oo -
i nsb
I
|
i I sb
Fo e oo -
i nsb
I
|
top of stack | | sb
ESP--- +---------

C Language User's Guide
FORTRAN Argument-Passing Conventions

Byte count of STR (5)
stored in 4 bytes.

Address of the first byte of
DWORD stored in 4 bytes.

Address of the first byte of
STR stored in 4 bytes.

Address of the first byte of
t he eval uat ed expression (20.0)
stored in 4 bytes.

Ret urn addr ess
stored in 4 bytes.

Figure 6-2. Stack After

Call in Exanple A

Upon return, since it is the responsibility of the calling routine to pop
the argunments off the stack, the stack pointer in this exanple should be
pointing to the least significant byte of the 4-byte address of the
tenporary expression. The return address is popped off by the called
routine along with the | ocal space used by the routine. The calling
routine cleans up the stack by renoving the paraneters after control is

r et ur ned.

Al t hough FORTRAN al | ows the nanmes of subroutines and externa

functions to

be passed as argunents in subroutine calls and function references, you
shoul d avoid doing this when interfaci ng FORTRAN wi th anot her | anguage.

| Copyright IBM Corp. 1985, 1991

6.104 -2

C Language User's Guide
Pascal Parameter-Passing Conventions

6.10.5 Pascal Paraneter-Passi ng Conventions

Pascal uses either the call-by-value or the call-by-reference nmechani sm
for passing paranmeters. The mechani sm used depends on the data type
specified for the paraneter in the procedure or function being called. |If
the paraneters are pointers to other structured data, addresses of
structured data get pushed onto the stack. Wen this happens, the pointer
function (@ conbined with the call-by-val ue nechani sm perforns the sane
way as the call-by-reference nmechani sm

Pascal defines five paraneter types:

vari abl
val u

cons
functio
procedure

I

The last two refer to the passing of function and procedure nanes as
paraneters in a function or procedure call. They are not further

descri bed here since this chapter deals with the calling of routines in
| anguages ot her than Pascal where the paraneter type nay not even be
defi ned.

Subt opi cs

6.10.5.1 Vari abl e Paraneters

6. 10.5. 2 Val ue Paraneters

6. 10.5. 3 Const Paraneters

6. 10.5.4 General Pascal Considerations

| Copyright IBM Corp. 1985, 1991
6.10.5-1

C Language User's Guide
Variable Parameters

6.10.5.1 Vari abl e Paraneters

Vari abl e paraneters are specified by including var with the nanmes of the
formal parameters in the procedure or function definition statenent. The
actual paraneters nust also be declared in a var declaration statenment by
the tinme the procedure or function is called. The paraneters are passed
by the call-by-reference nechani smand the 4-byte address of the data
structure is placed on the stack.

| Copyright IBM Corp. 1985, 1991
6.10.5.1-1

C Language User's Guide
Value Parameters

6.10. 5.2 Val ue Paraneters

Val ue paraneters are specified by the absence of var with the nanmes of the
formal paranmeters in the procedure or function definition statement. Wen
the procedure or function is called, the actual paraneters can be an
expression, a constant, or even a variable that was declared in a var

decl aration statement. A value parameter also falls into one of these
three categories: set, double, and other.

For set value parameters, a calling routine always uses the call-by-val ue
mechani sny the paraneters are pushed onto the stack regardl ess of their

I ength. For exanple, a set that occupies 1 byte of storage is pushed as a
byte onto the stack. A set that occupies nore than 1 byte of storage is
pushed with the |l east significant elenment in the | east significant word
which is at the | owest absolute address. Thus, the representation of a
set on the stack is the sanme as its representation in nenory.

For doubl e val ue paraneters, a calling routine always uses the

cal | -by-val ue nechani sm usually 8 bytes are pushed onto the stack in such
a way that the representation of a double value on the stack is the same
as in menory, that is, with the sign bit in the highest address byte.

A Pascal val ue paraneter |longer than 4 bytes is passed by its address.
This last case is actually a call-by-reference, but Pascal requires the
cal l ed procedure or function to copy the data into its | ocal storage.
This is done so that the data associated with the paraneters in the
calling routine remai n unchanged when the data are mani pul ated by the
called routine, as is true with the normal call-by-val ue nmechani sm

Arrays that are referenced in a procedure or function call are considered
val ue paraneters |onger than 4 bytes. However, whether a value or an
address is placed on the stack depends upon the procedure or function
decl aration statement. |f the declaration statenent specifies the
paraneter as an array, the address of the first byte of the array is

pl aced on the stack in 4 bytes, and the called routine has to copy the
entire array into its local storage. |If the declaration statenent does
not specify the paraneter as an array, the value of the element is placed
on the stack. Exanple B

program PASS;
type
ARAY = array [1. . 20] of Real
var
A . ARAY;

procedure
APAS(var
procedure
BPAS(var
procedure
CPAS(
procedure
DPAS(

Real); external;
ARAY) ; external

Real); external;

X X X X

ARAY) ; external;

begin
A2 .= 2.
APAS(A[2]);
BPAS(Al 2]) ;
CPAS(A[2]) ;
DPAS(A[2]) ;

| Copyright IBM Corp. 1985, 1991
6.10.5.2-1

C Language User's Guide
Value Parameters

end.

These procedures have been nade external to sinplify the exanple;
declaring the procedures external tells the conpiler that they exist in a
different file.

In Exanple B, the calls to APAS and BPAS cause the 4-byte address of the
second el ement of the array A to be pushed onto the stack because the
single paraneter to these procedures is a variable, which is declared in
the procedure declaration statement. The call to CPAS pl aces the 4-byte
value of A[2] on the stack because the procedure declaration statenent
specifies a non-variable real nunber.

The call to DPAS in the exanpl e causes the 4-byte address of the second
el ement of the array A to be pushed onto the stack. This occurs because
the procedure declaration statenment identifies the paranmeter of DPAS as
the first elenent of an array that is to be passed by the call-by-val ue
mechani sm The address of the start of the array is passed, and the
procedure copies the array into its |ocal storage area.

| Copyright IBM Corp. 1985, 1991
6.10.5.2-2

C Language User's Guide
Const Parameters

6.10.5. 3 Const Paraneters

Const paraneters are specified by including const with the nanes of the
formal paraneters in the procedure or function definition statenent. Any
expression, variable, or constant may be passed by const. No attenpt
shoul d be nade to nodify the actual parameter while it is being passed by
const .

| Copyright IBM Corp. 1985, 1991
6.10.5.3-1

C Language User's Guide
General Pascal Considerations

6.10.5.4 General Pascal Consi derations

In addition to the five paraneter types, Pascal also defines hidden
paraneters. They are not user specified; they exist for conpiler

i npl ement ati on reasons only. Hi dden paraneters are defined in the
foll owi ng cases:

O A parameter is inserted after each instance of a conformant string i
the formal argunent list. It has a value equal to the corresponding
actual argunent's declared string |ength.

0 An extra paraneter appears as the last argunent in the paraneter lis
of functions which return structures or strings. It holds the address
of the function result.

O A paraneter is inserted after each instance of a file type variable
Thi s hidden paraneter contains file namng information which is
required by the VS Pascal run-tine library routines.

As indicated previously, either the values or the addresses are pushed
onto the stack by the Pascal conpiler in the reverse order in which they
are declared in the procedure or function declaration. After the
paraneter information is pushed onto the stack, the 4-byte return address
i s pushed and the stack pointer points to that address. Then, if the
procedure or function is global, the value nil (0) is pushed onto the
stack as the final itembefore the routine is called. |If the called
routine is not a global procedure or function, a 4-byte address known as
the static link is pushed onto the stack as the final item The static
link is an address for the called routine that indicates the |ocation of
the variables in the routine which Iexically encloses it.

Static links conplicate the m xing of Pascal with other |anguages and can
be avoi ded by declaring the called routines as external procedures or
functions in the Pascal nmain program This declaration, which makes the
called routine globally defined, nmust be in the Pascal main program even
if the other |anguage routines are referenced only by a separately
conpi | ed Pascal procedure.

Function results are returned in register EAX or at the top of the Intel
80387 fl oating-point stack if the value is a floating-point number (single
or doubl e precision).

VWhen the call ed procedure or function finishes its execution, the stack
must be cleaned up. All paraneters are discarded fromthe stack by the
calling routine after control is returned.

Exampl e C
program SAMPLE
type
STR = packed array [1. . 20] of Char;
var
A : Real
| : Integer;
S: STR
procedure

FSUB(var ARGl : Real;
var STG : STR
i nput : Integer); external

| Copyright IBM Corp. 1985, 1991
6.10.54-1

C Language User's Guide
General Pascal Considerations

begin
| :=5;
A: =100. 5;
S:=" This is a string. ';
FSUB(A S, 1);
end.
Figure 6-3 illustrates a stack after the call in Exanple Cis made (nsb

and | sb indicating the nost and | east significant bytes, respectively):

I

I
NEREEEEREE |
i nsb i The value of 1,
| | stored in 4 bytes.
i I sb |
oo |
| nsb i The address of string S,
| | stored in 4 bytes.
i | sb |
oo |
| nsb i The address of variable A
| | stored in 4 bytes.
i I sb |
oo |
i nsb | Return address
| | stored in 4 bytes.
i I sb |

ESP--- +--------- !
I
I

Figure 6-3. Stack After Call in Example C

Upon return, since it is the responsibility of the calling routine to pop
the paraneters off the stack, the stack pointer in this exanmple should be
pointing to the least significant byte of the address of A The return
address is popped off by the called routine. The calling routine cleans
up the stack after control is returned.

| Copyright IBM Corp. 1985, 1991
6.10.54-2

C Language User's Guide
C Argument-Passing Conventions

6.10. 6 C Argunent-Passing Conventions

The C Language uses the call-by-reference nmechani smfor passing argunents
decl ared as arrays and uses the call-by-val ue nechani smfor passing other
argunments. Wen you use the address of operator (&), these other
argunments may be pointers to other structured data, in which case the
addresses of the structured data get pushed onto the stack. This pointer
function conbined with the call-by-val ue nechani sm perfornms the sanme way
as the call-by-reference nechani sm

The conpiler does not treat as arrays those argunments that |ack indices.
If an actual argunent includes an index, it specifies an elenent of an
array.

Exanpl e D

main ()

{
int x[5];
x[0] = 100;
funcl(x);
func2(x[0]);

}

In Exanple D, the call to funcl causes the 4-byte address of the first
byte of the first elenent of array x to be pushed onto the stack. The
call to func2, however, causes 4-byte value of the first elenent of array
x (the nunber 100) to be pushed onto the stack. An actual argument that
is an expression is evaluated before the function reference and its val ue
is pushed onto the stack. Al argunents except struct, union, double, and
fl oat argunments are pushed onto the stack as 4-byte val ues; double and

fl oat argunments are pushed as 8-byte val ues; actual argunents are pushed
onto the stack in the reverse order that they are declared in the function
decl aration. The last item pushed onto the stack is always a 4-byte
return address in the calling routine.

Functions in C Language need not return results; when they do, the
non-floating point results are returned in regi ster EAX. Floating-point
val ues are returned at the top of the 80387 nuneric processor stack. Upon
return froma function, the argunments passed to the function are still on
t he stack, though their values nmay have been altered by the function. It
is the calling routine's responsibility to pop the argunents off the

st ack.

Exanpl e E:

main ()

{
int I;
short J, K
char str[6];
float x;
doubl e dx;

I 15;
J 42:
K = 59;
str[O0]
str[2]
str[5]

"H, str[l] ="'e";
N str{3] ="1"; str[{4] ="0";
"\O0";

| Copyright IBM Corp. 1985, 1991
6.10.6 -1

C Language User's Guide
C Argument-Passing Conventions

x = 100.;
dx = 99.e-2;
xfunc(l, J, & str, x, dx);
}
Figure 6-4 illustrates how the stack | ooks after the call in Exanple E is

made (nsb and | sb indicating the nost and | east significant bytes,
respectively).

I
I
NERREEREE |
i b
I I
| I
i i Value of dx
i | stored in 8 bytes.
| |
I I
| I
i I sb |
NERREEREE |
i msb
I I
| I
i i Value of x, pronoted
i | to double, stored
i I in 8 bytes.
I I
| I
i I sb |
NERREEREE |
i nsb I Address of the first byte of
i | str stored in 4 bytes.
i I sb |
NERREEREE |
i nsb i Address of K stored
i I in 4 bytes.
i I sb |
NERREEREE |
i nsb i Value of J (42) stored
| i in 4 bytes.
i I sb |
AR |
i nsb i Value of | (15) stored
| i in 4 bytes.
i I sb |
NERREEREE |
i nsb | Return address stored
| i in 4 bytes.
top of stack | I sb |
ESP--- +--------- !
I
I

Figure 6-4. Stack After Call in Example E

Upon return, since it is the responsibility of the calling routine to pop

| Copyright IBM Corp. 1985, 1991
6.10.6 - 2

C Language User's Guide
C Argument-Passing Conventions
the argunments off the stack, the stack pointer in this exanple should be
pointing to the least significant byte of I. The return address is popped
off by the called routine.

The function xfunc may return a value in register EAX, but in this exanple
it is ignored. The function may also return a result by nodifying the
array str or in the variable K

| Copyright IBM Corp. 1985, 1991
6.10.6 - 3

C Language User's Guide
Assembler Routines Called By Other AIX PS/2 Languages

6.10.7 Assenbler Routines Called By O her Al X PS/2 Languages

VWhen writing 80386 Assenbl er |anguage routines that are to be called by
the other Al X PS/2 | anguages, do not interfere with the way the high-Ievel
| anguages use the stack, heap, and internal registers of the 80386. See
Table 6-3 in topic 6.10 for nore informati on on |inkage conventi ons.

In general, an Assenbler routine can use the space on the stack bel ow the
address indicated by the stack pointer at call time. The stack grows
toward smal | er absol ute addresses, so address space with snall er addresses
than that in register ESP can be used for working nmenory.

| Copyright IBM Corp. 1985, 1991
6.10.7 -1

C Language User's Guide
Using VS Pascal Def/Ref Variables

6.10.8 Using VS Pascal Def/Ref Variabl es
In addition to passing data through paraneter lists, VS Pascal def and ref

vari abl es may be used to comuni cate between Pascal and FORTRAN or C. The

def or ref variable is associated with a FORTRAN conmmon bl ock nane, or a C
extern vari abl e name.

Note: Only the first eight characters in the def/ref nane are
significant.

For commruni cati on between Pascal and FORTRAN, the nanme of the conmon bl ock
nmust be exactly the sanme as the def/ref variable nanme. For conmuni cation
bet ween Pascal and C, the nane of the C extern variable nust be the sane
as the def/ref variable with an underscore (_) both prepended and
appended to it.
For exampl e:
Pascal definition

def abc: integer;
FORTRAN decl arati on

COWON / ABC/ A

C decl aration

extern int _abc_;

| Copyright IBM Corp. 1985, 1991
6.10.8-1

C Language User's Guide
Chapter 7. Mixing Languages and Linkage Convention on the RT

7.0 Chapter 7. M xing Languages and Li nkage Convention on the RT

Subt opi cs

CONTENTS

About Thi s Chapter

M xi ng Languages on the RT
Correspondence of Data Types
Character Variabl es

Storage of Matrices

I nput/Qutput Primtives

Subrouti ne Li nkage Convention on RT

NNNNNNNN
O~NOUTAWN R

| Copyright IBM Corp. 1985, 1991
70-1

C Language User's Guide
CONTENTS

7.1 CONTENTS

| Copyright IBM Corp. 1985, 1991
71-1

C Language User's Guide
About This Chapter

7.2 About This Chapter

Thi s chapter describes the conditions, rules, and conventions that the
user or programrer nust observe when m xi ng program el enents of two or
nore Al X RT high-level |anguages. Detailed information is provided for
the VS FORTRAN, VS Pascal, and C conpilers on the RT.

| Copyright IBM Corp. 1985, 1991
72-1

C Language User's Guide
Mixing Languages on the RT

7.3 M xing Languages on the RT

The RT | anguage system permts the mxing of elements fromdifferent

| anguages in a single program This chapter assunes you are famliar with
t he | anguages you want to m x; the elenments of the |anguages are not
described here in detail. Appendix C, "Program Exanples for M xing
Languages" in topic C. 0 gives sanple prograns that show how to pass

par anet ers between different |anguages.

| Copyright IBM Corp. 1985, 1991
73-1

C Language User's Guide
Correspondence of Data Types

7.4 Correspondence of Data Types
The data types of one | anguage are usually quite different fromthe data

types of anot her |anguage.
the interna

across | anguages;

Al so,

usual |y varies with the inplenentation.

However ,
di fferent

the way data is stored is not the sane
data representation is left unspecified and

a certain amount of simlarity anong the data types of the
| anguages exi sts since the | anguages share many system

primtives and since | EEE (1) standard data representations are used as

much as possi bl e.
| anguages.

Note: Table 7-1 shows how the | anguages represent data internally in the
computer's nenory rather than how data are passed between program
units.

o m o o o o o m e e e e e o e o e o e e e o eemamao-- +

| Table 7-1. Correspondences of Data Types Anbng Languages

o m m e o e me i m o |

| FORTRAN | FORTRAN | | |

i IBMand RL Mbdes | VX Mde | Pascal I C |

o e e oo - S S o e e e e e o |

| Logical *1 | Logical *1 i Bool ean i :

o e e oo - S S o e e e e e o |

| | Logical *2 | | |

o e e oo - S S o e e e e e o |

i Logical, i Logi cal i i |

| Logical *4 | Logical *4 | | |

o e e oo - S S o e e e e e o |

| Integer*1 | Integer*1 | packed/ unpacked |

| | Byte | CHAR el enent i

o e e oo - S S o e e e e e o |

| I nteger*2 | I nteger*2 | i short

o e e oo - S S o e e e e e o |

| Integer*4 | Integer*4 | Integer point

o e e oo - S S o e e e e e o |

| Real, | Real, | Shortreal 1 float

| Real *4 | Real *4 i i |

o e e oo - S S o e e e e e o |

| Real *8 | Real *8 | Real i doubl e

o e e oo - S S o e e e e e o |

i Conpl ex i Doubl e Precision, i |

: i Conpl ex | i l

o e e oo - S S o e e e e e o |

i Conpl ex*8 i Conpl ex*8 i i

o e e oo - S S o e e e e e o |

I Conpl ex*16 I Conpl ex*16 : :

o e e oo - S S o e e e e e o |

| Character | Character | packed array | char |

| | i of Char i |

o e e oo - S S o e e e e e o |

: : I STRI NG : :

o m o o o o o m e e e e e e o e o e e o eema—aoo-- +

As Table 7-1 shows, each | anguage has data types that do not exist in the

ot her | anguages. Wen you interface | anguages, nake sure you either avoid

nm smat chi ng data types or

types do correspond,
st rai ght f orward.

| Copyright IBM Corp. 1985, 1991

74-1

use the m smatches very cautiously.
the interfacing of the |anguages is very

Table 7-1 shows sone of the correspondence anpng

Wien dat a

C Language User's Guide
Correspondence of Data Types

Most numeric data types have counterparts across the | anguages. However,
character and string data types do not. The nost difficult aspect of
| anguage interfacing is the passing of character, string, or text

vari abl es between | anguages.

(1) IEEE 754 Fl oati ng-Poi nt Standard.

| Copyright IBM Corp. 1985, 1991
7.4-2

C Language User's Guide
Character Variables

7.5 Character Vari abl es

FORTRAN s only character variable type is Character, which is stored as a
set of contiguous bytes, one character per byte. The |length of a FORTRAN
character variable or character array element is determned at conpile
time and is, therefore, static. Character lengths are returned by the
FORTRAN intrinsic function LEN

Pascal 's character variable data types are String and packed array of
Char. The String data type has a 4-byte word-aligned string |ength
followed by a set of contiguous bytes, one character per byte. The
dynam c length of the string can be determ ned using the |ength function
The data type packed array of Char, however, |ike the Character type in
FORTRAN, is stored as a set of contiguous bytes, one character per byte.

C character data is typically stored as arrays of type char. The char
data type stores one character per byte; therefore, an array of char is
stored exactly |ike a FORTRAN Character variable or a Pascal packed array
of Char.

| Copyright IBM Corp. 1985, 1991
75-1

C Language User's Guide
Storage of Matrices

7.6 Storage of Matrices
FORTRAN matrices are stored in computer nmenory by colum (col unm maj or
order); therefore, the first subscript in a nulti-dinmensional array varies
fastest. An array dinensioned as:

A(3, 2)
is stored in this order:

A(1,1) A(2,1) A(3,1) A(L,2) A(2,2) A3 2

Pascal and C matrices are stored in conputer nmenory by row (row nmaj or
order). For exanple, an array in Pascal declared as:

A: array [1..3,1..2] of Real
is stored in this order:
Al1,1] Al1,2] Al2,1] A2, 2] A3 1] A3, 2]
Since the matrix storage convention for Pascal and C differs fromthat for

FORTRAN, be careful when passing references to matrices between FORTRAN
and the other |anguages.

| Copyright IBM Corp. 1985, 1991
76-1

C Language User's Guide
Input/Output Primitives

7.7 Input/Qutput Primtives

Primtive input/output routines are usually bound to a user's program
during the final Iinking process when the Al X Iinker includes the
necessary code fromthe |anguage run-tinme library (libvsfor.a for
FORTRAN), and the systemrun-tine library (libvssys.a for FORTRAN and
Pascal).

VWhen you m x, for exanple, FORTRAN and Pascal, you nust renenber to link
both libvsfor.a and |ibvssys.a in this order. This allows the primtives
needed for both the FORTRAN and Pascal parts of the programto be present.

The input/output primtives are different for each | anguage; because of
this you are not able, for exanple, to open a file or device for use by
one | anguage and wite to it or read fromit in a different |anguage.
Ceneral ly, however, two | anguages can exist in a programas |long as they
each have their own files and device for input/output, which includes the
consol e devi ce.

VWhen the main programis not conpiled using the RT C conpiler, special
handling is required when calling RT VS Pascal and RT VS FORTRAN
subroutines that performinput/output or floating-point arithmetic.

An initialization routine nust first be called fromthe nmain program so
that the floating-point arithmetic entry points and the input/output
buffers and information are properly set up: for RT VS Pascal, the
routine is vspio and is in the systemrun-tinme library |ibvssys.a; for RT
VS FORTRAN, the routine is vsfio and is in the |anguage run-tinme |library
|ibvsfor.a. These routines do not require paraneters.

Not e: Wien using RT FORTRAN | anguages, a trailing underscore is
automatically appended to the routine nanme; therefore the duplicate
routines vspio_ and vsfio_are included in the libraries. Wen
calling VS FORTRAN from a non-RT VS Main program you should
include a call to vsfio_ as standard practice.

To properly flush input/output buffers before programtermnation
froma main programthat has called a FORTRAN subroutine, the
routine vstfio_ nust be called imediately before exiting your main
program

Whenever you m x | anguages, you need first to becone famliar with the
requi rements of each particular subroutine and each | anguage's
ar gunent - passi ng requi renments.

| Copyright IBM Corp. 1985, 1991
7.7-1

C Language User's Guide
Subroutine Linkage Convention on RT

7.8 Subroutine Linkage Convention on RT

The subroutine |inkage convention describes the nmachine state at
subroutine entry and exit. This scheme allows routines that are conpiled
separately in the sane or a different RT | anguage to be |inked and

execut ed when call ed.

Subt opi cs

7.8.1 Load Modul e For mat
7.8.2 Register Usage

7.8.3 Stack Frane

7.8.4 Paraneter Passing
7.8.5 Function Val ues
7.8.6 Paraneter Addressing
7.8.7 Traceback

7.8.8 Entry and Exit Code
7.8.9 Calling a Routine
7.8.10 Using VS Pascal Def/Ref Variables

| Copyright IBM Corp. 1985, 1991
78-1

C Language User's Guide
Load Module Format

7.8.1 Load Modul e For mat

The | oad nodule format used is Al X GPOFF (General Purpose Qutput File
Format). For the GPOFF, each routine has a constant pool in the data
segnent. A constant pool is a data area created for each routine. The
first word of each routine's constant pool contains the address of the
routine's entry point. A constant pool also provides the routine with
addressability to constants, |ocal data, and any call ed-routine's constant
pool. A constant pool pointer (cpp) is passed in register 0 on a call.

| Copyright IBM Corp. 1985, 1991
781-1

C Language User's Guide
Register Usage

7.8.2 Register Usage

If aregister is not saved during the call, its contents may be changed
during the call. Conversely, if a register is saved, its contents are not
changed, and the register can be used as scratch (that is, as a work
area). Table 7-2 lists registers and their functions.

o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +
| Table 7-2. Register Usage

e I e T |
: : . Saved | :
| i i During, |
. Register | Nane | Call | Use E
Fomm i e oo S S o m o m o e e e e e e e e e e e memeeoo- |
| 0 i called | no i Constant pool pointer. On call, contains

| 1 cpp | | address of called routine's constant pool.

| i | i Can al so be used for scratch between

i | i i calls. |
R RS S o m - - o m m e |
| 1 P fp | yes | Stack pointer.

R RS S o m - - o m m e |
| 2 {o-- | no i Oncall, first word of paraneter words to

| i | i called routines. On return, first word of |
| i | i return value. Between calls, can be used

| | | | as scratch. |
R RS S o m - - o m m e |
| 3 I | nho i On call, second word of paraneter words to

| i | i called routines. On return, second word

| i | i of return value (for exanple, |ow order 2

| i | i words of a floating-point value). Between

| i | i calls, can be used as scratch.

R RS S o m - - o m m e |
| 4 I | nho I Oncall, third word of parameter words to

| i | | called routines. Between calls, can be

| | | | used as scratch. |
R RS S o m - - o m m e |
| 5 I | ho i On call, fourth word of paraneter words to

| i | | called routines. Between calls, can be

| | | | used as scratch. |
R RS S o m - - o m m e |
| 6 I | yes i Not involved in call interface. Can

| i | I contain register variables or can be used

| | | | as scratch. i
Fomm i e oo S S o m o m o e e e e e e e e e e e memeeoo- |
| 7 I | yes i Not involved in call interface. Can

| i | I contain register variables or can be used

| | | | as scratch. i
Fomm i e oo S S o m o m o e e e e e e e e e e e memeeoo- |
| 8 I | yes i Not involved in call interface. Can

| i | I contain register variables or can be used

| | | | as scratch. i
Fomm i e oo S S o m o m o e e e e e e e e e e e memeeoo- |
| 9 I | yes i Not involved in call interface. Can

| i | I contain register variables or can be used

| | | | as scratch. |
R RS S o m - - o m m e |
| 10 I | yes i Not involved in call interface. Can

| i | I contain register variables or can be used

| | | | as scratch. i
Fomm i e oo S S o m o m o e e e e e e e e e e e memeeoo- |
| 11 {o-- | yes i Not involved in call interface. Can

| Copyright IBM Corp. 1985, 1991
782-1

C Language User's Guide

Register Usage
contain register variables or can be used
as scratch

---------- o m e e e e ot ot e e o e o e o e e e e e e e e e e e e e eemaa—--
12 {o-- | yes i Not involved in call interface. Can
i | I contain register variables or can be used
| | | as scratch.
---------- o m e e e e ot ot e e o e o e o e e e e e e e e e e e e e eemaa—--
13 I | yes I Frame pointer.
---------- o m e e e e ot ot e e o e o e o e e e e e e e e e e e e e eemaa—--
14 | current] yes i Not involved in call interface. By
1 cpp | I convention, however, contains address of
i | I current routine's constant pool.
---------- o m e e e e ot ot e e o e o e o e e e e e e e e e e e e e eemaa—--
15 I'ink no On call, contains return address. Can

al so be used as scratch.

| Copyright IBM Corp. 1985, 1991
782-2

C Language User's Guide
Stack Frame

7.8.3 Stack Frame

When a routine is called, the conpiler passes paraneter words 5 through n
on the stack. Space is allocated for paraneter words 1 through 4. If the
routine uses local or tenporary variables, they are allocated space on the
stack. The stack grows from hi gher addresses to | ower addresses. A
single frame-pointer register (register 13) is used to address | ocal
storage, incom ng and outgoing paraneters, and the save area.

H GH ADDRESSES

| Caller's |
| St ack |
i Area |
S |
| nput : P5...Pn |
Paraneter | - - - - - - - | [F-- Caller's Stack Pointer
Wor ds | P1...P4 | (Regi ster 1)
S |
| Linkage Area |
S |
i Regi st er |
i Save |
i Area |
e L i O--- Franme Pointer
i Local | (Regi ster 13)
I I
| 1
i Tenps |
S |
Qut put : P5...Pn |
Par anet er i - - - - - - -1 [F-- CQurrent Stack Pointer
Wor ds | P1...P4 | (Regi ster 1)
o e e e - 1
| :
| 1
LOW ADDRESSES

Figure 7-1. Contents of a Stack Frame

Figure 7-1 represents the contents of a stack frane. The areas in the
stack are described as foll ows:

| nput parameter word

Li nkage are

Regi ster save are

Local and tenporary stack are
Frame pointe

Qut put paraneter word

Total stack frane

I I

| nput Paranmeter Wrds: If a routine receives nore than 4 paranmeter words,
upon entry the stack pointer (register 1) addresses the locations in the
stack where paranmeter words 5 through n are stored. |Imrediately bel ow the
stack pointer is a 4-word area in which the first 4 paraneter words
(passed in registers 2 through 5) can be stored by the conpiler. The
paraneter words are stored only if registers 2 through 5 are to be used as
scratch registers or if a paraneter address is required. This area is
present regardl ess of the nunmber of paraneters being passed.

| Copyright IBM Corp. 1985, 1991
783-1

C Language User's Guide
Stack Frame

regparsi ze = 16 # Size of area in which first 4
paraneter words can be stored.

Li nkage Area: The first word of the linkage area is reserved for storing
t he environment pointer, which is the frame pointer (register 13) of the

routine in which the current routine is nested. It is used to gain
addressability to the enclosing routine's local variables. Internal calls
to nested routines do not use this pointer. It is required to support

Pascal paranetric procedures or functions since they may be called froma
separately conpiled routine.

envirsize = 4 # Environnment pointer size

The next 4 words of the |inkage area are reserved.

resrvsize = 16 # Reserved area size
li nksi ze = envirsize + # Link area size
resrvsi ze

Regi ster Save Area: The general -purpose registers (GPRs) and

fl oati ng-point registers (FPRs) are saved in the register save area. GPR
15 is always saved in the highest word of the register save area.

Fl oati ng-point registers are saved imedi ately followi ng the GPRs.

Rn # First GPR saved (6 <= Rn <= 15)
GPRsi ze = 4*(16-Rn) # GPR save area size
save = regargsi ze + # O fset of GPR save area
linksize + GRPsi ze
FPRsi ze = 4*163 # FPR save area size
savesi ze = GRPsi ze + # Total register save area
FPRsi ze

Local and Tenporary Stack Area: Wien a routine needs space for |ocal or
tenporary variables, the conpiler allocates space for themin the |oca
and tenmporary stack area. The size of this area is known at conpile tine.

set | ocal size # Size of local auto's and tenp's

Frame Pointer: The conpiler uses register 13 as the frame pointer to
address sections in the stack frane. The register save area, |inkage
area, and input paranmeter words are referenced as positive offsets to
register 13. The local and tenporary variables are referenced as negative
offsets to register 13. Qutput paranmeter words are referenced using
register 1, the current stack pointer.

Qut put Paranmeter Words: |If a routine makes a call with nore than 4
paraneter words, the conpiler allocates space for the parameter extension
list imediately above the stack pointer. This area is |arge enough to
hol d the bi ggest paraneter extension list for any call nade by the
routine.

extlistsize # Size of biggest paraneter extension |ist

Total Stack Franme: The entire stack frame can be thought of as including
all the space between the caller's stack pointer and the current stack

pointer. It is also reasonable to consider the input parameter area as
being part of the current stack frane. In a sense, each paraneter area
belongs to both the caller's stack frane and the current stack frame. In

either case, the stack frane size is best defined as the difference

| Copyright IBM Corp. 1985, 1991
7.83-2

C Language User's Guide
Stack Frame

between the caller's stack pointer and the current stack pointer.

framesi ze = regargsi ze + # stack franme size
i nksi ze + savesi ze +
| ocal size + extlistsize

| Copyright IBM Corp. 1985, 1991
7.83-3

C Language User's Guide
Parameter Passing

7.8.4 Paraneter Passing

The contents of the paraneter words vary among | anguages. Paraneters are
understood to occupy an array in the stack, with each parameter aligned on
a word boundary. The conpiler allocates space in the stack for all the
paraneter words, but it does not store the first 4 words on the stack
These val ues are passed in registers 2 through 5. They are only copied to
the stack space if a paraneter address is required or if registers 2
through 5 are to be used as scratch registers. Paranmeter values are
passed according to type:

O Atype value less than or equal to 4 bytes is passed right-justifie
in a single word or register, word aligned.

O In RT VS Pascal and FORTRAN, a parameter that is a procedure o
function is passed as a pointer to the routine's constant pool. In
addi tion, for RT VS Pascal, the routine's environnment pointer is
passed in the next successive word.

O A double value is passed in two successive words, which need not b
doubl eword aligned. One nay be in register 5 and the other in the
stack frane.

| Copyright IBM Corp. 1985, 1991
784-1

C Language User's Guide
Function Values

7.8.5 Function Val ues
Functions return their values according to type:

O A type value less than or equal to 4 bytes is returned right-justifie
in register 2.

O A double value is returned in registers 2 and 3

| Copyright IBM Corp. 1985, 1991
785-1

C Language User's Guide
Parameter Addressing

7.8.6 Paraneter Addressing
The input parameter words 5 through n can be addressed in the stack by:

linksize + savesi ze+4*k-4(r13) # get k-th paraneter word

If the conpiler stored the first 4 paranmeter words (registers 2 through 5)
in the stack franme, then they can be addressed the sane way.

| Copyright IBM Corp. 1985, 1991
7.86-1

C Language User's Guide
Traceback

7.8.7 Traceback

The conpil er supports the traceback nmechanism which is required by the
Al X Operating System Synbolic Debugger in order to unravel the call/return
stack. Each nodule has a traceback table in the text segnment at the end
of its code. This table contains information about the nodul e including
the type of nmodule as well as stack frane and register information

| Copyright IBM Corp. 1985, 1991
7.8.7-1

C Language User's Guide
Entry and Exit Code

7.8.8 Entry and Exit Code
The conpiler adds entry and exit code around each routine's code, which
sets up and renpves the routine's stack frane.

The entry code:

Saves nodified non-volatile register

Decreases stack pointer (register 1) by framesize

Copi es the constant pool pointer fromregister O to register 1

Sets frane pointer (register 13); if the routine is the main program
register 13 points to the gl obal data area.

OooOoOgood

The exit code:

0 Restores stack pointer (register 1
0 Restores registers

| Copyright IBM Corp. 1985, 1991
7.88-1

C Language User's Guide
Calling a Routine

7.8.9 Calling a Routine

A routine has two synbols associated with it: a constant pool pointer
(_nane) and an entry point (.name). Wen a call is nade to a routine, the
conpi l er branches to the .name entry point directly and | oads the _nane
constant pool pointer into register 0. |If the routine entry point is not
within a megabyte of the call, the conpiler |oads the nane constant pool
pointer, loads the .nanme entry point fromthe first word of the constant
pool, and branches to it.

| Copyright IBM Corp. 1985, 1991
789-1

C Language User's Guide
Using VS Pascal Def/Ref Variables

7.8.10 Using VS Pascal Def/Ref Variables

In addition to passing data through paraneter lists, VS Pascal def and ref
vari abl es may be used to comuni cate between Pascal and FORTRAN or C. The
def or ref variable is associated with a FORTRAN common bl ock name, or a C
extern vari abl e nane.

Note: Only the first eight characters in the def/ref nane are
significant.

For conmmuni cati on between Pascal and FORTRAN, the name of the def/ref
variable is the sane as the common bl ock but with an underscore appended
to it. For communication between Pascal and C, the nane of the def/ref
vari abl e nust have an underscore appended to it. The C extern nanme mnust
be the sanme as the def/ref nane, including having the underscore (_)
appended to it.
For exampl e:
Pascal definition

def abc_: integer
FORTRAN decl arati on

COWON / ABC/ A

C decl aration

extern int abc_;

| Copyright IBM Corp. 1985, 1991
7.8.10-1

C Language User's Guide
Chapter 8. AIX/370 Linkage Conventions

8.0 Chapter 8. Al X/ 370 Linkage Conventions

Subt opi cs

CONTENTS

About This Chapter

Li nkage Specifications

Summary of Linkage Characteristics
Li nkage Exanpl es

Servi ce Routines

Debugger Consi derati ons

Tagged Dat a

o 00 0 0 00 W 0
O~NO OIS~ WN P

| Copyright IBM Corp. 1985, 1991
80-1

C Language User's Guide
CONTENTS

8.1 CONTENTS

| Copyright IBM Corp. 1985, 1991
81-1

C Language User's Guide
About This Chapter

8.2 About This Chapter

Thi s chapter specifies Al X/ 370 conventions for inter-procedural calls.
Specifically, these include:

Stack frame | ayou

Regi ster usage during call, prolog, and epilogu
Argunment and result passin

Trace table definition

[

Al so di scussed are object code attributes required to support debuggers
and ot her routines which performtrace-back.

The first section, "Linkage Specifications"” in topic 8.3, provides the
formal definition. Subsequent sections give exanples of usage. Debugger
consi derations (for exanple, trace back) are discussed in "Trace Back
Implications” in topic 8.7.1.

| Copyright IBM Corp. 1985, 1991
8.2-1

C Language User's Guide
Linkage Specifications

8. 3 Linkage Specifications

Subt opi cs

.1

o 00 00 0 00 T 0O 00 W 0O
WWWWwWwwwwww

2
3
4
.5
. 6
7
8
9
1

St ack- based

Cal | Linkage

Regi ster Volatility
Argunment Passi ng

Return Val ue

Trace Back

Speci al Consi derati ons

St andard Service Routines
St ack Frame Header

0O Trace Table

| Copyright IBM Corp. 1985, 1991

83-1

C Language User's Guide
Stack-based

8.3.1 Stack-based

O

R13 always identifies the beginning (|l owest address) of the curren
stack frane.

Negative growing - Al X/ 370 establishes a wite/protected red-zone page

i medi ately bel ow the | owest address allocated for stack usage. In
the typical linkage, (1) this avoids explicit stack overfl ow checking
in each procedure prolog. Instead, the kernel can automatically

expand the stack size when an attenpt to store is detected for an
address bel ow R13 and above the | owest address currently allocated to
t he stack.

88- byt e, doubl eword-aligned stack frame header (see "Stack Frame
Header" in topic 8.3.9 for a definition).

4(R13) is used to store (and hence identify) the address of th
calling procedure's stack frame. Franeless routine detection is
di scussed in "Trace Back Inplications"” in topic 8.7.1.

(1) Where the stack frane size is = bytes.

| Copyright IBM Corp. 1985, 1991
831-1

C Language User's Guide
Call Linkage

8.3.2 Call Linkage

0 Rl14 defines the return address
0 R15 defines the called routine's entry point address

Proper handling of these registers in procedure prol og/epil ogue sequences
is critical for trace back operation. See "Trace Back Inplications" in
topic 8.7.1 for details.

| Copyright IBM Corp. 1985, 1991
832-1

C Language User's Guide
Register Volatility

8.3.3 Register Volatility

O

O

R2-R12 nust be saved and restored if nodified by a program

RO and the FPRs are scratch unless required for a return val ue
Rl is always scratch

Restoration of R13 is inplicit inits role as the stack pointer

R14 and R15 nust be preserved in accordance with trace bac
requirements in "Trace Back Inplications” in topic 8.7.1.

| Copyright IBM Corp. 1985, 1991
833-1

C Language User's Guide
Argument Passing

8. 3.4 Argunent Passing

The argument |ist occupies successive fullwords in the caller's stack
frame inmedi ately following the caller's register save area for RI15.

O

The first four words are passed in registers RO-R3 and thus an initia
STM such as: STM R4, R3, 24 (R13) could be used to save these val ues,
if required, in their respective reserved |ocations in the argunent
list.

An argunment of |ess than four bytes is right-aligned inits word. A
argunment of nore than 4 bytes (for exanple, a structure) is
left-aligned in nmultiple words.

Procedures which return a structure or union are passed a pointer to
the return area as a hidden first argunent in RO.

| Copyright IBM Corp. 1985, 1991
834-1

C Language User's Guide
Return Value

8.3.5 Return Val ue

0 Sinple values are returned via RO (integer, character, pointer) o
FPRO-6 (2) for floating point val ues.

O Structures and unions are noved by the called procedure to the area
specified by the hidden first paraneter.

(2) The number of FPRs (Floating-Point Registers) required to
contain the return value will be utilized.

| Copyright IBM Corp. 1985, 1991
8.35-1

C Language User's Guide
Trace Back

8.3.6 Trace Back

Trace back nethodology is discussed in "Trace Back Inplications” in
topic 8.7.1. Each entry point is preceded by a trace table in one of the
formats described in "Trace Table" in topic 8.3.10.

| Copyright IBM Corp. 1985, 1991
8.36-1

C Language User's Guide
Special Considerations

8. 3.7 Speci al Considerations

These are special situations which a conpiler may choose to be aware of in
support of optim zation or support of run-tinme services.

Framel ess routines are any routines that do not call another procedure,
have a limted requirenent for |ocal storage, and do not acquire a stack
frame.

| Copyright IBM Corp. 1985, 1991
83.7-1

C Language User's Guide
Standard Service Routines

8.3.8 Standard Service Routines

Several service routines are required in support of this |inkage
specification. Wile the service routines thenselves are not a proper
part of this specification, certain aspects of their behavior are assuned
in order to assure efficient |linkages. Additionally, the existence of a
St ackCheck routine is dictated by this specification. See "Service
Routines” in topic 8.6 for additional information of StackCheck, alloca()
and nctount .

| Copyright IBM Corp. 1985, 1991
8.38-1

C Language User's Guide
Stack Frame Header

8.3.9 Stack Frane Header

The following structure defines the fields in the stack frane header

Field names are used illustratively and are not intended to be a standard
nor is anything inplied by conflict between the nanmes here and ot her nanes
within the Al X/ 370 systenmis source files.

struct stackfranme {
unsi gned | ong sf_I ang_word; /* A | anguage specific word
reserved for usage such as
the Pascal static link */

struct stackfranme *sf _of caller; /* back chain to caller's

stack frane */
unsi gned | ong sf_reserved| 2]; /*reserved */
unsi gned | ong sf_save_2_ 15[14] /*R2- R15 save area */

[* Argunment |ist begins here -- the first two words
coincide with RO-R3 save areas.

unsi gned long sf_r0_pl, /* RO save area / Paranmeter word 1 */
unsi gned long sf_rl1 p2; /* Rl save area / Paranmeter word 2 */
unsi gned long sf_r2_p3; /* Reserved for Paraneter word 3 */
unsi gned | ong sf_r3_p4, /* Reserved for Paraneter word 4 */
unsi gned | ong sf_parmS5; /* Parameter word 5 */

addi ti onal paraneters foll ow here

}

Note: Additional parameters words beyond the first four are passed to the
called procedure in nmenory inmrediately follow ng sf r3 p4.

| Copyright IBM Corp. 1985, 1991
839-1

C Language User's Guide
Trace Table

8.3.10 Trace Tabl e

Each procedure has a trace table imedi ately before its entry point.

Trace tables are utilized by debuggers to assist with failure anal ysis.
They provide such informati on about the nunber of inbound paraneters, the
maxi num nunber of outbound paraneters, assignment of argunents to

regi sters or storage during execution of the procedure, and the size of
the code associated with the procedure. Trace table content is extensible
inthat a format field identifies the particular trace table structure. C
structures foll ow describing three currently defined trace table fornmats.

Format 1: This is the standard trace table format providing the
information required by the debuggers for normal routines.

struct tracetable fl { /* Format 1 trace table */
unsi gned short t_arglength; /* WORDs of nmenory required for the

| ongest out bound parameter |ist

beyond the m ni mum four all owed

for in the register save are. */

unsi gned short t_argl: 4, [* If a sub-field # 15, then the
t_arg2: 4, correspondi ng paraneter is saved
t_arg3: 4, in the nmenory argunent |ist area,
t_arg4: 4, otherwise it defines the register
all ocated to the argument within
this procedure. */
unsi gned | ong t_codesize; /* size of procedure code */
unsi gned short t_fI ags; /* See text notes */

unsi gned char t_parm ength; /* Nunber of argunents words decl ared
by this procedure including the
initial 1-4 passed in registers */

unsi gned char t_format; [* =1 ... aformat 1 trace table */

H

Format 2: This trace table format provides the absol ute m ni rum and nay
only be used for franel ess routines.

struct tracetable f2 { /* Format 2 trace table */
unsi gned char t_parm ength;
unsi gned char t_format; [* =2 ... aformat 2 trace table */
3

Format 3: This alternative format provides for procedures which require
an undeterm ned anount of arbitrary data associated with an entry point.
The tagged data consists of a sequence of arbitrary self-describing
entries.

struct tracetable f3 { /* Format 3 trace table */
struct tagdata *t_tagdat a; /* Address of the tagged data area.*/
unsi gned short t_argl ength;
unsi gned short t_argl: 4,
t_arg2: 4,
t _arg3: 4,
t_arg4: 4,
unsi gned | ong t_codesize; /* size of procedure code */
unsi gned short t_fl ags;
unsi gned char t_parm ength;
unsi gned char t_format; [* =3 ... aformat 3 trace table */

| Copyright IBM Corp. 1985, 1991
8.3.10-1

C Language User's Guide
Trace Table

The tagdata structure is described under "Tagged Data" in topic 8.8.

Format O0: This trace table format is obsolete but nay exist in binary
files.

struct tracetable fO { /* Format O trace table */
unsi gned short t_argl ength;
unsi gned short t_argl: 4,

t_arg2: 4,
t _arg3: 4,
t_arg4: 4,
unsi gned char t_parm ength;
unsi gned char t_format; [* =0 ... a format O trace table */

}1
Not es:
1. The t format field is imediately followed by the entry point.

2. If atrace table requires padding for alignnment, the padding should
precede the trace table.

3. The root (actually the end, nenory address w se) section of the trace
table is conmmon to all formats.

4. t_flags is reserved to store trace table nodifiers and/or additional
i nformati on about the annotated entry point.

| Copyright IBM Corp. 1985, 1991
8.3.10-2

C Language User's Guide
Summary of Linkage Characteristics

8.4 Summary of Linkage Characteristics

O

O

Re

©CoOo~NOOUIT~WNEO

Call: 2 instructions (6 bytes plus adcon

Prol ogue: 54 instructions (16 bytes plus constant) typical
Epi | ogue: 2 instructions (6 bytes

No limtation on size of program stack frame, or argument lis
Paraneter passing: first four words passed in register

(Code base register usage is not in the domain of |inkag
conventions.)

Var args supported

al l oca() supported

In a typical stack frame of = bytes, a single stack pointer ca
address outgoi ng argunents, |ocal variables, the register save area,
and i ncom ng argunents.

The stack franme header provides a back chain pointer for locating th
previous stack frame as well as a register save area, argument
storage, etc.

A trace table before entry point gives information for debugger

Li nkage designed for use by C, Pascal, and FORTRA

Franmel ess routines may utilize as scratch storage any word in th
basi c stack frame header (other than the back chain pointer) that is

not required for preserving the caller's registers.

Al X/ 370 Li nkage
Regi ster Conventi ons

g Life Use
Killed Parm 1 and sinple return val ue
Killed Parm 2
Saved Parm 3
Saved Parm 4
Saved
Saved
Saved
Saved
Saved
Saved
Saved
Saved
Saved
Saved St ack Poi nt er
Saved Ret: Return Address
Killed Sbr: Called Procedure Entry Point
Killed Fl oat or doubl e Return Val ue
Killed (return value if conplex or extended precision)
Killed (return value if conpl ex extended precision)

| Copyright IBM Corp. 1985, 1991
84-1

C Language User's Guide
Summary of Linkage Characteristics

f6 Killed (return value if conpl ex extended precision)
Expl anat ory notes
O Sinple results char, int, pointer) are returned in RO.
0 Floating results are returned in fO (and f2-f6 if required)

0 Program base register allocatio (3) is a responsibility of each
conpiler and is therefore not included in this specification.

O The stack pointer points to the bottom of the stack

(3) Note that code chunking can be exploited to avoid the need
for multiple base registers for |arge program code.

| Copyright IBM Corp. 1985, 1991
84-2

8.5 Li nkage Exanpl es
This section is inte
illustrating how a c
vari ous epilogue/pro
conventi on.

Regi sters shown by r

regi ster (for exanpl

This figure shows the stack just before execution of a called procedure's

pr ol og.
Run-tinme Stack
Al X/ 370 Li nkage
I I
| |
I I
| |
S i
| Caller's i
| | ocal i
| vari abl es i
S i
| Pn |
: C. :
(88) P5 |
S i
Regi st er | r3 = P4 | Fi
: r2z = P3 i
save | ri = pP2 i
| ro = P1 :
area | ris i
| rig i
to be STMd | ri3 i
| riz i
by call ee | ril :
: rio |
I I
| |
I I
| |
(16) r2 :
S i
i (reserved i
| wor ds) |
S i
(4) back chain - |
St ack pointer e :
ri3 (0) Ianguage word,
S i
| To be |
| callee's i
| | ocal i
| vari abl es i
| |
Subt opi cs
8.5.1 Calling Procedure's Call Code
8.5.2 Called Procedure's Prol ogue Code

C Language User's Guide
Linkage Examples

nded to clarify the |linkage conventions by

onpi l er or assenbl e | anguage progranmer m ght code the

Il og and call |inkage sequences required by the

egi ster nunber (for example, R13) are specific
registers required by the |inkage convention. Registers required to
acconplish a particular code fragnent will be shown as a non-nuneric

e, Ra, Rb, Rtenp).

H gh addresses

back pointer

end of maxi mum |l ength arglist:

Call er saves these before call

xed-si ze area
callee STMs r0-r3 only if

necessary (e.g., for varargs)

Start of arg list

Call ee's entry address

Caller's return address
Caller's franme bottom

r2-r12 STMd only if necessary

Two words reserved for future
consi derati ons.

points to previous stack frane

for exanple, Pascal static |link

Low addr esses

| Copyright IBM Corp. 1985, 1991
85-1

C Language User's Guide
Calling Procedure's Call Code

8.5.1 Calling Procedure's Call Code

The caller passes the first four argunent-list words in RO-R3. For |onger
argunent lists, the caller stores words 5-n in sequential word-aligned
stack | ocations, beginning at 83(R13). A C function returning a struct or
union is passed (as a hidden first argunment) the address of the area to
store the result.

The caller of a nested Pascal procedure stores a static link (the frame
pointer to the callee's parent) at O(R13).

Once the paraneters are in place, the caller invokes the callee with the
follow ng instructions.

L ri5, =A(cal l ee)
BALR r14,r15

| Copyright IBM Corp. 1985, 1991
851-1

C Language User's Guide
Called Procedure's Prologue Code

8.5.2 Called Procedure's Prol ogue Code

The entry point is preceded by a trace table holding information for
debuggers and execution profiling. The trace table format is described in
"Trace Table" in topic 8.3.10.

The first instructions store any registers that nmust be saved (for
exanple, the return address, the old stack pointer, and any of the R2-R12
that are needed for scratch registers). A local code base is established
(if required), the stack pointer is adjusted, and the back chain stored.

Subt opi cs

8.5.2.1 Small Size (=4K) Frane
2.2 Large Size (>4K) Frane
2.3 Execution Profiling
2.4 vararg Support
2.5

8. 5.
8. 5.
8. 5.
8. 5. Epi | ogue Code

| Copyright IBM Corp. 1985, 1991
852-1

C Language User's Guide
Small Size (=4K) Frame

8.5.2.1 Small Size (=4K) Frane
Cal | ee:

STM Ra, Rz(a-z)*4+16(R13) The Ra-Rz range utilized will be a
conpi l er optim zation issue. Rl4
and R15 nust be saved.

LR Rt emp, R13 Copy the in-bound stack pointer.
Rtemp woul d typically be the |ocal
base chosen by the compiler if

required.
LR Rcode, R15 The code base register is set
SL R13, =F' framnesi ze' Decrenment the stack pointer
ST Rt emp, 4(R13) Establ i sh the back chain

Note: framesize nust be a multiple of 8.

The foll owi ng exanple illustrates an alternative prol og which nakes
potentially useful trade-offs in register usage, instruction counts,
nmenory references.

STM Ra, Rz, (a=2) *4+16(RL3)

LR Rt emp, R13 Copy ol d stack frane
LA Rcode, franesi ze Trade LA and SLR for SL with
SLR R13, Rcode menory reference constant

ST Rt enp, 4(R13)
LR Rcode, R15

| Copyright IBM Corp. 1985, 1991
8521-1

and

C Language User's Guide
Large Size (>4K) Frame

8.5.2.2 Large Size (>4K) Frane

The above code assunes a stack frame smaller than the red-zone size. |If
framesize is larger than 4096 bytes, the follow ng prol og m ght be used.
A mniml (88 byte) stack frame is established and then StackCheck is
called to verify that sufficient nenory exists to hold the required stack
franme. StackCheck returns with R13 properly adjusted to reflect the full
si ze stack frame.

Cal | ee:
STM Ra, Rz, (a=2)*4+16(R13) (See coments above re. Ra, Rz)
LR Rt enp, R13 Save the in-bound stack pointer
LA Rcode, 88 Establish a m ni mum stack frane
SLR R13, Rcode C
ST Rt enp, 4(R13) m ni nrum stack franme conpl et ed
LR Rcode, R15 Set code base register
L R15, =A(st ackCheck) To the checker routine
BALR R14, R15
DC AL4(franesi ze=88) size of desired franme expansion

The choice of registers for addressing locations in the stack frane is a
conpi l er decision. R13 always addresses the start of the stack frane;
anot her register may be needed to address the end of the frame if the
frame is large or the value of R13 will be changed by calls to alloc().

| Copyright IBM Corp. 1985, 1991
8522-1

C Language User's Guide
Execution Profiling

8.5.2.3 Execution Profiling

When profiling is enabled, the foll owi ng code segnent is added to the end
of the prolog. ntountword is the address of a fullword allocated by the
conpiler in the data segnent. Each procedure profiled has a unique
ncount wor d.

L R15, =A(ntount) profiling routine
BALR R14, R15
DC AL4(ntount wor d)

The ntount procedure nust be witten to preserve all registers.

| Copyright IBM Corp. 1985, 1991
8523-1

C Language User's Guide
vararg Support

8.5.2.4 vararg Support

If the called procedure takes the address of any argunent nane, the
conmpi l er nmust ensure that argunment list words 1, 2, 3, and 4 reside in
menory in their proper positions. (4)

(4) The varargs macros declare 4 argunents so that all four
paraneter registers are saved.

| Copyright IBM Corp. 1985, 1991
8524-1

C Language User's Guide
Epilogue Code

8.5.2.5 Epil ogue Code

An integer result is returned in RO; a floating result in FO(=F6 if
required). A multi-word result (for exanple, a C struct or union) is
returned by having the callee nove it to the caller's storage. The caller
passed the address of this area as a hidden first argunment. The epil ogue
code restores any nodified registers in the range R2-RR14.

The first exanple illustrates the typical epilogue sequence applied when
the stack frane is = 4K bytes in size. A simlar optimzation is possible
if the conpiler has allocated a register which would provide basing for

t he i nbound stack franme header.

LM Ra, R14, (a=2) *4+16+f r anesi ze(R13)
BR R14

The next example illustrates the general case where basing for the
caller's stack frame nust be established by the epil ogue:

L Rt enp, 4(R13) Use of Rtenp avoids an
anbi guous state for R13

LM Ra, R14, (a=2) *4+16(Rtenp) R15 is restored to insure that
franel ess routine anbiguity
resolution logic will work

BR R14

| Copyright IBM Corp. 1985, 1991
85.25-1

C Language User's Guide
Service Routines

8.6 Service Routines

These routines are not a proper part of a |linkage specification, but the
functions provided are required. The approaches described here for

i npl enentation of these functions serve to illustrate the limtations and
requirenments for inclusion of simlar function. A conpiler is likely to
desire special know edge of the existence of these routines or actually
require the routine for mandatory services.

These routines all receive a conpiler furnished special paraneter coded as
a full word unaligned constant followi ng the BALr instruction.

St ackCheck Aroutine utilized to allocate stack frames whi ch exceed 4K
byt es.

Prior to calling StackCheck, a standard m ni mum stack frame
(88 bytes) nust be all ocat ed.

The special parameter passed follow ng the BALr instruction
wi Il be the required increase in stack frane size.

The requested size is rounded up to an integral number of
doubl ewor ds and checked to insure that the resulting stack
frame pointer will remain wthin bounds.

The new stack franme header is established and initialized as
foll ows:

1. The 4(r13) value inbound is |oaded into Rtenp.
2. Rl13 is set to its new val ue

3. ST Rtenp, 4(R13) establishes the back-chain, |anguage word
and reserved words. StackCheck now appears as franel ess
routine without a stack frane.

4. Control transfers back to the caller

al | oca A special nmenory allocate interface for expansion of the
stack frame. (5) alloca allocates space within the stack
frame by decreasing R13, checking for stack overflow, and
returning a pointer to the area immediately foll owi ng the
outgoing argunment list. Processing is simlar to StackCheck
except :

1. The special calling sequence paraneter specifies the size
of the actual stack frame header and naxi num out bound
argument list utilized by the calling routine.

2. The size request is passed as paraneter 1 (RO).

3. The allocated nmenory address is the return value (in RO).
ncount Used by a conpiler to generate |linkages to a standard routine

for collection of execution profile information. The speci al

paranmeter will contain the address of a fullword all ocated

and initialized to zero by the conpiler in the data section

of the program

(5) Prograns which utilize this routine may not depend upon R13

| Copyright IBM Corp. 1985, 1991
86-1

C Language User's Guide
Service Routines

for access to | ocal vari abl es.

| Copyright IBM Corp. 1985, 1991
8.6-2

C Language User's Guide
Debugger Considerations

8.7 Debugger Consi derations

Subt opi cs
8.7.1 Trace Back Inplications

| Copyright IBM Corp. 1985, 1991
8.7-1

C Language User's Guide
Trace Back Implications

8.7.1 Trace Back Inplications

Subt opi cs
8.7.1.1 Assunptions
8.7.1.2 Methodol ogy

| Copyright IBM Corp. 1985, 1991
8.71-1

C Language User's Guide
Assumptions

8.7.1.1 Assunptions

1

2.

7.

A franel ess procedure does not establish its own stack frane.
Each entry point has an associated trace table.

An anbi guous state procedure is any procedure which currently does not
own a stack franme (for exanmple., during prolog/epilogue processing).

R14 and R15 nust be saved by non-franel ess procedures.

R14 reflects the procedure return value for all franeless and
anbi guous state procedures.

The two instruction sequence required to push (6) the stack are
adj acent .

If a franel ess procedure saves R14, it also stores R15.

(6) R13 nust be decrenented by the size of the stack frame and

the previous stack frame pointer must be stored in the new
stack frane header.

| Copyright IBM Corp. 1985, 1991
8.711-1

C Language User's Guide
Methodology

8.7.1.2 Methodol ogy

This specification includes the requirenents necessary to provide
procedure call trace back. This chapter di scusses how those requirenents
m ght be translated into accurate trace back information, even in those
narrow w ndows between the two instructions required to push the stack or
pop and return froma procedure.

O

The stack push operation is interpreted as an atom c operation by the
debugger. If the next instruction to be executed is a ST Rt enp, 4(R13)
instruction then the trace back routine will use the actual contents
of Rtenp (7) rather than the value at 4(R13) as the back chain pointer
required to establish the address of the calling procedure's stack
frame.

The interval in each routine's prolog between the STM Ra, Rb, xxx(RL3
and the ST Rtenp, 4(, RL3) instruction which establishes the calling
procedure's stack frane pointer as well as any franel ess routines
which do not allocate a stack frame present an ambi guous situation
That ambiguity may be resol ved by which ever of the foll ow ng
techni ques is applicable:

1. Qnject file includes the synbol table:

The synbol table is used to relate the PSwaddress to the
routine in control

2. (Object file does not include the synbol table:

a. The back chain pointer is used to identify the previous stack
frame entry's R15 (and hence entry point of the called
procedure associated with that stack frane entry).

b. The previous trace table is |ocated using the previ ous R15.

c. |If the current PSWis not between the previous R15 and the end
of that procedure's code as deternmined fromthe trace table
and the current R14 is within that procedure's code space,
then it is assuned that a procedure which has not allocated or
will not allocate a stack frame is currently in control

- Any registers saved by the current routine nay be found in
the stack franme header identified by R13.

- An attenpt will be made to | ocate the actual inbound
regi sters associated with a franel ess routine as foll ows:

1) If the next instruction is an STMfrom R13 at the
proper stack frame header |ocations for the register
bei ng stored and R15 al so contai ns the next
i nstruction address, then a debugger wi Il assune the
current register contents are the inbound val ues.

2) If the value of Rl4 matches the appropriate register
save area location, then the R15 save area value wl|
be used. If an STMexists at that location, it wll
be assunmed to define the set of registers stored for
this procedure.

| Copyright IBM Corp. 1985, 1991
8.712-1

C Language User's Guide
Methodology
3) If the current contents of RL5 point to an
appropriately structured STM off of R13, then that STM
wi |l be assunmed to define the inbound register save
set .

If this process is not successful, then the debugger wll
report the contents of the R13 identified stack frame
regi ster save area.

d. Oherwi se, the save area in the current stack franme header
will be reported as inactive as it has been determ ned that
t he anbi guous situation does not exist and the back chain
pointer properly identifies the parent of the executing
pr ocedure.

Al'l procedures provided with Al X/ 370 are expected to conformto these
specifications. A nonconformng routine may result in an ambi guous or
invalid trace back.

(7) Violation of the requirenment that the decrement of R13 be
i medi ately foll owed by establishnment of the back chain wll
al nost certainly result in a faulty back trace in the event
of an asynchronous interrupt before the back chain is valid.

| Copyright IBM Corp. 1985, 1991
8.71.2-2

C Language User's Guide
Tagged Data

8.8 Tagged Data

Tagged data provides for inclusion of arbitrary information associ ated
with an entry point which is guaranteed to be nmenory resident. The
sel f-descriptive format provides for future extensibility.

struct tagdata {
unsigned char td_typecode; /* type code

0x00 = End rmarker

0x01 = Entry point nane

0x02 = Copyri ght

0x03 = Program version - includes

the foll ow ng possible
tagged sub-fi el ds:
0x00 (optional end)
0x01 - Product ID
0x02 - Source date/time
0x03 - Structured Version
0x04 - unstructured version
OxFF = Escape to alternate fornmat
al l owi ng | onger code and
I ength fields.
unsi gned char td_| ength; /* bytes of data in tagged data */
unsigned char td_data[l]; /* data */

H

| Copyright IBM Corp. 1985, 1991
88-1

C Language User's Guide
Chapter 9. Program Examples

9.0 Chapter 9. Program Exanpl es

Subt opi cs

CONTENTS

About This Chapter

Pri me Exanpl e

Al X System Cal | Exanpl e

The ASM Statenent for Al X/ 370 and PS/2 MCC Conpilers
MBCS Progranm ng Exanpl es

©©O©0©oo©
OO, WN B

| Copyright IBM Corp. 1985, 1991
9.0-1

C Language User's Guide
CONTENTS

9.1 CONTENTS

| Copyright IBM Corp. 1985, 1991
91-1

C Language User's Guide
About This Chapter

9.2 About This Chapter

This chapter provides sanple prograns that can be conpiled with the C
compi | ers.

| Copyright IBM Corp. 1985, 1991
9.2-1

C Language User's Guide
Prime Example

9.3 Prinme Exanple
Thi s exanple determ nes the prime nunbers in the range from1l to 8190.

#define TRUE 1
#defi ne FALSE O
#define SIZE 8190

char flags[Sl ZE];

mai n()

/-k
Count the primes up to 8190 by marking off multiples
of primes in succession

*/

{

int i, k, count;
count =0;

/* 0 and 1 are not primes */
for (i=2; i < SIZE;, i++) flags[i] = TRUE

/* mark multiples of every prime starting with 2 */
for (i=2; i < SIZE; i++)
{

[* is i a prinm? */

if(flags[i])

{

/[* count i as a prine */
count ++;

/* mark every multiple as not a prime */
for(k=i; k<SIZE; k+=i) flags[k] = FALSE

#i fdef PRI NT
printf("prinme = %\n",i);
#endi f
}

printf("\n% prinmes\n", count);

| Copyright IBM Corp. 1985, 1991
93-1

C Language User's Guide
AIX System Call Example

9.4 AIX System Call Exanpl e

Thi s exanple obtains information about a file. It denpbnstrates the use of
Al X system cal |

stat .

#i ncl ude <sys/stat.h>

char *path;
struct stat buf;
mai n()
{
printf ("\n Thi s programuses the systemcall: stat\n");
printf (" The call obtains information about a file.\n");
printf (" @ e e \n\n");
path = "/usr/bin/vi";
printf (" Qotaining information on file: %\n\n",path);
if (stat (path, &uf) !'=0)
printf ("******** Fryror in stat\n");
el se {
printf (" ID of the device that contains a directory");
printf (" entry for this file: %l\n", buf.st_dev);
printf (" | node number: %\ n", buf.st_ino);
printf (" File nmode: %\ n", buf.st_node);
printf (" Nurber of |inks: %\ n", buf.st_nlink);
printf (" User ID of the file's owner: %\ n", buf.st_uid);
printf (" Goup ID of the file's group: %\ n",buf.st_gid);
printf (" I D of device: %\ n", buf.st_rdev);
printf (" File size in bytes: %\ n", buf.st_size);
printf (" Time of |ast access: %\ n", buf.st_atinme),
printf (" Time of |ast data nodification: ");
printf ("%l\n",buf.st_ntine),
printf (" Time of last file status change: ");
printf ("%\ n\n", buf.st_ctinme);

| Copyright IBM Corp. 1985, 1991
94-1

C Language User's Guide
The ASM Statement for AIX/370 and PS/2 MCC Compilers

9.5 The ASM Statement for Al X/ 370 and PS/2 MCC Conpil ers

The ASM "string") is a predefined function whose single string constant
argunment is inserted in the assenbly output of the conpiler at the point
of the ASMcall. The string constant must be a valid assenbly
instruction; the conpiler nmakes no attenpt to interpret its contents.

The optim zer assunes that an _ASM call does not nodify any of the general
or floating-point registers. |If the _ASM statenent does in fact nodify
one or nore such registers, the results are unpredictable.

The generated code is not guaranteed correct if an _ASM statenment nodifies
a menory location that is being accessed fromordinary C statenments. Such
occurances can invalidate assunptions made by the optim zer. However, an
_ASM statenent may nodify a variable declared with this exanple the
"volatile" attribute.

An _ASM st atement nust not alter flow control of the program |In other
words, an _ASM statement nust not contain a junp to a | abel which is
defined in another _ASM statenent unless the two _ASM statenents belong to
a group of consecutive ASM statenents.

Good exanpl e:

_ASM" cli X 1");
_ASM" bne L");
_ASM" mvi X 0");
_ASM"L:");

Bad exampl e:

_ASM" cli X 1")*';
_ASM" bne L");
if (y >2z) foo();
return;

_ASM"L: ") ;

In the latter exanple, flow control has been introduced that is unknown to
the optimzer. The last _ASMstatenent is deleted by the optim zer
because it appears dead.

Anot her bad exanpl e:

i =1

_ASM" cli X 1");
_ASM" bne L");
i= 2;

_ASM"L: ") ;
printf("%d",i);

In this exanple, the optimzer incorrectly assunes that the first
assignment to "i" is dead and deletes it. The printf call unconditionally
prints "2".

Subt opi cs
9.5.1 _ASM St atenent Exanple for Al X/ 370 and PS/2 MCC
9.5.2 ASM St atenment Exanple for PS/2 VSC

| Copyright IBM Corp. 1985, 1991
95-1

C Language User's Guide

_ASM Statement Example for AlIX/370 and PS/2 MCC
9.5.1 _ASM Statenent Exanple for Al X/ 370 and PS/2 MCC
The _ASMcall allows the C progranmer to embed Assenbly | anguage
instructions in a C program The C conpiler then generates Assenbly
| anguage instructions fromall the surrounding C I|anguage statenents. The
Assenbl y | anguage instructions enbedded with the _ASM call are passed to
the Assenbler along with the rest. The usage is:

_ASM" Assenbly | anguage statenent");
Following is an exanple for _ASM
#i ncl ude <stdi o. h>

print_sub_address(intval)
int intval;

_ASM" la 1, _print_sub_address");
printf("The address of print_sub_address is Ox%O0,intval);

}
mai n()
{
print_sub_address(0);
}

Note: The _ASM statenent should be used in conjunction with the -S
conpi | er option.

| Copyright IBM Corp. 1985, 1991
951-1

C Language User's Guide
ASM Statement Example for PS/2 VSC

9.5.2 ASM St atement Exanple for PS/2 VSC

/-k
This is an exanmple of the asm statenent on the PS/ 2 VSC
compiler. It is used to see if an overflow occurs when
addi ng 2 positive nunbers.

*/

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

voi d test _overflowunsigned int, unsigned int);
i nt check_fl ag(voi d);
mai n(int argc, char *argv[])
{
unsigned int a,b;
if (argc !'= 3)
printf("ERROR 2 argunents expected\n");
el se {
a = (unsigned)atoi (argv[1]);
b = (unsigned)atoi (argv[2]);
test _overflow a, b);
}
exit (0);
}
voi d test_overflow(unsigned int x, unsigned int y)
{
int ret;
X +y; /* add the 2 nunbers */
ret = check_flag(); /* get carry flag */
if (ret & 0x100) [* if carry flag is set */
printf("OVERFLON N"); /* then overfl ow occurred */
el se /* el se get result */
printf("x +y = %\n", x+y);
}

i nt check_flag(void)
{
/* lahf instruction: the flags which indicate an overflow are in
regi ster EAX, so there is no return statenent.
asm(0x9f) ;

| Copyright IBM Corp. 1985, 1991
952-1

C Language User's Guide
MBCS Programming Examples

9.6 MBCS Progranmm ng Exanpl es

Programming for nmultibyte characters is done by using the same procedures
as programm ng for standard single-byte characters. There are, however,
sonme differences in the nanes of the data objects the programrer specifies
and in the systemcalls and library routines used to process them For

i nformati on on and exanples of programming in a nultibyte character set
(MBCS) environment, see Al X Programming Tools and Interfaces.

| Copyright IBM Corp. 1985, 1991
96-1

C Language User's Guide
Appendix A. Messages

A. 0 Appendix A Messages

The PS/2 VSC conpiler contains a file of conpile-tinme error nessages naned
lusr/lib/nmsg/vscctnsg.inc.. The conpiler generates English error nunbers
and nessages if this file is present on the default directory and errors
are encount er ed.

The RT C conpiler generates error nessages that can be found in the |BMRT
Messages Ref erence.

The Systenl 370 and PS/ 2 MCC conpilers generate the follow ng error
nessages:

Subt opi cs
A. 1 Error and Warni ng Messages

| Copyright IBM Corp. 1985, 1991
AO-1

C Language User's Guide
Error and Warning Messages

A. 1 Error and Warni ng Messages
This section presents all conpiler diagnhostic nessages (except
automatically generated | exical and syntactic nessages) in al phabetical
order, with explanations where appropriate.

')' mssing in macro call.

#define directive is mal fornmed.

#el se or #elif encountered within a pendi ng #el se.

#pragnma statement is mal forned.

'='" encountered where '==" nmay have been intended.
= was detected as an operator in a Bool ean expression, such as if (x = vy)
{...}. Otenthis is a mstake, as if (x ==vy) {...} was intended.

Anonynous structure nmenber is amnbi guous.

Applying "offsetof™ to a non-struct type.

Argunent nane is mssing in function declaration.
For function definitions, argunent names must be supplied. For exanple,
void f(int, float g) {...} is illegal because the first argunent |acks a
nane.

Argunent nane is not specified in function header
For function definitions, argunents decl ared nust be present in the
function header. For exanple, void f(a,b) int x;..; {...} is illega
because x is not present in the function header

Argunment nunber n not naned.
The nth argument in a naned call is not specified. For exanple,

int f (int a int, int ¢c) " "

fké=>1,c=>2);
where the second argunent is not specified.

Argunent of type "void" not permtted.

Argunent of unknown | ength bei ng passed.

Argunent type not consistent with previous specification.

Array dinmension is negative.

Array elenent type is a yet undefined struct/union.

Array subscript out of range.

Assignnent into a "const" variable is attenpted

Assignnment into a variable of unknown |length is attenpted.

| Copyright IBM Corp. 1985, 1991
Al-1

C Language User's Guide
Error and Warning Messages

Assi gnnment into something of type void is attenpted.
Attenpting to apply the function "abs" to an unsigned quantity.

Attenpting to define a variable in data section nane that was previously
defined at Ln/Cn.

Attenpting to take the difference of two pointers pointing to objects of
unknown | engt h.

"auto" nmust appear within a function. "static" assuned.

Storage class auto cannot be given for declarations that do not appear
wi thin a function.

Bad line specifier in #line directive.

Bit field exceeds word size.

Bit field is not an integer type.

Bit field is not valid as an argunment to "sizeof".

Since bit fields need not occupy an integral nunber of bytes, taking their
si zeof is prohibited.

Bit field value expected but encountered '{'.
"break" statenent not within | oop or swtch.

Call to a function returning an inconplete or zero-length type
is attenpted.

A function cannot return a struct of union type whose fields have not yet

been specified. For exanple, struct s; struct s *f() {...} is legal since
f returns a pointer to an inconplete struct type, but struct s; struct s

g() {...} isillegal.

Call to non-function is attenpted.

Cannot dereference a pointer to void.
Type voi d* was introduced as a nmeans of defining a "generic pointer”
conpatible with other pointers. But there is no such thing as an object
of type void. Therefore, dereferencing a pointer to void is illegal.

Cannot dereference pointer; size of object not known.

Cannot take the address of a register variable.

Cannot take the address of a struct bit-field.

"case" encountered outside of a "switch" statenent.

Const ant expression or static address is expected.

"continue" statenent not within | oop.

Data cl ass specifier expected (EXPORT, COWON, | MPORT) .

| Copyright IBM Corp. 1985, 1991
Al-2

C Language User's Guide
Error and Warning Messages

Data section class not consistent with previous specification at Ln/Cn.
"default" encountered outside of a switch statenent.
"default" | abel previously specified in current swtch.
Dereferencing of a non-pointer is attenpted.
Division by zero is attenpted
This was detected in a constant expression at conpile tine.
Duplicate case |abel (n); other occurrence at Ln/Cn.
Duplicate declaration of identifier.
Duplicate definition of structure nenber.

End of file encountered within #if construct (unmatched #if-#else-#elif a
t Ln/Cn).

enumtag is not defined.
A decl aration such as enum X; was encountered. Tag x has no definition.
enumtag previously declared as struct tag.
enum tag previously declared as union tag.
Expressi on has no side-effects.

An expression used in a statenent context has no side effect; therefore
the expression is useless. For exanple, 2+3;.

Expression of type "type" should be returned.
Fl oating poi nt constant expected.
Function called but not defined.

Any function that was called but not defined is noted as a warning.

Al though this practice is permssible in C and is especially useful when
calling library functions, a conmon error is to msspell a function nane.
Wthout this warning, the error goes undetected until link-time. Further
nore, errors in paraneter |inkage can occur when a call is nmade to an
undefined function. W recommend that the library .h header files always
be included to get paraneter checking, and that function prototypes be
used for external function declarations, rather than making use of the
"feature" of C for calling undefined functions.

Functi on declaration is inconsistent with previous declaration at Ln/Cn.

Function declaration is inconsistent with the "int"-returning function
decl aration inmputed at Ln/Cn.

A function called before it is declared is assuned to be a function
returning int, and any subsequent declaration of the function nmust declare
it to be so. For example, main () { (...) f(3); (...) } void f() {...}
isillegal since f was called before being defined and therefore assuned

| Copyright IBM Corp. 1985, 1991
Al-3

C Language User's Guide
Error and Warning Messages

to return int.
Function definition semantics overridden by prototype at Ln/Cn.

A prototyped function declaration takes precedence over an ordinary
function definition. For exanple,

int f (int a int b); /* Prototyped functionality. */

int f (ab)
int a,b; {...}

The function declaration in the function definition is overridden by the
prototype declaration. This warning rmay be suppressed by turning off the
Pr ot ot ype_overri de_war ni ngs toggl e.

Function has no return statenent.

A function with a non-void return type contains no return statement. This
typically happens with "old" C progranms that did not use void to indicate
that a function returns not hing.

Function name m ssing.

Function parameter nanes are allowed only on function definitions, not decle
int f(a,b,c); is a function declaration that nanmes the paraneters (a,b,c).
This is illegal unless function prototype syntax is used, as in int f(int
a, int b, int c);.

Function specified with nore argunents than its decl aration all ows.

I dentifier expected.

Identifier is out of context.

Identifier is undecl ared.

Identifier mssing in declaration.

Identifier mssing in struct nmenber declaration

Illegal construct within #if expression.

Initialization entry is of wong type.

Initialization list is longer than aggregate being initialized.

Initialization of a variable within a "COMON' or "I MPORT" section is not
permtted.

Initializer type does not match type "char".

Initializing a function is attenpted.

I nsufficient nunber of argunents in pragmas specification.
I nsufficient nunber of argunments to function

I nsufficient nunber of argunments to nacro.

| Copyright IBM Corp. 1985, 1991
Al-4

C Language User's Guide
Error and Warning Messages

The nunber of argunments to a macro nust agree exactly with the nunber of

paraneters in its #define.

I nsufficient nunber of argunents.

I nt eger constant exceeds | argest unsi gned nunber

I nt eger constant expect ed.
Invalid use of "long" adjective.
Invalid use of "short" adjective.
Invalid use of type adjective.

Label was not defi ned.
Label
Left side of '=

is an array, which

In this context a so-called |value is
| val ue i s sonething whose address can
| eft side of an assignnment expression

was previously defined at Ln/Cn.

is not an |val ue.

required but was not found. An
be taken, and is required on the
and as an operand to & ++, and --.

An array is not an exanple of an I|val ue.

"long char" treated as "short int"

"long float" treated as "doubl e".

Lower bound of range greater than upper bound.
This can only happen in C case statenments where range expressions are
al l owed as | abels (an extension).

Macro call has too nmany argunents.

Macr o expansion nested too deeply.

Mal f or med conditional conpilation control sequence.

May not cast a nested function to type "type"

May not

May not

May not
Menber not defined in referenced structure.
M smat ched #if-#elif-#el se-#endif.

M ssing macro argument after or before "##" operator.
M ssing macro argument after "#" operator.

Nane is not a nmenber in the applicable structure.

| Copyright IBM Corp. 1985, 1991
Al-5

have functions as array el enents (but nay contain pointers thereto).
return a function from another function (but may return a pointer tt

return an array froma function (but nmay return a pointer thereto).

C Language User's Guide
Error and Warning Messages

Nane i s undefined; "pragmas Alias" ignored.

Naned bit-field of length O not permtted.
A declaration such as struct {int i:0, j:2 }; was encountered. It nust be
omtted. As is, it is possible to refer to the field. Such a reference
woul d be illegal.

Nested function may not be assigned into a pointer to a function.

No "pragmas Data" is active.

pragnma Data; was encountered wi thout a preceding, and matchi ng, pragma
Data(...);.
Not a variable or function; "pragmas Alias" ignored.
"of fsetof " operation cannot be applied to bit field.

Operand nust be of an integer or float type (instead of type).

Operand of ++ or -- is a pointer to an object of unknown | ength.

Operand of the function "abs" nmust be of arithmetic type.

Operand of type "type" is not valid for operator operator.

Operands of type "typel" and/or "type2" are not valid for operator operator.
Packed structs are not supported; "packed" ignored.

Packed structs are not supported; status of ALIGN MEMBERS toggl e ignored.
Par anet er not found or specified nore than once.

In a function call using nanmed parameter association, a paraneter was
naned tw ce, or a non-existent paraneter was referenced.

Par anet er "nane" not supplied
Naned paraneter not specified. For example,
void P (int a, int b, float ¢) "..."
b.ta=>1, c=> 3);
does not initialize the nanmed paraneter b.
Passi ng an argunent of type "typel" where "type2" is expected.

An attenpt was nade to pass an argument of a wong type to a function such
as passing a float for a paraneter that is a struct.

Pointer to an object of unknown |ength is being indexed.

Attenpting to index a pointer to an object of unknown | ength. struct x
*p; *p[0] is an exanple of this type of error

"pragma Code" specified within function definition; ignored.

| Copyright IBM Corp. 1985, 1991
Al-6

C Language User's Guide
Error and Warning Messages

"pragma Data" active at end of nodul e.
A pragma Data (...); was given in a nodule or function, with no
term nating pragma Data;. This is permtted but the programmer nmay have
forgot ten to supply the term nating pragma, thus perhaps including nore
data declarations in a data segnent than intended.

Previous "pragma Data" is still active.
pragnma Data (...); was given in the context of an already active pragma
Data (...). Insert pragma Data(); preceding the offending pragma to "turn
off" the active pragna.

Previous definition of macro superseded.

Redefinition of a macro is permtted. The redefined nacro takes
precedence over existing definition of the macro.

Pr ot ot ype causes non-standard conversion from"typel" to "type2".
The prototype syntax, causes the non-standard conversion fromtypel to
type2. This is signaled as a warning to indicate to the user that such a
conversion is taking place.

Real constant has too many digits.

Redundant cl ass specification

"register"” nust appear within a function. "static" assuned.

Storage class register cannot be given for declarations that do not appear
within a function definition.

Ri ght operand of shift operator exceeds word size (=n).

Ri ght operand of shift operator is negative.

Ri ght operand of "% " operator is zero.

Section nane not specified in "pragma Data"; pragma ignored.

Sel ection of a nmenber froma non-structure is attenpted.

"short char" is not supported.

si zeof being applied to "void" type.

si zeof being applied to a function type.

si zeof being applied to an array of unknown | ength.

si zeof being applied to inconplete struct/union
The sizeof a struct or union type whose fields have not yet been specified
is not known. For exanple, struct s; (...) sizeof (struct s) (...) 1is
illegal because the size of the structure is unknown.

Specifier "class" ignored; no variabl e being decl ared.

In a declaration such as static struct s {int x;};, the storage class

| Copyright IBM Corp. 1985, 1991
Al-7

C Language User's Guide
Error and Warning Messages

static is usel ess since no object was decl ared.
Specifier "specifier” is not valid for a fornmal argunent.
Static function is not defined nor referenced.

A function of storage class static is neither defined nor called anywhere
in the conpilation unit.

Static function is not defined.

Static function is not referenced.
A function of storage class static is not called anywhere in the
conmpilation unit. Since it is not exported, there can be no reference to
the function and it is essentially del eted.

Storage class "class" is not valid for a struct nenber.

Storage class "class" cannot be initialized.

Storage class for function should be static or extern

String constant denoting section nane expected.

String exceeds the length of array being initialized.

String exceeds the length of the array being initialized.

String expected.

String truncation required.

struct tag was previously declared as a union.

struct was previously defined as a union.

struct/union tag was previously declared as an enum

struct/union tag was previously declared as an enum

Structure has no contents (is of size zero).

Super fl uous "pragma Code" specifiers.

Superfluous "pragma Data" specifiers.

Superfluous type qualifier

Superfluous type specification.

switch expression cannot possibly have the value n

switch statenent has no cases.

Synmbol declaration is inconsistent with a previous declaration at Ln/Cn.

Tag nanme is being truncated to n characters in | ength.

The rest of this line is extraneous.

| Copyright IBM Corp. 1985, 1991
Al-8

C Language User's Guide
Error and Warning Messages

Toggl e "name" i s unrecogni zed.

Toggl e not recogni zabl e.

Toggl e specifier nmust be an identifier.

Too many argunents in "pragma Alias".

Too many argunents specifi ed.

Type "type" is not appropriate for a conditional expression.

Type "typel” is not assignnent conpatible with type "type2".
(a) I'n an assignment expression, the right operand of type typel may not
be assigned to the left operand of type type2. (b) In a function call, an
argunment of the type typel nmay not be passed to a function that expects a
paraneter of type type2.

Type "typel” is not conpatible with the type "type2"

In a conmparison, the left operand of type typel may not be conpared with
the right operand, of type type2.

Type "type" is not valid for a struct nenber.

Type of entity is a yet undefined struct/union

Type of entity is an array of unknown | ength.

typedef name may not be qualified with adjective.
Unable to cast type "typel"” to type "type2".

Unable to determ ne the size of array type.

Unable to initialize array; elenent type not conplete.
Undefi ned structure nenber.

Unexpected character "c" follows "\".

Unexpect ed synbol in expression. Line ignored.

union tag was previously declared as a struct.

uni on was previously defined as a struct.

Unr eachabl e st atenent.

Unr ecogni zabl e data section cl ass.

Unr ecogni zabl e pragnma directive or toggle: name(text)
Unr ecogni zabl e pragma directive: nane

Unr ecogni zabl e pragna.

Unr ecogni zed preprocessor directive: "nane".

| Copyright IBM Corp. 1985, 1991
Al-9

C Language User's Guide
Error and Warning Messages

Unsi gned conpare with zero al ways fal se.
Unsi gned conpare with zero al ways true.

An expression of type unsigned int is never |ess than zero. Thus, a
conparison to check whether the unsigned int expression is greater than
zero will always be true, and a conparison to check if it is less than
zero will always be fal se.

Up-level reference to a register-class variable is not allowed.

Val ue of escape sequence exceeds nmaxi mum val ue representabl e in unsigned
char.

Vari abl e "name" is never referenced.
Variable "name" is possibly referenced before set.

This warning is issued by the optimzer when it has found an auto- or
register- class variable that is "live" at its declaration. In other
words, the conpiler has detected a potential path in which such a variable
is referenced prior to being assigned a val ue.

This condition is not necessarily an error in that the "potential" path
may never occur. For exanple, the variable "x" in the follow ng code
fragment woul d be di agnosed with this warning:

static void foo(int i) {
int Xx;
if (i >=0) x = 1;
if (i <0) x = 2
printf("x=%\n", x);
}

Vari abl e expect ed.

In this context a so-called "lvalue"” is required but was not found. An

| val ue i s sonething whose address can be taken, and is required on the

| eft side of an assignnment expression and as an operand to & ++, and --.
The rules of Crequire the automati c conversion of sonme objects into
non- | val ues. For exanple, the operand of & nust be an |value, so int i =
&(a+b) produces the "Variable expected.” diagnostic. A conmpn cause of
this nessage is the use of a construct such as:

int * p;
c =* ((char*)p)++;

which is I egal on nmost PCC conpilers, but disallowed by the ANSI Standard.
Use i nstead:

int * p;

c = *(* (char**)&p)++
to circunvent the restriction. This solution works only when p is not a
regi ster variable; unfortunately we know of no solution for register
vari abl es.

Variable previously initialized at Ln/Cn.

Variables within a user-specified data section nust not be "extern"

| Copyright IBM Corp. 1985, 1991
A.1-10

C Language User's Guide
Error and Warning Messages

Variables within an inported data section nmust be "static".

"void" is not a valid argunent type.

"volatile" qualifier in cast has no effect.
The warning is issued to remnd the user that sinply casting a variable to
a volatile type does not force the variable to be volatile. This is
because the variable being cast is actually an rvalue. For exanple, the
cast in the follow ng assignnment acconplishes not hing:

int a,b;

a = (volatile int)b;

The effect of forcing b to be volatile can be attained by the foll ow ng
sequence:

a = *(volatile int *)&b;

| Copyright IBM Corp. 1985, 1991
Al-11

C Language User's Guide
Appendix B. ASCII Character Set

B. 0 Appendi x B. ASCI| Character Set

This appendi x lists the standard ASCII characters in numerical order with
t he correspondi ng decinal, octal, and hexadeci mal values. The control
characters are indicated by a Ctrl- notation. For exanple, the horizontal
tab (HT) is indicated by Crl-1, which is keyed by sinultaneously pressing
the rl key and | key.

Note that this character set was originally devel oped for tel etype

comuni cations. Consequently, nobst of the original control characters
(decimal O through 31) are undefined in other types of conmmunication.
However, two inportant control characters have retained their original
function: LF (decinmal 10), which generates a line feed (causing
subsequent output on a display or printer to appear on the next line), and
CR (decimal 13), which generates a carriage return.

o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +
| Table B-1. ASCII Character Set |
o m m e o e m o |
| Decimal | Cctal | Hex i Control I ASCI |
| Val ue . Value | Value | Character | Synbol | Conmment |
[IS +-- e o - o mm - - S oo e oo - o e e e e e i a e oo |
0] I 000 i 00 P arl-@ I NUL i null I:
Homm oo oo S SR B o mme i oo oo - B oo m e e e e e ieaaoo- |
- ! 001 | 01 L Crl-A I SOH I start of heading !
[IS +-- e o - o mm - - S oo oo - o e e e e e i a e oo |
b2 ! 002 | 02 I Ctrl-B I STX I start of text !
[IS +-- e o - o mm - - S oo oo - o e e e e e i a e oo |
i3 1 003 i 03 I arl-C 1 ETX | end of text |
[IS +-- e o - o mm - - S oo oo - o e e e e e i a e oo |
I 4 ! 004 | 04 . arl-D I ECT I end of transm ssion :
[IS +-- e o - o mm - - S oo oo - o e e e e e i a e oo |
I 5 !l 005 i 05 I arl-E I ENQ | inquiry |:
Homm oo oo S SR B o mme i oo oo - B oo m e e e e e ieaaoo- |
I 6 !l 006 | 06 D arl-F I ACK i acknow edge :
[IS +-- e o - o mm - - S oo oo - o e e e e e i a e oo |
4 I 007 i 07 P arl-G I BEL | bell :
[IS +-- e o - o mm - - S oo oo - o e e e e e i a e oo |
I 8 ! 010 | 08 o arl-H | BS | backspace :
[IS +-- e o - o mm - - S oo oo - o e e e e e i a e oo |
19 I 011 I 09 Carl-| I HT | horizontal tab :
[IS +-- e o - o mm - - S oo oo - o e e e e e i a e oo |
I 10 ! 012 i OA Carl-J . LF I line feed :
[IS +-- e o - o mm - - S oo oo - o e e e e e i a e oo |
11 I 013 . 0B o Crl-K Al i, vertical tab |
[IS +-- e o - o mm - - S oo oo - o e e e e e i a e oo |
112 I 014 i 0C I Crl-L I FF i formfeed :
[IS +-- e o - o mm - - S oo oo - o e e e e e i a e oo |
I 13 ! 015 | OD L arl-m I CR | carriage return :
[IS +-- e o - o mm - - S oo oo - o e e e e e i a e oo |
114 I 016 i OE I Crl-N i SO i shift out :
[IS +-- e o - o mm - - S oo oo - o e e e e e i a e oo |
115 I 017 | OF I arl-0 1Sl i shift in :
[IS +-- e o - o mm - - S oo oo - o e e e e e i a e oo |
i 16 } 020 | 10 p Grl-P DLE data link escape :
[IS +-- e o - o mm - - S oo oo - o e e e e e i a e oo |
P17 1 021 P11 L arl-Q i DC1 | device control 1 |
[IS +-- e o - o mm - - S oo oo - o e e e e e i a e oo |
I 18 I 022 112 L arl-R I DC2 | device control 2 :
[IS +-- e o - o mm - - S oo oo - o e e e e e i a e oo |
119 I 023 | 13 i arl-S DC3 | device control 3 :

| Copyright IBM Corp. 1985, 1991
B.O-1

C Language User's Guide
Appendix B. ASCII Character Set

4
negati ve acknow edge

record separator
unit separator

end of transm ssion
m nus
peri od

bl ock
end of nedi um

e e
| devi ce control
e e
|
e e
: synchronous idle
e e
|
|
+
I
I
e e
|
e e
| substitute
file separator
group separat or
apost rophe

cancel
space

I
I
I
I
+
I
I
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+

DCA
NAK
SYN
CAN
EM

SUB

SP

+ + + + + +

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1
- - - —_————t - - _—t -t -t -t -t -+ -+ -+ -+ -+ -+ —(F+ -+ —(F+ —F —F o+ o+ o+ o+ o+ +
1 1
1 1
1 1
1 1
- - > W ¢ X > N 1 — 1 < 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 T 1 e e T L R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
—_ —_ —_ — 1 — — —_ 1 = 1 = 1 = 1 = 1 — 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
— — — — - — L T T T T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1
Q Q Q Q 1 Q Q Q 1 Q 1 Q 1 Q 1 Q 1 Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1
+ -+ -+ -+ -+ -+ -+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+
1 1
1 1
1 1
1 1
D A To B (o N 0 o, << ., 00 WL O A NI N, o0~ ,0, 0, Co0, 0, 0, WL O
i i i i | i o A A A S NN TN NN TN TN TN TN TN TN TN NN NN
1 1
- - - _———t - - _t -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ —F+ -+ —F -+ o+ o+ o+ o+ o+ o+ o+ -+
1 1
1 1
1 1
< Lo (o} N~ 1 O i N M T 0 0 N 0O AT N O T O N O TN DO O
AN AN AN AN 1 ™M (92] N .. . 0O 00O 0 3997 T T T T T ;0 ;0 ;0w wmawmam O
o o o o 1 O o o, o0, 00, 0O, 0, 0 00 OO OO OO, O, 0O, 0,000,010 .0
1 1
- - - _————t - - B T R T i T L i i T e T R N H P SN =
1 1
1 1
1 1
1 1
1 1
1 1
o i N (92 < Lo O ;0 0O, 0 d.:. N M, I O, O M 10 I 0O 014 I N MO ;i< oW ©O© i~ 0
N N N N 1 N N N/ N, N, N YO, O, M MmO OO, T Y Y]SS
1 1
- - - _——t - - _t -+ - -+ -+ -+ -+ -+ -+ -+ —F+ —F+ —F+ —F+ —_F+ —F+ —F+ —F+ —F+ —_F+ _F+ —_F+ _+ __+

Copyright IBM Corp. 1985, 1991

B.0-2

C Language User's Guide
Appendix B. ASCII Character Set

1 1
1 1
1 1
1 1
A N Mt O~ 0 00, 0,00 WL 0 AN) S O~ 0 00, < 0 0w,
3 _3 _3 _3 _3 _3 _3 _3 _3 _3 _3 _3 _3 _3 _3 _4 _4 _4 _4 _4 _4 _4 _4 _4 _4 _4 _4 _4 _4 _4 1
1 1
S T e i S S S SR i S S SR S R S LR S S S S SR S SN
1 1
1 1
1 1
1 _2 _3 _4 _5 _6 _7 _O _1 _2 _3 _4 _5 _6 _7 _O _1 _2 _3 _4 _5 _6 _7 _O _1 _2 _3 _4 _5 _6 1
6 _6 _6 _6 _6 _6 _6 _7 _7 _7 _7 _7 _7 _7 _7 _O _O _O _O _O _O _O _O _1 _1 _1 _1 _1 _1 _1 1
O, 0, 0,0, 0,0, 0,0, 0,0,0,0,0,0, 0 d ;A ;TdAdA ;A ;A 1A, A1 A ;A9 19 199,34,
1 1
S U S N N I SR S S S RN T TP S I ST RN P S CHN S S S N P S S
1 1
1 1
1 1
1 1
1 1
1 1
9 _0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _0 _1 _2 _3 _4 _5 _6 _7 _8 1
4 _5 _5 _5 _5 _5 _5 _5 _5 _5 _5 _6 _6 _6 _6 _6 _6 _6 _6 _6 _6 _7 _7 _7 _7 _7 _7 _7 _7 _7 1
1 1
S S S S i S S S S I R S S (N N S R I S C S SR S T S S o

Copyright IBM Corp. 1985, 1991

B.0-3

C Language User's Guide
Appendix B. ASCII Character Set

O

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
L O i id N M it 0w, N 0, 0. <<, 0,0 .,.0,W,
4 _5 _5 _5 _5 _5 _5 _5 _5 _5 _5 _5 _5 _5 _5 _5 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B T I i S T R S R T D R S
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 _O _1 _2 _3 _4 _5 _6 _7 _O _1 _2 _3 _4 _5 _6 1
1 _2 _2 _2 _2 _2 _2 _2 _2 _3 _3 _3 _3 _3 _3 _3 1
A @ 4 A A4 A A A A A A A H A
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B R SR S N R S g I S RN ST SR ST SRR &
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 _0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _0 _1 _2 _3 _4 1
N 100 100 100 100 100 10 ;0 10 10 10 1O 1O IO 10 10
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B T S e R R S RN R T DN R S SR S

under scor e
grave accent

!
1
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+
I
I
+

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
L O id N i, < 0,0, ~,0.: 0., .,m,0,
n o0 , 0, 0, 0, 0, 0, 0, 0, 0,2 052 050 0.,
1 1 1 1 1 1 1 1 1 1 1 1 1 1
T T e T e TR i L T i
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 _O _1 _2 _3 _4 _5 _6 _7 _O _1 _2 _3 _4 1
(o2 BT BRI N A S U T R~ T~ I~ ST 1 BERTI T RERENN T RERINN U RENENN o
L BT . TR T o TR o NI o I o IR o BT . T o BRI o BRI o IR o B o
1 1 1 1 1 1 1 1 1 1 1 1 1 1
N R T R N ST SRR RN N S R R T R
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 _0 _1 _2 _3 _4 _5 _6 _7 _8_
n + O© i ' ~ 00 I OO O, 0,0 .,0,0,,0,0 0.0
(o) NI e BRI NN TN T = U = BT . T . I . I o R o I o I o B
1 1 1 1 1 1 1 1 1 1 1 1 1 1
I T DI IS RN DR N T IR R R e M

Copyright IBM Corp. 1985, 1991

B.0-4

C Language User's Guide
Appendix B. ASCII Character Set

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [p—

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 e

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
_t -+ -+ -+ -+ -+ -+ -+ —F+ —F+ —F+ —F+ —_F+ —_F+ —_F+ —_F+ _F+ _+

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
m 1 ©C 0 0O Q0 T = 1 O 1 = 1 3D > W X 0 >0 N e — s _%

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
_t -+ -+ -+ -+ -+ -+ -+ -+ -+ —(F+ —F+ —F+ —F —F o+ ——+ =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
_t -+ -+ -+ -+ -+ -+ -+ o+ o+ o+ o+ —F+ —F+ —F+ —F+ + —+ =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
O, W, L, o9 N ™, ¥ 0,0, ~,,0,0.C, 0,0.,.0,WL,L
© © © i~~~ g~ a0~ a0~ agMc~agMc g agMc g g~ a~

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
_t -+ -+ -+ -+ -+ -+ -+ —F+ -+ -+ —F o+ —F o+ o+ -+ =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
n L O . ~ 04, N M ¥ O O~ T O A N ITM < Wm0~
5 _5 _5 _6 _6 _6 _6 1 6 _6 _6 _6 _7 _7 _7 _7 _7 _7 _7 _7
L BT TR . BRI o IR o IR o B o IR BT o T o BV o B B R S T = T . BT o BT o B |

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B T T T e T i i e T e T U .

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
O 0O 4, N M < N0 000 0T NS ;O o~
O 1 i i i i ;i ;i ;o ; ., a4, NN, N, N, N, N N, N N
D DT BT BT IR BT BT . BT BRI IR IR B B T B = DT BRI BT o BRI o I o |

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
_t -+ -+ -+ -+ -+ -+ -+ —F+ —F+ —F+ —F+ —_F+ —_F+ —_F+ —_F+ —_F+ _+

Copyright IBM Corp. 1985, 1991

U

B.0-5

C Language User's Guide
Appendix C. Program Examples for Mixing Languages

C. 0 Appendix C. Program Exanples for M xi ng Languages

The foll owi ng sanpl e prograns show ways to connect programunits witten
in different | anguages. They also illustrate the nechanisns for passing
character, integer, and floating-point variables between the PS/ 2 VSC
compi l er, VS FORTRAN, and VS Pascal .

In covering these three variable types, an exanple of each |anguage
calling the other | anguages is given. The sanple prograns are included
only to illustrate the m xing of the | anguages and do not show all types
of paraneter passing.

The list of commands needed to conpile and run the sanple prograns are
i ncluded with each sanpl e.

Not es:

1. On the RT, VS FORTRAN appends the underscore (_) character to external
synbol s; therefore, routines declared in C or VS Pascal will need to
append an underscore to the nanmes of routines called fromor to VS
FORTRAN. This does not apply to Al X/ 370.

2. For information on FORTRAN and C interlanguage comuni cati on under
Al X/ 370, see VS FORTRAN Version 2 Programmi ng Guide for Al X 370.

Subt opi cs

C.1 C Calling FORTRAN and Pascal

C. 2 FORTRAN Cal l'i ng Pascal and VSC
C.3 Pascal Calling FORTRAN and VSC

| Copyright IBM Corp. 1985, 1991
Co0-1

C Language User's Guide
C Calling FORTRAN and Pascal

C.1 C Calling FORTRAN and Pascal
The Cal ling VSC Program
[* This code is in the file named "cexamc". */
#i ncl ude <stdi o. h>

main ()

{
printf("\'n This nmessage is printed at the start of MAIN ");
cfunc();
printf("\n This nmessage is printed at the end of MAIN. \n");
exit(0);

}

cfunc ()

{
char chrc[79];

int count, ic;

fl oat xc;

doubl e yc;

chrc[0] ="'h"; chrc[l] ="'i"'; chrc[2] =" ";
chrc[3] ="'C; chrc[4] = "'"\0";

ic =50; xc =10.; yc = 0.0;

count =10;

printf("\n \n \n Before calls:");
printf("\n Text string: %", chrc);

printf("\n ic =9%", ic);

printf("\n xc =9%", xc);

printf("\n yc =9%", yc);

fsub (chrc, & c, &c, &c, count); /* Arrays in C always use */
/* the call-by-reference */
/* mechani sm */

printf("\n \n After FORTRAN call:");
printf("\n Text string: %", chrc);

printf("\n ic = %", ic);
printf("\n xc = %", xc);
printf("\n yc = %", yc);

psub(chrc, & c, &c, &c);
printf("\n \n After Pascal call:");
printf("\n Text string: %", chrc);

printf("\n ic = %", ic);
printf("\n xc = %", xc);
printf("\n yc =% \n", yc);

}

Note: On the RT, the call to the procedure fsub must include the
underscore (_) character appended to its nanme; that is, fsub .

The Cal | ed FORTRAN Subrouti ne

C This is the FORTRAN subroutine to be called by VSC
C This code is in the file named "ccal lf.f".

SUBROUTI NE FSUB(WORDS, |, X, Y)

| Copyright IBM Corp. 1985, 1991
Cl-1

C Language User's Guide
C Calling FORTRAN and Pascal
CHARACTER* 80 WORDS
| NTEGER |
REAL X
DOUBLE PRECI SI ON Y
C The string term nator C expects i s concatenat ed.

WORDS=' FORTRAN 1| i ves! "' // CHAR(0)
I =LOG(X)
X=LOG X)
Y=45. DO
RETURN
END

The Cal | ed Pascal Procedure

{ This is the Pascal procedure to be called by VSC
This code is in the file named "ccallp.p". }

segment DUMMYNAME;
type TEXT = packed array [0..79] of CHAR

procedure PSUB (var WORDS : TEXT,;

var | . | NTEGER;
var X . SHORTREAL;
var Y : REAL); external;
procedure PSUB;
begin
WORDS[0] :='G; WORDS[1] :="'0"; WORDS[2] :=" "' ;
WORDS[3] :="'W; WORDS[4] :="i"; WORDS[5] :="r" ;
WORDS[6] :="'t'; WORDS[7] :="'h"; WORDS[8] :="!" ;
WORDS[9] := chr(0); { C character string term nator }
X 1= 2*X;
| = 2*%1;
Y := 4.0d0;
end;

Commands and Qut put

The commands needed to conpile and run this sanple programon the PS/2
are:

cc -0 cexamcexamc ccallf.f ccallp.p
cexam

The commands needed to conpile and run this sanple programon the RT are:

vs -0 cexamcexamc ccallf.f ccallp.p
cexam

The output fromrunning this sanple programis:
This nessage is printed at the start of nmain.
Before calls:

Text string: hi C

ic = 50
xc = 10. 000000

| Copyright IBM Corp. 1985, 1991
Cl-2

C Language User's Guide
C Calling FORTRAN and Pascal

yc = 0. 000000

After FORTRAN call:
Text string: FORTRAN |ives!

ic =2
xc = 2.302585
yc = 45. 000000

After Pascal call:
Text string: Go Wrth!

ic =4
Xc = 4.605170
yc = 4.000000

This nessage is printed at the end of main.

| Copyright IBM Corp. 1985, 1991
Cl-3

C Language User's Guide
FORTRAN Calling Pascal and VSC

C. 2 FORTRAN Cal l'i ng Pascal and VSC
The Cal |i ng FORTRAN Program

C This FORTRAN code is in the file nanmed "forexamf".
C

PROGRAM EXAMPLE
CALL MYCHO CE
VRI TE(*, 100)
100 FORMAT(/' |''ve safely returned after doing all that!')
END

SUBROUTI NE MYCHO CE

I NTEGER | FOR

I NTEGER COUNT

REAL XFOR

DOUBLE PRECI SI ON YFOR
CHARACTER* 10 CHRFOR
CHARACTER*5 CHRFI VE

C Sone data is initialized.
EQUI VALENCE (CHRFOR, LETTER)
CHRFOR=' HELLO
CHRFI VE=' AGAI N
| FOR=50
COUNT=10
XFOR=10
YFOR=0.

WRI TE(*, 100) CHRFOR, | FOR, XFOR, CHRFI VE, YFOR
100 FORVAT(/'Before calls:'/'" IFOR="110/" Text string: *'A *'
+ " XFOR='F10.2/' Text string: *' A *'/' YFOR='F10. 2)

C A Pascal procedure is called.
CALL PSUB(| FOR, CHRFOR, XFOR, CHRFI VE, YFOR)
WRI TE(*, 110) | FOR, CHRFOR, XFOR, CHRFI VE, YFOR
110 FORVAT(/' After Pascal call:'/' IFOR="110/" Text string: *' A *'
+ " XFOR='F10.2/' Text string: *' A *'/' YFOR='F10. 2)

C A C subroutine is called.
CALL CSUB(| FOR, CHRFOR, XFOR, CHRFI VE, YFOR)
WRI TE(*, 120) | FOR, CHRFOR, XFOR, CHRFI VE, YFOR
120 FORVAT(/' After Ccall:'/" IFOR="110/" Text string: *'A *'
+ " XFOR='F10.2/' Text string: *' A */' YFOR='F10. 2)
END

The Cal | ed Pascal Procedure

{ This is the Pascal procedure to be called by FORTRAN.
This code is in the file naned "fcallp.p". }

segment DUMMYNAME;

type TEXT = packed array [0..79] of CHAR

| Copyright IBM Corp. 1985, 1991
c2-1

C Language User's Guide
FORTRAN Calling Pascal and VSC
{ Note that the incom ng argunents which were passed
as FORTRAN characters arrive as pointers in their
actual locations, with their lengths, in order, at
the end of the argunent list. }

procedure PSUB (var | : | NTEGER
var WORD1 : TEXT
var X . SHORTREAL
var WORD2 : TEXT
var Y . REAL;
LEN1L . I NTEGER
LEN2 : I NTEGER) ;external;

procedure PSUB ;
var J . | NTEGER
begin
WORDL[0] := 'B'; WORD1[1] :="Y'"; WORD1[2] :="FE';
FOR J := 3 TO LEN1-1 DO
WORDL[J] ="' ",
FORJ := 0 TO LEN2-1 DO
WORD2[J] :="'FP',;
X ;
I
Y .
end;

(L]
—
. m
pd
P

Note: On the RT, the external declaration and definition for procedure
PSUB must include the underscore (_) character appended to its
nanme; PSUB .

The Call ed VSC Function

/* This is the VSC function to be called by FORTRAN. */
[* This code is in the file naned "fcallc.c". */

void csub (i,
wor dl,
X,
wor d2,
Y,
lenl, /* Note the hidden |Iength argunments corresponding */
len2) /* to wordl and word2 *)

char wordl[79], wor d2[79] ;

int *i;
int lenl, |en2;
float *Xx;
doubl e *y;
{ o
int j;
wordl[0] = '"h'; /* Arrays in C always use the */
wordl[1] = "i"; /* call-by-reference nechanism */
wordl[2] =" *;
wordl[3] ='C;

for (j=4; j<lenl-1; j++)

| Copyright IBM Corp. 1985, 1991
c2-2

C Language User's Guide
FORTRAN Calling Pascal and VSC

wordl[j] =" ";
*j

* X
*

- 3,
-(*x);
2.0;
wor d2[0] '
wor d2[1]
wor d2[2]
wor d2[3]
wor d2[4]

Q

«Q S or-

Note: On the RT, the definition of the function csub nust include the
underscore (_) character appended to its nanme; csub .

Commands and Qut put

The commands needed to conpile and run this sanple programon the PS/2
are:

cc -o forexamforexamf fcallp.p fcallc.c
f or exam

The commuands needed to conpile and run this sanple programon the RT are:

vs -0 forexamforexamf fcallp.p fcallc.c
f or exam

The output fromrunning this sanple programis:

Before call s:

| FOR= 50
Text string: *HELLO * XFOR= 10. 00
Text string: *AGAI N*
YFOR= . 00
After Pascal call:
| FOR= 10
Text string: *BYE * XFOR= 500. 00
Text string: *PPPPP*
YFOR= 1.00
After C call:
| FOR= -3
Text string: *hi C * XFOR= -500. 00
Text string: *CLong*
YFOR= 2.00

|'ve safely returned after doing all that!

| Copyright IBM Corp. 1985, 1991
C2-3

C Language User's Guide
Pascal Calling FORTRAN and VSC

C. 3 Pascal Calling FORTRAN and VSC
The Cal | i ng Pascal Program
{ This code is in the file naned "pasexamp". }

program MAI N (i nput, out put);
type TEXT = packed array [0..79] of CHAR

procedure FSUB (var NAMES : TEXT;
var | PAS : | NTECER,
var XPAS : SHORTREAL;
var YPAS : REAL;
LENL : INTEGER); external;

procedure CSUB (NAVES : TEXT;
var | PAS : | NTEGER
var XPAS : SHORTREAL;
var YPAS : REAL); external;

procedure PSUB;

var
CHRPAS : TEXT;
| NTPAS : | NTEGER,
XREAL : SHORTREAL;
YDOUB : REAL;

[. | NTEGER;
begin
CHRPAS[O0] := '"H; CHRPAS[1] :="'1"; CHRPAS[2] :=" "',
CHRPAS[3] := '"W,; CHRPAS[4] :="'l'; CHRPAS5] := 'R,
CHRPAS[6] :="'T; CHRPAS[7] :="'H;
| NTPAS = 50;
XREAL = 10.0;
YDOUB = 0. 0dO;
witeln;
witeln ("Before calls:');
wite(' Text: *'); for | :=0to 7 do wite(CHRPAS[1]);

witeln('*");
witeln(' INTPAS=',|NTPAS: 2,' XREAL=',6 XREAL,' YDOUB=', YDOUB);
FSUB (CHRPAS, | NTPAS, XREAL, YDOUB, 20) ;

witeln;
witeln ("After FORTRAN call:');
wite(' Text: *'); for | := 0 to 20 do wite(CHRPAS[I]);

witeln('*");
witeln(' INTPAS=',|NTPAS: 2,' XREAL=',6 XREAL,' YDOUB=', YDOUB);
CSUB(CHRPAS, | NTPAS, XREAL, YDOUB,) ;

witeln;
witeln ("After Ccall:");
wite(' Text: *'); for | :=0to 4 do wite(CHRPAS[1]);

witeln('*");

writel n(" I NTPAS='",INTPAS: 2, XREAL=', XREAL,' YDOUB=', YDOUB);
witeln;

end;

| Copyright IBM Corp. 1985, 1991
C3-1

begin

C Language User's Guide
Pascal Calling FORTRAN and VSC

witeln(' This nmessage is printed at the beginning of MAIN. ");

PSUB;

witeln(' This nmessage is printed at the end of MAIN.');

end.

Note: On the RT,

the external declaration and call

to the procedure FSUB

must i nclude the underscore (_) character appended to its nane;

FSUB_.

The Cal | ed FORTRAN

Subr outi ne

C This is the FORTRAN subroutine to be called by Pascal.
C This code is in the file naned "pcal | f.f".

SUBROUTI NE FSUB(CHR, |, X, Y)
CHARACTER* 20 CHR

| NTEGER |

REAL X

DOUBLE PRECI SI ON Y

| =LEN(

CHR)

CHR=' FORTRAN Li ves!"'

X=X*1

Y=1. 0DO
RETURN

END

The Call ed VSC Function

/* This is the VSC function to be called by Pascal. */
/* This code is in the file naned "pcallc.c". */
int csub (word,
i,
X,
y)
char word[79];
int *i;
float *x;
doubl e *y;
{
word[0] = "h"; /* Arrays in C always use the */
word[1] = "i"; /* call-by-reference nmechanism */
word[2] =" ';
word[3] ="'C;
word[4] =" ";
*Io= -3
*x = -1.0;
*y = 1.0;
return(0);

Commands and Qut put

| Copyright IBM Corp. 1985, 1991
C3-2

C Language User's Guide
Pascal Calling FORTRAN and VSC

The commands needed to conpile and run this sanple programon the PS/2
are:

cCc -0 pasexam pasexamp pcallf.f pcallc.c
pasexam

The commuands needed to conpile and run this sanmple programon the RT are:

VS -0 pasexam pasexamp pcallf.f pcallc.c
pasexam

The output fromrunning this sanple programis:
This nessage is printed at the begi nning of MAIN.
Before calls:
Text: *H WRTH
| NTPAS=50 XREAL= 1. 0000000000000E+01 YDOUB= 0. 0000000000000E+000
After FORTRAN call:
Text: *FORTRAN |ives! *
| NTPAS=20 XREAL= 2. 0000000000000E+02 YDOUB= 1. 0000000000000E+000
After C call:
Text= *hi C *
| NTPAS=-3 XREAL=-1. 0000000000000E+00 YDOUB= 1. 0000000000000E+000

This nessage is printed at the end of MAIN

| Copyright IBM Corp. 1985, 1991
C3-3

C Language User's Guide
Appendix D. C Compiler Limits

D.0 Appendix D. C Conpiler Limts

370 PS/ 24 RT
PREPROCESSOR STATEMENTS

- nesting levels for include files |
- macro identifiers defined in a file |
- arguments in one macro invocation 31,

w-—-—--
=y

| DENTI FI ERS

- significant chars in an internal identifier | 64 64

- significant chars in an external identifier | 64 64

- external identifiers declared in a file : : |

- bl ock-scope identifiers in one bl ock | | i
DECLARATORS

- vari ables in a single declaration l : |

- enuneration constants | i |

- menbers in a structure or union | | I

- initialization elements I | i

- nesting |l evels of structure or unions | i i

- characters in a string literal | 327672 |
STATEMENTS

- case labels for a switch statement | | 2000
FUNCTI ONS

- paraneters in one function definition
- argunments in one function call

Not e:

i This means that in preprocessor statenents, argunents in one nacro
invocation are limted to 31, but not limted in the Cinboard cpp.

2This includes the null character.
i The itemis not explicitly limted by the C conpilers.

4Applies to PS/ 2 VSC and MCC conpi l ers.

| Copyright IBM Corp. 1985, 1991
D.0-1

C Language User's Guide
Index
-# debugging option 2.3.1.1
-a option 2.3.1
-B prefix extended function 2.3.1.2
-c option 2.3.1
-Dname option 2.3.1
-E option 2.3.1
-f option 2.3.1
-f2 option 2.3.1
-g option 2.3.1
-h option 2.3.1
- H+w command- | i ne option 2.3.1. 4
- Hanno command-1ine option 2. 3. 1.
- Hansi command-1ine option 2.3.1.
- Hasm conmand- | i ne option 2.3. 1. 4
- Hf si ngl e command-1ine option 2. 3 .4
-H i nes command-|ine option 2.3.1.
-H i st command-1ine option 2.3.1.4
- Hnocpp conmand-line option 2.3.1.4
- Hof f =t oggl e command-1ine option 2.3.1.4
- Hon=t oggl e conmand-line option 2.3.1.4
-Hpcc conmand-line option 2.3.1.4
- Hxa command-line option 2.3.1.4
-ldir option 2.3.1
-L[dir] option 2.3.1
-1 [key] option 2.3.1
-M conmand-line option 2.3.1.4
-N[ndpt] option 2.3.1
-Ooption 2.3.1
-o[onanme] option 2.3.1
-p option 2.3.1
-pg option 2.3.1
-Q option 2.3.1
-S option 2.3.1
-t[pcgfal] extended function 2.3.1.2
-v debugging option 2.3.1.1
-woption 2.3.1
-W extended function 2.3.1.2
-X option 2.3.1
-y[dmpz] option 2.3.1
-z option 2.3.1
Nurreri cs
80386 registers 6.9.1
80387 registers 6.9.2
A
Advanced Fl oating-Point Accelerator 2.3.1
Advanced Processor Card 2.3.1
Al X PS/ 2 |inker 2.7
Al X/ 370 |inkage register conventions 8.4
alloca interface 8.6
ANSI - Requi red Specifics 2.5.2
ANS|I 2.5.2
characters 2.5.2
floating point 2.5.2
identifiers 2.5.2
integers 2.5.2
pointers 2.5.2
preprocessing directives 2.5.2
refid=ansi.mltibyte characters 2.5.2
registers 2.5.2
structures, unions, and bit fields 2.5.2

| Copyright IBM Corp. 1985, 1991
INDEX - 1

C Language User's Guide
Index

Argunment passing conventions, C 6.10.6

ar gunent - passi ng 6.9
nmechani sns 6. 9

array storage 4.7 5.6 6.6 7.6

ASCI | character set B.0

ASM statenent 9.5

ASM st at enent exanple for Al X/ 370 and PS/2 MCC 9.5.1

ASM st at enent exanples for PS/2 VSC 9.5.2

Assenbl er routines 6.10.7

B

b+ command-line option 2.3.1.3

binary file 2.7

C

C calling FORTRAN and Pascal C. 1

calling a routine 7.8.9

cc command 2.2

character set, ASCIlI B.0

character variables 6.5 7.5

colum major order 6.6 7.6

conmand-|ine options 2.3.1
conmpiler 2.5

conmpiler 2.0 to 2.8 2.9
conmand- | i ne options 2.5
conpi |l ati on process 2.9

compiler limts DO

conmpi ler toggles 2.4
align_menbers -- 2.4.1
Asm-- 2.4.2
Char _default_unsigned -- 2.4.3
Char_is_rep -- 2.4.4
Double_math_only -- 2.4.6
Double return -- 2.4.7
Downshi ft _file_nanes -- 2.4.8

to 2.3.1.3

Int_function_warnings -- 2.4.9
List -- 2.4.10

Long_enuns -- 2.4.11
Make_externs_global -- 2.4.12
Parm warnings -- 2.4.13

PCC -- 2.4.14
PCC_nsgs -- 2.4.15
Poi nters_conpatible -- 2.4.16
Poi nters_conpatible with_ints -- 2.4.17
Print_ppo -- 2.4.18
Print_protos -- 2.4.19
Pr ot ot ype_conversion_warn -- 2.4.20
Prot ot ype_override_warnings -- 2.4.21
Read_only_strings -- 2.4.22
Recogni ze_library -- 2.4.23
VWarn -- 2.4.24
const paraneters 6.10.5.3
constant pool pointer 7.8.1 7.8.9
creating an executable C programunder Al X 2.7
D
d+ conmand-line option 2.3.1.3
data representations on PS/2 3.0
array storage 3.7
arrays 3.7
extrenme nunbers 3.6
fl oati ng-point representation 3.5
integral representation 3.4

| Copyright IBM Corp. 1985, 1991
INDEX - 2

C Language User's Guide
Index
pointers 3.8
representing real nunbers 3.5
structures 3.9
data representations on RT 4.0
arrays 4.7
extrenme nunbers 4.6
fl oati ng-point representation 4.5
integral representation 4.4
pointers 4.8
structures 4.9
data representati ons on Systenfi 370 5.0
arrays 5.6
fl oati ng-point representation 5.5
integral representation 5.4
pointers 5.7
structures 5.8
data types 6.4 7.4
debugging 2.3.1.1
def/ref variables, Pascal 6.10.8 7.8.10
Doubl e val ue paraneter, Pascal 6.10.5.2
E
entry code 7.8.8
entry points 6.8
error file 2.3.1.3
error messages. A0
exanpl e prograns 9.0
exceptions, floating point 2.6
exit code 7.8.8
ext ended functions 2.3.1.2
extrenme nunbers 4.6
F
Fl oati ng- Poi nt Accelerator 2.3.1
Fl oati ng- poi nt conputation 2.3.1.3
fl oati ng-poi nt exceptions 2.6
floating-point registers 7.8.3

f or mat
gener al - purpose output file 7.8.1
GPOFF 7.8.1

trace table 8.3.10
FORTRAN cal I i ng Pascal and VSC C. 2
frame pointer 7.8.3
function values 7.8.5
G
g+ conmand-line option 2.3.1.3
general - purpose output file format 7.8.1
gener al - purpose registers 7.8.3
GPOFF format 7.8.1
H
hi dden paraneters in Pascal 6.10.5.4
hi ghl i ghting FRONT_2.3.1
[
i nput paraneter words 7.8.3
i nput/output initialization 6.
i nput/output primtives 6.7 7.
i nput/output termnation 6.7
L

7
7

| command-line option 2.3.1.3
| . command-1ine option

| + conmand-|ine option
Id linker 2.7

2.3.1.3
2.3.1.3

| Copyright IBM Corp. 1985, 1991
INDEX - 3

C Language User's Guide
Index

conpi |l ati on process 2.8
libraries 6.7
library search order 2.3.1
libvsfor.a 6.7 7.7
libvssys.a 7.7
libvssys.a 6.7 7.7
limts, conpiler D.O
i nkage area 7.8.3
I i nkage convention 6.0
See al so subroutine |inkage convention
I i nkage conventions, Al X 370, exanples of 8.5
| i nkage regi ster conventions, Al X/ 370 8.4
I i nkage specifications, Al X 370 8.3
list to output device 2.3.1.3
listing file 2.3.1.3
| oad nodule format 7.8.1
| ocal stack area 7.8.3
M
machi ne- dependent optim zation 2.5
machi ne-i ndependent optim zation 2.5
matrix storage 6.6 7.6
MCC conpiler 2.2
ncount paraneter 8.6
messages A 0O
nm xi ng | anguages 6.0
O

ol+ command-line option 2.3.1.3 2.5

02+ command-line option 2.3.1.3 2.5

03+ command-line option 2.3.1.3 2.5

04+ command-line option 2.3.1.3 2.5

optim zation 2.5

optim zation considerations 2.5.1
constant expression folding 2.5.1

constant propagation 2.5.1
cross junping 2.5.1
dead code elimnation 2.5.1
expression renoval 2.5.1
function inlining 2.5.1
gl obal cse 2.5.1
gl obal register allocation 2.5.1
live/dead analysis 2.5.1
|l ocal cse 2.5.1
strength reductions 2.5.1
optim zation levels 2.3.1.3
output file format, general -purpose 7.8.1
out put paranmeter words 7.8.3
P
paraneter addressing 7.8.6
paraneter passing 7.8.4
Par anet er - passi ng convention 6.10.1
Par amet er - passi ng conventions, Pascal 6.10.5
Pascal conventions 6.10.5
Pascal calling FORTRAN and VSC C. 3
Pascal def/ref variables 6.10.8 7.8.10
Pascal paraneter types
const 6.10.5.3
value 6.10.5.2
variable 6.10.5.1
primtive input/output routines 6.7 7.7
libvsfor.a 7.7

| Copyright IBM Corp. 1985, 1991
INDEX - 4

C Language User's Guide
Index

prof comuand 2.3.1
program exanples 9.0
program optim zation 2.5
R
regi ster save area 7.8.3
regi ster usage 7.8.2 8.3.3
registers 6.9.1 6.9.2
representing real nunbers 4.5 5.5
routine calling 7.8.9
row najor order 6.6 7.6
S
sanpl e prograns 9.0
Al X systemcall 9.4
prime nunbers 9.3
search order, library 2.3.1
service routines 8.6
set val ue parameter, Pascal 6.10.5.2
specific options 2.3.1.3 2.3.1.4
stack data structure 6.9.3
Stack frame 6.10.3 7.8.3
FORTRAN conventions 6.10.4
frame pointer 7.8.3
i nput paraneter words 7.8.3
i nkage area 7.8.3
| ocal area 7.8.3
out put paranmeter words 7.8.3
regi ster save area 7.8.3
tenporary area 7.8.3
total frane 7.8.3
stack frane |ayout 8.3.9
St ackCheck routine 8.6
static link 6.10.5.4
C conventions 6.10.6
storage of arrays 6.6 7.6
storage of matrices 6.6 7.6
subroutine |inkage convention 6.10
subroutine |inkage convention on RT 7.8
entry code 7.8.8
exit code 7.8.8
function values 7.8.5
| oad nodul e format 7.8.1
par anet er addressing 7.8.6
paraneter passing 7.8.4
regi ster usage 7.8.2
routine calling 7.8.9
stack frane 7.8.3
traceback 7.8.7
Symnbol i ¢ Debugger 7.8.7
syntax di agrams FRONT_2. 3.2
T
tagged data 8.8
tenporary stack area 7.8.3
trace table formats 8.3.10
traceback 7.8.7 8.7.1
\Y
v+ command-line option 2.3.1.3
val ue paraneters 6.10.5.2
vararg macro 8.5.2.4
vari abl e paraneters, Pascal 6.10.5.1
VS C conpiler 2.2

| Copyright IBM Corp. 1985, 1991
INDEX - 5

C Language User's Guide
Index

W
w comand-line option 2.3.1.3

| Copyright IBM Corp. 1985, 1991
INDEX - 6

